]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/dwc2/core.h
xhci: zero usb device slot_id member when disabling and freeing a xhci slot
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / dwc2 / core.h
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * core.h - DesignWare HS OTG Controller common declarations
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40
41 #include <linux/phy/phy.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/otg.h>
45 #include <linux/usb/phy.h>
46 #include "hw.h"
47
48 /*
49 * Suggested defines for tracers:
50 * - no_printk: Disable tracing
51 * - pr_info: Print this info to the console
52 * - trace_printk: Print this info to trace buffer (good for verbose logging)
53 */
54
55 #define DWC2_TRACE_SCHEDULER no_printk
56 #define DWC2_TRACE_SCHEDULER_VB no_printk
57
58 /* Detailed scheduler tracing, but won't overwhelm console */
59 #define dwc2_sch_dbg(hsotg, fmt, ...) \
60 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
61 dev_name(hsotg->dev), ##__VA_ARGS__)
62
63 /* Verbose scheduler tracing */
64 #define dwc2_sch_vdbg(hsotg, fmt, ...) \
65 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
66 dev_name(hsotg->dev), ##__VA_ARGS__)
67
68 #ifdef CONFIG_MIPS
69 /*
70 * There are some MIPS machines that can run in either big-endian
71 * or little-endian mode and that use the dwc2 register without
72 * a byteswap in both ways.
73 * Unlike other architectures, MIPS apparently does not require a
74 * barrier before the __raw_writel() to synchronize with DMA but does
75 * require the barrier after the __raw_writel() to serialize a set of
76 * writes. This set of operations was added specifically for MIPS and
77 * should only be used there.
78 */
79 static inline u32 dwc2_readl(const void __iomem *addr)
80 {
81 u32 value = __raw_readl(addr);
82
83 /* In order to preserve endianness __raw_* operation is used. Therefore
84 * a barrier is needed to ensure IO access is not re-ordered across
85 * reads or writes
86 */
87 mb();
88 return value;
89 }
90
91 static inline void dwc2_writel(u32 value, void __iomem *addr)
92 {
93 __raw_writel(value, addr);
94
95 /*
96 * In order to preserve endianness __raw_* operation is used. Therefore
97 * a barrier is needed to ensure IO access is not re-ordered across
98 * reads or writes
99 */
100 mb();
101 #ifdef DWC2_LOG_WRITES
102 pr_info("INFO:: wrote %08x to %p\n", value, addr);
103 #endif
104 }
105 #else
106 /* Normal architectures just use readl/write */
107 static inline u32 dwc2_readl(const void __iomem *addr)
108 {
109 return readl(addr);
110 }
111
112 static inline void dwc2_writel(u32 value, void __iomem *addr)
113 {
114 writel(value, addr);
115
116 #ifdef DWC2_LOG_WRITES
117 pr_info("info:: wrote %08x to %p\n", value, addr);
118 #endif
119 }
120 #endif
121
122 /* Maximum number of Endpoints/HostChannels */
123 #define MAX_EPS_CHANNELS 16
124
125 /* dwc2-hsotg declarations */
126 static const char * const dwc2_hsotg_supply_names[] = {
127 "vusb_d", /* digital USB supply, 1.2V */
128 "vusb_a", /* analog USB supply, 1.1V */
129 };
130
131 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
132
133 /*
134 * EP0_MPS_LIMIT
135 *
136 * Unfortunately there seems to be a limit of the amount of data that can
137 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
138 * packets (which practically means 1 packet and 63 bytes of data) when the
139 * MPS is set to 64.
140 *
141 * This means if we are wanting to move >127 bytes of data, we need to
142 * split the transactions up, but just doing one packet at a time does
143 * not work (this may be an implicit DATA0 PID on first packet of the
144 * transaction) and doing 2 packets is outside the controller's limits.
145 *
146 * If we try to lower the MPS size for EP0, then no transfers work properly
147 * for EP0, and the system will fail basic enumeration. As no cause for this
148 * has currently been found, we cannot support any large IN transfers for
149 * EP0.
150 */
151 #define EP0_MPS_LIMIT 64
152
153 struct dwc2_hsotg;
154 struct dwc2_hsotg_req;
155
156 /**
157 * struct dwc2_hsotg_ep - driver endpoint definition.
158 * @ep: The gadget layer representation of the endpoint.
159 * @name: The driver generated name for the endpoint.
160 * @queue: Queue of requests for this endpoint.
161 * @parent: Reference back to the parent device structure.
162 * @req: The current request that the endpoint is processing. This is
163 * used to indicate an request has been loaded onto the endpoint
164 * and has yet to be completed (maybe due to data move, or simply
165 * awaiting an ack from the core all the data has been completed).
166 * @debugfs: File entry for debugfs file for this endpoint.
167 * @lock: State lock to protect contents of endpoint.
168 * @dir_in: Set to true if this endpoint is of the IN direction, which
169 * means that it is sending data to the Host.
170 * @index: The index for the endpoint registers.
171 * @mc: Multi Count - number of transactions per microframe
172 * @interval - Interval for periodic endpoints, in frames or microframes.
173 * @name: The name array passed to the USB core.
174 * @halted: Set if the endpoint has been halted.
175 * @periodic: Set if this is a periodic ep, such as Interrupt
176 * @isochronous: Set if this is a isochronous ep
177 * @send_zlp: Set if we need to send a zero-length packet.
