]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/dwc2/gadget.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / usb / dwc2 / gadget.c
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/of_platform.h>
29
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
33
34 #include "core.h"
35 #include "hw.h"
36
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 {
40 return container_of(req, struct dwc2_hsotg_req, req);
41 }
42
43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 {
45 return container_of(ep, struct dwc2_hsotg_ep, ep);
46 }
47
48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 {
50 return container_of(gadget, struct dwc2_hsotg, gadget);
51 }
52
53 static inline void __orr32(void __iomem *ptr, u32 val)
54 {
55 dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 }
57
58 static inline void __bic32(void __iomem *ptr, u32 val)
59 {
60 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 }
62
63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 u32 ep_index, u32 dir_in)
65 {
66 if (dir_in)
67 return hsotg->eps_in[ep_index];
68 else
69 return hsotg->eps_out[ep_index];
70 }
71
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74
75 /**
76 * using_dma - return the DMA status of the driver.
77 * @hsotg: The driver state.
78 *
79 * Return true if we're using DMA.
80 *
81 * Currently, we have the DMA support code worked into everywhere
82 * that needs it, but the AMBA DMA implementation in the hardware can
83 * only DMA from 32bit aligned addresses. This means that gadgets such
84 * as the CDC Ethernet cannot work as they often pass packets which are
85 * not 32bit aligned.
86 *
87 * Unfortunately the choice to use DMA or not is global to the controller
88 * and seems to be only settable when the controller is being put through
89 * a core reset. This means we either need to fix the gadgets to take
90 * account of DMA alignment, or add bounce buffers (yuerk).
91 *
92 * g_using_dma is set depending on dts flag.
93 */
94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 {
96 return hsotg->params.g_dma;
97 }
98
99 /*
100 * using_desc_dma - return the descriptor DMA status of the driver.
101 * @hsotg: The driver state.
102 *
103 * Return true if we're using descriptor DMA.
104 */
105 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
106 {
107 return hsotg->params.g_dma_desc;
108 }
109
110 /**
111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
112 * @hs_ep: The endpoint
113 * @increment: The value to increment by
114 *
115 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
116 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
117 */
118 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
119 {
120 hs_ep->target_frame += hs_ep->interval;
121 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
122 hs_ep->frame_overrun = 1;
123 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
124 } else {
125 hs_ep->frame_overrun = 0;
126 }
127 }
128
129 /**
130 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 * @hsotg: The device state
132 * @ints: A bitmask of the interrupts to enable
133 */
134 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135 {
136 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 u32 new_gsintmsk;
138
139 new_gsintmsk = gsintmsk | ints;
140
141 if (new_gsintmsk != gsintmsk) {
142 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 }
145 }
146
147 /**
148 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 * @hsotg: The device state
150 * @ints: A bitmask of the interrupts to enable
151 */
152 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153 {
154 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 u32 new_gsintmsk;
156
157 new_gsintmsk = gsintmsk & ~ints;
158
159 if (new_gsintmsk != gsintmsk)
160 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 }
162
163 /**
164 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 * @hsotg: The device state
166 * @ep: The endpoint index
167 * @dir_in: True if direction is in.
168 * @en: The enable value, true to enable
169 *
170 * Set or clear the mask for an individual endpoint's interrupt
171 * request.
172 */
173 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 unsigned int ep, unsigned int dir_in,
175 unsigned int en)
176 {
177 unsigned long flags;
178 u32 bit = 1 << ep;
179 u32 daint;
180
181 if (!dir_in)
182 bit <<= 16;
183
184 local_irq_save(flags);
185 daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 if (en)
187 daint |= bit;
188 else
189 daint &= ~bit;
190 dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 local_irq_restore(flags);
192 }
193
194 /**
195 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
196 */
197 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
198 {
199 if (hsotg->hw_params.en_multiple_tx_fifo)
200 /* In dedicated FIFO mode we need count of IN EPs */
201 return (dwc2_readl(hsotg->regs + GHWCFG4) &
202 GHWCFG4_NUM_IN_EPS_MASK) >> GHWCFG4_NUM_IN_EPS_SHIFT;
203 else
204 /* In shared FIFO mode we need count of Periodic IN EPs */
205 return hsotg->hw_params.num_dev_perio_in_ep;
206 }
207
208 /**
209 * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs
210 */
211 static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg *hsotg)
212 {
213 int val = 0;
214 int i;
215 u32 ep_dirs;
216
217 /*
218 * Don't need additional space for ep info control registers in
219 * slave mode.
220 */
221 if (!using_dma(hsotg)) {
222 dev_dbg(hsotg->dev, "Buffer DMA ep info size 0\n");
223 return 0;
224 }
225
226 /*
227 * Buffer DMA mode - 1 location per endpoit
228 * Descriptor DMA mode - 4 locations per endpoint
229 */
230 ep_dirs = hsotg->hw_params.dev_ep_dirs;
231
232 for (i = 0; i <= hsotg->hw_params.num_dev_ep; i++) {
233 val += ep_dirs & 3 ? 1 : 2;
234 ep_dirs >>= 2;
235 }
236
237 if (using_desc_dma(hsotg))
238 val = val * 4;
239
240 return val;
241 }
242
243 /**
244 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
245 * device mode TX FIFOs
246 */
247 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
248 {
249 int ep_info_size;
250 int addr;
251 int tx_addr_max;
252 u32 np_tx_fifo_size;
253
254 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
255 hsotg->params.g_np_tx_fifo_size);
256
257 /* Get Endpoint Info Control block size in DWORDs. */
258 ep_info_size = dwc2_hsotg_ep_info_size(hsotg);
259 tx_addr_max = hsotg->hw_params.total_fifo_size - ep_info_size;
260
261 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
262 if (tx_addr_max <= addr)
263 return 0;
264
265 return tx_addr_max - addr;
266 }
267
268 /**
269 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
270 * TX FIFOs
271 */
272 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
273 {
274 int tx_fifo_count;
275 int tx_fifo_depth;
276
277 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
278
279 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
280
281 if (!tx_fifo_count)
282 return tx_fifo_depth;
283 else
284 return tx_fifo_depth / tx_fifo_count;
285 }
286
287 /**
288 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
289 * @hsotg: The device instance.
290 */
291 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
292 {
293 unsigned int ep;
294 unsigned int addr;
295 int timeout;
296 u32 val;
297 u32 *txfsz = hsotg->params.g_tx_fifo_size;
298
299 /* Reset fifo map if not correctly cleared during previous session */
300 WARN_ON(hsotg->fifo_map);
301 hsotg->fifo_map = 0;
302
303 /* set RX/NPTX FIFO sizes */
304 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
305 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
306 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
307 hsotg->regs + GNPTXFSIZ);
308
309 /*
310 * arange all the rest of the TX FIFOs, as some versions of this
311 * block have overlapping default addresses. This also ensures
312 * that if the settings have been changed, then they are set to
313 * known values.
314 */
315
316 /* start at the end of the GNPTXFSIZ, rounded up */
317 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
318
319 /*
320 * Configure fifos sizes from provided configuration and assign
321 * them to endpoints dynamically according to maxpacket size value of
322 * given endpoint.
323 */
324 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
325 if (!txfsz[ep])
326 continue;
327 val = addr;
328 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
329 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
330 "insufficient fifo memory");
331 addr += txfsz[ep];
332
333 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
334 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
335 }
336
337 dwc2_writel(hsotg->hw_params.total_fifo_size |
338 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
339 hsotg->regs + GDFIFOCFG);
340 /*
341 * according to p428 of the design guide, we need to ensure that
342 * all fifos are flushed before continuing
343 */
344
345 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
346 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
347
348 /* wait until the fifos are both flushed */
349 timeout = 100;
350 while (1) {
351 val = dwc2_readl(hsotg->regs + GRSTCTL);
352
353 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
354 break;
355
356 if (--timeout == 0) {
357 dev_err(hsotg->dev,
358 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
359 __func__, val);
360 break;
361 }
362
363 udelay(1);
364 }
365
366 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
367 }
368
369 /**
370 * @ep: USB endpoint to allocate request for.
371 * @flags: Allocation flags
372 *
373 * Allocate a new USB request structure appropriate for the specified endpoint
374 */
375 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
376 gfp_t flags)
377 {
378 struct dwc2_hsotg_req *req;
379
380 req = kzalloc(sizeof(*req), flags);
381 if (!req)
382 return NULL;
383
384 INIT_LIST_HEAD(&req->queue);
385
386 return &req->req;
387 }
388
389 /**
390 * is_ep_periodic - return true if the endpoint is in periodic mode.
391 * @hs_ep: The endpoint to query.
392 *
393 * Returns true if the endpoint is in periodic mode, meaning it is being
394 * used for an Interrupt or ISO transfer.
395 */
396 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
397 {
398 return hs_ep->periodic;
399 }
400
401 /**
402 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
403 * @hsotg: The device state.
404 * @hs_ep: The endpoint for the request
405 * @hs_req: The request being processed.
406 *
407 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
408 * of a request to ensure the buffer is ready for access by the caller.
409 */
410 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
411 struct dwc2_hsotg_ep *hs_ep,
412 struct dwc2_hsotg_req *hs_req)
413 {
414 struct usb_request *req = &hs_req->req;
415
416 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
417 }
418
419 /*
420 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
421 * for Control endpoint
422 * @hsotg: The device state.
423 *
424 * This function will allocate 4 descriptor chains for EP 0: 2 for
425 * Setup stage, per one for IN and OUT data/status transactions.
426 */
427 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
428 {
429 hsotg->setup_desc[0] =
430 dmam_alloc_coherent(hsotg->dev,
431 sizeof(struct dwc2_dma_desc),
432 &hsotg->setup_desc_dma[0],
433 GFP_KERNEL);
434 if (!hsotg->setup_desc[0])
435 goto fail;
436
437 hsotg->setup_desc[1] =
438 dmam_alloc_coherent(hsotg->dev,
439 sizeof(struct dwc2_dma_desc),
440 &hsotg->setup_desc_dma[1],
441 GFP_KERNEL);
442 if (!hsotg->setup_desc[1])
443 goto fail;
444
445 hsotg->ctrl_in_desc =
446 dmam_alloc_coherent(hsotg->dev,
447 sizeof(struct dwc2_dma_desc),
448 &hsotg->ctrl_in_desc_dma,
449 GFP_KERNEL);
450 if (!hsotg->ctrl_in_desc)
451 goto fail;
452
453 hsotg->ctrl_out_desc =
454 dmam_alloc_coherent(hsotg->dev,
455 sizeof(struct dwc2_dma_desc),
456 &hsotg->ctrl_out_desc_dma,
457 GFP_KERNEL);
458 if (!hsotg->ctrl_out_desc)
459 goto fail;
460
461 return 0;
462
463 fail:
464 return -ENOMEM;
465 }
466
467 /**
468 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
469 * @hsotg: The controller state.
470 * @hs_ep: The endpoint we're going to write for.
471 * @hs_req: The request to write data for.
472 *
473 * This is called when the TxFIFO has some space in it to hold a new
474 * transmission and we have something to give it. The actual setup of
475 * the data size is done elsewhere, so all we have to do is to actually
476 * write the data.
477 *
478 * The return value is zero if there is more space (or nothing was done)
479 * otherwise -ENOSPC is returned if the FIFO space was used up.
480 *
481 * This routine is only needed for PIO
482 */
483 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
484 struct dwc2_hsotg_ep *hs_ep,
485 struct dwc2_hsotg_req *hs_req)
486 {
487 bool periodic = is_ep_periodic(hs_ep);
488 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
489 int buf_pos = hs_req->req.actual;
490 int to_write = hs_ep->size_loaded;
491 void *data;
492 int can_write;
493 int pkt_round;
494 int max_transfer;
495
496 to_write -= (buf_pos - hs_ep->last_load);
497
498 /* if there's nothing to write, get out early */
499 if (to_write == 0)
500 return 0;
501
502 if (periodic && !hsotg->dedicated_fifos) {
503 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
504 int size_left;
505 int size_done;
506
507 /*
508 * work out how much data was loaded so we can calculate
509 * how much data is left in the fifo.
510 */
511
512 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
513
514 /*
515 * if shared fifo, we cannot write anything until the
516 * previous data has been completely sent.
517 */
518 if (hs_ep->fifo_load != 0) {
519 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
520 return -ENOSPC;
521 }
522
523 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
524 __func__, size_left,
525 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
526
527 /* how much of the data has moved */
528 size_done = hs_ep->size_loaded - size_left;
529
530 /* how much data is left in the fifo */
531 can_write = hs_ep->fifo_load - size_done;
532 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
533 __func__, can_write);
534
535 can_write = hs_ep->fifo_size - can_write;
536 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
537 __func__, can_write);
538
539 if (can_write <= 0) {
540 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541 return -ENOSPC;
542 }
543 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
544 can_write = dwc2_readl(hsotg->regs +
545 DTXFSTS(hs_ep->fifo_index));
546
547 can_write &= 0xffff;
548 can_write *= 4;
549 } else {
550 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
551 dev_dbg(hsotg->dev,
552 "%s: no queue slots available (0x%08x)\n",
553 __func__, gnptxsts);
554
555 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
556 return -ENOSPC;
557 }
558
559 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
560 can_write *= 4; /* fifo size is in 32bit quantities. */
561 }
562
563 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
564
565 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
566 __func__, gnptxsts, can_write, to_write, max_transfer);
567
568 /*
569 * limit to 512 bytes of data, it seems at least on the non-periodic
570 * FIFO, requests of >512 cause the endpoint to get stuck with a
571 * fragment of the end of the transfer in it.
572 */
573 if (can_write > 512 && !periodic)
574 can_write = 512;
575
576 /*
577 * limit the write to one max-packet size worth of data, but allow
578 * the transfer to return that it did not run out of fifo space
579 * doing it.
580 */
581 if (to_write > max_transfer) {
582 to_write = max_transfer;
583
584 /* it's needed only when we do not use dedicated fifos */
585 if (!hsotg->dedicated_fifos)
586 dwc2_hsotg_en_gsint(hsotg,
587 periodic ? GINTSTS_PTXFEMP :
588 GINTSTS_NPTXFEMP);
589 }
590
591 /* see if we can write data */
592
593 if (to_write > can_write) {
594 to_write = can_write;
595 pkt_round = to_write % max_transfer;
596
597 /*
598 * Round the write down to an
599 * exact number of packets.
600 *
601 * Note, we do not currently check to see if we can ever
602 * write a full packet or not to the FIFO.
603 */
604
605 if (pkt_round)
606 to_write -= pkt_round;
607
608 /*
609 * enable correct FIFO interrupt to alert us when there
610 * is more room left.
611 */
612
613 /* it's needed only when we do not use dedicated fifos */
614 if (!hsotg->dedicated_fifos)
615 dwc2_hsotg_en_gsint(hsotg,
616 periodic ? GINTSTS_PTXFEMP :
617 GINTSTS_NPTXFEMP);
618 }
619
620 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
621 to_write, hs_req->req.length, can_write, buf_pos);
622
623 if (to_write <= 0)
624 return -ENOSPC;
625
626 hs_req->req.actual = buf_pos + to_write;
627 hs_ep->total_data += to_write;
628
629 if (periodic)
630 hs_ep->fifo_load += to_write;
631
632 to_write = DIV_ROUND_UP(to_write, 4);
633 data = hs_req->req.buf + buf_pos;
634
635 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
636
637 return (to_write >= can_write) ? -ENOSPC : 0;
638 }
639
640 /**
641 * get_ep_limit - get the maximum data legnth for this endpoint
642 * @hs_ep: The endpoint
643 *
644 * Return the maximum data that can be queued in one go on a given endpoint
645 * so that transfers that are too long can be split.
646 */
647 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
648 {
649 int index = hs_ep->index;
650 unsigned int maxsize;
651 unsigned int maxpkt;
652
653 if (index != 0) {
654 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
655 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
656 } else {
657 maxsize = 64 + 64;
658 if (hs_ep->dir_in)
659 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
660 else
661 maxpkt = 2;
662 }
663
664 /* we made the constant loading easier above by using +1 */
665 maxpkt--;
666 maxsize--;
667
668 /*
669 * constrain by packet count if maxpkts*pktsize is greater
670 * than the length register size.
