]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/core/usb.c
Merge branch 'for_3.2/pm-cleanup-2' of git://github.com/khilman/linux-omap-pm into...
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / core / usb.c
1 /*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h> /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44
45 #include "usb.h"
46
47
48 const char *usbcore_name = "usbcore";
49
50 static int nousb; /* Disable USB when built into kernel image */
51
52 #ifdef CONFIG_USB_SUSPEND
53 static int usb_autosuspend_delay = 2; /* Default delay value,
54 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57
58 #else
59 #define usb_autosuspend_delay 0
60 #endif
61
62
63 /**
64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
65 * for the given interface.
66 * @config: the configuration to search (not necessarily the current config).
67 * @iface_num: interface number to search in
68 * @alt_num: alternate interface setting number to search for.
69 *
70 * Search the configuration's interface cache for the given alt setting.
71 */
72 struct usb_host_interface *usb_find_alt_setting(
73 struct usb_host_config *config,
74 unsigned int iface_num,
75 unsigned int alt_num)
76 {
77 struct usb_interface_cache *intf_cache = NULL;
78 int i;
79
80 for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 == iface_num) {
83 intf_cache = config->intf_cache[i];
84 break;
85 }
86 }
87 if (!intf_cache)
88 return NULL;
89 for (i = 0; i < intf_cache->num_altsetting; i++)
90 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 return &intf_cache->altsetting[i];
92
93 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 "config %u\n", alt_num, iface_num,
95 config->desc.bConfigurationValue);
96 return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99
100 /**
101 * usb_ifnum_to_if - get the interface object with a given interface number
102 * @dev: the device whose current configuration is considered
103 * @ifnum: the desired interface
104 *
105 * This walks the device descriptor for the currently active configuration
106 * and returns a pointer to the interface with that particular interface
107 * number, or null.
108 *
109 * Note that configuration descriptors are not required to assign interface
110 * numbers sequentially, so that it would be incorrect to assume that
111 * the first interface in that descriptor corresponds to interface zero.
112 * This routine helps device drivers avoid such mistakes.
113 * However, you should make sure that you do the right thing with any
114 * alternate settings available for this interfaces.
115 *
116 * Don't call this function unless you are bound to one of the interfaces
117 * on this device or you have locked the device!
118 */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 unsigned ifnum)
121 {
122 struct usb_host_config *config = dev->actconfig;
123 int i;
124
125 if (!config)
126 return NULL;
127 for (i = 0; i < config->desc.bNumInterfaces; i++)
128 if (config->interface[i]->altsetting[0]
129 .desc.bInterfaceNumber == ifnum)
130 return config->interface[i];
131
132 return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135
136 /**
137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138 * @intf: the interface containing the altsetting in question
139 * @altnum: the desired alternate setting number
140 *
141 * This searches the altsetting array of the specified interface for
142 * an entry with the correct bAlternateSetting value and returns a pointer
143 * to that entry, or null.
144 *
145 * Note that altsettings need not be stored sequentially by number, so
146 * it would be incorrect to assume that the first altsetting entry in
147 * the array corresponds to altsetting zero. This routine helps device
148 * drivers avoid such mistakes.
149 *
150 * Don't call this function unless you are bound to the intf interface
151 * or you have locked the device!
152 */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 const struct usb_interface *intf,
155 unsigned int altnum)
156 {
157 int i;
158
159 for (i = 0; i < intf->num_altsetting; i++) {
160 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 return &intf->altsetting[i];
162 }
163 return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166
167 struct find_interface_arg {
168 int minor;
169 struct device_driver *drv;
170 };
171
172 static int __find_interface(struct device *dev, void *data)
173 {
174 struct find_interface_arg *arg = data;
175 struct usb_interface *intf;
176
177 if (!is_usb_interface(dev))
178 return 0;
179
180 if (dev->driver != arg->drv)
181 return 0;
182 intf = to_usb_interface(dev);
183 return intf->minor == arg->minor;
184 }
185
186 /**
187 * usb_find_interface - find usb_interface pointer for driver and device
188 * @drv: the driver whose current configuration is considered
189 * @minor: the minor number of the desired device
190 *
191 * This walks the bus device list and returns a pointer to the interface
192 * with the matching minor and driver. Note, this only works for devices
193 * that share the USB major number.