178 * @desc_list_dma: The DMA address of descriptor chain currently in use.
179 * @desc_list: Pointer to descriptor DMA chain head currently in use.
180 * @desc_count: Count of entries within the DMA descriptor chain of EP.
181 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
182 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
183 * @total_data: The total number of data bytes done.
184 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
185 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
186 * @last_load: The offset of data for the last start of request.
187 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
188 * @target_frame: Targeted frame num to setup next ISOC transfer
189 * @frame_overrun: Indicates SOF number overrun in DSTS
190 *
191 * This is the driver's state for each registered enpoint, allowing it
192 * to keep track of transactions that need doing. Each endpoint has a
193 * lock to protect the state, to try and avoid using an overall lock
194 * for the host controller as much as possible.
195 *
196 * For periodic IN endpoints, we have fifo_size and fifo_load to try
197 * and keep track of the amount of data in the periodic FIFO for each
198 * of these as we don't have a status register that tells us how much
199 * is in each of them. (note, this may actually be useless information
200 * as in shared-fifo mode periodic in acts like a single-frame packet
201 * buffer than a fifo)
202 */
203 struct dwc2_hsotg_ep {
204 struct usb_ep ep;
205 struct list_head queue;
206 struct dwc2_hsotg *parent;
207 struct dwc2_hsotg_req *req;
208 struct dentry *debugfs;
209
210 unsigned long total_data;
211 unsigned int size_loaded;
212 unsigned int last_load;
213 unsigned int fifo_load;
214 unsigned short fifo_size;
215 unsigned short fifo_index;
216
217 unsigned char dir_in;
218 unsigned char index;
219 unsigned char mc;
220 unsigned char interval;
221
222 unsigned int halted:1;
223 unsigned int periodic:1;
224 unsigned int isochronous:1;
225 unsigned int send_zlp:1;
226 unsigned int target_frame;
227 #define TARGET_FRAME_INITIAL 0xFFFFFFFF
228 bool frame_overrun;
229
230 dma_addr_t desc_list_dma;
231 struct dwc2_dma_desc *desc_list;
232 u8 desc_count;
233
234 unsigned char isoc_chain_num;
235 unsigned int next_desc;
236
237 char name[10];
238 };
239
240 /**
241 * struct dwc2_hsotg_req - data transfer request
242 * @req: The USB gadget request
243 * @queue: The list of requests for the endpoint this is queued for.
244 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
245 */
246 struct dwc2_hsotg_req {
247 struct usb_request req;
248 struct list_head queue;
249 void *saved_req_buf;
250 };
251
252 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
253 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
254 #define call_gadget(_hs, _entry) \
255 do { \
256 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
257 (_hs)->driver && (_hs)->driver->_entry) { \
258 spin_unlock(&_hs->lock); \
259 (_hs)->driver->_entry(&(_hs)->gadget); \
260 spin_lock(&_hs->lock); \
261 } \
262 } while (0)
263 #else
264 #define call_gadget(_hs, _entry) do {} while (0)
265 #endif
266
267 struct dwc2_hsotg;
268 struct dwc2_host_chan;
269
270 /* Device States */
271 enum dwc2_lx_state {
272 DWC2_L0, /* On state */
273 DWC2_L1, /* LPM sleep state */
274 DWC2_L2, /* USB suspend state */
275 DWC2_L3, /* Off state */
276 };
277
278 /* Gadget ep0 states */
279 enum dwc2_ep0_state {
280 DWC2_EP0_SETUP,
281 DWC2_EP0_DATA_IN,
282 DWC2_EP0_DATA_OUT,
283 DWC2_EP0_STATUS_IN,
284 DWC2_EP0_STATUS_OUT,
285 };
286
287 /**
288 * struct dwc2_core_params - Parameters for configuring the core
289 *
290 * @otg_cap: Specifies the OTG capabilities.
291 * 0 - HNP and SRP capable
292 * 1 - SRP Only capable
293 * 2 - No HNP/SRP capable (always available)
294 * Defaults to best available option (0, 1, then 2)
295 * @host_dma: Specifies whether to use slave or DMA mode for accessing
296 * the data FIFOs. The driver will automatically detect the
297 * value for this parameter if none is specified.
298 * 0 - Slave (always available)
299 * 1 - DMA (default, if available)
300 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
301 * address DMA mode or descriptor DMA mode for accessing
302 * the data FIFOs. The driver will automatically detect the
303 * value for this if none is specified.
304 * 0 - Address DMA
305 * 1 - Descriptor DMA (default, if available)
306 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
307 * address DMA mode or descriptor DMA mode for accessing
308 * the data FIFOs in Full Speed mode only. The driver
309 * will automatically detect the value for this if none is
310 * specified.
311 * 0 - Address DMA
312 * 1 - Descriptor DMA in FS (default, if available)
313 * @speed: Specifies the maximum speed of operation in host and
314 * device mode. The actual speed depends on the speed of
315 * the attached device and the value of phy_type.
316 * 0 - High Speed
317 * (default when phy_type is UTMI+ or ULPI)
318 * 1 - Full Speed
319 * (default when phy_type is Full Speed)
320 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
321 * 1 - Allow dynamic FIFO sizing (default, if available)
322 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
323 * are enabled for non-periodic IN endpoints in device
324 * mode.
