]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/usb/dwc2/gadget.c
ASoC: pcm512x: add missing MODULE_DESCRIPTION/AUTHOR/LICENSE
[mirror_ubuntu-focal-kernel.git] / drivers / usb / dwc2 / gadget.c
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30
31 #include "core.h"
32 #include "hw.h"
33
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 return container_of(req, struct dwc2_hsotg_req, req);
38 }
39
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49
50 static inline void __orr32(void __iomem *ptr, u32 val)
51 {
52 dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54
55 static inline void __bic32(void __iomem *ptr, u32 val)
56 {
57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 u32 ep_index, u32 dir_in)
62 {
63 if (dir_in)
64 return hsotg->eps_in[ep_index];
65 else
66 return hsotg->eps_out[ep_index];
67 }
68
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71
72 /**
73 * using_dma - return the DMA status of the driver.
74 * @hsotg: The driver state.
75 *
76 * Return true if we're using DMA.
77 *
78 * Currently, we have the DMA support code worked into everywhere
79 * that needs it, but the AMBA DMA implementation in the hardware can
80 * only DMA from 32bit aligned addresses. This means that gadgets such
81 * as the CDC Ethernet cannot work as they often pass packets which are
82 * not 32bit aligned.
83 *
84 * Unfortunately the choice to use DMA or not is global to the controller
85 * and seems to be only settable when the controller is being put through
86 * a core reset. This means we either need to fix the gadgets to take
87 * account of DMA alignment, or add bounce buffers (yuerk).
88 *
89 * g_using_dma is set depending on dts flag.
90 */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 return hsotg->params.g_dma;
94 }
95
96 /*
97 * using_desc_dma - return the descriptor DMA status of the driver.
98 * @hsotg: The driver state.
99 *
100 * Return true if we're using descriptor DMA.
101 */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 return hsotg->params.g_dma_desc;
105 }
106
107 /**
108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109 * @hs_ep: The endpoint
110 * @increment: The value to increment by
111 *
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114 */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 hs_ep->target_frame += hs_ep->interval;
118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 hs_ep->frame_overrun = 1;
120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 } else {
122 hs_ep->frame_overrun = 0;
123 }
124 }
125
126 /**
127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 * @hsotg: The device state
129 * @ints: A bitmask of the interrupts to enable
130 */
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132 {
133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 u32 new_gsintmsk;
135
136 new_gsintmsk = gsintmsk | ints;
137
138 if (new_gsintmsk != gsintmsk) {
139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 }
142 }
143
144 /**
145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 * @hsotg: The device state
147 * @ints: A bitmask of the interrupts to enable
148 */
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 {
151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 u32 new_gsintmsk;
153
154 new_gsintmsk = gsintmsk & ~ints;
155
156 if (new_gsintmsk != gsintmsk)
157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 }
159
160 /**
161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 * @hsotg: The device state
163 * @ep: The endpoint index
164 * @dir_in: True if direction is in.
165 * @en: The enable value, true to enable
166 *
167 * Set or clear the mask for an individual endpoint's interrupt
168 * request.
169 */
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 unsigned int ep, unsigned int dir_in,
172 unsigned int en)
173 {
174 unsigned long flags;
175 u32 bit = 1 << ep;
176 u32 daint;
177
178 if (!dir_in)
179 bit <<= 16;
180
181 local_irq_save(flags);
182 daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 if (en)
184 daint |= bit;
185 else
186 daint &= ~bit;
187 dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 local_irq_restore(flags);
189 }
190
191 /**
192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
193 */
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
195 {
196 if (hsotg->hw_params.en_multiple_tx_fifo)
197 /* In dedicated FIFO mode we need count of IN EPs */
198 return (dwc2_readl(hsotg->regs + GHWCFG4) &
199 GHWCFG4_NUM_IN_EPS_MASK) >> GHWCFG4_NUM_IN_EPS_SHIFT;
200 else
201 /* In shared FIFO mode we need count of Periodic IN EPs */
202 return hsotg->hw_params.num_dev_perio_in_ep;
203 }
204
205 /**
206 * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs
207 */
208 static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg *hsotg)
209 {
210 int val = 0;
211 int i;
212 u32 ep_dirs;
213
214 /*
215 * Don't need additional space for ep info control registers in
216 * slave mode.
217 */
218 if (!using_dma(hsotg)) {
219 dev_dbg(hsotg->dev, "Buffer DMA ep info size 0\n");
220 return 0;
221 }
222
223 /*
224 * Buffer DMA mode - 1 location per endpoit
225 * Descriptor DMA mode - 4 locations per endpoint
226 */
227 ep_dirs = hsotg->hw_params.dev_ep_dirs;
228
229 for (i = 0; i <= hsotg->hw_params.num_dev_ep; i++) {
230 val += ep_dirs & 3 ? 1 : 2;
231 ep_dirs >>= 2;
232 }
233
234 if (using_desc_dma(hsotg))
235 val = val * 4;
236
237 return val;
238 }
239
240 /**
241 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
242 * device mode TX FIFOs
243 */
244 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
245 {
246 int ep_info_size;
247 int addr;
248 int tx_addr_max;
249 u32 np_tx_fifo_size;
250
251 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
252 hsotg->params.g_np_tx_fifo_size);
253
254 /* Get Endpoint Info Control block size in DWORDs. */
255 ep_info_size = dwc2_hsotg_ep_info_size(hsotg);
256 tx_addr_max = hsotg->hw_params.total_fifo_size - ep_info_size;
257
258 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
259 if (tx_addr_max <= addr)
260 return 0;
261
262 return tx_addr_max - addr;
263 }
264
265 /**
266 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
267 * TX FIFOs
268 */
269 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
270 {
271 int tx_fifo_count;
272 int tx_fifo_depth;
273
274 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
275
276 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
277
278 if (!tx_fifo_count)
279 return tx_fifo_depth;
280 else
281 return tx_fifo_depth / tx_fifo_count;
282 }
283
284 /**
285 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
286 * @hsotg: The device instance.
287 */
288 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
289 {
290 unsigned int ep;
291 unsigned int addr;
292 int timeout;
293 u32 val;
294 u32 *txfsz = hsotg->params.g_tx_fifo_size;
295
296 /* Reset fifo map if not correctly cleared during previous session */
297 WARN_ON(hsotg->fifo_map);
298 hsotg->fifo_map = 0;
299
300 /* set RX/NPTX FIFO sizes */
301 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
302 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
303 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
304 hsotg->regs + GNPTXFSIZ);
305
306 /*
307 * arange all the rest of the TX FIFOs, as some versions of this
308 * block have overlapping default addresses. This also ensures
309 * that if the settings have been changed, then they are set to
310 * known values.
311 */
312
313 /* start at the end of the GNPTXFSIZ, rounded up */
314 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
315
316 /*
317 * Configure fifos sizes from provided configuration and assign
318 * them to endpoints dynamically according to maxpacket size value of
319 * given endpoint.
320 */
321 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
322 if (!txfsz[ep])
323 continue;
324 val = addr;
325 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
326 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
327 "insufficient fifo memory");
328 addr += txfsz[ep];
329
330 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
331 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
332 }
333
334 dwc2_writel(hsotg->hw_params.total_fifo_size |
335 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
336 hsotg->regs + GDFIFOCFG);
337 /*
338 * according to p428 of the design guide, we need to ensure that
339 * all fifos are flushed before continuing
340 */
341
342 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
343 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
344
345 /* wait until the fifos are both flushed */
346 timeout = 100;
347 while (1) {
348 val = dwc2_readl(hsotg->regs + GRSTCTL);
349
350 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
351 break;
352
353 if (--timeout == 0) {
354 dev_err(hsotg->dev,
355 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
356 __func__, val);
357 break;
358 }
359
360 udelay(1);
361 }
362
363 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
364 }
365
366 /**
367 * @ep: USB endpoint to allocate request for.
368 * @flags: Allocation flags
369 *
370 * Allocate a new USB request structure appropriate for the specified endpoint
371 */
372 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
373 gfp_t flags)
374 {
375 struct dwc2_hsotg_req *req;
376
377 req = kzalloc(sizeof(*req), flags);
378 if (!req)
379 return NULL;
380
381 INIT_LIST_HEAD(&req->queue);
382
383 return &req->req;
384 }
385
386 /**
387 * is_ep_periodic - return true if the endpoint is in periodic mode.
388 * @hs_ep: The endpoint to query.
389 *
390 * Returns true if the endpoint is in periodic mode, meaning it is being
391 * used for an Interrupt or ISO transfer.
392 */
393 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
394 {
395 return hs_ep->periodic;
396 }
397
398 /**
399 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
400 * @hsotg: The device state.
401 * @hs_ep: The endpoint for the request
402 * @hs_req: The request being processed.
403 *
404 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
405 * of a request to ensure the buffer is ready for access by the caller.
406 */
407 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
408 struct dwc2_hsotg_ep *hs_ep,
409 struct dwc2_hsotg_req *hs_req)
410 {
411 struct usb_request *req = &hs_req->req;
412
413 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
414 }
415
416 /*
417 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
418 * for Control endpoint
419 * @hsotg: The device state.
420 *
421 * This function will allocate 4 descriptor chains for EP 0: 2 for
422 * Setup stage, per one for IN and OUT data/status transactions.
423 */
424 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
425 {
426 hsotg->setup_desc[0] =
427 dmam_alloc_coherent(hsotg->dev,
428 sizeof(struct dwc2_dma_desc),
429 &hsotg->setup_desc_dma[0],
430 GFP_KERNEL);
431 if (!hsotg->setup_desc[0])
432 goto fail;
433
434 hsotg->setup_desc[1] =
435 dmam_alloc_coherent(hsotg->dev,
436 sizeof(struct dwc2_dma_desc),
437 &hsotg->setup_desc_dma[1],
438 GFP_KERNEL);
439 if (!hsotg->setup_desc[1])
440 goto fail;
441
442 hsotg->ctrl_in_desc =
443 dmam_alloc_coherent(hsotg->dev,
444 sizeof(struct dwc2_dma_desc),
445 &hsotg->ctrl_in_desc_dma,
446 GFP_KERNEL);
447 if (!hsotg->ctrl_in_desc)
448 goto fail;
449
450 hsotg->ctrl_out_desc =
451 dmam_alloc_coherent(hsotg->dev,
452 sizeof(struct dwc2_dma_desc),
453 &hsotg->ctrl_out_desc_dma,
454 GFP_KERNEL);
455 if (!hsotg->ctrl_out_desc)
456 goto fail;
457
458 return 0;
459
460 fail:
461 return -ENOMEM;
462 }
463
464 /**
465 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
466 * @hsotg: The controller state.
467 * @hs_ep: The endpoint we're going to write for.
468 * @hs_req: The request to write data for.
469 *
470 * This is called when the TxFIFO has some space in it to hold a new
471 * transmission and we have something to give it. The actual setup of
472 * the data size is done elsewhere, so all we have to do is to actually
473 * write the data.
474 *
475 * The return value is zero if there is more space (or nothing was done)
476 * otherwise -ENOSPC is returned if the FIFO space was used up.
477 *
478 * This routine is only needed for PIO
479 */
480 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
481 struct dwc2_hsotg_ep *hs_ep,
482 struct dwc2_hsotg_req *hs_req)
483 {
484 bool periodic = is_ep_periodic(hs_ep);
485 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
486 int buf_pos = hs_req->req.actual;
487 int to_write = hs_ep->size_loaded;
488 void *data;
489 int can_write;
490 int pkt_round;
491 int max_transfer;
492
493 to_write -= (buf_pos - hs_ep->last_load);
494
495 /* if there's nothing to write, get out early */
496 if (to_write == 0)
497 return 0;
498
499 if (periodic && !hsotg->dedicated_fifos) {
500 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
501 int size_left;
502 int size_done;
503
504 /*
505 * work out how much data was loaded so we can calculate
506 * how much data is left in the fifo.
507 */
508
509 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
510
511 /*
512 * if shared fifo, we cannot write anything until the
513 * previous data has been completely sent.
514 */
515 if (hs_ep->fifo_load != 0) {
516 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
517 return -ENOSPC;
518 }
519
520 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
521 __func__, size_left,
522 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
523
524 /* how much of the data has moved */
525 size_done = hs_ep->size_loaded - size_left;
526
527 /* how much data is left in the fifo */
528 can_write = hs_ep->fifo_load - size_done;
529 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
530 __func__, can_write);
531
532 can_write = hs_ep->fifo_size - can_write;
533 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
534 __func__, can_write);
535
536 if (can_write <= 0) {
537 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
538 return -ENOSPC;
539 }
540 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
541 can_write = dwc2_readl(hsotg->regs +
542 DTXFSTS(hs_ep->fifo_index));
543
544 can_write &= 0xffff;
545 can_write *= 4;
546 } else {
547 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
548 dev_dbg(hsotg->dev,
549 "%s: no queue slots available (0x%08x)\n",
550 __func__, gnptxsts);
551
552 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
553 return -ENOSPC;
554 }
555
556 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
557 can_write *= 4; /* fifo size is in 32bit quantities. */
558 }
559
560 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
561
562 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
563 __func__, gnptxsts, can_write, to_write, max_transfer);
564
565 /*
566 * limit to 512 bytes of data, it seems at least on the non-periodic
567 * FIFO, requests of >512 cause the endpoint to get stuck with a
568 * fragment of the end of the transfer in it.
569 */
570 if (can_write > 512 && !periodic)
571 can_write = 512;
572
573 /*
574 * limit the write to one max-packet size worth of data, but allow
575 * the transfer to return that it did not run out of fifo space
576 * doing it.
577 */
578 if (to_write > max_transfer) {
579 to_write = max_transfer;
580
581 /* it's needed only when we do not use dedicated fifos */
582 if (!hsotg->dedicated_fifos)
583 dwc2_hsotg_en_gsint(hsotg,
584 periodic ? GINTSTS_PTXFEMP :
585 GINTSTS_NPTXFEMP);
586 }
587
588 /* see if we can write data */
589
590 if (to_write > can_write) {
591 to_write = can_write;
592 pkt_round = to_write % max_transfer;
593
594 /*
595 * Round the write down to an
596 * exact number of packets.
597 *
598 * Note, we do not currently check to see if we can ever
599 * write a full packet or not to the FIFO.
600 */
601
602 if (pkt_round)
603 to_write -= pkt_round;
604
605 /*
606 * enable correct FIFO interrupt to alert us when there
607 * is more room left.
608 */
609
610 /* it's needed only when we do not use dedicated fifos */
611 if (!hsotg->dedicated_fifos)
612 dwc2_hsotg_en_gsint(hsotg,
613 periodic ? GINTSTS_PTXFEMP :
614 GINTSTS_NPTXFEMP);
615 }
616
617 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
618 to_write, hs_req->req.length, can_write, buf_pos);
619
620 if (to_write <= 0)
621 return -ENOSPC;
622
623 hs_req->req.actual = buf_pos + to_write;
624 hs_ep->total_data += to_write;
625
626 if (periodic)
627 hs_ep->fifo_load += to_write;
628
629 to_write = DIV_ROUND_UP(to_write, 4);
630 data = hs_req->req.buf + buf_pos;
631
632 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
633
634 return (to_write >= can_write) ? -ENOSPC : 0;
635 }
636
637 /**
638 * get_ep_limit - get the maximum data legnth for this endpoint
639 * @hs_ep: The endpoint
640 *
641 * Return the maximum data that can be queued in one go on a given endpoint
642 * so that transfers that are too long can be split.
643 */
644 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
645 {
646 int index = hs_ep->index;
647 unsigned int maxsize;
648 unsigned int maxpkt;
649
650 if (index != 0) {
651 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
652 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
653 } else {
654 maxsize = 64 + 64;
655 if (hs_ep->dir_in)
656 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
657 else
658 maxpkt = 2;
659 }
660
661 /* we made the constant loading easier above by using +1 */
662 maxpkt--;
663 maxsize--;
664
665 /*
666 * constrain by packet count if maxpkts*pktsize is greater
667 * than the length register size.
