]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/dwc2/core.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / dwc2 / core.c
1 /*
2 * core.c - DesignWare HS OTG Controller common routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * The Core code provides basic services for accessing and managing the
39 * DWC_otg hardware. These services are used by both the Host Controller
40 * Driver and the Peripheral Controller Driver.
41 */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
60 /**
61 * dwc2_backup_host_registers() - Backup controller host registers.
62 * When suspending usb bus, registers needs to be backuped
63 * if controller power is disabled once suspended.
64 *
65 * @hsotg: Programming view of the DWC_otg controller
66 */
67 static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
68 {
69 struct dwc2_hregs_backup *hr;
70 int i;
71
72 dev_dbg(hsotg->dev, "%s\n", __func__);
73
74 /* Backup Host regs */
75 hr = &hsotg->hr_backup;
76 hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
77 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
78 for (i = 0; i < hsotg->core_params->host_channels; ++i)
79 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
80
81 hr->hprt0 = dwc2_read_hprt0(hsotg);
82 hr->hfir = dwc2_readl(hsotg->regs + HFIR);
83 hr->valid = true;
84
85 return 0;
86 }
87
88 /**
89 * dwc2_restore_host_registers() - Restore controller host registers.
90 * When resuming usb bus, device registers needs to be restored
91 * if controller power were disabled.
92 *
93 * @hsotg: Programming view of the DWC_otg controller
94 */
95 static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
96 {
97 struct dwc2_hregs_backup *hr;
98 int i;
99
100 dev_dbg(hsotg->dev, "%s\n", __func__);
101
102 /* Restore host regs */
103 hr = &hsotg->hr_backup;
104 if (!hr->valid) {
105 dev_err(hsotg->dev, "%s: no host registers to restore\n",
106 __func__);
107 return -EINVAL;
108 }
109 hr->valid = false;
110
111 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
112 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
113
114 for (i = 0; i < hsotg->core_params->host_channels; ++i)
115 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
116
117 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
118 dwc2_writel(hr->hfir, hsotg->regs + HFIR);
119 hsotg->frame_number = 0;
120
121 return 0;
122 }
123 #else
124 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
125 { return 0; }
126
127 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
128 { return 0; }
129 #endif
130
131 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
132 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
133 /**
134 * dwc2_backup_device_registers() - Backup controller device registers.
135 * When suspending usb bus, registers needs to be backuped
136 * if controller power is disabled once suspended.
137 *
138 * @hsotg: Programming view of the DWC_otg controller
139 */
140 static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
141 {
142 struct dwc2_dregs_backup *dr;
143 int i;
144
145 dev_dbg(hsotg->dev, "%s\n", __func__);
146
147 /* Backup dev regs */
148 dr = &hsotg->dr_backup;
149
150 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
151 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
152 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
153 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
154 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
155
156 for (i = 0; i < hsotg->num_of_eps; i++) {
157 /* Backup IN EPs */
158 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
159
160 /* Ensure DATA PID is correctly configured */
161 if (dr->diepctl[i] & DXEPCTL_DPID)
162 dr->diepctl[i] |= DXEPCTL_SETD1PID;
163 else
164 dr->diepctl[i] |= DXEPCTL_SETD0PID;
165
166 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
167 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
168
169 /* Backup OUT EPs */
170 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
171
172 /* Ensure DATA PID is correctly configured */
173 if (dr->doepctl[i] & DXEPCTL_DPID)
174 dr->doepctl[i] |= DXEPCTL_SETD1PID;
175 else
176 dr->doepctl[i] |= DXEPCTL_SETD0PID;
177
178 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
179 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
180 }
181 dr->valid = true;
182 return 0;
183 }
184
185 /**
186 * dwc2_restore_device_registers() - Restore controller device registers.
187 * When resuming usb bus, device registers needs to be restored
188 * if controller power were disabled.
189 *
190 * @hsotg: Programming view of the DWC_otg controller
191 */
192 static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
193 {
194 struct dwc2_dregs_backup *dr;
195 u32 dctl;
196 int i;
197
198 dev_dbg(hsotg->dev, "%s\n", __func__);
199
200 /* Restore dev regs */
201 dr = &hsotg->dr_backup;
202 if (!dr->valid) {
203 dev_err(hsotg->dev, "%s: no device registers to restore\n",
204 __func__);
205 return -EINVAL;
206 }
207 dr->valid = false;
208
209 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
210 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
211 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
212 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
213 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
214
215 for (i = 0; i < hsotg->num_of_eps; i++) {
216 /* Restore IN EPs */
217 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
218 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
219 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
220
221 /* Restore OUT EPs */
222 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
223 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
224 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
225 }
226
227 /* Set the Power-On Programming done bit */
228 dctl = dwc2_readl(hsotg->regs + DCTL);
229 dctl |= DCTL_PWRONPRGDONE;
230 dwc2_writel(dctl, hsotg->regs + DCTL);
231
232 return 0;
233 }
234 #else
235 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
236 { return 0; }
237
238 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
239 { return 0; }
240 #endif
241
242 /**
243 * dwc2_backup_global_registers() - Backup global controller registers.
244 * When suspending usb bus, registers needs to be backuped
245 * if controller power is disabled once suspended.
246 *
247 * @hsotg: Programming view of the DWC_otg controller
248 */
249 static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
250 {
251 struct dwc2_gregs_backup *gr;
252 int i;
253
254 /* Backup global regs */
255 gr = &hsotg->gr_backup;
256
257 gr->gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
258 gr->gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
259 gr->gahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
260 gr->gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
261 gr->grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
262 gr->gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
263 gr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
264 gr->gdfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
265 for (i = 0; i < MAX_EPS_CHANNELS; i++)
266 gr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
267
268 gr->valid = true;
269 return 0;
270 }
271
272 /**
273 * dwc2_restore_global_registers() - Restore controller global registers.
274 * When resuming usb bus, device registers needs to be restored
275 * if controller power were disabled.
276 *
277 * @hsotg: Programming view of the DWC_otg controller
278 */
279 static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
280 {
281 struct dwc2_gregs_backup *gr;
282 int i;
283
284 dev_dbg(hsotg->dev, "%s\n", __func__);
285
286 /* Restore global regs */
287 gr = &hsotg->gr_backup;
288 if (!gr->valid) {
289 dev_err(hsotg->dev, "%s: no global registers to restore\n",
290 __func__);
291 return -EINVAL;
292 }
293 gr->valid = false;
294
295 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
296 dwc2_writel(gr->gotgctl, hsotg->regs + GOTGCTL);
297 dwc2_writel(gr->gintmsk, hsotg->regs + GINTMSK);
298 dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
299 dwc2_writel(gr->gahbcfg, hsotg->regs + GAHBCFG);
300 dwc2_writel(gr->grxfsiz, hsotg->regs + GRXFSIZ);
301 dwc2_writel(gr->gnptxfsiz, hsotg->regs + GNPTXFSIZ);
302 dwc2_writel(gr->hptxfsiz, hsotg->regs + HPTXFSIZ);
303 dwc2_writel(gr->gdfifocfg, hsotg->regs + GDFIFOCFG);
304 for (i = 0; i < MAX_EPS_CHANNELS; i++)
305 dwc2_writel(gr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
306
307 return 0;
308 }
309
310 /**
311 * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
312 *
313 * @hsotg: Programming view of the DWC_otg controller
314 * @restore: Controller registers need to be restored
315 */
316 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
317 {
318 u32 pcgcctl;
319 int ret = 0;
320
321 if (!hsotg->core_params->hibernation)
322 return -ENOTSUPP;
323
324 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
325 pcgcctl &= ~PCGCTL_STOPPCLK;
326 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
327
328 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
329 pcgcctl &= ~PCGCTL_PWRCLMP;
330 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
331
332 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
333 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
334 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
335
336 udelay(100);
337 if (restore) {
338 ret = dwc2_restore_global_registers(hsotg);
339 if (ret) {
340 dev_err(hsotg->dev, "%s: failed to restore registers\n",
341 __func__);
342 return ret;
343 }
344 if (dwc2_is_host_mode(hsotg)) {
345 ret = dwc2_restore_host_registers(hsotg);
346 if (ret) {
347 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
348 __func__);
349 return ret;
350 }
351 } else {
352 ret = dwc2_restore_device_registers(hsotg);
353 if (ret) {
354 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
355 __func__);
356 return ret;
357 }
358 }
359 }
360
361 return ret;
362 }
363
364 /**
365 * dwc2_enter_hibernation() - Put controller in Partial Power Down.
366 *
367 * @hsotg: Programming view of the DWC_otg controller
368 */
369 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
370 {
371 u32 pcgcctl;
372 int ret = 0;
373
374 if (!hsotg->core_params->hibernation)
375 return -ENOTSUPP;
376
377 /* Backup all registers */
378 ret = dwc2_backup_global_registers(hsotg);
379 if (ret) {
380 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
381 __func__);
382 return ret;
383 }
384
385 if (dwc2_is_host_mode(hsotg)) {
386 ret = dwc2_backup_host_registers(hsotg);
387 if (ret) {
388 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
389 __func__);
390 return ret;
391 }
392 } else {
393 ret = dwc2_backup_device_registers(hsotg);
394 if (ret) {
395 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
396 __func__);
397 return ret;
398 }
399 }
400
401 /*
402 * Clear any pending interrupts since dwc2 will not be able to
403 * clear them after entering hibernation.
404 */
405 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
406
407 /* Put the controller in low power state */
408 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
409
410 pcgcctl |= PCGCTL_PWRCLMP;
411 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
412 ndelay(20);
413
414 pcgcctl |= PCGCTL_RSTPDWNMODULE;
415 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
416 ndelay(20);
417
418 pcgcctl |= PCGCTL_STOPPCLK;
419 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
420
421 return ret;
422 }
423
424 /**
425 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
426 * used in both device and host modes
427 *
428 * @hsotg: Programming view of the DWC_otg controller
429 */
430 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
431 {
432 u32 intmsk;
433
434 /* Clear any pending OTG Interrupts */
435 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
436
437 /* Clear any pending interrupts */
438 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
439
440 /* Enable the interrupts in the GINTMSK */
441 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
442
443 if (hsotg->core_params->dma_enable <= 0)
444 intmsk |= GINTSTS_RXFLVL;
445 if (hsotg->core_params->external_id_pin_ctl <= 0)
446 intmsk |= GINTSTS_CONIDSTSCHNG;
447
448 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
449 GINTSTS_SESSREQINT;
450
451 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
452 }
453
454 /*
455 * Initializes the FSLSPClkSel field of the HCFG register depending on the
456 * PHY type
457 */
458 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
459 {
460 u32 hcfg, val;
461
462 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
463 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
464 hsotg->core_params->ulpi_fs_ls > 0) ||
465 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
466 /* Full speed PHY */
467 val = HCFG_FSLSPCLKSEL_48_MHZ;
468 } else {
469 /* High speed PHY running at full speed or high speed */
470 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
471 }
472
473 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
474 hcfg = dwc2_readl(hsotg->regs + HCFG);
475 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
476 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
477 dwc2_writel(hcfg, hsotg->regs + HCFG);
478 }
479
480 /*
481 * Do core a soft reset of the core. Be careful with this because it
482 * resets all the internal state machines of the core.
483 */
484 int dwc2_core_reset(struct dwc2_hsotg *hsotg)
485 {
486 u32 greset;
487 int count = 0;
488
489 dev_vdbg(hsotg->dev, "%s()\n", __func__);
490
491 /* Core Soft Reset */
492 greset = dwc2_readl(hsotg->regs + GRSTCTL);
493 greset |= GRSTCTL_CSFTRST;
494 dwc2_writel(greset, hsotg->regs + GRSTCTL);
495 do {
496 udelay(1);
497 greset = dwc2_readl(hsotg->regs + GRSTCTL);
498 if (++count > 50) {
499 dev_warn(hsotg->dev,
500 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
501 __func__, greset);
502 return -EBUSY;
503 }
504 } while (greset & GRSTCTL_CSFTRST);
505
506 /* Wait for AHB master IDLE state */
507 count = 0;
508 do {
509 udelay(1);
510 greset = dwc2_readl(hsotg->regs + GRSTCTL);
511 if (++count > 50) {
512 dev_warn(hsotg->dev,
513 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
514 __func__, greset);
515 return -EBUSY;
516 }
517 } while (!(greset & GRSTCTL_AHBIDLE));
518
519 return 0;
520 }
521
522 /*
523 * Force the mode of the controller.
524 *
525 * Forcing the mode is needed for two cases:
526 *
527 * 1) If the dr_mode is set to either HOST or PERIPHERAL we force the
528 * controller to stay in a particular mode regardless of ID pin
529 * changes. We do this usually after a core reset.
530 *
531 * 2) During probe we want to read reset values of the hw
532 * configuration registers that are only available in either host or
533 * device mode. We may need to force the mode if the current mode does
534 * not allow us to access the register in the mode that we want.
535 *
536 * In either case it only makes sense to force the mode if the
537 * controller hardware is OTG capable.
538 *
539 * Checks are done in this function to determine whether doing a force
540 * would be valid or not.
541 *
542 * If a force is done, it requires a 25ms delay to take effect.
543 *
544 * Returns true if the mode was forced.
545 */
546 static bool dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host)
547 {
548 u32 gusbcfg;
549 u32 set;
550 u32 clear;
551
552 dev_dbg(hsotg->dev, "Forcing mode to %s\n", host ? "host" : "device");
553
554 /*
555 * Force mode has no effect if the hardware is not OTG.