671 */
672
673 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
674 maxsize = maxpkt * hs_ep->ep.maxpacket;
675
676 return maxsize;
677 }
678
679 /**
680 * dwc2_hsotg_read_frameno - read current frame number
681 * @hsotg: The device instance
682 *
683 * Return the current frame number
684 */
685 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
686 {
687 u32 dsts;
688
689 dsts = dwc2_readl(hsotg->regs + DSTS);
690 dsts &= DSTS_SOFFN_MASK;
691 dsts >>= DSTS_SOFFN_SHIFT;
692
693 return dsts;
694 }
695
696 /**
697 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
698 * DMA descriptor chain prepared for specific endpoint
699 * @hs_ep: The endpoint
700 *
701 * Return the maximum data that can be queued in one go on a given endpoint
702 * depending on its descriptor chain capacity so that transfers that
703 * are too long can be split.
704 */
705 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
706 {
707 int is_isoc = hs_ep->isochronous;
708 unsigned int maxsize;
709
710 if (is_isoc)
711 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
712 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
713 else
714 maxsize = DEV_DMA_NBYTES_LIMIT;
715
716 /* Above size of one descriptor was chosen, multiple it */
717 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
718
719 return maxsize;
720 }
721
722 /*
723 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
724 * @hs_ep: The endpoint
725 * @mask: RX/TX bytes mask to be defined
726 *
727 * Returns maximum data payload for one descriptor after analyzing endpoint
728 * characteristics.
729 * DMA descriptor transfer bytes limit depends on EP type:
730 * Control out - MPS,
731 * Isochronous - descriptor rx/tx bytes bitfield limit,
732 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
733 * have concatenations from various descriptors within one packet.
734 *
735 * Selects corresponding mask for RX/TX bytes as well.
736 */
737 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
738 {
739 u32 mps = hs_ep->ep.maxpacket;
740 int dir_in = hs_ep->dir_in;
741 u32 desc_size = 0;
742
743 if (!hs_ep->index && !dir_in) {
744 desc_size = mps;
745 *mask = DEV_DMA_NBYTES_MASK;
746 } else if (hs_ep->isochronous) {
747 if (dir_in) {
748 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
749 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
750 } else {
751 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
752 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
753 }
754 } else {
755 desc_size = DEV_DMA_NBYTES_LIMIT;
756 *mask = DEV_DMA_NBYTES_MASK;
757
758 /* Round down desc_size to be mps multiple */
759 desc_size -= desc_size % mps;
760 }
761
762 return desc_size;
763 }
764
765 /*
766 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
767 * @hs_ep: The endpoint
768 * @dma_buff: DMA address to use
769 * @len: Length of the transfer
770 *
771 * This function will iterate over descriptor chain and fill its entries
772 * with corresponding information based on transfer data.
773 */
774 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
775 dma_addr_t dma_buff,
776 unsigned int len)
777 {
778 struct dwc2_hsotg *hsotg = hs_ep->parent;
779 int dir_in = hs_ep->dir_in;
780 struct dwc2_dma_desc *desc = hs_ep->desc_list;
781 u32 mps = hs_ep->ep.maxpacket;
782 u32 maxsize = 0;
783 u32 offset = 0;
784 u32 mask = 0;
785 int i;
786
787 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
788
789 hs_ep->desc_count = (len / maxsize) +
790 ((len % maxsize) ? 1 : 0);
791 if (len == 0)
792 hs_ep->desc_count = 1;
793
794 for (i = 0; i < hs_ep->desc_count; ++i) {
795 desc->status = 0;
796 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
797 << DEV_DMA_BUFF_STS_SHIFT);
798
799 if (len > maxsize) {
800 if (!hs_ep->index && !dir_in)
801 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
802
803 desc->status |= (maxsize <<
804 DEV_DMA_NBYTES_SHIFT & mask);
805 desc->buf = dma_buff + offset;
806
807 len -= maxsize;
808 offset += maxsize;
809 } else {
810 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
811
812 if (dir_in)
813 desc->status |= (len % mps) ? DEV_DMA_SHORT :
814 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
815 if (len > maxsize)
816 dev_err(hsotg->dev, "wrong len %d\n", len);
817
818 desc->status |=
819 len << DEV_DMA_NBYTES_SHIFT & mask;
820 desc->buf = dma_buff + offset;
821 }
822
823 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
824 desc->status |= (DEV_DMA_BUFF_STS_HREADY
825 << DEV_DMA_BUFF_STS_SHIFT);
826 desc++;
827 }
828 }
829
830 /*
831 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
832 * @hs_ep: The isochronous endpoint.
833 * @dma_buff: usb requests dma buffer.
834 * @len: usb request transfer length.
835 *
836 * Finds out index of first free entry either in the bottom or up half of
837 * descriptor chain depend on which is under SW control and not processed
838 * by HW. Then fills that descriptor with the data of the arrived usb request,
839 * frame info, sets Last and IOC bits increments next_desc. If filled
840 * descriptor is not the first one, removes L bit from the previous descriptor
841 * status.
842 */
843 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
844 dma_addr_t dma_buff, unsigned int len)
845 {
846 struct dwc2_dma_desc *desc;
847 struct dwc2_hsotg *hsotg = hs_ep->parent;
848 u32 index;
849 u32 maxsize = 0;
850 u32 mask = 0;
851
852 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
853 if (len > maxsize) {
854 dev_err(hsotg->dev, "wrong len %d\n", len);
855 return -EINVAL;
856 }
857
858 /*
859 * If SW has already filled half of chain, then return and wait for
860 * the other chain to be processed by HW.
861 */
862 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
863 return -EBUSY;
864
865 /* Increment frame number by interval for IN */
866 if (hs_ep->dir_in)
867 dwc2_gadget_incr_frame_num(hs_ep);
868
869 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
870 hs_ep->next_desc;
871
872 /* Sanity check of calculated index */
873 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
874 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
875 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
876 return -EINVAL;
877 }
878
879 desc = &hs_ep->desc_list[index];
880
881 /* Clear L bit of previous desc if more than one entries in the chain */
882 if (hs_ep->next_desc)
883 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
884
885 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
886 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
887
888 desc->status = 0;
889 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
890
891 desc->buf = dma_buff;
892 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
893 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
894
895 if (hs_ep->dir_in) {
896 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
897 DEV_DMA_ISOC_PID_MASK) |
898 ((len % hs_ep->ep.maxpacket) ?
899 DEV_DMA_SHORT : 0) |
900 ((hs_ep->target_frame <<
901 DEV_DMA_ISOC_FRNUM_SHIFT) &
902 DEV_DMA_ISOC_FRNUM_MASK);
903 }
904
905 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
906 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
907
908 /* Update index of last configured entry in the chain */
909 hs_ep->next_desc++;
910
911 return 0;
912 }
913
914 /*
915 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
916 * @hs_ep: The isochronous endpoint.
917 *
918 * Prepare first descriptor chain for isochronous endpoints. Afterwards
919 * write DMA address to HW and enable the endpoint.
920 *
921 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
922 * to prepare second descriptor chain while first one is being processed by HW.
923 */
924 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
925 {
926 struct dwc2_hsotg *hsotg = hs_ep->parent;
927 struct dwc2_hsotg_req *hs_req, *treq;
928 int index = hs_ep->index;
929 int ret;
930 u32 dma_reg;
931 u32 depctl;
932 u32 ctrl;
933
934 if (list_empty(&hs_ep->queue)) {
935 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
936 return;
937 }
938
939 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
940 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
941 hs_req->req.length);
942 if (ret) {
943 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
944 break;
945 }
946 }
947
948 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
949 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
950
951 /* write descriptor chain address to control register */
952 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
953
954 ctrl = dwc2_readl(hsotg->regs + depctl);
955 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
956 dwc2_writel(ctrl, hsotg->regs + depctl);
957
958 /* Switch ISOC descriptor chain number being processed by SW*/
959 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
960 hs_ep->next_desc = 0;
961 }
962
963 /**
964 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
965 * @hsotg: The controller state.
966 * @hs_ep: The endpoint to process a request for
967 * @hs_req: The request to start.
968 * @continuing: True if we are doing more for the current request.
969 *
970 * Start the given request running by setting the endpoint registers
971 * appropriately, and writing any data to the FIFOs.
972 */
973 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
974 struct dwc2_hsotg_ep *hs_ep,
975 struct dwc2_hsotg_req *hs_req,
976 bool continuing)
977 {
978 struct usb_request *ureq = &hs_req->req;
979 int index = hs_ep->index;
980 int dir_in = hs_ep->dir_in;
981 u32 epctrl_reg;
982 u32 epsize_reg;
983 u32 epsize;
984 u32 ctrl;
985 unsigned int length;
986 unsigned int packets;
987 unsigned int maxreq;
988 unsigned int dma_reg;
989
990 if (index != 0) {
991 if (hs_ep->req && !continuing) {
992 dev_err(hsotg->dev, "%s: active request\n", __func__);
993 WARN_ON(1);
994 return;
995 } else if (hs_ep->req != hs_req && continuing) {
996 dev_err(hsotg->dev,
997 "%s: continue different req\n", __func__);
998 WARN_ON(1);
999 return;
1000 }
1001 }
1002
1003 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1004 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1005 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1006
1007 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1008 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
1009 hs_ep->dir_in ? "in" : "out");
1010
1011 /* If endpoint is stalled, we will restart request later */
1012 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
1013
1014 if (index && ctrl & DXEPCTL_STALL) {
1015 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1016 return;
1017 }
1018
1019 length = ureq->length - ureq->actual;
1020 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1021 ureq->length, ureq->actual);
1022
1023 if (!using_desc_dma(hsotg))
1024 maxreq = get_ep_limit(hs_ep);
1025 else
1026 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1027
1028 if (length > maxreq) {
1029 int round = maxreq % hs_ep->ep.maxpacket;
1030
1031 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1032 __func__, length, maxreq, round);
1033
1034 /* round down to multiple of packets */
1035 if (round)
1036 maxreq -= round;
1037
1038 length = maxreq;
1039 }
1040
1041 if (length)
1042 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1043 else
1044 packets = 1; /* send one packet if length is zero. */
1045
1046 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1047 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1048 return;
1049 }
1050
1051 if (dir_in && index != 0)
1052 if (hs_ep->isochronous)
1053 epsize = DXEPTSIZ_MC(packets);
1054 else
1055 epsize = DXEPTSIZ_MC(1);
1056 else
1057 epsize = 0;
1058
1059 /*
1060 * zero length packet should be programmed on its own and should not
1061 * be counted in DIEPTSIZ.PktCnt with other packets.
1062 */
1063 if (dir_in && ureq->zero && !continuing) {
1064 /* Test if zlp is actually required. */
1065 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1066 !(ureq->length % hs_ep->ep.maxpacket))
1067 hs_ep->send_zlp = 1;
1068 }
1069
1070 epsize |= DXEPTSIZ_PKTCNT(packets);
1071 epsize |= DXEPTSIZ_XFERSIZE(length);
1072
1073 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1074 __func__, packets, length, ureq->length, epsize, epsize_reg);
1075
1076 /* store the request as the current one we're doing */
1077 hs_ep->req = hs_req;
1078
1079 if (using_desc_dma(hsotg)) {
1080 u32 offset = 0;
1081 u32 mps = hs_ep->ep.maxpacket;
1082
1083 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1084 if (!dir_in) {
1085 if (!index)
1086 length = mps;
1087 else if (length % mps)
1088 length += (mps - (length % mps));
1089 }
1090
1091 /*
1092 * If more data to send, adjust DMA for EP0 out data stage.
1093 * ureq->dma stays unchanged, hence increment it by already
1094 * passed passed data count before starting new transaction.
1095 */
1096 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1097 continuing)
1098 offset = ureq->actual;
1099
1100 /* Fill DDMA chain entries */
1101 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1102 length);
1103
1104 /* write descriptor chain address to control register */
1105 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1106
1107 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1108 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1109 } else {
1110 /* write size / packets */
1111 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1112
1113 if (using_dma(hsotg) && !continuing && (length != 0)) {
1114 /*
1115 * write DMA address to control register, buffer
1116 * already synced by dwc2_hsotg_ep_queue().
1117 */
1118
1119 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1120
1121 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1122 __func__, &ureq->dma, dma_reg);
1123 }
1124 }
1125
1126 if (hs_ep->isochronous && hs_ep->interval == 1) {
1127 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1128 dwc2_gadget_incr_frame_num(hs_ep);
1129
1130 if (hs_ep->target_frame & 0x1)
1131 ctrl |= DXEPCTL_SETODDFR;
1132 else
1133 ctrl |= DXEPCTL_SETEVENFR;
1134 }
1135
1136 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1137
1138 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1139
1140 /* For Setup request do not clear NAK */
1141 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1142 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1143
1144 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1145 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1146
1147 /*
1148 * set these, it seems that DMA support increments past the end
1149 * of the packet buffer so we need to calculate the length from
1150 * this information.
1151 */
1152 hs_ep->size_loaded = length;
1153 hs_ep->last_load = ureq->actual;
1154
1155 if (dir_in && !using_dma(hsotg)) {
1156 /* set these anyway, we may need them for non-periodic in */
1157 hs_ep->fifo_load = 0;
1158
1159 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1160 }
1161
1162 /*
1163 * Note, trying to clear the NAK here causes problems with transmit
1164 * on the S3C6400 ending up with the TXFIFO becoming full.
1165 */
1166
1167 /* check ep is enabled */
1168 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1169 dev_dbg(hsotg->dev,
1170 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1171 index, dwc2_readl(hsotg->regs + epctrl_reg));
1172
1173 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1174 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1175
1176 /* enable ep interrupts */
1177 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1178 }
1179
1180 /**
1181 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1182 * @hsotg: The device state.
1183 * @hs_ep: The endpoint the request is on.
1184 * @req: The request being processed.
1185 *
1186 * We've been asked to queue a request, so ensure that the memory buffer
1187 * is correctly setup for DMA. If we've been passed an extant DMA address
1188 * then ensure the buffer has been synced to memory. If our buffer has no
1189 * DMA memory, then we map the memory and mark our request to allow us to
1190 * cleanup on completion.
1191 */
1192 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1193 struct dwc2_hsotg_ep *hs_ep,
1194 struct usb_request *req)
1195 {
1196 int ret;
1197
1198 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1199 if (ret)
1200 goto dma_error;
1201
1202 return 0;
1203
1204 dma_error:
1205 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1206 __func__, req->buf, req->length);
1207
1208 return -EIO;
1209 }
1210
1211 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1212 struct dwc2_hsotg_ep *hs_ep,
1213 struct dwc2_hsotg_req *hs_req)
1214 {
1215 void *req_buf = hs_req->req.buf;
1216
1217 /* If dma is not being used or buffer is aligned */
1218 if (!using_dma(hsotg) || !((long)req_buf & 3))
1219 return 0;
1220
1221 WARN_ON(hs_req->saved_req_buf);
1222
1223 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1224 hs_ep->ep.name, req_buf, hs_req->req.length);
1225
1226 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1227 if (!hs_req->req.buf) {
1228 hs_req->req.buf = req_buf;
1229 dev_err(hsotg->dev,
1230 "%s: unable to allocate memory for bounce buffer\n",
1231 __func__);
1232 return -ENOMEM;
1233 }
1234
1235 /* Save actual buffer */
1236 hs_req->saved_req_buf = req_buf;
1237
1238 if (hs_ep->dir_in)
1239 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1240 return 0;
1241 }
1242
1243 static void
1244 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1245 struct dwc2_hsotg_ep *hs_ep,
1246 struct dwc2_hsotg_req *hs_req)
1247 {
1248 /* If dma is not being used or buffer was aligned */
1249 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1250 return;
1251
1252 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1253 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1254
1255 /* Copy data from bounce buffer on successful out transfer */
1256 if (!hs_ep->dir_in && !hs_req->req.status)
1257 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1258 hs_req->req.actual);
1259
1260 /* Free bounce buffer */
1261 kfree(hs_req->req.buf);
1262
1263 hs_req->req.buf = hs_req->saved_req_buf;
1264 hs_req->saved_req_buf = NULL;
1265 }
1266
1267 /**
1268 * dwc2_gadget_target_frame_elapsed - Checks target frame
1269 * @hs_ep: The driver endpoint to check
1270 *
1271 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1272 * corresponding transfer.