668 */
669
670 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
671 maxsize = maxpkt * hs_ep->ep.maxpacket;
672
673 return maxsize;
674 }
675
676 /**
677 * dwc2_hsotg_read_frameno - read current frame number
678 * @hsotg: The device instance
679 *
680 * Return the current frame number
681 */
682 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
683 {
684 u32 dsts;
685
686 dsts = dwc2_readl(hsotg->regs + DSTS);
687 dsts &= DSTS_SOFFN_MASK;
688 dsts >>= DSTS_SOFFN_SHIFT;
689
690 return dsts;
691 }
692
693 /**
694 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
695 * DMA descriptor chain prepared for specific endpoint
696 * @hs_ep: The endpoint
697 *
698 * Return the maximum data that can be queued in one go on a given endpoint
699 * depending on its descriptor chain capacity so that transfers that
700 * are too long can be split.
701 */
702 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
703 {
704 int is_isoc = hs_ep->isochronous;
705 unsigned int maxsize;
706
707 if (is_isoc)
708 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
709 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
710 else
711 maxsize = DEV_DMA_NBYTES_LIMIT;
712
713 /* Above size of one descriptor was chosen, multiple it */
714 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
715
716 return maxsize;
717 }
718
719 /*
720 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
721 * @hs_ep: The endpoint
722 * @mask: RX/TX bytes mask to be defined
723 *
724 * Returns maximum data payload for one descriptor after analyzing endpoint
725 * characteristics.
726 * DMA descriptor transfer bytes limit depends on EP type:
727 * Control out - MPS,
728 * Isochronous - descriptor rx/tx bytes bitfield limit,
729 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
730 * have concatenations from various descriptors within one packet.
731 *
732 * Selects corresponding mask for RX/TX bytes as well.
733 */
734 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
735 {
736 u32 mps = hs_ep->ep.maxpacket;
737 int dir_in = hs_ep->dir_in;
738 u32 desc_size = 0;
739
740 if (!hs_ep->index && !dir_in) {
741 desc_size = mps;
742 *mask = DEV_DMA_NBYTES_MASK;
743 } else if (hs_ep->isochronous) {
744 if (dir_in) {
745 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
746 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
747 } else {
748 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
749 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
750 }
751 } else {
752 desc_size = DEV_DMA_NBYTES_LIMIT;
753 *mask = DEV_DMA_NBYTES_MASK;
754
755 /* Round down desc_size to be mps multiple */
756 desc_size -= desc_size % mps;
757 }
758
759 return desc_size;
760 }
761
762 /*
763 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
764 * @hs_ep: The endpoint
765 * @dma_buff: DMA address to use
766 * @len: Length of the transfer
767 *
768 * This function will iterate over descriptor chain and fill its entries
769 * with corresponding information based on transfer data.
770 */
771 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
772 dma_addr_t dma_buff,
773 unsigned int len)
774 {
775 struct dwc2_hsotg *hsotg = hs_ep->parent;
776 int dir_in = hs_ep->dir_in;
777 struct dwc2_dma_desc *desc = hs_ep->desc_list;
778 u32 mps = hs_ep->ep.maxpacket;
779 u32 maxsize = 0;
780 u32 offset = 0;
781 u32 mask = 0;
782 int i;
783
784 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
785
786 hs_ep->desc_count = (len / maxsize) +
787 ((len % maxsize) ? 1 : 0);
788 if (len == 0)
789 hs_ep->desc_count = 1;
790
791 for (i = 0; i < hs_ep->desc_count; ++i) {
792 desc->status = 0;
793 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
794 << DEV_DMA_BUFF_STS_SHIFT);
795
796 if (len > maxsize) {
797 if (!hs_ep->index && !dir_in)
798 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
799
800 desc->status |= (maxsize <<
801 DEV_DMA_NBYTES_SHIFT & mask);
802 desc->buf = dma_buff + offset;
803
804 len -= maxsize;
805 offset += maxsize;
806 } else {
807 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
808
809 if (dir_in)
810 desc->status |= (len % mps) ? DEV_DMA_SHORT :
811 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
812 if (len > maxsize)
813 dev_err(hsotg->dev, "wrong len %d\n", len);
814
815 desc->status |=
816 len << DEV_DMA_NBYTES_SHIFT & mask;
817 desc->buf = dma_buff + offset;
818 }
819
820 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
821 desc->status |= (DEV_DMA_BUFF_STS_HREADY
822 << DEV_DMA_BUFF_STS_SHIFT);
823 desc++;
824 }
825 }
826
827 /*
828 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
829 * @hs_ep: The isochronous endpoint.
830 * @dma_buff: usb requests dma buffer.
831 * @len: usb request transfer length.
832 *
833 * Finds out index of first free entry either in the bottom or up half of
834 * descriptor chain depend on which is under SW control and not processed
835 * by HW. Then fills that descriptor with the data of the arrived usb request,
836 * frame info, sets Last and IOC bits increments next_desc. If filled
837 * descriptor is not the first one, removes L bit from the previous descriptor
838 * status.
839 */
840 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
841 dma_addr_t dma_buff, unsigned int len)
842 {
843 struct dwc2_dma_desc *desc;
844 struct dwc2_hsotg *hsotg = hs_ep->parent;
845 u32 index;
846 u32 maxsize = 0;
847 u32 mask = 0;
848
849 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
850 if (len > maxsize) {
851 dev_err(hsotg->dev, "wrong len %d\n", len);
852 return -EINVAL;
853 }
854
855 /*
856 * If SW has already filled half of chain, then return and wait for
857 * the other chain to be processed by HW.
858 */
859 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
860 return -EBUSY;
861
862 /* Increment frame number by interval for IN */
863 if (hs_ep->dir_in)
864 dwc2_gadget_incr_frame_num(hs_ep);
865
866 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
867 hs_ep->next_desc;
868
869 /* Sanity check of calculated index */
870 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
871 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
872 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
873 return -EINVAL;
874 }
875
876 desc = &hs_ep->desc_list[index];
877
878 /* Clear L bit of previous desc if more than one entries in the chain */
879 if (hs_ep->next_desc)
880 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
881
882 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
883 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
884
885 desc->status = 0;
886 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
887
888 desc->buf = dma_buff;
889 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
890 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
891
892 if (hs_ep->dir_in) {
893 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
894 DEV_DMA_ISOC_PID_MASK) |
895 ((len % hs_ep->ep.maxpacket) ?
896 DEV_DMA_SHORT : 0) |
897 ((hs_ep->target_frame <<
898 DEV_DMA_ISOC_FRNUM_SHIFT) &
899 DEV_DMA_ISOC_FRNUM_MASK);
900 }
901
902 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
903 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
904
905 /* Update index of last configured entry in the chain */
906 hs_ep->next_desc++;
907
908 return 0;
909 }
910
911 /*
912 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
913 * @hs_ep: The isochronous endpoint.
914 *
915 * Prepare first descriptor chain for isochronous endpoints. Afterwards
916 * write DMA address to HW and enable the endpoint.
917 *
918 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
919 * to prepare second descriptor chain while first one is being processed by HW.
920 */
921 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
922 {
923 struct dwc2_hsotg *hsotg = hs_ep->parent;
924 struct dwc2_hsotg_req *hs_req, *treq;
925 int index = hs_ep->index;
926 int ret;
927 u32 dma_reg;
928 u32 depctl;
929 u32 ctrl;
930
931 if (list_empty(&hs_ep->queue)) {
932 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
933 return;
934 }
935
936 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
937 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
938 hs_req->req.length);
939 if (ret) {
940 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
941 break;
942 }
943 }
944
945 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
946 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
947
948 /* write descriptor chain address to control register */
949 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
950
951 ctrl = dwc2_readl(hsotg->regs + depctl);
952 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
953 dwc2_writel(ctrl, hsotg->regs + depctl);
954
955 /* Switch ISOC descriptor chain number being processed by SW*/
956 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
957 hs_ep->next_desc = 0;
958 }
959
960 /**
961 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
962 * @hsotg: The controller state.
963 * @hs_ep: The endpoint to process a request for
964 * @hs_req: The request to start.
965 * @continuing: True if we are doing more for the current request.
966 *
967 * Start the given request running by setting the endpoint registers
968 * appropriately, and writing any data to the FIFOs.
969 */
970 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
971 struct dwc2_hsotg_ep *hs_ep,
972 struct dwc2_hsotg_req *hs_req,
973 bool continuing)
974 {
975 struct usb_request *ureq = &hs_req->req;
976 int index = hs_ep->index;
977 int dir_in = hs_ep->dir_in;
978 u32 epctrl_reg;
979 u32 epsize_reg;
980 u32 epsize;
981 u32 ctrl;
982 unsigned int length;
983 unsigned int packets;
984 unsigned int maxreq;
985 unsigned int dma_reg;
986
987 if (index != 0) {
988 if (hs_ep->req && !continuing) {
989 dev_err(hsotg->dev, "%s: active request\n", __func__);
990 WARN_ON(1);
991 return;
992 } else if (hs_ep->req != hs_req && continuing) {
993 dev_err(hsotg->dev,
994 "%s: continue different req\n", __func__);
995 WARN_ON(1);
996 return;
997 }
998 }
999
1000 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1001 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1002 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1003
1004 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1005 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
1006 hs_ep->dir_in ? "in" : "out");
1007
1008 /* If endpoint is stalled, we will restart request later */
1009 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
1010
1011 if (index && ctrl & DXEPCTL_STALL) {
1012 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1013 return;
1014 }
1015
1016 length = ureq->length - ureq->actual;
1017 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1018 ureq->length, ureq->actual);
1019
1020 if (!using_desc_dma(hsotg))
1021 maxreq = get_ep_limit(hs_ep);
1022 else
1023 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1024
1025 if (length > maxreq) {
1026 int round = maxreq % hs_ep->ep.maxpacket;
1027
1028 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1029 __func__, length, maxreq, round);
1030
1031 /* round down to multiple of packets */
1032 if (round)
1033 maxreq -= round;
1034
1035 length = maxreq;
1036 }
1037
1038 if (length)
1039 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1040 else
1041 packets = 1; /* send one packet if length is zero. */
1042
1043 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1044 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1045 return;
1046 }
1047
1048 if (dir_in && index != 0)
1049 if (hs_ep->isochronous)
1050 epsize = DXEPTSIZ_MC(packets);
1051 else
1052 epsize = DXEPTSIZ_MC(1);
1053 else
1054 epsize = 0;
1055
1056 /*
1057 * zero length packet should be programmed on its own and should not
1058 * be counted in DIEPTSIZ.PktCnt with other packets.
1059 */
1060 if (dir_in && ureq->zero && !continuing) {
1061 /* Test if zlp is actually required. */
1062 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1063 !(ureq->length % hs_ep->ep.maxpacket))
1064 hs_ep->send_zlp = 1;
1065 }
1066
1067 epsize |= DXEPTSIZ_PKTCNT(packets);
1068 epsize |= DXEPTSIZ_XFERSIZE(length);
1069
1070 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1071 __func__, packets, length, ureq->length, epsize, epsize_reg);
1072
1073 /* store the request as the current one we're doing */
1074 hs_ep->req = hs_req;
1075
1076 if (using_desc_dma(hsotg)) {
1077 u32 offset = 0;
1078 u32 mps = hs_ep->ep.maxpacket;
1079
1080 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1081 if (!dir_in) {
1082 if (!index)
1083 length = mps;
1084 else if (length % mps)
1085 length += (mps - (length % mps));
1086 }
1087
1088 /*
1089 * If more data to send, adjust DMA for EP0 out data stage.
1090 * ureq->dma stays unchanged, hence increment it by already
1091 * passed passed data count before starting new transaction.
1092 */
1093 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1094 continuing)
1095 offset = ureq->actual;
1096
1097 /* Fill DDMA chain entries */
1098 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1099 length);
1100
1101 /* write descriptor chain address to control register */
1102 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1103
1104 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1105 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1106 } else {
1107 /* write size / packets */
1108 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1109
1110 if (using_dma(hsotg) && !continuing && (length != 0)) {
1111 /*
1112 * write DMA address to control register, buffer
1113 * already synced by dwc2_hsotg_ep_queue().
1114 */
1115
1116 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1117
1118 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1119 __func__, &ureq->dma, dma_reg);
1120 }
1121 }
1122
1123 if (hs_ep->isochronous && hs_ep->interval == 1) {
1124 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1125 dwc2_gadget_incr_frame_num(hs_ep);
1126
1127 if (hs_ep->target_frame & 0x1)
1128 ctrl |= DXEPCTL_SETODDFR;
1129 else
1130 ctrl |= DXEPCTL_SETEVENFR;
1131 }
1132
1133 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1134
1135 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1136
1137 /* For Setup request do not clear NAK */
1138 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1139 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1140
1141 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1142 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1143
1144 /*
1145 * set these, it seems that DMA support increments past the end
1146 * of the packet buffer so we need to calculate the length from
1147 * this information.
1148 */
1149 hs_ep->size_loaded = length;
1150 hs_ep->last_load = ureq->actual;
1151
1152 if (dir_in && !using_dma(hsotg)) {
1153 /* set these anyway, we may need them for non-periodic in */
1154 hs_ep->fifo_load = 0;
1155
1156 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1157 }
1158
1159 /*
1160 * Note, trying to clear the NAK here causes problems with transmit
1161 * on the S3C6400 ending up with the TXFIFO becoming full.
1162 */
1163
1164 /* check ep is enabled */
1165 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1166 dev_dbg(hsotg->dev,
1167 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1168 index, dwc2_readl(hsotg->regs + epctrl_reg));
1169
1170 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1171 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1172
1173 /* enable ep interrupts */
1174 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1175 }
1176
1177 /**
1178 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1179 * @hsotg: The device state.
1180 * @hs_ep: The endpoint the request is on.
1181 * @req: The request being processed.
1182 *
1183 * We've been asked to queue a request, so ensure that the memory buffer
1184 * is correctly setup for DMA. If we've been passed an extant DMA address
1185 * then ensure the buffer has been synced to memory. If our buffer has no
1186 * DMA memory, then we map the memory and mark our request to allow us to
1187 * cleanup on completion.
1188 */
1189 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1190 struct dwc2_hsotg_ep *hs_ep,
1191 struct usb_request *req)
1192 {
1193 int ret;
1194
1195 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1196 if (ret)
1197 goto dma_error;
1198
1199 return 0;
1200
1201 dma_error:
1202 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1203 __func__, req->buf, req->length);
1204
1205 return -EIO;
1206 }
1207
1208 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1209 struct dwc2_hsotg_ep *hs_ep,
1210 struct dwc2_hsotg_req *hs_req)
1211 {
1212 void *req_buf = hs_req->req.buf;
1213
1214 /* If dma is not being used or buffer is aligned */
1215 if (!using_dma(hsotg) || !((long)req_buf & 3))
1216 return 0;
1217
1218 WARN_ON(hs_req->saved_req_buf);
1219
1220 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1221 hs_ep->ep.name, req_buf, hs_req->req.length);
1222
1223 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1224 if (!hs_req->req.buf) {
1225 hs_req->req.buf = req_buf;
1226 dev_err(hsotg->dev,
1227 "%s: unable to allocate memory for bounce buffer\n",
1228 __func__);
1229 return -ENOMEM;
1230 }
1231
1232 /* Save actual buffer */
1233 hs_req->saved_req_buf = req_buf;
1234
1235 if (hs_ep->dir_in)
1236 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1237 return 0;
1238 }
1239
1240 static void
1241 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1242 struct dwc2_hsotg_ep *hs_ep,
1243 struct dwc2_hsotg_req *hs_req)
1244 {
1245 /* If dma is not being used or buffer was aligned */
1246 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1247 return;
1248
1249 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1250 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1251
1252 /* Copy data from bounce buffer on successful out transfer */
1253 if (!hs_ep->dir_in && !hs_req->req.status)
1254 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1255 hs_req->req.actual);
1256
1257 /* Free bounce buffer */
1258 kfree(hs_req->req.buf);
1259
1260 hs_req->req.buf = hs_req->saved_req_buf;
1261 hs_req->saved_req_buf = NULL;
1262 }
1263
1264 /**
1265 * dwc2_gadget_target_frame_elapsed - Checks target frame
1266 * @hs_ep: The driver endpoint to check
1267 *
1268 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1269 * corresponding transfer.
