]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/core/usb.c
usb: core: Add "quirks" parameter for usbcore
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / core / usb.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/usb/core/usb.c
4 *
5 * (C) Copyright Linus Torvalds 1999
6 * (C) Copyright Johannes Erdfelt 1999-2001
7 * (C) Copyright Andreas Gal 1999
8 * (C) Copyright Gregory P. Smith 1999
9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10 * (C) Copyright Randy Dunlap 2000
11 * (C) Copyright David Brownell 2000-2004
12 * (C) Copyright Yggdrasil Computing, Inc. 2000
13 * (usb_device_id matching changes by Adam J. Richter)
14 * (C) Copyright Greg Kroah-Hartman 2002-2003
15 *
16 * Released under the GPLv2 only.
17 *
18 * NOTE! This is not actually a driver at all, rather this is
19 * just a collection of helper routines that implement the
20 * generic USB things that the real drivers can use..
21 *
22 * Think of this as a "USB library" rather than anything else.
23 * It should be considered a slave, with no callbacks. Callbacks
24 * are evil.
25 */
26
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/string.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h> /* for in_interrupt() */
33 #include <linux/kmod.h>
34 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/errno.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/mutex.h>
40 #include <linux/workqueue.h>
41 #include <linux/debugfs.h>
42 #include <linux/usb/of.h>
43
44 #include <asm/io.h>
45 #include <linux/scatterlist.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48
49 #include "usb.h"
50
51
52 const char *usbcore_name = "usbcore";
53
54 static bool nousb; /* Disable USB when built into kernel image */
55
56 module_param(nousb, bool, 0444);
57
58 /*
59 * for external read access to <nousb>
60 */
61 int usb_disabled(void)
62 {
63 return nousb;
64 }
65 EXPORT_SYMBOL_GPL(usb_disabled);
66
67 #ifdef CONFIG_PM
68 static int usb_autosuspend_delay = 2; /* Default delay value,
69 * in seconds */
70 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
71 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
72
73 #else
74 #define usb_autosuspend_delay 0
75 #endif
76
77 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
78 struct usb_endpoint_descriptor **bulk_in,
79 struct usb_endpoint_descriptor **bulk_out,
80 struct usb_endpoint_descriptor **int_in,
81 struct usb_endpoint_descriptor **int_out)
82 {
83 switch (usb_endpoint_type(epd)) {
84 case USB_ENDPOINT_XFER_BULK:
85 if (usb_endpoint_dir_in(epd)) {
86 if (bulk_in && !*bulk_in) {
87 *bulk_in = epd;
88 break;
89 }
90 } else {
91 if (bulk_out && !*bulk_out) {
92 *bulk_out = epd;
93 break;
94 }
95 }
96
97 return false;
98 case USB_ENDPOINT_XFER_INT:
99 if (usb_endpoint_dir_in(epd)) {
100 if (int_in && !*int_in) {
101 *int_in = epd;
102 break;
103 }
104 } else {
105 if (int_out && !*int_out) {
106 *int_out = epd;
107 break;
108 }
109 }
110
111 return false;
112 default:
113 return false;
114 }
115
116 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
117 (!int_in || *int_in) && (!int_out || *int_out);
118 }
119
120 /**
121 * usb_find_common_endpoints() -- look up common endpoint descriptors
122 * @alt: alternate setting to search
123 * @bulk_in: pointer to descriptor pointer, or NULL
124 * @bulk_out: pointer to descriptor pointer, or NULL
125 * @int_in: pointer to descriptor pointer, or NULL
126 * @int_out: pointer to descriptor pointer, or NULL
127 *
128 * Search the alternate setting's endpoint descriptors for the first bulk-in,
129 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
130 * provided pointers (unless they are NULL).
131 *
132 * If a requested endpoint is not found, the corresponding pointer is set to
133 * NULL.
134 *
135 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
136 */
137 int usb_find_common_endpoints(struct usb_host_interface *alt,
138 struct usb_endpoint_descriptor **bulk_in,
139 struct usb_endpoint_descriptor **bulk_out,
140 struct usb_endpoint_descriptor **int_in,
141 struct usb_endpoint_descriptor **int_out)
142 {
143 struct usb_endpoint_descriptor *epd;
144 int i;
145
146 if (bulk_in)
147 *bulk_in = NULL;
148 if (bulk_out)
149 *bulk_out = NULL;
150 if (int_in)
151 *int_in = NULL;
152 if (int_out)
153 *int_out = NULL;
154
155 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
156 epd = &alt->endpoint[i].desc;
157
158 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
159 return 0;
160 }
161
162 return -ENXIO;
163 }
164 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
165
166 /**
167 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
168 * @alt: alternate setting to search
169 * @bulk_in: pointer to descriptor pointer, or NULL
170 * @bulk_out: pointer to descriptor pointer, or NULL
171 * @int_in: pointer to descriptor pointer, or NULL
172 * @int_out: pointer to descriptor pointer, or NULL
173 *
174 * Search the alternate setting's endpoint descriptors for the last bulk-in,
175 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
176 * provided pointers (unless they are NULL).