194 */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 struct find_interface_arg argb;
198 struct device *dev;
199
200 argb.minor = minor;
201 argb.drv = &drv->drvwrap.driver;
202
203 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204
205 /* Drop reference count from bus_find_device */
206 put_device(dev);
207
208 return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211
212 /**
213 * usb_release_dev - free a usb device structure when all users of it are finished.
214 * @dev: device that's been disconnected
215 *
216 * Will be called only by the device core when all users of this usb device are
217 * done.
218 */
219 static void usb_release_dev(struct device *dev)
220 {
221 struct usb_device *udev;
222 struct usb_hcd *hcd;
223
224 udev = to_usb_device(dev);
225 hcd = bus_to_hcd(udev->bus);
226
227 usb_destroy_configuration(udev);
228 usb_release_bos_descriptor(udev);
229 usb_put_hcd(hcd);
230 kfree(udev->product);
231 kfree(udev->manufacturer);
232 kfree(udev->serial);
233 kfree(udev);
234 }
235
236 #ifdef CONFIG_HOTPLUG
237 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
238 {
239 struct usb_device *usb_dev;
240
241 usb_dev = to_usb_device(dev);
242
243 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
244 return -ENOMEM;
245
246 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
247 return -ENOMEM;
248
249 return 0;
250 }
251
252 #else
253
254 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
255 {
256 return -ENODEV;
257 }
258 #endif /* CONFIG_HOTPLUG */
259
260 #ifdef CONFIG_PM
261
262 /* USB device Power-Management thunks.
263 * There's no need to distinguish here between quiescing a USB device
264 * and powering it down; the generic_suspend() routine takes care of
265 * it by skipping the usb_port_suspend() call for a quiesce. And for
266 * USB interfaces there's no difference at all.
267 */
268
269 static int usb_dev_prepare(struct device *dev)
270 {
271 return 0; /* Implement eventually? */
272 }
273
274 static void usb_dev_complete(struct device *dev)
275 {
276 /* Currently used only for rebinding interfaces */
277 usb_resume(dev, PMSG_ON); /* FIXME: change to PMSG_COMPLETE */
278 }
279
280 static int usb_dev_suspend(struct device *dev)
281 {
282 return usb_suspend(dev, PMSG_SUSPEND);
283 }
284
285 static int usb_dev_resume(struct device *dev)
286 {
287 return usb_resume(dev, PMSG_RESUME);
288 }
289
290 static int usb_dev_freeze(struct device *dev)
291 {
292 return usb_suspend(dev, PMSG_FREEZE);
293 }
294
295 static int usb_dev_thaw(struct device *dev)
296 {
297 return usb_resume(dev, PMSG_THAW);
298 }
299
300 static int usb_dev_poweroff(struct device *dev)
301 {
302 return usb_suspend(dev, PMSG_HIBERNATE);
303 }
304
305 static int usb_dev_restore(struct device *dev)
306 {
307 return usb_resume(dev, PMSG_RESTORE);
308 }
309
310 static const struct dev_pm_ops usb_device_pm_ops = {
311 .prepare = usb_dev_prepare,
312 .complete = usb_dev_complete,
313 .suspend = usb_dev_suspend,
314 .resume = usb_dev_resume,
315 .freeze = usb_dev_freeze,
316 .thaw = usb_dev_thaw,
317 .poweroff = usb_dev_poweroff,
318 .restore = usb_dev_restore,
319 #ifdef CONFIG_USB_SUSPEND
320 .runtime_suspend = usb_runtime_suspend,
321 .runtime_resume = usb_runtime_resume,
322 .runtime_idle = usb_runtime_idle,
323 #endif
324 };
325
326 #endif /* CONFIG_PM */
327
328
329 static char *usb_devnode(struct device *dev, mode_t *mode)
330 {
331 struct usb_device *usb_dev;
332
333 usb_dev = to_usb_device(dev);
334 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
335 usb_dev->bus->busnum, usb_dev->devnum);
336 }
337
338 struct device_type usb_device_type = {
339 .name = "usb_device",
340 .release = usb_release_dev,
341 .uevent = usb_dev_uevent,
342 .devnode = usb_devnode,
343 #ifdef CONFIG_PM
344 .pm = &usb_device_pm_ops,
345 #endif
346 };
347
348
349 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
350 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
351 {
352 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
353 return hcd->wireless;
354 }
355
356
357 /**
358 * usb_alloc_dev - usb device constructor (usbcore-internal)
359 * @parent: hub to which device is connected; null to allocate a root hub
360 * @bus: bus used to access the device
361 * @port1: one-based index of port; ignored for root hubs
362 * Context: !in_interrupt()
363 *
364 * Only hub drivers (including virtual root hub drivers for host
365 * controllers) should ever call this.