1270 */
1271 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1272 {
1273 struct dwc2_hsotg *hsotg = hs_ep->parent;
1274 u32 target_frame = hs_ep->target_frame;
1275 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1276 bool frame_overrun = hs_ep->frame_overrun;
1277
1278 if (!frame_overrun && current_frame >= target_frame)
1279 return true;
1280
1281 if (frame_overrun && current_frame >= target_frame &&
1282 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1283 return true;
1284
1285 return false;
1286 }
1287
1288 /*
1289 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1290 * @hsotg: The driver state
1291 * @hs_ep: the ep descriptor chain is for
1292 *
1293 * Called to update EP0 structure's pointers depend on stage of
1294 * control transfer.
1295 */
1296 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1297 struct dwc2_hsotg_ep *hs_ep)
1298 {
1299 switch (hsotg->ep0_state) {
1300 case DWC2_EP0_SETUP:
1301 case DWC2_EP0_STATUS_OUT:
1302 hs_ep->desc_list = hsotg->setup_desc[0];
1303 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1304 break;
1305 case DWC2_EP0_DATA_IN:
1306 case DWC2_EP0_STATUS_IN:
1307 hs_ep->desc_list = hsotg->ctrl_in_desc;
1308 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1309 break;
1310 case DWC2_EP0_DATA_OUT:
1311 hs_ep->desc_list = hsotg->ctrl_out_desc;
1312 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1313 break;
1314 default:
1315 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1316 hsotg->ep0_state);
1317 return -EINVAL;
1318 }
1319
1320 return 0;
1321 }
1322
1323 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1324 gfp_t gfp_flags)
1325 {
1326 struct dwc2_hsotg_req *hs_req = our_req(req);
1327 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1328 struct dwc2_hsotg *hs = hs_ep->parent;
1329 bool first;
1330 int ret;
1331
1332 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1333 ep->name, req, req->length, req->buf, req->no_interrupt,
1334 req->zero, req->short_not_ok);
1335
1336 /* Prevent new request submission when controller is suspended */
1337 if (hs->lx_state == DWC2_L2) {
1338 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1339 __func__);
1340 return -EAGAIN;
1341 }
1342
1343 /* initialise status of the request */
1344 INIT_LIST_HEAD(&hs_req->queue);
1345 req->actual = 0;
1346 req->status = -EINPROGRESS;
1347
1348 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1349 if (ret)
1350 return ret;
1351
1352 /* if we're using DMA, sync the buffers as necessary */
1353 if (using_dma(hs)) {
1354 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1355 if (ret)
1356 return ret;
1357 }
1358 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1359 if (using_desc_dma(hs) && !hs_ep->index) {
1360 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1361 if (ret)
1362 return ret;
1363 }
1364
1365 first = list_empty(&hs_ep->queue);
1366 list_add_tail(&hs_req->queue, &hs_ep->queue);
1367
1368 /*
1369 * Handle DDMA isochronous transfers separately - just add new entry
1370 * to the half of descriptor chain that is not processed by HW.
1371 * Transfer will be started once SW gets either one of NAK or
1372 * OutTknEpDis interrupts.
1373 */
1374 if (using_desc_dma(hs) && hs_ep->isochronous &&
1375 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1376 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1377 hs_req->req.length);
1378 if (ret)
1379 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1380
1381 return 0;
1382 }
1383
1384 if (first) {
1385 if (!hs_ep->isochronous) {
1386 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1387 return 0;
1388 }
1389
1390 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1391 dwc2_gadget_incr_frame_num(hs_ep);
1392
1393 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1394 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1395 }
1396 return 0;
1397 }
1398
1399 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1400 gfp_t gfp_flags)
1401 {
1402 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1403 struct dwc2_hsotg *hs = hs_ep->parent;
1404 unsigned long flags = 0;
1405 int ret = 0;
1406
1407 spin_lock_irqsave(&hs->lock, flags);
1408 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1409 spin_unlock_irqrestore(&hs->lock, flags);
1410
1411 return ret;
1412 }
1413
1414 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1415 struct usb_request *req)
1416 {
1417 struct dwc2_hsotg_req *hs_req = our_req(req);
1418
1419 kfree(hs_req);
1420 }
1421
1422 /**
1423 * dwc2_hsotg_complete_oursetup - setup completion callback
1424 * @ep: The endpoint the request was on.
1425 * @req: The request completed.
1426 *
1427 * Called on completion of any requests the driver itself
1428 * submitted that need cleaning up.
1429 */
1430 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1431 struct usb_request *req)
1432 {
1433 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1434 struct dwc2_hsotg *hsotg = hs_ep->parent;
1435
1436 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1437
1438 dwc2_hsotg_ep_free_request(ep, req);
1439 }
1440
1441 /**
1442 * ep_from_windex - convert control wIndex value to endpoint
1443 * @hsotg: The driver state.
1444 * @windex: The control request wIndex field (in host order).
1445 *
1446 * Convert the given wIndex into a pointer to an driver endpoint
1447 * structure, or return NULL if it is not a valid endpoint.
1448 */
1449 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1450 u32 windex)
1451 {
1452 struct dwc2_hsotg_ep *ep;
1453 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1454 int idx = windex & 0x7F;
1455
1456 if (windex >= 0x100)
1457 return NULL;
1458
1459 if (idx > hsotg->num_of_eps)
1460 return NULL;
1461
1462 ep = index_to_ep(hsotg, idx, dir);
1463
1464 if (idx && ep->dir_in != dir)
1465 return NULL;
1466
1467 return ep;
1468 }
1469
1470 /**
1471 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1472 * @hsotg: The driver state.
1473 * @testmode: requested usb test mode
1474 * Enable usb Test Mode requested by the Host.
1475 */
1476 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1477 {
1478 int dctl = dwc2_readl(hsotg->regs + DCTL);
1479
1480 dctl &= ~DCTL_TSTCTL_MASK;
1481 switch (testmode) {
1482 case TEST_J:
1483 case TEST_K:
1484 case TEST_SE0_NAK:
1485 case TEST_PACKET:
1486 case TEST_FORCE_EN:
1487 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1488 break;
1489 default:
1490 return -EINVAL;
1491 }
1492 dwc2_writel(dctl, hsotg->regs + DCTL);
1493 return 0;
1494 }
1495
1496 /**
1497 * dwc2_hsotg_send_reply - send reply to control request
1498 * @hsotg: The device state
1499 * @ep: Endpoint 0
1500 * @buff: Buffer for request
1501 * @length: Length of reply.
1502 *
1503 * Create a request and queue it on the given endpoint. This is useful as
1504 * an internal method of sending replies to certain control requests, etc.
1505 */
1506 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1507 struct dwc2_hsotg_ep *ep,
1508 void *buff,
1509 int length)
1510 {
1511 struct usb_request *req;
1512 int ret;
1513
1514 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1515
1516 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1517 hsotg->ep0_reply = req;
1518 if (!req) {
1519 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1520 return -ENOMEM;
1521 }
1522
1523 req->buf = hsotg->ep0_buff;
1524 req->length = length;
1525 /*
1526 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1527 * STATUS stage.
1528 */
1529 req->zero = 0;
1530 req->complete = dwc2_hsotg_complete_oursetup;
1531
1532 if (length)
1533 memcpy(req->buf, buff, length);
1534
1535 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1536 if (ret) {
1537 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1538 return ret;
1539 }
1540
1541 return 0;
1542 }
1543
1544 /**
1545 * dwc2_hsotg_process_req_status - process request GET_STATUS
1546 * @hsotg: The device state
1547 * @ctrl: USB control request
1548 */
1549 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1550 struct usb_ctrlrequest *ctrl)
1551 {
1552 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1553 struct dwc2_hsotg_ep *ep;
1554 __le16 reply;
1555 int ret;
1556
1557 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1558
1559 if (!ep0->dir_in) {
1560 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1561 return -EINVAL;
1562 }
1563
1564 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1565 case USB_RECIP_DEVICE:
1566 /*
1567 * bit 0 => self powered
1568 * bit 1 => remote wakeup
1569 */
1570 reply = cpu_to_le16(0);
1571 break;
1572
1573 case USB_RECIP_INTERFACE:
1574 /* currently, the data result should be zero */
1575 reply = cpu_to_le16(0);
1576 break;
1577
1578 case USB_RECIP_ENDPOINT:
1579 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1580 if (!ep)
1581 return -ENOENT;
1582
1583 reply = cpu_to_le16(ep->halted ? 1 : 0);
1584 break;
1585
1586 default:
1587 return 0;
1588 }
1589
1590 if (le16_to_cpu(ctrl->wLength) != 2)
1591 return -EINVAL;
1592
1593 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1594 if (ret) {
1595 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1596 return ret;
1597 }
1598
1599 return 1;
1600 }
1601
1602 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1603
1604 /**
1605 * get_ep_head - return the first request on the endpoint
1606 * @hs_ep: The controller endpoint to get
1607 *
1608 * Get the first request on the endpoint.
1609 */
1610 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1611 {
1612 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1613 queue);
1614 }
1615
1616 /**
1617 * dwc2_gadget_start_next_request - Starts next request from ep queue
1618 * @hs_ep: Endpoint structure
1619 *
1620 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1621 * in its handler. Hence we need to unmask it here to be able to do
1622 * resynchronization.
1623 */
1624 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1625 {
1626 u32 mask;
1627 struct dwc2_hsotg *hsotg = hs_ep->parent;
1628 int dir_in = hs_ep->dir_in;
1629 struct dwc2_hsotg_req *hs_req;
1630 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1631
1632 if (!list_empty(&hs_ep->queue)) {
1633 hs_req = get_ep_head(hs_ep);
1634 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1635 return;
1636 }
1637 if (!hs_ep->isochronous)
1638 return;
1639
1640 if (dir_in) {
1641 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1642 __func__);
1643 } else {
1644 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1645 __func__);
1646 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1647 mask |= DOEPMSK_OUTTKNEPDISMSK;
1648 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1649 }
1650 }
1651
1652 /**
1653 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1654 * @hsotg: The device state
1655 * @ctrl: USB control request
1656 */
1657 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1658 struct usb_ctrlrequest *ctrl)
1659 {
1660 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1661 struct dwc2_hsotg_req *hs_req;
1662 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1663 struct dwc2_hsotg_ep *ep;
1664 int ret;
1665 bool halted;
1666 u32 recip;
1667 u32 wValue;
1668 u32 wIndex;
1669
1670 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1671 __func__, set ? "SET" : "CLEAR");
1672
1673 wValue = le16_to_cpu(ctrl->wValue);
1674 wIndex = le16_to_cpu(ctrl->wIndex);
1675 recip = ctrl->bRequestType & USB_RECIP_MASK;
1676
1677 switch (recip) {
1678 case USB_RECIP_DEVICE:
1679 switch (wValue) {
1680 case USB_DEVICE_TEST_MODE:
1681 if ((wIndex & 0xff) != 0)
1682 return -EINVAL;
1683 if (!set)
1684 return -EINVAL;
1685
1686 hsotg->test_mode = wIndex >> 8;
1687 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1688 if (ret) {
1689 dev_err(hsotg->dev,
1690 "%s: failed to send reply\n", __func__);
1691 return ret;
1692 }
1693 break;
1694 default:
1695 return -ENOENT;
1696 }
1697 break;
1698
1699 case USB_RECIP_ENDPOINT:
1700 ep = ep_from_windex(hsotg, wIndex);
1701 if (!ep) {
1702 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1703 __func__, wIndex);
1704 return -ENOENT;
1705 }
1706
1707 switch (wValue) {
1708 case USB_ENDPOINT_HALT:
1709 halted = ep->halted;
1710
1711 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1712
1713 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1714 if (ret) {
1715 dev_err(hsotg->dev,
1716 "%s: failed to send reply\n", __func__);
1717 return ret;
1718 }
1719
1720 /*
1721 * we have to complete all requests for ep if it was
1722 * halted, and the halt was cleared by CLEAR_FEATURE
1723 */
1724
1725 if (!set && halted) {
1726 /*
1727 * If we have request in progress,
1728 * then complete it
1729 */
1730 if (ep->req) {
1731 hs_req = ep->req;
1732 ep->req = NULL;
1733 list_del_init(&hs_req->queue);
1734 if (hs_req->req.complete) {
1735 spin_unlock(&hsotg->lock);
1736 usb_gadget_giveback_request(
1737 &ep->ep, &hs_req->req);
1738 spin_lock(&hsotg->lock);
1739 }
1740 }
1741
1742 /* If we have pending request, then start it */
1743 if (!ep->req)
1744 dwc2_gadget_start_next_request(ep);
1745 }
1746
1747 break;
1748
1749 default:
1750 return -ENOENT;
1751 }
1752 break;
1753 default:
1754 return -ENOENT;
1755 }
1756 return 1;
1757 }
1758
1759 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1760
1761 /**
1762 * dwc2_hsotg_stall_ep0 - stall ep0
1763 * @hsotg: The device state
1764 *
1765 * Set stall for ep0 as response for setup request.
1766 */
1767 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1768 {
1769 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1770 u32 reg;
1771 u32 ctrl;
1772
1773 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1774 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1775
1776 /*
1777 * DxEPCTL_Stall will be cleared by EP once it has
1778 * taken effect, so no need to clear later.
1779 */
1780
1781 ctrl = dwc2_readl(hsotg->regs + reg);
1782 ctrl |= DXEPCTL_STALL;
1783 ctrl |= DXEPCTL_CNAK;
1784 dwc2_writel(ctrl, hsotg->regs + reg);
1785
1786 dev_dbg(hsotg->dev,
1787 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1788 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1789
1790 /*
1791 * complete won't be called, so we enqueue
1792 * setup request here
1793 */
1794 dwc2_hsotg_enqueue_setup(hsotg);
1795 }
1796
1797 /**
1798 * dwc2_hsotg_process_control - process a control request
1799 * @hsotg: The device state
1800 * @ctrl: The control request received
1801 *
1802 * The controller has received the SETUP phase of a control request, and
1803 * needs to work out what to do next (and whether to pass it on to the
1804 * gadget driver).
1805 */
1806 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1807 struct usb_ctrlrequest *ctrl)
1808 {
1809 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1810 int ret = 0;
1811 u32 dcfg;
1812
1813 dev_dbg(hsotg->dev,
1814 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1815 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1816 ctrl->wIndex, ctrl->wLength);
1817
1818 if (ctrl->wLength == 0) {
1819 ep0->dir_in = 1;
1820 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1821 } else if (ctrl->bRequestType & USB_DIR_IN) {
1822 ep0->dir_in = 1;
1823 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1824 } else {
1825 ep0->dir_in = 0;
1826 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1827 }
1828
1829 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1830 switch (ctrl->bRequest) {
1831 case USB_REQ_SET_ADDRESS:
1832 hsotg->connected = 1;
1833 dcfg = dwc2_readl(hsotg->regs + DCFG);
1834 dcfg &= ~DCFG_DEVADDR_MASK;
1835 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1836 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1837 dwc2_writel(dcfg, hsotg->regs + DCFG);
1838
1839 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1840
1841 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1842 return;
1843
1844 case USB_REQ_GET_STATUS:
1845 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1846 break;
1847
1848 case USB_REQ_CLEAR_FEATURE:
1849 case USB_REQ_SET_FEATURE:
1850 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1851 break;
1852 }
1853 }
1854
1855 /* as a fallback, try delivering it to the driver to deal with */
1856
1857 if (ret == 0 && hsotg->driver) {
1858 spin_unlock(&hsotg->lock);
1859 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1860 spin_lock(&hsotg->lock);
1861 if (ret < 0)
1862 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1863 }
1864
1865 /*
1866 * the request is either unhandlable, or is not formatted correctly
1867 * so respond with a STALL for the status stage to indicate failure.
1868 */
1869
1870 if (ret < 0)
1871 dwc2_hsotg_stall_ep0(hsotg);
1872 }
1873
1874 /**
1875 * dwc2_hsotg_complete_setup - completion of a setup transfer
1876 * @ep: The endpoint the request was on.
1877 * @req: The request completed.
1878 *
1879 * Called on completion of any requests the driver itself submitted for
1880 * EP0 setup packets
1881 */
1882 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1883 struct usb_request *req)
1884 {
1885 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1886 struct dwc2_hsotg *hsotg = hs_ep->parent;
1887
1888 if (req->status < 0) {
1889 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1890 return;
1891 }
1892
1893 spin_lock(&hsotg->lock);
1894 if (req->actual == 0)
1895 dwc2_hsotg_enqueue_setup(hsotg);
1896 else
1897 dwc2_hsotg_process_control(hsotg, req->buf);
1898 spin_unlock(&hsotg->lock);
1899 }
1900
1901 /**
1902 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1903 * @hsotg: The device state.
