2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
10 * S3C USB2.0 High-speed / OtG driver
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/of_platform.h>
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req
*our_req(struct usb_request
*req
)
40 return container_of(req
, struct dwc2_hsotg_req
, req
);
43 static inline struct dwc2_hsotg_ep
*our_ep(struct usb_ep
*ep
)
45 return container_of(ep
, struct dwc2_hsotg_ep
, ep
);
48 static inline struct dwc2_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
50 return container_of(gadget
, struct dwc2_hsotg
, gadget
);
53 static inline void __orr32(void __iomem
*ptr
, u32 val
)
55 dwc2_writel(dwc2_readl(ptr
) | val
, ptr
);
58 static inline void __bic32(void __iomem
*ptr
, u32 val
)
60 dwc2_writel(dwc2_readl(ptr
) & ~val
, ptr
);
63 static inline struct dwc2_hsotg_ep
*index_to_ep(struct dwc2_hsotg
*hsotg
,
64 u32 ep_index
, u32 dir_in
)
67 return hsotg
->eps_in
[ep_index
];
69 return hsotg
->eps_out
[ep_index
];
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
);
76 * using_dma - return the DMA status of the driver.
77 * @hsotg: The driver state.
79 * Return true if we're using DMA.
81 * Currently, we have the DMA support code worked into everywhere
82 * that needs it, but the AMBA DMA implementation in the hardware can
83 * only DMA from 32bit aligned addresses. This means that gadgets such
84 * as the CDC Ethernet cannot work as they often pass packets which are
87 * Unfortunately the choice to use DMA or not is global to the controller
88 * and seems to be only settable when the controller is being put through
89 * a core reset. This means we either need to fix the gadgets to take
90 * account of DMA alignment, or add bounce buffers (yuerk).
92 * g_using_dma is set depending on dts flag.
94 static inline bool using_dma(struct dwc2_hsotg
*hsotg
)
96 return hsotg
->params
.g_dma
;
100 * using_desc_dma - return the descriptor DMA status of the driver.
101 * @hsotg: The driver state.
103 * Return true if we're using descriptor DMA.
105 static inline bool using_desc_dma(struct dwc2_hsotg
*hsotg
)
107 return hsotg
->params
.g_dma_desc
;
111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
112 * @hs_ep: The endpoint
113 * @increment: The value to increment by
115 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
116 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
118 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep
*hs_ep
)
120 hs_ep
->target_frame
+= hs_ep
->interval
;
121 if (hs_ep
->target_frame
> DSTS_SOFFN_LIMIT
) {
122 hs_ep
->frame_overrun
= 1;
123 hs_ep
->target_frame
&= DSTS_SOFFN_LIMIT
;
125 hs_ep
->frame_overrun
= 0;
130 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 * @hsotg: The device state
132 * @ints: A bitmask of the interrupts to enable
134 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
136 u32 gsintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
139 new_gsintmsk
= gsintmsk
| ints
;
141 if (new_gsintmsk
!= gsintmsk
) {
142 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
143 dwc2_writel(new_gsintmsk
, hsotg
->regs
+ GINTMSK
);
148 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 * @hsotg: The device state
150 * @ints: A bitmask of the interrupts to enable
152 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
154 u32 gsintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
157 new_gsintmsk
= gsintmsk
& ~ints
;
159 if (new_gsintmsk
!= gsintmsk
)
160 dwc2_writel(new_gsintmsk
, hsotg
->regs
+ GINTMSK
);
164 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 * @hsotg: The device state
166 * @ep: The endpoint index
167 * @dir_in: True if direction is in.
168 * @en: The enable value, true to enable
170 * Set or clear the mask for an individual endpoint's interrupt
173 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg
*hsotg
,
174 unsigned int ep
, unsigned int dir_in
,
184 local_irq_save(flags
);
185 daint
= dwc2_readl(hsotg
->regs
+ DAINTMSK
);
190 dwc2_writel(daint
, hsotg
->regs
+ DAINTMSK
);
191 local_irq_restore(flags
);
195 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
197 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg
*hsotg
)
199 if (hsotg
->hw_params
.en_multiple_tx_fifo
)
200 /* In dedicated FIFO mode we need count of IN EPs */
201 return (dwc2_readl(hsotg
->regs
+ GHWCFG4
) &
202 GHWCFG4_NUM_IN_EPS_MASK
) >> GHWCFG4_NUM_IN_EPS_SHIFT
;
204 /* In shared FIFO mode we need count of Periodic IN EPs */
205 return hsotg
->hw_params
.num_dev_perio_in_ep
;
209 * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs
211 static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg
*hsotg
)
218 * Don't need additional space for ep info control registers in
221 if (!using_dma(hsotg
)) {
222 dev_dbg(hsotg
->dev
, "Buffer DMA ep info size 0\n");
227 * Buffer DMA mode - 1 location per endpoit
228 * Descriptor DMA mode - 4 locations per endpoint
230 ep_dirs
= hsotg
->hw_params
.dev_ep_dirs
;
232 for (i
= 0; i
<= hsotg
->hw_params
.num_dev_ep
; i
++) {
233 val
+= ep_dirs
& 3 ? 1 : 2;
237 if (using_desc_dma(hsotg
))
244 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
245 * device mode TX FIFOs
247 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg
*hsotg
)
254 np_tx_fifo_size
= min_t(u32
, hsotg
->hw_params
.dev_nperio_tx_fifo_size
,
255 hsotg
->params
.g_np_tx_fifo_size
);
257 /* Get Endpoint Info Control block size in DWORDs. */
258 ep_info_size
= dwc2_hsotg_ep_info_size(hsotg
);
259 tx_addr_max
= hsotg
->hw_params
.total_fifo_size
- ep_info_size
;
261 addr
= hsotg
->params
.g_rx_fifo_size
+ np_tx_fifo_size
;
262 if (tx_addr_max
<= addr
)
265 return tx_addr_max
- addr
;
269 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
272 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg
*hsotg
)
277 tx_fifo_depth
= dwc2_hsotg_tx_fifo_total_depth(hsotg
);
279 tx_fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
282 return tx_fifo_depth
;
284 return tx_fifo_depth
/ tx_fifo_count
;
288 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
289 * @hsotg: The device instance.
291 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg
*hsotg
)
297 u32
*txfsz
= hsotg
->params
.g_tx_fifo_size
;
299 /* Reset fifo map if not correctly cleared during previous session */
300 WARN_ON(hsotg
->fifo_map
);
303 /* set RX/NPTX FIFO sizes */
304 dwc2_writel(hsotg
->params
.g_rx_fifo_size
, hsotg
->regs
+ GRXFSIZ
);
305 dwc2_writel((hsotg
->params
.g_rx_fifo_size
<< FIFOSIZE_STARTADDR_SHIFT
) |
306 (hsotg
->params
.g_np_tx_fifo_size
<< FIFOSIZE_DEPTH_SHIFT
),
307 hsotg
->regs
+ GNPTXFSIZ
);
310 * arange all the rest of the TX FIFOs, as some versions of this
311 * block have overlapping default addresses. This also ensures
312 * that if the settings have been changed, then they are set to
316 /* start at the end of the GNPTXFSIZ, rounded up */
317 addr
= hsotg
->params
.g_rx_fifo_size
+ hsotg
->params
.g_np_tx_fifo_size
;
320 * Configure fifos sizes from provided configuration and assign
321 * them to endpoints dynamically according to maxpacket size value of
324 for (ep
= 1; ep
< MAX_EPS_CHANNELS
; ep
++) {
328 val
|= txfsz
[ep
] << FIFOSIZE_DEPTH_SHIFT
;
329 WARN_ONCE(addr
+ txfsz
[ep
] > hsotg
->fifo_mem
,
330 "insufficient fifo memory");
333 dwc2_writel(val
, hsotg
->regs
+ DPTXFSIZN(ep
));
334 val
= dwc2_readl(hsotg
->regs
+ DPTXFSIZN(ep
));
337 dwc2_writel(hsotg
->hw_params
.total_fifo_size
|
338 addr
<< GDFIFOCFG_EPINFOBASE_SHIFT
,
339 hsotg
->regs
+ GDFIFOCFG
);
341 * according to p428 of the design guide, we need to ensure that
342 * all fifos are flushed before continuing
345 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH
|
346 GRSTCTL_RXFFLSH
, hsotg
->regs
+ GRSTCTL
);
348 /* wait until the fifos are both flushed */
351 val
= dwc2_readl(hsotg
->regs
+ GRSTCTL
);
353 if ((val
& (GRSTCTL_TXFFLSH
| GRSTCTL_RXFFLSH
)) == 0)
356 if (--timeout
== 0) {
358 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
366 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
370 * @ep: USB endpoint to allocate request for.
371 * @flags: Allocation flags
373 * Allocate a new USB request structure appropriate for the specified endpoint
375 static struct usb_request
*dwc2_hsotg_ep_alloc_request(struct usb_ep
*ep
,
378 struct dwc2_hsotg_req
*req
;
380 req
= kzalloc(sizeof(*req
), flags
);
384 INIT_LIST_HEAD(&req
->queue
);
390 * is_ep_periodic - return true if the endpoint is in periodic mode.
391 * @hs_ep: The endpoint to query.
393 * Returns true if the endpoint is in periodic mode, meaning it is being
394 * used for an Interrupt or ISO transfer.
396 static inline int is_ep_periodic(struct dwc2_hsotg_ep
*hs_ep
)
398 return hs_ep
->periodic
;
402 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
403 * @hsotg: The device state.
404 * @hs_ep: The endpoint for the request
405 * @hs_req: The request being processed.
407 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
408 * of a request to ensure the buffer is ready for access by the caller.
410 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg
*hsotg
,
411 struct dwc2_hsotg_ep
*hs_ep
,
412 struct dwc2_hsotg_req
*hs_req
)
414 struct usb_request
*req
= &hs_req
->req
;
416 usb_gadget_unmap_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
420 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
421 * for Control endpoint
422 * @hsotg: The device state.
424 * This function will allocate 4 descriptor chains for EP 0: 2 for
425 * Setup stage, per one for IN and OUT data/status transactions.
427 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg
*hsotg
)
429 hsotg
->setup_desc
[0] =
430 dmam_alloc_coherent(hsotg
->dev
,
431 sizeof(struct dwc2_dma_desc
),
432 &hsotg
->setup_desc_dma
[0],
434 if (!hsotg
->setup_desc
[0])
437 hsotg
->setup_desc
[1] =
438 dmam_alloc_coherent(hsotg
->dev
,
439 sizeof(struct dwc2_dma_desc
),
440 &hsotg
->setup_desc_dma
[1],
442 if (!hsotg
->setup_desc
[1])
445 hsotg
->ctrl_in_desc
=
446 dmam_alloc_coherent(hsotg
->dev
,
447 sizeof(struct dwc2_dma_desc
),
448 &hsotg
->ctrl_in_desc_dma
,
450 if (!hsotg
->ctrl_in_desc
)
453 hsotg
->ctrl_out_desc
=
454 dmam_alloc_coherent(hsotg
->dev
,
455 sizeof(struct dwc2_dma_desc
),
456 &hsotg
->ctrl_out_desc_dma
,
458 if (!hsotg
->ctrl_out_desc
)
468 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
469 * @hsotg: The controller state.
470 * @hs_ep: The endpoint we're going to write for.
471 * @hs_req: The request to write data for.
473 * This is called when the TxFIFO has some space in it to hold a new
474 * transmission and we have something to give it. The actual setup of
475 * the data size is done elsewhere, so all we have to do is to actually
478 * The return value is zero if there is more space (or nothing was done)
479 * otherwise -ENOSPC is returned if the FIFO space was used up.
481 * This routine is only needed for PIO
483 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg
*hsotg
,
484 struct dwc2_hsotg_ep
*hs_ep
,
485 struct dwc2_hsotg_req
*hs_req
)
487 bool periodic
= is_ep_periodic(hs_ep
);
488 u32 gnptxsts
= dwc2_readl(hsotg
->regs
+ GNPTXSTS
);
489 int buf_pos
= hs_req
->req
.actual
;
490 int to_write
= hs_ep
->size_loaded
;
496 to_write
-= (buf_pos
- hs_ep
->last_load
);
498 /* if there's nothing to write, get out early */
502 if (periodic
&& !hsotg
->dedicated_fifos
) {
503 u32 epsize
= dwc2_readl(hsotg
->regs
+ DIEPTSIZ(hs_ep
->index
));
508 * work out how much data was loaded so we can calculate
509 * how much data is left in the fifo.
512 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
515 * if shared fifo, we cannot write anything until the
516 * previous data has been completely sent.
518 if (hs_ep
->fifo_load
!= 0) {
519 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
523 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
525 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
527 /* how much of the data has moved */
528 size_done
= hs_ep
->size_loaded
- size_left
;
530 /* how much data is left in the fifo */
531 can_write
= hs_ep
->fifo_load
- size_done
;
532 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
533 __func__
, can_write
);
535 can_write
= hs_ep
->fifo_size
- can_write
;
536 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
537 __func__
, can_write
);
539 if (can_write
<= 0) {
540 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
543 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
544 can_write
= dwc2_readl(hsotg
->regs
+
545 DTXFSTS(hs_ep
->fifo_index
));
550 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts
) == 0) {
552 "%s: no queue slots available (0x%08x)\n",
555 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_NPTXFEMP
);
559 can_write
= GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts
);
560 can_write
*= 4; /* fifo size is in 32bit quantities. */
563 max_transfer
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
565 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
566 __func__
, gnptxsts
, can_write
, to_write
, max_transfer
);
569 * limit to 512 bytes of data, it seems at least on the non-periodic
570 * FIFO, requests of >512 cause the endpoint to get stuck with a
571 * fragment of the end of the transfer in it.