556 */
557 if (!dwc2_hw_is_otg(hsotg))
558 return false;
559
560 /*
561 * If dr_mode is either peripheral or host only, there is no
562 * need to ever force the mode to the opposite mode.
563 */
564 if (WARN_ON(host && hsotg->dr_mode == USB_DR_MODE_PERIPHERAL))
565 return false;
566
567 if (WARN_ON(!host && hsotg->dr_mode == USB_DR_MODE_HOST))
568 return false;
569
570 gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
571
572 set = host ? GUSBCFG_FORCEHOSTMODE : GUSBCFG_FORCEDEVMODE;
573 clear = host ? GUSBCFG_FORCEDEVMODE : GUSBCFG_FORCEHOSTMODE;
574
575 gusbcfg &= ~clear;
576 gusbcfg |= set;
577 dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
578
579 msleep(25);
580 return true;
581 }
582
583 /*
584 * Clears the force mode bits.
585 */
586 static void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg)
587 {
588 u32 gusbcfg;
589
590 gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
591 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
592 gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
593 dwc2_writel(gusbcfg, hsotg->regs + GUSBCFG);
594
595 /*
596 * NOTE: This long sleep is _very_ important, otherwise the core will
597 * not stay in host mode after a connector ID change!
598 */
599 msleep(25);
600 }
601
602 /*
603 * Sets or clears force mode based on the dr_mode parameter.
604 */
605 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg)
606 {
607 switch (hsotg->dr_mode) {
608 case USB_DR_MODE_HOST:
609 dwc2_force_mode(hsotg, true);
610 break;
611 case USB_DR_MODE_PERIPHERAL:
612 dwc2_force_mode(hsotg, false);
613 break;
614 case USB_DR_MODE_OTG:
615 dwc2_clear_force_mode(hsotg);
616 break;
617 default:
618 dev_warn(hsotg->dev, "%s() Invalid dr_mode=%d\n",
619 __func__, hsotg->dr_mode);
620 break;
621 }
622
623 /*
624 * NOTE: This is required for some rockchip soc based
625 * platforms.
626 */
627 msleep(50);
628 }
629
630 /*
631 * Do core a soft reset of the core. Be careful with this because it
632 * resets all the internal state machines of the core.
633 *
634 * Additionally this will apply force mode as per the hsotg->dr_mode
635 * parameter.
636 */
637 int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg)
638 {
639 int retval;
640
641 retval = dwc2_core_reset(hsotg);
642 if (retval)
643 return retval;
644
645 dwc2_force_dr_mode(hsotg);
646 return 0;
647 }
648
649 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
650 {
651 u32 usbcfg, i2cctl;
652 int retval = 0;
653
654 /*
655 * core_init() is now called on every switch so only call the
656 * following for the first time through
657 */
658 if (select_phy) {
659 dev_dbg(hsotg->dev, "FS PHY selected\n");
660
661 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
662 if (!(usbcfg & GUSBCFG_PHYSEL)) {
663 usbcfg |= GUSBCFG_PHYSEL;
664 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
665
666 /* Reset after a PHY select */
667 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
668
669 if (retval) {
670 dev_err(hsotg->dev,
671 "%s: Reset failed, aborting", __func__);
672 return retval;
673 }
674 }
675 }
676
677 /*
678 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
679 * do this on HNP Dev/Host mode switches (done in dev_init and
680 * host_init).
681 */
682 if (dwc2_is_host_mode(hsotg))
683 dwc2_init_fs_ls_pclk_sel(hsotg);
684
685 if (hsotg->core_params->i2c_enable > 0) {
686 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
687
688 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
689 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
690 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
691 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
692
693 /* Program GI2CCTL.I2CEn */
694 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
695 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
696 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
697 i2cctl &= ~GI2CCTL_I2CEN;
698 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
699 i2cctl |= GI2CCTL_I2CEN;
700 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
701 }
702
703 return retval;
704 }
705
706 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
707 {
708 u32 usbcfg, usbcfg_old;
709 int retval = 0;
710
711 if (!select_phy)
712 return 0;
713
714 usbcfg = usbcfg_old = dwc2_readl(hsotg->regs + GUSBCFG);
715
716 /*
717 * HS PHY parameters. These parameters are preserved during soft reset
718 * so only program the first time. Do a soft reset immediately after
719 * setting phyif.
720 */
721 switch (hsotg->core_params->phy_type) {
722 case DWC2_PHY_TYPE_PARAM_ULPI:
723 /* ULPI interface */
724 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
725 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
726 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
727 if (hsotg->core_params->phy_ulpi_ddr > 0)
728 usbcfg |= GUSBCFG_DDRSEL;
729 break;
730 case DWC2_PHY_TYPE_PARAM_UTMI:
731 /* UTMI+ interface */
732 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
733 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
734 if (hsotg->core_params->phy_utmi_width == 16)
735 usbcfg |= GUSBCFG_PHYIF16;
736 break;
737 default:
738 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
739 break;
740 }
741
742 if (usbcfg != usbcfg_old) {
743 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
744
745 /* Reset after setting the PHY parameters */
746 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
747 if (retval) {
748 dev_err(hsotg->dev,
749 "%s: Reset failed, aborting", __func__);
750 return retval;
751 }
752 }
753
754 return retval;
755 }
756
757 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
758 {
759 u32 usbcfg;
760 int retval = 0;
761
762 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
763 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
764 /* If FS mode with FS PHY */
765 retval = dwc2_fs_phy_init(hsotg, select_phy);
766 if (retval)
767 return retval;
768 } else {
769 /* High speed PHY */
770 retval = dwc2_hs_phy_init(hsotg, select_phy);
771 if (retval)
772 return retval;
773 }
774
775 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
776 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
777 hsotg->core_params->ulpi_fs_ls > 0) {
778 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
779 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
780 usbcfg |= GUSBCFG_ULPI_FS_LS;
781 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
782 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
783 } else {
784 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
785 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
786 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
787 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
788 }
789
790 return retval;
791 }
792
793 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
794 {
795 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
796
797 switch (hsotg->hw_params.arch) {
798 case GHWCFG2_EXT_DMA_ARCH:
799 dev_err(hsotg->dev, "External DMA Mode not supported\n");
800 return -EINVAL;
801
802 case GHWCFG2_INT_DMA_ARCH:
803 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
804 if (hsotg->core_params->ahbcfg != -1) {
805 ahbcfg &= GAHBCFG_CTRL_MASK;
806 ahbcfg |= hsotg->core_params->ahbcfg &
807 ~GAHBCFG_CTRL_MASK;
808 }
809 break;
810
811 case GHWCFG2_SLAVE_ONLY_ARCH:
812 default:
813 dev_dbg(hsotg->dev, "Slave Only Mode\n");
814 break;
815 }
816
817 dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
818 hsotg->core_params->dma_enable,
819 hsotg->core_params->dma_desc_enable);
820
821 if (hsotg->core_params->dma_enable > 0) {
822 if (hsotg->core_params->dma_desc_enable > 0)
823 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
824 else
825 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
826 } else {
827 dev_dbg(hsotg->dev, "Using Slave mode\n");
828 hsotg->core_params->dma_desc_enable = 0;
829 }
830
831 if (hsotg->core_params->dma_enable > 0)
832 ahbcfg |= GAHBCFG_DMA_EN;
833
834 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
835
836 return 0;
837 }
838
839 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
840 {
841 u32 usbcfg;
842
843 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
844 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
845
846 switch (hsotg->hw_params.op_mode) {
847 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
848 if (hsotg->core_params->otg_cap ==
849 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
850 usbcfg |= GUSBCFG_HNPCAP;
851 if (hsotg->core_params->otg_cap !=
852 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
853 usbcfg |= GUSBCFG_SRPCAP;
854 break;
855
856 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
857 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
858 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
859 if (hsotg->core_params->otg_cap !=
860 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
861 usbcfg |= GUSBCFG_SRPCAP;
862 break;
863
864 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
865 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
866 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
867 default:
868 break;
869 }
870
871 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
872 }
873
874 /**
875 * dwc2_core_init() - Initializes the DWC_otg controller registers and
876 * prepares the core for device mode or host mode operation
877 *
878 * @hsotg: Programming view of the DWC_otg controller
879 * @initial_setup: If true then this is the first init for this instance.
880 */
881 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
882 {
883 u32 usbcfg, otgctl;
884 int retval;
885
886 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
887
888 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
889
890 /* Set ULPI External VBUS bit if needed */
891 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
892 if (hsotg->core_params->phy_ulpi_ext_vbus ==
893 DWC2_PHY_ULPI_EXTERNAL_VBUS)
894 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
895
896 /* Set external TS Dline pulsing bit if needed */
897 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
898 if (hsotg->core_params->ts_dline > 0)
899 usbcfg |= GUSBCFG_TERMSELDLPULSE;
900
901 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
902
903 /*
904 * Reset the Controller
905 *
906 * We only need to reset the controller if this is a re-init.
907 * For the first init we know for sure that earlier code reset us (it
908 * needed to in order to properly detect various parameters).
909 */
910 if (!initial_setup) {
911 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
912 if (retval) {
913 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
914 __func__);
915 return retval;
916 }
917 }
918
919 /*
920 * This needs to happen in FS mode before any other programming occurs
921 */
922 retval = dwc2_phy_init(hsotg, initial_setup);
923 if (retval)
924 return retval;
925
926 /* Program the GAHBCFG Register */
927 retval = dwc2_gahbcfg_init(hsotg);
928 if (retval)
929 return retval;
930
931 /* Program the GUSBCFG register */
932 dwc2_gusbcfg_init(hsotg);
933
934 /* Program the GOTGCTL register */
935 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
936 otgctl &= ~GOTGCTL_OTGVER;
937 if (hsotg->core_params->otg_ver > 0)
938 otgctl |= GOTGCTL_OTGVER;
939 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
940 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
941
942 /* Clear the SRP success bit for FS-I2c */
943 hsotg->srp_success = 0;
944
945 /* Enable common interrupts */
946 dwc2_enable_common_interrupts(hsotg);
947
948 /*
949 * Do device or host initialization based on mode during PCD and
950 * HCD initialization
951 */
952 if (dwc2_is_host_mode(hsotg)) {
953 dev_dbg(hsotg->dev, "Host Mode\n");
954 hsotg->op_state = OTG_STATE_A_HOST;
955 } else {
956 dev_dbg(hsotg->dev, "Device Mode\n");
957 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
958 }
959
960 return 0;
961 }
962
963 /**
964 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
965 *
966 * @hsotg: Programming view of DWC_otg controller
967 */
968 void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
969 {
970 u32 intmsk;
971
972 dev_dbg(hsotg->dev, "%s()\n", __func__);
973
974 /* Disable all interrupts */
975 dwc2_writel(0, hsotg->regs + GINTMSK);
976 dwc2_writel(0, hsotg->regs + HAINTMSK);
977
978 /* Enable the common interrupts */
979 dwc2_enable_common_interrupts(hsotg);
980
981 /* Enable host mode interrupts without disturbing common interrupts */
982 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
983 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
984 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
985 }
986
987 /**
988 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
989 *
990 * @hsotg: Programming view of DWC_otg controller
991 */
992 void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
993 {
994 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
995
996 /* Disable host mode interrupts without disturbing common interrupts */
997 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
998 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
999 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
1000 }
1001
1002 /*
1003 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
1004 * For system that have a total fifo depth that is smaller than the default
1005 * RX + TX fifo size.
1006 *
1007 * @hsotg: Programming view of DWC_otg controller
1008 */
1009 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
1010 {
1011 struct dwc2_core_params *params = hsotg->core_params;
1012 struct dwc2_hw_params *hw = &hsotg->hw_params;
1013 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
1014
1015 total_fifo_size = hw->total_fifo_size;
1016 rxfsiz = params->host_rx_fifo_size;
1017 nptxfsiz = params->host_nperio_tx_fifo_size;
1018 ptxfsiz = params->host_perio_tx_fifo_size;
1019
1020 /*
1021 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
1022 * allocation with support for high bandwidth endpoints. Synopsys
1023 * defines MPS(Max Packet size) for a periodic EP=1024, and for
1024 * non-periodic as 512.
1025 */
1026 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
1027 /*
1028 * For Buffer DMA mode/Scatter Gather DMA mode
1029 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
1030 * with n = number of host channel.
1031 * 2 * ((1024/4) + 2) = 516
1032 */
1033 rxfsiz = 516 + hw->host_channels;
1034
1035 /*
1036 * min non-periodic tx fifo depth
1037 * 2 * (largest non-periodic USB packet used / 4)
1038 * 2 * (512/4) = 256
1039 */
1040 nptxfsiz = 256;
1041
1042 /*
1043 * min periodic tx fifo depth
1044 * (largest packet size*MC)/4
1045 * (1024 * 3)/4 = 768
1046 */
1047 ptxfsiz = 768;
1048
1049 params->host_rx_fifo_size = rxfsiz;
1050 params->host_nperio_tx_fifo_size = nptxfsiz;
1051 params->host_perio_tx_fifo_size = ptxfsiz;
1052 }
1053
1054 /*
1055 * If the summation of RX, NPTX and PTX fifo sizes is still
1056 * bigger than the total_fifo_size, then we have a problem.