177 *
178 * If a requested endpoint is not found, the corresponding pointer is set to
179 * NULL.
180 *
181 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
182 */
183 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
184 struct usb_endpoint_descriptor **bulk_in,
185 struct usb_endpoint_descriptor **bulk_out,
186 struct usb_endpoint_descriptor **int_in,
187 struct usb_endpoint_descriptor **int_out)
188 {
189 struct usb_endpoint_descriptor *epd;
190 int i;
191
192 if (bulk_in)
193 *bulk_in = NULL;
194 if (bulk_out)
195 *bulk_out = NULL;
196 if (int_in)
197 *int_in = NULL;
198 if (int_out)
199 *int_out = NULL;
200
201 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
202 epd = &alt->endpoint[i].desc;
203
204 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
205 return 0;
206 }
207
208 return -ENXIO;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
211
212 /**
213 * usb_find_alt_setting() - Given a configuration, find the alternate setting
214 * for the given interface.
215 * @config: the configuration to search (not necessarily the current config).
216 * @iface_num: interface number to search in
217 * @alt_num: alternate interface setting number to search for.
218 *
219 * Search the configuration's interface cache for the given alt setting.
220 *
221 * Return: The alternate setting, if found. %NULL otherwise.
222 */
223 struct usb_host_interface *usb_find_alt_setting(
224 struct usb_host_config *config,
225 unsigned int iface_num,
226 unsigned int alt_num)
227 {
228 struct usb_interface_cache *intf_cache = NULL;
229 int i;
230
231 for (i = 0; i < config->desc.bNumInterfaces; i++) {
232 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
233 == iface_num) {
234 intf_cache = config->intf_cache[i];
235 break;
236 }
237 }
238 if (!intf_cache)
239 return NULL;
240 for (i = 0; i < intf_cache->num_altsetting; i++)
241 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
242 return &intf_cache->altsetting[i];
243
244 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
245 "config %u\n", alt_num, iface_num,
246 config->desc.bConfigurationValue);
247 return NULL;
248 }
249 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
250
251 /**
252 * usb_ifnum_to_if - get the interface object with a given interface number
253 * @dev: the device whose current configuration is considered
254 * @ifnum: the desired interface
255 *
256 * This walks the device descriptor for the currently active configuration
257 * to find the interface object with the particular interface number.
258 *
259 * Note that configuration descriptors are not required to assign interface
260 * numbers sequentially, so that it would be incorrect to assume that
261 * the first interface in that descriptor corresponds to interface zero.
262 * This routine helps device drivers avoid such mistakes.
263 * However, you should make sure that you do the right thing with any
264 * alternate settings available for this interfaces.
265 *
266 * Don't call this function unless you are bound to one of the interfaces
267 * on this device or you have locked the device!
268 *
269 * Return: A pointer to the interface that has @ifnum as interface number,
270 * if found. %NULL otherwise.
271 */
272 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
273 unsigned ifnum)
274 {
275 struct usb_host_config *config = dev->actconfig;
276 int i;
277
278 if (!config)
279 return NULL;
280 for (i = 0; i < config->desc.bNumInterfaces; i++)
281 if (config->interface[i]->altsetting[0]
282 .desc.bInterfaceNumber == ifnum)
283 return config->interface[i];
284
285 return NULL;
286 }
287 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
288
289 /**
290 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
291 * @intf: the interface containing the altsetting in question
292 * @altnum: the desired alternate setting number
293 *
294 * This searches the altsetting array of the specified interface for
295 * an entry with the correct bAlternateSetting value.
296 *
297 * Note that altsettings need not be stored sequentially by number, so
298 * it would be incorrect to assume that the first altsetting entry in
299 * the array corresponds to altsetting zero. This routine helps device
300 * drivers avoid such mistakes.
301 *
302 * Don't call this function unless you are bound to the intf interface
303 * or you have locked the device!
304 *
305 * Return: A pointer to the entry of the altsetting array of @intf that
306 * has @altnum as the alternate setting number. %NULL if not found.
307 */
308 struct usb_host_interface *usb_altnum_to_altsetting(
309 const struct usb_interface *intf,
310 unsigned int altnum)
311 {
312 int i;
313
314 for (i = 0; i < intf->num_altsetting; i++) {
315 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
316 return &intf->altsetting[i];
317 }
318 return NULL;
319 }
320 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
321
322 struct find_interface_arg {
323 int minor;
324 struct device_driver *drv;
325 };
326
327 static int __find_interface(struct device *dev, void *data)
328 {
329 struct find_interface_arg *arg = data;
330 struct usb_interface *intf;
331
332 if (!is_usb_interface(dev))
333 return 0;
334
335 if (dev->driver != arg->drv)
336 return 0;
337 intf = to_usb_interface(dev);
338 return intf->minor == arg->minor;
339 }
340
341 /**
342 * usb_find_interface - find usb_interface pointer for driver and device
343 * @drv: the driver whose current configuration is considered
344 * @minor: the minor number of the desired device
345 *
346 * This walks the bus device list and returns a pointer to the interface
347 * with the matching minor and driver. Note, this only works for devices
348 * that share the USB major number.