573 if (can_write
> 512 && !periodic
)
577 * limit the write to one max-packet size worth of data, but allow
578 * the transfer to return that it did not run out of fifo space
581 if (to_write
> max_transfer
) {
582 to_write
= max_transfer
;
584 /* it's needed only when we do not use dedicated fifos */
585 if (!hsotg
->dedicated_fifos
)
586 dwc2_hsotg_en_gsint(hsotg
,
587 periodic
? GINTSTS_PTXFEMP
:
591 /* see if we can write data */
593 if (to_write
> can_write
) {
594 to_write
= can_write
;
595 pkt_round
= to_write
% max_transfer
;
598 * Round the write down to an
599 * exact number of packets.
601 * Note, we do not currently check to see if we can ever
602 * write a full packet or not to the FIFO.
606 to_write
-= pkt_round
;
609 * enable correct FIFO interrupt to alert us when there
613 /* it's needed only when we do not use dedicated fifos */
614 if (!hsotg
->dedicated_fifos
)
615 dwc2_hsotg_en_gsint(hsotg
,
616 periodic
? GINTSTS_PTXFEMP
:
620 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
621 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
626 hs_req
->req
.actual
= buf_pos
+ to_write
;
627 hs_ep
->total_data
+= to_write
;
630 hs_ep
->fifo_load
+= to_write
;
632 to_write
= DIV_ROUND_UP(to_write
, 4);
633 data
= hs_req
->req
.buf
+ buf_pos
;
635 iowrite32_rep(hsotg
->regs
+ EPFIFO(hs_ep
->index
), data
, to_write
);
637 return (to_write
>= can_write
) ? -ENOSPC
: 0;
641 * get_ep_limit - get the maximum data legnth for this endpoint
642 * @hs_ep: The endpoint
644 * Return the maximum data that can be queued in one go on a given endpoint
645 * so that transfers that are too long can be split.
647 static unsigned int get_ep_limit(struct dwc2_hsotg_ep
*hs_ep
)
649 int index
= hs_ep
->index
;
650 unsigned int maxsize
;
654 maxsize
= DXEPTSIZ_XFERSIZE_LIMIT
+ 1;
655 maxpkt
= DXEPTSIZ_PKTCNT_LIMIT
+ 1;
659 maxpkt
= DIEPTSIZ0_PKTCNT_LIMIT
+ 1;
664 /* we made the constant loading easier above by using +1 */
669 * constrain by packet count if maxpkts*pktsize is greater
670 * than the length register size.
673 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
674 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
680 * dwc2_hsotg_read_frameno - read current frame number
681 * @hsotg: The device instance
683 * Return the current frame number
685 static u32
dwc2_hsotg_read_frameno(struct dwc2_hsotg
*hsotg
)
689 dsts
= dwc2_readl(hsotg
->regs
+ DSTS
);
690 dsts
&= DSTS_SOFFN_MASK
;
691 dsts
>>= DSTS_SOFFN_SHIFT
;
697 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
698 * DMA descriptor chain prepared for specific endpoint
699 * @hs_ep: The endpoint
701 * Return the maximum data that can be queued in one go on a given endpoint
702 * depending on its descriptor chain capacity so that transfers that
703 * are too long can be split.
705 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep
*hs_ep
)
707 int is_isoc
= hs_ep
->isochronous
;
708 unsigned int maxsize
;
711 maxsize
= hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_LIMIT
:
712 DEV_DMA_ISOC_RX_NBYTES_LIMIT
;
714 maxsize
= DEV_DMA_NBYTES_LIMIT
;
716 /* Above size of one descriptor was chosen, multiple it */
717 maxsize
*= MAX_DMA_DESC_NUM_GENERIC
;
723 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
724 * @hs_ep: The endpoint
725 * @mask: RX/TX bytes mask to be defined
727 * Returns maximum data payload for one descriptor after analyzing endpoint
729 * DMA descriptor transfer bytes limit depends on EP type:
731 * Isochronous - descriptor rx/tx bytes bitfield limit,
732 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
733 * have concatenations from various descriptors within one packet.
735 * Selects corresponding mask for RX/TX bytes as well.
737 static u32
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep
*hs_ep
, u32
*mask
)
739 u32 mps
= hs_ep
->ep
.maxpacket
;
740 int dir_in
= hs_ep
->dir_in
;
743 if (!hs_ep
->index
&& !dir_in
) {
745 *mask
= DEV_DMA_NBYTES_MASK
;
746 } else if (hs_ep
->isochronous
) {
748 desc_size
= DEV_DMA_ISOC_TX_NBYTES_LIMIT
;
749 *mask
= DEV_DMA_ISOC_TX_NBYTES_MASK
;
751 desc_size
= DEV_DMA_ISOC_RX_NBYTES_LIMIT
;
752 *mask
= DEV_DMA_ISOC_RX_NBYTES_MASK
;
755 desc_size
= DEV_DMA_NBYTES_LIMIT
;
756 *mask
= DEV_DMA_NBYTES_MASK
;
758 /* Round down desc_size to be mps multiple */
759 desc_size
-= desc_size
% mps
;
766 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
767 * @hs_ep: The endpoint
768 * @dma_buff: DMA address to use
769 * @len: Length of the transfer
771 * This function will iterate over descriptor chain and fill its entries
772 * with corresponding information based on transfer data.
774 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep
*hs_ep
,
778 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
779 int dir_in
= hs_ep
->dir_in
;
780 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
781 u32 mps
= hs_ep
->ep
.maxpacket
;
787 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
789 hs_ep
->desc_count
= (len
/ maxsize
) +
790 ((len
% maxsize
) ? 1 : 0);
792 hs_ep
->desc_count
= 1;
794 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
796 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
797 << DEV_DMA_BUFF_STS_SHIFT
);
800 if (!hs_ep
->index
&& !dir_in
)
801 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
803 desc
->status
|= (maxsize
<<
804 DEV_DMA_NBYTES_SHIFT
& mask
);
805 desc
->buf
= dma_buff
+ offset
;
810 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
813 desc
->status
|= (len
% mps
) ? DEV_DMA_SHORT
:
814 ((hs_ep
->send_zlp
) ? DEV_DMA_SHORT
: 0);
816 dev_err(hsotg
->dev
, "wrong len %d\n", len
);
819 len
<< DEV_DMA_NBYTES_SHIFT
& mask
;
820 desc
->buf
= dma_buff
+ offset
;
823 desc
->status
&= ~DEV_DMA_BUFF_STS_MASK
;
824 desc
->status
|= (DEV_DMA_BUFF_STS_HREADY
825 << DEV_DMA_BUFF_STS_SHIFT
);
831 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
832 * @hs_ep: The isochronous endpoint.
833 * @dma_buff: usb requests dma buffer.
834 * @len: usb request transfer length.
836 * Finds out index of first free entry either in the bottom or up half of
837 * descriptor chain depend on which is under SW control and not processed
838 * by HW. Then fills that descriptor with the data of the arrived usb request,
839 * frame info, sets Last and IOC bits increments next_desc. If filled
840 * descriptor is not the first one, removes L bit from the previous descriptor
843 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep
*hs_ep
,
844 dma_addr_t dma_buff
, unsigned int len
)
846 struct dwc2_dma_desc
*desc
;
847 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
852 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
854 dev_err(hsotg
->dev
, "wrong len %d\n", len
);
859 * If SW has already filled half of chain, then return and wait for
860 * the other chain to be processed by HW.
862 if (hs_ep
->next_desc
== MAX_DMA_DESC_NUM_GENERIC
/ 2)
865 /* Increment frame number by interval for IN */
867 dwc2_gadget_incr_frame_num(hs_ep
);
869 index
= (MAX_DMA_DESC_NUM_GENERIC
/ 2) * hs_ep
->isoc_chain_num
+
872 /* Sanity check of calculated index */
873 if ((hs_ep
->isoc_chain_num
&& index
> MAX_DMA_DESC_NUM_GENERIC
) ||
874 (!hs_ep
->isoc_chain_num
&& index
> MAX_DMA_DESC_NUM_GENERIC
/ 2)) {
875 dev_err(hsotg
->dev
, "wrong index %d for iso chain\n", index
);
879 desc
= &hs_ep
->desc_list
[index
];
881 /* Clear L bit of previous desc if more than one entries in the chain */
882 if (hs_ep
->next_desc
)
883 hs_ep
->desc_list
[index
- 1].status
&= ~DEV_DMA_L
;
885 dev_dbg(hsotg
->dev
, "%s: Filling ep %d, dir %s isoc desc # %d\n",
886 __func__
, hs_ep
->index
, hs_ep
->dir_in
? "in" : "out", index
);
889 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
<< DEV_DMA_BUFF_STS_SHIFT
);
891 desc
->buf
= dma_buff
;
892 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
|
893 ((len
<< DEV_DMA_NBYTES_SHIFT
) & mask
));
896 desc
->status
|= ((hs_ep
->mc
<< DEV_DMA_ISOC_PID_SHIFT
) &
897 DEV_DMA_ISOC_PID_MASK
) |
898 ((len
% hs_ep
->ep
.maxpacket
) ?
900 ((hs_ep
->target_frame
<<
901 DEV_DMA_ISOC_FRNUM_SHIFT
) &
902 DEV_DMA_ISOC_FRNUM_MASK
);
905 desc
->status
&= ~DEV_DMA_BUFF_STS_MASK
;
906 desc
->status
|= (DEV_DMA_BUFF_STS_HREADY
<< DEV_DMA_BUFF_STS_SHIFT
);
908 /* Update index of last configured entry in the chain */
915 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
916 * @hs_ep: The isochronous endpoint.
918 * Prepare first descriptor chain for isochronous endpoints. Afterwards
919 * write DMA address to HW and enable the endpoint.
921 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
922 * to prepare second descriptor chain while first one is being processed by HW.
924 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep
*hs_ep
)
926 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
927 struct dwc2_hsotg_req
*hs_req
, *treq
;
928 int index
= hs_ep
->index
;
934 if (list_empty(&hs_ep
->queue
)) {
935 dev_dbg(hsotg
->dev
, "%s: No requests in queue\n", __func__
);
939 list_for_each_entry_safe(hs_req
, treq
, &hs_ep
->queue
, queue
) {
940 ret
= dwc2_gadget_fill_isoc_desc(hs_ep
, hs_req
->req
.dma
,
943 dev_dbg(hsotg
->dev
, "%s: desc chain full\n", __func__
);
948 depctl
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
949 dma_reg
= hs_ep
->dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
951 /* write descriptor chain address to control register */
952 dwc2_writel(hs_ep
->desc_list_dma
, hsotg
->regs
+ dma_reg
);
954 ctrl
= dwc2_readl(hsotg
->regs
+ depctl
);
955 ctrl
|= DXEPCTL_EPENA
| DXEPCTL_CNAK
;
956 dwc2_writel(ctrl
, hsotg
->regs
+ depctl
);
958 /* Switch ISOC descriptor chain number being processed by SW*/
959 hs_ep
->isoc_chain_num
= (hs_ep
->isoc_chain_num
^ 1) & 0x1;
960 hs_ep
->next_desc
= 0;
964 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
965 * @hsotg: The controller state.
966 * @hs_ep: The endpoint to process a request for
967 * @hs_req: The request to start.
968 * @continuing: True if we are doing more for the current request.
970 * Start the given request running by setting the endpoint registers
971 * appropriately, and writing any data to the FIFOs.
973 static void dwc2_hsotg_start_req(struct dwc2_hsotg
*hsotg
,
974 struct dwc2_hsotg_ep
*hs_ep
,
975 struct dwc2_hsotg_req
*hs_req
,
978 struct usb_request
*ureq
= &hs_req
->req
;
979 int index
= hs_ep
->index
;
980 int dir_in
= hs_ep
->dir_in
;
986 unsigned int packets
;
988 unsigned int dma_reg
;
991 if (hs_ep
->req
&& !continuing
) {
992 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
995 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
997 "%s: continue different req\n", __func__
);
1003 dma_reg
= dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
1004 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1005 epsize_reg
= dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
1007 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1008 __func__
, dwc2_readl(hsotg
->regs
+ epctrl_reg
), index
,
1009 hs_ep
->dir_in
? "in" : "out");
1011 /* If endpoint is stalled, we will restart request later */
1012 ctrl
= dwc2_readl(hsotg
->regs
+ epctrl_reg
);
1014 if (index
&& ctrl
& DXEPCTL_STALL
) {
1015 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
1019 length
= ureq
->length
- ureq
->actual
;
1020 dev_dbg(hsotg
->dev
, "ureq->length:%d ureq->actual:%d\n",
1021 ureq
->length
, ureq
->actual
);
1023 if (!using_desc_dma(hsotg
))
1024 maxreq
= get_ep_limit(hs_ep
);
1026 maxreq
= dwc2_gadget_get_chain_limit(hs_ep
);
1028 if (length
> maxreq
) {
1029 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
1031 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
1032 __func__
, length
, maxreq
, round
);
1034 /* round down to multiple of packets */
1042 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
1044 packets
= 1; /* send one packet if length is zero. */
1046 if (hs_ep
->isochronous
&& length
> (hs_ep
->mc
* hs_ep
->ep
.maxpacket
)) {
1047 dev_err(hsotg
->dev
, "req length > maxpacket*mc\n");
1051 if (dir_in
&& index
!= 0)
1052 if (hs_ep
->isochronous
)
1053 epsize
= DXEPTSIZ_MC(packets
);
1055 epsize
= DXEPTSIZ_MC(1);
1060 * zero length packet should be programmed on its own and should not
1061 * be counted in DIEPTSIZ.PktCnt with other packets.