1273 */
1274 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1275 {
1276 struct dwc2_hsotg *hsotg = hs_ep->parent;
1277 u32 target_frame = hs_ep->target_frame;
1278 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1279 bool frame_overrun = hs_ep->frame_overrun;
1280
1281 if (!frame_overrun && current_frame >= target_frame)
1282 return true;
1283
1284 if (frame_overrun && current_frame >= target_frame &&
1285 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1286 return true;
1287
1288 return false;
1289 }
1290
1291 /*
1292 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1293 * @hsotg: The driver state
1294 * @hs_ep: the ep descriptor chain is for
1295 *
1296 * Called to update EP0 structure's pointers depend on stage of
1297 * control transfer.
1298 */
1299 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1300 struct dwc2_hsotg_ep *hs_ep)
1301 {
1302 switch (hsotg->ep0_state) {
1303 case DWC2_EP0_SETUP:
1304 case DWC2_EP0_STATUS_OUT:
1305 hs_ep->desc_list = hsotg->setup_desc[0];
1306 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1307 break;
1308 case DWC2_EP0_DATA_IN:
1309 case DWC2_EP0_STATUS_IN:
1310 hs_ep->desc_list = hsotg->ctrl_in_desc;
1311 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1312 break;
1313 case DWC2_EP0_DATA_OUT:
1314 hs_ep->desc_list = hsotg->ctrl_out_desc;
1315 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1316 break;
1317 default:
1318 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1319 hsotg->ep0_state);
1320 return -EINVAL;
1321 }
1322
1323 return 0;
1324 }
1325
1326 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1327 gfp_t gfp_flags)
1328 {
1329 struct dwc2_hsotg_req *hs_req = our_req(req);
1330 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1331 struct dwc2_hsotg *hs = hs_ep->parent;
1332 bool first;
1333 int ret;
1334
1335 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1336 ep->name, req, req->length, req->buf, req->no_interrupt,
1337 req->zero, req->short_not_ok);
1338
1339 /* Prevent new request submission when controller is suspended */
1340 if (hs->lx_state == DWC2_L2) {
1341 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1342 __func__);
1343 return -EAGAIN;
1344 }
1345
1346 /* initialise status of the request */
1347 INIT_LIST_HEAD(&hs_req->queue);
1348 req->actual = 0;
1349 req->status = -EINPROGRESS;
1350
1351 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1352 if (ret)
1353 return ret;
1354
1355 /* if we're using DMA, sync the buffers as necessary */
1356 if (using_dma(hs)) {
1357 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1358 if (ret)
1359 return ret;
1360 }
1361 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1362 if (using_desc_dma(hs) && !hs_ep->index) {
1363 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1364 if (ret)
1365 return ret;
1366 }
1367
1368 first = list_empty(&hs_ep->queue);
1369 list_add_tail(&hs_req->queue, &hs_ep->queue);
1370
1371 /*
1372 * Handle DDMA isochronous transfers separately - just add new entry
1373 * to the half of descriptor chain that is not processed by HW.
1374 * Transfer will be started once SW gets either one of NAK or
1375 * OutTknEpDis interrupts.
1376 */
1377 if (using_desc_dma(hs) && hs_ep->isochronous &&
1378 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1379 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1380 hs_req->req.length);
1381 if (ret)
1382 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1383
1384 return 0;
1385 }
1386
1387 if (first) {
1388 if (!hs_ep->isochronous) {
1389 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1390 return 0;
1391 }
1392
1393 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1394 dwc2_gadget_incr_frame_num(hs_ep);
1395
1396 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1397 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1398 }
1399 return 0;
1400 }
1401
1402 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1403 gfp_t gfp_flags)
1404 {
1405 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1406 struct dwc2_hsotg *hs = hs_ep->parent;
1407 unsigned long flags = 0;
1408 int ret = 0;
1409
1410 spin_lock_irqsave(&hs->lock, flags);
1411 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1412 spin_unlock_irqrestore(&hs->lock, flags);
1413
1414 return ret;
1415 }
1416
1417 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1418 struct usb_request *req)
1419 {
1420 struct dwc2_hsotg_req *hs_req = our_req(req);
1421
1422 kfree(hs_req);
1423 }
1424
1425 /**
1426 * dwc2_hsotg_complete_oursetup - setup completion callback
1427 * @ep: The endpoint the request was on.
1428 * @req: The request completed.
1429 *
1430 * Called on completion of any requests the driver itself
1431 * submitted that need cleaning up.
1432 */
1433 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1434 struct usb_request *req)
1435 {
1436 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1437 struct dwc2_hsotg *hsotg = hs_ep->parent;
1438
1439 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1440
1441 dwc2_hsotg_ep_free_request(ep, req);
1442 }
1443
1444 /**
1445 * ep_from_windex - convert control wIndex value to endpoint
1446 * @hsotg: The driver state.
1447 * @windex: The control request wIndex field (in host order).
1448 *
1449 * Convert the given wIndex into a pointer to an driver endpoint
1450 * structure, or return NULL if it is not a valid endpoint.
1451 */
1452 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1453 u32 windex)
1454 {
1455 struct dwc2_hsotg_ep *ep;
1456 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1457 int idx = windex & 0x7F;
1458
1459 if (windex >= 0x100)
1460 return NULL;
1461
1462 if (idx > hsotg->num_of_eps)
1463 return NULL;
1464
1465 ep = index_to_ep(hsotg, idx, dir);
1466
1467 if (idx && ep->dir_in != dir)
1468 return NULL;
1469
1470 return ep;
1471 }
1472
1473 /**
1474 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1475 * @hsotg: The driver state.
1476 * @testmode: requested usb test mode
1477 * Enable usb Test Mode requested by the Host.
1478 */
1479 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1480 {
1481 int dctl = dwc2_readl(hsotg->regs + DCTL);
1482
1483 dctl &= ~DCTL_TSTCTL_MASK;
1484 switch (testmode) {
1485 case TEST_J:
1486 case TEST_K:
1487 case TEST_SE0_NAK:
1488 case TEST_PACKET:
1489 case TEST_FORCE_EN:
1490 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1491 break;
1492 default:
1493 return -EINVAL;
1494 }
1495 dwc2_writel(dctl, hsotg->regs + DCTL);
1496 return 0;
1497 }
1498
1499 /**
1500 * dwc2_hsotg_send_reply - send reply to control request
1501 * @hsotg: The device state
1502 * @ep: Endpoint 0
1503 * @buff: Buffer for request
1504 * @length: Length of reply.
1505 *
1506 * Create a request and queue it on the given endpoint. This is useful as
1507 * an internal method of sending replies to certain control requests, etc.
1508 */
1509 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1510 struct dwc2_hsotg_ep *ep,
1511 void *buff,
1512 int length)
1513 {
1514 struct usb_request *req;
1515 int ret;
1516
1517 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1518
1519 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1520 hsotg->ep0_reply = req;
1521 if (!req) {
1522 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1523 return -ENOMEM;
1524 }
1525
1526 req->buf = hsotg->ep0_buff;
1527 req->length = length;
1528 /*
1529 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1530 * STATUS stage.
1531 */
1532 req->zero = 0;
1533 req->complete = dwc2_hsotg_complete_oursetup;
1534
1535 if (length)
1536 memcpy(req->buf, buff, length);
1537
1538 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1539 if (ret) {
1540 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1541 return ret;
1542 }
1543
1544 return 0;
1545 }
1546
1547 /**
1548 * dwc2_hsotg_process_req_status - process request GET_STATUS
1549 * @hsotg: The device state
1550 * @ctrl: USB control request
1551 */
1552 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1553 struct usb_ctrlrequest *ctrl)
1554 {
1555 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1556 struct dwc2_hsotg_ep *ep;
1557 __le16 reply;
1558 int ret;
1559
1560 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1561
1562 if (!ep0->dir_in) {
1563 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1564 return -EINVAL;
1565 }
1566
1567 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1568 case USB_RECIP_DEVICE:
1569 /*
1570 * bit 0 => self powered
1571 * bit 1 => remote wakeup
1572 */
1573 reply = cpu_to_le16(0);
1574 break;
1575
1576 case USB_RECIP_INTERFACE:
1577 /* currently, the data result should be zero */
1578 reply = cpu_to_le16(0);
1579 break;
1580
1581 case USB_RECIP_ENDPOINT:
1582 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1583 if (!ep)
1584 return -ENOENT;
1585
1586 reply = cpu_to_le16(ep->halted ? 1 : 0);
1587 break;
1588
1589 default:
1590 return 0;
1591 }
1592
1593 if (le16_to_cpu(ctrl->wLength) != 2)
1594 return -EINVAL;
1595
1596 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1597 if (ret) {
1598 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1599 return ret;
1600 }
1601
1602 return 1;
1603 }
1604
1605 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1606
1607 /**
1608 * get_ep_head - return the first request on the endpoint
1609 * @hs_ep: The controller endpoint to get
1610 *
1611 * Get the first request on the endpoint.
1612 */
1613 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1614 {
1615 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1616 queue);
1617 }
1618
1619 /**
1620 * dwc2_gadget_start_next_request - Starts next request from ep queue
1621 * @hs_ep: Endpoint structure
1622 *
1623 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1624 * in its handler. Hence we need to unmask it here to be able to do
1625 * resynchronization.
1626 */
1627 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1628 {
1629 u32 mask;
1630 struct dwc2_hsotg *hsotg = hs_ep->parent;
1631 int dir_in = hs_ep->dir_in;
1632 struct dwc2_hsotg_req *hs_req;
1633 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1634
1635 if (!list_empty(&hs_ep->queue)) {
1636 hs_req = get_ep_head(hs_ep);
1637 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1638 return;
1639 }
1640 if (!hs_ep->isochronous)
1641 return;
1642
1643 if (dir_in) {
1644 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1645 __func__);
1646 } else {
1647 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1648 __func__);
1649 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1650 mask |= DOEPMSK_OUTTKNEPDISMSK;
1651 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1652 }
1653 }
1654
1655 /**
1656 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1657 * @hsotg: The device state
1658 * @ctrl: USB control request
1659 */
1660 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1661 struct usb_ctrlrequest *ctrl)
1662 {
1663 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1664 struct dwc2_hsotg_req *hs_req;
1665 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1666 struct dwc2_hsotg_ep *ep;
1667 int ret;
1668 bool halted;
1669 u32 recip;
1670 u32 wValue;
1671 u32 wIndex;
1672
1673 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1674 __func__, set ? "SET" : "CLEAR");
1675
1676 wValue = le16_to_cpu(ctrl->wValue);
1677 wIndex = le16_to_cpu(ctrl->wIndex);
1678 recip = ctrl->bRequestType & USB_RECIP_MASK;
1679
1680 switch (recip) {
1681 case USB_RECIP_DEVICE:
1682 switch (wValue) {
1683 case USB_DEVICE_TEST_MODE:
1684 if ((wIndex & 0xff) != 0)
1685 return -EINVAL;
1686 if (!set)
1687 return -EINVAL;
1688
1689 hsotg->test_mode = wIndex >> 8;
1690 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1691 if (ret) {
1692 dev_err(hsotg->dev,
1693 "%s: failed to send reply\n", __func__);
1694 return ret;
1695 }
1696 break;
1697 default:
1698 return -ENOENT;
1699 }
1700 break;
1701
1702 case USB_RECIP_ENDPOINT:
1703 ep = ep_from_windex(hsotg, wIndex);
1704 if (!ep) {
1705 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1706 __func__, wIndex);
1707 return -ENOENT;
1708 }
1709
1710 switch (wValue) {
1711 case USB_ENDPOINT_HALT:
1712 halted = ep->halted;
1713
1714 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1715
1716 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1717 if (ret) {
1718 dev_err(hsotg->dev,
1719 "%s: failed to send reply\n", __func__);
1720 return ret;
1721 }
1722
1723 /*
1724 * we have to complete all requests for ep if it was
1725 * halted, and the halt was cleared by CLEAR_FEATURE
1726 */
1727
1728 if (!set && halted) {
1729 /*
1730 * If we have request in progress,
1731 * then complete it
1732 */
1733 if (ep->req) {
1734 hs_req = ep->req;
1735 ep->req = NULL;
1736 list_del_init(&hs_req->queue);
1737 if (hs_req->req.complete) {
1738 spin_unlock(&hsotg->lock);
1739 usb_gadget_giveback_request(
1740 &ep->ep, &hs_req->req);
1741 spin_lock(&hsotg->lock);
1742 }
1743 }
1744
1745 /* If we have pending request, then start it */
1746 if (!ep->req)
1747 dwc2_gadget_start_next_request(ep);
1748 }
1749
1750 break;
1751
1752 default:
1753 return -ENOENT;
1754 }
1755 break;
1756 default:
1757 return -ENOENT;
1758 }
1759 return 1;
1760 }
1761
1762 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1763
1764 /**
1765 * dwc2_hsotg_stall_ep0 - stall ep0
1766 * @hsotg: The device state
1767 *
1768 * Set stall for ep0 as response for setup request.
1769 */
1770 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1771 {
1772 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1773 u32 reg;
1774 u32 ctrl;
1775
1776 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1777 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1778
1779 /*
1780 * DxEPCTL_Stall will be cleared by EP once it has
1781 * taken effect, so no need to clear later.
1782 */
1783
1784 ctrl = dwc2_readl(hsotg->regs + reg);
1785 ctrl |= DXEPCTL_STALL;
1786 ctrl |= DXEPCTL_CNAK;
1787 dwc2_writel(ctrl, hsotg->regs + reg);
1788
1789 dev_dbg(hsotg->dev,
1790 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1791 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1792
1793 /*
1794 * complete won't be called, so we enqueue
1795 * setup request here
1796 */
1797 dwc2_hsotg_enqueue_setup(hsotg);
1798 }
1799
1800 /**
1801 * dwc2_hsotg_process_control - process a control request
1802 * @hsotg: The device state
1803 * @ctrl: The control request received
1804 *
1805 * The controller has received the SETUP phase of a control request, and
1806 * needs to work out what to do next (and whether to pass it on to the
1807 * gadget driver).
1808 */
1809 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1810 struct usb_ctrlrequest *ctrl)
1811 {
1812 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1813 int ret = 0;
1814 u32 dcfg;
1815
1816 dev_dbg(hsotg->dev,
1817 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1818 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1819 ctrl->wIndex, ctrl->wLength);
1820
1821 if (ctrl->wLength == 0) {
1822 ep0->dir_in = 1;
1823 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1824 } else if (ctrl->bRequestType & USB_DIR_IN) {
1825 ep0->dir_in = 1;
1826 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1827 } else {
1828 ep0->dir_in = 0;
1829 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1830 }
1831
1832 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1833 switch (ctrl->bRequest) {
1834 case USB_REQ_SET_ADDRESS:
1835 hsotg->connected = 1;
1836 dcfg = dwc2_readl(hsotg->regs + DCFG);
1837 dcfg &= ~DCFG_DEVADDR_MASK;
1838 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1839 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1840 dwc2_writel(dcfg, hsotg->regs + DCFG);
1841
1842 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1843
1844 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1845 return;
1846
1847 case USB_REQ_GET_STATUS:
1848 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1849 break;
1850
1851 case USB_REQ_CLEAR_FEATURE:
1852 case USB_REQ_SET_FEATURE:
1853 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1854 break;
1855 }
1856 }
1857
1858 /* as a fallback, try delivering it to the driver to deal with */
1859
1860 if (ret == 0 && hsotg->driver) {
1861 spin_unlock(&hsotg->lock);
1862 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1863 spin_lock(&hsotg->lock);
1864 if (ret < 0)
1865 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1866 }
1867
1868 /*
1869 * the request is either unhandlable, or is not formatted correctly
1870 * so respond with a STALL for the status stage to indicate failure.
1871 */
1872
1873 if (ret < 0)
1874 dwc2_hsotg_stall_ep0(hsotg);
1875 }
1876
1877 /**
1878 * dwc2_hsotg_complete_setup - completion of a setup transfer
1879 * @ep: The endpoint the request was on.
1880 * @req: The request completed.
1881 *
1882 * Called on completion of any requests the driver itself submitted for
1883 * EP0 setup packets
1884 */
1885 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1886 struct usb_request *req)
1887 {
1888 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1889 struct dwc2_hsotg *hsotg = hs_ep->parent;
1890
1891 if (req->status < 0) {
1892 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1893 return;
1894 }
1895
1896 spin_lock(&hsotg->lock);
1897 if (req->actual == 0)
1898 dwc2_hsotg_enqueue_setup(hsotg);
1899 else
1900 dwc2_hsotg_process_control(hsotg, req->buf);
1901 spin_unlock(&hsotg->lock);
1902 }
1903
1904 /**
1905 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1906 * @hsotg: The device state.