366 *
367 * This call may not be used in a non-sleeping context.
368 */
369 struct usb_device *usb_alloc_dev(struct usb_device *parent,
370 struct usb_bus *bus, unsigned port1)
371 {
372 struct usb_device *dev;
373 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
374 unsigned root_hub = 0;
375
376 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
377 if (!dev)
378 return NULL;
379
380 if (!usb_get_hcd(bus_to_hcd(bus))) {
381 kfree(dev);
382 return NULL;
383 }
384 /* Root hubs aren't true devices, so don't allocate HCD resources */
385 if (usb_hcd->driver->alloc_dev && parent &&
386 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
387 usb_put_hcd(bus_to_hcd(bus));
388 kfree(dev);
389 return NULL;
390 }
391
392 device_initialize(&dev->dev);
393 dev->dev.bus = &usb_bus_type;
394 dev->dev.type = &usb_device_type;
395 dev->dev.groups = usb_device_groups;
396 dev->dev.dma_mask = bus->controller->dma_mask;
397 set_dev_node(&dev->dev, dev_to_node(bus->controller));
398 dev->state = USB_STATE_ATTACHED;
399 atomic_set(&dev->urbnum, 0);
400
401 INIT_LIST_HEAD(&dev->ep0.urb_list);
402 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
403 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
404 /* ep0 maxpacket comes later, from device descriptor */
405 usb_enable_endpoint(dev, &dev->ep0, false);
406 dev->can_submit = 1;
407
408 /* Save readable and stable topology id, distinguishing devices
409 * by location for diagnostics, tools, driver model, etc. The
410 * string is a path along hub ports, from the root. Each device's
411 * dev->devpath will be stable until USB is re-cabled, and hubs
412 * are often labeled with these port numbers. The name isn't
413 * as stable: bus->busnum changes easily from modprobe order,
414 * cardbus or pci hotplugging, and so on.