349 *
350 * Return: A pointer to the interface with the matching major and @minor.
351 */
352 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
353 {
354 struct find_interface_arg argb;
355 struct device *dev;
356
357 argb.minor = minor;
358 argb.drv = &drv->drvwrap.driver;
359
360 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
361
362 /* Drop reference count from bus_find_device */
363 put_device(dev);
364
365 return dev ? to_usb_interface(dev) : NULL;
366 }
367 EXPORT_SYMBOL_GPL(usb_find_interface);
368
369 struct each_dev_arg {
370 void *data;
371 int (*fn)(struct usb_device *, void *);
372 };
373
374 static int __each_dev(struct device *dev, void *data)
375 {
376 struct each_dev_arg *arg = (struct each_dev_arg *)data;
377
378 /* There are struct usb_interface on the same bus, filter them out */
379 if (!is_usb_device(dev))
380 return 0;
381
382 return arg->fn(to_usb_device(dev), arg->data);
383 }
384
385 /**
386 * usb_for_each_dev - iterate over all USB devices in the system
387 * @data: data pointer that will be handed to the callback function
388 * @fn: callback function to be called for each USB device
389 *
390 * Iterate over all USB devices and call @fn for each, passing it @data. If it
391 * returns anything other than 0, we break the iteration prematurely and return
392 * that value.
393 */
394 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
395 {
396 struct each_dev_arg arg = {data, fn};
397
398 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
399 }
400 EXPORT_SYMBOL_GPL(usb_for_each_dev);
401
402 /**
403 * usb_release_dev - free a usb device structure when all users of it are finished.
404 * @dev: device that's been disconnected
405 *
406 * Will be called only by the device core when all users of this usb device are
407 * done.
408 */
409 static void usb_release_dev(struct device *dev)
410 {
411 struct usb_device *udev;
412 struct usb_hcd *hcd;
413
414 udev = to_usb_device(dev);
415 hcd = bus_to_hcd(udev->bus);
416
417 usb_destroy_configuration(udev);
418 usb_release_bos_descriptor(udev);
419 of_node_put(dev->of_node);
420 usb_put_hcd(hcd);
421 kfree(udev->product);
422 kfree(udev->manufacturer);
423 kfree(udev->serial);
424 kfree(udev);
425 }
426
427 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
428 {
429 struct usb_device *usb_dev;
430
431 usb_dev = to_usb_device(dev);
432
433 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
434 return -ENOMEM;
435
436 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
437 return -ENOMEM;
438
439 return 0;
440 }
441
442 #ifdef CONFIG_PM
443
444 /* USB device Power-Management thunks.
445 * There's no need to distinguish here between quiescing a USB device
446 * and powering it down; the generic_suspend() routine takes care of
447 * it by skipping the usb_port_suspend() call for a quiesce. And for
448 * USB interfaces there's no difference at all.
449 */
450
451 static int usb_dev_prepare(struct device *dev)
452 {
453 return 0; /* Implement eventually? */
454 }
455
456 static void usb_dev_complete(struct device *dev)
457 {
458 /* Currently used only for rebinding interfaces */
459 usb_resume_complete(dev);
460 }
461
462 static int usb_dev_suspend(struct device *dev)
463 {
464 return usb_suspend(dev, PMSG_SUSPEND);
465 }
466
467 static int usb_dev_resume(struct device *dev)
468 {
469 return usb_resume(dev, PMSG_RESUME);
470 }
471
472 static int usb_dev_freeze(struct device *dev)
473 {
474 return usb_suspend(dev, PMSG_FREEZE);
475 }
476
477 static int usb_dev_thaw(struct device *dev)
478 {
479 return usb_resume(dev, PMSG_THAW);
480 }
481
482 static int usb_dev_poweroff(struct device *dev)
483 {
484 return usb_suspend(dev, PMSG_HIBERNATE);
485 }
486
487 static int usb_dev_restore(struct device *dev)
488 {
489 return usb_resume(dev, PMSG_RESTORE);
490 }
491
492 static const struct dev_pm_ops usb_device_pm_ops = {
493 .prepare = usb_dev_prepare,
494 .complete = usb_dev_complete,
495 .suspend = usb_dev_suspend,
496 .resume = usb_dev_resume,
497 .freeze = usb_dev_freeze,
498 .thaw = usb_dev_thaw,
499 .poweroff = usb_dev_poweroff,
500 .restore = usb_dev_restore,
501 .runtime_suspend = usb_runtime_suspend,
502 .runtime_resume = usb_runtime_resume,
503 .runtime_idle = usb_runtime_idle,
504 };
505
506 #endif /* CONFIG_PM */
507
508
509 static char *usb_devnode(struct device *dev,
510 umode_t *mode, kuid_t *uid, kgid_t *gid)
511 {
512 struct usb_device *usb_dev;
513
514 usb_dev = to_usb_device(dev);
515 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
516 usb_dev->bus->busnum, usb_dev->devnum);
517 }
518
519 struct device_type usb_device_type = {
520 .name = "usb_device",
521 .release = usb_release_dev,
522 .uevent = usb_dev_uevent,
523 .devnode = usb_devnode,
524 #ifdef CONFIG_PM
525 .pm = &usb_device_pm_ops,
526 #endif
527 };
528
529
530 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
531 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
532 {
533 struct usb_hcd *hcd = bus_to_hcd(bus);
534 return hcd->wireless;
535 }
536
537
538 /**
539 * usb_alloc_dev - usb device constructor (usbcore-internal)
540 * @parent: hub to which device is connected; null to allocate a root hub
541 * @bus: bus used to access the device
542 * @port1: one-based index of port; ignored for root hubs
543 * Context: !in_interrupt()
544 *
545 * Only hub drivers (including virtual root hub drivers for host
546 * controllers) should ever call this.