325 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
326 * dynamic FIFO sizing is enabled
327 * 16 to 32768
328 * Actual maximum value is autodetected and also
329 * the default.
330 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
331 * in host mode when dynamic FIFO sizing is enabled
332 * 16 to 32768
333 * Actual maximum value is autodetected and also
334 * the default.
335 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
336 * host mode when dynamic FIFO sizing is enabled
337 * 16 to 32768
338 * Actual maximum value is autodetected and also
339 * the default.
340 * @max_transfer_size: The maximum transfer size supported, in bytes
341 * 2047 to 65,535
342 * Actual maximum value is autodetected and also
343 * the default.
344 * @max_packet_count: The maximum number of packets in a transfer
345 * 15 to 511
346 * Actual maximum value is autodetected and also
347 * the default.
348 * @host_channels: The number of host channel registers to use
349 * 1 to 16
350 * Actual maximum value is autodetected and also
351 * the default.
352 * @phy_type: Specifies the type of PHY interface to use. By default,
353 * the driver will automatically detect the phy_type.
354 * 0 - Full Speed Phy
355 * 1 - UTMI+ Phy
356 * 2 - ULPI Phy
357 * Defaults to best available option (2, 1, then 0)
358 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
359 * is applicable for a phy_type of UTMI+ or ULPI. (For a
360 * ULPI phy_type, this parameter indicates the data width
361 * between the MAC and the ULPI Wrapper.) Also, this
362 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
363 * parameter was set to "8 and 16 bits", meaning that the
364 * core has been configured to work at either data path
365 * width.
366 * 8 or 16 (default 16 if available)
367 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
368 * data rate. This parameter is only applicable if phy_type
369 * is ULPI.
370 * 0 - single data rate ULPI interface with 8 bit wide
371 * data bus (default)
372 * 1 - double data rate ULPI interface with 4 bit wide
373 * data bus
374 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
375 * external supply to drive the VBus
376 * 0 - Internal supply (default)
377 * 1 - External supply
378 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
379 * speed PHY. This parameter is only applicable if phy_type
380 * is FS.
381 * 0 - No (default)
382 * 1 - Yes
383 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
384 * 0 - No (default)
385 * 1 - Yes
386 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
387 * when attached to a Full Speed or Low Speed device in
388 * host mode.
389 * 0 - Don't support low power mode (default)
390 * 1 - Support low power mode
391 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
392 * when connected to a Low Speed device in host
393 * mode. This parameter is applicable only if
394 * host_support_fs_ls_low_power is enabled.
395 * 0 - 48 MHz
396 * (default when phy_type is UTMI+ or ULPI)
397 * 1 - 6 MHz
398 * (default when phy_type is Full Speed)
399 * @oc_disable: Flag to disable overcurrent condition.
400 * 0 - Allow overcurrent condition to get detected
401 * 1 - Disable overcurrent condtion to get detected
402 * @ts_dline: Enable Term Select Dline pulsing
403 * 0 - No (default)
404 * 1 - Yes
405 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
406 * 0 - No (default for core < 2.92a)
407 * 1 - Yes (default for core >= 2.92a)
408 * @ahbcfg: This field allows the default value of the GAHBCFG
409 * register to be overridden
410 * -1 - GAHBCFG value will be set to 0x06
411 * (INCR4, default)
412 * all others - GAHBCFG value will be overridden with
413 * this value
414 * Not all bits can be controlled like this, the
415 * bits defined by GAHBCFG_CTRL_MASK are controlled
416 * by the driver and are ignored in this
417 * configuration value.
418 * @uframe_sched: True to enable the microframe scheduler
419 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
420 * Disable CONIDSTSCHNG controller interrupt in such
421 * case.
422 * 0 - No (default)
423 * 1 - Yes
424 * @hibernation: Specifies whether the controller support hibernation.
425 * If hibernation is enabled, the controller will enter
426 * hibernation in both peripheral and host mode when
427 * needed.
428 * 0 - No (default)
429 * 1 - Yes
430 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
431 * register.
432 * 0 - Deactivate the transceiver (default)
433 * 1 - Activate the transceiver
434 * @g_dma: Enables gadget dma usage (default: autodetect).
435 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
436 * @g_rx_fifo_size: The periodic rx fifo size for the device, in
437 * DWORDS from 16-32768 (default: 2048 if
438 * possible, otherwise autodetect).
439 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
440 * DWORDS from 16-32768 (default: 1024 if
441 * possible, otherwise autodetect).
442 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
443 * mode. Each value corresponds to one EP
444 * starting from EP1 (max 15 values). Sizes are
445 * in DWORDS with possible values from from
446 * 16-32768 (default: 256, 256, 256, 256, 768,
447 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
448 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
449 * while full&low speed device connect. And change speed
450 * back to DWC2_SPEED_PARAM_HIGH while device is gone.
451 * 0 - No (default)
452 * 1 - Yes
453 *
454 * The following parameters may be specified when starting the module. These
455 * parameters define how the DWC_otg controller should be configured. A
456 * value of -1 (or any other out of range value) for any parameter means
457 * to read the value from hardware (if possible) or use the builtin
458 * default described above.