415 */
416 if (unlikely(!parent)) {
417 dev->devpath[0] = '0';
418 dev->route = 0;
419
420 dev->dev.parent = bus->controller;
421 dev_set_name(&dev->dev, "usb%d", bus->busnum);
422 root_hub = 1;
423 } else {
424 /* match any labeling on the hubs; it's one-based */
425 if (parent->devpath[0] == '0') {
426 snprintf(dev->devpath, sizeof dev->devpath,
427 "%d", port1);
428 /* Root ports are not counted in route string */
429 dev->route = 0;
430 } else {
431 snprintf(dev->devpath, sizeof dev->devpath,
432 "%s.%d", parent->devpath, port1);
433 /* Route string assumes hubs have less than 16 ports */
434 if (port1 < 15)
435 dev->route = parent->route +
436 (port1 << ((parent->level - 1)*4));
437 else
438 dev->route = parent->route +
439 (15 << ((parent->level - 1)*4));
440 }
441
442 dev->dev.parent = &parent->dev;
443 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
444
445 /* hub driver sets up TT records */
446 }
447
448 dev->portnum = port1;
449 dev->bus = bus;
450 dev->parent = parent;
451 INIT_LIST_HEAD(&dev->filelist);
452
453 #ifdef CONFIG_PM
454 pm_runtime_set_autosuspend_delay(&dev->dev,
455 usb_autosuspend_delay * 1000);
456 dev->connect_time = jiffies;
457 dev->active_duration = -jiffies;
458 #endif
459 if (root_hub) /* Root hub always ok [and always wired] */
460 dev->authorized = 1;
461 else {
462 dev->authorized = usb_hcd->authorized_default;
463 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
464 }
465 return dev;
466 }
467
468 /**
469 * usb_get_dev - increments the reference count of the usb device structure
470 * @dev: the device being referenced
471 *
472 * Each live reference to a device should be refcounted.
473 *
474 * Drivers for USB interfaces should normally record such references in
475 * their probe() methods, when they bind to an interface, and release
476 * them by calling usb_put_dev(), in their disconnect() methods.
477 *
478 * A pointer to the device with the incremented reference counter is returned.
479 */
480 struct usb_device *usb_get_dev(struct usb_device *dev)
481 {
482 if (dev)
483 get_device(&dev->dev);
484 return dev;
485 }
486 EXPORT_SYMBOL_GPL(usb_get_dev);
487
488 /**
489 * usb_put_dev - release a use of the usb device structure
490 * @dev: device that's been disconnected
491 *
492 * Must be called when a user of a device is finished with it. When the last
493 * user of the device calls this function, the memory of the device is freed.
494 */
495 void usb_put_dev(struct usb_device *dev)
496 {
497 if (dev)
498 put_device(&dev->dev);
499 }
500 EXPORT_SYMBOL_GPL(usb_put_dev);
501
502 /**
503 * usb_get_intf - increments the reference count of the usb interface structure
504 * @intf: the interface being referenced
505 *
506 * Each live reference to a interface must be refcounted.
507 *
508 * Drivers for USB interfaces should normally record such references in
509 * their probe() methods, when they bind to an interface, and release
510 * them by calling usb_put_intf(), in their disconnect() methods.
511 *
512 * A pointer to the interface with the incremented reference counter is
513 * returned.
514 */
515 struct usb_interface *usb_get_intf(struct usb_interface *intf)
516 {
517 if (intf)
518 get_device(&intf->dev);
519 return intf;
520 }
521 EXPORT_SYMBOL_GPL(usb_get_intf);
522
523 /**
524 * usb_put_intf - release a use of the usb interface structure
525 * @intf: interface that's been decremented
526 *
527 * Must be called when a user of an interface is finished with it. When the
528 * last user of the interface calls this function, the memory of the interface
529 * is freed.
530 */
531 void usb_put_intf(struct usb_interface *intf)
532 {
533 if (intf)
534 put_device(&intf->dev);
535 }
536 EXPORT_SYMBOL_GPL(usb_put_intf);
537
538 /* USB device locking
539 *
540 * USB devices and interfaces are locked using the semaphore in their
541 * embedded struct device. The hub driver guarantees that whenever a
542 * device is connected or disconnected, drivers are called with the
543 * USB device locked as well as their particular interface.
544 *
545 * Complications arise when several devices are to be locked at the same
546 * time. Only hub-aware drivers that are part of usbcore ever have to
547 * do this; nobody else needs to worry about it. The rule for locking
548 * is simple:
549 *
550 * When locking both a device and its parent, always lock the
551 * the parent first.
552 */
553
554 /**
555 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
556 * @udev: device that's being locked
557 * @iface: interface bound to the driver making the request (optional)
558 *
559 * Attempts to acquire the device lock, but fails if the device is
560 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
561 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
562 * lock, the routine polls repeatedly. This is to prevent deadlock with
563 * disconnect; in some drivers (such as usb-storage) the disconnect()
564 * or suspend() method will block waiting for a device reset to complete.