1907 *
1908 * Enqueue a request on EP0 if necessary to received any SETUP packets
1909 * received from the host.
1910 */
1911 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1912 {
1913 struct usb_request *req = hsotg->ctrl_req;
1914 struct dwc2_hsotg_req *hs_req = our_req(req);
1915 int ret;
1916
1917 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1918
1919 req->zero = 0;
1920 req->length = 8;
1921 req->buf = hsotg->ctrl_buff;
1922 req->complete = dwc2_hsotg_complete_setup;
1923
1924 if (!list_empty(&hs_req->queue)) {
1925 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1926 return;
1927 }
1928
1929 hsotg->eps_out[0]->dir_in = 0;
1930 hsotg->eps_out[0]->send_zlp = 0;
1931 hsotg->ep0_state = DWC2_EP0_SETUP;
1932
1933 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1934 if (ret < 0) {
1935 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1936 /*
1937 * Don't think there's much we can do other than watch the
1938 * driver fail.
1939 */
1940 }
1941 }
1942
1943 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1944 struct dwc2_hsotg_ep *hs_ep)
1945 {
1946 u32 ctrl;
1947 u8 index = hs_ep->index;
1948 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1949 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1950
1951 if (hs_ep->dir_in)
1952 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1953 index);
1954 else
1955 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1956 index);
1957 if (using_desc_dma(hsotg)) {
1958 /* Not specific buffer needed for ep0 ZLP */
1959 dma_addr_t dma = hs_ep->desc_list_dma;
1960
1961 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1962 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1963 } else {
1964 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1965 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1966 epsiz_reg);
1967 }
1968
1969 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1970 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1971 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1972 ctrl |= DXEPCTL_USBACTEP;
1973 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1974 }
1975
1976 /**
1977 * dwc2_hsotg_complete_request - complete a request given to us
1978 * @hsotg: The device state.
1979 * @hs_ep: The endpoint the request was on.
1980 * @hs_req: The request to complete.
1981 * @result: The result code (0 => Ok, otherwise errno)
1982 *
1983 * The given request has finished, so call the necessary completion
1984 * if it has one and then look to see if we can start a new request
1985 * on the endpoint.
1986 *
1987 * Note, expects the ep to already be locked as appropriate.
1988 */
1989 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1990 struct dwc2_hsotg_ep *hs_ep,
1991 struct dwc2_hsotg_req *hs_req,
1992 int result)
1993 {
1994 if (!hs_req) {
1995 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1996 return;
1997 }
1998
1999 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2000 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2001
2002 /*
2003 * only replace the status if we've not already set an error
2004 * from a previous transaction
2005 */
2006
2007 if (hs_req->req.status == -EINPROGRESS)
2008 hs_req->req.status = result;
2009
2010 if (using_dma(hsotg))
2011 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2012
2013 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2014
2015 hs_ep->req = NULL;
2016 list_del_init(&hs_req->queue);
2017
2018 /*
2019 * call the complete request with the locks off, just in case the
2020 * request tries to queue more work for this endpoint.
2021 */
2022
2023 if (hs_req->req.complete) {
2024 spin_unlock(&hsotg->lock);
2025 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2026 spin_lock(&hsotg->lock);
2027 }
2028
2029 /* In DDMA don't need to proceed to starting of next ISOC request */
2030 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2031 return;
2032
2033 /*
2034 * Look to see if there is anything else to do. Note, the completion
2035 * of the previous request may have caused a new request to be started
2036 * so be careful when doing this.
2037 */
2038
2039 if (!hs_ep->req && result >= 0)
2040 dwc2_gadget_start_next_request(hs_ep);
2041 }
2042
2043 /*
2044 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2045 * @hs_ep: The endpoint the request was on.
2046 *
2047 * Get first request from the ep queue, determine descriptor on which complete
2048 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2049 * chain is currently in use by HW, adjusts dma_address and calculates index
2050 * of completed descriptor based on the value of DEPDMA register. Update actual
2051 * length of request, giveback to gadget.
2052 */
2053 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2054 {
2055 struct dwc2_hsotg *hsotg = hs_ep->parent;
2056 struct dwc2_hsotg_req *hs_req;
2057 struct usb_request *ureq;
2058 int index;
2059 dma_addr_t dma_addr;
2060 u32 dma_reg;
2061 u32 depdma;
2062 u32 desc_sts;
2063 u32 mask;
2064
2065 hs_req = get_ep_head(hs_ep);
2066 if (!hs_req) {
2067 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2068 return;
2069 }
2070 ureq = &hs_req->req;
2071
2072 dma_addr = hs_ep->desc_list_dma;
2073
2074 /*
2075 * If lower half of descriptor chain is currently use by SW,
2076 * that means higher half is being processed by HW, so shift
2077 * DMA address to higher half of descriptor chain.
2078 */
2079 if (!hs_ep->isoc_chain_num)
2080 dma_addr += sizeof(struct dwc2_dma_desc) *
2081 (MAX_DMA_DESC_NUM_GENERIC / 2);
2082
2083 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2084 depdma = dwc2_readl(hsotg->regs + dma_reg);
2085
2086 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2087 desc_sts = hs_ep->desc_list[index].status;
2088
2089 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2090 DEV_DMA_ISOC_RX_NBYTES_MASK;
2091 ureq->actual = ureq->length -
2092 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2093
2094 /* Adjust actual length for ISOC Out if length is not align of 4 */
2095 if (!hs_ep->dir_in && ureq->length & 0x3)
2096 ureq->actual += 4 - (ureq->length & 0x3);
2097
2098 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2099 }
2100
2101 /*
2102 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2103 * @hs_ep: The isochronous endpoint to be re-enabled.
2104 *
2105 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2106 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2107 * was under SW control till HW was busy and restart the endpoint if needed.
2108 */
2109 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2110 {
2111 struct dwc2_hsotg *hsotg = hs_ep->parent;
2112 u32 depctl;
2113 u32 dma_reg;
2114 u32 ctrl;
2115 u32 dma_addr = hs_ep->desc_list_dma;
2116 unsigned char index = hs_ep->index;
2117
2118 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2119 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2120
2121 ctrl = dwc2_readl(hsotg->regs + depctl);
2122
2123 /*
2124 * EP was disabled if HW has processed last descriptor or BNA was set.
2125 * So restart ep if SW has prepared new descriptor chain in ep_queue
2126 * routine while HW was busy.
2127 */
2128 if (!(ctrl & DXEPCTL_EPENA)) {
2129 if (!hs_ep->next_desc) {
2130 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2131 __func__);
2132 return;
2133 }
2134
2135 dma_addr += sizeof(struct dwc2_dma_desc) *
2136 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2137 hs_ep->isoc_chain_num;
2138 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2139
2140 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2141 dwc2_writel(ctrl, hsotg->regs + depctl);
2142
2143 /* Switch ISOC descriptor chain number being processed by SW*/
2144 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2145 hs_ep->next_desc = 0;
2146
2147 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2148 __func__);
2149 }
2150 }
2151
2152 /**
2153 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2154 * @hsotg: The device state.
2155 * @ep_idx: The endpoint index for the data
2156 * @size: The size of data in the fifo, in bytes
2157 *
2158 * The FIFO status shows there is data to read from the FIFO for a given
2159 * endpoint, so sort out whether we need to read the data into a request
2160 * that has been made for that endpoint.
2161 */
2162 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2163 {
2164 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2165 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2166 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2167 int to_read;
2168 int max_req;
2169 int read_ptr;
2170
2171 if (!hs_req) {
2172 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2173 int ptr;
2174
2175 dev_dbg(hsotg->dev,
2176 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2177 __func__, size, ep_idx, epctl);
2178
2179 /* dump the data from the FIFO, we've nothing we can do */
2180 for (ptr = 0; ptr < size; ptr += 4)
2181 (void)dwc2_readl(fifo);
2182
2183 return;
2184 }
2185
2186 to_read = size;
2187 read_ptr = hs_req->req.actual;
2188 max_req = hs_req->req.length - read_ptr;
2189
2190 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2191 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2192
2193 if (to_read > max_req) {
2194 /*
2195 * more data appeared than we where willing
2196 * to deal with in this request.
2197 */
2198
2199 /* currently we don't deal this */
2200 WARN_ON_ONCE(1);
2201 }
2202
2203 hs_ep->total_data += to_read;
2204 hs_req->req.actual += to_read;
2205 to_read = DIV_ROUND_UP(to_read, 4);
2206
2207 /*
2208 * note, we might over-write the buffer end by 3 bytes depending on
2209 * alignment of the data.
2210 */
2211 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2212 }
2213
2214 /**
2215 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2216 * @hsotg: The device instance
2217 * @dir_in: If IN zlp
2218 *
2219 * Generate a zero-length IN packet request for terminating a SETUP
2220 * transaction.
2221 *
2222 * Note, since we don't write any data to the TxFIFO, then it is
2223 * currently believed that we do not need to wait for any space in
2224 * the TxFIFO.
2225 */
2226 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2227 {
2228 /* eps_out[0] is used in both directions */
2229 hsotg->eps_out[0]->dir_in = dir_in;
2230 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2231
2232 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2233 }
2234
2235 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2236 u32 epctl_reg)
2237 {
2238 u32 ctrl;
2239
2240 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2241 if (ctrl & DXEPCTL_EOFRNUM)
2242 ctrl |= DXEPCTL_SETEVENFR;
2243 else
2244 ctrl |= DXEPCTL_SETODDFR;
2245 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2246 }
2247
2248 /*
2249 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2250 * @hs_ep - The endpoint on which transfer went
2251 *
2252 * Iterate over endpoints descriptor chain and get info on bytes remained
2253 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2254 */
2255 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2256 {
2257 struct dwc2_hsotg *hsotg = hs_ep->parent;
2258 unsigned int bytes_rem = 0;
2259 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2260 int i;
2261 u32 status;
2262
2263 if (!desc)
2264 return -EINVAL;
2265
2266 for (i = 0; i < hs_ep->desc_count; ++i) {
2267 status = desc->status;
2268 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2269
2270 if (status & DEV_DMA_STS_MASK)
2271 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2272 i, status & DEV_DMA_STS_MASK);
2273 }
2274
2275 return bytes_rem;
2276 }
2277
2278 /**
2279 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2280 * @hsotg: The device instance
2281 * @epnum: The endpoint received from
2282 *
2283 * The RXFIFO has delivered an OutDone event, which means that the data
2284 * transfer for an OUT endpoint has been completed, either by a short
2285 * packet or by the finish of a transfer.
2286 */
2287 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2288 {
2289 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2290 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2291 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2292 struct usb_request *req = &hs_req->req;
2293 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2294 int result = 0;
2295
2296 if (!hs_req) {
2297 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2298 return;
2299 }
2300
2301 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2302 dev_dbg(hsotg->dev, "zlp packet received\n");
2303 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2304 dwc2_hsotg_enqueue_setup(hsotg);
2305 return;
2306 }
2307
2308 if (using_desc_dma(hsotg))
2309 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2310
2311 if (using_dma(hsotg)) {
2312 unsigned int size_done;
2313
2314 /*
2315 * Calculate the size of the transfer by checking how much
2316 * is left in the endpoint size register and then working it
2317 * out from the amount we loaded for the transfer.
2318 *
2319 * We need to do this as DMA pointers are always 32bit aligned
2320 * so may overshoot/undershoot the transfer.
2321 */
2322
2323 size_done = hs_ep->size_loaded - size_left;
2324 size_done += hs_ep->last_load;
2325
2326 req->actual = size_done;
2327 }
2328
2329 /* if there is more request to do, schedule new transfer */
2330 if (req->actual < req->length && size_left == 0) {
2331 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2332 return;
2333 }
2334
2335 if (req->actual < req->length && req->short_not_ok) {
2336 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2337 __func__, req->actual, req->length);
2338
2339 /*
2340 * todo - what should we return here? there's no one else
2341 * even bothering to check the status.
2342 */
2343 }
2344
2345 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2346 if (!using_desc_dma(hsotg) && epnum == 0 &&
2347 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2348 /* Move to STATUS IN */
2349 dwc2_hsotg_ep0_zlp(hsotg, true);
2350 return;
2351 }
2352
2353 /*
2354 * Slave mode OUT transfers do not go through XferComplete so
2355 * adjust the ISOC parity here.
2356 */
2357 if (!using_dma(hsotg)) {
2358 if (hs_ep->isochronous && hs_ep->interval == 1)
2359 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2360 else if (hs_ep->isochronous && hs_ep->interval > 1)
2361 dwc2_gadget_incr_frame_num(hs_ep);
2362 }
2363
2364 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2365 }
2366
2367 /**
2368 * dwc2_hsotg_handle_rx - RX FIFO has data
2369 * @hsotg: The device instance
2370 *
2371 * The IRQ handler has detected that the RX FIFO has some data in it
2372 * that requires processing, so find out what is in there and do the
2373 * appropriate read.
2374 *
2375 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2376 * chunks, so if you have x packets received on an endpoint you'll get x
2377 * FIFO events delivered, each with a packet's worth of data in it.
2378 *
2379 * When using DMA, we should not be processing events from the RXFIFO
2380 * as the actual data should be sent to the memory directly and we turn
2381 * on the completion interrupts to get notifications of transfer completion.
2382 */
2383 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2384 {
2385 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2386 u32 epnum, status, size;
2387
2388 WARN_ON(using_dma(hsotg));
2389
2390 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2391 status = grxstsr & GRXSTS_PKTSTS_MASK;
2392
2393 size = grxstsr & GRXSTS_BYTECNT_MASK;
2394 size >>= GRXSTS_BYTECNT_SHIFT;
2395
2396 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2397 __func__, grxstsr, size, epnum);
2398
2399 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2400 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2401 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2402 break;
2403
2404 case GRXSTS_PKTSTS_OUTDONE:
2405 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2406 dwc2_hsotg_read_frameno(hsotg));
2407
2408 if (!using_dma(hsotg))
2409 dwc2_hsotg_handle_outdone(hsotg, epnum);
2410 break;
2411
2412 case GRXSTS_PKTSTS_SETUPDONE:
2413 dev_dbg(hsotg->dev,
2414 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2415 dwc2_hsotg_read_frameno(hsotg),
2416 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2417 /*
2418 * Call dwc2_hsotg_handle_outdone here if it was not called from
2419 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2420 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2421 */
2422 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2423 dwc2_hsotg_handle_outdone(hsotg, epnum);
2424 break;
2425
2426 case GRXSTS_PKTSTS_OUTRX:
2427 dwc2_hsotg_rx_data(hsotg, epnum, size);
2428 break;
2429
2430 case GRXSTS_PKTSTS_SETUPRX:
2431 dev_dbg(hsotg->dev,
2432 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2433 dwc2_hsotg_read_frameno(hsotg),
2434 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2435
2436 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2437
2438 dwc2_hsotg_rx_data(hsotg, epnum, size);
2439 break;
2440
2441 default:
2442 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2443 __func__, grxstsr);
2444
2445 dwc2_hsotg_dump(hsotg);
2446 break;
2447 }
2448 }
2449
2450 /**
2451 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2452 * @mps: The maximum packet size in bytes.
2453 */
2454 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2455 {
2456 switch (mps) {
2457 case 64:
2458 return D0EPCTL_MPS_64;
2459 case 32:
2460 return D0EPCTL_MPS_32;
2461 case 16:
2462 return D0EPCTL_MPS_16;
2463 case 8:
2464 return D0EPCTL_MPS_8;
2465 }
2466
2467 /* bad max packet size, warn and return invalid result */
2468 WARN_ON(1);
2469 return (u32)-1;
2470 }
2471
2472 /**
2473 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2474 * @hsotg: The driver state.
2475 * @ep: The index number of the endpoint
2476 * @mps: The maximum packet size in bytes
2477 * @mc: The multicount value
2478 *
2479 * Configure the maximum packet size for the given endpoint, updating
2480 * the hardware control registers to reflect this.