1063 if (dir_in
&& ureq
->zero
&& !continuing
) {
1064 /* Test if zlp is actually required. */
1065 if ((ureq
->length
>= hs_ep
->ep
.maxpacket
) &&
1066 !(ureq
->length
% hs_ep
->ep
.maxpacket
))
1067 hs_ep
->send_zlp
= 1;
1070 epsize
|= DXEPTSIZ_PKTCNT(packets
);
1071 epsize
|= DXEPTSIZ_XFERSIZE(length
);
1073 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1074 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
1076 /* store the request as the current one we're doing */
1077 hs_ep
->req
= hs_req
;
1079 if (using_desc_dma(hsotg
)) {
1081 u32 mps
= hs_ep
->ep
.maxpacket
;
1083 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1087 else if (length
% mps
)
1088 length
+= (mps
- (length
% mps
));
1092 * If more data to send, adjust DMA for EP0 out data stage.
1093 * ureq->dma stays unchanged, hence increment it by already
1094 * passed passed data count before starting new transaction.
1096 if (!index
&& hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
&&
1098 offset
= ureq
->actual
;
1100 /* Fill DDMA chain entries */
1101 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, ureq
->dma
+ offset
,
1104 /* write descriptor chain address to control register */
1105 dwc2_writel(hs_ep
->desc_list_dma
, hsotg
->regs
+ dma_reg
);
1107 dev_dbg(hsotg
->dev
, "%s: %08x pad => 0x%08x\n",
1108 __func__
, (u32
)hs_ep
->desc_list_dma
, dma_reg
);
1110 /* write size / packets */
1111 dwc2_writel(epsize
, hsotg
->regs
+ epsize_reg
);
1113 if (using_dma(hsotg
) && !continuing
&& (length
!= 0)) {
1115 * write DMA address to control register, buffer
1116 * already synced by dwc2_hsotg_ep_queue().
1119 dwc2_writel(ureq
->dma
, hsotg
->regs
+ dma_reg
);
1121 dev_dbg(hsotg
->dev
, "%s: %pad => 0x%08x\n",
1122 __func__
, &ureq
->dma
, dma_reg
);
1126 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1) {
1127 hs_ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
1128 dwc2_gadget_incr_frame_num(hs_ep
);
1130 if (hs_ep
->target_frame
& 0x1)
1131 ctrl
|= DXEPCTL_SETODDFR
;
1133 ctrl
|= DXEPCTL_SETEVENFR
;
1136 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
1138 dev_dbg(hsotg
->dev
, "ep0 state:%d\n", hsotg
->ep0_state
);
1140 /* For Setup request do not clear NAK */
1141 if (!(index
== 0 && hsotg
->ep0_state
== DWC2_EP0_SETUP
))
1142 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
1144 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
1145 dwc2_writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
1148 * set these, it seems that DMA support increments past the end
1149 * of the packet buffer so we need to calculate the length from
1152 hs_ep
->size_loaded
= length
;
1153 hs_ep
->last_load
= ureq
->actual
;
1155 if (dir_in
&& !using_dma(hsotg
)) {
1156 /* set these anyway, we may need them for non-periodic in */
1157 hs_ep
->fifo_load
= 0;
1159 dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1163 * Note, trying to clear the NAK here causes problems with transmit
1164 * on the S3C6400 ending up with the TXFIFO becoming full.
1167 /* check ep is enabled */
1168 if (!(dwc2_readl(hsotg
->regs
+ epctrl_reg
) & DXEPCTL_EPENA
))
1170 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1171 index
, dwc2_readl(hsotg
->regs
+ epctrl_reg
));
1173 dev_dbg(hsotg
->dev
, "%s: DXEPCTL=0x%08x\n",
1174 __func__
, dwc2_readl(hsotg
->regs
+ epctrl_reg
));
1176 /* enable ep interrupts */
1177 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 1);
1181 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1182 * @hsotg: The device state.
1183 * @hs_ep: The endpoint the request is on.
1184 * @req: The request being processed.
1186 * We've been asked to queue a request, so ensure that the memory buffer
1187 * is correctly setup for DMA. If we've been passed an extant DMA address
1188 * then ensure the buffer has been synced to memory. If our buffer has no
1189 * DMA memory, then we map the memory and mark our request to allow us to
1190 * cleanup on completion.
1192 static int dwc2_hsotg_map_dma(struct dwc2_hsotg
*hsotg
,
1193 struct dwc2_hsotg_ep
*hs_ep
,
1194 struct usb_request
*req
)
1198 ret
= usb_gadget_map_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
1205 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
1206 __func__
, req
->buf
, req
->length
);
1211 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg
*hsotg
,
1212 struct dwc2_hsotg_ep
*hs_ep
,
1213 struct dwc2_hsotg_req
*hs_req
)
1215 void *req_buf
= hs_req
->req
.buf
;
1217 /* If dma is not being used or buffer is aligned */
1218 if (!using_dma(hsotg
) || !((long)req_buf
& 3))
1221 WARN_ON(hs_req
->saved_req_buf
);
1223 dev_dbg(hsotg
->dev
, "%s: %s: buf=%p length=%d\n", __func__
,
1224 hs_ep
->ep
.name
, req_buf
, hs_req
->req
.length
);
1226 hs_req
->req
.buf
= kmalloc(hs_req
->req
.length
, GFP_ATOMIC
);
1227 if (!hs_req
->req
.buf
) {
1228 hs_req
->req
.buf
= req_buf
;
1230 "%s: unable to allocate memory for bounce buffer\n",
1235 /* Save actual buffer */
1236 hs_req
->saved_req_buf
= req_buf
;
1239 memcpy(hs_req
->req
.buf
, req_buf
, hs_req
->req
.length
);
1244 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg
*hsotg
,
1245 struct dwc2_hsotg_ep
*hs_ep
,
1246 struct dwc2_hsotg_req
*hs_req
)
1248 /* If dma is not being used or buffer was aligned */
1249 if (!using_dma(hsotg
) || !hs_req
->saved_req_buf
)
1252 dev_dbg(hsotg
->dev
, "%s: %s: status=%d actual-length=%d\n", __func__
,
1253 hs_ep
->ep
.name
, hs_req
->req
.status
, hs_req
->req
.actual
);
1255 /* Copy data from bounce buffer on successful out transfer */
1256 if (!hs_ep
->dir_in
&& !hs_req
->req
.status
)
1257 memcpy(hs_req
->saved_req_buf
, hs_req
->req
.buf
,
1258 hs_req
->req
.actual
);
1260 /* Free bounce buffer */
1261 kfree(hs_req
->req
.buf
);
1263 hs_req
->req
.buf
= hs_req
->saved_req_buf
;
1264 hs_req
->saved_req_buf
= NULL
;
1268 * dwc2_gadget_target_frame_elapsed - Checks target frame
1269 * @hs_ep: The driver endpoint to check
1271 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1272 * corresponding transfer.
1274 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep
*hs_ep
)
1276 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1277 u32 target_frame
= hs_ep
->target_frame
;
1278 u32 current_frame
= dwc2_hsotg_read_frameno(hsotg
);
1279 bool frame_overrun
= hs_ep
->frame_overrun
;
1281 if (!frame_overrun
&& current_frame
>= target_frame
)
1284 if (frame_overrun
&& current_frame
>= target_frame
&&
1285 ((current_frame
- target_frame
) < DSTS_SOFFN_LIMIT
/ 2))
1292 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1293 * @hsotg: The driver state
1294 * @hs_ep: the ep descriptor chain is for
1296 * Called to update EP0 structure's pointers depend on stage of
1299 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg
*hsotg
,
1300 struct dwc2_hsotg_ep
*hs_ep
)
1302 switch (hsotg
->ep0_state
) {
1303 case DWC2_EP0_SETUP
:
1304 case DWC2_EP0_STATUS_OUT
:
1305 hs_ep
->desc_list
= hsotg
->setup_desc
[0];
1306 hs_ep
->desc_list_dma
= hsotg
->setup_desc_dma
[0];
1308 case DWC2_EP0_DATA_IN
:
1309 case DWC2_EP0_STATUS_IN
:
1310 hs_ep
->desc_list
= hsotg
->ctrl_in_desc
;
1311 hs_ep
->desc_list_dma
= hsotg
->ctrl_in_desc_dma
;
1313 case DWC2_EP0_DATA_OUT
:
1314 hs_ep
->desc_list
= hsotg
->ctrl_out_desc
;
1315 hs_ep
->desc_list_dma
= hsotg
->ctrl_out_desc_dma
;
1318 dev_err(hsotg
->dev
, "invalid EP 0 state in queue %d\n",
1326 static int dwc2_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
1329 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1330 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1331 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1335 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1336 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
1337 req
->zero
, req
->short_not_ok
);
1339 /* Prevent new request submission when controller is suspended */
1340 if (hs
->lx_state
== DWC2_L2
) {
1341 dev_dbg(hs
->dev
, "%s: don't submit request while suspended\n",
1346 /* initialise status of the request */
1347 INIT_LIST_HEAD(&hs_req
->queue
);
1349 req
->status
= -EINPROGRESS
;
1351 ret
= dwc2_hsotg_handle_unaligned_buf_start(hs
, hs_ep
, hs_req
);
1355 /* if we're using DMA, sync the buffers as necessary */
1356 if (using_dma(hs
)) {
1357 ret
= dwc2_hsotg_map_dma(hs
, hs_ep
, req
);
1361 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1362 if (using_desc_dma(hs
) && !hs_ep
->index
) {
1363 ret
= dwc2_gadget_set_ep0_desc_chain(hs
, hs_ep
);
1368 first
= list_empty(&hs_ep
->queue
);
1369 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
1372 * Handle DDMA isochronous transfers separately - just add new entry
1373 * to the half of descriptor chain that is not processed by HW.
1374 * Transfer will be started once SW gets either one of NAK or
1375 * OutTknEpDis interrupts.
1377 if (using_desc_dma(hs
) && hs_ep
->isochronous
&&
1378 hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
) {
1379 ret
= dwc2_gadget_fill_isoc_desc(hs_ep
, hs_req
->req
.dma
,
1380 hs_req
->req
.length
);
1382 dev_dbg(hs
->dev
, "%s: ISO desc chain full\n", __func__
);
1388 if (!hs_ep
->isochronous
) {
1389 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1393 while (dwc2_gadget_target_frame_elapsed(hs_ep
))
1394 dwc2_gadget_incr_frame_num(hs_ep
);
1396 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
)
1397 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1402 static int dwc2_hsotg_ep_queue_lock(struct usb_ep
*ep
, struct usb_request
*req
,
1405 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1406 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1407 unsigned long flags
= 0;
1410 spin_lock_irqsave(&hs
->lock
, flags
);
1411 ret
= dwc2_hsotg_ep_queue(ep
, req
, gfp_flags
);
1412 spin_unlock_irqrestore(&hs
->lock
, flags
);
1417 static void dwc2_hsotg_ep_free_request(struct usb_ep
*ep
,
1418 struct usb_request
*req
)
1420 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1426 * dwc2_hsotg_complete_oursetup - setup completion callback
1427 * @ep: The endpoint the request was on.
1428 * @req: The request completed.
1430 * Called on completion of any requests the driver itself
1431 * submitted that need cleaning up.
1433 static void dwc2_hsotg_complete_oursetup(struct usb_ep
*ep
,
1434 struct usb_request
*req
)
1436 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1437 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1439 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
1441 dwc2_hsotg_ep_free_request(ep
, req
);
1445 * ep_from_windex - convert control wIndex value to endpoint
1446 * @hsotg: The driver state.
1447 * @windex: The control request wIndex field (in host order).
1449 * Convert the given wIndex into a pointer to an driver endpoint
1450 * structure, or return NULL if it is not a valid endpoint.
1452 static struct dwc2_hsotg_ep
*ep_from_windex(struct dwc2_hsotg
*hsotg
,
1455 struct dwc2_hsotg_ep
*ep
;
1456 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
1457 int idx
= windex
& 0x7F;
1459 if (windex
>= 0x100)
1462 if (idx
> hsotg
->num_of_eps
)
1465 ep
= index_to_ep(hsotg
, idx
, dir
);
1467 if (idx
&& ep
->dir_in
!= dir
)
1474 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1475 * @hsotg: The driver state.
1476 * @testmode: requested usb test mode
1477 * Enable usb Test Mode requested by the Host.
1479 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg
*hsotg
, int testmode
)
1481 int dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
1483 dctl
&= ~DCTL_TSTCTL_MASK
;
1490 dctl
|= testmode
<< DCTL_TSTCTL_SHIFT
;
1495 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);
1500 * dwc2_hsotg_send_reply - send reply to control request
1501 * @hsotg: The device state
1503 * @buff: Buffer for request
1504 * @length: Length of reply.
1506 * Create a request and queue it on the given endpoint. This is useful as
1507 * an internal method of sending replies to certain control requests, etc.