1057 *
1058 * We won't be able to allocate as many endpoints. Right now,
1059 * we're just printing an error message, but ideally this FIFO
1060 * allocation algorithm would be improved in the future.
1061 *
1062 * FIXME improve this FIFO allocation algorithm.
1063 */
1064 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
1065 dev_err(hsotg->dev, "invalid fifo sizes\n");
1066 }
1067
1068 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
1069 {
1070 struct dwc2_core_params *params = hsotg->core_params;
1071 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
1072
1073 if (!params->enable_dynamic_fifo)
1074 return;
1075
1076 dwc2_calculate_dynamic_fifo(hsotg);
1077
1078 /* Rx FIFO */
1079 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
1080 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
1081 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
1082 grxfsiz |= params->host_rx_fifo_size <<
1083 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
1084 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
1085 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
1086 dwc2_readl(hsotg->regs + GRXFSIZ));
1087
1088 /* Non-periodic Tx FIFO */
1089 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
1090 dwc2_readl(hsotg->regs + GNPTXFSIZ));
1091 nptxfsiz = params->host_nperio_tx_fifo_size <<
1092 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
1093 nptxfsiz |= params->host_rx_fifo_size <<
1094 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
1095 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
1096 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
1097 dwc2_readl(hsotg->regs + GNPTXFSIZ));
1098
1099 /* Periodic Tx FIFO */
1100 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
1101 dwc2_readl(hsotg->regs + HPTXFSIZ));
1102 hptxfsiz = params->host_perio_tx_fifo_size <<
1103 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
1104 hptxfsiz |= (params->host_rx_fifo_size +
1105 params->host_nperio_tx_fifo_size) <<
1106 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
1107 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
1108 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
1109 dwc2_readl(hsotg->regs + HPTXFSIZ));
1110
1111 if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
1112 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
1113 /*
1114 * Global DFIFOCFG calculation for Host mode -
1115 * include RxFIFO, NPTXFIFO and HPTXFIFO
1116 */
1117 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
1118 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
1119 dfifocfg |= (params->host_rx_fifo_size +
1120 params->host_nperio_tx_fifo_size +
1121 params->host_perio_tx_fifo_size) <<
1122 GDFIFOCFG_EPINFOBASE_SHIFT &
1123 GDFIFOCFG_EPINFOBASE_MASK;
1124 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
1125 }
1126 }
1127
1128 /**
1129 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
1130 * Host mode
1131 *
1132 * @hsotg: Programming view of DWC_otg controller
1133 *
1134 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
1135 * request queues. Host channels are reset to ensure that they are ready for
1136 * performing transfers.
1137 */
1138 void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
1139 {
1140 u32 hcfg, hfir, otgctl;
1141
1142 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
1143
1144 /* Restart the Phy Clock */
1145 dwc2_writel(0, hsotg->regs + PCGCTL);
1146
1147 /* Initialize Host Configuration Register */
1148 dwc2_init_fs_ls_pclk_sel(hsotg);
1149 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
1150 hcfg = dwc2_readl(hsotg->regs + HCFG);
1151 hcfg |= HCFG_FSLSSUPP;
1152 dwc2_writel(hcfg, hsotg->regs + HCFG);
1153 }
1154
1155 /*
1156 * This bit allows dynamic reloading of the HFIR register during
1157 * runtime. This bit needs to be programmed during initial configuration
1158 * and its value must not be changed during runtime.
1159 */
1160 if (hsotg->core_params->reload_ctl > 0) {
1161 hfir = dwc2_readl(hsotg->regs + HFIR);
1162 hfir |= HFIR_RLDCTRL;
1163 dwc2_writel(hfir, hsotg->regs + HFIR);
1164 }
1165
1166 if (hsotg->core_params->dma_desc_enable > 0) {
1167 u32 op_mode = hsotg->hw_params.op_mode;
1168 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
1169 !hsotg->hw_params.dma_desc_enable ||
1170 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
1171 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
1172 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
1173 dev_err(hsotg->dev,
1174 "Hardware does not support descriptor DMA mode -\n");
1175 dev_err(hsotg->dev,
1176 "falling back to buffer DMA mode.\n");
1177 hsotg->core_params->dma_desc_enable = 0;
1178 } else {
1179 hcfg = dwc2_readl(hsotg->regs + HCFG);
1180 hcfg |= HCFG_DESCDMA;
1181 dwc2_writel(hcfg, hsotg->regs + HCFG);
1182 }
1183 }
1184
1185 /* Configure data FIFO sizes */
1186 dwc2_config_fifos(hsotg);
1187
1188 /* TODO - check this */
1189 /* Clear Host Set HNP Enable in the OTG Control Register */
1190 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1191 otgctl &= ~GOTGCTL_HSTSETHNPEN;
1192 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1193
1194 /* Make sure the FIFOs are flushed */
1195 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
1196 dwc2_flush_rx_fifo(hsotg);
1197
1198 /* Clear Host Set HNP Enable in the OTG Control Register */
1199 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1200 otgctl &= ~GOTGCTL_HSTSETHNPEN;
1201 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1202
1203 if (hsotg->core_params->dma_desc_enable <= 0) {
1204 int num_channels, i;
1205 u32 hcchar;
1206
1207 /* Flush out any leftover queued requests */
1208 num_channels = hsotg->core_params->host_channels;
1209 for (i = 0; i < num_channels; i++) {
1210 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1211 hcchar &= ~HCCHAR_CHENA;
1212 hcchar |= HCCHAR_CHDIS;
1213 hcchar &= ~HCCHAR_EPDIR;
1214 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1215 }
1216
1217 /* Halt all channels to put them into a known state */
1218 for (i = 0; i < num_channels; i++) {
1219 int count = 0;
1220
1221 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1222 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
1223 hcchar &= ~HCCHAR_EPDIR;
1224 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1225 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
1226 __func__, i);
1227 do {
1228 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1229 if (++count > 1000) {
1230 dev_err(hsotg->dev,
1231 "Unable to clear enable on channel %d\n",
1232 i);
1233 break;
1234 }
1235 udelay(1);
1236 } while (hcchar & HCCHAR_CHENA);
1237 }
1238 }
1239
1240 /* Turn on the vbus power */
1241 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
1242 if (hsotg->op_state == OTG_STATE_A_HOST) {
1243 u32 hprt0 = dwc2_read_hprt0(hsotg);
1244
1245 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
1246 !!(hprt0 & HPRT0_PWR));
1247 if (!(hprt0 & HPRT0_PWR)) {
1248 hprt0 |= HPRT0_PWR;
1249 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1250 }
1251 }
1252
1253 dwc2_enable_host_interrupts(hsotg);
1254 }
1255
1256 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
1257 struct dwc2_host_chan *chan)
1258 {
1259 u32 hcintmsk = HCINTMSK_CHHLTD;
1260
1261 switch (chan->ep_type) {
1262 case USB_ENDPOINT_XFER_CONTROL:
1263 case USB_ENDPOINT_XFER_BULK:
1264 dev_vdbg(hsotg->dev, "control/bulk\n");
1265 hcintmsk |= HCINTMSK_XFERCOMPL;
1266 hcintmsk |= HCINTMSK_STALL;
1267 hcintmsk |= HCINTMSK_XACTERR;
1268 hcintmsk |= HCINTMSK_DATATGLERR;
1269 if (chan->ep_is_in) {
1270 hcintmsk |= HCINTMSK_BBLERR;
1271 } else {
1272 hcintmsk |= HCINTMSK_NAK;
1273 hcintmsk |= HCINTMSK_NYET;
1274 if (chan->do_ping)
1275 hcintmsk |= HCINTMSK_ACK;
1276 }
1277
1278 if (chan->do_split) {
1279 hcintmsk |= HCINTMSK_NAK;
1280 if (chan->complete_split)
1281 hcintmsk |= HCINTMSK_NYET;
1282 else
1283 hcintmsk |= HCINTMSK_ACK;
1284 }
1285
1286 if (chan->error_state)
1287 hcintmsk |= HCINTMSK_ACK;
1288 break;
1289
1290 case USB_ENDPOINT_XFER_INT:
1291 if (dbg_perio())
1292 dev_vdbg(hsotg->dev, "intr\n");
1293 hcintmsk |= HCINTMSK_XFERCOMPL;
1294 hcintmsk |= HCINTMSK_NAK;
1295 hcintmsk |= HCINTMSK_STALL;
1296 hcintmsk |= HCINTMSK_XACTERR;
1297 hcintmsk |= HCINTMSK_DATATGLERR;
1298 hcintmsk |= HCINTMSK_FRMOVRUN;
1299
1300 if (chan->ep_is_in)
1301 hcintmsk |= HCINTMSK_BBLERR;
1302 if (chan->error_state)
1303 hcintmsk |= HCINTMSK_ACK;
1304 if (chan->do_split) {
1305 if (chan->complete_split)
1306 hcintmsk |= HCINTMSK_NYET;
1307 else
1308 hcintmsk |= HCINTMSK_ACK;
1309 }
1310 break;
1311
1312 case USB_ENDPOINT_XFER_ISOC:
1313 if (dbg_perio())
1314 dev_vdbg(hsotg->dev, "isoc\n");
1315 hcintmsk |= HCINTMSK_XFERCOMPL;
1316 hcintmsk |= HCINTMSK_FRMOVRUN;
1317 hcintmsk |= HCINTMSK_ACK;
1318
1319 if (chan->ep_is_in) {
1320 hcintmsk |= HCINTMSK_XACTERR;
1321 hcintmsk |= HCINTMSK_BBLERR;
1322 }
1323 break;
1324 default:
1325 dev_err(hsotg->dev, "## Unknown EP type ##\n");
1326 break;
1327 }
1328
1329 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1330 if (dbg_hc(chan))
1331 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1332 }
1333
1334 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
1335 struct dwc2_host_chan *chan)
1336 {
1337 u32 hcintmsk = HCINTMSK_CHHLTD;
1338
1339 /*
1340 * For Descriptor DMA mode core halts the channel on AHB error.
1341 * Interrupt is not required.
1342 */
1343 if (hsotg->core_params->dma_desc_enable <= 0) {
1344 if (dbg_hc(chan))
1345 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1346 hcintmsk |= HCINTMSK_AHBERR;
1347 } else {
1348 if (dbg_hc(chan))
1349 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
1350 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1351 hcintmsk |= HCINTMSK_XFERCOMPL;
1352 }
1353
1354 if (chan->error_state && !chan->do_split &&
1355 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
1356 if (dbg_hc(chan))
1357 dev_vdbg(hsotg->dev, "setting ACK\n");
1358 hcintmsk |= HCINTMSK_ACK;
1359 if (chan->ep_is_in) {
1360 hcintmsk |= HCINTMSK_DATATGLERR;
1361 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
1362 hcintmsk |= HCINTMSK_NAK;
1363 }
1364 }
1365
1366 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1367 if (dbg_hc(chan))
1368 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1369 }
1370
1371 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
1372 struct dwc2_host_chan *chan)
1373 {
1374 u32 intmsk;
1375
1376 if (hsotg->core_params->dma_enable > 0) {
1377 if (dbg_hc(chan))
1378 dev_vdbg(hsotg->dev, "DMA enabled\n");
1379 dwc2_hc_enable_dma_ints(hsotg, chan);
1380 } else {
1381 if (dbg_hc(chan))
1382 dev_vdbg(hsotg->dev, "DMA disabled\n");
1383 dwc2_hc_enable_slave_ints(hsotg, chan);
1384 }
1385
1386 /* Enable the top level host channel interrupt */
1387 intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
1388 intmsk |= 1 << chan->hc_num;
1389 dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
1390 if (dbg_hc(chan))
1391 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
1392
1393 /* Make sure host channel interrupts are enabled */
1394 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
1395 intmsk |= GINTSTS_HCHINT;
1396 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
1397 if (dbg_hc(chan))
1398 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
1399 }
1400
1401 /**
1402 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
1403 * a specific endpoint
1404 *
1405 * @hsotg: Programming view of DWC_otg controller
1406 * @chan: Information needed to initialize the host channel
1407 *
1408 * The HCCHARn register is set up with the characteristics specified in chan.
1409 * Host channel interrupts that may need to be serviced while this transfer is
1410 * in progress are enabled.