2481 */
2482 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2483 unsigned int ep, unsigned int mps,
2484 unsigned int mc, unsigned int dir_in)
2485 {
2486 struct dwc2_hsotg_ep *hs_ep;
2487 void __iomem *regs = hsotg->regs;
2488 u32 reg;
2489
2490 hs_ep = index_to_ep(hsotg, ep, dir_in);
2491 if (!hs_ep)
2492 return;
2493
2494 if (ep == 0) {
2495 u32 mps_bytes = mps;
2496
2497 /* EP0 is a special case */
2498 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2499 if (mps > 3)
2500 goto bad_mps;
2501 hs_ep->ep.maxpacket = mps_bytes;
2502 hs_ep->mc = 1;
2503 } else {
2504 if (mps > 1024)
2505 goto bad_mps;
2506 hs_ep->mc = mc;
2507 if (mc > 3)
2508 goto bad_mps;
2509 hs_ep->ep.maxpacket = mps;
2510 }
2511
2512 if (dir_in) {
2513 reg = dwc2_readl(regs + DIEPCTL(ep));
2514 reg &= ~DXEPCTL_MPS_MASK;
2515 reg |= mps;
2516 dwc2_writel(reg, regs + DIEPCTL(ep));
2517 } else {
2518 reg = dwc2_readl(regs + DOEPCTL(ep));
2519 reg &= ~DXEPCTL_MPS_MASK;
2520 reg |= mps;
2521 dwc2_writel(reg, regs + DOEPCTL(ep));
2522 }
2523
2524 return;
2525
2526 bad_mps:
2527 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2528 }
2529
2530 /**
2531 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2532 * @hsotg: The driver state
2533 * @idx: The index for the endpoint (0..15)
2534 */
2535 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2536 {
2537 int timeout;
2538 int val;
2539
2540 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2541 hsotg->regs + GRSTCTL);
2542
2543 /* wait until the fifo is flushed */
2544 timeout = 100;
2545
2546 while (1) {
2547 val = dwc2_readl(hsotg->regs + GRSTCTL);
2548
2549 if ((val & (GRSTCTL_TXFFLSH)) == 0)
2550 break;
2551
2552 if (--timeout == 0) {
2553 dev_err(hsotg->dev,
2554 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2555 __func__, val);
2556 break;
2557 }
2558
2559 udelay(1);
2560 }
2561 }
2562
2563 /**
2564 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2565 * @hsotg: The driver state
2566 * @hs_ep: The driver endpoint to check.
2567 *
2568 * Check to see if there is a request that has data to send, and if so
2569 * make an attempt to write data into the FIFO.
2570 */
2571 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2572 struct dwc2_hsotg_ep *hs_ep)
2573 {
2574 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2575
2576 if (!hs_ep->dir_in || !hs_req) {
2577 /**
2578 * if request is not enqueued, we disable interrupts
2579 * for endpoints, excepting ep0
2580 */
2581 if (hs_ep->index != 0)
2582 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2583 hs_ep->dir_in, 0);
2584 return 0;
2585 }
2586
2587 if (hs_req->req.actual < hs_req->req.length) {
2588 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2589 hs_ep->index);
2590 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2591 }
2592
2593 return 0;
2594 }
2595
2596 /**
2597 * dwc2_hsotg_complete_in - complete IN transfer
2598 * @hsotg: The device state.
2599 * @hs_ep: The endpoint that has just completed.
2600 *
2601 * An IN transfer has been completed, update the transfer's state and then
2602 * call the relevant completion routines.
2603 */
2604 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2605 struct dwc2_hsotg_ep *hs_ep)
2606 {
2607 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2608 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2609 int size_left, size_done;
2610
2611 if (!hs_req) {
2612 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2613 return;
2614 }
2615
2616 /* Finish ZLP handling for IN EP0 transactions */
2617 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2618 dev_dbg(hsotg->dev, "zlp packet sent\n");
2619
2620 /*
2621 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2622 * changed to IN. Change back to complete OUT transfer request
2623 */
2624 hs_ep->dir_in = 0;
2625
2626 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2627 if (hsotg->test_mode) {
2628 int ret;
2629
2630 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2631 if (ret < 0) {
2632 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2633 hsotg->test_mode);
2634 dwc2_hsotg_stall_ep0(hsotg);
2635 return;
2636 }
2637 }
2638 dwc2_hsotg_enqueue_setup(hsotg);
2639 return;
2640 }
2641
2642 /*
2643 * Calculate the size of the transfer by checking how much is left
2644 * in the endpoint size register and then working it out from
2645 * the amount we loaded for the transfer.
2646 *
2647 * We do this even for DMA, as the transfer may have incremented
2648 * past the end of the buffer (DMA transfers are always 32bit
2649 * aligned).
2650 */
2651 if (using_desc_dma(hsotg)) {
2652 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2653 if (size_left < 0)
2654 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2655 size_left);
2656 } else {
2657 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2658 }
2659
2660 size_done = hs_ep->size_loaded - size_left;
2661 size_done += hs_ep->last_load;
2662
2663 if (hs_req->req.actual != size_done)
2664 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2665 __func__, hs_req->req.actual, size_done);
2666
2667 hs_req->req.actual = size_done;
2668 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2669 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2670
2671 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2672 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2673 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2674 return;
2675 }
2676
2677 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2678 if (hs_ep->send_zlp) {
2679 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2680 hs_ep->send_zlp = 0;
2681 /* transfer will be completed on next complete interrupt */
2682 return;
2683 }
2684
2685 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2686 /* Move to STATUS OUT */
2687 dwc2_hsotg_ep0_zlp(hsotg, false);
2688 return;
2689 }
2690
2691 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2692 }
2693
2694 /**
2695 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2696 * @hsotg: The device state.
2697 * @idx: Index of ep.
2698 * @dir_in: Endpoint direction 1-in 0-out.
2699 *
2700 * Reads for endpoint with given index and direction, by masking
2701 * epint_reg with coresponding mask.
2702 */
2703 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2704 unsigned int idx, int dir_in)
2705 {
2706 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2707 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2708 u32 ints;
2709 u32 mask;
2710 u32 diepempmsk;
2711
2712 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2713 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2714 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2715 mask |= DXEPINT_SETUP_RCVD;
2716
2717 ints = dwc2_readl(hsotg->regs + epint_reg);
2718 ints &= mask;
2719 return ints;
2720 }
2721
2722 /**
2723 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2724 * @hs_ep: The endpoint on which interrupt is asserted.
2725 *
2726 * This interrupt indicates that the endpoint has been disabled per the
2727 * application's request.
2728 *
2729 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2730 * in case of ISOC completes current request.
2731 *
2732 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2733 * request starts it.
2734 */
2735 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2736 {
2737 struct dwc2_hsotg *hsotg = hs_ep->parent;
2738 struct dwc2_hsotg_req *hs_req;
2739 unsigned char idx = hs_ep->index;
2740 int dir_in = hs_ep->dir_in;
2741 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2742 int dctl = dwc2_readl(hsotg->regs + DCTL);
2743
2744 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2745
2746 if (dir_in) {
2747 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2748
2749 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2750
2751 if (hs_ep->isochronous) {
2752 dwc2_hsotg_complete_in(hsotg, hs_ep);
2753 return;
2754 }
2755
2756 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2757 int dctl = dwc2_readl(hsotg->regs + DCTL);
2758
2759 dctl |= DCTL_CGNPINNAK;
2760 dwc2_writel(dctl, hsotg->regs + DCTL);
2761 }
2762 return;
2763 }
2764
2765 if (dctl & DCTL_GOUTNAKSTS) {
2766 dctl |= DCTL_CGOUTNAK;
2767 dwc2_writel(dctl, hsotg->regs + DCTL);
2768 }
2769
2770 if (!hs_ep->isochronous)
2771 return;
2772
2773 if (list_empty(&hs_ep->queue)) {
2774 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2775 __func__, hs_ep);
2776 return;
2777 }
2778
2779 do {
2780 hs_req = get_ep_head(hs_ep);
2781 if (hs_req)
2782 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2783 -ENODATA);
2784 dwc2_gadget_incr_frame_num(hs_ep);
2785 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2786
2787 dwc2_gadget_start_next_request(hs_ep);
2788 }
2789
2790 /**
2791 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2792 * @hs_ep: The endpoint on which interrupt is asserted.
2793 *
2794 * This is starting point for ISOC-OUT transfer, synchronization done with
2795 * first out token received from host while corresponding EP is disabled.
2796 *
2797 * Device does not know initial frame in which out token will come. For this
2798 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2799 * getting this interrupt SW starts calculation for next transfer frame.
2800 */
2801 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2802 {
2803 struct dwc2_hsotg *hsotg = ep->parent;
2804 int dir_in = ep->dir_in;
2805 u32 doepmsk;
2806 u32 tmp;
2807
2808 if (dir_in || !ep->isochronous)
2809 return;
2810
2811 /*
2812 * Store frame in which irq was asserted here, as
2813 * it can change while completing request below.
2814 */
2815 tmp = dwc2_hsotg_read_frameno(hsotg);
2816
2817 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2818
2819 if (using_desc_dma(hsotg)) {
2820 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2821 /* Start first ISO Out */
2822 ep->target_frame = tmp;
2823 dwc2_gadget_start_isoc_ddma(ep);
2824 }
2825 return;
2826 }
2827
2828 if (ep->interval > 1 &&
2829 ep->target_frame == TARGET_FRAME_INITIAL) {
2830 u32 dsts;
2831 u32 ctrl;
2832
2833 dsts = dwc2_readl(hsotg->regs + DSTS);
2834 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2835 dwc2_gadget_incr_frame_num(ep);
2836
2837 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2838 if (ep->target_frame & 0x1)
2839 ctrl |= DXEPCTL_SETODDFR;
2840 else
2841 ctrl |= DXEPCTL_SETEVENFR;
2842
2843 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2844 }
2845
2846 dwc2_gadget_start_next_request(ep);
2847 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2848 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2849 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2850 }
2851
2852 /**
2853 * dwc2_gadget_handle_nak - handle NAK interrupt
2854 * @hs_ep: The endpoint on which interrupt is asserted.
2855 *
2856 * This is starting point for ISOC-IN transfer, synchronization done with
2857 * first IN token received from host while corresponding EP is disabled.
2858 *
2859 * Device does not know when first one token will arrive from host. On first
2860 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2861 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2862 * sent in response to that as there was no data in FIFO. SW is basing on this
2863 * interrupt to obtain frame in which token has come and then based on the
2864 * interval calculates next frame for transfer.
2865 */
2866 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2867 {
2868 struct dwc2_hsotg *hsotg = hs_ep->parent;
2869 int dir_in = hs_ep->dir_in;
2870
2871 if (!dir_in || !hs_ep->isochronous)
2872 return;
2873
2874 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2875 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2876
2877 if (using_desc_dma(hsotg)) {
2878 dwc2_gadget_start_isoc_ddma(hs_ep);
2879 return;
2880 }
2881
2882 if (hs_ep->interval > 1) {
2883 u32 ctrl = dwc2_readl(hsotg->regs +
2884 DIEPCTL(hs_ep->index));
2885 if (hs_ep->target_frame & 0x1)
2886 ctrl |= DXEPCTL_SETODDFR;
2887 else
2888 ctrl |= DXEPCTL_SETEVENFR;
2889
2890 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2891 }
2892
2893 dwc2_hsotg_complete_request(hsotg, hs_ep,
2894 get_ep_head(hs_ep), 0);
2895 }
2896
2897 dwc2_gadget_incr_frame_num(hs_ep);
2898 }
2899
2900 /**
2901 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2902 * @hsotg: The driver state
2903 * @idx: The index for the endpoint (0..15)
2904 * @dir_in: Set if this is an IN endpoint
2905 *
2906 * Process and clear any interrupt pending for an individual endpoint
2907 */
2908 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2909 int dir_in)
2910 {
2911 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2912 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2913 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2914 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2915 u32 ints;
2916 u32 ctrl;
2917
2918 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2919 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2920
2921 /* Clear endpoint interrupts */
2922 dwc2_writel(ints, hsotg->regs + epint_reg);
2923
2924 if (!hs_ep) {
2925 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2926 __func__, idx, dir_in ? "in" : "out");
2927 return;
2928 }
2929
2930 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2931 __func__, idx, dir_in ? "in" : "out", ints);
2932
2933 /* Don't process XferCompl interrupt if it is a setup packet */
2934 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2935 ints &= ~DXEPINT_XFERCOMPL;
2936
2937 /*
2938 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2939 * stage and xfercomplete was generated without SETUP phase done
2940 * interrupt. SW should parse received setup packet only after host's
2941 * exit from setup phase of control transfer.
2942 */
2943 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2944 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2945 ints &= ~DXEPINT_XFERCOMPL;
2946
2947 if (ints & DXEPINT_XFERCOMPL) {
2948 dev_dbg(hsotg->dev,
2949 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2950 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2951 dwc2_readl(hsotg->regs + epsiz_reg));
2952
2953 /* In DDMA handle isochronous requests separately */
2954 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2955 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2956 /* Try to start next isoc request */
2957 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2958 } else if (dir_in) {
2959 /*
2960 * We get OutDone from the FIFO, so we only
2961 * need to look at completing IN requests here
2962 * if operating slave mode
2963 */
2964 if (hs_ep->isochronous && hs_ep->interval > 1)
2965 dwc2_gadget_incr_frame_num(hs_ep);
2966
2967 dwc2_hsotg_complete_in(hsotg, hs_ep);
2968 if (ints & DXEPINT_NAKINTRPT)
2969 ints &= ~DXEPINT_NAKINTRPT;
2970
2971 if (idx == 0 && !hs_ep->req)
2972 dwc2_hsotg_enqueue_setup(hsotg);
2973 } else if (using_dma(hsotg)) {
2974 /*
2975 * We're using DMA, we need to fire an OutDone here
2976 * as we ignore the RXFIFO.
2977 */
2978 if (hs_ep->isochronous && hs_ep->interval > 1)
2979 dwc2_gadget_incr_frame_num(hs_ep);
2980
2981 dwc2_hsotg_handle_outdone(hsotg, idx);
2982 }
2983 }
2984
2985 if (ints & DXEPINT_EPDISBLD)
2986 dwc2_gadget_handle_ep_disabled(hs_ep);
2987
2988 if (ints & DXEPINT_OUTTKNEPDIS)
2989 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2990
2991 if (ints & DXEPINT_NAKINTRPT)
2992 dwc2_gadget_handle_nak(hs_ep);
2993
2994 if (ints & DXEPINT_AHBERR)
2995 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2996
2997 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2998 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2999
3000 if (using_dma(hsotg) && idx == 0) {
3001 /*
3002 * this is the notification we've received a
3003 * setup packet. In non-DMA mode we'd get this
3004 * from the RXFIFO, instead we need to process
3005 * the setup here.
3006 */
3007
3008 if (dir_in)
3009 WARN_ON_ONCE(1);
3010 else
3011 dwc2_hsotg_handle_outdone(hsotg, 0);
3012 }
3013 }
3014
3015 if (ints & DXEPINT_STSPHSERCVD) {
3016 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3017
3018 /* Move to STATUS IN for DDMA */
3019 if (using_desc_dma(hsotg))
3020 dwc2_hsotg_ep0_zlp(hsotg, true);
3021 }
3022
3023 if (ints & DXEPINT_BACK2BACKSETUP)
3024 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3025
3026 if (ints & DXEPINT_BNAINTR) {
3027 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3028
3029 /*
3030 * Try to start next isoc request, if any.
3031 * Sometimes the endpoint remains enabled after BNA interrupt
3032 * assertion, which is not expected, hence we can enter here
3033 * couple of times.
3034 */
3035 if (hs_ep->isochronous)
3036 dwc2_gadget_start_next_isoc_ddma(hs_ep);
3037 }
3038
3039 if (dir_in && !hs_ep->isochronous) {
3040 /* not sure if this is important, but we'll clear it anyway */
3041 if (ints & DXEPINT_INTKNTXFEMP) {
3042 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3043 __func__, idx);
3044 }
3045
3046 /* this probably means something bad is happening */
3047 if (ints & DXEPINT_INTKNEPMIS) {
3048 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3049 __func__, idx);
3050 }
3051
3052 /* FIFO has space or is empty (see GAHBCFG) */
3053 if (hsotg->dedicated_fifos &&
3054 ints & DXEPINT_TXFEMP) {
3055 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3056 __func__, idx);
3057 if (!using_dma(hsotg))
3058 dwc2_hsotg_trytx(hsotg, hs_ep);
3059 }
3060 }
3061 }
3062
3063 /**
3064 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3065 * @hsotg: The device state.