1904 *
1905 * Enqueue a request on EP0 if necessary to received any SETUP packets
1906 * received from the host.
1907 */
1908 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1909 {
1910 struct usb_request *req = hsotg->ctrl_req;
1911 struct dwc2_hsotg_req *hs_req = our_req(req);
1912 int ret;
1913
1914 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1915
1916 req->zero = 0;
1917 req->length = 8;
1918 req->buf = hsotg->ctrl_buff;
1919 req->complete = dwc2_hsotg_complete_setup;
1920
1921 if (!list_empty(&hs_req->queue)) {
1922 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1923 return;
1924 }
1925
1926 hsotg->eps_out[0]->dir_in = 0;
1927 hsotg->eps_out[0]->send_zlp = 0;
1928 hsotg->ep0_state = DWC2_EP0_SETUP;
1929
1930 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1931 if (ret < 0) {
1932 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1933 /*
1934 * Don't think there's much we can do other than watch the
1935 * driver fail.
1936 */
1937 }
1938 }
1939
1940 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1941 struct dwc2_hsotg_ep *hs_ep)
1942 {
1943 u32 ctrl;
1944 u8 index = hs_ep->index;
1945 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1946 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1947
1948 if (hs_ep->dir_in)
1949 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1950 index);
1951 else
1952 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1953 index);
1954 if (using_desc_dma(hsotg)) {
1955 /* Not specific buffer needed for ep0 ZLP */
1956 dma_addr_t dma = hs_ep->desc_list_dma;
1957
1958 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1959 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1960 } else {
1961 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1962 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1963 epsiz_reg);
1964 }
1965
1966 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1967 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1968 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1969 ctrl |= DXEPCTL_USBACTEP;
1970 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1971 }
1972
1973 /**
1974 * dwc2_hsotg_complete_request - complete a request given to us
1975 * @hsotg: The device state.
1976 * @hs_ep: The endpoint the request was on.
1977 * @hs_req: The request to complete.
1978 * @result: The result code (0 => Ok, otherwise errno)
1979 *
1980 * The given request has finished, so call the necessary completion
1981 * if it has one and then look to see if we can start a new request
1982 * on the endpoint.
1983 *
1984 * Note, expects the ep to already be locked as appropriate.
1985 */
1986 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1987 struct dwc2_hsotg_ep *hs_ep,
1988 struct dwc2_hsotg_req *hs_req,
1989 int result)
1990 {
1991 if (!hs_req) {
1992 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1993 return;
1994 }
1995
1996 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1997 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1998
1999 /*
2000 * only replace the status if we've not already set an error
2001 * from a previous transaction
2002 */
2003
2004 if (hs_req->req.status == -EINPROGRESS)
2005 hs_req->req.status = result;
2006
2007 if (using_dma(hsotg))
2008 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2009
2010 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2011
2012 hs_ep->req = NULL;
2013 list_del_init(&hs_req->queue);
2014
2015 /*
2016 * call the complete request with the locks off, just in case the
2017 * request tries to queue more work for this endpoint.
2018 */
2019
2020 if (hs_req->req.complete) {
2021 spin_unlock(&hsotg->lock);
2022 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2023 spin_lock(&hsotg->lock);
2024 }
2025
2026 /* In DDMA don't need to proceed to starting of next ISOC request */
2027 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2028 return;
2029
2030 /*
2031 * Look to see if there is anything else to do. Note, the completion
2032 * of the previous request may have caused a new request to be started
2033 * so be careful when doing this.
2034 */
2035
2036 if (!hs_ep->req && result >= 0)
2037 dwc2_gadget_start_next_request(hs_ep);
2038 }
2039
2040 /*
2041 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2042 * @hs_ep: The endpoint the request was on.
2043 *
2044 * Get first request from the ep queue, determine descriptor on which complete
2045 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2046 * chain is currently in use by HW, adjusts dma_address and calculates index
2047 * of completed descriptor based on the value of DEPDMA register. Update actual
2048 * length of request, giveback to gadget.
2049 */
2050 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2051 {
2052 struct dwc2_hsotg *hsotg = hs_ep->parent;
2053 struct dwc2_hsotg_req *hs_req;
2054 struct usb_request *ureq;
2055 int index;
2056 dma_addr_t dma_addr;
2057 u32 dma_reg;
2058 u32 depdma;
2059 u32 desc_sts;
2060 u32 mask;
2061
2062 hs_req = get_ep_head(hs_ep);
2063 if (!hs_req) {
2064 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2065 return;
2066 }
2067 ureq = &hs_req->req;
2068
2069 dma_addr = hs_ep->desc_list_dma;
2070
2071 /*
2072 * If lower half of descriptor chain is currently use by SW,
2073 * that means higher half is being processed by HW, so shift
2074 * DMA address to higher half of descriptor chain.
2075 */
2076 if (!hs_ep->isoc_chain_num)
2077 dma_addr += sizeof(struct dwc2_dma_desc) *
2078 (MAX_DMA_DESC_NUM_GENERIC / 2);
2079
2080 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2081 depdma = dwc2_readl(hsotg->regs + dma_reg);
2082
2083 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2084 desc_sts = hs_ep->desc_list[index].status;
2085
2086 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2087 DEV_DMA_ISOC_RX_NBYTES_MASK;
2088 ureq->actual = ureq->length -
2089 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2090
2091 /* Adjust actual length for ISOC Out if length is not align of 4 */
2092 if (!hs_ep->dir_in && ureq->length & 0x3)
2093 ureq->actual += 4 - (ureq->length & 0x3);
2094
2095 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2096 }
2097
2098 /*
2099 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2100 * @hs_ep: The isochronous endpoint to be re-enabled.
2101 *
2102 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2103 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2104 * was under SW control till HW was busy and restart the endpoint if needed.
2105 */
2106 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2107 {
2108 struct dwc2_hsotg *hsotg = hs_ep->parent;
2109 u32 depctl;
2110 u32 dma_reg;
2111 u32 ctrl;
2112 u32 dma_addr = hs_ep->desc_list_dma;
2113 unsigned char index = hs_ep->index;
2114
2115 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2116 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2117
2118 ctrl = dwc2_readl(hsotg->regs + depctl);
2119
2120 /*
2121 * EP was disabled if HW has processed last descriptor or BNA was set.
2122 * So restart ep if SW has prepared new descriptor chain in ep_queue
2123 * routine while HW was busy.
2124 */
2125 if (!(ctrl & DXEPCTL_EPENA)) {
2126 if (!hs_ep->next_desc) {
2127 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2128 __func__);
2129 return;
2130 }
2131
2132 dma_addr += sizeof(struct dwc2_dma_desc) *
2133 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2134 hs_ep->isoc_chain_num;
2135 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2136
2137 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2138 dwc2_writel(ctrl, hsotg->regs + depctl);
2139
2140 /* Switch ISOC descriptor chain number being processed by SW*/
2141 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2142 hs_ep->next_desc = 0;
2143
2144 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2145 __func__);
2146 }
2147 }
2148
2149 /**
2150 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2151 * @hsotg: The device state.
2152 * @ep_idx: The endpoint index for the data
2153 * @size: The size of data in the fifo, in bytes
2154 *
2155 * The FIFO status shows there is data to read from the FIFO for a given
2156 * endpoint, so sort out whether we need to read the data into a request
2157 * that has been made for that endpoint.
2158 */
2159 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2160 {
2161 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2162 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2163 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2164 int to_read;
2165 int max_req;
2166 int read_ptr;
2167
2168 if (!hs_req) {
2169 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2170 int ptr;
2171
2172 dev_dbg(hsotg->dev,
2173 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2174 __func__, size, ep_idx, epctl);
2175
2176 /* dump the data from the FIFO, we've nothing we can do */
2177 for (ptr = 0; ptr < size; ptr += 4)
2178 (void)dwc2_readl(fifo);
2179
2180 return;
2181 }
2182
2183 to_read = size;
2184 read_ptr = hs_req->req.actual;
2185 max_req = hs_req->req.length - read_ptr;
2186
2187 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2188 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2189
2190 if (to_read > max_req) {
2191 /*
2192 * more data appeared than we where willing
2193 * to deal with in this request.
2194 */
2195
2196 /* currently we don't deal this */
2197 WARN_ON_ONCE(1);
2198 }
2199
2200 hs_ep->total_data += to_read;
2201 hs_req->req.actual += to_read;
2202 to_read = DIV_ROUND_UP(to_read, 4);
2203
2204 /*
2205 * note, we might over-write the buffer end by 3 bytes depending on
2206 * alignment of the data.
2207 */
2208 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2209 }
2210
2211 /**
2212 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2213 * @hsotg: The device instance
2214 * @dir_in: If IN zlp
2215 *
2216 * Generate a zero-length IN packet request for terminating a SETUP
2217 * transaction.
2218 *
2219 * Note, since we don't write any data to the TxFIFO, then it is
2220 * currently believed that we do not need to wait for any space in
2221 * the TxFIFO.
2222 */
2223 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2224 {
2225 /* eps_out[0] is used in both directions */
2226 hsotg->eps_out[0]->dir_in = dir_in;
2227 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2228
2229 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2230 }
2231
2232 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2233 u32 epctl_reg)
2234 {
2235 u32 ctrl;
2236
2237 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2238 if (ctrl & DXEPCTL_EOFRNUM)
2239 ctrl |= DXEPCTL_SETEVENFR;
2240 else
2241 ctrl |= DXEPCTL_SETODDFR;
2242 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2243 }
2244
2245 /*
2246 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2247 * @hs_ep - The endpoint on which transfer went
2248 *
2249 * Iterate over endpoints descriptor chain and get info on bytes remained
2250 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2251 */
2252 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2253 {
2254 struct dwc2_hsotg *hsotg = hs_ep->parent;
2255 unsigned int bytes_rem = 0;
2256 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2257 int i;
2258 u32 status;
2259
2260 if (!desc)
2261 return -EINVAL;
2262
2263 for (i = 0; i < hs_ep->desc_count; ++i) {
2264 status = desc->status;
2265 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2266
2267 if (status & DEV_DMA_STS_MASK)
2268 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2269 i, status & DEV_DMA_STS_MASK);
2270 }
2271
2272 return bytes_rem;
2273 }
2274
2275 /**
2276 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2277 * @hsotg: The device instance
2278 * @epnum: The endpoint received from
2279 *
2280 * The RXFIFO has delivered an OutDone event, which means that the data
2281 * transfer for an OUT endpoint has been completed, either by a short
2282 * packet or by the finish of a transfer.
2283 */
2284 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2285 {
2286 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2287 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2288 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2289 struct usb_request *req = &hs_req->req;
2290 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2291 int result = 0;
2292
2293 if (!hs_req) {
2294 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2295 return;
2296 }
2297
2298 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2299 dev_dbg(hsotg->dev, "zlp packet received\n");
2300 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2301 dwc2_hsotg_enqueue_setup(hsotg);
2302 return;
2303 }
2304
2305 if (using_desc_dma(hsotg))
2306 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2307
2308 if (using_dma(hsotg)) {
2309 unsigned int size_done;
2310
2311 /*
2312 * Calculate the size of the transfer by checking how much
2313 * is left in the endpoint size register and then working it
2314 * out from the amount we loaded for the transfer.
2315 *
2316 * We need to do this as DMA pointers are always 32bit aligned
2317 * so may overshoot/undershoot the transfer.
2318 */
2319
2320 size_done = hs_ep->size_loaded - size_left;
2321 size_done += hs_ep->last_load;
2322
2323 req->actual = size_done;
2324 }
2325
2326 /* if there is more request to do, schedule new transfer */
2327 if (req->actual < req->length && size_left == 0) {
2328 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2329 return;
2330 }
2331
2332 if (req->actual < req->length && req->short_not_ok) {
2333 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2334 __func__, req->actual, req->length);
2335
2336 /*
2337 * todo - what should we return here? there's no one else
2338 * even bothering to check the status.
2339 */
2340 }
2341
2342 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2343 if (!using_desc_dma(hsotg) && epnum == 0 &&
2344 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2345 /* Move to STATUS IN */
2346 dwc2_hsotg_ep0_zlp(hsotg, true);
2347 return;
2348 }
2349
2350 /*
2351 * Slave mode OUT transfers do not go through XferComplete so
2352 * adjust the ISOC parity here.
2353 */
2354 if (!using_dma(hsotg)) {
2355 if (hs_ep->isochronous && hs_ep->interval == 1)
2356 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2357 else if (hs_ep->isochronous && hs_ep->interval > 1)
2358 dwc2_gadget_incr_frame_num(hs_ep);
2359 }
2360
2361 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2362 }
2363
2364 /**
2365 * dwc2_hsotg_handle_rx - RX FIFO has data
2366 * @hsotg: The device instance
2367 *
2368 * The IRQ handler has detected that the RX FIFO has some data in it
2369 * that requires processing, so find out what is in there and do the
2370 * appropriate read.
2371 *
2372 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2373 * chunks, so if you have x packets received on an endpoint you'll get x
2374 * FIFO events delivered, each with a packet's worth of data in it.
2375 *
2376 * When using DMA, we should not be processing events from the RXFIFO
2377 * as the actual data should be sent to the memory directly and we turn
2378 * on the completion interrupts to get notifications of transfer completion.
2379 */
2380 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2381 {
2382 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2383 u32 epnum, status, size;
2384
2385 WARN_ON(using_dma(hsotg));
2386
2387 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2388 status = grxstsr & GRXSTS_PKTSTS_MASK;
2389
2390 size = grxstsr & GRXSTS_BYTECNT_MASK;
2391 size >>= GRXSTS_BYTECNT_SHIFT;
2392
2393 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2394 __func__, grxstsr, size, epnum);
2395
2396 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2397 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2398 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2399 break;
2400
2401 case GRXSTS_PKTSTS_OUTDONE:
2402 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2403 dwc2_hsotg_read_frameno(hsotg));
2404
2405 if (!using_dma(hsotg))
2406 dwc2_hsotg_handle_outdone(hsotg, epnum);
2407 break;
2408
2409 case GRXSTS_PKTSTS_SETUPDONE:
2410 dev_dbg(hsotg->dev,
2411 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2412 dwc2_hsotg_read_frameno(hsotg),
2413 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2414 /*
2415 * Call dwc2_hsotg_handle_outdone here if it was not called from
2416 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2417 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2418 */
2419 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2420 dwc2_hsotg_handle_outdone(hsotg, epnum);
2421 break;
2422
2423 case GRXSTS_PKTSTS_OUTRX:
2424 dwc2_hsotg_rx_data(hsotg, epnum, size);
2425 break;
2426
2427 case GRXSTS_PKTSTS_SETUPRX:
2428 dev_dbg(hsotg->dev,
2429 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2430 dwc2_hsotg_read_frameno(hsotg),
2431 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2432
2433 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2434
2435 dwc2_hsotg_rx_data(hsotg, epnum, size);
2436 break;
2437
2438 default:
2439 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2440 __func__, grxstsr);
2441
2442 dwc2_hsotg_dump(hsotg);
2443 break;
2444 }
2445 }
2446
2447 /**
2448 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2449 * @mps: The maximum packet size in bytes.
2450 */
2451 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2452 {
2453 switch (mps) {
2454 case 64:
2455 return D0EPCTL_MPS_64;
2456 case 32:
2457 return D0EPCTL_MPS_32;
2458 case 16:
2459 return D0EPCTL_MPS_16;
2460 case 8:
2461 return D0EPCTL_MPS_8;
2462 }
2463
2464 /* bad max packet size, warn and return invalid result */
2465 WARN_ON(1);
2466 return (u32)-1;
2467 }
2468
2469 /**
2470 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2471 * @hsotg: The driver state.
2472 * @ep: The index number of the endpoint
2473 * @mps: The maximum packet size in bytes
2474 * @mc: The multicount value
2475 *
2476 * Configure the maximum packet size for the given endpoint, updating
2477 * the hardware control registers to reflect this.