547 *
548 * This call may not be used in a non-sleeping context.
549 *
550 * Return: On success, a pointer to the allocated usb device. %NULL on
551 * failure.
552 */
553 struct usb_device *usb_alloc_dev(struct usb_device *parent,
554 struct usb_bus *bus, unsigned port1)
555 {
556 struct usb_device *dev;
557 struct usb_hcd *usb_hcd = bus_to_hcd(bus);
558 unsigned root_hub = 0;
559 unsigned raw_port = port1;
560
561 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
562 if (!dev)
563 return NULL;
564
565 if (!usb_get_hcd(usb_hcd)) {
566 kfree(dev);
567 return NULL;
568 }
569 /* Root hubs aren't true devices, so don't allocate HCD resources */
570 if (usb_hcd->driver->alloc_dev && parent &&
571 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
572 usb_put_hcd(bus_to_hcd(bus));
573 kfree(dev);
574 return NULL;
575 }
576
577 device_initialize(&dev->dev);
578 dev->dev.bus = &usb_bus_type;
579 dev->dev.type = &usb_device_type;
580 dev->dev.groups = usb_device_groups;
581 /*
582 * Fake a dma_mask/offset for the USB device:
583 * We cannot really use the dma-mapping API (dma_alloc_* and
584 * dma_map_*) for USB devices but instead need to use
585 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
586 * manually look into the mask/offset pair to determine whether
587 * they need bounce buffers.
588 * Note: calling dma_set_mask() on a USB device would set the
589 * mask for the entire HCD, so don't do that.
590 */
591 dev->dev.dma_mask = bus->sysdev->dma_mask;
592 dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
593 set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
594 dev->state = USB_STATE_ATTACHED;
595 dev->lpm_disable_count = 1;
596 atomic_set(&dev->urbnum, 0);
597
598 INIT_LIST_HEAD(&dev->ep0.urb_list);
599 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
600 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
601 /* ep0 maxpacket comes later, from device descriptor */
602 usb_enable_endpoint(dev, &dev->ep0, false);
603 dev->can_submit = 1;
604
605 /* Save readable and stable topology id, distinguishing devices
606 * by location for diagnostics, tools, driver model, etc. The
607 * string is a path along hub ports, from the root. Each device's
608 * dev->devpath will be stable until USB is re-cabled, and hubs
609 * are often labeled with these port numbers. The name isn't
610 * as stable: bus->busnum changes easily from modprobe order,
611 * cardbus or pci hotplugging, and so on.
612 */
613 if (unlikely(!parent)) {
614 dev->devpath[0] = '0';
615 dev->route = 0;
616
617 dev->dev.parent = bus->controller;
618 device_set_of_node_from_dev(&dev->dev, bus->sysdev);
619 dev_set_name(&dev->dev, "usb%d", bus->busnum);
620 root_hub = 1;
621 } else {
622 /* match any labeling on the hubs; it's one-based */
623 if (parent->devpath[0] == '0') {
624 snprintf(dev->devpath, sizeof dev->devpath,
625 "%d", port1);
626 /* Root ports are not counted in route string */
627 dev->route = 0;
628 } else {
629 snprintf(dev->devpath, sizeof dev->devpath,
630 "%s.%d", parent->devpath, port1);
631 /* Route string assumes hubs have less than 16 ports */
632 if (port1 < 15)
633 dev->route = parent->route +
634 (port1 << ((parent->level - 1)*4));
635 else
636 dev->route = parent->route +
637 (15 << ((parent->level - 1)*4));
638 }
639
640 dev->dev.parent = &parent->dev;
641 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
642
643 if (!parent->parent) {
644 /* device under root hub's port */
645 raw_port = usb_hcd_find_raw_port_number(usb_hcd,
646 port1);
647 }
648 dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
649 raw_port);
650
651 /* hub driver sets up TT records */
652 }
653
654 dev->portnum = port1;
655 dev->bus = bus;
656 dev->parent = parent;
657 INIT_LIST_HEAD(&dev->filelist);
658
659 #ifdef CONFIG_PM
660 pm_runtime_set_autosuspend_delay(&dev->dev,
661 usb_autosuspend_delay * 1000);
662 dev->connect_time = jiffies;
663 dev->active_duration = -jiffies;
664 #endif
665 if (root_hub) /* Root hub always ok [and always wired] */
666 dev->authorized = 1;
667 else {
668 dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
669 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
670 }
671 return dev;
672 }
673 EXPORT_SYMBOL_GPL(usb_alloc_dev);
674
675 /**
676 * usb_get_dev - increments the reference count of the usb device structure
677 * @dev: the device being referenced
678 *
679 * Each live reference to a device should be refcounted.