3066 *
3067 * Handle updating the device settings after the enumeration phase has
3068 * been completed.
3069 */
3070 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3071 {
3072 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3073 int ep0_mps = 0, ep_mps = 8;
3074
3075 /*
3076 * This should signal the finish of the enumeration phase
3077 * of the USB handshaking, so we should now know what rate
3078 * we connected at.
3079 */
3080
3081 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3082
3083 /*
3084 * note, since we're limited by the size of transfer on EP0, and
3085 * it seems IN transfers must be a even number of packets we do
3086 * not advertise a 64byte MPS on EP0.
3087 */
3088
3089 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3090 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3091 case DSTS_ENUMSPD_FS:
3092 case DSTS_ENUMSPD_FS48:
3093 hsotg->gadget.speed = USB_SPEED_FULL;
3094 ep0_mps = EP0_MPS_LIMIT;
3095 ep_mps = 1023;
3096 break;
3097
3098 case DSTS_ENUMSPD_HS:
3099 hsotg->gadget.speed = USB_SPEED_HIGH;
3100 ep0_mps = EP0_MPS_LIMIT;
3101 ep_mps = 1024;
3102 break;
3103
3104 case DSTS_ENUMSPD_LS:
3105 hsotg->gadget.speed = USB_SPEED_LOW;
3106 ep0_mps = 8;
3107 ep_mps = 8;
3108 /*
3109 * note, we don't actually support LS in this driver at the
3110 * moment, and the documentation seems to imply that it isn't
3111 * supported by the PHYs on some of the devices.
3112 */
3113 break;
3114 }
3115 dev_info(hsotg->dev, "new device is %s\n",
3116 usb_speed_string(hsotg->gadget.speed));
3117
3118 /*
3119 * we should now know the maximum packet size for an
3120 * endpoint, so set the endpoints to a default value.
3121 */
3122
3123 if (ep0_mps) {
3124 int i;
3125 /* Initialize ep0 for both in and out directions */
3126 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3127 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3128 for (i = 1; i < hsotg->num_of_eps; i++) {
3129 if (hsotg->eps_in[i])
3130 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3131 0, 1);
3132 if (hsotg->eps_out[i])
3133 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3134 0, 0);
3135 }
3136 }
3137
3138 /* ensure after enumeration our EP0 is active */
3139
3140 dwc2_hsotg_enqueue_setup(hsotg);
3141
3142 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3143 dwc2_readl(hsotg->regs + DIEPCTL0),
3144 dwc2_readl(hsotg->regs + DOEPCTL0));
3145 }
3146
3147 /**
3148 * kill_all_requests - remove all requests from the endpoint's queue
3149 * @hsotg: The device state.
3150 * @ep: The endpoint the requests may be on.
3151 * @result: The result code to use.
3152 *
3153 * Go through the requests on the given endpoint and mark them
3154 * completed with the given result code.
3155 */
3156 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3157 struct dwc2_hsotg_ep *ep,
3158 int result)
3159 {
3160 struct dwc2_hsotg_req *req, *treq;
3161 unsigned int size;
3162
3163 ep->req = NULL;
3164
3165 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3166 dwc2_hsotg_complete_request(hsotg, ep, req,
3167 result);
3168
3169 if (!hsotg->dedicated_fifos)
3170 return;
3171 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3172 if (size < ep->fifo_size)
3173 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3174 }
3175
3176 /**
3177 * dwc2_hsotg_disconnect - disconnect service
3178 * @hsotg: The device state.
3179 *
3180 * The device has been disconnected. Remove all current
3181 * transactions and signal the gadget driver that this
3182 * has happened.
3183 */
3184 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3185 {
3186 unsigned int ep;
3187
3188 if (!hsotg->connected)
3189 return;
3190
3191 hsotg->connected = 0;
3192 hsotg->test_mode = 0;
3193
3194 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3195 if (hsotg->eps_in[ep])
3196 kill_all_requests(hsotg, hsotg->eps_in[ep],
3197 -ESHUTDOWN);
3198 if (hsotg->eps_out[ep])
3199 kill_all_requests(hsotg, hsotg->eps_out[ep],
3200 -ESHUTDOWN);
3201 }
3202
3203 call_gadget(hsotg, disconnect);
3204 hsotg->lx_state = DWC2_L3;
3205 }
3206
3207 /**
3208 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3209 * @hsotg: The device state:
3210 * @periodic: True if this is a periodic FIFO interrupt
3211 */
3212 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3213 {
3214 struct dwc2_hsotg_ep *ep;
3215 int epno, ret;
3216
3217 /* look through for any more data to transmit */
3218 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3219 ep = index_to_ep(hsotg, epno, 1);
3220
3221 if (!ep)
3222 continue;
3223
3224 if (!ep->dir_in)
3225 continue;
3226
3227 if ((periodic && !ep->periodic) ||
3228 (!periodic && ep->periodic))
3229 continue;
3230
3231 ret = dwc2_hsotg_trytx(hsotg, ep);
3232 if (ret < 0)
3233 break;
3234 }
3235 }
3236
3237 /* IRQ flags which will trigger a retry around the IRQ loop */
3238 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3239 GINTSTS_PTXFEMP | \
3240 GINTSTS_RXFLVL)
3241
3242 /**
3243 * dwc2_hsotg_core_init - issue softreset to the core
3244 * @hsotg: The device state
3245 *
3246 * Issue a soft reset to the core, and await the core finishing it.
3247 */
3248 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3249 bool is_usb_reset)
3250 {
3251 u32 intmsk;
3252 u32 val;
3253 u32 usbcfg;
3254 u32 dcfg = 0;
3255
3256 /* Kill any ep0 requests as controller will be reinitialized */
3257 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3258
3259 if (!is_usb_reset)
3260 if (dwc2_core_reset(hsotg, true))
3261 return;
3262
3263 /*
3264 * we must now enable ep0 ready for host detection and then
3265 * set configuration.
3266 */
3267
3268 /* keep other bits untouched (so e.g. forced modes are not lost) */
3269 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3270 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3271 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3272
3273 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3274 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3275 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3276 /* FS/LS Dedicated Transceiver Interface */
3277 usbcfg |= GUSBCFG_PHYSEL;
3278 } else {
3279 /* set the PLL on, remove the HNP/SRP and set the PHY */
3280 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3281 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3282 (val << GUSBCFG_USBTRDTIM_SHIFT);
3283 }
3284 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3285
3286 dwc2_hsotg_init_fifo(hsotg);
3287
3288 if (!is_usb_reset)
3289 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3290
3291 dcfg |= DCFG_EPMISCNT(1);
3292
3293 switch (hsotg->params.speed) {
3294 case DWC2_SPEED_PARAM_LOW:
3295 dcfg |= DCFG_DEVSPD_LS;
3296 break;
3297 case DWC2_SPEED_PARAM_FULL:
3298 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3299 dcfg |= DCFG_DEVSPD_FS48;
3300 else
3301 dcfg |= DCFG_DEVSPD_FS;
3302 break;
3303 default:
3304 dcfg |= DCFG_DEVSPD_HS;
3305 }
3306
3307 dwc2_writel(dcfg, hsotg->regs + DCFG);
3308
3309 /* Clear any pending OTG interrupts */
3310 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3311
3312 /* Clear any pending interrupts */
3313 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3314 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3315 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3316 GINTSTS_USBRST | GINTSTS_RESETDET |
3317 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3318 GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3319
3320 if (!using_desc_dma(hsotg))
3321 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3322
3323 if (!hsotg->params.external_id_pin_ctl)
3324 intmsk |= GINTSTS_CONIDSTSCHNG;
3325
3326 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3327
3328 if (using_dma(hsotg)) {
3329 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3330 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3331 hsotg->regs + GAHBCFG);
3332
3333 /* Set DDMA mode support in the core if needed */
3334 if (using_desc_dma(hsotg))
3335 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3336
3337 } else {
3338 dwc2_writel(((hsotg->dedicated_fifos) ?
3339 (GAHBCFG_NP_TXF_EMP_LVL |
3340 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3341 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3342 }
3343
3344 /*
3345 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3346 * when we have no data to transfer. Otherwise we get being flooded by
3347 * interrupts.
3348 */
3349
3350 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3351 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3352 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3353 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3354 hsotg->regs + DIEPMSK);
3355
3356 /*
3357 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3358 * DMA mode we may need this and StsPhseRcvd.
3359 */
3360 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3361 DOEPMSK_STSPHSERCVDMSK) : 0) |
3362 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3363 DOEPMSK_SETUPMSK,
3364 hsotg->regs + DOEPMSK);
3365
3366 /* Enable BNA interrupt for DDMA */
3367 if (using_desc_dma(hsotg))
3368 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3369
3370 dwc2_writel(0, hsotg->regs + DAINTMSK);
3371
3372 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3373 dwc2_readl(hsotg->regs + DIEPCTL0),
3374 dwc2_readl(hsotg->regs + DOEPCTL0));
3375
3376 /* enable in and out endpoint interrupts */
3377 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3378
3379 /*
3380 * Enable the RXFIFO when in slave mode, as this is how we collect
3381 * the data. In DMA mode, we get events from the FIFO but also
3382 * things we cannot process, so do not use it.
3383 */
3384 if (!using_dma(hsotg))
3385 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3386
3387 /* Enable interrupts for EP0 in and out */
3388 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3389 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3390
3391 if (!is_usb_reset) {
3392 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3393 udelay(10); /* see openiboot */
3394 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3395 }
3396
3397 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3398
3399 /*
3400 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3401 * writing to the EPCTL register..
3402 */
3403
3404 /* set to read 1 8byte packet */
3405 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3406 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3407
3408 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3409 DXEPCTL_CNAK | DXEPCTL_EPENA |
3410 DXEPCTL_USBACTEP,
3411 hsotg->regs + DOEPCTL0);
3412
3413 /* enable, but don't activate EP0in */
3414 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3415 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3416
3417 dwc2_hsotg_enqueue_setup(hsotg);
3418
3419 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3420 dwc2_readl(hsotg->regs + DIEPCTL0),
3421 dwc2_readl(hsotg->regs + DOEPCTL0));
3422
3423 /* clear global NAKs */
3424 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3425 if (!is_usb_reset)
3426 val |= DCTL_SFTDISCON;
3427 __orr32(hsotg->regs + DCTL, val);
3428
3429 /* must be at-least 3ms to allow bus to see disconnect */
3430 mdelay(3);
3431
3432 hsotg->lx_state = DWC2_L0;
3433 }
3434
3435 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3436 {
3437 /* set the soft-disconnect bit */
3438 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3439 }
3440
3441 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3442 {
3443 /* remove the soft-disconnect and let's go */
3444 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3445 }
3446
3447 /**
3448 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3449 * @hsotg: The device state:
3450 *
3451 * This interrupt indicates one of the following conditions occurred while
3452 * transmitting an ISOC transaction.
3453 * - Corrupted IN Token for ISOC EP.
3454 * - Packet not complete in FIFO.
3455 *
3456 * The following actions will be taken:
3457 * - Determine the EP
3458 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3459 */
3460 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3461 {
3462 struct dwc2_hsotg_ep *hs_ep;
3463 u32 epctrl;
3464 u32 idx;
3465
3466 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3467
3468 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3469 hs_ep = hsotg->eps_in[idx];
3470 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3471 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3472 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3473 epctrl |= DXEPCTL_SNAK;
3474 epctrl |= DXEPCTL_EPDIS;
3475 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3476 }
3477 }
3478
3479 /* Clear interrupt */
3480 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3481 }
3482
3483 /**
3484 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3485 * @hsotg: The device state:
3486 *
3487 * This interrupt indicates one of the following conditions occurred while
3488 * transmitting an ISOC transaction.
3489 * - Corrupted OUT Token for ISOC EP.
3490 * - Packet not complete in FIFO.
3491 *
3492 * The following actions will be taken:
3493 * - Determine the EP
3494 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3495 */
3496 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3497 {
3498 u32 gintsts;
3499 u32 gintmsk;
3500 u32 epctrl;
3501 struct dwc2_hsotg_ep *hs_ep;
3502 int idx;
3503
3504 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3505
3506 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3507 hs_ep = hsotg->eps_out[idx];
3508 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3509 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3510 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3511 /* Unmask GOUTNAKEFF interrupt */
3512 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3513 gintmsk |= GINTSTS_GOUTNAKEFF;
3514 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3515
3516 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3517 if (!(gintsts & GINTSTS_GOUTNAKEFF))
3518 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3519 }
3520 }
3521
3522 /* Clear interrupt */
3523 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3524 }
3525
3526 /**
3527 * dwc2_hsotg_irq - handle device interrupt
3528 * @irq: The IRQ number triggered
3529 * @pw: The pw value when registered the handler.
3530 */
3531 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3532 {
3533 struct dwc2_hsotg *hsotg = pw;
3534 int retry_count = 8;
3535 u32 gintsts;
3536 u32 gintmsk;
3537
3538 if (!dwc2_is_device_mode(hsotg))
3539 return IRQ_NONE;
3540
3541 spin_lock(&hsotg->lock);
3542 irq_retry:
3543 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3544 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3545
3546 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3547 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3548
3549 gintsts &= gintmsk;
3550
3551 if (gintsts & GINTSTS_RESETDET) {
3552 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3553
3554 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3555
3556 /* This event must be used only if controller is suspended */
3557 if (hsotg->lx_state == DWC2_L2) {
3558 dwc2_exit_hibernation(hsotg, true);
3559 hsotg->lx_state = DWC2_L0;
3560 }
3561 }
3562
3563 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3564 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3565 u32 connected = hsotg->connected;
3566
3567 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3568 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3569 dwc2_readl(hsotg->regs + GNPTXSTS));
3570
3571 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3572
3573 /* Report disconnection if it is not already done. */
3574 dwc2_hsotg_disconnect(hsotg);
3575
3576 if (usb_status & GOTGCTL_BSESVLD && connected)
3577 dwc2_hsotg_core_init_disconnected(hsotg, true);
3578 }
3579
3580 if (gintsts & GINTSTS_ENUMDONE) {
3581 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3582
3583 dwc2_hsotg_irq_enumdone(hsotg);
3584 }
3585
3586 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3587 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3588 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3589 u32 daint_out, daint_in;
3590 int ep;
3591
3592 daint &= daintmsk;
3593 daint_out = daint >> DAINT_OUTEP_SHIFT;
3594 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3595
3596 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3597
3598 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3599 ep++, daint_out >>= 1) {
3600 if (daint_out & 1)
3601 dwc2_hsotg_epint(hsotg, ep, 0);
3602 }
3603
3604 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3605 ep++, daint_in >>= 1) {
3606 if (daint_in & 1)
3607 dwc2_hsotg_epint(hsotg, ep, 1);
3608 }
3609 }
3610
3611 /* check both FIFOs */
3612
3613 if (gintsts & GINTSTS_NPTXFEMP) {
3614 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3615
3616 /*
3617 * Disable the interrupt to stop it happening again
3618 * unless one of these endpoint routines decides that
3619 * it needs re-enabling
3620 */
3621
3622 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3623 dwc2_hsotg_irq_fifoempty(hsotg, false);
3624 }
3625
3626 if (gintsts & GINTSTS_PTXFEMP) {
3627 dev_dbg(hsotg->dev, "PTxFEmp\n");
3628
3629 /* See note in GINTSTS_NPTxFEmp */
3630
3631 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3632 dwc2_hsotg_irq_fifoempty(hsotg, true);
3633 }
3634
3635 if (gintsts & GINTSTS_RXFLVL) {
3636 /*
3637 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3638 * we need to retry dwc2_hsotg_handle_rx if this is still
3639 * set.
3640 */
3641
3642 dwc2_hsotg_handle_rx(hsotg);
3643 }
3644
3645 if (gintsts & GINTSTS_ERLYSUSP) {
3646 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3647 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3648 }
3649
3650 /*
3651 * these next two seem to crop-up occasionally causing the core
3652 * to shutdown the USB transfer, so try clearing them and logging
3653 * the occurrence.