1509 static int dwc2_hsotg_send_reply(struct dwc2_hsotg
*hsotg
,
1510 struct dwc2_hsotg_ep
*ep
,
1514 struct usb_request
*req
;
1517 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
1519 req
= dwc2_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
1520 hsotg
->ep0_reply
= req
;
1522 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
1526 req
->buf
= hsotg
->ep0_buff
;
1527 req
->length
= length
;
1529 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1533 req
->complete
= dwc2_hsotg_complete_oursetup
;
1536 memcpy(req
->buf
, buff
, length
);
1538 ret
= dwc2_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
1540 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
1548 * dwc2_hsotg_process_req_status - process request GET_STATUS
1549 * @hsotg: The device state
1550 * @ctrl: USB control request
1552 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg
*hsotg
,
1553 struct usb_ctrlrequest
*ctrl
)
1555 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1556 struct dwc2_hsotg_ep
*ep
;
1560 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1563 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1567 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1568 case USB_RECIP_DEVICE
:
1570 * bit 0 => self powered
1571 * bit 1 => remote wakeup
1573 reply
= cpu_to_le16(0);
1576 case USB_RECIP_INTERFACE
:
1577 /* currently, the data result should be zero */
1578 reply
= cpu_to_le16(0);
1581 case USB_RECIP_ENDPOINT
:
1582 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1586 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1593 if (le16_to_cpu(ctrl
->wLength
) != 2)
1596 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1598 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1605 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
);
1608 * get_ep_head - return the first request on the endpoint
1609 * @hs_ep: The controller endpoint to get
1611 * Get the first request on the endpoint.
1613 static struct dwc2_hsotg_req
*get_ep_head(struct dwc2_hsotg_ep
*hs_ep
)
1615 return list_first_entry_or_null(&hs_ep
->queue
, struct dwc2_hsotg_req
,
1620 * dwc2_gadget_start_next_request - Starts next request from ep queue
1621 * @hs_ep: Endpoint structure
1623 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1624 * in its handler. Hence we need to unmask it here to be able to do
1625 * resynchronization.
1627 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep
*hs_ep
)
1630 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1631 int dir_in
= hs_ep
->dir_in
;
1632 struct dwc2_hsotg_req
*hs_req
;
1633 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
1635 if (!list_empty(&hs_ep
->queue
)) {
1636 hs_req
= get_ep_head(hs_ep
);
1637 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1640 if (!hs_ep
->isochronous
)
1644 dev_dbg(hsotg
->dev
, "%s: No more ISOC-IN requests\n",
1647 dev_dbg(hsotg
->dev
, "%s: No more ISOC-OUT requests\n",
1649 mask
= dwc2_readl(hsotg
->regs
+ epmsk_reg
);
1650 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
1651 dwc2_writel(mask
, hsotg
->regs
+ epmsk_reg
);
1656 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1657 * @hsotg: The device state
1658 * @ctrl: USB control request
1660 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg
*hsotg
,
1661 struct usb_ctrlrequest
*ctrl
)
1663 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1664 struct dwc2_hsotg_req
*hs_req
;
1665 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1666 struct dwc2_hsotg_ep
*ep
;
1673 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1674 __func__
, set
? "SET" : "CLEAR");
1676 wValue
= le16_to_cpu(ctrl
->wValue
);
1677 wIndex
= le16_to_cpu(ctrl
->wIndex
);
1678 recip
= ctrl
->bRequestType
& USB_RECIP_MASK
;
1681 case USB_RECIP_DEVICE
:
1683 case USB_DEVICE_TEST_MODE
:
1684 if ((wIndex
& 0xff) != 0)
1689 hsotg
->test_mode
= wIndex
>> 8;
1690 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1693 "%s: failed to send reply\n", __func__
);
1702 case USB_RECIP_ENDPOINT
:
1703 ep
= ep_from_windex(hsotg
, wIndex
);
1705 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1711 case USB_ENDPOINT_HALT
:
1712 halted
= ep
->halted
;
1714 dwc2_hsotg_ep_sethalt(&ep
->ep
, set
, true);
1716 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1719 "%s: failed to send reply\n", __func__
);
1724 * we have to complete all requests for ep if it was
1725 * halted, and the halt was cleared by CLEAR_FEATURE
1728 if (!set
&& halted
) {
1730 * If we have request in progress,
1736 list_del_init(&hs_req
->queue
);
1737 if (hs_req
->req
.complete
) {
1738 spin_unlock(&hsotg
->lock
);
1739 usb_gadget_giveback_request(
1740 &ep
->ep
, &hs_req
->req
);
1741 spin_lock(&hsotg
->lock
);
1745 /* If we have pending request, then start it */
1747 dwc2_gadget_start_next_request(ep
);
1762 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
);
1765 * dwc2_hsotg_stall_ep0 - stall ep0
1766 * @hsotg: The device state
1768 * Set stall for ep0 as response for setup request.
1770 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg
*hsotg
)
1772 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1776 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1777 reg
= (ep0
->dir_in
) ? DIEPCTL0
: DOEPCTL0
;
1780 * DxEPCTL_Stall will be cleared by EP once it has
1781 * taken effect, so no need to clear later.
1784 ctrl
= dwc2_readl(hsotg
->regs
+ reg
);
1785 ctrl
|= DXEPCTL_STALL
;
1786 ctrl
|= DXEPCTL_CNAK
;
1787 dwc2_writel(ctrl
, hsotg
->regs
+ reg
);
1790 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1791 ctrl
, reg
, dwc2_readl(hsotg
->regs
+ reg
));
1794 * complete won't be called, so we enqueue
1795 * setup request here
1797 dwc2_hsotg_enqueue_setup(hsotg
);
1801 * dwc2_hsotg_process_control - process a control request
1802 * @hsotg: The device state
1803 * @ctrl: The control request received
1805 * The controller has received the SETUP phase of a control request, and
1806 * needs to work out what to do next (and whether to pass it on to the
1809 static void dwc2_hsotg_process_control(struct dwc2_hsotg
*hsotg
,
1810 struct usb_ctrlrequest
*ctrl
)
1812 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1817 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1818 ctrl
->bRequestType
, ctrl
->bRequest
, ctrl
->wValue
,
1819 ctrl
->wIndex
, ctrl
->wLength
);
1821 if (ctrl
->wLength
== 0) {
1823 hsotg
->ep0_state
= DWC2_EP0_STATUS_IN
;
1824 } else if (ctrl
->bRequestType
& USB_DIR_IN
) {
1826 hsotg
->ep0_state
= DWC2_EP0_DATA_IN
;
1829 hsotg
->ep0_state
= DWC2_EP0_DATA_OUT
;
1832 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1833 switch (ctrl
->bRequest
) {
1834 case USB_REQ_SET_ADDRESS
:
1835 hsotg
->connected
= 1;
1836 dcfg
= dwc2_readl(hsotg
->regs
+ DCFG
);
1837 dcfg
&= ~DCFG_DEVADDR_MASK
;
1838 dcfg
|= (le16_to_cpu(ctrl
->wValue
) <<
1839 DCFG_DEVADDR_SHIFT
) & DCFG_DEVADDR_MASK
;
1840 dwc2_writel(dcfg
, hsotg
->regs
+ DCFG
);
1842 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1844 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1847 case USB_REQ_GET_STATUS
:
1848 ret
= dwc2_hsotg_process_req_status(hsotg
, ctrl
);
1851 case USB_REQ_CLEAR_FEATURE
:
1852 case USB_REQ_SET_FEATURE
:
1853 ret
= dwc2_hsotg_process_req_feature(hsotg
, ctrl
);
1858 /* as a fallback, try delivering it to the driver to deal with */
1860 if (ret
== 0 && hsotg
->driver
) {
1861 spin_unlock(&hsotg
->lock
);
1862 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1863 spin_lock(&hsotg
->lock
);
1865 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1869 * the request is either unhandlable, or is not formatted correctly
1870 * so respond with a STALL for the status stage to indicate failure.
1874 dwc2_hsotg_stall_ep0(hsotg
);
1878 * dwc2_hsotg_complete_setup - completion of a setup transfer
1879 * @ep: The endpoint the request was on.
1880 * @req: The request completed.
1882 * Called on completion of any requests the driver itself submitted for
1885 static void dwc2_hsotg_complete_setup(struct usb_ep
*ep
,
1886 struct usb_request
*req
)
1888 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1889 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1891 if (req
->status
< 0) {
1892 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
1896 spin_lock(&hsotg
->lock
);
1897 if (req
->actual
== 0)
1898 dwc2_hsotg_enqueue_setup(hsotg
);
1900 dwc2_hsotg_process_control(hsotg
, req
->buf
);
1901 spin_unlock(&hsotg
->lock
);
1905 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1906 * @hsotg: The device state.
1908 * Enqueue a request on EP0 if necessary to received any SETUP packets
1909 * received from the host.
1911 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
)
1913 struct usb_request
*req
= hsotg
->ctrl_req
;
1914 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1917 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
1921 req
->buf
= hsotg
->ctrl_buff
;
1922 req
->complete
= dwc2_hsotg_complete_setup
;
1924 if (!list_empty(&hs_req
->queue
)) {
1925 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
1929 hsotg
->eps_out
[0]->dir_in
= 0;
1930 hsotg
->eps_out
[0]->send_zlp
= 0;
1931 hsotg
->ep0_state
= DWC2_EP0_SETUP
;
1933 ret
= dwc2_hsotg_ep_queue(&hsotg
->eps_out
[0]->ep
, req
, GFP_ATOMIC
);
1935 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
1937 * Don't think there's much we can do other than watch the
1943 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg
*hsotg
,
1944 struct dwc2_hsotg_ep
*hs_ep
)
1947 u8 index
= hs_ep
->index
;
1948 u32 epctl_reg
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1949 u32 epsiz_reg
= hs_ep
->dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
1952 dev_dbg(hsotg
->dev
, "Sending zero-length packet on ep%d\n",
1955 dev_dbg(hsotg
->dev
, "Receiving zero-length packet on ep%d\n",
1957 if (using_desc_dma(hsotg
)) {
1958 /* Not specific buffer needed for ep0 ZLP */
1959 dma_addr_t dma
= hs_ep
->desc_list_dma
;
1961 dwc2_gadget_set_ep0_desc_chain(hsotg
, hs_ep
);
1962 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, dma
, 0);
1964 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1965 DXEPTSIZ_XFERSIZE(0), hsotg
->regs
+
1969 ctrl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
1970 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
1971 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
1972 ctrl
|= DXEPCTL_USBACTEP
;
1973 dwc2_writel(ctrl
, hsotg
->regs
+ epctl_reg
);
1977 * dwc2_hsotg_complete_request - complete a request given to us
1978 * @hsotg: The device state.
1979 * @hs_ep: The endpoint the request was on.
1980 * @hs_req: The request to complete.
1981 * @result: The result code (0 => Ok, otherwise errno)
1983 * The given request has finished, so call the necessary completion
1984 * if it has one and then look to see if we can start a new request
1987 * Note, expects the ep to already be locked as appropriate.
1989 static void dwc2_hsotg_complete_request(struct dwc2_hsotg
*hsotg
,
1990 struct dwc2_hsotg_ep
*hs_ep
,
1991 struct dwc2_hsotg_req
*hs_req
,
1995 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
1999 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
2000 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
2003 * only replace the status if we've not already set an error
2004 * from a previous transaction
2007 if (hs_req
->req
.status
== -EINPROGRESS
)
2008 hs_req
->req
.status
= result
;
2010 if (using_dma(hsotg
))
2011 dwc2_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
2013 dwc2_hsotg_handle_unaligned_buf_complete(hsotg
, hs_ep
, hs_req
);
2016 list_del_init(&hs_req
->queue
);
2019 * call the complete request with the locks off, just in case the
2020 * request tries to queue more work for this endpoint.
2023 if (hs_req
->req
.complete
) {
2024 spin_unlock(&hsotg
->lock
);
2025 usb_gadget_giveback_request(&hs_ep
->ep
, &hs_req
->req
);
2026 spin_lock(&hsotg
->lock
);
2029 /* In DDMA don't need to proceed to starting of next ISOC request */
2030 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
)
2034 * Look to see if there is anything else to do. Note, the completion
2035 * of the previous request may have caused a new request to be started
2036 * so be careful when doing this.
2039 if (!hs_ep
->req
&& result
>= 0)
2040 dwc2_gadget_start_next_request(hs_ep
);
2044 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2045 * @hs_ep: The endpoint the request was on.
2047 * Get first request from the ep queue, determine descriptor on which complete
2048 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2049 * chain is currently in use by HW, adjusts dma_address and calculates index
2050 * of completed descriptor based on the value of DEPDMA register. Update actual
2051 * length of request, giveback to gadget.
2053 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2055 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2056 struct dwc2_hsotg_req
*hs_req
;
2057 struct usb_request
*ureq
;
2059 dma_addr_t dma_addr
;
2065 hs_req
= get_ep_head(hs_ep
);
2067 dev_warn(hsotg
->dev
, "%s: ISOC EP queue empty\n", __func__
);
2070 ureq
= &hs_req
->req
;
2072 dma_addr
= hs_ep
->desc_list_dma
;
2075 * If lower half of descriptor chain is currently use by SW,
2076 * that means higher half is being processed by HW, so shift
2077 * DMA address to higher half of descriptor chain.
2079 if (!hs_ep
->isoc_chain_num
)
2080 dma_addr
+= sizeof(struct dwc2_dma_desc
) *
2081 (MAX_DMA_DESC_NUM_GENERIC
/ 2);
2083 dma_reg
= hs_ep
->dir_in
? DIEPDMA(hs_ep
->index
) : DOEPDMA(hs_ep
->index
);
2084 depdma
= dwc2_readl(hsotg
->regs
+ dma_reg
);
2086 index
= (depdma
- dma_addr
) / sizeof(struct dwc2_dma_desc
) - 1;
2087 desc_sts
= hs_ep
->desc_list
[index
].status
;
2089 mask
= hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_MASK
:
2090 DEV_DMA_ISOC_RX_NBYTES_MASK
;
2091 ureq
->actual
= ureq
->length
-
2092 ((desc_sts
& mask
) >> DEV_DMA_ISOC_NBYTES_SHIFT
);
2094 /* Adjust actual length for ISOC Out if length is not align of 4 */
2095 if (!hs_ep
->dir_in
&& ureq
->length
& 0x3)
2096 ureq
->actual
+= 4 - (ureq
->length
& 0x3);
2098 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2102 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2103 * @hs_ep: The isochronous endpoint to be re-enabled.