680 *
681 * Drivers for USB interfaces should normally record such references in
682 * their probe() methods, when they bind to an interface, and release
683 * them by calling usb_put_dev(), in their disconnect() methods.
684 *
685 * Return: A pointer to the device with the incremented reference counter.
686 */
687 struct usb_device *usb_get_dev(struct usb_device *dev)
688 {
689 if (dev)
690 get_device(&dev->dev);
691 return dev;
692 }
693 EXPORT_SYMBOL_GPL(usb_get_dev);
694
695 /**
696 * usb_put_dev - release a use of the usb device structure
697 * @dev: device that's been disconnected
698 *
699 * Must be called when a user of a device is finished with it. When the last
700 * user of the device calls this function, the memory of the device is freed.
701 */
702 void usb_put_dev(struct usb_device *dev)
703 {
704 if (dev)
705 put_device(&dev->dev);
706 }
707 EXPORT_SYMBOL_GPL(usb_put_dev);
708
709 /**
710 * usb_get_intf - increments the reference count of the usb interface structure
711 * @intf: the interface being referenced
712 *
713 * Each live reference to a interface must be refcounted.
714 *
715 * Drivers for USB interfaces should normally record such references in
716 * their probe() methods, when they bind to an interface, and release
717 * them by calling usb_put_intf(), in their disconnect() methods.
718 *
719 * Return: A pointer to the interface with the incremented reference counter.
720 */
721 struct usb_interface *usb_get_intf(struct usb_interface *intf)
722 {
723 if (intf)
724 get_device(&intf->dev);
725 return intf;
726 }
727 EXPORT_SYMBOL_GPL(usb_get_intf);
728
729 /**
730 * usb_put_intf - release a use of the usb interface structure
731 * @intf: interface that's been decremented
732 *
733 * Must be called when a user of an interface is finished with it. When the
734 * last user of the interface calls this function, the memory of the interface
735 * is freed.
736 */
737 void usb_put_intf(struct usb_interface *intf)
738 {
739 if (intf)
740 put_device(&intf->dev);
741 }
742 EXPORT_SYMBOL_GPL(usb_put_intf);
743
744 /* USB device locking
745 *
746 * USB devices and interfaces are locked using the semaphore in their
747 * embedded struct device. The hub driver guarantees that whenever a
748 * device is connected or disconnected, drivers are called with the
749 * USB device locked as well as their particular interface.
750 *
751 * Complications arise when several devices are to be locked at the same
752 * time. Only hub-aware drivers that are part of usbcore ever have to
753 * do this; nobody else needs to worry about it. The rule for locking
754 * is simple:
755 *
756 * When locking both a device and its parent, always lock the
757 * the parent first.
758 */
759
760 /**
761 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
762 * @udev: device that's being locked
763 * @iface: interface bound to the driver making the request (optional)
764 *
765 * Attempts to acquire the device lock, but fails if the device is
766 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
767 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
768 * lock, the routine polls repeatedly. This is to prevent deadlock with
769 * disconnect; in some drivers (such as usb-storage) the disconnect()
770 * or suspend() method will block waiting for a device reset to complete.
771 *
772 * Return: A negative error code for failure, otherwise 0.
773 */
774 int usb_lock_device_for_reset(struct usb_device *udev,
775 const struct usb_interface *iface)
776 {
777 unsigned long jiffies_expire = jiffies + HZ;
778
779 if (udev->state == USB_STATE_NOTATTACHED)
780 return -ENODEV;
781 if (udev->state == USB_STATE_SUSPENDED)
782 return -EHOSTUNREACH;
783 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
784 iface->condition == USB_INTERFACE_UNBOUND))
785 return -EINTR;
786
787 while (!usb_trylock_device(udev)) {
788
789 /* If we can't acquire the lock after waiting one second,
790 * we're probably deadlocked */
791 if (time_after(jiffies, jiffies_expire))
792 return -EBUSY;
793
794 msleep(15);
795 if (udev->state == USB_STATE_NOTATTACHED)
796 return -ENODEV;
797 if (udev->state == USB_STATE_SUSPENDED)
798 return -EHOSTUNREACH;
799 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
800 iface->condition == USB_INTERFACE_UNBOUND))
801 return -EINTR;
802 }
803 return 0;
804 }
805 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
806
807 /**
808 * usb_get_current_frame_number - return current bus frame number
809 * @dev: the device whose bus is being queried
810 *
811 * Return: The current frame number for the USB host controller used
812 * with the given USB device. This can be used when scheduling
813 * isochronous requests.