3654 */
3655
3656 if (gintsts & GINTSTS_GOUTNAKEFF) {
3657 u8 idx;
3658 u32 epctrl;
3659 u32 gintmsk;
3660 struct dwc2_hsotg_ep *hs_ep;
3661
3662 /* Mask this interrupt */
3663 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3664 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3665 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3666
3667 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3668 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3669 hs_ep = hsotg->eps_out[idx];
3670 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3671
3672 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3673 epctrl |= DXEPCTL_SNAK;
3674 epctrl |= DXEPCTL_EPDIS;
3675 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3676 }
3677 }
3678
3679 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3680 }
3681
3682 if (gintsts & GINTSTS_GINNAKEFF) {
3683 dev_info(hsotg->dev, "GINNakEff triggered\n");
3684
3685 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3686
3687 dwc2_hsotg_dump(hsotg);
3688 }
3689
3690 if (gintsts & GINTSTS_INCOMPL_SOIN)
3691 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3692
3693 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3694 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3695
3696 /*
3697 * if we've had fifo events, we should try and go around the
3698 * loop again to see if there's any point in returning yet.
3699 */
3700
3701 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3702 goto irq_retry;
3703
3704 spin_unlock(&hsotg->lock);
3705
3706 return IRQ_HANDLED;
3707 }
3708
3709 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3710 u32 bit, u32 timeout)
3711 {
3712 u32 i;
3713
3714 for (i = 0; i < timeout; i++) {
3715 if (dwc2_readl(hs_otg->regs + reg) & bit)
3716 return 0;
3717 udelay(1);
3718 }
3719
3720 return -ETIMEDOUT;
3721 }
3722
3723 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3724 struct dwc2_hsotg_ep *hs_ep)
3725 {
3726 u32 epctrl_reg;
3727 u32 epint_reg;
3728
3729 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3730 DOEPCTL(hs_ep->index);
3731 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3732 DOEPINT(hs_ep->index);
3733
3734 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3735 hs_ep->name);
3736
3737 if (hs_ep->dir_in) {
3738 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3739 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3740 /* Wait for Nak effect */
3741 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3742 DXEPINT_INEPNAKEFF, 100))
3743 dev_warn(hsotg->dev,
3744 "%s: timeout DIEPINT.NAKEFF\n",
3745 __func__);
3746 } else {
3747 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3748 /* Wait for Nak effect */
3749 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3750 GINTSTS_GINNAKEFF, 100))
3751 dev_warn(hsotg->dev,
3752 "%s: timeout GINTSTS.GINNAKEFF\n",
3753 __func__);
3754 }
3755 } else {
3756 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3757 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3758
3759 /* Wait for global nak to take effect */
3760 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3761 GINTSTS_GOUTNAKEFF, 100))
3762 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3763 __func__);
3764 }
3765
3766 /* Disable ep */
3767 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3768
3769 /* Wait for ep to be disabled */
3770 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3771 dev_warn(hsotg->dev,
3772 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3773
3774 /* Clear EPDISBLD interrupt */
3775 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3776
3777 if (hs_ep->dir_in) {
3778 unsigned short fifo_index;
3779
3780 if (hsotg->dedicated_fifos || hs_ep->periodic)
3781 fifo_index = hs_ep->fifo_index;
3782 else
3783 fifo_index = 0;
3784
3785 /* Flush TX FIFO */
3786 dwc2_flush_tx_fifo(hsotg, fifo_index);
3787
3788 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3789 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3790 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3791
3792 } else {
3793 /* Remove global NAKs */
3794 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3795 }
3796 }
3797
3798 /**
3799 * dwc2_hsotg_ep_enable - enable the given endpoint
3800 * @ep: The USB endpint to configure
3801 * @desc: The USB endpoint descriptor to configure with.
3802 *
3803 * This is called from the USB gadget code's usb_ep_enable().
3804 */
3805 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3806 const struct usb_endpoint_descriptor *desc)
3807 {
3808 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3809 struct dwc2_hsotg *hsotg = hs_ep->parent;
3810 unsigned long flags;
3811 unsigned int index = hs_ep->index;
3812 u32 epctrl_reg;
3813 u32 epctrl;
3814 u32 mps;
3815 u32 mc;
3816 u32 mask;
3817 unsigned int dir_in;
3818 unsigned int i, val, size;
3819 int ret = 0;
3820
3821 dev_dbg(hsotg->dev,
3822 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3823 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3824 desc->wMaxPacketSize, desc->bInterval);
3825
3826 /* not to be called for EP0 */
3827 if (index == 0) {
3828 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3829 return -EINVAL;
3830 }
3831
3832 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3833 if (dir_in != hs_ep->dir_in) {
3834 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3835 return -EINVAL;
3836 }
3837
3838 mps = usb_endpoint_maxp(desc);
3839 mc = usb_endpoint_maxp_mult(desc);
3840
3841 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3842
3843 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3844 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3845
3846 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3847 __func__, epctrl, epctrl_reg);
3848
3849 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3850 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3851 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3852 MAX_DMA_DESC_NUM_GENERIC *
3853 sizeof(struct dwc2_dma_desc),
3854 &hs_ep->desc_list_dma, GFP_ATOMIC);
3855 if (!hs_ep->desc_list) {
3856 ret = -ENOMEM;
3857 goto error2;
3858 }
3859 }
3860
3861 spin_lock_irqsave(&hsotg->lock, flags);
3862
3863 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3864 epctrl |= DXEPCTL_MPS(mps);
3865
3866 /*
3867 * mark the endpoint as active, otherwise the core may ignore
3868 * transactions entirely for this endpoint
3869 */
3870 epctrl |= DXEPCTL_USBACTEP;
3871
3872 /* update the endpoint state */
3873 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3874
3875 /* default, set to non-periodic */
3876 hs_ep->isochronous = 0;
3877 hs_ep->periodic = 0;
3878 hs_ep->halted = 0;
3879 hs_ep->interval = desc->bInterval;
3880
3881 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3882 case USB_ENDPOINT_XFER_ISOC:
3883 epctrl |= DXEPCTL_EPTYPE_ISO;
3884 epctrl |= DXEPCTL_SETEVENFR;
3885 hs_ep->isochronous = 1;
3886 hs_ep->interval = 1 << (desc->bInterval - 1);
3887 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3888 hs_ep->isoc_chain_num = 0;
3889 hs_ep->next_desc = 0;
3890 if (dir_in) {
3891 hs_ep->periodic = 1;
3892 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3893 mask |= DIEPMSK_NAKMSK;
3894 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3895 } else {
3896 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3897 mask |= DOEPMSK_OUTTKNEPDISMSK;
3898 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3899 }
3900 break;
3901
3902 case USB_ENDPOINT_XFER_BULK:
3903 epctrl |= DXEPCTL_EPTYPE_BULK;
3904 break;
3905
3906 case USB_ENDPOINT_XFER_INT:
3907 if (dir_in)
3908 hs_ep->periodic = 1;
3909
3910 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3911 hs_ep->interval = 1 << (desc->bInterval - 1);
3912
3913 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3914 break;
3915
3916 case USB_ENDPOINT_XFER_CONTROL:
3917 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3918 break;
3919 }
3920
3921 /*
3922 * if the hardware has dedicated fifos, we must give each IN EP
3923 * a unique tx-fifo even if it is non-periodic.
3924 */
3925 if (dir_in && hsotg->dedicated_fifos) {
3926 u32 fifo_index = 0;
3927 u32 fifo_size = UINT_MAX;
3928
3929 size = hs_ep->ep.maxpacket * hs_ep->mc;
3930 for (i = 1; i < hsotg->num_of_eps; ++i) {
3931 if (hsotg->fifo_map & (1 << i))
3932 continue;
3933 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3934 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3935 if (val < size)
3936 continue;
3937 /* Search for smallest acceptable fifo */
3938 if (val < fifo_size) {
3939 fifo_size = val;
3940 fifo_index = i;
3941 }
3942 }
3943 if (!fifo_index) {
3944 dev_err(hsotg->dev,
3945 "%s: No suitable fifo found\n", __func__);
3946 ret = -ENOMEM;
3947 goto error1;
3948 }
3949 hsotg->fifo_map |= 1 << fifo_index;
3950 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3951 hs_ep->fifo_index = fifo_index;
3952 hs_ep->fifo_size = fifo_size;
3953 }
3954
3955 /* for non control endpoints, set PID to D0 */
3956 if (index && !hs_ep->isochronous)
3957 epctrl |= DXEPCTL_SETD0PID;
3958
3959 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3960 __func__, epctrl);
3961
3962 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3963 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3964 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3965
3966 /* enable the endpoint interrupt */
3967 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3968
3969 error1:
3970 spin_unlock_irqrestore(&hsotg->lock, flags);
3971
3972 error2:
3973 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3974 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3975 sizeof(struct dwc2_dma_desc),
3976 hs_ep->desc_list, hs_ep->desc_list_dma);
3977 hs_ep->desc_list = NULL;
3978 }
3979
3980 return ret;
3981 }
3982
3983 /**
3984 * dwc2_hsotg_ep_disable - disable given endpoint
3985 * @ep: The endpoint to disable.
3986 */
3987 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3988 {
3989 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3990 struct dwc2_hsotg *hsotg = hs_ep->parent;
3991 int dir_in = hs_ep->dir_in;
3992 int index = hs_ep->index;
3993 unsigned long flags;
3994 u32 epctrl_reg;
3995 u32 ctrl;
3996
3997 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3998
3999 if (ep == &hsotg->eps_out[0]->ep) {
4000 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4001 return -EINVAL;
4002 }
4003
4004 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4005
4006 spin_lock_irqsave(&hsotg->lock, flags);
4007
4008 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4009
4010 if (ctrl & DXEPCTL_EPENA)
4011 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4012
4013 ctrl &= ~DXEPCTL_EPENA;
4014 ctrl &= ~DXEPCTL_USBACTEP;
4015 ctrl |= DXEPCTL_SNAK;
4016
4017 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4018 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4019
4020 /* disable endpoint interrupts */
4021 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4022
4023 /* terminate all requests with shutdown */
4024 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4025
4026 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4027 hs_ep->fifo_index = 0;
4028 hs_ep->fifo_size = 0;
4029
4030 spin_unlock_irqrestore(&hsotg->lock, flags);
4031 return 0;
4032 }
4033
4034 /**
4035 * on_list - check request is on the given endpoint
4036 * @ep: The endpoint to check.
4037 * @test: The request to test if it is on the endpoint.
4038 */
4039 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4040 {
4041 struct dwc2_hsotg_req *req, *treq;
4042
4043 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4044 if (req == test)
4045 return true;
4046 }
4047
4048 return false;
4049 }
4050
4051 /**
4052 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4053 * @ep: The endpoint to dequeue.
4054 * @req: The request to be removed from a queue.
4055 */
4056 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4057 {
4058 struct dwc2_hsotg_req *hs_req = our_req(req);
4059 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4060 struct dwc2_hsotg *hs = hs_ep->parent;
4061 unsigned long flags;
4062
4063 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4064
4065 spin_lock_irqsave(&hs->lock, flags);
4066
4067 if (!on_list(hs_ep, hs_req)) {
4068 spin_unlock_irqrestore(&hs->lock, flags);
4069 return -EINVAL;
4070 }
4071
4072 /* Dequeue already started request */
4073 if (req == &hs_ep->req->req)
4074 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4075
4076 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4077 spin_unlock_irqrestore(&hs->lock, flags);
4078
4079 return 0;
4080 }
4081
4082 /**
4083 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4084 * @ep: The endpoint to set halt.
4085 * @value: Set or unset the halt.
4086 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4087 * the endpoint is busy processing requests.
4088 *
4089 * We need to stall the endpoint immediately if request comes from set_feature
4090 * protocol command handler.
4091 */
4092 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4093 {
4094 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4095 struct dwc2_hsotg *hs = hs_ep->parent;
4096 int index = hs_ep->index;
4097 u32 epreg;
4098 u32 epctl;
4099 u32 xfertype;
4100
4101 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4102
4103 if (index == 0) {
4104 if (value)
4105 dwc2_hsotg_stall_ep0(hs);
4106 else
4107 dev_warn(hs->dev,
4108 "%s: can't clear halt on ep0\n", __func__);
4109 return 0;
4110 }
4111
4112 if (hs_ep->isochronous) {
4113 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4114 return -EINVAL;
4115 }
4116
4117 if (!now && value && !list_empty(&hs_ep->queue)) {
4118 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4119 ep->name);
4120 return -EAGAIN;
4121 }
4122
4123 if (hs_ep->dir_in) {
4124 epreg = DIEPCTL(index);
4125 epctl = dwc2_readl(hs->regs + epreg);
4126
4127 if (value) {
4128 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4129 if (epctl & DXEPCTL_EPENA)
4130 epctl |= DXEPCTL_EPDIS;
4131 } else {
4132 epctl &= ~DXEPCTL_STALL;
4133 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4134 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4135 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4136 epctl |= DXEPCTL_SETD0PID;
4137 }
4138 dwc2_writel(epctl, hs->regs + epreg);
4139 } else {
4140 epreg = DOEPCTL(index);
4141 epctl = dwc2_readl(hs->regs + epreg);
4142
4143 if (value) {
4144 epctl |= DXEPCTL_STALL;
4145 } else {
4146 epctl &= ~DXEPCTL_STALL;
4147 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4148 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4149 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4150 epctl |= DXEPCTL_SETD0PID;
4151 }
4152 dwc2_writel(epctl, hs->regs + epreg);
4153 }
4154
4155 hs_ep->halted = value;
4156
4157 return 0;
4158 }
4159
4160 /**
4161 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4162 * @ep: The endpoint to set halt.
4163 * @value: Set or unset the halt.
4164 */
4165 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4166 {
4167 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4168 struct dwc2_hsotg *hs = hs_ep->parent;
4169 unsigned long flags = 0;
4170 int ret = 0;
4171
4172 spin_lock_irqsave(&hs->lock, flags);
4173 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4174 spin_unlock_irqrestore(&hs->lock, flags);
4175
4176 return ret;
4177 }
4178
4179 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
4180 .enable = dwc2_hsotg_ep_enable,
4181 .disable = dwc2_hsotg_ep_disable,
4182 .alloc_request = dwc2_hsotg_ep_alloc_request,
4183 .free_request = dwc2_hsotg_ep_free_request,
4184 .queue = dwc2_hsotg_ep_queue_lock,
4185 .dequeue = dwc2_hsotg_ep_dequeue,
4186 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4187 /* note, don't believe we have any call for the fifo routines */
4188 };
4189
4190 /**
4191 * dwc2_hsotg_init - initialize the usb core
4192 * @hsotg: The driver state
4193 */
4194 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4195 {
4196 u32 trdtim;
4197 u32 usbcfg;
4198 /* unmask subset of endpoint interrupts */
4199
4200 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4201 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4202 hsotg->regs + DIEPMSK);
4203
4204 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4205 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4206 hsotg->regs + DOEPMSK);
4207
4208 dwc2_writel(0, hsotg->regs + DAINTMSK);
4209
4210 /* Be in disconnected state until gadget is registered */
4211 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4212
4213 /* setup fifos */
4214
4215 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4216 dwc2_readl(hsotg->regs + GRXFSIZ),
4217 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4218
4219 dwc2_hsotg_init_fifo(hsotg);
4220
4221 /* keep other bits untouched (so e.g. forced modes are not lost) */
4222 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4223 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4224 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4225
4226 /* set the PLL on, remove the HNP/SRP and set the PHY */
4227 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4228 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4229 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4230 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4231
4232 if (using_dma(hsotg))
4233 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4234 }
4235
4236 /**
4237 * dwc2_hsotg_udc_start - prepare the udc for work
4238 * @gadget: The usb gadget state
4239 * @driver: The usb gadget driver
4240 *
4241 * Perform initialization to prepare udc device and driver
4242 * to work.