2105 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2106 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2107 * was under SW control till HW was busy and restart the endpoint if needed.
2109 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2111 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2115 u32 dma_addr
= hs_ep
->desc_list_dma
;
2116 unsigned char index
= hs_ep
->index
;
2118 dma_reg
= hs_ep
->dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
2119 depctl
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
2121 ctrl
= dwc2_readl(hsotg
->regs
+ depctl
);
2124 * EP was disabled if HW has processed last descriptor or BNA was set.
2125 * So restart ep if SW has prepared new descriptor chain in ep_queue
2126 * routine while HW was busy.
2128 if (!(ctrl
& DXEPCTL_EPENA
)) {
2129 if (!hs_ep
->next_desc
) {
2130 dev_dbg(hsotg
->dev
, "%s: No more ISOC requests\n",
2135 dma_addr
+= sizeof(struct dwc2_dma_desc
) *
2136 (MAX_DMA_DESC_NUM_GENERIC
/ 2) *
2137 hs_ep
->isoc_chain_num
;
2138 dwc2_writel(dma_addr
, hsotg
->regs
+ dma_reg
);
2140 ctrl
|= DXEPCTL_EPENA
| DXEPCTL_CNAK
;
2141 dwc2_writel(ctrl
, hsotg
->regs
+ depctl
);
2143 /* Switch ISOC descriptor chain number being processed by SW*/
2144 hs_ep
->isoc_chain_num
= (hs_ep
->isoc_chain_num
^ 1) & 0x1;
2145 hs_ep
->next_desc
= 0;
2147 dev_dbg(hsotg
->dev
, "%s: Restarted isochronous endpoint\n",
2153 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2154 * @hsotg: The device state.
2155 * @ep_idx: The endpoint index for the data
2156 * @size: The size of data in the fifo, in bytes
2158 * The FIFO status shows there is data to read from the FIFO for a given
2159 * endpoint, so sort out whether we need to read the data into a request
2160 * that has been made for that endpoint.
2162 static void dwc2_hsotg_rx_data(struct dwc2_hsotg
*hsotg
, int ep_idx
, int size
)
2164 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[ep_idx
];
2165 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2166 void __iomem
*fifo
= hsotg
->regs
+ EPFIFO(ep_idx
);
2172 u32 epctl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(ep_idx
));
2176 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2177 __func__
, size
, ep_idx
, epctl
);
2179 /* dump the data from the FIFO, we've nothing we can do */
2180 for (ptr
= 0; ptr
< size
; ptr
+= 4)
2181 (void)dwc2_readl(fifo
);
2187 read_ptr
= hs_req
->req
.actual
;
2188 max_req
= hs_req
->req
.length
- read_ptr
;
2190 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
2191 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
2193 if (to_read
> max_req
) {
2195 * more data appeared than we where willing
2196 * to deal with in this request.
2199 /* currently we don't deal this */
2203 hs_ep
->total_data
+= to_read
;
2204 hs_req
->req
.actual
+= to_read
;
2205 to_read
= DIV_ROUND_UP(to_read
, 4);
2208 * note, we might over-write the buffer end by 3 bytes depending on
2209 * alignment of the data.
2211 ioread32_rep(fifo
, hs_req
->req
.buf
+ read_ptr
, to_read
);
2215 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2216 * @hsotg: The device instance
2217 * @dir_in: If IN zlp
2219 * Generate a zero-length IN packet request for terminating a SETUP
2222 * Note, since we don't write any data to the TxFIFO, then it is
2223 * currently believed that we do not need to wait for any space in
2226 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg
*hsotg
, bool dir_in
)
2228 /* eps_out[0] is used in both directions */
2229 hsotg
->eps_out
[0]->dir_in
= dir_in
;
2230 hsotg
->ep0_state
= dir_in
? DWC2_EP0_STATUS_IN
: DWC2_EP0_STATUS_OUT
;
2232 dwc2_hsotg_program_zlp(hsotg
, hsotg
->eps_out
[0]);
2235 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg
*hsotg
,
2240 ctrl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
2241 if (ctrl
& DXEPCTL_EOFRNUM
)
2242 ctrl
|= DXEPCTL_SETEVENFR
;
2244 ctrl
|= DXEPCTL_SETODDFR
;
2245 dwc2_writel(ctrl
, hsotg
->regs
+ epctl_reg
);
2249 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2250 * @hs_ep - The endpoint on which transfer went
2252 * Iterate over endpoints descriptor chain and get info on bytes remained
2253 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2255 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2257 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2258 unsigned int bytes_rem
= 0;
2259 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
2266 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
2267 status
= desc
->status
;
2268 bytes_rem
+= status
& DEV_DMA_NBYTES_MASK
;
2270 if (status
& DEV_DMA_STS_MASK
)
2271 dev_err(hsotg
->dev
, "descriptor %d closed with %x\n",
2272 i
, status
& DEV_DMA_STS_MASK
);
2279 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2280 * @hsotg: The device instance
2281 * @epnum: The endpoint received from
2283 * The RXFIFO has delivered an OutDone event, which means that the data
2284 * transfer for an OUT endpoint has been completed, either by a short
2285 * packet or by the finish of a transfer.
2287 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg
*hsotg
, int epnum
)
2289 u32 epsize
= dwc2_readl(hsotg
->regs
+ DOEPTSIZ(epnum
));
2290 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[epnum
];
2291 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2292 struct usb_request
*req
= &hs_req
->req
;
2293 unsigned int size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2297 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
2301 if (epnum
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_OUT
) {
2302 dev_dbg(hsotg
->dev
, "zlp packet received\n");
2303 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2304 dwc2_hsotg_enqueue_setup(hsotg
);
2308 if (using_desc_dma(hsotg
))
2309 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2311 if (using_dma(hsotg
)) {
2312 unsigned int size_done
;
2315 * Calculate the size of the transfer by checking how much
2316 * is left in the endpoint size register and then working it
2317 * out from the amount we loaded for the transfer.
2319 * We need to do this as DMA pointers are always 32bit aligned
2320 * so may overshoot/undershoot the transfer.
2323 size_done
= hs_ep
->size_loaded
- size_left
;
2324 size_done
+= hs_ep
->last_load
;
2326 req
->actual
= size_done
;
2329 /* if there is more request to do, schedule new transfer */
2330 if (req
->actual
< req
->length
&& size_left
== 0) {
2331 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2335 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
2336 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
2337 __func__
, req
->actual
, req
->length
);
2340 * todo - what should we return here? there's no one else
2341 * even bothering to check the status.
2345 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2346 if (!using_desc_dma(hsotg
) && epnum
== 0 &&
2347 hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
2348 /* Move to STATUS IN */
2349 dwc2_hsotg_ep0_zlp(hsotg
, true);
2354 * Slave mode OUT transfers do not go through XferComplete so
2355 * adjust the ISOC parity here.
2357 if (!using_dma(hsotg
)) {
2358 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1)
2359 dwc2_hsotg_change_ep_iso_parity(hsotg
, DOEPCTL(epnum
));
2360 else if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2361 dwc2_gadget_incr_frame_num(hs_ep
);
2364 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
2368 * dwc2_hsotg_handle_rx - RX FIFO has data
2369 * @hsotg: The device instance
2371 * The IRQ handler has detected that the RX FIFO has some data in it
2372 * that requires processing, so find out what is in there and do the
2375 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2376 * chunks, so if you have x packets received on an endpoint you'll get x
2377 * FIFO events delivered, each with a packet's worth of data in it.
2379 * When using DMA, we should not be processing events from the RXFIFO
2380 * as the actual data should be sent to the memory directly and we turn
2381 * on the completion interrupts to get notifications of transfer completion.
2383 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg
*hsotg
)
2385 u32 grxstsr
= dwc2_readl(hsotg
->regs
+ GRXSTSP
);
2386 u32 epnum
, status
, size
;
2388 WARN_ON(using_dma(hsotg
));
2390 epnum
= grxstsr
& GRXSTS_EPNUM_MASK
;
2391 status
= grxstsr
& GRXSTS_PKTSTS_MASK
;
2393 size
= grxstsr
& GRXSTS_BYTECNT_MASK
;
2394 size
>>= GRXSTS_BYTECNT_SHIFT
;
2396 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2397 __func__
, grxstsr
, size
, epnum
);
2399 switch ((status
& GRXSTS_PKTSTS_MASK
) >> GRXSTS_PKTSTS_SHIFT
) {
2400 case GRXSTS_PKTSTS_GLOBALOUTNAK
:
2401 dev_dbg(hsotg
->dev
, "GLOBALOUTNAK\n");
2404 case GRXSTS_PKTSTS_OUTDONE
:
2405 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
2406 dwc2_hsotg_read_frameno(hsotg
));
2408 if (!using_dma(hsotg
))
2409 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2412 case GRXSTS_PKTSTS_SETUPDONE
:
2414 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2415 dwc2_hsotg_read_frameno(hsotg
),
2416 dwc2_readl(hsotg
->regs
+ DOEPCTL(0)));
2418 * Call dwc2_hsotg_handle_outdone here if it was not called from
2419 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2420 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2422 if (hsotg
->ep0_state
== DWC2_EP0_SETUP
)
2423 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2426 case GRXSTS_PKTSTS_OUTRX
:
2427 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2430 case GRXSTS_PKTSTS_SETUPRX
:
2432 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2433 dwc2_hsotg_read_frameno(hsotg
),
2434 dwc2_readl(hsotg
->regs
+ DOEPCTL(0)));
2436 WARN_ON(hsotg
->ep0_state
!= DWC2_EP0_SETUP
);
2438 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2442 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
2445 dwc2_hsotg_dump(hsotg
);
2451 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2452 * @mps: The maximum packet size in bytes.
2454 static u32
dwc2_hsotg_ep0_mps(unsigned int mps
)
2458 return D0EPCTL_MPS_64
;
2460 return D0EPCTL_MPS_32
;
2462 return D0EPCTL_MPS_16
;
2464 return D0EPCTL_MPS_8
;
2467 /* bad max packet size, warn and return invalid result */
2473 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2474 * @hsotg: The driver state.
2475 * @ep: The index number of the endpoint
2476 * @mps: The maximum packet size in bytes
2477 * @mc: The multicount value
2479 * Configure the maximum packet size for the given endpoint, updating
2480 * the hardware control registers to reflect this.
2482 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg
*hsotg
,
2483 unsigned int ep
, unsigned int mps
,
2484 unsigned int mc
, unsigned int dir_in
)
2486 struct dwc2_hsotg_ep
*hs_ep
;
2487 void __iomem
*regs
= hsotg
->regs
;
2490 hs_ep
= index_to_ep(hsotg
, ep
, dir_in
);
2495 u32 mps_bytes
= mps
;
2497 /* EP0 is a special case */
2498 mps
= dwc2_hsotg_ep0_mps(mps_bytes
);
2501 hs_ep
->ep
.maxpacket
= mps_bytes
;
2509 hs_ep
->ep
.maxpacket
= mps
;
2513 reg
= dwc2_readl(regs
+ DIEPCTL(ep
));
2514 reg
&= ~DXEPCTL_MPS_MASK
;
2516 dwc2_writel(reg
, regs
+ DIEPCTL(ep
));
2518 reg
= dwc2_readl(regs
+ DOEPCTL(ep
));
2519 reg
&= ~DXEPCTL_MPS_MASK
;
2521 dwc2_writel(reg
, regs
+ DOEPCTL(ep
));
2527 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
2531 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2532 * @hsotg: The driver state
2533 * @idx: The index for the endpoint (0..15)
2535 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg
*hsotg
, unsigned int idx
)
2540 dwc2_writel(GRSTCTL_TXFNUM(idx
) | GRSTCTL_TXFFLSH
,
2541 hsotg
->regs
+ GRSTCTL
);
2543 /* wait until the fifo is flushed */
2547 val
= dwc2_readl(hsotg
->regs
+ GRSTCTL
);
2549 if ((val
& (GRSTCTL_TXFFLSH
)) == 0)
2552 if (--timeout
== 0) {
2554 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2564 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2565 * @hsotg: The driver state
2566 * @hs_ep: The driver endpoint to check.
2568 * Check to see if there is a request that has data to send, and if so
2569 * make an attempt to write data into the FIFO.
2571 static int dwc2_hsotg_trytx(struct dwc2_hsotg
*hsotg
,
2572 struct dwc2_hsotg_ep
*hs_ep
)
2574 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2576 if (!hs_ep
->dir_in
|| !hs_req
) {
2578 * if request is not enqueued, we disable interrupts
2579 * for endpoints, excepting ep0
2581 if (hs_ep
->index
!= 0)
2582 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
,
2587 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
2588 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
2590 return dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
2597 * dwc2_hsotg_complete_in - complete IN transfer
2598 * @hsotg: The device state.
2599 * @hs_ep: The endpoint that has just completed.
2601 * An IN transfer has been completed, update the transfer's state and then
2602 * call the relevant completion routines.
2604 static void dwc2_hsotg_complete_in(struct dwc2_hsotg
*hsotg
,
2605 struct dwc2_hsotg_ep
*hs_ep
)
2607 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2608 u32 epsize
= dwc2_readl(hsotg
->regs
+ DIEPTSIZ(hs_ep
->index
));
2609 int size_left
, size_done
;
2612 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
2616 /* Finish ZLP handling for IN EP0 transactions */
2617 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_IN
) {
2618 dev_dbg(hsotg
->dev
, "zlp packet sent\n");
2621 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2622 * changed to IN. Change back to complete OUT transfer request
2626 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2627 if (hsotg
->test_mode
) {
2630 ret
= dwc2_hsotg_set_test_mode(hsotg
, hsotg
->test_mode
);
2632 dev_dbg(hsotg
->dev
, "Invalid Test #%d\n",
2634 dwc2_hsotg_stall_ep0(hsotg
);
2638 dwc2_hsotg_enqueue_setup(hsotg
);
2643 * Calculate the size of the transfer by checking how much is left
2644 * in the endpoint size register and then working it out from
2645 * the amount we loaded for the transfer.