1411 */
1412 void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1413 {
1414 u8 hc_num = chan->hc_num;
1415 u32 hcintmsk;
1416 u32 hcchar;
1417 u32 hcsplt = 0;
1418
1419 if (dbg_hc(chan))
1420 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1421
1422 /* Clear old interrupt conditions for this host channel */
1423 hcintmsk = 0xffffffff;
1424 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1425 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
1426
1427 /* Enable channel interrupts required for this transfer */
1428 dwc2_hc_enable_ints(hsotg, chan);
1429
1430 /*
1431 * Program the HCCHARn register with the endpoint characteristics for
1432 * the current transfer
1433 */
1434 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
1435 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
1436 if (chan->ep_is_in)
1437 hcchar |= HCCHAR_EPDIR;
1438 if (chan->speed == USB_SPEED_LOW)
1439 hcchar |= HCCHAR_LSPDDEV;
1440 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
1441 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
1442 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
1443 if (dbg_hc(chan)) {
1444 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
1445 hc_num, hcchar);
1446
1447 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
1448 __func__, hc_num);
1449 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
1450 chan->dev_addr);
1451 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
1452 chan->ep_num);
1453 dev_vdbg(hsotg->dev, " Is In: %d\n",
1454 chan->ep_is_in);
1455 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
1456 chan->speed == USB_SPEED_LOW);
1457 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
1458 chan->ep_type);
1459 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
1460 chan->max_packet);
1461 }
1462
1463 /* Program the HCSPLT register for SPLITs */
1464 if (chan->do_split) {
1465 if (dbg_hc(chan))
1466 dev_vdbg(hsotg->dev,
1467 "Programming HC %d with split --> %s\n",
1468 hc_num,
1469 chan->complete_split ? "CSPLIT" : "SSPLIT");
1470 if (chan->complete_split)
1471 hcsplt |= HCSPLT_COMPSPLT;
1472 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
1473 HCSPLT_XACTPOS_MASK;
1474 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
1475 HCSPLT_HUBADDR_MASK;
1476 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
1477 HCSPLT_PRTADDR_MASK;
1478 if (dbg_hc(chan)) {
1479 dev_vdbg(hsotg->dev, " comp split %d\n",
1480 chan->complete_split);
1481 dev_vdbg(hsotg->dev, " xact pos %d\n",
1482 chan->xact_pos);
1483 dev_vdbg(hsotg->dev, " hub addr %d\n",
1484 chan->hub_addr);
1485 dev_vdbg(hsotg->dev, " hub port %d\n",
1486 chan->hub_port);
1487 dev_vdbg(hsotg->dev, " is_in %d\n",
1488 chan->ep_is_in);
1489 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
1490 chan->max_packet);
1491 dev_vdbg(hsotg->dev, " xferlen %d\n",
1492 chan->xfer_len);
1493 }
1494 }
1495
1496 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1497 }
1498
1499 /**
1500 * dwc2_hc_halt() - Attempts to halt a host channel
1501 *
1502 * @hsotg: Controller register interface
1503 * @chan: Host channel to halt
1504 * @halt_status: Reason for halting the channel
1505 *
1506 * This function should only be called in Slave mode or to abort a transfer in
1507 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
1508 * controller halts the channel when the transfer is complete or a condition
1509 * occurs that requires application intervention.
1510 *
1511 * In slave mode, checks for a free request queue entry, then sets the Channel
1512 * Enable and Channel Disable bits of the Host Channel Characteristics
1513 * register of the specified channel to intiate the halt. If there is no free
1514 * request queue entry, sets only the Channel Disable bit of the HCCHARn
1515 * register to flush requests for this channel. In the latter case, sets a
1516 * flag to indicate that the host channel needs to be halted when a request
1517 * queue slot is open.
1518 *
1519 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
1520 * HCCHARn register. The controller ensures there is space in the request
1521 * queue before submitting the halt request.
1522 *
1523 * Some time may elapse before the core flushes any posted requests for this
1524 * host channel and halts. The Channel Halted interrupt handler completes the
1525 * deactivation of the host channel.
1526 */
1527 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
1528 enum dwc2_halt_status halt_status)
1529 {
1530 u32 nptxsts, hptxsts, hcchar;
1531
1532 if (dbg_hc(chan))
1533 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1534 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1535 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1536
1537 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1538 halt_status == DWC2_HC_XFER_AHB_ERR) {
1539 /*
1540 * Disable all channel interrupts except Ch Halted. The QTD
1541 * and QH state associated with this transfer has been cleared
1542 * (in the case of URB_DEQUEUE), so the channel needs to be
1543 * shut down carefully to prevent crashes.
1544 */
1545 u32 hcintmsk = HCINTMSK_CHHLTD;
1546
1547 dev_vdbg(hsotg->dev, "dequeue/error\n");
1548 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1549
1550 /*
1551 * Make sure no other interrupts besides halt are currently
1552 * pending. Handling another interrupt could cause a crash due
1553 * to the QTD and QH state.
1554 */
1555 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1556
1557 /*
1558 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1559 * even if the channel was already halted for some other
1560 * reason
1561 */
1562 chan->halt_status = halt_status;
1563
1564 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1565 if (!(hcchar & HCCHAR_CHENA)) {
1566 /*
1567 * The channel is either already halted or it hasn't
1568 * started yet. In DMA mode, the transfer may halt if
1569 * it finishes normally or a condition occurs that
1570 * requires driver intervention. Don't want to halt
1571 * the channel again. In either Slave or DMA mode,
1572 * it's possible that the transfer has been assigned
1573 * to a channel, but not started yet when an URB is
1574 * dequeued. Don't want to halt a channel that hasn't
1575 * started yet.
1576 */
1577 return;
1578 }
1579 }
1580 if (chan->halt_pending) {
1581 /*
1582 * A halt has already been issued for this channel. This might
1583 * happen when a transfer is aborted by a higher level in
1584 * the stack.
1585 */
1586 dev_vdbg(hsotg->dev,
1587 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1588 __func__, chan->hc_num);
1589 return;
1590 }
1591
1592 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1593
1594 /* No need to set the bit in DDMA for disabling the channel */
1595 /* TODO check it everywhere channel is disabled */
1596 if (hsotg->core_params->dma_desc_enable <= 0) {
1597 if (dbg_hc(chan))
1598 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1599 hcchar |= HCCHAR_CHENA;
1600 } else {
1601 if (dbg_hc(chan))
1602 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1603 }
1604 hcchar |= HCCHAR_CHDIS;
1605
1606 if (hsotg->core_params->dma_enable <= 0) {
1607 if (dbg_hc(chan))
1608 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1609 hcchar |= HCCHAR_CHENA;
1610
1611 /* Check for space in the request queue to issue the halt */
1612 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1613 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1614 dev_vdbg(hsotg->dev, "control/bulk\n");
1615 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1616 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1617 dev_vdbg(hsotg->dev, "Disabling channel\n");
1618 hcchar &= ~HCCHAR_CHENA;
1619 }
1620 } else {
1621 if (dbg_perio())
1622 dev_vdbg(hsotg->dev, "isoc/intr\n");
1623 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1624 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1625 hsotg->queuing_high_bandwidth) {
1626 if (dbg_perio())
1627 dev_vdbg(hsotg->dev, "Disabling channel\n");
1628 hcchar &= ~HCCHAR_CHENA;
1629 }
1630 }
1631 } else {
1632 if (dbg_hc(chan))
1633 dev_vdbg(hsotg->dev, "DMA enabled\n");
1634 }
1635
1636 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1637 chan->halt_status = halt_status;
1638
1639 if (hcchar & HCCHAR_CHENA) {
1640 if (dbg_hc(chan))
1641 dev_vdbg(hsotg->dev, "Channel enabled\n");
1642 chan->halt_pending = 1;
1643 chan->halt_on_queue = 0;
1644 } else {
1645 if (dbg_hc(chan))
1646 dev_vdbg(hsotg->dev, "Channel disabled\n");
1647 chan->halt_on_queue = 1;
1648 }
1649
1650 if (dbg_hc(chan)) {
1651 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1652 chan->hc_num);
1653 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1654 hcchar);
1655 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1656 chan->halt_pending);
1657 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1658 chan->halt_on_queue);
1659 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1660 chan->halt_status);
1661 }
1662 }
1663
1664 /**
1665 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1666 *
1667 * @hsotg: Programming view of DWC_otg controller
1668 * @chan: Identifies the host channel to clean up
1669 *
1670 * This function is normally called after a transfer is done and the host
1671 * channel is being released
1672 */
1673 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1674 {
1675 u32 hcintmsk;
1676
1677 chan->xfer_started = 0;
1678
1679 /*
1680 * Clear channel interrupt enables and any unhandled channel interrupt
1681 * conditions
1682 */
1683 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1684 hcintmsk = 0xffffffff;
1685 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1686 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1687 }
1688
1689 /**
1690 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1691 * which frame a periodic transfer should occur
1692 *
1693 * @hsotg: Programming view of DWC_otg controller
1694 * @chan: Identifies the host channel to set up and its properties
1695 * @hcchar: Current value of the HCCHAR register for the specified host channel
1696 *
1697 * This function has no effect on non-periodic transfers
1698 */
1699 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1700 struct dwc2_host_chan *chan, u32 *hcchar)
1701 {
1702 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1703 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1704 /* 1 if _next_ frame is odd, 0 if it's even */
1705 if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1706 *hcchar |= HCCHAR_ODDFRM;
1707 }
1708 }
1709
1710 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1711 {
1712 /* Set up the initial PID for the transfer */
1713 if (chan->speed == USB_SPEED_HIGH) {
1714 if (chan->ep_is_in) {
1715 if (chan->multi_count == 1)
1716 chan->data_pid_start = DWC2_HC_PID_DATA0;
1717 else if (chan->multi_count == 2)
1718 chan->data_pid_start = DWC2_HC_PID_DATA1;
1719 else
1720 chan->data_pid_start = DWC2_HC_PID_DATA2;
1721 } else {
1722 if (chan->multi_count == 1)
1723 chan->data_pid_start = DWC2_HC_PID_DATA0;
1724 else
1725 chan->data_pid_start = DWC2_HC_PID_MDATA;
1726 }
1727 } else {
1728 chan->data_pid_start = DWC2_HC_PID_DATA0;
1729 }
1730 }
1731
1732 /**
1733 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1734 * the Host Channel
1735 *
1736 * @hsotg: Programming view of DWC_otg controller
1737 * @chan: Information needed to initialize the host channel
1738 *
1739 * This function should only be called in Slave mode. For a channel associated
1740 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1741 * associated with a periodic EP, the periodic Tx FIFO is written.
1742 *
1743 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1744 * the number of bytes written to the Tx FIFO.
1745 */
1746 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1747 struct dwc2_host_chan *chan)
1748 {
1749 u32 i;
1750 u32 remaining_count;
1751 u32 byte_count;
1752 u32 dword_count;
1753 u32 __iomem *data_fifo;
1754 u32 *data_buf = (u32 *)chan->xfer_buf;
1755
1756 if (dbg_hc(chan))
1757 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1758
1759 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1760
1761 remaining_count = chan->xfer_len - chan->xfer_count;
1762 if (remaining_count > chan->max_packet)
1763 byte_count = chan->max_packet;
1764 else
1765 byte_count = remaining_count;
1766
1767 dword_count = (byte_count + 3) / 4;
1768
1769 if (((unsigned long)data_buf & 0x3) == 0) {
1770 /* xfer_buf is DWORD aligned */
1771 for (i = 0; i < dword_count; i++, data_buf++)
1772 dwc2_writel(*data_buf, data_fifo);
1773 } else {
1774 /* xfer_buf is not DWORD aligned */
1775 for (i = 0; i < dword_count; i++, data_buf++) {
1776 u32 data = data_buf[0] | data_buf[1] << 8 |
1777 data_buf[2] << 16 | data_buf[3] << 24;
1778 dwc2_writel(data, data_fifo);
1779 }
1780 }
1781
1782 chan->xfer_count += byte_count;
1783 chan->xfer_buf += byte_count;
1784 }
1785
1786 /**
1787 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1788 * channel and starts the transfer
1789 *
1790 * @hsotg: Programming view of DWC_otg controller
1791 * @chan: Information needed to initialize the host channel. The xfer_len value
1792 * may be reduced to accommodate the max widths of the XferSize and
1793 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1794 * changed to reflect the final xfer_len value.
1795 *
1796 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1797 * the caller must ensure that there is sufficient space in the request queue
1798 * and Tx Data FIFO.
1799 *
1800 * For an OUT transfer in Slave mode, it loads a data packet into the
1801 * appropriate FIFO. If necessary, additional data packets are loaded in the
1802 * Host ISR.
1803 *
1804 * For an IN transfer in Slave mode, a data packet is requested. The data
1805 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1806 * additional data packets are requested in the Host ISR.
1807 *
1808 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1809 * register along with a packet count of 1 and the channel is enabled. This
1810 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1811 * simply set to 0 since no data transfer occurs in this case.
1812 *
1813 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1814 * all the information required to perform the subsequent data transfer. In
1815 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1816 * controller performs the entire PING protocol, then starts the data
1817 * transfer.
1818 */
1819 void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1820 struct dwc2_host_chan *chan)
1821 {
1822 u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1823 u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1824 u32 hcchar;
1825 u32 hctsiz = 0;
1826 u16 num_packets;
1827 u32 ec_mc;
1828
1829 if (dbg_hc(chan))
1830 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1831
1832 if (chan->do_ping) {
1833 if (hsotg->core_params->dma_enable <= 0) {
1834 if (dbg_hc(chan))
1835 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1836 dwc2_hc_do_ping(hsotg, chan);
1837 chan->xfer_started = 1;
1838 return;
1839 } else {
1840 if (dbg_hc(chan))
1841 dev_vdbg(hsotg->dev, "ping, DMA\n");
1842 hctsiz |= TSIZ_DOPNG;
1843 }
1844 }
1845
1846 if (chan->do_split) {
1847 if (dbg_hc(chan))
1848 dev_vdbg(hsotg->dev, "split\n");
1849 num_packets = 1;
1850
1851 if (chan->complete_split && !chan->ep_is_in)
1852 /*
1853 * For CSPLIT OUT Transfer, set the size to 0 so the
1854 * core doesn't expect any data written to the FIFO
1855 */
1856 chan->xfer_len = 0;
1857 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1858 chan->xfer_len = chan->max_packet;
1859 else if (!chan->ep_is_in && chan->xfer_len > 188)
1860 chan->xfer_len = 188;
1861
1862 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1863 TSIZ_XFERSIZE_MASK;
1864
1865 /* For split set ec_mc for immediate retries */
1866 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1867 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1868 ec_mc = 3;
1869 else
1870 ec_mc = 1;
1871 } else {
1872 if (dbg_hc(chan))
1873 dev_vdbg(hsotg->dev, "no split\n");
1874 /*
1875 * Ensure that the transfer length and packet count will fit
1876 * in the widths allocated for them in the HCTSIZn register
1877 */
1878 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1879 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1880 /*
1881 * Make sure the transfer size is no larger than one
1882 * (micro)frame's worth of data. (A check was done
1883 * when the periodic transfer was accepted to ensure
1884 * that a (micro)frame's worth of data can be
1885 * programmed into a channel.)