4243 */
4244 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4245 struct usb_gadget_driver *driver)
4246 {
4247 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4248 unsigned long flags;
4249 int ret;
4250
4251 if (!hsotg) {
4252 pr_err("%s: called with no device\n", __func__);
4253 return -ENODEV;
4254 }
4255
4256 if (!driver) {
4257 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4258 return -EINVAL;
4259 }
4260
4261 if (driver->max_speed < USB_SPEED_FULL)
4262 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4263
4264 if (!driver->setup) {
4265 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4266 return -EINVAL;
4267 }
4268
4269 WARN_ON(hsotg->driver);
4270
4271 driver->driver.bus = NULL;
4272 hsotg->driver = driver;
4273 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4274 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4275
4276 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4277 ret = dwc2_lowlevel_hw_enable(hsotg);
4278 if (ret)
4279 goto err;
4280 }
4281
4282 if (!IS_ERR_OR_NULL(hsotg->uphy))
4283 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4284
4285 spin_lock_irqsave(&hsotg->lock, flags);
4286 if (dwc2_hw_is_device(hsotg)) {
4287 dwc2_hsotg_init(hsotg);
4288 dwc2_hsotg_core_init_disconnected(hsotg, false);
4289 }
4290
4291 hsotg->enabled = 0;
4292 spin_unlock_irqrestore(&hsotg->lock, flags);
4293
4294 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4295
4296 return 0;
4297
4298 err:
4299 hsotg->driver = NULL;
4300 return ret;
4301 }
4302
4303 /**
4304 * dwc2_hsotg_udc_stop - stop the udc
4305 * @gadget: The usb gadget state
4306 * @driver: The usb gadget driver
4307 *
4308 * Stop udc hw block and stay tunned for future transmissions
4309 */
4310 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4311 {
4312 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4313 unsigned long flags = 0;
4314 int ep;
4315
4316 if (!hsotg)
4317 return -ENODEV;
4318
4319 /* all endpoints should be shutdown */
4320 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4321 if (hsotg->eps_in[ep])
4322 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4323 if (hsotg->eps_out[ep])
4324 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4325 }
4326
4327 spin_lock_irqsave(&hsotg->lock, flags);
4328
4329 hsotg->driver = NULL;
4330 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4331 hsotg->enabled = 0;
4332
4333 spin_unlock_irqrestore(&hsotg->lock, flags);
4334
4335 if (!IS_ERR_OR_NULL(hsotg->uphy))
4336 otg_set_peripheral(hsotg->uphy->otg, NULL);
4337
4338 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4339 dwc2_lowlevel_hw_disable(hsotg);
4340
4341 return 0;
4342 }
4343
4344 /**
4345 * dwc2_hsotg_gadget_getframe - read the frame number
4346 * @gadget: The usb gadget state
4347 *
4348 * Read the {micro} frame number
4349 */
4350 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4351 {
4352 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4353 }
4354
4355 /**
4356 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4357 * @gadget: The usb gadget state
4358 * @is_on: Current state of the USB PHY
4359 *
4360 * Connect/Disconnect the USB PHY pullup
4361 */
4362 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4363 {
4364 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4365 unsigned long flags = 0;
4366
4367 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4368 hsotg->op_state);
4369
4370 /* Don't modify pullup state while in host mode */
4371 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4372 hsotg->enabled = is_on;
4373 return 0;
4374 }
4375
4376 spin_lock_irqsave(&hsotg->lock, flags);
4377 if (is_on) {
4378 hsotg->enabled = 1;
4379 dwc2_hsotg_core_init_disconnected(hsotg, false);
4380 dwc2_hsotg_core_connect(hsotg);
4381 } else {
4382 dwc2_hsotg_core_disconnect(hsotg);
4383 dwc2_hsotg_disconnect(hsotg);
4384 hsotg->enabled = 0;
4385 }
4386
4387 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4388 spin_unlock_irqrestore(&hsotg->lock, flags);
4389
4390 return 0;
4391 }
4392
4393 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4394 {
4395 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4396 unsigned long flags;
4397
4398 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4399 spin_lock_irqsave(&hsotg->lock, flags);
4400
4401 /*
4402 * If controller is hibernated, it must exit from hibernation
4403 * before being initialized / de-initialized
4404 */
4405 if (hsotg->lx_state == DWC2_L2)
4406 dwc2_exit_hibernation(hsotg, false);
4407
4408 if (is_active) {
4409 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4410
4411 dwc2_hsotg_core_init_disconnected(hsotg, false);
4412 if (hsotg->enabled)
4413 dwc2_hsotg_core_connect(hsotg);
4414 } else {
4415 dwc2_hsotg_core_disconnect(hsotg);
4416 dwc2_hsotg_disconnect(hsotg);
4417 }
4418
4419 spin_unlock_irqrestore(&hsotg->lock, flags);
4420 return 0;
4421 }
4422
4423 /**
4424 * dwc2_hsotg_vbus_draw - report bMaxPower field
4425 * @gadget: The usb gadget state
4426 * @mA: Amount of current
4427 *
4428 * Report how much power the device may consume to the phy.
4429 */
4430 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4431 {
4432 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4433
4434 if (IS_ERR_OR_NULL(hsotg->uphy))
4435 return -ENOTSUPP;
4436 return usb_phy_set_power(hsotg->uphy, mA);
4437 }
4438
4439 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4440 .get_frame = dwc2_hsotg_gadget_getframe,
4441 .udc_start = dwc2_hsotg_udc_start,
4442 .udc_stop = dwc2_hsotg_udc_stop,
4443 .pullup = dwc2_hsotg_pullup,
4444 .vbus_session = dwc2_hsotg_vbus_session,
4445 .vbus_draw = dwc2_hsotg_vbus_draw,
4446 };
4447
4448 /**
4449 * dwc2_hsotg_initep - initialise a single endpoint
4450 * @hsotg: The device state.
4451 * @hs_ep: The endpoint to be initialised.
4452 * @epnum: The endpoint number
4453 *
4454 * Initialise the given endpoint (as part of the probe and device state
4455 * creation) to give to the gadget driver. Setup the endpoint name, any
4456 * direction information and other state that may be required.
4457 */
4458 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4459 struct dwc2_hsotg_ep *hs_ep,
4460 int epnum,
4461 bool dir_in)
4462 {
4463 char *dir;
4464
4465 if (epnum == 0)
4466 dir = "";
4467 else if (dir_in)
4468 dir = "in";
4469 else
4470 dir = "out";
4471
4472 hs_ep->dir_in = dir_in;
4473 hs_ep->index = epnum;
4474
4475 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4476
4477 INIT_LIST_HEAD(&hs_ep->queue);
4478 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4479
4480 /* add to the list of endpoints known by the gadget driver */
4481 if (epnum)
4482 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4483
4484 hs_ep->parent = hsotg;
4485 hs_ep->ep.name = hs_ep->name;
4486
4487 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4488 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4489 else
4490 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4491 epnum ? 1024 : EP0_MPS_LIMIT);
4492 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4493
4494 if (epnum == 0) {
4495 hs_ep->ep.caps.type_control = true;
4496 } else {
4497 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4498 hs_ep->ep.caps.type_iso = true;
4499 hs_ep->ep.caps.type_bulk = true;
4500 }
4501 hs_ep->ep.caps.type_int = true;
4502 }
4503
4504 if (dir_in)
4505 hs_ep->ep.caps.dir_in = true;
4506 else
4507 hs_ep->ep.caps.dir_out = true;
4508
4509 /*
4510 * if we're using dma, we need to set the next-endpoint pointer
4511 * to be something valid.
4512 */
4513
4514 if (using_dma(hsotg)) {
4515 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4516
4517 if (dir_in)
4518 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4519 else
4520 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4521 }
4522 }
4523
4524 /**
4525 * dwc2_hsotg_hw_cfg - read HW configuration registers
4526 * @param: The device state
4527 *
4528 * Read the USB core HW configuration registers
4529 */
4530 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4531 {
4532 u32 cfg;
4533 u32 ep_type;
4534 u32 i;
4535
4536 /* check hardware configuration */
4537
4538 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4539
4540 /* Add ep0 */
4541 hsotg->num_of_eps++;
4542
4543 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4544 sizeof(struct dwc2_hsotg_ep),
4545 GFP_KERNEL);
4546 if (!hsotg->eps_in[0])
4547 return -ENOMEM;
4548 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4549 hsotg->eps_out[0] = hsotg->eps_in[0];
4550
4551 cfg = hsotg->hw_params.dev_ep_dirs;
4552 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4553 ep_type = cfg & 3;
4554 /* Direction in or both */
4555 if (!(ep_type & 2)) {
4556 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4557 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4558 if (!hsotg->eps_in[i])
4559 return -ENOMEM;
4560 }
4561 /* Direction out or both */
4562 if (!(ep_type & 1)) {
4563 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4564 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4565 if (!hsotg->eps_out[i])
4566 return -ENOMEM;
4567 }
4568 }
4569
4570 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4571 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4572
4573 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4574 hsotg->num_of_eps,
4575 hsotg->dedicated_fifos ? "dedicated" : "shared",
4576 hsotg->fifo_mem);
4577 return 0;
4578 }
4579
4580 /**
4581 * dwc2_hsotg_dump - dump state of the udc
4582 * @param: The device state
4583 */
4584 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4585 {
4586 #ifdef DEBUG
4587 struct device *dev = hsotg->dev;
4588 void __iomem *regs = hsotg->regs;
4589 u32 val;
4590 int idx;
4591
4592 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4593 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4594 dwc2_readl(regs + DIEPMSK));
4595
4596 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4597 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4598
4599 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4600 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4601
4602 /* show periodic fifo settings */
4603
4604 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4605 val = dwc2_readl(regs + DPTXFSIZN(idx));
4606 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4607 val >> FIFOSIZE_DEPTH_SHIFT,
4608 val & FIFOSIZE_STARTADDR_MASK);
4609 }
4610
4611 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4612 dev_info(dev,
4613 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4614 dwc2_readl(regs + DIEPCTL(idx)),
4615 dwc2_readl(regs + DIEPTSIZ(idx)),
4616 dwc2_readl(regs + DIEPDMA(idx)));
4617
4618 val = dwc2_readl(regs + DOEPCTL(idx));
4619 dev_info(dev,
4620 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4621 idx, dwc2_readl(regs + DOEPCTL(idx)),
4622 dwc2_readl(regs + DOEPTSIZ(idx)),
4623 dwc2_readl(regs + DOEPDMA(idx)));
4624 }
4625
4626 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4627 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4628 #endif
4629 }
4630
4631 /**
4632 * dwc2_gadget_init - init function for gadget
4633 * @dwc2: The data structure for the DWC2 driver.
4634 * @irq: The IRQ number for the controller.
4635 */
4636 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4637 {
4638 struct device *dev = hsotg->dev;
4639 int epnum;
4640 int ret;
4641
4642 /* Dump fifo information */
4643 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4644 hsotg->params.g_np_tx_fifo_size);
4645 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4646
4647 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4648 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4649 hsotg->gadget.name = dev_name(dev);
4650 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4651 hsotg->gadget.is_otg = 1;
4652 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4653 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4654
4655 ret = dwc2_hsotg_hw_cfg(hsotg);
4656 if (ret) {
4657 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4658 return ret;
4659 }
4660
4661 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4662 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4663 if (!hsotg->ctrl_buff)
4664 return -ENOMEM;
4665
4666 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4667 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4668 if (!hsotg->ep0_buff)
4669 return -ENOMEM;
4670
4671 if (using_desc_dma(hsotg)) {
4672 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4673 if (ret < 0)
4674 return ret;
4675 }
4676
4677 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4678 dev_name(hsotg->dev), hsotg);
4679 if (ret < 0) {
4680 dev_err(dev, "cannot claim IRQ for gadget\n");
4681 return ret;
4682 }
4683
4684 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4685
4686 if (hsotg->num_of_eps == 0) {
4687 dev_err(dev, "wrong number of EPs (zero)\n");
4688 return -EINVAL;
4689 }
4690
4691 /* setup endpoint information */
4692
4693 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4694 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4695
4696 /* allocate EP0 request */
4697
4698 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4699 GFP_KERNEL);
4700 if (!hsotg->ctrl_req) {
4701 dev_err(dev, "failed to allocate ctrl req\n");
4702 return -ENOMEM;
4703 }
4704
4705 /* initialise the endpoints now the core has been initialised */
4706 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4707 if (hsotg->eps_in[epnum])
4708 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4709 epnum, 1);
4710 if (hsotg->eps_out[epnum])
4711 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4712 epnum, 0);
4713 }
4714
4715 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4716 if (ret)
4717 return ret;
4718
4719 dwc2_hsotg_dump(hsotg);
4720
4721 return 0;
4722 }
4723
4724 /**
4725 * dwc2_hsotg_remove - remove function for hsotg driver
4726 * @pdev: The platform information for the driver
4727 */
4728 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4729 {
4730 usb_del_gadget_udc(&hsotg->gadget);
4731
4732 return 0;
4733 }
4734
4735 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4736 {
4737 unsigned long flags;
4738
4739 if (hsotg->lx_state != DWC2_L0)
4740 return 0;
4741
4742 if (hsotg->driver) {
4743 int ep;
4744
4745 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4746 hsotg->driver->driver.name);
4747
4748 spin_lock_irqsave(&hsotg->lock, flags);
4749 if (hsotg->enabled)
4750 dwc2_hsotg_core_disconnect(hsotg);
4751 dwc2_hsotg_disconnect(hsotg);
4752 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4753 spin_unlock_irqrestore(&hsotg->lock, flags);
4754
4755 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4756 if (hsotg->eps_in[ep])
4757 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4758 if (hsotg->eps_out[ep])
4759 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4760 }
4761 }
4762
4763 return 0;
4764 }
4765
4766 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4767 {
4768 unsigned long flags;
4769
4770 if (hsotg->lx_state == DWC2_L2)
4771 return 0;
4772
4773 if (hsotg->driver) {
4774 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4775 hsotg->driver->driver.name);
4776
4777 spin_lock_irqsave(&hsotg->lock, flags);
4778 dwc2_hsotg_core_init_disconnected(hsotg, false);
4779 if (hsotg->enabled)
4780 dwc2_hsotg_core_connect(hsotg);
4781 spin_unlock_irqrestore(&hsotg->lock, flags);
4782 }
4783
4784 return 0;
4785 }
4786
4787 /**
4788 * dwc2_backup_device_registers() - Backup controller device registers.
4789 * When suspending usb bus, registers needs to be backuped
4790 * if controller power is disabled once suspended.
4791 *
4792 * @hsotg: Programming view of the DWC_otg controller
4793 */
4794 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4795 {
4796 struct dwc2_dregs_backup *dr;
4797 int i;
4798
4799 dev_dbg(hsotg->dev, "%s\n", __func__);
4800
4801 /* Backup dev regs */
4802 dr = &hsotg->dr_backup;
4803
4804 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4805 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4806 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4807 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4808 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4809
4810 for (i = 0; i < hsotg->num_of_eps; i++) {
4811 /* Backup IN EPs */
4812 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4813
4814 /* Ensure DATA PID is correctly configured */
4815 if (dr->diepctl[i] & DXEPCTL_DPID)
4816 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4817 else
4818 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4819
4820 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4821 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4822
4823 /* Backup OUT EPs */
4824 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4825
4826 /* Ensure DATA PID is correctly configured */
4827 if (dr->doepctl[i] & DXEPCTL_DPID)
4828 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4829 else
4830 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4831
4832 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4833 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4834 }
4835 dr->valid = true;
4836 return 0;
4837 }
4838
4839 /**
4840 * dwc2_restore_device_registers() - Restore controller device registers.
4841 * When resuming usb bus, device registers needs to be restored
4842 * if controller power were disabled.
4843 *
4844 * @hsotg: Programming view of the DWC_otg controller
4845 */
4846 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4847 {
4848 struct dwc2_dregs_backup *dr;
4849 u32 dctl;
4850 int i;
4851
4852 dev_dbg(hsotg->dev, "%s\n", __func__);
4853
4854 /* Restore dev regs */
4855 dr = &hsotg->dr_backup;
4856 if (!dr->valid) {
4857 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4858 __func__);
4859 return -EINVAL;
4860 }
4861 dr->valid = false;
4862
4863 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4864 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4865 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4866 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4867 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4868
4869 for (i = 0; i < hsotg->num_of_eps; i++) {
4870 /* Restore IN EPs */
4871 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4872 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4873 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4874
4875 /* Restore OUT EPs */
4876 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4877 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4878 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4879 }
4880
4881 /* Set the Power-On Programming done bit */
4882 dctl = dwc2_readl(hsotg->regs + DCTL);
4883 dctl |= DCTL_PWRONPRGDONE;
4884 dwc2_writel(dctl, hsotg->regs + DCTL);
4885
4886 return 0;
4887 }