565 *
566 * Returns a negative error code for failure, otherwise 0.
567 */
568 int usb_lock_device_for_reset(struct usb_device *udev,
569 const struct usb_interface *iface)
570 {
571 unsigned long jiffies_expire = jiffies + HZ;
572
573 if (udev->state == USB_STATE_NOTATTACHED)
574 return -ENODEV;
575 if (udev->state == USB_STATE_SUSPENDED)
576 return -EHOSTUNREACH;
577 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
578 iface->condition == USB_INTERFACE_UNBOUND))
579 return -EINTR;
580
581 while (!usb_trylock_device(udev)) {
582
583 /* If we can't acquire the lock after waiting one second,
584 * we're probably deadlocked */
585 if (time_after(jiffies, jiffies_expire))
586 return -EBUSY;
587
588 msleep(15);
589 if (udev->state == USB_STATE_NOTATTACHED)
590 return -ENODEV;
591 if (udev->state == USB_STATE_SUSPENDED)
592 return -EHOSTUNREACH;
593 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
594 iface->condition == USB_INTERFACE_UNBOUND))
595 return -EINTR;
596 }
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
600
601 /**
602 * usb_get_current_frame_number - return current bus frame number
603 * @dev: the device whose bus is being queried
604 *
605 * Returns the current frame number for the USB host controller
606 * used with the given USB device. This can be used when scheduling
607 * isochronous requests.
608 *
609 * Note that different kinds of host controller have different
610 * "scheduling horizons". While one type might support scheduling only
611 * 32 frames into the future, others could support scheduling up to
612 * 1024 frames into the future.
613 */
614 int usb_get_current_frame_number(struct usb_device *dev)
615 {
616 return usb_hcd_get_frame_number(dev);
617 }
618 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
619
620 /*-------------------------------------------------------------------*/
621 /*
622 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
623 * extra field of the interface and endpoint descriptor structs.
624 */
625
626 int __usb_get_extra_descriptor(char *buffer, unsigned size,
627 unsigned char type, void **ptr)
628 {
629 struct usb_descriptor_header *header;
630
631 while (size >= sizeof(struct usb_descriptor_header)) {
632 header = (struct usb_descriptor_header *)buffer;
633
634 if (header->bLength < 2) {
635 printk(KERN_ERR
636 "%s: bogus descriptor, type %d length %d\n",
637 usbcore_name,
638 header->bDescriptorType,
639 header->bLength);
640 return -1;
641 }
642
643 if (header->bDescriptorType == type) {
644 *ptr = header;
645 return 0;
646 }
647
648 buffer += header->bLength;
649 size -= header->bLength;
650 }
651 return -1;
652 }
653 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
654
655 /**
656 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
657 * @dev: device the buffer will be used with
658 * @size: requested buffer size
659 * @mem_flags: affect whether allocation may block
660 * @dma: used to return DMA address of buffer
661 *
662 * Return value is either null (indicating no buffer could be allocated), or
663 * the cpu-space pointer to a buffer that may be used to perform DMA to the
664 * specified device. Such cpu-space buffers are returned along with the DMA
665 * address (through the pointer provided).
666 *
667 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
668 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
669 * hardware during URB completion/resubmit. The implementation varies between
670 * platforms, depending on details of how DMA will work to this device.
671 * Using these buffers also eliminates cacheline sharing problems on
672 * architectures where CPU caches are not DMA-coherent. On systems without
673 * bus-snooping caches, these buffers are uncached.
674 *
675 * When the buffer is no longer used, free it with usb_free_coherent().
676 */
677 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
678 dma_addr_t *dma)
679 {
680 if (!dev || !dev->bus)
681 return NULL;
682 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
683 }
684 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
685
686 /**
687 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
688 * @dev: device the buffer was used with
689 * @size: requested buffer size
690 * @addr: CPU address of buffer
691 * @dma: DMA address of buffer
692 *
693 * This reclaims an I/O buffer, letting it be reused. The memory must have
694 * been allocated using usb_alloc_coherent(), and the parameters must match
695 * those provided in that allocation request.