1886 */
1887 u32 max_periodic_len =
1888 chan->multi_count * chan->max_packet;
1889
1890 if (chan->xfer_len > max_periodic_len)
1891 chan->xfer_len = max_periodic_len;
1892 } else if (chan->xfer_len > max_hc_xfer_size) {
1893 /*
1894 * Make sure that xfer_len is a multiple of max packet
1895 * size
1896 */
1897 chan->xfer_len =
1898 max_hc_xfer_size - chan->max_packet + 1;
1899 }
1900
1901 if (chan->xfer_len > 0) {
1902 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1903 chan->max_packet;
1904 if (num_packets > max_hc_pkt_count) {
1905 num_packets = max_hc_pkt_count;
1906 chan->xfer_len = num_packets * chan->max_packet;
1907 }
1908 } else {
1909 /* Need 1 packet for transfer length of 0 */
1910 num_packets = 1;
1911 }
1912
1913 if (chan->ep_is_in)
1914 /*
1915 * Always program an integral # of max packets for IN
1916 * transfers
1917 */
1918 chan->xfer_len = num_packets * chan->max_packet;
1919
1920 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1921 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1922 /*
1923 * Make sure that the multi_count field matches the
1924 * actual transfer length
1925 */
1926 chan->multi_count = num_packets;
1927
1928 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1929 dwc2_set_pid_isoc(chan);
1930
1931 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1932 TSIZ_XFERSIZE_MASK;
1933
1934 /* The ec_mc gets the multi_count for non-split */
1935 ec_mc = chan->multi_count;
1936 }
1937
1938 chan->start_pkt_count = num_packets;
1939 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1940 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1941 TSIZ_SC_MC_PID_MASK;
1942 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1943 if (dbg_hc(chan)) {
1944 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1945 hctsiz, chan->hc_num);
1946
1947 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1948 chan->hc_num);
1949 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1950 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1951 TSIZ_XFERSIZE_SHIFT);
1952 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1953 (hctsiz & TSIZ_PKTCNT_MASK) >>
1954 TSIZ_PKTCNT_SHIFT);
1955 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1956 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1957 TSIZ_SC_MC_PID_SHIFT);
1958 }
1959
1960 if (hsotg->core_params->dma_enable > 0) {
1961 dma_addr_t dma_addr;
1962
1963 if (chan->align_buf) {
1964 if (dbg_hc(chan))
1965 dev_vdbg(hsotg->dev, "align_buf\n");
1966 dma_addr = chan->align_buf;
1967 } else {
1968 dma_addr = chan->xfer_dma;
1969 }
1970 dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1971 if (dbg_hc(chan))
1972 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1973 (unsigned long)dma_addr, chan->hc_num);
1974 }
1975
1976 /* Start the split */
1977 if (chan->do_split) {
1978 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1979
1980 hcsplt |= HCSPLT_SPLTENA;
1981 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1982 }
1983
1984 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1985 hcchar &= ~HCCHAR_MULTICNT_MASK;
1986 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1987 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1988
1989 if (hcchar & HCCHAR_CHDIS)
1990 dev_warn(hsotg->dev,
1991 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1992 __func__, chan->hc_num, hcchar);
1993
1994 /* Set host channel enable after all other setup is complete */
1995 hcchar |= HCCHAR_CHENA;
1996 hcchar &= ~HCCHAR_CHDIS;
1997
1998 if (dbg_hc(chan))
1999 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
2000 (hcchar & HCCHAR_MULTICNT_MASK) >>
2001 HCCHAR_MULTICNT_SHIFT);
2002
2003 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2004 if (dbg_hc(chan))
2005 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
2006 chan->hc_num);
2007
2008 chan->xfer_started = 1;
2009 chan->requests++;
2010
2011 if (hsotg->core_params->dma_enable <= 0 &&
2012 !chan->ep_is_in && chan->xfer_len > 0)
2013 /* Load OUT packet into the appropriate Tx FIFO */
2014 dwc2_hc_write_packet(hsotg, chan);
2015 }
2016
2017 /**
2018 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
2019 * host channel and starts the transfer in Descriptor DMA mode
2020 *
2021 * @hsotg: Programming view of DWC_otg controller
2022 * @chan: Information needed to initialize the host channel
2023 *
2024 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
2025 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
2026 * with micro-frame bitmap.
2027 *
2028 * Initializes HCDMA register with descriptor list address and CTD value then
2029 * starts the transfer via enabling the channel.
2030 */
2031 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
2032 struct dwc2_host_chan *chan)
2033 {
2034 u32 hcchar;
2035 u32 hctsiz = 0;
2036
2037 if (chan->do_ping)
2038 hctsiz |= TSIZ_DOPNG;
2039
2040 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2041 dwc2_set_pid_isoc(chan);
2042
2043 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
2044 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
2045 TSIZ_SC_MC_PID_MASK;
2046
2047 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
2048 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
2049
2050 /* Non-zero only for high-speed interrupt endpoints */
2051 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
2052
2053 if (dbg_hc(chan)) {
2054 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2055 chan->hc_num);
2056 dev_vdbg(hsotg->dev, " Start PID: %d\n",
2057 chan->data_pid_start);
2058 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
2059 }
2060
2061 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2062
2063 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
2064 chan->desc_list_sz, DMA_TO_DEVICE);
2065
2066 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
2067
2068 if (dbg_hc(chan))
2069 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
2070 &chan->desc_list_addr, chan->hc_num);
2071
2072 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2073 hcchar &= ~HCCHAR_MULTICNT_MASK;
2074 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
2075 HCCHAR_MULTICNT_MASK;
2076
2077 if (hcchar & HCCHAR_CHDIS)
2078 dev_warn(hsotg->dev,
2079 "%s: chdis set, channel %d, hcchar 0x%08x\n",
2080 __func__, chan->hc_num, hcchar);
2081
2082 /* Set host channel enable after all other setup is complete */
2083 hcchar |= HCCHAR_CHENA;
2084 hcchar &= ~HCCHAR_CHDIS;
2085
2086 if (dbg_hc(chan))
2087 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
2088 (hcchar & HCCHAR_MULTICNT_MASK) >>
2089 HCCHAR_MULTICNT_SHIFT);
2090
2091 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2092 if (dbg_hc(chan))
2093 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
2094 chan->hc_num);
2095
2096 chan->xfer_started = 1;
2097 chan->requests++;
2098 }
2099
2100 /**
2101 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
2102 * a previous call to dwc2_hc_start_transfer()
2103 *
2104 * @hsotg: Programming view of DWC_otg controller
2105 * @chan: Information needed to initialize the host channel
2106 *
2107 * The caller must ensure there is sufficient space in the request queue and Tx
2108 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
2109 * the controller acts autonomously to complete transfers programmed to a host
2110 * channel.
2111 *
2112 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
2113 * if there is any data remaining to be queued. For an IN transfer, another
2114 * data packet is always requested. For the SETUP phase of a control transfer,
2115 * this function does nothing.
2116 *
2117 * Return: 1 if a new request is queued, 0 if no more requests are required
2118 * for this transfer
2119 */
2120 int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
2121 struct dwc2_host_chan *chan)
2122 {
2123 if (dbg_hc(chan))
2124 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2125 chan->hc_num);
2126
2127 if (chan->do_split)
2128 /* SPLITs always queue just once per channel */
2129 return 0;
2130
2131 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
2132 /* SETUPs are queued only once since they can't be NAK'd */
2133 return 0;
2134
2135 if (chan->ep_is_in) {
2136 /*
2137 * Always queue another request for other IN transfers. If
2138 * back-to-back INs are issued and NAKs are received for both,
2139 * the driver may still be processing the first NAK when the
2140 * second NAK is received. When the interrupt handler clears
2141 * the NAK interrupt for the first NAK, the second NAK will
2142 * not be seen. So we can't depend on the NAK interrupt
2143 * handler to requeue a NAK'd request. Instead, IN requests
2144 * are issued each time this function is called. When the
2145 * transfer completes, the extra requests for the channel will
2146 * be flushed.
2147 */
2148 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2149
2150 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
2151 hcchar |= HCCHAR_CHENA;
2152 hcchar &= ~HCCHAR_CHDIS;
2153 if (dbg_hc(chan))
2154 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
2155 hcchar);
2156 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2157 chan->requests++;
2158 return 1;
2159 }
2160
2161 /* OUT transfers */
2162
2163 if (chan->xfer_count < chan->xfer_len) {
2164 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2165 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2166 u32 hcchar = dwc2_readl(hsotg->regs +
2167 HCCHAR(chan->hc_num));
2168
2169 dwc2_hc_set_even_odd_frame(hsotg, chan,
2170 &hcchar);
2171 }
2172
2173 /* Load OUT packet into the appropriate Tx FIFO */
2174 dwc2_hc_write_packet(hsotg, chan);
2175 chan->requests++;
2176 return 1;
2177 }
2178
2179 return 0;
2180 }
2181
2182 /**
2183 * dwc2_hc_do_ping() - Starts a PING transfer
2184 *
2185 * @hsotg: Programming view of DWC_otg controller
2186 * @chan: Information needed to initialize the host channel
2187 *
2188 * This function should only be called in Slave mode. The Do Ping bit is set in
2189 * the HCTSIZ register, then the channel is enabled.
2190 */
2191 void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
2192 {
2193 u32 hcchar;
2194 u32 hctsiz;
2195
2196 if (dbg_hc(chan))
2197 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2198 chan->hc_num);
2199
2200
2201 hctsiz = TSIZ_DOPNG;
2202 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
2203 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2204
2205 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2206 hcchar |= HCCHAR_CHENA;
2207 hcchar &= ~HCCHAR_CHDIS;
2208 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2209 }
2210
2211 /**
2212 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
2213 * the HFIR register according to PHY type and speed
2214 *
2215 * @hsotg: Programming view of DWC_otg controller
2216 *
2217 * NOTE: The caller can modify the value of the HFIR register only after the
2218 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
2219 * has been set
2220 */
2221 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
2222 {
2223 u32 usbcfg;
2224 u32 hprt0;
2225 int clock = 60; /* default value */
2226
2227 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2228 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2229
2230 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
2231 !(usbcfg & GUSBCFG_PHYIF16))
2232 clock = 60;
2233 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
2234 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
2235 clock = 48;
2236 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2237 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2238 clock = 30;
2239 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2240 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
2241 clock = 60;
2242 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2243 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2244 clock = 48;
2245 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
2246 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
2247 clock = 48;
2248 if ((usbcfg & GUSBCFG_PHYSEL) &&
2249 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2250 clock = 48;
2251
2252 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
2253 /* High speed case */
2254 return 125 * clock;
2255 else
2256 /* FS/LS case */
2257 return 1000 * clock;
2258 }
2259
2260 /**
2261 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
2262 * buffer
2263 *
2264 * @core_if: Programming view of DWC_otg controller
2265 * @dest: Destination buffer for the packet
2266 * @bytes: Number of bytes to copy to the destination
2267 */
2268 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
2269 {
2270 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
2271 u32 *data_buf = (u32 *)dest;
2272 int word_count = (bytes + 3) / 4;
2273 int i;
2274
2275 /*
2276 * Todo: Account for the case where dest is not dword aligned. This
2277 * requires reading data from the FIFO into a u32 temp buffer, then
2278 * moving it into the data buffer.