2478 */
2479 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2480 unsigned int ep, unsigned int mps,
2481 unsigned int mc, unsigned int dir_in)
2482 {
2483 struct dwc2_hsotg_ep *hs_ep;
2484 void __iomem *regs = hsotg->regs;
2485 u32 reg;
2486
2487 hs_ep = index_to_ep(hsotg, ep, dir_in);
2488 if (!hs_ep)
2489 return;
2490
2491 if (ep == 0) {
2492 u32 mps_bytes = mps;
2493
2494 /* EP0 is a special case */
2495 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2496 if (mps > 3)
2497 goto bad_mps;
2498 hs_ep->ep.maxpacket = mps_bytes;
2499 hs_ep->mc = 1;
2500 } else {
2501 if (mps > 1024)
2502 goto bad_mps;
2503 hs_ep->mc = mc;
2504 if (mc > 3)
2505 goto bad_mps;
2506 hs_ep->ep.maxpacket = mps;
2507 }
2508
2509 if (dir_in) {
2510 reg = dwc2_readl(regs + DIEPCTL(ep));
2511 reg &= ~DXEPCTL_MPS_MASK;
2512 reg |= mps;
2513 dwc2_writel(reg, regs + DIEPCTL(ep));
2514 } else {
2515 reg = dwc2_readl(regs + DOEPCTL(ep));
2516 reg &= ~DXEPCTL_MPS_MASK;
2517 reg |= mps;
2518 dwc2_writel(reg, regs + DOEPCTL(ep));
2519 }
2520
2521 return;
2522
2523 bad_mps:
2524 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2525 }
2526
2527 /**
2528 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2529 * @hsotg: The driver state
2530 * @idx: The index for the endpoint (0..15)
2531 */
2532 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2533 {
2534 int timeout;
2535 int val;
2536
2537 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2538 hsotg->regs + GRSTCTL);
2539
2540 /* wait until the fifo is flushed */
2541 timeout = 100;
2542
2543 while (1) {
2544 val = dwc2_readl(hsotg->regs + GRSTCTL);
2545
2546 if ((val & (GRSTCTL_TXFFLSH)) == 0)
2547 break;
2548
2549 if (--timeout == 0) {
2550 dev_err(hsotg->dev,
2551 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2552 __func__, val);
2553 break;
2554 }
2555
2556 udelay(1);
2557 }
2558 }
2559
2560 /**
2561 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2562 * @hsotg: The driver state
2563 * @hs_ep: The driver endpoint to check.
2564 *
2565 * Check to see if there is a request that has data to send, and if so
2566 * make an attempt to write data into the FIFO.
2567 */
2568 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2569 struct dwc2_hsotg_ep *hs_ep)
2570 {
2571 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2572
2573 if (!hs_ep->dir_in || !hs_req) {
2574 /**
2575 * if request is not enqueued, we disable interrupts
2576 * for endpoints, excepting ep0
2577 */
2578 if (hs_ep->index != 0)
2579 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2580 hs_ep->dir_in, 0);
2581 return 0;
2582 }
2583
2584 if (hs_req->req.actual < hs_req->req.length) {
2585 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2586 hs_ep->index);
2587 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2588 }
2589
2590 return 0;
2591 }
2592
2593 /**
2594 * dwc2_hsotg_complete_in - complete IN transfer
2595 * @hsotg: The device state.
2596 * @hs_ep: The endpoint that has just completed.
2597 *
2598 * An IN transfer has been completed, update the transfer's state and then
2599 * call the relevant completion routines.
2600 */
2601 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2602 struct dwc2_hsotg_ep *hs_ep)
2603 {
2604 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2605 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2606 int size_left, size_done;
2607
2608 if (!hs_req) {
2609 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2610 return;
2611 }
2612
2613 /* Finish ZLP handling for IN EP0 transactions */
2614 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2615 dev_dbg(hsotg->dev, "zlp packet sent\n");
2616
2617 /*
2618 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2619 * changed to IN. Change back to complete OUT transfer request
2620 */
2621 hs_ep->dir_in = 0;
2622
2623 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2624 if (hsotg->test_mode) {
2625 int ret;
2626
2627 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2628 if (ret < 0) {
2629 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2630 hsotg->test_mode);
2631 dwc2_hsotg_stall_ep0(hsotg);
2632 return;
2633 }
2634 }
2635 dwc2_hsotg_enqueue_setup(hsotg);
2636 return;
2637 }
2638
2639 /*
2640 * Calculate the size of the transfer by checking how much is left
2641 * in the endpoint size register and then working it out from
2642 * the amount we loaded for the transfer.
2643 *
2644 * We do this even for DMA, as the transfer may have incremented
2645 * past the end of the buffer (DMA transfers are always 32bit
2646 * aligned).
2647 */
2648 if (using_desc_dma(hsotg)) {
2649 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2650 if (size_left < 0)
2651 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2652 size_left);
2653 } else {
2654 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2655 }
2656
2657 size_done = hs_ep->size_loaded - size_left;
2658 size_done += hs_ep->last_load;
2659
2660 if (hs_req->req.actual != size_done)
2661 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2662 __func__, hs_req->req.actual, size_done);
2663
2664 hs_req->req.actual = size_done;
2665 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2666 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2667
2668 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2669 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2670 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2671 return;
2672 }
2673
2674 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2675 if (hs_ep->send_zlp) {
2676 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2677 hs_ep->send_zlp = 0;
2678 /* transfer will be completed on next complete interrupt */
2679 return;
2680 }
2681
2682 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2683 /* Move to STATUS OUT */
2684 dwc2_hsotg_ep0_zlp(hsotg, false);
2685 return;
2686 }
2687
2688 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2689 }
2690
2691 /**
2692 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2693 * @hsotg: The device state.
2694 * @idx: Index of ep.
2695 * @dir_in: Endpoint direction 1-in 0-out.
2696 *
2697 * Reads for endpoint with given index and direction, by masking
2698 * epint_reg with coresponding mask.
2699 */
2700 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2701 unsigned int idx, int dir_in)
2702 {
2703 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2704 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2705 u32 ints;
2706 u32 mask;
2707 u32 diepempmsk;
2708
2709 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2710 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2711 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2712 mask |= DXEPINT_SETUP_RCVD;
2713
2714 ints = dwc2_readl(hsotg->regs + epint_reg);
2715 ints &= mask;
2716 return ints;
2717 }
2718
2719 /**
2720 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2721 * @hs_ep: The endpoint on which interrupt is asserted.
2722 *
2723 * This interrupt indicates that the endpoint has been disabled per the
2724 * application's request.
2725 *
2726 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2727 * in case of ISOC completes current request.
2728 *
2729 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2730 * request starts it.
2731 */
2732 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2733 {
2734 struct dwc2_hsotg *hsotg = hs_ep->parent;
2735 struct dwc2_hsotg_req *hs_req;
2736 unsigned char idx = hs_ep->index;
2737 int dir_in = hs_ep->dir_in;
2738 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2739 int dctl = dwc2_readl(hsotg->regs + DCTL);
2740
2741 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2742
2743 if (dir_in) {
2744 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2745
2746 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2747
2748 if (hs_ep->isochronous) {
2749 dwc2_hsotg_complete_in(hsotg, hs_ep);
2750 return;
2751 }
2752
2753 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2754 int dctl = dwc2_readl(hsotg->regs + DCTL);
2755
2756 dctl |= DCTL_CGNPINNAK;
2757 dwc2_writel(dctl, hsotg->regs + DCTL);
2758 }
2759 return;
2760 }
2761
2762 if (dctl & DCTL_GOUTNAKSTS) {
2763 dctl |= DCTL_CGOUTNAK;
2764 dwc2_writel(dctl, hsotg->regs + DCTL);
2765 }
2766
2767 if (!hs_ep->isochronous)
2768 return;
2769
2770 if (list_empty(&hs_ep->queue)) {
2771 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2772 __func__, hs_ep);
2773 return;
2774 }
2775
2776 do {
2777 hs_req = get_ep_head(hs_ep);
2778 if (hs_req)
2779 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2780 -ENODATA);
2781 dwc2_gadget_incr_frame_num(hs_ep);
2782 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2783
2784 dwc2_gadget_start_next_request(hs_ep);
2785 }
2786
2787 /**
2788 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2789 * @hs_ep: The endpoint on which interrupt is asserted.
2790 *
2791 * This is starting point for ISOC-OUT transfer, synchronization done with
2792 * first out token received from host while corresponding EP is disabled.
2793 *
2794 * Device does not know initial frame in which out token will come. For this
2795 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2796 * getting this interrupt SW starts calculation for next transfer frame.
2797 */
2798 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2799 {
2800 struct dwc2_hsotg *hsotg = ep->parent;
2801 int dir_in = ep->dir_in;
2802 u32 doepmsk;
2803 u32 tmp;
2804
2805 if (dir_in || !ep->isochronous)
2806 return;
2807
2808 /*
2809 * Store frame in which irq was asserted here, as
2810 * it can change while completing request below.
2811 */
2812 tmp = dwc2_hsotg_read_frameno(hsotg);
2813
2814 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2815
2816 if (using_desc_dma(hsotg)) {
2817 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2818 /* Start first ISO Out */
2819 ep->target_frame = tmp;
2820 dwc2_gadget_start_isoc_ddma(ep);
2821 }
2822 return;
2823 }
2824
2825 if (ep->interval > 1 &&
2826 ep->target_frame == TARGET_FRAME_INITIAL) {
2827 u32 dsts;
2828 u32 ctrl;
2829
2830 dsts = dwc2_readl(hsotg->regs + DSTS);
2831 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2832 dwc2_gadget_incr_frame_num(ep);
2833
2834 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2835 if (ep->target_frame & 0x1)
2836 ctrl |= DXEPCTL_SETODDFR;
2837 else
2838 ctrl |= DXEPCTL_SETEVENFR;
2839
2840 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2841 }
2842
2843 dwc2_gadget_start_next_request(ep);
2844 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2845 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2846 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2847 }
2848
2849 /**
2850 * dwc2_gadget_handle_nak - handle NAK interrupt
2851 * @hs_ep: The endpoint on which interrupt is asserted.
2852 *
2853 * This is starting point for ISOC-IN transfer, synchronization done with
2854 * first IN token received from host while corresponding EP is disabled.
2855 *
2856 * Device does not know when first one token will arrive from host. On first
2857 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2858 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2859 * sent in response to that as there was no data in FIFO. SW is basing on this
2860 * interrupt to obtain frame in which token has come and then based on the
2861 * interval calculates next frame for transfer.
2862 */
2863 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2864 {
2865 struct dwc2_hsotg *hsotg = hs_ep->parent;
2866 int dir_in = hs_ep->dir_in;
2867
2868 if (!dir_in || !hs_ep->isochronous)
2869 return;
2870
2871 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2872 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2873
2874 if (using_desc_dma(hsotg)) {
2875 dwc2_gadget_start_isoc_ddma(hs_ep);
2876 return;
2877 }
2878
2879 if (hs_ep->interval > 1) {
2880 u32 ctrl = dwc2_readl(hsotg->regs +
2881 DIEPCTL(hs_ep->index));
2882 if (hs_ep->target_frame & 0x1)
2883 ctrl |= DXEPCTL_SETODDFR;
2884 else
2885 ctrl |= DXEPCTL_SETEVENFR;
2886
2887 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2888 }
2889
2890 dwc2_hsotg_complete_request(hsotg, hs_ep,
2891 get_ep_head(hs_ep), 0);
2892 }
2893
2894 dwc2_gadget_incr_frame_num(hs_ep);
2895 }
2896
2897 /**
2898 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2899 * @hsotg: The driver state
2900 * @idx: The index for the endpoint (0..15)
2901 * @dir_in: Set if this is an IN endpoint
2902 *
2903 * Process and clear any interrupt pending for an individual endpoint
2904 */
2905 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2906 int dir_in)
2907 {
2908 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2909 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2910 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2911 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2912 u32 ints;
2913 u32 ctrl;
2914
2915 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2916 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2917
2918 /* Clear endpoint interrupts */
2919 dwc2_writel(ints, hsotg->regs + epint_reg);
2920
2921 if (!hs_ep) {
2922 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2923 __func__, idx, dir_in ? "in" : "out");
2924 return;
2925 }
2926
2927 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2928 __func__, idx, dir_in ? "in" : "out", ints);
2929
2930 /* Don't process XferCompl interrupt if it is a setup packet */
2931 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2932 ints &= ~DXEPINT_XFERCOMPL;
2933
2934 /*
2935 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2936 * stage and xfercomplete was generated without SETUP phase done
2937 * interrupt. SW should parse received setup packet only after host's
2938 * exit from setup phase of control transfer.
2939 */
2940 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2941 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2942 ints &= ~DXEPINT_XFERCOMPL;
2943
2944 if (ints & DXEPINT_XFERCOMPL) {
2945 dev_dbg(hsotg->dev,
2946 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2947 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2948 dwc2_readl(hsotg->regs + epsiz_reg));
2949
2950 /* In DDMA handle isochronous requests separately */
2951 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2952 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2953 /* Try to start next isoc request */
2954 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2955 } else if (dir_in) {
2956 /*
2957 * We get OutDone from the FIFO, so we only
2958 * need to look at completing IN requests here
2959 * if operating slave mode
2960 */
2961 if (hs_ep->isochronous && hs_ep->interval > 1)
2962 dwc2_gadget_incr_frame_num(hs_ep);
2963
2964 dwc2_hsotg_complete_in(hsotg, hs_ep);
2965 if (ints & DXEPINT_NAKINTRPT)
2966 ints &= ~DXEPINT_NAKINTRPT;
2967
2968 if (idx == 0 && !hs_ep->req)
2969 dwc2_hsotg_enqueue_setup(hsotg);
2970 } else if (using_dma(hsotg)) {
2971 /*
2972 * We're using DMA, we need to fire an OutDone here
2973 * as we ignore the RXFIFO.
2974 */
2975 if (hs_ep->isochronous && hs_ep->interval > 1)
2976 dwc2_gadget_incr_frame_num(hs_ep);
2977
2978 dwc2_hsotg_handle_outdone(hsotg, idx);
2979 }
2980 }
2981
2982 if (ints & DXEPINT_EPDISBLD)
2983 dwc2_gadget_handle_ep_disabled(hs_ep);
2984
2985 if (ints & DXEPINT_OUTTKNEPDIS)
2986 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2987
2988 if (ints & DXEPINT_NAKINTRPT)
2989 dwc2_gadget_handle_nak(hs_ep);
2990
2991 if (ints & DXEPINT_AHBERR)
2992 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2993
2994 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2995 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2996
2997 if (using_dma(hsotg) && idx == 0) {
2998 /*
2999 * this is the notification we've received a
3000 * setup packet. In non-DMA mode we'd get this
3001 * from the RXFIFO, instead we need to process
3002 * the setup here.
3003 */
3004
3005 if (dir_in)
3006 WARN_ON_ONCE(1);
3007 else
3008 dwc2_hsotg_handle_outdone(hsotg, 0);
3009 }
3010 }
3011
3012 if (ints & DXEPINT_STSPHSERCVD) {
3013 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3014
3015 /* Move to STATUS IN for DDMA */
3016 if (using_desc_dma(hsotg))
3017 dwc2_hsotg_ep0_zlp(hsotg, true);
3018 }
3019
3020 if (ints & DXEPINT_BACK2BACKSETUP)
3021 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3022
3023 if (ints & DXEPINT_BNAINTR) {
3024 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3025
3026 /*
3027 * Try to start next isoc request, if any.
3028 * Sometimes the endpoint remains enabled after BNA interrupt
3029 * assertion, which is not expected, hence we can enter here
3030 * couple of times.
3031 */
3032 if (hs_ep->isochronous)
3033 dwc2_gadget_start_next_isoc_ddma(hs_ep);
3034 }
3035
3036 if (dir_in && !hs_ep->isochronous) {
3037 /* not sure if this is important, but we'll clear it anyway */
3038 if (ints & DXEPINT_INTKNTXFEMP) {
3039 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3040 __func__, idx);
3041 }
3042
3043 /* this probably means something bad is happening */
3044 if (ints & DXEPINT_INTKNEPMIS) {
3045 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3046 __func__, idx);
3047 }
3048
3049 /* FIFO has space or is empty (see GAHBCFG) */
3050 if (hsotg->dedicated_fifos &&
3051 ints & DXEPINT_TXFEMP) {
3052 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3053 __func__, idx);
3054 if (!using_dma(hsotg))
3055 dwc2_hsotg_trytx(hsotg, hs_ep);
3056 }
3057 }
3058 }
3059
3060 /**
3061 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3062 * @hsotg: The device state.