696 */
697 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
698 dma_addr_t dma)
699 {
700 if (!dev || !dev->bus)
701 return;
702 if (!addr)
703 return;
704 hcd_buffer_free(dev->bus, size, addr, dma);
705 }
706 EXPORT_SYMBOL_GPL(usb_free_coherent);
707
708 /**
709 * usb_buffer_map - create DMA mapping(s) for an urb
710 * @urb: urb whose transfer_buffer/setup_packet will be mapped
711 *
712 * Return value is either null (indicating no buffer could be mapped), or
713 * the parameter. URB_NO_TRANSFER_DMA_MAP is
714 * added to urb->transfer_flags if the operation succeeds. If the device
715 * is connected to this system through a non-DMA controller, this operation
716 * always succeeds.
717 *
718 * This call would normally be used for an urb which is reused, perhaps
719 * as the target of a large periodic transfer, with usb_buffer_dmasync()
720 * calls to synchronize memory and dma state.
721 *
722 * Reverse the effect of this call with usb_buffer_unmap().
723 */
724 #if 0
725 struct urb *usb_buffer_map(struct urb *urb)
726 {
727 struct usb_bus *bus;
728 struct device *controller;
729
730 if (!urb
731 || !urb->dev
732 || !(bus = urb->dev->bus)
733 || !(controller = bus->controller))
734 return NULL;
735
736 if (controller->dma_mask) {
737 urb->transfer_dma = dma_map_single(controller,
738 urb->transfer_buffer, urb->transfer_buffer_length,
739 usb_pipein(urb->pipe)
740 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
741 /* FIXME generic api broken like pci, can't report errors */
742 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
743 } else
744 urb->transfer_dma = ~0;
745 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
746 return urb;
747 }
748 EXPORT_SYMBOL_GPL(usb_buffer_map);
749 #endif /* 0 */
750
751 /* XXX DISABLED, no users currently. If you wish to re-enable this
752 * XXX please determine whether the sync is to transfer ownership of
753 * XXX the buffer from device to cpu or vice verse, and thusly use the
754 * XXX appropriate _for_{cpu,device}() method. -DaveM
755 */
756 #if 0
757
758 /**
759 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
760 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
761 */
762 void usb_buffer_dmasync(struct urb *urb)
763 {
764 struct usb_bus *bus;
765 struct device *controller;
766
767 if (!urb
768 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
769 || !urb->dev
770 || !(bus = urb->dev->bus)
771 || !(controller = bus->controller))
772 return;
773
774 if (controller->dma_mask) {
775 dma_sync_single_for_cpu(controller,
776 urb->transfer_dma, urb->transfer_buffer_length,
777 usb_pipein(urb->pipe)
778 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
779 if (usb_pipecontrol(urb->pipe))
780 dma_sync_single_for_cpu(controller,
781 urb->setup_dma,
782 sizeof(struct usb_ctrlrequest),
783 DMA_TO_DEVICE);
784 }
785 }
786 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
787 #endif
788
789 /**
790 * usb_buffer_unmap - free DMA mapping(s) for an urb
791 * @urb: urb whose transfer_buffer will be unmapped
792 *
793 * Reverses the effect of usb_buffer_map().
794 */
795 #if 0
796 void usb_buffer_unmap(struct urb *urb)
797 {
798 struct usb_bus *bus;
799 struct device *controller;
800
801 if (!urb
802 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
803 || !urb->dev
804 || !(bus = urb->dev->bus)
805 || !(controller = bus->controller))
806 return;
807
808 if (controller->dma_mask) {
809 dma_unmap_single(controller,
810 urb->transfer_dma, urb->transfer_buffer_length,
811 usb_pipein(urb->pipe)
812 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
813 }
814 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
815 }
816 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
817 #endif /* 0 */
818
819 #if 0
820 /**
821 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
822 * @dev: device to which the scatterlist will be mapped
823 * @is_in: mapping transfer direction
824 * @sg: the scatterlist to map
825 * @nents: the number of entries in the scatterlist
826 *
827 * Return value is either < 0 (indicating no buffers could be mapped), or
828 * the number of DMA mapping array entries in the scatterlist.