2279 */
2280
2281 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
2282
2283 for (i = 0; i < word_count; i++, data_buf++)
2284 *data_buf = dwc2_readl(fifo);
2285 }
2286
2287 /**
2288 * dwc2_dump_host_registers() - Prints the host registers
2289 *
2290 * @hsotg: Programming view of DWC_otg controller
2291 *
2292 * NOTE: This function will be removed once the peripheral controller code
2293 * is integrated and the driver is stable
2294 */
2295 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
2296 {
2297 #ifdef DEBUG
2298 u32 __iomem *addr;
2299 int i;
2300
2301 dev_dbg(hsotg->dev, "Host Global Registers\n");
2302 addr = hsotg->regs + HCFG;
2303 dev_dbg(hsotg->dev, "HCFG @0x%08lX : 0x%08X\n",
2304 (unsigned long)addr, dwc2_readl(addr));
2305 addr = hsotg->regs + HFIR;
2306 dev_dbg(hsotg->dev, "HFIR @0x%08lX : 0x%08X\n",
2307 (unsigned long)addr, dwc2_readl(addr));
2308 addr = hsotg->regs + HFNUM;
2309 dev_dbg(hsotg->dev, "HFNUM @0x%08lX : 0x%08X\n",
2310 (unsigned long)addr, dwc2_readl(addr));
2311 addr = hsotg->regs + HPTXSTS;
2312 dev_dbg(hsotg->dev, "HPTXSTS @0x%08lX : 0x%08X\n",
2313 (unsigned long)addr, dwc2_readl(addr));
2314 addr = hsotg->regs + HAINT;
2315 dev_dbg(hsotg->dev, "HAINT @0x%08lX : 0x%08X\n",
2316 (unsigned long)addr, dwc2_readl(addr));
2317 addr = hsotg->regs + HAINTMSK;
2318 dev_dbg(hsotg->dev, "HAINTMSK @0x%08lX : 0x%08X\n",
2319 (unsigned long)addr, dwc2_readl(addr));
2320 if (hsotg->core_params->dma_desc_enable > 0) {
2321 addr = hsotg->regs + HFLBADDR;
2322 dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
2323 (unsigned long)addr, dwc2_readl(addr));
2324 }
2325
2326 addr = hsotg->regs + HPRT0;
2327 dev_dbg(hsotg->dev, "HPRT0 @0x%08lX : 0x%08X\n",
2328 (unsigned long)addr, dwc2_readl(addr));
2329
2330 for (i = 0; i < hsotg->core_params->host_channels; i++) {
2331 dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
2332 addr = hsotg->regs + HCCHAR(i);
2333 dev_dbg(hsotg->dev, "HCCHAR @0x%08lX : 0x%08X\n",
2334 (unsigned long)addr, dwc2_readl(addr));
2335 addr = hsotg->regs + HCSPLT(i);
2336 dev_dbg(hsotg->dev, "HCSPLT @0x%08lX : 0x%08X\n",
2337 (unsigned long)addr, dwc2_readl(addr));
2338 addr = hsotg->regs + HCINT(i);
2339 dev_dbg(hsotg->dev, "HCINT @0x%08lX : 0x%08X\n",
2340 (unsigned long)addr, dwc2_readl(addr));
2341 addr = hsotg->regs + HCINTMSK(i);
2342 dev_dbg(hsotg->dev, "HCINTMSK @0x%08lX : 0x%08X\n",
2343 (unsigned long)addr, dwc2_readl(addr));
2344 addr = hsotg->regs + HCTSIZ(i);
2345 dev_dbg(hsotg->dev, "HCTSIZ @0x%08lX : 0x%08X\n",
2346 (unsigned long)addr, dwc2_readl(addr));
2347 addr = hsotg->regs + HCDMA(i);
2348 dev_dbg(hsotg->dev, "HCDMA @0x%08lX : 0x%08X\n",
2349 (unsigned long)addr, dwc2_readl(addr));
2350 if (hsotg->core_params->dma_desc_enable > 0) {
2351 addr = hsotg->regs + HCDMAB(i);
2352 dev_dbg(hsotg->dev, "HCDMAB @0x%08lX : 0x%08X\n",
2353 (unsigned long)addr, dwc2_readl(addr));
2354 }
2355 }
2356 #endif
2357 }
2358
2359 /**
2360 * dwc2_dump_global_registers() - Prints the core global registers
2361 *
2362 * @hsotg: Programming view of DWC_otg controller
2363 *
2364 * NOTE: This function will be removed once the peripheral controller code
2365 * is integrated and the driver is stable
2366 */
2367 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
2368 {
2369 #ifdef DEBUG
2370 u32 __iomem *addr;
2371
2372 dev_dbg(hsotg->dev, "Core Global Registers\n");
2373 addr = hsotg->regs + GOTGCTL;
2374 dev_dbg(hsotg->dev, "GOTGCTL @0x%08lX : 0x%08X\n",
2375 (unsigned long)addr, dwc2_readl(addr));
2376 addr = hsotg->regs + GOTGINT;
2377 dev_dbg(hsotg->dev, "GOTGINT @0x%08lX : 0x%08X\n",
2378 (unsigned long)addr, dwc2_readl(addr));
2379 addr = hsotg->regs + GAHBCFG;
2380 dev_dbg(hsotg->dev, "GAHBCFG @0x%08lX : 0x%08X\n",
2381 (unsigned long)addr, dwc2_readl(addr));
2382 addr = hsotg->regs + GUSBCFG;
2383 dev_dbg(hsotg->dev, "GUSBCFG @0x%08lX : 0x%08X\n",
2384 (unsigned long)addr, dwc2_readl(addr));
2385 addr = hsotg->regs + GRSTCTL;
2386 dev_dbg(hsotg->dev, "GRSTCTL @0x%08lX : 0x%08X\n",
2387 (unsigned long)addr, dwc2_readl(addr));
2388 addr = hsotg->regs + GINTSTS;
2389 dev_dbg(hsotg->dev, "GINTSTS @0x%08lX : 0x%08X\n",
2390 (unsigned long)addr, dwc2_readl(addr));
2391 addr = hsotg->regs + GINTMSK;
2392 dev_dbg(hsotg->dev, "GINTMSK @0x%08lX : 0x%08X\n",
2393 (unsigned long)addr, dwc2_readl(addr));
2394 addr = hsotg->regs + GRXSTSR;
2395 dev_dbg(hsotg->dev, "GRXSTSR @0x%08lX : 0x%08X\n",
2396 (unsigned long)addr, dwc2_readl(addr));
2397 addr = hsotg->regs + GRXFSIZ;
2398 dev_dbg(hsotg->dev, "GRXFSIZ @0x%08lX : 0x%08X\n",
2399 (unsigned long)addr, dwc2_readl(addr));
2400 addr = hsotg->regs + GNPTXFSIZ;
2401 dev_dbg(hsotg->dev, "GNPTXFSIZ @0x%08lX : 0x%08X\n",
2402 (unsigned long)addr, dwc2_readl(addr));
2403 addr = hsotg->regs + GNPTXSTS;
2404 dev_dbg(hsotg->dev, "GNPTXSTS @0x%08lX : 0x%08X\n",
2405 (unsigned long)addr, dwc2_readl(addr));
2406 addr = hsotg->regs + GI2CCTL;
2407 dev_dbg(hsotg->dev, "GI2CCTL @0x%08lX : 0x%08X\n",
2408 (unsigned long)addr, dwc2_readl(addr));
2409 addr = hsotg->regs + GPVNDCTL;
2410 dev_dbg(hsotg->dev, "GPVNDCTL @0x%08lX : 0x%08X\n",
2411 (unsigned long)addr, dwc2_readl(addr));
2412 addr = hsotg->regs + GGPIO;
2413 dev_dbg(hsotg->dev, "GGPIO @0x%08lX : 0x%08X\n",
2414 (unsigned long)addr, dwc2_readl(addr));
2415 addr = hsotg->regs + GUID;
2416 dev_dbg(hsotg->dev, "GUID @0x%08lX : 0x%08X\n",
2417 (unsigned long)addr, dwc2_readl(addr));
2418 addr = hsotg->regs + GSNPSID;
2419 dev_dbg(hsotg->dev, "GSNPSID @0x%08lX : 0x%08X\n",
2420 (unsigned long)addr, dwc2_readl(addr));
2421 addr = hsotg->regs + GHWCFG1;
2422 dev_dbg(hsotg->dev, "GHWCFG1 @0x%08lX : 0x%08X\n",
2423 (unsigned long)addr, dwc2_readl(addr));
2424 addr = hsotg->regs + GHWCFG2;
2425 dev_dbg(hsotg->dev, "GHWCFG2 @0x%08lX : 0x%08X\n",
2426 (unsigned long)addr, dwc2_readl(addr));
2427 addr = hsotg->regs + GHWCFG3;
2428 dev_dbg(hsotg->dev, "GHWCFG3 @0x%08lX : 0x%08X\n",
2429 (unsigned long)addr, dwc2_readl(addr));
2430 addr = hsotg->regs + GHWCFG4;
2431 dev_dbg(hsotg->dev, "GHWCFG4 @0x%08lX : 0x%08X\n",
2432 (unsigned long)addr, dwc2_readl(addr));
2433 addr = hsotg->regs + GLPMCFG;
2434 dev_dbg(hsotg->dev, "GLPMCFG @0x%08lX : 0x%08X\n",
2435 (unsigned long)addr, dwc2_readl(addr));
2436 addr = hsotg->regs + GPWRDN;
2437 dev_dbg(hsotg->dev, "GPWRDN @0x%08lX : 0x%08X\n",
2438 (unsigned long)addr, dwc2_readl(addr));
2439 addr = hsotg->regs + GDFIFOCFG;
2440 dev_dbg(hsotg->dev, "GDFIFOCFG @0x%08lX : 0x%08X\n",
2441 (unsigned long)addr, dwc2_readl(addr));
2442 addr = hsotg->regs + HPTXFSIZ;
2443 dev_dbg(hsotg->dev, "HPTXFSIZ @0x%08lX : 0x%08X\n",
2444 (unsigned long)addr, dwc2_readl(addr));
2445
2446 addr = hsotg->regs + PCGCTL;
2447 dev_dbg(hsotg->dev, "PCGCTL @0x%08lX : 0x%08X\n",
2448 (unsigned long)addr, dwc2_readl(addr));
2449 #endif
2450 }
2451
2452 /**
2453 * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
2454 *
2455 * @hsotg: Programming view of DWC_otg controller
2456 * @num: Tx FIFO to flush
2457 */
2458 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
2459 {
2460 u32 greset;
2461 int count = 0;
2462
2463 dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
2464
2465 greset = GRSTCTL_TXFFLSH;
2466 greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
2467 dwc2_writel(greset, hsotg->regs + GRSTCTL);
2468
2469 do {
2470 greset = dwc2_readl(hsotg->regs + GRSTCTL);
2471 if (++count > 10000) {
2472 dev_warn(hsotg->dev,
2473 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
2474 __func__, greset,
2475 dwc2_readl(hsotg->regs + GNPTXSTS));
2476 break;
2477 }
2478 udelay(1);
2479 } while (greset & GRSTCTL_TXFFLSH);
2480
2481 /* Wait for at least 3 PHY Clocks */
2482 udelay(1);
2483 }
2484
2485 /**
2486 * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
2487 *
2488 * @hsotg: Programming view of DWC_otg controller
2489 */
2490 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
2491 {
2492 u32 greset;
2493 int count = 0;
2494
2495 dev_vdbg(hsotg->dev, "%s()\n", __func__);
2496
2497 greset = GRSTCTL_RXFFLSH;
2498 dwc2_writel(greset, hsotg->regs + GRSTCTL);
2499
2500 do {
2501 greset = dwc2_readl(hsotg->regs + GRSTCTL);
2502 if (++count > 10000) {
2503 dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
2504 __func__, greset);
2505 break;
2506 }
2507 udelay(1);
2508 } while (greset & GRSTCTL_RXFFLSH);
2509
2510 /* Wait for at least 3 PHY Clocks */
2511 udelay(1);
2512 }
2513
2514 #define DWC2_OUT_OF_BOUNDS(a, b, c) ((a) < (b) || (a) > (c))
2515
2516 /* Parameter access functions */
2517 void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
2518 {
2519 int valid = 1;
2520
2521 switch (val) {
2522 case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
2523 if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
2524 valid = 0;
2525 break;
2526 case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
2527 switch (hsotg->hw_params.op_mode) {
2528 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2529 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2530 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2531 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2532 break;
2533 default:
2534 valid = 0;
2535 break;
2536 }
2537 break;
2538 case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
2539 /* always valid */
2540 break;
2541 default:
2542 valid = 0;
2543 break;
2544 }
2545
2546 if (!valid) {
2547 if (val >= 0)
2548 dev_err(hsotg->dev,
2549 "%d invalid for otg_cap parameter. Check HW configuration.\n",
2550 val);
2551 switch (hsotg->hw_params.op_mode) {
2552 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2553 val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
2554 break;
2555 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2556 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2557 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2558 val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
2559 break;
2560 default:
2561 val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
2562 break;
2563 }
2564 dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
2565 }
2566
2567 hsotg->core_params->otg_cap = val;
2568 }
2569
2570 void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2571 {
2572 int valid = 1;
2573
2574 if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2575 valid = 0;
2576 if (val < 0)
2577 valid = 0;
2578
2579 if (!valid) {
2580 if (val >= 0)
2581 dev_err(hsotg->dev,
2582 "%d invalid for dma_enable parameter. Check HW configuration.\n",
2583 val);
2584 val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2585 dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
2586 }
2587
2588 hsotg->core_params->dma_enable = val;
2589 }
2590
2591 void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2592 {
2593 int valid = 1;
2594
2595 if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2596 !hsotg->hw_params.dma_desc_enable))
2597 valid = 0;
2598 if (val < 0)
2599 valid = 0;
2600
2601 if (!valid) {
2602 if (val >= 0)
2603 dev_err(hsotg->dev,
2604 "%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
2605 val);
2606 val = (hsotg->core_params->dma_enable > 0 &&
2607 hsotg->hw_params.dma_desc_enable);
2608 dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
2609 }
2610
2611 hsotg->core_params->dma_desc_enable = val;
2612 }
2613
2614 void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg, int val)
2615 {
2616 int valid = 1;
2617
2618 if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2619 !hsotg->hw_params.dma_desc_enable))
2620 valid = 0;
2621 if (val < 0)
2622 valid = 0;
2623
2624 if (!valid) {
2625 if (val >= 0)
2626 dev_err(hsotg->dev,
2627 "%d invalid for dma_desc_fs_enable parameter. Check HW configuration.\n",
2628 val);
2629 val = (hsotg->core_params->dma_enable > 0 &&
2630 hsotg->hw_params.dma_desc_enable);
2631 }
2632
2633 hsotg->core_params->dma_desc_fs_enable = val;
2634 dev_dbg(hsotg->dev, "Setting dma_desc_fs_enable to %d\n", val);
2635 }
2636
2637 void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
2638 int val)
2639 {
2640 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2641 if (val >= 0) {
2642 dev_err(hsotg->dev,
2643 "Wrong value for host_support_fs_low_power\n");
2644 dev_err(hsotg->dev,
2645 "host_support_fs_low_power must be 0 or 1\n");
2646 }
2647 val = 0;
2648 dev_dbg(hsotg->dev,
2649 "Setting host_support_fs_low_power to %d\n", val);
2650 }
2651
2652 hsotg->core_params->host_support_fs_ls_low_power = val;
2653 }
2654
2655 void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2656 {
2657 int valid = 1;
2658
2659 if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2660 valid = 0;
2661 if (val < 0)
2662 valid = 0;
2663
2664 if (!valid) {
2665 if (val >= 0)
2666 dev_err(hsotg->dev,
2667 "%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
2668 val);
2669 val = hsotg->hw_params.enable_dynamic_fifo;
2670 dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
2671 }
2672
2673 hsotg->core_params->enable_dynamic_fifo = val;
2674 }
2675
2676 void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2677 {
2678 int valid = 1;
2679
2680 if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2681 valid = 0;
2682
2683 if (!valid) {
2684 if (val >= 0)
2685 dev_err(hsotg->dev,
2686 "%d invalid for host_rx_fifo_size. Check HW configuration.\n",
2687 val);