814 *
815 * Note: Different kinds of host controller have different "scheduling
816 * horizons". While one type might support scheduling only 32 frames
817 * into the future, others could support scheduling up to 1024 frames
818 * into the future.
819 *
820 */
821 int usb_get_current_frame_number(struct usb_device *dev)
822 {
823 return usb_hcd_get_frame_number(dev);
824 }
825 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
826
827 /*-------------------------------------------------------------------*/
828 /*
829 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
830 * extra field of the interface and endpoint descriptor structs.
831 */
832
833 int __usb_get_extra_descriptor(char *buffer, unsigned size,
834 unsigned char type, void **ptr)
835 {
836 struct usb_descriptor_header *header;
837
838 while (size >= sizeof(struct usb_descriptor_header)) {
839 header = (struct usb_descriptor_header *)buffer;
840
841 if (header->bLength < 2) {
842 printk(KERN_ERR
843 "%s: bogus descriptor, type %d length %d\n",
844 usbcore_name,
845 header->bDescriptorType,
846 header->bLength);
847 return -1;
848 }
849
850 if (header->bDescriptorType == type) {
851 *ptr = header;
852 return 0;
853 }
854
855 buffer += header->bLength;
856 size -= header->bLength;
857 }
858 return -1;
859 }
860 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
861
862 /**
863 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
864 * @dev: device the buffer will be used with
865 * @size: requested buffer size
866 * @mem_flags: affect whether allocation may block
867 * @dma: used to return DMA address of buffer
868 *
869 * Return: Either null (indicating no buffer could be allocated), or the
870 * cpu-space pointer to a buffer that may be used to perform DMA to the
871 * specified device. Such cpu-space buffers are returned along with the DMA
872 * address (through the pointer provided).
873 *
874 * Note:
875 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
876 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
877 * hardware during URB completion/resubmit. The implementation varies between
878 * platforms, depending on details of how DMA will work to this device.
879 * Using these buffers also eliminates cacheline sharing problems on
880 * architectures where CPU caches are not DMA-coherent. On systems without
881 * bus-snooping caches, these buffers are uncached.
882 *
883 * When the buffer is no longer used, free it with usb_free_coherent().
884 */
885 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
886 dma_addr_t *dma)
887 {
888 if (!dev || !dev->bus)
889 return NULL;
890 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
891 }
892 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
893
894 /**
895 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
896 * @dev: device the buffer was used with
897 * @size: requested buffer size
898 * @addr: CPU address of buffer
899 * @dma: DMA address of buffer
900 *
901 * This reclaims an I/O buffer, letting it be reused. The memory must have
902 * been allocated using usb_alloc_coherent(), and the parameters must match
903 * those provided in that allocation request.
904 */
905 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
906 dma_addr_t dma)
907 {
908 if (!dev || !dev->bus)
909 return;
910 if (!addr)
911 return;
912 hcd_buffer_free(dev->bus, size, addr, dma);
913 }
914 EXPORT_SYMBOL_GPL(usb_free_coherent);
915
916 /**
917 * usb_buffer_map - create DMA mapping(s) for an urb
918 * @urb: urb whose transfer_buffer/setup_packet will be mapped
919 *
920 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
921 * succeeds. If the device is connected to this system through a non-DMA
922 * controller, this operation always succeeds.
923 *
924 * This call would normally be used for an urb which is reused, perhaps
925 * as the target of a large periodic transfer, with usb_buffer_dmasync()
926 * calls to synchronize memory and dma state.
927 *
928 * Reverse the effect of this call with usb_buffer_unmap().