459 */
460 struct dwc2_core_params {
461 u8 otg_cap;
462 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
463 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
464 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
465
466 u8 phy_type;
467 #define DWC2_PHY_TYPE_PARAM_FS 0
468 #define DWC2_PHY_TYPE_PARAM_UTMI 1
469 #define DWC2_PHY_TYPE_PARAM_ULPI 2
470
471 u8 speed;
472 #define DWC2_SPEED_PARAM_HIGH 0
473 #define DWC2_SPEED_PARAM_FULL 1
474 #define DWC2_SPEED_PARAM_LOW 2
475
476 u8 phy_utmi_width;
477 bool phy_ulpi_ddr;
478 bool phy_ulpi_ext_vbus;
479 bool enable_dynamic_fifo;
480 bool en_multiple_tx_fifo;
481 bool i2c_enable;
482 bool ulpi_fs_ls;
483 bool ts_dline;
484 bool reload_ctl;
485 bool uframe_sched;
486 bool external_id_pin_ctl;
487 bool hibernation;
488 bool activate_stm_fs_transceiver;
489 u16 max_packet_count;
490 u32 max_transfer_size;
491 u32 ahbcfg;
492
493 /* Host parameters */
494 bool host_dma;
495 bool dma_desc_enable;
496 bool dma_desc_fs_enable;
497 bool host_support_fs_ls_low_power;
498 bool host_ls_low_power_phy_clk;
499 bool oc_disable;
500
501 u8 host_channels;
502 u16 host_rx_fifo_size;
503 u16 host_nperio_tx_fifo_size;
504 u16 host_perio_tx_fifo_size;
505
506 /* Gadget parameters */
507 bool g_dma;
508 bool g_dma_desc;
509 u32 g_rx_fifo_size;
510 u32 g_np_tx_fifo_size;
511 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
512
513 bool change_speed_quirk;
514 };
515
516 /**
517 * struct dwc2_hw_params - Autodetected parameters.
518 *
519 * These parameters are the various parameters read from hardware
520 * registers during initialization. They typically contain the best
521 * supported or maximum value that can be configured in the
522 * corresponding dwc2_core_params value.
523 *
524 * The values that are not in dwc2_core_params are documented below.
525 *
526 * @op_mode Mode of Operation
527 * 0 - HNP- and SRP-Capable OTG (Host & Device)
528 * 1 - SRP-Capable OTG (Host & Device)
529 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
530 * 3 - SRP-Capable Device
531 * 4 - Non-OTG Device
532 * 5 - SRP-Capable Host
533 * 6 - Non-OTG Host
534 * @arch Architecture
535 * 0 - Slave only
536 * 1 - External DMA
537 * 2 - Internal DMA
538 * @power_optimized Are power optimizations enabled?
539 * @num_dev_ep Number of device endpoints available
540 * @num_dev_in_eps Number of device IN endpoints available
541 * @num_dev_perio_in_ep Number of device periodic IN endpoints
542 * available
543 * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
544 * Depth
545 * 0 to 30
546 * @host_perio_tx_q_depth
547 * Host Mode Periodic Request Queue Depth
548 * 2, 4 or 8
549 * @nperio_tx_q_depth
550 * Non-Periodic Request Queue Depth
551 * 2, 4 or 8
552 * @hs_phy_type High-speed PHY interface type
553 * 0 - High-speed interface not supported
554 * 1 - UTMI+
555 * 2 - ULPI
556 * 3 - UTMI+ and ULPI
557 * @fs_phy_type Full-speed PHY interface type
558 * 0 - Full speed interface not supported
559 * 1 - Dedicated full speed interface
560 * 2 - FS pins shared with UTMI+ pins
561 * 3 - FS pins shared with ULPI pins
562 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
563 * @utmi_phy_data_width UTMI+ PHY data width
564 * 0 - 8 bits
565 * 1 - 16 bits
566 * 2 - 8 or 16 bits
567 * @snpsid: Value from SNPSID register
568 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
569 * @g_tx_fifo_size[] Power-on values of TxFIFO sizes
570 */
571 struct dwc2_hw_params {
572 unsigned op_mode:3;
573 unsigned arch:2;
574 unsigned dma_desc_enable:1;
575 unsigned enable_dynamic_fifo:1;
576 unsigned en_multiple_tx_fifo:1;
577 unsigned rx_fifo_size:16;
578 unsigned host_nperio_tx_fifo_size:16;
579 unsigned dev_nperio_tx_fifo_size:16;
580 unsigned host_perio_tx_fifo_size:16;
581 unsigned nperio_tx_q_depth:3;
582 unsigned host_perio_tx_q_depth:3;
583 unsigned dev_token_q_depth:5;
584 unsigned max_transfer_size:26;
585 unsigned max_packet_count:11;
586 unsigned host_channels:5;
587 unsigned hs_phy_type:2;
588 unsigned fs_phy_type:2;
589 unsigned i2c_enable:1;
590 unsigned num_dev_ep:4;
591 unsigned num_dev_in_eps : 4;
592 unsigned num_dev_perio_in_ep:4;
593 unsigned total_fifo_size:16;
594 unsigned power_optimized:1;
595 unsigned utmi_phy_data_width:2;
596 u32 snpsid;
597 u32 dev_ep_dirs;
598 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
599 };
600
601 /* Size of control and EP0 buffers */
602 #define DWC2_CTRL_BUFF_SIZE 8
603
604 /**
605 * struct dwc2_gregs_backup - Holds global registers state before
606 * entering partial power down
607 * @gotgctl: Backup of GOTGCTL register
608 * @gintmsk: Backup of GINTMSK register
609 * @gahbcfg: Backup of GAHBCFG register
610 * @gusbcfg: Backup of GUSBCFG register