3063 *
3064 * Handle updating the device settings after the enumeration phase has
3065 * been completed.
3066 */
3067 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3068 {
3069 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3070 int ep0_mps = 0, ep_mps = 8;
3071
3072 /*
3073 * This should signal the finish of the enumeration phase
3074 * of the USB handshaking, so we should now know what rate
3075 * we connected at.
3076 */
3077
3078 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3079
3080 /*
3081 * note, since we're limited by the size of transfer on EP0, and
3082 * it seems IN transfers must be a even number of packets we do
3083 * not advertise a 64byte MPS on EP0.
3084 */
3085
3086 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3087 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3088 case DSTS_ENUMSPD_FS:
3089 case DSTS_ENUMSPD_FS48:
3090 hsotg->gadget.speed = USB_SPEED_FULL;
3091 ep0_mps = EP0_MPS_LIMIT;
3092 ep_mps = 1023;
3093 break;
3094
3095 case DSTS_ENUMSPD_HS:
3096 hsotg->gadget.speed = USB_SPEED_HIGH;
3097 ep0_mps = EP0_MPS_LIMIT;
3098 ep_mps = 1024;
3099 break;
3100
3101 case DSTS_ENUMSPD_LS:
3102 hsotg->gadget.speed = USB_SPEED_LOW;
3103 ep0_mps = 8;
3104 ep_mps = 8;
3105 /*
3106 * note, we don't actually support LS in this driver at the
3107 * moment, and the documentation seems to imply that it isn't
3108 * supported by the PHYs on some of the devices.
3109 */
3110 break;
3111 }
3112 dev_info(hsotg->dev, "new device is %s\n",
3113 usb_speed_string(hsotg->gadget.speed));
3114
3115 /*
3116 * we should now know the maximum packet size for an
3117 * endpoint, so set the endpoints to a default value.
3118 */
3119
3120 if (ep0_mps) {
3121 int i;
3122 /* Initialize ep0 for both in and out directions */
3123 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3124 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3125 for (i = 1; i < hsotg->num_of_eps; i++) {
3126 if (hsotg->eps_in[i])
3127 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3128 0, 1);
3129 if (hsotg->eps_out[i])
3130 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3131 0, 0);
3132 }
3133 }
3134
3135 /* ensure after enumeration our EP0 is active */
3136
3137 dwc2_hsotg_enqueue_setup(hsotg);
3138
3139 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3140 dwc2_readl(hsotg->regs + DIEPCTL0),
3141 dwc2_readl(hsotg->regs + DOEPCTL0));
3142 }
3143
3144 /**
3145 * kill_all_requests - remove all requests from the endpoint's queue
3146 * @hsotg: The device state.
3147 * @ep: The endpoint the requests may be on.
3148 * @result: The result code to use.
3149 *
3150 * Go through the requests on the given endpoint and mark them
3151 * completed with the given result code.
3152 */
3153 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3154 struct dwc2_hsotg_ep *ep,
3155 int result)
3156 {
3157 struct dwc2_hsotg_req *req, *treq;
3158 unsigned int size;
3159
3160 ep->req = NULL;
3161
3162 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3163 dwc2_hsotg_complete_request(hsotg, ep, req,
3164 result);
3165
3166 if (!hsotg->dedicated_fifos)
3167 return;
3168 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3169 if (size < ep->fifo_size)
3170 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3171 }
3172
3173 /**
3174 * dwc2_hsotg_disconnect - disconnect service
3175 * @hsotg: The device state.
3176 *
3177 * The device has been disconnected. Remove all current
3178 * transactions and signal the gadget driver that this
3179 * has happened.
3180 */
3181 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3182 {
3183 unsigned int ep;
3184
3185 if (!hsotg->connected)
3186 return;
3187
3188 hsotg->connected = 0;
3189 hsotg->test_mode = 0;
3190
3191 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3192 if (hsotg->eps_in[ep])
3193 kill_all_requests(hsotg, hsotg->eps_in[ep],
3194 -ESHUTDOWN);
3195 if (hsotg->eps_out[ep])
3196 kill_all_requests(hsotg, hsotg->eps_out[ep],
3197 -ESHUTDOWN);
3198 }
3199
3200 call_gadget(hsotg, disconnect);
3201 hsotg->lx_state = DWC2_L3;
3202
3203 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3204 }
3205
3206 /**
3207 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3208 * @hsotg: The device state:
3209 * @periodic: True if this is a periodic FIFO interrupt
3210 */
3211 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3212 {
3213 struct dwc2_hsotg_ep *ep;
3214 int epno, ret;
3215
3216 /* look through for any more data to transmit */
3217 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3218 ep = index_to_ep(hsotg, epno, 1);
3219
3220 if (!ep)
3221 continue;
3222
3223 if (!ep->dir_in)
3224 continue;
3225
3226 if ((periodic && !ep->periodic) ||
3227 (!periodic && ep->periodic))
3228 continue;
3229
3230 ret = dwc2_hsotg_trytx(hsotg, ep);
3231 if (ret < 0)
3232 break;
3233 }
3234 }
3235
3236 /* IRQ flags which will trigger a retry around the IRQ loop */
3237 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3238 GINTSTS_PTXFEMP | \
3239 GINTSTS_RXFLVL)
3240
3241 /**
3242 * dwc2_hsotg_core_init - issue softreset to the core
3243 * @hsotg: The device state
3244 *
3245 * Issue a soft reset to the core, and await the core finishing it.
3246 */
3247 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3248 bool is_usb_reset)
3249 {
3250 u32 intmsk;
3251 u32 val;
3252 u32 usbcfg;
3253 u32 dcfg = 0;
3254
3255 /* Kill any ep0 requests as controller will be reinitialized */
3256 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3257
3258 if (!is_usb_reset)
3259 if (dwc2_core_reset(hsotg, true))
3260 return;
3261
3262 /*
3263 * we must now enable ep0 ready for host detection and then
3264 * set configuration.
3265 */
3266
3267 /* keep other bits untouched (so e.g. forced modes are not lost) */
3268 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3269 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3270 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3271
3272 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3273 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3274 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3275 /* FS/LS Dedicated Transceiver Interface */
3276 usbcfg |= GUSBCFG_PHYSEL;
3277 } else {
3278 /* set the PLL on, remove the HNP/SRP and set the PHY */
3279 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3280 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3281 (val << GUSBCFG_USBTRDTIM_SHIFT);
3282 }
3283 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3284
3285 dwc2_hsotg_init_fifo(hsotg);
3286
3287 if (!is_usb_reset)
3288 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3289
3290 dcfg |= DCFG_EPMISCNT(1);
3291
3292 switch (hsotg->params.speed) {
3293 case DWC2_SPEED_PARAM_LOW:
3294 dcfg |= DCFG_DEVSPD_LS;
3295 break;
3296 case DWC2_SPEED_PARAM_FULL:
3297 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3298 dcfg |= DCFG_DEVSPD_FS48;
3299 else
3300 dcfg |= DCFG_DEVSPD_FS;
3301 break;
3302 default:
3303 dcfg |= DCFG_DEVSPD_HS;
3304 }
3305
3306 dwc2_writel(dcfg, hsotg->regs + DCFG);
3307
3308 /* Clear any pending OTG interrupts */
3309 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3310
3311 /* Clear any pending interrupts */
3312 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3313 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3314 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3315 GINTSTS_USBRST | GINTSTS_RESETDET |
3316 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3317 GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3318
3319 if (!using_desc_dma(hsotg))
3320 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3321
3322 if (!hsotg->params.external_id_pin_ctl)
3323 intmsk |= GINTSTS_CONIDSTSCHNG;
3324
3325 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3326
3327 if (using_dma(hsotg)) {
3328 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3329 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3330 hsotg->regs + GAHBCFG);
3331
3332 /* Set DDMA mode support in the core if needed */
3333 if (using_desc_dma(hsotg))
3334 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3335
3336 } else {
3337 dwc2_writel(((hsotg->dedicated_fifos) ?
3338 (GAHBCFG_NP_TXF_EMP_LVL |
3339 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3340 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3341 }
3342
3343 /*
3344 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3345 * when we have no data to transfer. Otherwise we get being flooded by
3346 * interrupts.
3347 */
3348
3349 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3350 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3351 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3352 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3353 hsotg->regs + DIEPMSK);
3354
3355 /*
3356 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3357 * DMA mode we may need this and StsPhseRcvd.
3358 */
3359 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3360 DOEPMSK_STSPHSERCVDMSK) : 0) |
3361 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3362 DOEPMSK_SETUPMSK,
3363 hsotg->regs + DOEPMSK);
3364
3365 /* Enable BNA interrupt for DDMA */
3366 if (using_desc_dma(hsotg))
3367 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3368
3369 dwc2_writel(0, hsotg->regs + DAINTMSK);
3370
3371 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3372 dwc2_readl(hsotg->regs + DIEPCTL0),
3373 dwc2_readl(hsotg->regs + DOEPCTL0));
3374
3375 /* enable in and out endpoint interrupts */
3376 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3377
3378 /*
3379 * Enable the RXFIFO when in slave mode, as this is how we collect
3380 * the data. In DMA mode, we get events from the FIFO but also
3381 * things we cannot process, so do not use it.
3382 */
3383 if (!using_dma(hsotg))
3384 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3385
3386 /* Enable interrupts for EP0 in and out */
3387 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3388 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3389
3390 if (!is_usb_reset) {
3391 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3392 udelay(10); /* see openiboot */
3393 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3394 }
3395
3396 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3397
3398 /*
3399 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3400 * writing to the EPCTL register..
3401 */
3402
3403 /* set to read 1 8byte packet */
3404 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3405 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3406
3407 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3408 DXEPCTL_CNAK | DXEPCTL_EPENA |
3409 DXEPCTL_USBACTEP,
3410 hsotg->regs + DOEPCTL0);
3411
3412 /* enable, but don't activate EP0in */
3413 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3414 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3415
3416 dwc2_hsotg_enqueue_setup(hsotg);
3417
3418 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3419 dwc2_readl(hsotg->regs + DIEPCTL0),
3420 dwc2_readl(hsotg->regs + DOEPCTL0));
3421
3422 /* clear global NAKs */
3423 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3424 if (!is_usb_reset)
3425 val |= DCTL_SFTDISCON;
3426 __orr32(hsotg->regs + DCTL, val);
3427
3428 /* must be at-least 3ms to allow bus to see disconnect */
3429 mdelay(3);
3430
3431 hsotg->lx_state = DWC2_L0;
3432 }
3433
3434 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3435 {
3436 /* set the soft-disconnect bit */
3437 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3438 }
3439
3440 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3441 {
3442 /* remove the soft-disconnect and let's go */
3443 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3444 }
3445
3446 /**
3447 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3448 * @hsotg: The device state:
3449 *
3450 * This interrupt indicates one of the following conditions occurred while
3451 * transmitting an ISOC transaction.
3452 * - Corrupted IN Token for ISOC EP.
3453 * - Packet not complete in FIFO.
3454 *
3455 * The following actions will be taken:
3456 * - Determine the EP
3457 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3458 */
3459 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3460 {
3461 struct dwc2_hsotg_ep *hs_ep;
3462 u32 epctrl;
3463 u32 idx;
3464
3465 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3466
3467 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3468 hs_ep = hsotg->eps_in[idx];
3469 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3470 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3471 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3472 epctrl |= DXEPCTL_SNAK;
3473 epctrl |= DXEPCTL_EPDIS;
3474 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3475 }
3476 }
3477
3478 /* Clear interrupt */
3479 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3480 }
3481
3482 /**
3483 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3484 * @hsotg: The device state:
3485 *
3486 * This interrupt indicates one of the following conditions occurred while
3487 * transmitting an ISOC transaction.
3488 * - Corrupted OUT Token for ISOC EP.
3489 * - Packet not complete in FIFO.
3490 *
3491 * The following actions will be taken:
3492 * - Determine the EP
3493 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3494 */
3495 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3496 {
3497 u32 gintsts;
3498 u32 gintmsk;
3499 u32 epctrl;
3500 struct dwc2_hsotg_ep *hs_ep;
3501 int idx;
3502
3503 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3504
3505 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3506 hs_ep = hsotg->eps_out[idx];
3507 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3508 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3509 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3510 /* Unmask GOUTNAKEFF interrupt */
3511 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3512 gintmsk |= GINTSTS_GOUTNAKEFF;
3513 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3514
3515 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3516 if (!(gintsts & GINTSTS_GOUTNAKEFF))
3517 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3518 }
3519 }
3520
3521 /* Clear interrupt */
3522 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3523 }
3524
3525 /**
3526 * dwc2_hsotg_irq - handle device interrupt
3527 * @irq: The IRQ number triggered
3528 * @pw: The pw value when registered the handler.
3529 */
3530 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3531 {
3532 struct dwc2_hsotg *hsotg = pw;
3533 int retry_count = 8;
3534 u32 gintsts;
3535 u32 gintmsk;
3536
3537 if (!dwc2_is_device_mode(hsotg))
3538 return IRQ_NONE;
3539
3540 spin_lock(&hsotg->lock);
3541 irq_retry:
3542 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3543 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3544
3545 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3546 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3547
3548 gintsts &= gintmsk;
3549
3550 if (gintsts & GINTSTS_RESETDET) {
3551 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3552
3553 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3554
3555 /* This event must be used only if controller is suspended */
3556 if (hsotg->lx_state == DWC2_L2) {
3557 dwc2_exit_hibernation(hsotg, true);
3558 hsotg->lx_state = DWC2_L0;
3559 }
3560 }
3561
3562 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3563 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3564 u32 connected = hsotg->connected;
3565
3566 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3567 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3568 dwc2_readl(hsotg->regs + GNPTXSTS));
3569
3570 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3571
3572 /* Report disconnection if it is not already done. */
3573 dwc2_hsotg_disconnect(hsotg);
3574
3575 /* Reset device address to zero */
3576 __bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3577
3578 if (usb_status & GOTGCTL_BSESVLD && connected)
3579 dwc2_hsotg_core_init_disconnected(hsotg, true);
3580 }
3581
3582 if (gintsts & GINTSTS_ENUMDONE) {
3583 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3584
3585 dwc2_hsotg_irq_enumdone(hsotg);
3586 }
3587
3588 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3589 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3590 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3591 u32 daint_out, daint_in;
3592 int ep;
3593
3594 daint &= daintmsk;
3595 daint_out = daint >> DAINT_OUTEP_SHIFT;
3596 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3597
3598 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3599
3600 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3601 ep++, daint_out >>= 1) {
3602 if (daint_out & 1)
3603 dwc2_hsotg_epint(hsotg, ep, 0);
3604 }
3605
3606 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3607 ep++, daint_in >>= 1) {
3608 if (daint_in & 1)
3609 dwc2_hsotg_epint(hsotg, ep, 1);
3610 }
3611 }
3612
3613 /* check both FIFOs */
3614
3615 if (gintsts & GINTSTS_NPTXFEMP) {
3616 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3617
3618 /*
3619 * Disable the interrupt to stop it happening again
3620 * unless one of these endpoint routines decides that
3621 * it needs re-enabling
3622 */
3623
3624 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3625 dwc2_hsotg_irq_fifoempty(hsotg, false);
3626 }
3627
3628 if (gintsts & GINTSTS_PTXFEMP) {
3629 dev_dbg(hsotg->dev, "PTxFEmp\n");
3630
3631 /* See note in GINTSTS_NPTxFEmp */
3632
3633 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3634 dwc2_hsotg_irq_fifoempty(hsotg, true);
3635 }
3636
3637 if (gintsts & GINTSTS_RXFLVL) {
3638 /*
3639 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3640 * we need to retry dwc2_hsotg_handle_rx if this is still
3641 * set.
3642 */
3643
3644 dwc2_hsotg_handle_rx(hsotg);
3645 }
3646
3647 if (gintsts & GINTSTS_ERLYSUSP) {
3648 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3649 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3650 }
3651
3652 /*
3653 * these next two seem to crop-up occasionally causing the core
3654 * to shutdown the USB transfer, so try clearing them and logging
3655 * the occurrence.