929 *
930 * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
931 *
932 */
933 #if 0
934 struct urb *usb_buffer_map(struct urb *urb)
935 {
936 struct usb_bus *bus;
937 struct device *controller;
938
939 if (!urb
940 || !urb->dev
941 || !(bus = urb->dev->bus)
942 || !(controller = bus->sysdev))
943 return NULL;
944
945 if (controller->dma_mask) {
946 urb->transfer_dma = dma_map_single(controller,
947 urb->transfer_buffer, urb->transfer_buffer_length,
948 usb_pipein(urb->pipe)
949 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
950 /* FIXME generic api broken like pci, can't report errors */
951 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
952 } else
953 urb->transfer_dma = ~0;
954 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
955 return urb;
956 }
957 EXPORT_SYMBOL_GPL(usb_buffer_map);
958 #endif /* 0 */
959
960 /* XXX DISABLED, no users currently. If you wish to re-enable this
961 * XXX please determine whether the sync is to transfer ownership of
962 * XXX the buffer from device to cpu or vice verse, and thusly use the
963 * XXX appropriate _for_{cpu,device}() method. -DaveM
964 */
965 #if 0
966
967 /**
968 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
969 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
970 */
971 void usb_buffer_dmasync(struct urb *urb)
972 {
973 struct usb_bus *bus;
974 struct device *controller;
975
976 if (!urb
977 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
978 || !urb->dev
979 || !(bus = urb->dev->bus)
980 || !(controller = bus->sysdev))
981 return;
982
983 if (controller->dma_mask) {
984 dma_sync_single_for_cpu(controller,
985 urb->transfer_dma, urb->transfer_buffer_length,
986 usb_pipein(urb->pipe)
987 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
988 if (usb_pipecontrol(urb->pipe))
989 dma_sync_single_for_cpu(controller,
990 urb->setup_dma,
991 sizeof(struct usb_ctrlrequest),
992 DMA_TO_DEVICE);
993 }
994 }
995 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
996 #endif
997
998 /**
999 * usb_buffer_unmap - free DMA mapping(s) for an urb
1000 * @urb: urb whose transfer_buffer will be unmapped
1001 *
1002 * Reverses the effect of usb_buffer_map().
1003 */
1004 #if 0
1005 void usb_buffer_unmap(struct urb *urb)
1006 {
1007 struct usb_bus *bus;
1008 struct device *controller;
1009
1010 if (!urb
1011 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1012 || !urb->dev
1013 || !(bus = urb->dev->bus)
1014 || !(controller = bus->sysdev))
1015 return;
1016
1017 if (controller->dma_mask) {
1018 dma_unmap_single(controller,
1019 urb->transfer_dma, urb->transfer_buffer_length,
1020 usb_pipein(urb->pipe)
1021 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1022 }
1023 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
1024 }
1025 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
1026 #endif /* 0 */
1027
1028 #if 0
1029 /**
1030 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1031 * @dev: device to which the scatterlist will be mapped
1032 * @is_in: mapping transfer direction
1033 * @sg: the scatterlist to map
1034 * @nents: the number of entries in the scatterlist
1035 *
1036 * Return: Either < 0 (indicating no buffers could be mapped), or the
1037 * number of DMA mapping array entries in the scatterlist.
1038 *
1039 * Note:
1040 * The caller is responsible for placing the resulting DMA addresses from
1041 * the scatterlist into URB transfer buffer pointers, and for setting the
1042 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1043 *
1044 * Top I/O rates come from queuing URBs, instead of waiting for each one
1045 * to complete before starting the next I/O. This is particularly easy
1046 * to do with scatterlists. Just allocate and submit one URB for each DMA
1047 * mapping entry returned, stopping on the first error or when all succeed.
1048 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1049 *
1050 * This call would normally be used when translating scatterlist requests,
1051 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1052 * may be able to coalesce mappings for improved I/O efficiency.
1053 *
1054 * Reverse the effect of this call with usb_buffer_unmap_sg().
1055 */
1056 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1057 struct scatterlist *sg, int nents)
1058 {
1059 struct usb_bus *bus;
1060 struct device *controller;
1061
1062 if (!dev
1063 || !(bus = dev->bus)
1064 || !(controller = bus->sysdev)
1065 || !controller->dma_mask)
1066 return -EINVAL;
1067
1068 /* FIXME generic api broken like pci, can't report errors */
1069 return dma_map_sg(controller, sg, nents,
1070 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
1071 }
1072 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
1073 #endif
1074
1075 /* XXX DISABLED, no users currently. If you wish to re-enable this
1076 * XXX please determine whether the sync is to transfer ownership of
1077 * XXX the buffer from device to cpu or vice verse, and thusly use the
1078 * XXX appropriate _for_{cpu,device}() method. -DaveM
1079 */
1080 #if 0
1081
1082 /**
1083 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1084 * @dev: device to which the scatterlist will be mapped
1085 * @is_in: mapping transfer direction
1086 * @sg: the scatterlist to synchronize
1087 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1088 *
1089 * Use this when you are re-using a scatterlist's data buffers for
1090 * another USB request.
1091 */
1092 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1093 struct scatterlist *sg, int n_hw_ents)
1094 {
1095 struct usb_bus *bus;
1096 struct device *controller;
1097
1098 if (!dev
1099 || !(bus = dev->bus)
1100 || !(controller = bus->sysdev)
1101 || !controller->dma_mask)
1102 return;
1103
1104 dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
1105 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1106 }
1107 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
1108 #endif
1109
1110 #if 0
1111 /**
1112 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1113 * @dev: device to which the scatterlist will be mapped
1114 * @is_in: mapping transfer direction
1115 * @sg: the scatterlist to unmap
1116 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1117 *
1118 * Reverses the effect of usb_buffer_map_sg().