611 * @grxfsiz: Backup of GRXFSIZ register
612 * @gnptxfsiz: Backup of GNPTXFSIZ register
613 * @gi2cctl: Backup of GI2CCTL register
614 * @hptxfsiz: Backup of HPTXFSIZ register
615 * @gdfifocfg: Backup of GDFIFOCFG register
616 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
617 * @gpwrdn: Backup of GPWRDN register
618 */
619 struct dwc2_gregs_backup {
620 u32 gotgctl;
621 u32 gintmsk;
622 u32 gahbcfg;
623 u32 gusbcfg;
624 u32 grxfsiz;
625 u32 gnptxfsiz;
626 u32 gi2cctl;
627 u32 hptxfsiz;
628 u32 pcgcctl;
629 u32 gdfifocfg;
630 u32 dtxfsiz[MAX_EPS_CHANNELS];
631 u32 gpwrdn;
632 bool valid;
633 };
634
635 /**
636 * struct dwc2_dregs_backup - Holds device registers state before
637 * entering partial power down
638 * @dcfg: Backup of DCFG register
639 * @dctl: Backup of DCTL register
640 * @daintmsk: Backup of DAINTMSK register
641 * @diepmsk: Backup of DIEPMSK register
642 * @doepmsk: Backup of DOEPMSK register
643 * @diepctl: Backup of DIEPCTL register
644 * @dieptsiz: Backup of DIEPTSIZ register
645 * @diepdma: Backup of DIEPDMA register
646 * @doepctl: Backup of DOEPCTL register
647 * @doeptsiz: Backup of DOEPTSIZ register
648 * @doepdma: Backup of DOEPDMA register
649 */
650 struct dwc2_dregs_backup {
651 u32 dcfg;
652 u32 dctl;
653 u32 daintmsk;
654 u32 diepmsk;
655 u32 doepmsk;
656 u32 diepctl[MAX_EPS_CHANNELS];
657 u32 dieptsiz[MAX_EPS_CHANNELS];
658 u32 diepdma[MAX_EPS_CHANNELS];
659 u32 doepctl[MAX_EPS_CHANNELS];
660 u32 doeptsiz[MAX_EPS_CHANNELS];
661 u32 doepdma[MAX_EPS_CHANNELS];
662 bool valid;
663 };
664
665 /**
666 * struct dwc2_hregs_backup - Holds host registers state before
667 * entering partial power down
668 * @hcfg: Backup of HCFG register
669 * @haintmsk: Backup of HAINTMSK register
670 * @hcintmsk: Backup of HCINTMSK register
671 * @hptr0: Backup of HPTR0 register
672 * @hfir: Backup of HFIR register
673 */
674 struct dwc2_hregs_backup {
675 u32 hcfg;
676 u32 haintmsk;
677 u32 hcintmsk[MAX_EPS_CHANNELS];
678 u32 hprt0;
679 u32 hfir;
680 bool valid;
681 };
682
683 /*
684 * Constants related to high speed periodic scheduling
685 *
686 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
687 * reservation point of view it's assumed that the schedule goes right back to
688 * the beginning after the end of the schedule.
689 *
690 * What does that mean for scheduling things with a long interval? It means
691 * we'll reserve time for them in every possible microframe that they could
692 * ever be scheduled in. ...but we'll still only actually schedule them as
693 * often as they were requested.
694 *
695 * We keep our schedule in a "bitmap" structure. This simplifies having
696 * to keep track of and merge intervals: we just let the bitmap code do most
697 * of the heavy lifting. In a way scheduling is much like memory allocation.
698 *
699 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
700 * supposed to schedule for periodic transfers). That's according to spec.
701 *
702 * Note that though we only schedule 80% of each microframe, the bitmap that we
703 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
704 * space for each uFrame).
705 *
706 * Requirements:
707 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
708 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
709 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
710 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
711 */
712 #define DWC2_US_PER_UFRAME 125
713 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100
714
715 #define DWC2_HS_SCHEDULE_UFRAMES 8
716 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
717 DWC2_HS_PERIODIC_US_PER_UFRAME)
718
719 /*
720 * Constants related to low speed scheduling
721 *
722 * For high speed we schedule every 1us. For low speed that's a bit overkill,
723 * so we make up a unit called a "slice" that's worth 25us. There are 40
724 * slices in a full frame and we can schedule 36 of those (90%) for periodic
725 * transfers.
726 *
727 * Our low speed schedule can be as short as 1 frame or could be longer. When
728 * we only schedule 1 frame it means that we'll need to reserve a time every
729 * frame even for things that only transfer very rarely, so something that runs
730 * every 2048 frames will get time reserved in every frame. Our low speed
731 * schedule can be longer and we'll be able to handle more overlap, but that
732 * will come at increased memory cost and increased time to schedule.
733 *
734 * Note: one other advantage of a short low speed schedule is that if we mess
735 * up and miss scheduling we can jump in and use any of the slots that we
736 * happened to reserve.
737 *
738 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
739 * the schedule. There will be one schedule per TT.