3656 */
3657
3658 if (gintsts & GINTSTS_GOUTNAKEFF) {
3659 u8 idx;
3660 u32 epctrl;
3661 u32 gintmsk;
3662 struct dwc2_hsotg_ep *hs_ep;
3663
3664 /* Mask this interrupt */
3665 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3666 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3667 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3668
3669 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3670 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3671 hs_ep = hsotg->eps_out[idx];
3672 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3673
3674 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3675 epctrl |= DXEPCTL_SNAK;
3676 epctrl |= DXEPCTL_EPDIS;
3677 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3678 }
3679 }
3680
3681 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3682 }
3683
3684 if (gintsts & GINTSTS_GINNAKEFF) {
3685 dev_info(hsotg->dev, "GINNakEff triggered\n");
3686
3687 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3688
3689 dwc2_hsotg_dump(hsotg);
3690 }
3691
3692 if (gintsts & GINTSTS_INCOMPL_SOIN)
3693 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3694
3695 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3696 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3697
3698 /*
3699 * if we've had fifo events, we should try and go around the
3700 * loop again to see if there's any point in returning yet.
3701 */
3702
3703 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3704 goto irq_retry;
3705
3706 spin_unlock(&hsotg->lock);
3707
3708 return IRQ_HANDLED;
3709 }
3710
3711 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3712 u32 bit, u32 timeout)
3713 {
3714 u32 i;
3715
3716 for (i = 0; i < timeout; i++) {
3717 if (dwc2_readl(hs_otg->regs + reg) & bit)
3718 return 0;
3719 udelay(1);
3720 }
3721
3722 return -ETIMEDOUT;
3723 }
3724
3725 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3726 struct dwc2_hsotg_ep *hs_ep)
3727 {
3728 u32 epctrl_reg;
3729 u32 epint_reg;
3730
3731 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3732 DOEPCTL(hs_ep->index);
3733 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3734 DOEPINT(hs_ep->index);
3735
3736 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3737 hs_ep->name);
3738
3739 if (hs_ep->dir_in) {
3740 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3741 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3742 /* Wait for Nak effect */
3743 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3744 DXEPINT_INEPNAKEFF, 100))
3745 dev_warn(hsotg->dev,
3746 "%s: timeout DIEPINT.NAKEFF\n",
3747 __func__);
3748 } else {
3749 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3750 /* Wait for Nak effect */
3751 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3752 GINTSTS_GINNAKEFF, 100))
3753 dev_warn(hsotg->dev,
3754 "%s: timeout GINTSTS.GINNAKEFF\n",
3755 __func__);
3756 }
3757 } else {
3758 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3759 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3760
3761 /* Wait for global nak to take effect */
3762 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3763 GINTSTS_GOUTNAKEFF, 100))
3764 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3765 __func__);
3766 }
3767
3768 /* Disable ep */
3769 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3770
3771 /* Wait for ep to be disabled */
3772 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3773 dev_warn(hsotg->dev,
3774 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3775
3776 /* Clear EPDISBLD interrupt */
3777 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3778
3779 if (hs_ep->dir_in) {
3780 unsigned short fifo_index;
3781
3782 if (hsotg->dedicated_fifos || hs_ep->periodic)
3783 fifo_index = hs_ep->fifo_index;
3784 else
3785 fifo_index = 0;
3786
3787 /* Flush TX FIFO */
3788 dwc2_flush_tx_fifo(hsotg, fifo_index);
3789
3790 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3791 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3792 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3793
3794 } else {
3795 /* Remove global NAKs */
3796 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3797 }
3798 }
3799
3800 /**
3801 * dwc2_hsotg_ep_enable - enable the given endpoint
3802 * @ep: The USB endpint to configure
3803 * @desc: The USB endpoint descriptor to configure with.
3804 *
3805 * This is called from the USB gadget code's usb_ep_enable().
3806 */
3807 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3808 const struct usb_endpoint_descriptor *desc)
3809 {
3810 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3811 struct dwc2_hsotg *hsotg = hs_ep->parent;
3812 unsigned long flags;
3813 unsigned int index = hs_ep->index;
3814 u32 epctrl_reg;
3815 u32 epctrl;
3816 u32 mps;
3817 u32 mc;
3818 u32 mask;
3819 unsigned int dir_in;
3820 unsigned int i, val, size;
3821 int ret = 0;
3822
3823 dev_dbg(hsotg->dev,
3824 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3825 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3826 desc->wMaxPacketSize, desc->bInterval);
3827
3828 /* not to be called for EP0 */
3829 if (index == 0) {
3830 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3831 return -EINVAL;
3832 }
3833
3834 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3835 if (dir_in != hs_ep->dir_in) {
3836 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3837 return -EINVAL;
3838 }
3839
3840 mps = usb_endpoint_maxp(desc);
3841 mc = usb_endpoint_maxp_mult(desc);
3842
3843 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3844
3845 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3846 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3847
3848 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3849 __func__, epctrl, epctrl_reg);
3850
3851 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3852 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3853 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3854 MAX_DMA_DESC_NUM_GENERIC *
3855 sizeof(struct dwc2_dma_desc),
3856 &hs_ep->desc_list_dma, GFP_ATOMIC);
3857 if (!hs_ep->desc_list) {
3858 ret = -ENOMEM;
3859 goto error2;
3860 }
3861 }
3862
3863 spin_lock_irqsave(&hsotg->lock, flags);
3864
3865 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3866 epctrl |= DXEPCTL_MPS(mps);
3867
3868 /*
3869 * mark the endpoint as active, otherwise the core may ignore
3870 * transactions entirely for this endpoint
3871 */
3872 epctrl |= DXEPCTL_USBACTEP;
3873
3874 /* update the endpoint state */
3875 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3876
3877 /* default, set to non-periodic */
3878 hs_ep->isochronous = 0;
3879 hs_ep->periodic = 0;
3880 hs_ep->halted = 0;
3881 hs_ep->interval = desc->bInterval;
3882
3883 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3884 case USB_ENDPOINT_XFER_ISOC:
3885 epctrl |= DXEPCTL_EPTYPE_ISO;
3886 epctrl |= DXEPCTL_SETEVENFR;
3887 hs_ep->isochronous = 1;
3888 hs_ep->interval = 1 << (desc->bInterval - 1);
3889 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3890 hs_ep->isoc_chain_num = 0;
3891 hs_ep->next_desc = 0;
3892 if (dir_in) {
3893 hs_ep->periodic = 1;
3894 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3895 mask |= DIEPMSK_NAKMSK;
3896 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3897 } else {
3898 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3899 mask |= DOEPMSK_OUTTKNEPDISMSK;
3900 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3901 }
3902 break;
3903
3904 case USB_ENDPOINT_XFER_BULK:
3905 epctrl |= DXEPCTL_EPTYPE_BULK;
3906 break;
3907
3908 case USB_ENDPOINT_XFER_INT:
3909 if (dir_in)
3910 hs_ep->periodic = 1;
3911
3912 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3913 hs_ep->interval = 1 << (desc->bInterval - 1);
3914
3915 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3916 break;
3917
3918 case USB_ENDPOINT_XFER_CONTROL:
3919 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3920 break;
3921 }
3922
3923 /*
3924 * if the hardware has dedicated fifos, we must give each IN EP
3925 * a unique tx-fifo even if it is non-periodic.
3926 */
3927 if (dir_in && hsotg->dedicated_fifos) {
3928 u32 fifo_index = 0;
3929 u32 fifo_size = UINT_MAX;
3930
3931 size = hs_ep->ep.maxpacket * hs_ep->mc;
3932 for (i = 1; i < hsotg->num_of_eps; ++i) {
3933 if (hsotg->fifo_map & (1 << i))
3934 continue;
3935 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3936 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3937 if (val < size)
3938 continue;
3939 /* Search for smallest acceptable fifo */
3940 if (val < fifo_size) {
3941 fifo_size = val;
3942 fifo_index = i;
3943 }
3944 }
3945 if (!fifo_index) {
3946 dev_err(hsotg->dev,
3947 "%s: No suitable fifo found\n", __func__);
3948 ret = -ENOMEM;
3949 goto error1;
3950 }
3951 hsotg->fifo_map |= 1 << fifo_index;
3952 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3953 hs_ep->fifo_index = fifo_index;
3954 hs_ep->fifo_size = fifo_size;
3955 }
3956
3957 /* for non control endpoints, set PID to D0 */
3958 if (index && !hs_ep->isochronous)
3959 epctrl |= DXEPCTL_SETD0PID;
3960
3961 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3962 __func__, epctrl);
3963
3964 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3965 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3966 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3967
3968 /* enable the endpoint interrupt */
3969 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3970
3971 error1:
3972 spin_unlock_irqrestore(&hsotg->lock, flags);
3973
3974 error2:
3975 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3976 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3977 sizeof(struct dwc2_dma_desc),
3978 hs_ep->desc_list, hs_ep->desc_list_dma);
3979 hs_ep->desc_list = NULL;
3980 }
3981
3982 return ret;
3983 }
3984
3985 /**
3986 * dwc2_hsotg_ep_disable - disable given endpoint
3987 * @ep: The endpoint to disable.
3988 */
3989 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3990 {
3991 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3992 struct dwc2_hsotg *hsotg = hs_ep->parent;
3993 int dir_in = hs_ep->dir_in;
3994 int index = hs_ep->index;
3995 unsigned long flags;
3996 u32 epctrl_reg;
3997 u32 ctrl;
3998
3999 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4000
4001 if (ep == &hsotg->eps_out[0]->ep) {
4002 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4003 return -EINVAL;
4004 }
4005
4006 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4007 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4008 return -EINVAL;
4009 }
4010
4011 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4012
4013 spin_lock_irqsave(&hsotg->lock, flags);
4014
4015 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4016
4017 if (ctrl & DXEPCTL_EPENA)
4018 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4019
4020 ctrl &= ~DXEPCTL_EPENA;
4021 ctrl &= ~DXEPCTL_USBACTEP;
4022 ctrl |= DXEPCTL_SNAK;
4023
4024 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4025 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4026
4027 /* disable endpoint interrupts */
4028 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4029
4030 /* terminate all requests with shutdown */
4031 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4032
4033 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4034 hs_ep->fifo_index = 0;
4035 hs_ep->fifo_size = 0;
4036
4037 spin_unlock_irqrestore(&hsotg->lock, flags);
4038 return 0;
4039 }
4040
4041 /**
4042 * on_list - check request is on the given endpoint
4043 * @ep: The endpoint to check.
4044 * @test: The request to test if it is on the endpoint.
4045 */
4046 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4047 {
4048 struct dwc2_hsotg_req *req, *treq;
4049
4050 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4051 if (req == test)
4052 return true;
4053 }
4054
4055 return false;
4056 }
4057
4058 /**
4059 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4060 * @ep: The endpoint to dequeue.
4061 * @req: The request to be removed from a queue.
4062 */
4063 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4064 {
4065 struct dwc2_hsotg_req *hs_req = our_req(req);
4066 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4067 struct dwc2_hsotg *hs = hs_ep->parent;
4068 unsigned long flags;
4069
4070 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4071
4072 spin_lock_irqsave(&hs->lock, flags);
4073
4074 if (!on_list(hs_ep, hs_req)) {
4075 spin_unlock_irqrestore(&hs->lock, flags);
4076 return -EINVAL;
4077 }
4078
4079 /* Dequeue already started request */
4080 if (req == &hs_ep->req->req)
4081 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4082
4083 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4084 spin_unlock_irqrestore(&hs->lock, flags);
4085
4086 return 0;
4087 }
4088
4089 /**
4090 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4091 * @ep: The endpoint to set halt.
4092 * @value: Set or unset the halt.
4093 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4094 * the endpoint is busy processing requests.
4095 *
4096 * We need to stall the endpoint immediately if request comes from set_feature
4097 * protocol command handler.
4098 */
4099 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4100 {
4101 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4102 struct dwc2_hsotg *hs = hs_ep->parent;
4103 int index = hs_ep->index;
4104 u32 epreg;
4105 u32 epctl;
4106 u32 xfertype;
4107
4108 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4109
4110 if (index == 0) {
4111 if (value)
4112 dwc2_hsotg_stall_ep0(hs);
4113 else
4114 dev_warn(hs->dev,
4115 "%s: can't clear halt on ep0\n", __func__);
4116 return 0;
4117 }
4118
4119 if (hs_ep->isochronous) {
4120 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4121 return -EINVAL;
4122 }
4123
4124 if (!now && value && !list_empty(&hs_ep->queue)) {
4125 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4126 ep->name);
4127 return -EAGAIN;
4128 }
4129
4130 if (hs_ep->dir_in) {
4131 epreg = DIEPCTL(index);
4132 epctl = dwc2_readl(hs->regs + epreg);
4133
4134 if (value) {
4135 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4136 if (epctl & DXEPCTL_EPENA)
4137 epctl |= DXEPCTL_EPDIS;
4138 } else {
4139 epctl &= ~DXEPCTL_STALL;
4140 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4141 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4142 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4143 epctl |= DXEPCTL_SETD0PID;
4144 }
4145 dwc2_writel(epctl, hs->regs + epreg);
4146 } else {
4147 epreg = DOEPCTL(index);
4148 epctl = dwc2_readl(hs->regs + epreg);
4149
4150 if (value) {
4151 epctl |= DXEPCTL_STALL;
4152 } else {
4153 epctl &= ~DXEPCTL_STALL;
4154 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4155 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4156 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4157 epctl |= DXEPCTL_SETD0PID;
4158 }
4159 dwc2_writel(epctl, hs->regs + epreg);
4160 }
4161
4162 hs_ep->halted = value;
4163
4164 return 0;
4165 }
4166
4167 /**
4168 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4169 * @ep: The endpoint to set halt.
4170 * @value: Set or unset the halt.
4171 */
4172 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4173 {
4174 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4175 struct dwc2_hsotg *hs = hs_ep->parent;
4176 unsigned long flags = 0;
4177 int ret = 0;
4178
4179 spin_lock_irqsave(&hs->lock, flags);
4180 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4181 spin_unlock_irqrestore(&hs->lock, flags);
4182
4183 return ret;
4184 }
4185
4186 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4187 .enable = dwc2_hsotg_ep_enable,
4188 .disable = dwc2_hsotg_ep_disable,
4189 .alloc_request = dwc2_hsotg_ep_alloc_request,
4190 .free_request = dwc2_hsotg_ep_free_request,
4191 .queue = dwc2_hsotg_ep_queue_lock,
4192 .dequeue = dwc2_hsotg_ep_dequeue,
4193 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4194 /* note, don't believe we have any call for the fifo routines */
4195 };
4196
4197 /**
4198 * dwc2_hsotg_init - initialize the usb core
4199 * @hsotg: The driver state
4200 */
4201 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4202 {
4203 u32 trdtim;
4204 u32 usbcfg;
4205 /* unmask subset of endpoint interrupts */
4206
4207 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4208 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4209 hsotg->regs + DIEPMSK);
4210
4211 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4212 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4213 hsotg->regs + DOEPMSK);
4214
4215 dwc2_writel(0, hsotg->regs + DAINTMSK);
4216
4217 /* Be in disconnected state until gadget is registered */
4218 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4219
4220 /* setup fifos */
4221
4222 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4223 dwc2_readl(hsotg->regs + GRXFSIZ),
4224 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4225
4226 dwc2_hsotg_init_fifo(hsotg);
4227
4228 /* keep other bits untouched (so e.g. forced modes are not lost) */
4229 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4230 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4231 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4232
4233 /* set the PLL on, remove the HNP/SRP and set the PHY */
4234 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4235 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4236 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4237 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4238
4239 if (using_dma(hsotg))
4240 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4241 }
4242
4243 /**
4244 * dwc2_hsotg_udc_start - prepare the udc for work
4245 * @gadget: The usb gadget state
4246 * @driver: The usb gadget driver
4247 *
4248 * Perform initialization to prepare udc device and driver
4249 * to work.