1119 */
1120 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1121 struct scatterlist *sg, int n_hw_ents)
1122 {
1123 struct usb_bus *bus;
1124 struct device *controller;
1125
1126 if (!dev
1127 || !(bus = dev->bus)
1128 || !(controller = bus->sysdev)
1129 || !controller->dma_mask)
1130 return;
1131
1132 dma_unmap_sg(controller, sg, n_hw_ents,
1133 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1134 }
1135 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1136 #endif
1137
1138 /*
1139 * Notifications of device and interface registration
1140 */
1141 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1142 void *data)
1143 {
1144 struct device *dev = data;
1145
1146 switch (action) {
1147 case BUS_NOTIFY_ADD_DEVICE:
1148 if (dev->type == &usb_device_type)
1149 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
1150 else if (dev->type == &usb_if_device_type)
1151 usb_create_sysfs_intf_files(to_usb_interface(dev));
1152 break;
1153
1154 case BUS_NOTIFY_DEL_DEVICE:
1155 if (dev->type == &usb_device_type)
1156 usb_remove_sysfs_dev_files(to_usb_device(dev));
1157 else if (dev->type == &usb_if_device_type)
1158 usb_remove_sysfs_intf_files(to_usb_interface(dev));
1159 break;
1160 }
1161 return 0;
1162 }
1163
1164 static struct notifier_block usb_bus_nb = {
1165 .notifier_call = usb_bus_notify,
1166 };
1167
1168 struct dentry *usb_debug_root;
1169 EXPORT_SYMBOL_GPL(usb_debug_root);
1170
1171 static struct dentry *usb_debug_devices;
1172
1173 static int usb_debugfs_init(void)
1174 {
1175 usb_debug_root = debugfs_create_dir("usb", NULL);
1176 if (!usb_debug_root)
1177 return -ENOENT;
1178
1179 usb_debug_devices = debugfs_create_file("devices", 0444,
1180 usb_debug_root, NULL,
1181 &usbfs_devices_fops);
1182 if (!usb_debug_devices) {
1183 debugfs_remove(usb_debug_root);
1184 usb_debug_root = NULL;
1185 return -ENOENT;
1186 }
1187
1188 return 0;
1189 }
1190
1191 static void usb_debugfs_cleanup(void)
1192 {
1193 debugfs_remove(usb_debug_devices);
1194 debugfs_remove(usb_debug_root);
1195 }
1196
1197 /*
1198 * Init
1199 */
1200 static int __init usb_init(void)
1201 {
1202 int retval;
1203 if (usb_disabled()) {
1204 pr_info("%s: USB support disabled\n", usbcore_name);
1205 return 0;
1206 }
1207 usb_init_pool_max();
1208
1209 retval = usb_debugfs_init();
1210 if (retval)
1211 goto out;
1212
1213 usb_acpi_register();
1214 retval = bus_register(&usb_bus_type);
1215 if (retval)
1216 goto bus_register_failed;
1217 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1218 if (retval)
1219 goto bus_notifier_failed;
1220 retval = usb_major_init();
1221 if (retval)
1222 goto major_init_failed;
1223 retval = usb_register(&usbfs_driver);
1224 if (retval)
1225 goto driver_register_failed;
1226 retval = usb_devio_init();
1227 if (retval)
1228 goto usb_devio_init_failed;
1229 retval = usb_hub_init();
1230 if (retval)
1231 goto hub_init_failed;
1232 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1233 if (!retval)
1234 goto out;
1235
1236 usb_hub_cleanup();
1237 hub_init_failed:
1238 usb_devio_cleanup();
1239 usb_devio_init_failed:
1240 usb_deregister(&usbfs_driver);
1241 driver_register_failed:
1242 usb_major_cleanup();
1243 major_init_failed:
1244 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1245 bus_notifier_failed:
1246 bus_unregister(&usb_bus_type);
1247 bus_register_failed:
1248 usb_acpi_unregister();
1249 usb_debugfs_cleanup();
1250 out:
1251 return retval;
1252 }
1253
1254 /*
1255 * Cleanup
1256 */
1257 static void __exit usb_exit(void)
1258 {
1259 /* This will matter if shutdown/reboot does exitcalls. */
1260 if (usb_disabled())
1261 return;
1262
1263 usb_release_quirk_list();
1264 usb_deregister_device_driver(&usb_generic_driver);
1265 usb_major_cleanup();
1266 usb_deregister(&usbfs_driver);
1267 usb_devio_cleanup();
1268 usb_hub_cleanup();
1269 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1270 bus_unregister(&usb_bus_type);
1271 usb_acpi_unregister();
1272 usb_debugfs_cleanup();
1273 idr_destroy(&usb_bus_idr);
1274 }
1275
1276 subsys_initcall(usb_init);
1277 module_exit(usb_exit);
1278 MODULE_LICENSE("GPL");