740 *
741 * Requirements:
742 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
743 */
744 #define DWC2_US_PER_SLICE 25
745 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
746
747 #define DWC2_ROUND_US_TO_SLICE(us) \
748 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
749 DWC2_US_PER_SLICE)
750
751 #define DWC2_LS_PERIODIC_US_PER_FRAME \
752 900
753 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
754 (DWC2_LS_PERIODIC_US_PER_FRAME / \
755 DWC2_US_PER_SLICE)
756
757 #define DWC2_LS_SCHEDULE_FRAMES 1
758 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
759 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
760
761 /**
762 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
763 * and periodic schedules
764 *
765 * These are common for both host and peripheral modes:
766 *
767 * @dev: The struct device pointer
768 * @regs: Pointer to controller regs
769 * @hw_params: Parameters that were autodetected from the
770 * hardware registers
771 * @core_params: Parameters that define how the core should be configured
772 * @op_state: The operational State, during transitions (a_host=>
773 * a_peripheral and b_device=>b_host) this may not match
774 * the core, but allows the software to determine
775 * transitions
776 * @dr_mode: Requested mode of operation, one of following:
777 * - USB_DR_MODE_PERIPHERAL
778 * - USB_DR_MODE_HOST
779 * - USB_DR_MODE_OTG
780 * @hcd_enabled Host mode sub-driver initialization indicator.
781 * @gadget_enabled Peripheral mode sub-driver initialization indicator.
782 * @ll_hw_enabled Status of low-level hardware resources.
783 * @phy: The otg phy transceiver structure for phy control.
784 * @uphy: The otg phy transceiver structure for old USB phy
785 * control.
786 * @plat: The platform specific configuration data. This can be
787 * removed once all SoCs support usb transceiver.
788 * @supplies: Definition of USB power supplies
789 * @phyif: PHY interface width
790 * @lock: Spinlock that protects all the driver data structures
791 * @priv: Stores a pointer to the struct usb_hcd
792 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
793 * transfer are in process of being queued
794 * @srp_success: Stores status of SRP request in the case of a FS PHY
795 * with an I2C interface
796 * @wq_otg: Workqueue object used for handling of some interrupts
797 * @wf_otg: Work object for handling Connector ID Status Change
798 * interrupt
799 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
800 * @lx_state: Lx state of connected device
801 * @gregs_backup: Backup of global registers during suspend
802 * @dregs_backup: Backup of device registers during suspend
803 * @hregs_backup: Backup of host registers during suspend
804 *
805 * These are for host mode:
806 *
807 * @flags: Flags for handling root port state changes
808 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
809 * Transfers associated with these QHs are not currently
810 * assigned to a host channel.
811 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
812 * Transfers associated with these QHs are currently
813 * assigned to a host channel.
814 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
815 * non-periodic schedule
816 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
817 * list of QHs for periodic transfers that are _not_
818 * scheduled for the next frame. Each QH in the list has an
819 * interval counter that determines when it needs to be
820 * scheduled for execution. This scheduling mechanism
821 * allows only a simple calculation for periodic bandwidth
822 * used (i.e. must assume that all periodic transfers may
823 * need to execute in the same frame). However, it greatly
824 * simplifies scheduling and should be sufficient for the
825 * vast majority of OTG hosts, which need to connect to a
826 * small number of peripherals at one time. Items move from
827 * this list to periodic_sched_ready when the QH interval
828 * counter is 0 at SOF.
829 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
830 * the next frame, but have not yet been assigned to host
831 * channels. Items move from this list to
832 * periodic_sched_assigned as host channels become
833 * available during the current frame.
834 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
835 * frame that are assigned to host channels. Items move
836 * from this list to periodic_sched_queued as the
837 * transactions for the QH are queued to the DWC_otg
838 * controller.
839 * @periodic_sched_queued: List of periodic QHs that have been queued for
840 * execution. Items move from this list to either
841 * periodic_sched_inactive or periodic_sched_ready when the
842 * channel associated with the transfer is released. If the
843 * interval for the QH is 1, the item moves to
844 * periodic_sched_ready because it must be rescheduled for
845 * the next frame. Otherwise, the item moves to
846 * periodic_sched_inactive.
847 * @split_order: List keeping track of channels doing splits, in order.
848 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
849 * This value is in microseconds per (micro)frame. The
850 * assumption is that all periodic transfers may occur in
851 * the same (micro)frame.
852 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
853 * host is in high speed mode; low speed schedules are
854 * stored elsewhere since we need one per TT.
855 * @frame_number: Frame number read from the core at SOF. The value ranges
856 * from 0 to HFNUM_MAX_FRNUM.
857 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
858 * SOF enable/disable.
859 * @free_hc_list: Free host channels in the controller. This is a list of
860 * struct dwc2_host_chan items.
861 * @periodic_channels: Number of host channels assigned to periodic transfers.
862 * Currently assuming that there is a dedicated host
863 * channel for each periodic transaction and at least one
864 * host channel is available for non-periodic transactions.
865 * @non_periodic_channels: Number of host channels assigned to non-periodic
866 * transfers
867 * @available_host_channels Number of host channels available for the microframe
868 * scheduler to use
869 * @hc_ptr_array: Array of pointers to the host channel descriptors.
870 * Allows accessing a host channel descriptor given the
871 * host channel number. This is useful in interrupt
872 * handlers.
873 * @status_buf: Buffer used for data received during the status phase of
874 * a control transfer.