4250 */
4251 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4252 struct usb_gadget_driver *driver)
4253 {
4254 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4255 unsigned long flags;
4256 int ret;
4257
4258 if (!hsotg) {
4259 pr_err("%s: called with no device\n", __func__);
4260 return -ENODEV;
4261 }
4262
4263 if (!driver) {
4264 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4265 return -EINVAL;
4266 }
4267
4268 if (driver->max_speed < USB_SPEED_FULL)
4269 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4270
4271 if (!driver->setup) {
4272 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4273 return -EINVAL;
4274 }
4275
4276 WARN_ON(hsotg->driver);
4277
4278 driver->driver.bus = NULL;
4279 hsotg->driver = driver;
4280 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4281 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4282
4283 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4284 ret = dwc2_lowlevel_hw_enable(hsotg);
4285 if (ret)
4286 goto err;
4287 }
4288
4289 if (!IS_ERR_OR_NULL(hsotg->uphy))
4290 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4291
4292 spin_lock_irqsave(&hsotg->lock, flags);
4293 if (dwc2_hw_is_device(hsotg)) {
4294 dwc2_hsotg_init(hsotg);
4295 dwc2_hsotg_core_init_disconnected(hsotg, false);
4296 }
4297
4298 hsotg->enabled = 0;
4299 spin_unlock_irqrestore(&hsotg->lock, flags);
4300
4301 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4302
4303 return 0;
4304
4305 err:
4306 hsotg->driver = NULL;
4307 return ret;
4308 }
4309
4310 /**
4311 * dwc2_hsotg_udc_stop - stop the udc
4312 * @gadget: The usb gadget state
4313 * @driver: The usb gadget driver
4314 *
4315 * Stop udc hw block and stay tunned for future transmissions
4316 */
4317 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4318 {
4319 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4320 unsigned long flags = 0;
4321 int ep;
4322
4323 if (!hsotg)
4324 return -ENODEV;
4325
4326 /* all endpoints should be shutdown */
4327 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4328 if (hsotg->eps_in[ep])
4329 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4330 if (hsotg->eps_out[ep])
4331 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4332 }
4333
4334 spin_lock_irqsave(&hsotg->lock, flags);
4335
4336 hsotg->driver = NULL;
4337 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4338 hsotg->enabled = 0;
4339
4340 spin_unlock_irqrestore(&hsotg->lock, flags);
4341
4342 if (!IS_ERR_OR_NULL(hsotg->uphy))
4343 otg_set_peripheral(hsotg->uphy->otg, NULL);
4344
4345 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4346 dwc2_lowlevel_hw_disable(hsotg);
4347
4348 return 0;
4349 }
4350
4351 /**
4352 * dwc2_hsotg_gadget_getframe - read the frame number
4353 * @gadget: The usb gadget state
4354 *
4355 * Read the {micro} frame number
4356 */
4357 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4358 {
4359 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4360 }
4361
4362 /**
4363 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4364 * @gadget: The usb gadget state
4365 * @is_on: Current state of the USB PHY
4366 *
4367 * Connect/Disconnect the USB PHY pullup
4368 */
4369 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4370 {
4371 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4372 unsigned long flags = 0;
4373
4374 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4375 hsotg->op_state);
4376
4377 /* Don't modify pullup state while in host mode */
4378 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4379 hsotg->enabled = is_on;
4380 return 0;
4381 }
4382
4383 spin_lock_irqsave(&hsotg->lock, flags);
4384 if (is_on) {
4385 hsotg->enabled = 1;
4386 dwc2_hsotg_core_init_disconnected(hsotg, false);
4387 dwc2_hsotg_core_connect(hsotg);
4388 } else {
4389 dwc2_hsotg_core_disconnect(hsotg);
4390 dwc2_hsotg_disconnect(hsotg);
4391 hsotg->enabled = 0;
4392 }
4393
4394 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4395 spin_unlock_irqrestore(&hsotg->lock, flags);
4396
4397 return 0;
4398 }
4399
4400 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4401 {
4402 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4403 unsigned long flags;
4404
4405 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4406 spin_lock_irqsave(&hsotg->lock, flags);
4407
4408 /*
4409 * If controller is hibernated, it must exit from hibernation
4410 * before being initialized / de-initialized
4411 */
4412 if (hsotg->lx_state == DWC2_L2)
4413 dwc2_exit_hibernation(hsotg, false);
4414
4415 if (is_active) {
4416 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4417
4418 dwc2_hsotg_core_init_disconnected(hsotg, false);
4419 if (hsotg->enabled)
4420 dwc2_hsotg_core_connect(hsotg);
4421 } else {
4422 dwc2_hsotg_core_disconnect(hsotg);
4423 dwc2_hsotg_disconnect(hsotg);
4424 }
4425
4426 spin_unlock_irqrestore(&hsotg->lock, flags);
4427 return 0;
4428 }
4429
4430 /**
4431 * dwc2_hsotg_vbus_draw - report bMaxPower field
4432 * @gadget: The usb gadget state
4433 * @mA: Amount of current
4434 *
4435 * Report how much power the device may consume to the phy.
4436 */
4437 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4438 {
4439 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4440
4441 if (IS_ERR_OR_NULL(hsotg->uphy))
4442 return -ENOTSUPP;
4443 return usb_phy_set_power(hsotg->uphy, mA);
4444 }
4445
4446 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4447 .get_frame = dwc2_hsotg_gadget_getframe,
4448 .udc_start = dwc2_hsotg_udc_start,
4449 .udc_stop = dwc2_hsotg_udc_stop,
4450 .pullup = dwc2_hsotg_pullup,
4451 .vbus_session = dwc2_hsotg_vbus_session,
4452 .vbus_draw = dwc2_hsotg_vbus_draw,
4453 };
4454
4455 /**
4456 * dwc2_hsotg_initep - initialise a single endpoint
4457 * @hsotg: The device state.
4458 * @hs_ep: The endpoint to be initialised.
4459 * @epnum: The endpoint number
4460 *
4461 * Initialise the given endpoint (as part of the probe and device state
4462 * creation) to give to the gadget driver. Setup the endpoint name, any
4463 * direction information and other state that may be required.
4464 */
4465 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4466 struct dwc2_hsotg_ep *hs_ep,
4467 int epnum,
4468 bool dir_in)
4469 {
4470 char *dir;
4471
4472 if (epnum == 0)
4473 dir = "";
4474 else if (dir_in)
4475 dir = "in";
4476 else
4477 dir = "out";
4478
4479 hs_ep->dir_in = dir_in;
4480 hs_ep->index = epnum;
4481
4482 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4483
4484 INIT_LIST_HEAD(&hs_ep->queue);
4485 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4486
4487 /* add to the list of endpoints known by the gadget driver */
4488 if (epnum)
4489 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4490
4491 hs_ep->parent = hsotg;
4492 hs_ep->ep.name = hs_ep->name;
4493
4494 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4495 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4496 else
4497 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4498 epnum ? 1024 : EP0_MPS_LIMIT);
4499 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4500
4501 if (epnum == 0) {
4502 hs_ep->ep.caps.type_control = true;
4503 } else {
4504 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4505 hs_ep->ep.caps.type_iso = true;
4506 hs_ep->ep.caps.type_bulk = true;
4507 }
4508 hs_ep->ep.caps.type_int = true;
4509 }
4510
4511 if (dir_in)
4512 hs_ep->ep.caps.dir_in = true;
4513 else
4514 hs_ep->ep.caps.dir_out = true;
4515
4516 /*
4517 * if we're using dma, we need to set the next-endpoint pointer
4518 * to be something valid.
4519 */
4520
4521 if (using_dma(hsotg)) {
4522 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4523
4524 if (dir_in)
4525 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4526 else
4527 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4528 }
4529 }
4530
4531 /**
4532 * dwc2_hsotg_hw_cfg - read HW configuration registers
4533 * @param: The device state
4534 *
4535 * Read the USB core HW configuration registers
4536 */
4537 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4538 {
4539 u32 cfg;
4540 u32 ep_type;
4541 u32 i;
4542
4543 /* check hardware configuration */
4544
4545 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4546
4547 /* Add ep0 */
4548 hsotg->num_of_eps++;
4549
4550 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4551 sizeof(struct dwc2_hsotg_ep),
4552 GFP_KERNEL);
4553 if (!hsotg->eps_in[0])
4554 return -ENOMEM;
4555 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4556 hsotg->eps_out[0] = hsotg->eps_in[0];
4557
4558 cfg = hsotg->hw_params.dev_ep_dirs;
4559 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4560 ep_type = cfg & 3;
4561 /* Direction in or both */
4562 if (!(ep_type & 2)) {
4563 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4564 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4565 if (!hsotg->eps_in[i])
4566 return -ENOMEM;
4567 }
4568 /* Direction out or both */
4569 if (!(ep_type & 1)) {
4570 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4571 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4572 if (!hsotg->eps_out[i])
4573 return -ENOMEM;
4574 }
4575 }
4576
4577 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4578 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4579
4580 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4581 hsotg->num_of_eps,
4582 hsotg->dedicated_fifos ? "dedicated" : "shared",
4583 hsotg->fifo_mem);
4584 return 0;
4585 }
4586
4587 /**
4588 * dwc2_hsotg_dump - dump state of the udc
4589 * @param: The device state
4590 */
4591 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4592 {
4593 #ifdef DEBUG
4594 struct device *dev = hsotg->dev;
4595 void __iomem *regs = hsotg->regs;
4596 u32 val;
4597 int idx;
4598
4599 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4600 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4601 dwc2_readl(regs + DIEPMSK));
4602
4603 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4604 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4605
4606 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4607 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4608
4609 /* show periodic fifo settings */
4610
4611 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4612 val = dwc2_readl(regs + DPTXFSIZN(idx));
4613 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4614 val >> FIFOSIZE_DEPTH_SHIFT,
4615 val & FIFOSIZE_STARTADDR_MASK);
4616 }
4617
4618 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4619 dev_info(dev,
4620 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4621 dwc2_readl(regs + DIEPCTL(idx)),
4622 dwc2_readl(regs + DIEPTSIZ(idx)),
4623 dwc2_readl(regs + DIEPDMA(idx)));
4624
4625 val = dwc2_readl(regs + DOEPCTL(idx));
4626 dev_info(dev,
4627 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4628 idx, dwc2_readl(regs + DOEPCTL(idx)),
4629 dwc2_readl(regs + DOEPTSIZ(idx)),
4630 dwc2_readl(regs + DOEPDMA(idx)));
4631 }
4632
4633 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4634 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4635 #endif
4636 }
4637
4638 /**
4639 * dwc2_gadget_init - init function for gadget
4640 * @dwc2: The data structure for the DWC2 driver.
4641 * @irq: The IRQ number for the controller.
4642 */
4643 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4644 {
4645 struct device *dev = hsotg->dev;
4646 int epnum;
4647 int ret;
4648
4649 /* Dump fifo information */
4650 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4651 hsotg->params.g_np_tx_fifo_size);
4652 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4653
4654 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4655 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4656 hsotg->gadget.name = dev_name(dev);
4657 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4658 hsotg->gadget.is_otg = 1;
4659 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4660 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4661
4662 ret = dwc2_hsotg_hw_cfg(hsotg);
4663 if (ret) {
4664 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4665 return ret;
4666 }
4667
4668 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4669 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4670 if (!hsotg->ctrl_buff)
4671 return -ENOMEM;
4672
4673 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4674 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4675 if (!hsotg->ep0_buff)
4676 return -ENOMEM;
4677
4678 if (using_desc_dma(hsotg)) {
4679 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4680 if (ret < 0)
4681 return ret;
4682 }
4683
4684 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4685 dev_name(hsotg->dev), hsotg);
4686 if (ret < 0) {
4687 dev_err(dev, "cannot claim IRQ for gadget\n");
4688 return ret;
4689 }
4690
4691 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4692
4693 if (hsotg->num_of_eps == 0) {
4694 dev_err(dev, "wrong number of EPs (zero)\n");
4695 return -EINVAL;
4696 }
4697
4698 /* setup endpoint information */
4699
4700 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4701 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4702
4703 /* allocate EP0 request */
4704
4705 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4706 GFP_KERNEL);
4707 if (!hsotg->ctrl_req) {
4708 dev_err(dev, "failed to allocate ctrl req\n");
4709 return -ENOMEM;
4710 }
4711
4712 /* initialise the endpoints now the core has been initialised */
4713 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4714 if (hsotg->eps_in[epnum])
4715 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4716 epnum, 1);
4717 if (hsotg->eps_out[epnum])
4718 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4719 epnum, 0);
4720 }
4721
4722 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4723 if (ret)
4724 return ret;
4725
4726 dwc2_hsotg_dump(hsotg);
4727
4728 return 0;
4729 }
4730
4731 /**
4732 * dwc2_hsotg_remove - remove function for hsotg driver
4733 * @pdev: The platform information for the driver
4734 */
4735 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4736 {
4737 usb_del_gadget_udc(&hsotg->gadget);
4738
4739 return 0;
4740 }
4741
4742 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4743 {
4744 unsigned long flags;
4745
4746 if (hsotg->lx_state != DWC2_L0)
4747 return 0;
4748
4749 if (hsotg->driver) {
4750 int ep;
4751
4752 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4753 hsotg->driver->driver.name);
4754
4755 spin_lock_irqsave(&hsotg->lock, flags);
4756 if (hsotg->enabled)
4757 dwc2_hsotg_core_disconnect(hsotg);
4758 dwc2_hsotg_disconnect(hsotg);
4759 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4760 spin_unlock_irqrestore(&hsotg->lock, flags);
4761
4762 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4763 if (hsotg->eps_in[ep])
4764 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4765 if (hsotg->eps_out[ep])
4766 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4767 }
4768 }
4769
4770 return 0;
4771 }
4772
4773 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4774 {
4775 unsigned long flags;
4776
4777 if (hsotg->lx_state == DWC2_L2)
4778 return 0;
4779
4780 if (hsotg->driver) {
4781 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4782 hsotg->driver->driver.name);
4783
4784 spin_lock_irqsave(&hsotg->lock, flags);
4785 dwc2_hsotg_core_init_disconnected(hsotg, false);
4786 if (hsotg->enabled)
4787 dwc2_hsotg_core_connect(hsotg);
4788 spin_unlock_irqrestore(&hsotg->lock, flags);
4789 }
4790
4791 return 0;
4792 }
4793
4794 /**
4795 * dwc2_backup_device_registers() - Backup controller device registers.
4796 * When suspending usb bus, registers needs to be backuped
4797 * if controller power is disabled once suspended.
4798 *
4799 * @hsotg: Programming view of the DWC_otg controller
4800 */
4801 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4802 {
4803 struct dwc2_dregs_backup *dr;
4804 int i;
4805
4806 dev_dbg(hsotg->dev, "%s\n", __func__);
4807
4808 /* Backup dev regs */
4809 dr = &hsotg->dr_backup;
4810
4811 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4812 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4813 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4814 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4815 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4816
4817 for (i = 0; i < hsotg->num_of_eps; i++) {
4818 /* Backup IN EPs */
4819 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4820
4821 /* Ensure DATA PID is correctly configured */
4822 if (dr->diepctl[i] & DXEPCTL_DPID)
4823 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4824 else
4825 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4826
4827 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4828 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4829
4830 /* Backup OUT EPs */
4831 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4832
4833 /* Ensure DATA PID is correctly configured */
4834 if (dr->doepctl[i] & DXEPCTL_DPID)
4835 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4836 else
4837 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4838
4839 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4840 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4841 }
4842 dr->valid = true;
4843 return 0;
4844 }
4845
4846 /**
4847 * dwc2_restore_device_registers() - Restore controller device registers.
4848 * When resuming usb bus, device registers needs to be restored
4849 * if controller power were disabled.
4850 *
4851 * @hsotg: Programming view of the DWC_otg controller
4852 */
4853 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4854 {
4855 struct dwc2_dregs_backup *dr;
4856 u32 dctl;
4857 int i;
4858
4859 dev_dbg(hsotg->dev, "%s\n", __func__);
4860
4861 /* Restore dev regs */
4862 dr = &hsotg->dr_backup;
4863 if (!dr->valid) {
4864 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4865 __func__);
4866 return -EINVAL;
4867 }
4868 dr->valid = false;
4869
4870 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4871 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4872 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4873 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4874 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4875
4876 for (i = 0; i < hsotg->num_of_eps; i++) {
4877 /* Restore IN EPs */
4878 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4879 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4880 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4881
4882 /* Restore OUT EPs */
4883 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4884 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4885 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4886 }
4887
4888 /* Set the Power-On Programming done bit */
4889 dctl = dwc2_readl(hsotg->regs + DCTL);
4890 dctl |= DCTL_PWRONPRGDONE;
4891 dwc2_writel(dctl, hsotg->regs + DCTL);
4892
4893 return 0;
4894 }