2688 val = hsotg->hw_params.host_rx_fifo_size;
2689 dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
2690 }
2691
2692 hsotg->core_params->host_rx_fifo_size = val;
2693 }
2694
2695 void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2696 {
2697 int valid = 1;
2698
2699 if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2700 valid = 0;
2701
2702 if (!valid) {
2703 if (val >= 0)
2704 dev_err(hsotg->dev,
2705 "%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
2706 val);
2707 val = hsotg->hw_params.host_nperio_tx_fifo_size;
2708 dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
2709 val);
2710 }
2711
2712 hsotg->core_params->host_nperio_tx_fifo_size = val;
2713 }
2714
2715 void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2716 {
2717 int valid = 1;
2718
2719 if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2720 valid = 0;
2721
2722 if (!valid) {
2723 if (val >= 0)
2724 dev_err(hsotg->dev,
2725 "%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
2726 val);
2727 val = hsotg->hw_params.host_perio_tx_fifo_size;
2728 dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
2729 val);
2730 }
2731
2732 hsotg->core_params->host_perio_tx_fifo_size = val;
2733 }
2734
2735 void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2736 {
2737 int valid = 1;
2738
2739 if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2740 valid = 0;
2741
2742 if (!valid) {
2743 if (val >= 0)
2744 dev_err(hsotg->dev,
2745 "%d invalid for max_transfer_size. Check HW configuration.\n",
2746 val);
2747 val = hsotg->hw_params.max_transfer_size;
2748 dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
2749 }
2750
2751 hsotg->core_params->max_transfer_size = val;
2752 }
2753
2754 void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2755 {
2756 int valid = 1;
2757
2758 if (val < 15 || val > hsotg->hw_params.max_packet_count)
2759 valid = 0;
2760
2761 if (!valid) {
2762 if (val >= 0)
2763 dev_err(hsotg->dev,
2764 "%d invalid for max_packet_count. Check HW configuration.\n",
2765 val);
2766 val = hsotg->hw_params.max_packet_count;
2767 dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
2768 }
2769
2770 hsotg->core_params->max_packet_count = val;
2771 }
2772
2773 void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2774 {
2775 int valid = 1;
2776
2777 if (val < 1 || val > hsotg->hw_params.host_channels)
2778 valid = 0;
2779
2780 if (!valid) {
2781 if (val >= 0)
2782 dev_err(hsotg->dev,
2783 "%d invalid for host_channels. Check HW configuration.\n",
2784 val);
2785 val = hsotg->hw_params.host_channels;
2786 dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
2787 }
2788
2789 hsotg->core_params->host_channels = val;
2790 }
2791
2792 void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2793 {
2794 int valid = 0;
2795 u32 hs_phy_type, fs_phy_type;
2796
2797 if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
2798 DWC2_PHY_TYPE_PARAM_ULPI)) {
2799 if (val >= 0) {
2800 dev_err(hsotg->dev, "Wrong value for phy_type\n");
2801 dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
2802 }
2803
2804 valid = 0;
2805 }
2806
2807 hs_phy_type = hsotg->hw_params.hs_phy_type;
2808 fs_phy_type = hsotg->hw_params.fs_phy_type;
2809 if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
2810 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2811 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2812 valid = 1;
2813 else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
2814 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
2815 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2816 valid = 1;
2817 else if (val == DWC2_PHY_TYPE_PARAM_FS &&
2818 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2819 valid = 1;
2820
2821 if (!valid) {
2822 if (val >= 0)
2823 dev_err(hsotg->dev,
2824 "%d invalid for phy_type. Check HW configuration.\n",
2825 val);
2826 val = DWC2_PHY_TYPE_PARAM_FS;
2827 if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
2828 if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2829 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
2830 val = DWC2_PHY_TYPE_PARAM_UTMI;
2831 else
2832 val = DWC2_PHY_TYPE_PARAM_ULPI;
2833 }
2834 dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
2835 }
2836
2837 hsotg->core_params->phy_type = val;
2838 }
2839
2840 static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
2841 {
2842 return hsotg->core_params->phy_type;
2843 }
2844
2845 void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2846 {
2847 int valid = 1;
2848
2849 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2850 if (val >= 0) {
2851 dev_err(hsotg->dev, "Wrong value for speed parameter\n");
2852 dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
2853 }
2854 valid = 0;
2855 }
2856
2857 if (val == DWC2_SPEED_PARAM_HIGH &&
2858 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2859 valid = 0;
2860
2861 if (!valid) {
2862 if (val >= 0)
2863 dev_err(hsotg->dev,
2864 "%d invalid for speed parameter. Check HW configuration.\n",
2865 val);
2866 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2867 DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2868 dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
2869 }
2870
2871 hsotg->core_params->speed = val;
2872 }
2873
2874 void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2875 {
2876 int valid = 1;
2877
2878 if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
2879 DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2880 if (val >= 0) {
2881 dev_err(hsotg->dev,
2882 "Wrong value for host_ls_low_power_phy_clk parameter\n");
2883 dev_err(hsotg->dev,
2884 "host_ls_low_power_phy_clk must be 0 or 1\n");
2885 }
2886 valid = 0;
2887 }
2888
2889 if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
2890 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2891 valid = 0;
2892
2893 if (!valid) {
2894 if (val >= 0)
2895 dev_err(hsotg->dev,
2896 "%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
2897 val);
2898 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
2899 ? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
2900 : DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
2901 dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
2902 val);
2903 }
2904
2905 hsotg->core_params->host_ls_low_power_phy_clk = val;
2906 }
2907
2908 void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2909 {
2910 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2911 if (val >= 0) {
2912 dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
2913 dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
2914 }
2915 val = 0;
2916 dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
2917 }
2918
2919 hsotg->core_params->phy_ulpi_ddr = val;
2920 }
2921
2922 void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2923 {
2924 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2925 if (val >= 0) {
2926 dev_err(hsotg->dev,
2927 "Wrong value for phy_ulpi_ext_vbus\n");
2928 dev_err(hsotg->dev,
2929 "phy_ulpi_ext_vbus must be 0 or 1\n");
2930 }
2931 val = 0;
2932 dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
2933 }
2934
2935 hsotg->core_params->phy_ulpi_ext_vbus = val;
2936 }
2937
2938 void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2939 {
2940 int valid = 0;
2941
2942 switch (hsotg->hw_params.utmi_phy_data_width) {
2943 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
2944 valid = (val == 8);
2945 break;
2946 case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
2947 valid = (val == 16);
2948 break;
2949 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
2950 valid = (val == 8 || val == 16);
2951 break;
2952 }
2953
2954 if (!valid) {
2955 if (val >= 0) {
2956 dev_err(hsotg->dev,
2957 "%d invalid for phy_utmi_width. Check HW configuration.\n",
2958 val);
2959 }
2960 val = (hsotg->hw_params.utmi_phy_data_width ==
2961 GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2962 dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
2963 }
2964
2965 hsotg->core_params->phy_utmi_width = val;
2966 }
2967
2968 void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2969 {
2970 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2971 if (val >= 0) {
2972 dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
2973 dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
2974 }
2975 val = 0;
2976 dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
2977 }
2978
2979 hsotg->core_params->ulpi_fs_ls = val;
2980 }
2981
2982 void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2983 {
2984 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2985 if (val >= 0) {
2986 dev_err(hsotg->dev, "Wrong value for ts_dline\n");
2987 dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
2988 }
2989 val = 0;
2990 dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
2991 }
2992
2993 hsotg->core_params->ts_dline = val;
2994 }
2995
2996 void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2997 {
2998 int valid = 1;
2999
3000 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3001 if (val >= 0) {
3002 dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
3003 dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
3004 }
3005
3006 valid = 0;
3007 }
3008
3009 if (val == 1 && !(hsotg->hw_params.i2c_enable))
3010 valid = 0;
3011
3012 if (!valid) {
3013 if (val >= 0)
3014 dev_err(hsotg->dev,
3015 "%d invalid for i2c_enable. Check HW configuration.\n",
3016 val);
3017 val = hsotg->hw_params.i2c_enable;
3018 dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
3019 }
3020
3021 hsotg->core_params->i2c_enable = val;
3022 }
3023
3024 void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
3025 {
3026 int valid = 1;
3027
3028 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3029 if (val >= 0) {
3030 dev_err(hsotg->dev,
3031 "Wrong value for en_multiple_tx_fifo,\n");
3032 dev_err(hsotg->dev,
3033 "en_multiple_tx_fifo must be 0 or 1\n");
3034 }
3035 valid = 0;
3036 }
3037
3038 if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
3039 valid = 0;
3040
3041 if (!valid) {
3042 if (val >= 0)
3043 dev_err(hsotg->dev,
3044 "%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
3045 val);
3046 val = hsotg->hw_params.en_multiple_tx_fifo;
3047 dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
3048 }
3049
3050 hsotg->core_params->en_multiple_tx_fifo = val;
3051 }
3052
3053 void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
3054 {
3055 int valid = 1;
3056
3057 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3058 if (val >= 0) {
3059 dev_err(hsotg->dev,
3060 "'%d' invalid for parameter reload_ctl\n", val);
3061 dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
3062 }
3063 valid = 0;
3064 }
3065
3066 if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
3067 valid = 0;
3068
3069 if (!valid) {
3070 if (val >= 0)
3071 dev_err(hsotg->dev,
3072 "%d invalid for parameter reload_ctl. Check HW configuration.\n",
3073 val);
3074 val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
3075 dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
3076 }
3077
3078 hsotg->core_params->reload_ctl = val;
3079 }
3080
3081 void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
3082 {
3083 if (val != -1)
3084 hsotg->core_params->ahbcfg = val;
3085 else
3086 hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
3087 GAHBCFG_HBSTLEN_SHIFT;
3088 }
3089
3090 void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
3091 {
3092 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3093 if (val >= 0) {
3094 dev_err(hsotg->dev,
3095 "'%d' invalid for parameter otg_ver\n", val);
3096 dev_err(hsotg->dev,
3097 "otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
3098 }
3099 val = 0;
3100 dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
3101 }
3102
3103 hsotg->core_params->otg_ver = val;
3104 }
3105
3106 static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
3107 {
3108 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3109 if (val >= 0) {
3110 dev_err(hsotg->dev,
3111 "'%d' invalid for parameter uframe_sched\n",
3112 val);
3113 dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
3114 }
3115 val = 1;
3116 dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
3117 }
3118
3119 hsotg->core_params->uframe_sched = val;
3120 }
3121
3122 static void dwc2_set_param_external_id_pin_ctl(struct dwc2_hsotg *hsotg,
3123 int val)
3124 {
3125 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3126 if (val >= 0) {
3127 dev_err(hsotg->dev,
3128 "'%d' invalid for parameter external_id_pin_ctl\n",
3129 val);
3130 dev_err(hsotg->dev, "external_id_pin_ctl must be 0 or 1\n");
3131 }
3132 val = 0;
3133 dev_dbg(hsotg->dev, "Setting external_id_pin_ctl to %d\n", val);
3134 }
3135
3136 hsotg->core_params->external_id_pin_ctl = val;
3137 }
3138
3139 static void dwc2_set_param_hibernation(struct dwc2_hsotg *hsotg,
3140 int val)
3141 {
3142 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
3143 if (val >= 0) {
3144 dev_err(hsotg->dev,
3145 "'%d' invalid for parameter hibernation\n",
3146 val);
3147 dev_err(hsotg->dev, "hibernation must be 0 or 1\n");
3148 }
3149 val = 0;
3150 dev_dbg(hsotg->dev, "Setting hibernation to %d\n", val);
3151 }
3152
3153 hsotg->core_params->hibernation = val;
3154 }
3155
3156 /*
3157 * This function is called during module intialization to pass module parameters
3158 * for the DWC_otg core.