875 * @status_buf_dma: DMA address for status_buf
876 * @start_work: Delayed work for handling host A-cable connection
877 * @reset_work: Delayed work for handling a port reset
878 * @otg_port: OTG port number
879 * @frame_list: Frame list
880 * @frame_list_dma: Frame list DMA address
881 * @frame_list_sz: Frame list size
882 * @desc_gen_cache: Kmem cache for generic descriptors
883 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
884 *
885 * These are for peripheral mode:
886 *
887 * @driver: USB gadget driver
888 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
889 * @num_of_eps: Number of available EPs (excluding EP0)
890 * @debug_root: Root directrory for debugfs.
891 * @debug_file: Main status file for debugfs.
892 * @debug_testmode: Testmode status file for debugfs.
893 * @debug_fifo: FIFO status file for debugfs.
894 * @ep0_reply: Request used for ep0 reply.
895 * @ep0_buff: Buffer for EP0 reply data, if needed.
896 * @ctrl_buff: Buffer for EP0 control requests.
897 * @ctrl_req: Request for EP0 control packets.
898 * @ep0_state: EP0 control transfers state
899 * @test_mode: USB test mode requested by the host
900 * @setup_desc_dma: EP0 setup stage desc chain DMA address
901 * @setup_desc: EP0 setup stage desc chain pointer
902 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
903 * @ctrl_in_desc: EP0 IN data phase desc chain pointer
904 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
905 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer
906 * @eps: The endpoints being supplied to the gadget framework
907 */
908 struct dwc2_hsotg {
909 struct device *dev;
910 void __iomem *regs;
911 /** Params detected from hardware */
912 struct dwc2_hw_params hw_params;
913 /** Params to actually use */
914 struct dwc2_core_params params;
915 enum usb_otg_state op_state;
916 enum usb_dr_mode dr_mode;
917 unsigned int hcd_enabled:1;
918 unsigned int gadget_enabled:1;
919 unsigned int ll_hw_enabled:1;
920
921 struct phy *phy;
922 struct usb_phy *uphy;
923 struct dwc2_hsotg_plat *plat;
924 struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
925 u32 phyif;
926
927 spinlock_t lock;
928 void *priv;
929 int irq;
930 struct clk *clk;
931 struct reset_control *reset;
932
933 unsigned int queuing_high_bandwidth:1;
934 unsigned int srp_success:1;
935
936 struct workqueue_struct *wq_otg;
937 struct work_struct wf_otg;
938 struct timer_list wkp_timer;
939 enum dwc2_lx_state lx_state;
940 struct dwc2_gregs_backup gr_backup;
941 struct dwc2_dregs_backup dr_backup;
942 struct dwc2_hregs_backup hr_backup;
943
944 struct dentry *debug_root;
945 struct debugfs_regset32 *regset;
946
947 /* DWC OTG HW Release versions */
948 #define DWC2_CORE_REV_2_71a 0x4f54271a
949 #define DWC2_CORE_REV_2_90a 0x4f54290a
950 #define DWC2_CORE_REV_2_91a 0x4f54291a
951 #define DWC2_CORE_REV_2_92a 0x4f54292a
952 #define DWC2_CORE_REV_2_94a 0x4f54294a
953 #define DWC2_CORE_REV_3_00a 0x4f54300a
954 #define DWC2_CORE_REV_3_10a 0x4f54310a
955 #define DWC2_FS_IOT_REV_1_00a 0x5531100a
956 #define DWC2_HS_IOT_REV_1_00a 0x5532100a
957
958 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
959 union dwc2_hcd_internal_flags {
960 u32 d32;
961 struct {
962 unsigned port_connect_status_change:1;
963 unsigned port_connect_status:1;
964 unsigned port_reset_change:1;
965 unsigned port_enable_change:1;
966 unsigned port_suspend_change:1;
967 unsigned port_over_current_change:1;
968 unsigned port_l1_change:1;
969 unsigned reserved:25;
970 } b;
971 } flags;
972
973 struct list_head non_periodic_sched_inactive;
974 struct list_head non_periodic_sched_active;
975 struct list_head *non_periodic_qh_ptr;
976 struct list_head periodic_sched_inactive;
977 struct list_head periodic_sched_ready;
978 struct list_head periodic_sched_assigned;
979 struct list_head periodic_sched_queued;
980 struct list_head split_order;
981 u16 periodic_usecs;
982 unsigned long hs_periodic_bitmap[
983 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
984 u16 frame_number;
985 u16 periodic_qh_count;
986 bool bus_suspended;
987 bool new_connection;
988
989 u16 last_frame_num;
990
991 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
992 #define FRAME_NUM_ARRAY_SIZE 1000
993 u16 *frame_num_array;
994 u16 *last_frame_num_array;
995 int frame_num_idx;
996 int dumped_frame_num_array;
997 #endif
998
999 struct list_head free_hc_list;
1000 int periodic_channels;
1001 int non_periodic_channels;
1002 int available_host_channels;
1003 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1004 u8 *status_buf;
1005 dma_addr_t status_buf_dma;
1006 #define DWC2_HCD_STATUS_BUF_SIZE 64
1007
1008 struct delayed_work start_work;
1009 struct delayed_work reset_work;
1010 u8 otg_port;
1011 u32 *frame_list;
1012 dma_addr_t frame_list_dma;
1013 u32 frame_list_sz;
1014 struct kmem_cache *desc_gen_cache;
1015 struct kmem_cache *desc_hsisoc_cache;
1016
1017 #ifdef DEBUG
1018 u32 frrem_samples;
1019 u64 frrem_accum;
1020
1021 u32 hfnum_7_samples_a;
1022 u64 hfnum_7_frrem_accum_a;
1023 u32 hfnum_0_samples_a;
1024 u64 hfnum_0_frrem_accum_a;
1025 u32 hfnum_other_samples_a;
1026 u64 hfnum_other_frrem_accum_a;
1027
1028 u32 hfnum_7_samples_b;
1029 u64 hfnum_7_frrem_accum_b;
1030 u32 hfnum_0_samples_b;
1031 u64 hfnum_0_frrem_accum_b;
1032 u32 hfnum_other_samples_b;
1033 u64 hfnum_other_frrem_accum_b;
1034 #endif
1035 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1036
1037 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1038 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1039 /* Gadget structures */
1040 struct usb_gadget_driver *driver;
1041 int fifo_mem;
1042 unsigned int dedicated_fifos:1;
1043 unsigned char num_of_eps;
1044 u32 fifo_map;
1045
1046 struct usb_request *ep0_reply;
1047 struct usb_request *ctrl_req;
1048 void *ep0_buff;
1049 void *ctrl_buff;
1050 enum dwc2_ep0_state ep0_state;
1051 u8 test_mode;
1052
1053 dma_addr_t setup_desc_dma[2];
1054 struct dwc2_dma_desc *setup_desc[2];
1055 dma_addr_t ctrl_in_desc_dma;
1056 struct dwc2_dma_desc *ctrl_in_desc;
1057 dma_addr_t ctrl_out_desc_dma;
1058 struct dwc2_dma_desc *ctrl_out_desc;
1059
1060 struct usb_gadget gadget;
1061 unsigned int enabled:1;
1062 unsigned int connected:1;
1063 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1064 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1065 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1066 };
1067
1068 /* Reasons for halting a host channel */
1069 enum dwc2_halt_status {
1070 DWC2_HC_XFER_NO_HALT_STATUS,
1071 DWC2_HC_XFER_COMPLETE,
1072 DWC2_HC_XFER_URB_COMPLETE,
1073 DWC2_HC_XFER_ACK,
1074 DWC2_HC_XFER_NAK,
1075 DWC2_HC_XFER_NYET,