829 *
830 * The caller is responsible for placing the resulting DMA addresses from
831 * the scatterlist into URB transfer buffer pointers, and for setting the
832 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
833 *
834 * Top I/O rates come from queuing URBs, instead of waiting for each one
835 * to complete before starting the next I/O. This is particularly easy
836 * to do with scatterlists. Just allocate and submit one URB for each DMA
837 * mapping entry returned, stopping on the first error or when all succeed.
838 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
839 *
840 * This call would normally be used when translating scatterlist requests,
841 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
842 * may be able to coalesce mappings for improved I/O efficiency.
843 *
844 * Reverse the effect of this call with usb_buffer_unmap_sg().
845 */
846 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
847 struct scatterlist *sg, int nents)
848 {
849 struct usb_bus *bus;
850 struct device *controller;
851
852 if (!dev
853 || !(bus = dev->bus)
854 || !(controller = bus->controller)
855 || !controller->dma_mask)
856 return -EINVAL;
857
858 /* FIXME generic api broken like pci, can't report errors */
859 return dma_map_sg(controller, sg, nents,
860 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
861 }
862 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
863 #endif
864
865 /* XXX DISABLED, no users currently. If you wish to re-enable this
866 * XXX please determine whether the sync is to transfer ownership of
867 * XXX the buffer from device to cpu or vice verse, and thusly use the
868 * XXX appropriate _for_{cpu,device}() method. -DaveM
869 */
870 #if 0
871
872 /**
873 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
874 * @dev: device to which the scatterlist will be mapped
875 * @is_in: mapping transfer direction
876 * @sg: the scatterlist to synchronize
877 * @n_hw_ents: the positive return value from usb_buffer_map_sg
878 *
879 * Use this when you are re-using a scatterlist's data buffers for
880 * another USB request.
881 */
882 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
883 struct scatterlist *sg, int n_hw_ents)
884 {
885 struct usb_bus *bus;
886 struct device *controller;
887
888 if (!dev
889 || !(bus = dev->bus)
890 || !(controller = bus->controller)
891 || !controller->dma_mask)
892 return;
893
894 dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
895 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
896 }
897 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
898 #endif
899
900 #if 0
901 /**
902 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
903 * @dev: device to which the scatterlist will be mapped
904 * @is_in: mapping transfer direction
905 * @sg: the scatterlist to unmap
906 * @n_hw_ents: the positive return value from usb_buffer_map_sg
907 *
908 * Reverses the effect of usb_buffer_map_sg().