2647 * We do this even for DMA, as the transfer may have incremented
2648 * past the end of the buffer (DMA transfers are always 32bit
2651 if (using_desc_dma(hsotg
)) {
2652 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2654 dev_err(hsotg
->dev
, "error parsing DDMA results %d\n",
2657 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2660 size_done
= hs_ep
->size_loaded
- size_left
;
2661 size_done
+= hs_ep
->last_load
;
2663 if (hs_req
->req
.actual
!= size_done
)
2664 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
2665 __func__
, hs_req
->req
.actual
, size_done
);
2667 hs_req
->req
.actual
= size_done
;
2668 dev_dbg(hsotg
->dev
, "req->length:%d req->actual:%d req->zero:%d\n",
2669 hs_req
->req
.length
, hs_req
->req
.actual
, hs_req
->req
.zero
);
2671 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
2672 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
2673 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2677 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2678 if (hs_ep
->send_zlp
) {
2679 dwc2_hsotg_program_zlp(hsotg
, hs_ep
);
2680 hs_ep
->send_zlp
= 0;
2681 /* transfer will be completed on next complete interrupt */
2685 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_DATA_IN
) {
2686 /* Move to STATUS OUT */
2687 dwc2_hsotg_ep0_zlp(hsotg
, false);
2691 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2695 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2696 * @hsotg: The device state.
2697 * @idx: Index of ep.
2698 * @dir_in: Endpoint direction 1-in 0-out.
2700 * Reads for endpoint with given index and direction, by masking
2701 * epint_reg with coresponding mask.
2703 static u32
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg
*hsotg
,
2704 unsigned int idx
, int dir_in
)
2706 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
2707 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2712 mask
= dwc2_readl(hsotg
->regs
+ epmsk_reg
);
2713 diepempmsk
= dwc2_readl(hsotg
->regs
+ DIEPEMPMSK
);
2714 mask
|= ((diepempmsk
>> idx
) & 0x1) ? DIEPMSK_TXFIFOEMPTY
: 0;
2715 mask
|= DXEPINT_SETUP_RCVD
;
2717 ints
= dwc2_readl(hsotg
->regs
+ epint_reg
);
2723 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2724 * @hs_ep: The endpoint on which interrupt is asserted.
2726 * This interrupt indicates that the endpoint has been disabled per the
2727 * application's request.
2729 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2730 * in case of ISOC completes current request.
2732 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2733 * request starts it.
2735 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep
*hs_ep
)
2737 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2738 struct dwc2_hsotg_req
*hs_req
;
2739 unsigned char idx
= hs_ep
->index
;
2740 int dir_in
= hs_ep
->dir_in
;
2741 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2742 int dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
2744 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
2747 int epctl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
2749 dwc2_hsotg_txfifo_flush(hsotg
, hs_ep
->fifo_index
);
2751 if (hs_ep
->isochronous
) {
2752 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
2756 if ((epctl
& DXEPCTL_STALL
) && (epctl
& DXEPCTL_EPTYPE_BULK
)) {
2757 int dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
2759 dctl
|= DCTL_CGNPINNAK
;
2760 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);
2765 if (dctl
& DCTL_GOUTNAKSTS
) {
2766 dctl
|= DCTL_CGOUTNAK
;
2767 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);
2770 if (!hs_ep
->isochronous
)
2773 if (list_empty(&hs_ep
->queue
)) {
2774 dev_dbg(hsotg
->dev
, "%s: complete_ep 0x%p, ep->queue empty!\n",
2780 hs_req
= get_ep_head(hs_ep
);
2782 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
,
2784 dwc2_gadget_incr_frame_num(hs_ep
);
2785 } while (dwc2_gadget_target_frame_elapsed(hs_ep
));
2787 dwc2_gadget_start_next_request(hs_ep
);
2791 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2792 * @hs_ep: The endpoint on which interrupt is asserted.
2794 * This is starting point for ISOC-OUT transfer, synchronization done with
2795 * first out token received from host while corresponding EP is disabled.
2797 * Device does not know initial frame in which out token will come. For this
2798 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2799 * getting this interrupt SW starts calculation for next transfer frame.
2801 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep
*ep
)
2803 struct dwc2_hsotg
*hsotg
= ep
->parent
;
2804 int dir_in
= ep
->dir_in
;
2808 if (dir_in
|| !ep
->isochronous
)
2812 * Store frame in which irq was asserted here, as
2813 * it can change while completing request below.
2815 tmp
= dwc2_hsotg_read_frameno(hsotg
);
2817 dwc2_hsotg_complete_request(hsotg
, ep
, get_ep_head(ep
), -ENODATA
);
2819 if (using_desc_dma(hsotg
)) {
2820 if (ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2821 /* Start first ISO Out */
2822 ep
->target_frame
= tmp
;
2823 dwc2_gadget_start_isoc_ddma(ep
);
2828 if (ep
->interval
> 1 &&
2829 ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2833 dsts
= dwc2_readl(hsotg
->regs
+ DSTS
);
2834 ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
2835 dwc2_gadget_incr_frame_num(ep
);
2837 ctrl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(ep
->index
));
2838 if (ep
->target_frame
& 0x1)
2839 ctrl
|= DXEPCTL_SETODDFR
;
2841 ctrl
|= DXEPCTL_SETEVENFR
;
2843 dwc2_writel(ctrl
, hsotg
->regs
+ DOEPCTL(ep
->index
));
2846 dwc2_gadget_start_next_request(ep
);
2847 doepmsk
= dwc2_readl(hsotg
->regs
+ DOEPMSK
);
2848 doepmsk
&= ~DOEPMSK_OUTTKNEPDISMSK
;
2849 dwc2_writel(doepmsk
, hsotg
->regs
+ DOEPMSK
);
2853 * dwc2_gadget_handle_nak - handle NAK interrupt
2854 * @hs_ep: The endpoint on which interrupt is asserted.
2856 * This is starting point for ISOC-IN transfer, synchronization done with
2857 * first IN token received from host while corresponding EP is disabled.
2859 * Device does not know when first one token will arrive from host. On first
2860 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2861 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2862 * sent in response to that as there was no data in FIFO. SW is basing on this
2863 * interrupt to obtain frame in which token has come and then based on the
2864 * interval calculates next frame for transfer.
2866 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep
*hs_ep
)
2868 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2869 int dir_in
= hs_ep
->dir_in
;
2871 if (!dir_in
|| !hs_ep
->isochronous
)
2874 if (hs_ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2875 hs_ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
2877 if (using_desc_dma(hsotg
)) {
2878 dwc2_gadget_start_isoc_ddma(hs_ep
);
2882 if (hs_ep
->interval
> 1) {
2883 u32 ctrl
= dwc2_readl(hsotg
->regs
+
2884 DIEPCTL(hs_ep
->index
));
2885 if (hs_ep
->target_frame
& 0x1)
2886 ctrl
|= DXEPCTL_SETODDFR
;
2888 ctrl
|= DXEPCTL_SETEVENFR
;
2890 dwc2_writel(ctrl
, hsotg
->regs
+ DIEPCTL(hs_ep
->index
));
2893 dwc2_hsotg_complete_request(hsotg
, hs_ep
,
2894 get_ep_head(hs_ep
), 0);
2897 dwc2_gadget_incr_frame_num(hs_ep
);
2901 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2902 * @hsotg: The driver state
2903 * @idx: The index for the endpoint (0..15)
2904 * @dir_in: Set if this is an IN endpoint
2906 * Process and clear any interrupt pending for an individual endpoint
2908 static void dwc2_hsotg_epint(struct dwc2_hsotg
*hsotg
, unsigned int idx
,
2911 struct dwc2_hsotg_ep
*hs_ep
= index_to_ep(hsotg
, idx
, dir_in
);
2912 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2913 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2914 u32 epsiz_reg
= dir_in
? DIEPTSIZ(idx
) : DOEPTSIZ(idx
);
2918 ints
= dwc2_gadget_read_ep_interrupts(hsotg
, idx
, dir_in
);
2919 ctrl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
2921 /* Clear endpoint interrupts */
2922 dwc2_writel(ints
, hsotg
->regs
+ epint_reg
);
2925 dev_err(hsotg
->dev
, "%s:Interrupt for unconfigured ep%d(%s)\n",
2926 __func__
, idx
, dir_in
? "in" : "out");
2930 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2931 __func__
, idx
, dir_in
? "in" : "out", ints
);
2933 /* Don't process XferCompl interrupt if it is a setup packet */
2934 if (idx
== 0 && (ints
& (DXEPINT_SETUP
| DXEPINT_SETUP_RCVD
)))
2935 ints
&= ~DXEPINT_XFERCOMPL
;
2938 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2939 * stage and xfercomplete was generated without SETUP phase done
2940 * interrupt. SW should parse received setup packet only after host's
2941 * exit from setup phase of control transfer.
2943 if (using_desc_dma(hsotg
) && idx
== 0 && !hs_ep
->dir_in
&&
2944 hsotg
->ep0_state
== DWC2_EP0_SETUP
&& !(ints
& DXEPINT_SETUP
))
2945 ints
&= ~DXEPINT_XFERCOMPL
;
2947 if (ints
& DXEPINT_XFERCOMPL
) {
2949 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2950 __func__
, dwc2_readl(hsotg
->regs
+ epctl_reg
),
2951 dwc2_readl(hsotg
->regs
+ epsiz_reg
));
2953 /* In DDMA handle isochronous requests separately */
2954 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
) {
2955 dwc2_gadget_complete_isoc_request_ddma(hs_ep
);
2956 /* Try to start next isoc request */
2957 dwc2_gadget_start_next_isoc_ddma(hs_ep
);
2958 } else if (dir_in
) {
2960 * We get OutDone from the FIFO, so we only
2961 * need to look at completing IN requests here
2962 * if operating slave mode
2964 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2965 dwc2_gadget_incr_frame_num(hs_ep
);
2967 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
2968 if (ints
& DXEPINT_NAKINTRPT
)
2969 ints
&= ~DXEPINT_NAKINTRPT
;
2971 if (idx
== 0 && !hs_ep
->req
)
2972 dwc2_hsotg_enqueue_setup(hsotg
);
2973 } else if (using_dma(hsotg
)) {
2975 * We're using DMA, we need to fire an OutDone here
2976 * as we ignore the RXFIFO.
2978 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2979 dwc2_gadget_incr_frame_num(hs_ep
);
2981 dwc2_hsotg_handle_outdone(hsotg
, idx
);
2985 if (ints
& DXEPINT_EPDISBLD
)
2986 dwc2_gadget_handle_ep_disabled(hs_ep
);
2988 if (ints
& DXEPINT_OUTTKNEPDIS
)
2989 dwc2_gadget_handle_out_token_ep_disabled(hs_ep
);
2991 if (ints
& DXEPINT_NAKINTRPT
)
2992 dwc2_gadget_handle_nak(hs_ep
);
2994 if (ints
& DXEPINT_AHBERR
)
2995 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
2997 if (ints
& DXEPINT_SETUP
) { /* Setup or Timeout */
2998 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
3000 if (using_dma(hsotg
) && idx
== 0) {
3002 * this is the notification we've received a
3003 * setup packet. In non-DMA mode we'd get this
3004 * from the RXFIFO, instead we need to process
3011 dwc2_hsotg_handle_outdone(hsotg
, 0);
3015 if (ints
& DXEPINT_STSPHSERCVD
) {
3016 dev_dbg(hsotg
->dev
, "%s: StsPhseRcvd\n", __func__
);
3018 /* Move to STATUS IN for DDMA */
3019 if (using_desc_dma(hsotg
))
3020 dwc2_hsotg_ep0_zlp(hsotg
, true);
3023 if (ints
& DXEPINT_BACK2BACKSETUP
)
3024 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
3026 if (ints
& DXEPINT_BNAINTR
) {
3027 dev_dbg(hsotg
->dev
, "%s: BNA interrupt\n", __func__
);
3030 * Try to start next isoc request, if any.
3031 * Sometimes the endpoint remains enabled after BNA interrupt
3032 * assertion, which is not expected, hence we can enter here
3035 if (hs_ep
->isochronous
)
3036 dwc2_gadget_start_next_isoc_ddma(hs_ep
);
3039 if (dir_in
&& !hs_ep
->isochronous
) {
3040 /* not sure if this is important, but we'll clear it anyway */
3041 if (ints
& DXEPINT_INTKNTXFEMP
) {
3042 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
3046 /* this probably means something bad is happening */
3047 if (ints
& DXEPINT_INTKNEPMIS
) {
3048 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
3052 /* FIFO has space or is empty (see GAHBCFG) */
3053 if (hsotg
->dedicated_fifos
&&
3054 ints
& DXEPINT_TXFEMP
) {
3055 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
3057 if (!using_dma(hsotg
))
3058 dwc2_hsotg_trytx(hsotg
, hs_ep
);
3064 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3065 * @hsotg: The device state.
3067 * Handle updating the device settings after the enumeration phase has
3070 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg
*hsotg
)
3072 u32 dsts
= dwc2_readl(hsotg
->regs
+ DSTS
);
3073 int ep0_mps
= 0, ep_mps
= 8;
3076 * This should signal the finish of the enumeration phase
3077 * of the USB handshaking, so we should now know what rate
3081 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
3084 * note, since we're limited by the size of transfer on EP0, and
3085 * it seems IN transfers must be a even number of packets we do
3086 * not advertise a 64byte MPS on EP0.