1076 DWC2_HC_XFER_STALL,
1077 DWC2_HC_XFER_XACT_ERR,
1078 DWC2_HC_XFER_FRAME_OVERRUN,
1079 DWC2_HC_XFER_BABBLE_ERR,
1080 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1081 DWC2_HC_XFER_AHB_ERR,
1082 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1083 DWC2_HC_XFER_URB_DEQUEUE,
1084 };
1085
1086 /* Core version information */
1087 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1088 {
1089 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1090 }
1091
1092 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1093 {
1094 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1095 }
1096
1097 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1098 {
1099 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1100 }
1101
1102 /*
1103 * The following functions support initialization of the core driver component
1104 * and the DWC_otg controller
1105 */
1106 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1107 int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1108 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1109 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1110
1111 bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1112 void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1113 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1114
1115 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1116
1117 /*
1118 * Common core Functions.
1119 * The following functions support managing the DWC_otg controller in either
1120 * device or host mode.
1121 */
1122 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1123 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1124 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1125
1126 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1127 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1128
1129 /* This function should be called on every hardware interrupt. */
1130 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1131
1132 /* The device ID match table */
1133 extern const struct of_device_id dwc2_of_match_table[];
1134
1135 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1136 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1137
1138 /* Parameters */
1139 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1140 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1141
1142 /*
1143 * The following functions check the controller's OTG operation mode
1144 * capability (GHWCFG2.OTG_MODE).
1145 *
1146 * These functions can be used before the internal hsotg->hw_params
1147 * are read in and cached so they always read directly from the
1148 * GHWCFG2 register.
1149 */
1150 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1151 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1152 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1153 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1154
1155 /*
1156 * Returns the mode of operation, host or device
1157 */
1158 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1159 {
1160 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1161 }
1162
1163 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1164 {
1165 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1166 }
1167
1168 /*
1169 * Dump core registers and SPRAM
1170 */
1171 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1172 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1173 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1174
1175 /* Gadget defines */
1176 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1177 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1178 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1179 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1180 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1181 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1182 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1183 bool reset);
1184 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1185 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1186 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1187 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1188 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1189 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1190 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1191 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1192 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1193 #else
1194 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1195 { return 0; }
1196 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1197 { return 0; }
1198 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1199 { return 0; }
1200 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1201 { return 0; }
1202 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1203 bool reset) {}
1204 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1205 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1206 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1207 int testmode)
1208 { return 0; }
1209 #define dwc2_is_device_connected(hsotg) (0)
1210 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1211 { return 0; }
1212 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1213 { return 0; }
1214 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1215 { return 0; }
1216 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1217 { return 0; }
1218 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1219 { return 0; }
1220 #endif
1221
1222 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1223 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1224 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1225 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1226 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1227 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1228 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1229 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1230 #else
1231 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1232 { return 0; }
1233 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1234 int us)
1235 { return 0; }
1236 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1237 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1238 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1239 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1240 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1241 { return 0; }
1242 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1243 { return 0; }
1244 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1245 { return 0; }
1246
1247 #endif
1248
1249 #endif /* __DWC2_CORE_H__ */