3159 */
3160 void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
3161 const struct dwc2_core_params *params)
3162 {
3163 dev_dbg(hsotg->dev, "%s()\n", __func__);
3164
3165 dwc2_set_param_otg_cap(hsotg, params->otg_cap);
3166 dwc2_set_param_dma_enable(hsotg, params->dma_enable);
3167 dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
3168 dwc2_set_param_dma_desc_fs_enable(hsotg, params->dma_desc_fs_enable);
3169 dwc2_set_param_host_support_fs_ls_low_power(hsotg,
3170 params->host_support_fs_ls_low_power);
3171 dwc2_set_param_enable_dynamic_fifo(hsotg,
3172 params->enable_dynamic_fifo);
3173 dwc2_set_param_host_rx_fifo_size(hsotg,
3174 params->host_rx_fifo_size);
3175 dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
3176 params->host_nperio_tx_fifo_size);
3177 dwc2_set_param_host_perio_tx_fifo_size(hsotg,
3178 params->host_perio_tx_fifo_size);
3179 dwc2_set_param_max_transfer_size(hsotg,
3180 params->max_transfer_size);
3181 dwc2_set_param_max_packet_count(hsotg,
3182 params->max_packet_count);
3183 dwc2_set_param_host_channels(hsotg, params->host_channels);
3184 dwc2_set_param_phy_type(hsotg, params->phy_type);
3185 dwc2_set_param_speed(hsotg, params->speed);
3186 dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
3187 params->host_ls_low_power_phy_clk);
3188 dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
3189 dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
3190 params->phy_ulpi_ext_vbus);
3191 dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
3192 dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
3193 dwc2_set_param_ts_dline(hsotg, params->ts_dline);
3194 dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
3195 dwc2_set_param_en_multiple_tx_fifo(hsotg,
3196 params->en_multiple_tx_fifo);
3197 dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
3198 dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
3199 dwc2_set_param_otg_ver(hsotg, params->otg_ver);
3200 dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
3201 dwc2_set_param_external_id_pin_ctl(hsotg, params->external_id_pin_ctl);
3202 dwc2_set_param_hibernation(hsotg, params->hibernation);
3203 }
3204
3205 /*
3206 * Forces either host or device mode if the controller is not
3207 * currently in that mode.
3208 *
3209 * Returns true if the mode was forced.
3210 */
3211 static bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host)
3212 {
3213 if (host && dwc2_is_host_mode(hsotg))
3214 return false;
3215 else if (!host && dwc2_is_device_mode(hsotg))
3216 return false;
3217
3218 return dwc2_force_mode(hsotg, host);
3219 }
3220
3221 /*
3222 * Gets host hardware parameters. Forces host mode if not currently in
3223 * host mode. Should be called immediately after a core soft reset in
3224 * order to get the reset values.
3225 */
3226 static void dwc2_get_host_hwparams(struct dwc2_hsotg *hsotg)
3227 {
3228 struct dwc2_hw_params *hw = &hsotg->hw_params;
3229 u32 gnptxfsiz;
3230 u32 hptxfsiz;
3231 bool forced;
3232
3233 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3234 return;
3235
3236 forced = dwc2_force_mode_if_needed(hsotg, true);
3237
3238 gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
3239 hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
3240 dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3241 dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
3242
3243 if (forced)
3244 dwc2_clear_force_mode(hsotg);
3245
3246 hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3247 FIFOSIZE_DEPTH_SHIFT;
3248 hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3249 FIFOSIZE_DEPTH_SHIFT;
3250 }
3251
3252 /*
3253 * Gets device hardware parameters. Forces device mode if not
3254 * currently in device mode. Should be called immediately after a core
3255 * soft reset in order to get the reset values.
3256 */
3257 static void dwc2_get_dev_hwparams(struct dwc2_hsotg *hsotg)
3258 {
3259 struct dwc2_hw_params *hw = &hsotg->hw_params;
3260 bool forced;
3261 u32 gnptxfsiz;
3262
3263 if (hsotg->dr_mode == USB_DR_MODE_HOST)
3264 return;
3265
3266 forced = dwc2_force_mode_if_needed(hsotg, false);
3267
3268 gnptxfsiz = dwc2_readl(hsotg->regs + GNPTXFSIZ);
3269 dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
3270
3271 if (forced)
3272 dwc2_clear_force_mode(hsotg);
3273
3274 hw->dev_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
3275 FIFOSIZE_DEPTH_SHIFT;
3276 }
3277
3278 /**
3279 * During device initialization, read various hardware configuration
3280 * registers and interpret the contents.
3281 */
3282 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
3283 {
3284 struct dwc2_hw_params *hw = &hsotg->hw_params;
3285 unsigned width;
3286 u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
3287 u32 grxfsiz;
3288
3289 /*
3290 * Attempt to ensure this device is really a DWC_otg Controller.
3291 * Read and verify the GSNPSID register contents. The value should be
3292 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
3293 * as in "OTG version 2.xx" or "OTG version 3.xx".
3294 */
3295 hw->snpsid = dwc2_readl(hsotg->regs + GSNPSID);
3296 if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
3297 (hw->snpsid & 0xfffff000) != 0x4f543000) {
3298 dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
3299 hw->snpsid);
3300 return -ENODEV;
3301 }
3302
3303 dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
3304 hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
3305 hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
3306
3307 hwcfg1 = dwc2_readl(hsotg->regs + GHWCFG1);
3308 hwcfg2 = dwc2_readl(hsotg->regs + GHWCFG2);
3309 hwcfg3 = dwc2_readl(hsotg->regs + GHWCFG3);
3310 hwcfg4 = dwc2_readl(hsotg->regs + GHWCFG4);
3311 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
3312
3313 dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
3314 dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
3315 dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
3316 dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
3317 dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
3318
3319 /*
3320 * Host specific hardware parameters. Reading these parameters
3321 * requires the controller to be in host mode. The mode will
3322 * be forced, if necessary, to read these values.
3323 */
3324 dwc2_get_host_hwparams(hsotg);
3325 dwc2_get_dev_hwparams(hsotg);
3326
3327 /* hwcfg1 */
3328 hw->dev_ep_dirs = hwcfg1;
3329
3330 /* hwcfg2 */
3331 hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
3332 GHWCFG2_OP_MODE_SHIFT;
3333 hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
3334 GHWCFG2_ARCHITECTURE_SHIFT;
3335 hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
3336 hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
3337 GHWCFG2_NUM_HOST_CHAN_SHIFT);
3338 hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
3339 GHWCFG2_HS_PHY_TYPE_SHIFT;
3340 hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
3341 GHWCFG2_FS_PHY_TYPE_SHIFT;
3342 hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
3343 GHWCFG2_NUM_DEV_EP_SHIFT;
3344 hw->nperio_tx_q_depth =
3345 (hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
3346 GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
3347 hw->host_perio_tx_q_depth =
3348 (hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
3349 GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
3350 hw->dev_token_q_depth =
3351 (hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
3352 GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
3353
3354 /* hwcfg3 */
3355 width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
3356 GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
3357 hw->max_transfer_size = (1 << (width + 11)) - 1;
3358 /*
3359 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
3360 * coherent buffers with this size, and if it's too large we can
3361 * exhaust the coherent DMA pool.
3362 */
3363 if (hw->max_transfer_size > 65535)
3364 hw->max_transfer_size = 65535;
3365 width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
3366 GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
3367 hw->max_packet_count = (1 << (width + 4)) - 1;
3368 hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
3369 hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
3370 GHWCFG3_DFIFO_DEPTH_SHIFT;
3371
3372 /* hwcfg4 */
3373 hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
3374 hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
3375 GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
3376 hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
3377 hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
3378 hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
3379 GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
3380
3381 /* fifo sizes */
3382 hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
3383 GRXFSIZ_DEPTH_SHIFT;
3384
3385 dev_dbg(hsotg->dev, "Detected values from hardware:\n");
3386 dev_dbg(hsotg->dev, " op_mode=%d\n",
3387 hw->op_mode);
3388 dev_dbg(hsotg->dev, " arch=%d\n",
3389 hw->arch);
3390 dev_dbg(hsotg->dev, " dma_desc_enable=%d\n",
3391 hw->dma_desc_enable);
3392 dev_dbg(hsotg->dev, " power_optimized=%d\n",
3393 hw->power_optimized);
3394 dev_dbg(hsotg->dev, " i2c_enable=%d\n",
3395 hw->i2c_enable);
3396 dev_dbg(hsotg->dev, " hs_phy_type=%d\n",
3397 hw->hs_phy_type);
3398 dev_dbg(hsotg->dev, " fs_phy_type=%d\n",
3399 hw->fs_phy_type);
3400 dev_dbg(hsotg->dev, " utmi_phy_data_width=%d\n",
3401 hw->utmi_phy_data_width);
3402 dev_dbg(hsotg->dev, " num_dev_ep=%d\n",
3403 hw->num_dev_ep);
3404 dev_dbg(hsotg->dev, " num_dev_perio_in_ep=%d\n",
3405 hw->num_dev_perio_in_ep);
3406 dev_dbg(hsotg->dev, " host_channels=%d\n",
3407 hw->host_channels);
3408 dev_dbg(hsotg->dev, " max_transfer_size=%d\n",
3409 hw->max_transfer_size);
3410 dev_dbg(hsotg->dev, " max_packet_count=%d\n",
3411 hw->max_packet_count);
3412 dev_dbg(hsotg->dev, " nperio_tx_q_depth=0x%0x\n",
3413 hw->nperio_tx_q_depth);
3414 dev_dbg(hsotg->dev, " host_perio_tx_q_depth=0x%0x\n",
3415 hw->host_perio_tx_q_depth);
3416 dev_dbg(hsotg->dev, " dev_token_q_depth=0x%0x\n",
3417 hw->dev_token_q_depth);
3418 dev_dbg(hsotg->dev, " enable_dynamic_fifo=%d\n",
3419 hw->enable_dynamic_fifo);
3420 dev_dbg(hsotg->dev, " en_multiple_tx_fifo=%d\n",
3421 hw->en_multiple_tx_fifo);
3422 dev_dbg(hsotg->dev, " total_fifo_size=%d\n",
3423 hw->total_fifo_size);
3424 dev_dbg(hsotg->dev, " host_rx_fifo_size=%d\n",
3425 hw->host_rx_fifo_size);
3426 dev_dbg(hsotg->dev, " host_nperio_tx_fifo_size=%d\n",
3427 hw->host_nperio_tx_fifo_size);
3428 dev_dbg(hsotg->dev, " host_perio_tx_fifo_size=%d\n",
3429 hw->host_perio_tx_fifo_size);
3430 dev_dbg(hsotg->dev, "\n");
3431
3432 return 0;
3433 }
3434
3435 /*
3436 * Sets all parameters to the given value.
3437 *
3438 * Assumes that the dwc2_core_params struct contains only integers.
3439 */
3440 void dwc2_set_all_params(struct dwc2_core_params *params, int value)
3441 {
3442 int *p = (int *)params;
3443 size_t size = sizeof(*params) / sizeof(*p);
3444 int i;
3445
3446 for (i = 0; i < size; i++)
3447 p[i] = value;
3448 }
3449
3450
3451 u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
3452 {
3453 return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
3454 }
3455
3456 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
3457 {
3458 if (dwc2_readl(hsotg->regs + GSNPSID) == 0xffffffff)
3459 return false;
3460 else
3461 return true;
3462 }
3463
3464 /**
3465 * dwc2_enable_global_interrupts() - Enables the controller's Global
3466 * Interrupt in the AHB Config register
3467 *
3468 * @hsotg: Programming view of DWC_otg controller
3469 */
3470 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
3471 {
3472 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3473
3474 ahbcfg |= GAHBCFG_GLBL_INTR_EN;
3475 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3476 }
3477
3478 /**
3479 * dwc2_disable_global_interrupts() - Disables the controller's Global
3480 * Interrupt in the AHB Config register
3481 *
3482 * @hsotg: Programming view of DWC_otg controller
3483 */
3484 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
3485 {
3486 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3487
3488 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3489 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3490 }
3491
3492 /* Returns the controller's GHWCFG2.OTG_MODE. */
3493 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg)
3494 {
3495 u32 ghwcfg2 = dwc2_readl(hsotg->regs + GHWCFG2);
3496
3497 return (ghwcfg2 & GHWCFG2_OP_MODE_MASK) >>
3498 GHWCFG2_OP_MODE_SHIFT;
3499 }
3500
3501 /* Returns true if the controller is capable of DRD. */
3502 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg)
3503 {
3504 unsigned op_mode = dwc2_op_mode(hsotg);
3505
3506 return (op_mode == GHWCFG2_OP_MODE_HNP_SRP_CAPABLE) ||
3507 (op_mode == GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE) ||
3508 (op_mode == GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE);
3509 }
3510
3511 /* Returns true if the controller is host-only. */
3512 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg)
3513 {
3514 unsigned op_mode = dwc2_op_mode(hsotg);
3515
3516 return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_HOST) ||
3517 (op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST);
3518 }
3519
3520 /* Returns true if the controller is device-only. */
3521 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg)
3522 {
3523 unsigned op_mode = dwc2_op_mode(hsotg);
3524
3525 return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
3526 (op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE);
3527 }
3528
3529 MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
3530 MODULE_AUTHOR("Synopsys, Inc.");
3531 MODULE_LICENSE("Dual BSD/GPL");