3089 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3090 switch ((dsts
& DSTS_ENUMSPD_MASK
) >> DSTS_ENUMSPD_SHIFT
) {
3091 case DSTS_ENUMSPD_FS
:
3092 case DSTS_ENUMSPD_FS48
:
3093 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
3094 ep0_mps
= EP0_MPS_LIMIT
;
3098 case DSTS_ENUMSPD_HS
:
3099 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
3100 ep0_mps
= EP0_MPS_LIMIT
;
3104 case DSTS_ENUMSPD_LS
:
3105 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
3109 * note, we don't actually support LS in this driver at the
3110 * moment, and the documentation seems to imply that it isn't
3111 * supported by the PHYs on some of the devices.
3115 dev_info(hsotg
->dev
, "new device is %s\n",
3116 usb_speed_string(hsotg
->gadget
.speed
));
3119 * we should now know the maximum packet size for an
3120 * endpoint, so set the endpoints to a default value.
3125 /* Initialize ep0 for both in and out directions */
3126 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 1);
3127 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 0);
3128 for (i
= 1; i
< hsotg
->num_of_eps
; i
++) {
3129 if (hsotg
->eps_in
[i
])
3130 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3132 if (hsotg
->eps_out
[i
])
3133 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3138 /* ensure after enumeration our EP0 is active */
3140 dwc2_hsotg_enqueue_setup(hsotg
);
3142 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3143 dwc2_readl(hsotg
->regs
+ DIEPCTL0
),
3144 dwc2_readl(hsotg
->regs
+ DOEPCTL0
));
3148 * kill_all_requests - remove all requests from the endpoint's queue
3149 * @hsotg: The device state.
3150 * @ep: The endpoint the requests may be on.
3151 * @result: The result code to use.
3153 * Go through the requests on the given endpoint and mark them
3154 * completed with the given result code.
3156 static void kill_all_requests(struct dwc2_hsotg
*hsotg
,
3157 struct dwc2_hsotg_ep
*ep
,
3160 struct dwc2_hsotg_req
*req
, *treq
;
3165 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
)
3166 dwc2_hsotg_complete_request(hsotg
, ep
, req
,
3169 if (!hsotg
->dedicated_fifos
)
3171 size
= (dwc2_readl(hsotg
->regs
+ DTXFSTS(ep
->fifo_index
)) & 0xffff) * 4;
3172 if (size
< ep
->fifo_size
)
3173 dwc2_hsotg_txfifo_flush(hsotg
, ep
->fifo_index
);
3177 * dwc2_hsotg_disconnect - disconnect service
3178 * @hsotg: The device state.
3180 * The device has been disconnected. Remove all current
3181 * transactions and signal the gadget driver that this
3184 void dwc2_hsotg_disconnect(struct dwc2_hsotg
*hsotg
)
3188 if (!hsotg
->connected
)
3191 hsotg
->connected
= 0;
3192 hsotg
->test_mode
= 0;
3194 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
3195 if (hsotg
->eps_in
[ep
])
3196 kill_all_requests(hsotg
, hsotg
->eps_in
[ep
],
3198 if (hsotg
->eps_out
[ep
])
3199 kill_all_requests(hsotg
, hsotg
->eps_out
[ep
],
3203 call_gadget(hsotg
, disconnect
);
3204 hsotg
->lx_state
= DWC2_L3
;
3208 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3209 * @hsotg: The device state:
3210 * @periodic: True if this is a periodic FIFO interrupt
3212 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg
*hsotg
, bool periodic
)
3214 struct dwc2_hsotg_ep
*ep
;
3217 /* look through for any more data to transmit */
3218 for (epno
= 0; epno
< hsotg
->num_of_eps
; epno
++) {
3219 ep
= index_to_ep(hsotg
, epno
, 1);
3227 if ((periodic
&& !ep
->periodic
) ||
3228 (!periodic
&& ep
->periodic
))
3231 ret
= dwc2_hsotg_trytx(hsotg
, ep
);
3237 /* IRQ flags which will trigger a retry around the IRQ loop */
3238 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3243 * dwc2_hsotg_core_init - issue softreset to the core
3244 * @hsotg: The device state
3246 * Issue a soft reset to the core, and await the core finishing it.
3248 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg
*hsotg
,
3256 /* Kill any ep0 requests as controller will be reinitialized */
3257 kill_all_requests(hsotg
, hsotg
->eps_out
[0], -ECONNRESET
);
3260 if (dwc2_core_reset(hsotg
, true))
3264 * we must now enable ep0 ready for host detection and then
3265 * set configuration.
3268 /* keep other bits untouched (so e.g. forced modes are not lost) */
3269 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
3270 usbcfg
&= ~(GUSBCFG_TOUTCAL_MASK
| GUSBCFG_PHYIF16
| GUSBCFG_SRPCAP
|
3271 GUSBCFG_HNPCAP
| GUSBCFG_USBTRDTIM_MASK
);
3273 if (hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
&&
3274 (hsotg
->params
.speed
== DWC2_SPEED_PARAM_FULL
||
3275 hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
)) {
3276 /* FS/LS Dedicated Transceiver Interface */
3277 usbcfg
|= GUSBCFG_PHYSEL
;
3279 /* set the PLL on, remove the HNP/SRP and set the PHY */
3280 val
= (hsotg
->phyif
== GUSBCFG_PHYIF8
) ? 9 : 5;
3281 usbcfg
|= hsotg
->phyif
| GUSBCFG_TOUTCAL(7) |
3282 (val
<< GUSBCFG_USBTRDTIM_SHIFT
);
3284 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
3286 dwc2_hsotg_init_fifo(hsotg
);
3289 __orr32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
3291 dcfg
|= DCFG_EPMISCNT(1);
3293 switch (hsotg
->params
.speed
) {
3294 case DWC2_SPEED_PARAM_LOW
:
3295 dcfg
|= DCFG_DEVSPD_LS
;
3297 case DWC2_SPEED_PARAM_FULL
:
3298 if (hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
)
3299 dcfg
|= DCFG_DEVSPD_FS48
;
3301 dcfg
|= DCFG_DEVSPD_FS
;
3304 dcfg
|= DCFG_DEVSPD_HS
;
3307 dwc2_writel(dcfg
, hsotg
->regs
+ DCFG
);
3309 /* Clear any pending OTG interrupts */
3310 dwc2_writel(0xffffffff, hsotg
->regs
+ GOTGINT
);
3312 /* Clear any pending interrupts */
3313 dwc2_writel(0xffffffff, hsotg
->regs
+ GINTSTS
);
3314 intmsk
= GINTSTS_ERLYSUSP
| GINTSTS_SESSREQINT
|
3315 GINTSTS_GOUTNAKEFF
| GINTSTS_GINNAKEFF
|
3316 GINTSTS_USBRST
| GINTSTS_RESETDET
|
3317 GINTSTS_ENUMDONE
| GINTSTS_OTGINT
|
3318 GINTSTS_USBSUSP
| GINTSTS_WKUPINT
;
3320 if (!using_desc_dma(hsotg
))
3321 intmsk
|= GINTSTS_INCOMPL_SOIN
| GINTSTS_INCOMPL_SOOUT
;
3323 if (!hsotg
->params
.external_id_pin_ctl
)
3324 intmsk
|= GINTSTS_CONIDSTSCHNG
;
3326 dwc2_writel(intmsk
, hsotg
->regs
+ GINTMSK
);
3328 if (using_dma(hsotg
)) {
3329 dwc2_writel(GAHBCFG_GLBL_INTR_EN
| GAHBCFG_DMA_EN
|
3330 (GAHBCFG_HBSTLEN_INCR4
<< GAHBCFG_HBSTLEN_SHIFT
),
3331 hsotg
->regs
+ GAHBCFG
);
3333 /* Set DDMA mode support in the core if needed */
3334 if (using_desc_dma(hsotg
))
3335 __orr32(hsotg
->regs
+ DCFG
, DCFG_DESCDMA_EN
);
3338 dwc2_writel(((hsotg
->dedicated_fifos
) ?
3339 (GAHBCFG_NP_TXF_EMP_LVL
|
3340 GAHBCFG_P_TXF_EMP_LVL
) : 0) |
3341 GAHBCFG_GLBL_INTR_EN
, hsotg
->regs
+ GAHBCFG
);
3345 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3346 * when we have no data to transfer. Otherwise we get being flooded by
3350 dwc2_writel(((hsotg
->dedicated_fifos
&& !using_dma(hsotg
)) ?
3351 DIEPMSK_TXFIFOEMPTY
| DIEPMSK_INTKNTXFEMPMSK
: 0) |
3352 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
|
3353 DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
,
3354 hsotg
->regs
+ DIEPMSK
);
3357 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3358 * DMA mode we may need this and StsPhseRcvd.
3360 dwc2_writel((using_dma(hsotg
) ? (DIEPMSK_XFERCOMPLMSK
|
3361 DOEPMSK_STSPHSERCVDMSK
) : 0) |
3362 DOEPMSK_EPDISBLDMSK
| DOEPMSK_AHBERRMSK
|
3364 hsotg
->regs
+ DOEPMSK
);
3366 /* Enable BNA interrupt for DDMA */
3367 if (using_desc_dma(hsotg
))
3368 __orr32(hsotg
->regs
+ DOEPMSK
, DOEPMSK_BNAMSK
);
3370 dwc2_writel(0, hsotg
->regs
+ DAINTMSK
);
3372 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3373 dwc2_readl(hsotg
->regs
+ DIEPCTL0
),
3374 dwc2_readl(hsotg
->regs
+ DOEPCTL0
));
3376 /* enable in and out endpoint interrupts */
3377 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_OEPINT
| GINTSTS_IEPINT
);
3380 * Enable the RXFIFO when in slave mode, as this is how we collect
3381 * the data. In DMA mode, we get events from the FIFO but also
3382 * things we cannot process, so do not use it.
3384 if (!using_dma(hsotg
))
3385 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_RXFLVL
);
3387 /* Enable interrupts for EP0 in and out */
3388 dwc2_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
3389 dwc2_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
3391 if (!is_usb_reset
) {
3392 __orr32(hsotg
->regs
+ DCTL
, DCTL_PWRONPRGDONE
);
3393 udelay(10); /* see openiboot */
3394 __bic32(hsotg
->regs
+ DCTL
, DCTL_PWRONPRGDONE
);
3397 dev_dbg(hsotg
->dev
, "DCTL=0x%08x\n", dwc2_readl(hsotg
->regs
+ DCTL
));
3400 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3401 * writing to the EPCTL register..
3404 /* set to read 1 8byte packet */
3405 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3406 DXEPTSIZ_XFERSIZE(8), hsotg
->regs
+ DOEPTSIZ0
);
3408 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3409 DXEPCTL_CNAK
| DXEPCTL_EPENA
|
3411 hsotg
->regs
+ DOEPCTL0
);
3413 /* enable, but don't activate EP0in */
3414 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3415 DXEPCTL_USBACTEP
, hsotg
->regs
+ DIEPCTL0
);
3417 dwc2_hsotg_enqueue_setup(hsotg
);
3419 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3420 dwc2_readl(hsotg
->regs
+ DIEPCTL0
),
3421 dwc2_readl(hsotg
->regs
+ DOEPCTL0
));
3423 /* clear global NAKs */
3424 val
= DCTL_CGOUTNAK
| DCTL_CGNPINNAK
;
3426 val
|= DCTL_SFTDISCON
;
3427 __orr32(hsotg
->regs
+ DCTL
, val
);
3429 /* must be at-least 3ms to allow bus to see disconnect */
3432 hsotg
->lx_state
= DWC2_L0
;
3435 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg
*hsotg
)
3437 /* set the soft-disconnect bit */
3438 __orr32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
3441 void dwc2_hsotg_core_connect(struct dwc2_hsotg
*hsotg
)
3443 /* remove the soft-disconnect and let's go */
3444 __bic32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
3448 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3449 * @hsotg: The device state:
3451 * This interrupt indicates one of the following conditions occurred while
3452 * transmitting an ISOC transaction.
3453 * - Corrupted IN Token for ISOC EP.
3454 * - Packet not complete in FIFO.
3456 * The following actions will be taken:
3457 * - Determine the EP
3458 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3460 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg
*hsotg
)
3462 struct dwc2_hsotg_ep
*hs_ep
;
3466 dev_dbg(hsotg
->dev
, "Incomplete isoc in interrupt received:\n");
3468 for (idx
= 1; idx
<= hsotg
->num_of_eps
; idx
++) {
3469 hs_ep
= hsotg
->eps_in
[idx
];
3470 epctrl
= dwc2_readl(hsotg
->regs
+ DIEPCTL(idx
));
3471 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
&&
3472 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3473 epctrl
|= DXEPCTL_SNAK
;
3474 epctrl
|= DXEPCTL_EPDIS
;
3475 dwc2_writel(epctrl
, hsotg
->regs
+ DIEPCTL(idx
));
3479 /* Clear interrupt */
3480 dwc2_writel(GINTSTS_INCOMPL_SOIN
, hsotg
->regs
+ GINTSTS
);
3484 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3485 * @hsotg: The device state:
3487 * This interrupt indicates one of the following conditions occurred while
3488 * transmitting an ISOC transaction.
3489 * - Corrupted OUT Token for ISOC EP.
3490 * - Packet not complete in FIFO.