909 */
910 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
911 struct scatterlist *sg, int n_hw_ents)
912 {
913 struct usb_bus *bus;
914 struct device *controller;
915
916 if (!dev
917 || !(bus = dev->bus)
918 || !(controller = bus->controller)
919 || !controller->dma_mask)
920 return;
921
922 dma_unmap_sg(controller, sg, n_hw_ents,
923 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
924 }
925 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
926 #endif
927
928 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
929 #ifdef MODULE
930 module_param(nousb, bool, 0444);
931 #else
932 core_param(nousb, nousb, bool, 0444);
933 #endif
934
935 /*
936 * for external read access to <nousb>
937 */
938 int usb_disabled(void)
939 {
940 return nousb;
941 }
942 EXPORT_SYMBOL_GPL(usb_disabled);
943
944 /*
945 * Notifications of device and interface registration
946 */
947 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
948 void *data)
949 {
950 struct device *dev = data;
951
952 switch (action) {
953 case BUS_NOTIFY_ADD_DEVICE:
954 if (dev->type == &usb_device_type)
955 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
956 else if (dev->type == &usb_if_device_type)
957 usb_create_sysfs_intf_files(to_usb_interface(dev));
958 break;
959
960 case BUS_NOTIFY_DEL_DEVICE:
961 if (dev->type == &usb_device_type)
962 usb_remove_sysfs_dev_files(to_usb_device(dev));
963 else if (dev->type == &usb_if_device_type)
964 usb_remove_sysfs_intf_files(to_usb_interface(dev));
965 break;
966 }
967 return 0;
968 }
969
970 static struct notifier_block usb_bus_nb = {
971 .notifier_call = usb_bus_notify,
972 };
973
974 struct dentry *usb_debug_root;
975 EXPORT_SYMBOL_GPL(usb_debug_root);
976
977 static struct dentry *usb_debug_devices;
978
979 static int usb_debugfs_init(void)
980 {
981 usb_debug_root = debugfs_create_dir("usb", NULL);
982 if (!usb_debug_root)
983 return -ENOENT;
984
985 usb_debug_devices = debugfs_create_file("devices", 0444,
986 usb_debug_root, NULL,
987 &usbfs_devices_fops);
988 if (!usb_debug_devices) {
989 debugfs_remove(usb_debug_root);
990 usb_debug_root = NULL;
991 return -ENOENT;
992 }
993
994 return 0;
995 }
996
997 static void usb_debugfs_cleanup(void)
998 {
999 debugfs_remove(usb_debug_devices);
1000 debugfs_remove(usb_debug_root);
1001 }
1002
1003 /*
1004 * Init
1005 */
1006 static int __init usb_init(void)
1007 {
1008 int retval;
1009 if (nousb) {
1010 pr_info("%s: USB support disabled\n", usbcore_name);
1011 return 0;
1012 }
1013
1014 retval = usb_debugfs_init();
1015 if (retval)
1016 goto out;
1017
1018 retval = bus_register(&usb_bus_type);
1019 if (retval)
1020 goto bus_register_failed;
1021 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1022 if (retval)
1023 goto bus_notifier_failed;
1024 retval = usb_major_init();
1025 if (retval)
1026 goto major_init_failed;
1027 retval = usb_register(&usbfs_driver);
1028 if (retval)
1029 goto driver_register_failed;
1030 retval = usb_devio_init();
1031 if (retval)
1032 goto usb_devio_init_failed;
1033 retval = usbfs_init();
1034 if (retval)
1035 goto fs_init_failed;
1036 retval = usb_hub_init();
1037 if (retval)
1038 goto hub_init_failed;
1039 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1040 if (!retval)
1041 goto out;
1042
1043 usb_hub_cleanup();
1044 hub_init_failed:
1045 usbfs_cleanup();
1046 fs_init_failed:
1047 usb_devio_cleanup();
1048 usb_devio_init_failed:
1049 usb_deregister(&usbfs_driver);
1050 driver_register_failed:
1051 usb_major_cleanup();
1052 major_init_failed:
1053 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1054 bus_notifier_failed:
1055 bus_unregister(&usb_bus_type);
1056 bus_register_failed:
1057 usb_debugfs_cleanup();
1058 out:
1059 return retval;
1060 }
1061
1062 /*
1063 * Cleanup
1064 */
1065 static void __exit usb_exit(void)
1066 {
1067 /* This will matter if shutdown/reboot does exitcalls. */
1068 if (nousb)
1069 return;
1070
1071 usb_deregister_device_driver(&usb_generic_driver);
1072 usb_major_cleanup();
1073 usbfs_cleanup();
1074 usb_deregister(&usbfs_driver);
1075 usb_devio_cleanup();
1076 usb_hub_cleanup();
1077 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1078 bus_unregister(&usb_bus_type);
1079 usb_debugfs_cleanup();
1080 }
1081
1082 subsys_initcall(usb_init);
1083 module_exit(usb_exit);
1084 MODULE_LICENSE("GPL");