3492 * The following actions will be taken:
3493 * - Determine the EP
3494 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3496 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg
*hsotg
)
3501 struct dwc2_hsotg_ep
*hs_ep
;
3504 dev_dbg(hsotg
->dev
, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__
);
3506 for (idx
= 1; idx
<= hsotg
->num_of_eps
; idx
++) {
3507 hs_ep
= hsotg
->eps_out
[idx
];
3508 epctrl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(idx
));
3509 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
&&
3510 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3511 /* Unmask GOUTNAKEFF interrupt */
3512 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3513 gintmsk
|= GINTSTS_GOUTNAKEFF
;
3514 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3516 gintsts
= dwc2_readl(hsotg
->regs
+ GINTSTS
);
3517 if (!(gintsts
& GINTSTS_GOUTNAKEFF
))
3518 __orr32(hsotg
->regs
+ DCTL
, DCTL_SGOUTNAK
);
3522 /* Clear interrupt */
3523 dwc2_writel(GINTSTS_INCOMPL_SOOUT
, hsotg
->regs
+ GINTSTS
);
3527 * dwc2_hsotg_irq - handle device interrupt
3528 * @irq: The IRQ number triggered
3529 * @pw: The pw value when registered the handler.
3531 static irqreturn_t
dwc2_hsotg_irq(int irq
, void *pw
)
3533 struct dwc2_hsotg
*hsotg
= pw
;
3534 int retry_count
= 8;
3538 if (!dwc2_is_device_mode(hsotg
))
3541 spin_lock(&hsotg
->lock
);
3543 gintsts
= dwc2_readl(hsotg
->regs
+ GINTSTS
);
3544 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3546 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
3547 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
3551 if (gintsts
& GINTSTS_RESETDET
) {
3552 dev_dbg(hsotg
->dev
, "%s: USBRstDet\n", __func__
);
3554 dwc2_writel(GINTSTS_RESETDET
, hsotg
->regs
+ GINTSTS
);
3556 /* This event must be used only if controller is suspended */
3557 if (hsotg
->lx_state
== DWC2_L2
) {
3558 dwc2_exit_hibernation(hsotg
, true);
3559 hsotg
->lx_state
= DWC2_L0
;
3563 if (gintsts
& (GINTSTS_USBRST
| GINTSTS_RESETDET
)) {
3564 u32 usb_status
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
3565 u32 connected
= hsotg
->connected
;
3567 dev_dbg(hsotg
->dev
, "%s: USBRst\n", __func__
);
3568 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
3569 dwc2_readl(hsotg
->regs
+ GNPTXSTS
));
3571 dwc2_writel(GINTSTS_USBRST
, hsotg
->regs
+ GINTSTS
);
3573 /* Report disconnection if it is not already done. */
3574 dwc2_hsotg_disconnect(hsotg
);
3576 /* Reset device address to zero */
3577 __bic32(hsotg
->regs
+ DCFG
, DCFG_DEVADDR_MASK
);
3579 if (usb_status
& GOTGCTL_BSESVLD
&& connected
)
3580 dwc2_hsotg_core_init_disconnected(hsotg
, true);
3583 if (gintsts
& GINTSTS_ENUMDONE
) {
3584 dwc2_writel(GINTSTS_ENUMDONE
, hsotg
->regs
+ GINTSTS
);
3586 dwc2_hsotg_irq_enumdone(hsotg
);
3589 if (gintsts
& (GINTSTS_OEPINT
| GINTSTS_IEPINT
)) {
3590 u32 daint
= dwc2_readl(hsotg
->regs
+ DAINT
);
3591 u32 daintmsk
= dwc2_readl(hsotg
->regs
+ DAINTMSK
);
3592 u32 daint_out
, daint_in
;
3596 daint_out
= daint
>> DAINT_OUTEP_SHIFT
;
3597 daint_in
= daint
& ~(daint_out
<< DAINT_OUTEP_SHIFT
);
3599 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
3601 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_out
;
3602 ep
++, daint_out
>>= 1) {
3604 dwc2_hsotg_epint(hsotg
, ep
, 0);
3607 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_in
;
3608 ep
++, daint_in
>>= 1) {
3610 dwc2_hsotg_epint(hsotg
, ep
, 1);
3614 /* check both FIFOs */
3616 if (gintsts
& GINTSTS_NPTXFEMP
) {
3617 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
3620 * Disable the interrupt to stop it happening again
3621 * unless one of these endpoint routines decides that
3622 * it needs re-enabling
3625 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_NPTXFEMP
);
3626 dwc2_hsotg_irq_fifoempty(hsotg
, false);
3629 if (gintsts
& GINTSTS_PTXFEMP
) {
3630 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
3632 /* See note in GINTSTS_NPTxFEmp */
3634 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_PTXFEMP
);
3635 dwc2_hsotg_irq_fifoempty(hsotg
, true);
3638 if (gintsts
& GINTSTS_RXFLVL
) {
3640 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3641 * we need to retry dwc2_hsotg_handle_rx if this is still
3645 dwc2_hsotg_handle_rx(hsotg
);
3648 if (gintsts
& GINTSTS_ERLYSUSP
) {
3649 dev_dbg(hsotg
->dev
, "GINTSTS_ErlySusp\n");
3650 dwc2_writel(GINTSTS_ERLYSUSP
, hsotg
->regs
+ GINTSTS
);
3654 * these next two seem to crop-up occasionally causing the core
3655 * to shutdown the USB transfer, so try clearing them and logging
3659 if (gintsts
& GINTSTS_GOUTNAKEFF
) {
3663 struct dwc2_hsotg_ep
*hs_ep
;
3665 /* Mask this interrupt */
3666 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3667 gintmsk
&= ~GINTSTS_GOUTNAKEFF
;
3668 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3670 dev_dbg(hsotg
->dev
, "GOUTNakEff triggered\n");
3671 for (idx
= 1; idx
<= hsotg
->num_of_eps
; idx
++) {
3672 hs_ep
= hsotg
->eps_out
[idx
];
3673 epctrl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(idx
));
3675 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
) {
3676 epctrl
|= DXEPCTL_SNAK
;
3677 epctrl
|= DXEPCTL_EPDIS
;
3678 dwc2_writel(epctrl
, hsotg
->regs
+ DOEPCTL(idx
));
3682 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3685 if (gintsts
& GINTSTS_GINNAKEFF
) {
3686 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
3688 __orr32(hsotg
->regs
+ DCTL
, DCTL_CGNPINNAK
);
3690 dwc2_hsotg_dump(hsotg
);
3693 if (gintsts
& GINTSTS_INCOMPL_SOIN
)
3694 dwc2_gadget_handle_incomplete_isoc_in(hsotg
);
3696 if (gintsts
& GINTSTS_INCOMPL_SOOUT
)
3697 dwc2_gadget_handle_incomplete_isoc_out(hsotg
);
3700 * if we've had fifo events, we should try and go around the
3701 * loop again to see if there's any point in returning yet.
3704 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
3707 spin_unlock(&hsotg
->lock
);
3712 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg
*hs_otg
, u32 reg
,
3713 u32 bit
, u32 timeout
)
3717 for (i
= 0; i
< timeout
; i
++) {
3718 if (dwc2_readl(hs_otg
->regs
+ reg
) & bit
)
3726 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg
*hsotg
,
3727 struct dwc2_hsotg_ep
*hs_ep
)
3732 epctrl_reg
= hs_ep
->dir_in
? DIEPCTL(hs_ep
->index
) :
3733 DOEPCTL(hs_ep
->index
);
3734 epint_reg
= hs_ep
->dir_in
? DIEPINT(hs_ep
->index
) :
3735 DOEPINT(hs_ep
->index
);
3737 dev_dbg(hsotg
->dev
, "%s: stopping transfer on %s\n", __func__
,
3740 if (hs_ep
->dir_in
) {
3741 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
) {
3742 __orr32(hsotg
->regs
+ epctrl_reg
, DXEPCTL_SNAK
);
3743 /* Wait for Nak effect */
3744 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
,
3745 DXEPINT_INEPNAKEFF
, 100))
3746 dev_warn(hsotg
->dev
,
3747 "%s: timeout DIEPINT.NAKEFF\n",
3750 __orr32(hsotg
->regs
+ DCTL
, DCTL_SGNPINNAK
);
3751 /* Wait for Nak effect */
3752 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3753 GINTSTS_GINNAKEFF
, 100))
3754 dev_warn(hsotg
->dev
,
3755 "%s: timeout GINTSTS.GINNAKEFF\n",
3759 if (!(dwc2_readl(hsotg
->regs
+ GINTSTS
) & GINTSTS_GOUTNAKEFF
))
3760 __orr32(hsotg
->regs
+ DCTL
, DCTL_SGOUTNAK
);
3762 /* Wait for global nak to take effect */
3763 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3764 GINTSTS_GOUTNAKEFF
, 100))
3765 dev_warn(hsotg
->dev
, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3770 __orr32(hsotg
->regs
+ epctrl_reg
, DXEPCTL_EPDIS
| DXEPCTL_SNAK
);
3772 /* Wait for ep to be disabled */
3773 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
, DXEPINT_EPDISBLD
, 100))
3774 dev_warn(hsotg
->dev
,
3775 "%s: timeout DOEPCTL.EPDisable\n", __func__
);
3777 /* Clear EPDISBLD interrupt */
3778 __orr32(hsotg
->regs
+ epint_reg
, DXEPINT_EPDISBLD
);
3780 if (hs_ep
->dir_in
) {
3781 unsigned short fifo_index
;
3783 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
)
3784 fifo_index
= hs_ep
->fifo_index
;
3789 dwc2_flush_tx_fifo(hsotg
, fifo_index
);
3791 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3792 if (!hsotg
->dedicated_fifos
&& !hs_ep
->periodic
)
3793 __orr32(hsotg
->regs
+ DCTL
, DCTL_CGNPINNAK
);
3796 /* Remove global NAKs */
3797 __orr32(hsotg
->regs
+ DCTL
, DCTL_CGOUTNAK
);
3802 * dwc2_hsotg_ep_enable - enable the given endpoint
3803 * @ep: The USB endpint to configure
3804 * @desc: The USB endpoint descriptor to configure with.
3806 * This is called from the USB gadget code's usb_ep_enable().
3808 static int dwc2_hsotg_ep_enable(struct usb_ep
*ep
,
3809 const struct usb_endpoint_descriptor
*desc
)
3811 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
3812 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
3813 unsigned long flags
;
3814 unsigned int index
= hs_ep
->index
;
3820 unsigned int dir_in
;
3821 unsigned int i
, val
, size
;
3825 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3826 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
3827 desc
->wMaxPacketSize
, desc
->bInterval
);
3829 /* not to be called for EP0 */
3831 dev_err(hsotg
->dev
, "%s: called for EP 0\n", __func__
);
3835 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
3836 if (dir_in
!= hs_ep
->dir_in
) {
3837 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
3841 mps
= usb_endpoint_maxp(desc
);
3842 mc
= usb_endpoint_maxp_mult(desc
);
3844 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3846 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
3847 epctrl
= dwc2_readl(hsotg
->regs
+ epctrl_reg
);
3849 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3850 __func__
, epctrl
, epctrl_reg
);
3852 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3853 if (using_desc_dma(hsotg
) && !hs_ep
->desc_list
) {
3854 hs_ep
->desc_list
= dmam_alloc_coherent(hsotg
->dev
,
3855 MAX_DMA_DESC_NUM_GENERIC
*
3856 sizeof(struct dwc2_dma_desc
),
3857 &hs_ep
->desc_list_dma
, GFP_ATOMIC
);
3858 if (!hs_ep
->desc_list
) {
3864 spin_lock_irqsave(&hsotg
->lock
, flags
);
3866 epctrl
&= ~(DXEPCTL_EPTYPE_MASK
| DXEPCTL_MPS_MASK
);
3867 epctrl
|= DXEPCTL_MPS(mps
);
3870 * mark the endpoint as active, otherwise the core may ignore
3871 * transactions entirely for this endpoint
3873 epctrl
|= DXEPCTL_USBACTEP
;
3875 /* update the endpoint state */
3876 dwc2_hsotg_set_ep_maxpacket(hsotg
, hs_ep
->index
, mps
, mc
, dir_in
);
3878 /* default, set to non-periodic */
3879 hs_ep
->isochronous
= 0;
3880 hs_ep
->periodic
= 0;
3882 hs_ep
->interval
= desc
->bInterval
;
3884 switch (desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
) {
3885 case USB_ENDPOINT_XFER_ISOC
:
3886 epctrl
|= DXEPCTL_EPTYPE_ISO
;
3887 epctrl
|= DXEPCTL_SETEVENFR
;
3888 hs_ep
->isochronous
= 1;
3889 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
3890 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
3891 hs_ep
->isoc_chain_num
= 0;
3892 hs_ep
->next_desc
= 0;
3894 hs_ep
->periodic
= 1;
3895 mask
= dwc2_readl(hsotg
->regs
+ DIEPMSK
);
3896 mask
|= DIEPMSK_NAKMSK
;
3897 dwc2_writel(mask
, hsotg
->regs
+ DIEPMSK
);
3899 mask
= dwc2_readl(hsotg
->regs
+ DOEPMSK
);
3900 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
3901 dwc2_writel(mask
, hsotg
->regs
+ DOEPMSK
);
3905 case USB_ENDPOINT_XFER_BULK
:
3906 epctrl
|= DXEPCTL_EPTYPE_BULK
;
3909 case USB_ENDPOINT_XFER_INT
:
3911 hs_ep
->periodic
= 1;
3913 if (hsotg
->gadget
.speed
== USB_SPEED_HIGH
)
3914 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
3916 epctrl
|= DXEPCTL_EPTYPE_INTERRUPT
;
3919 case USB_ENDPOINT_XFER_CONTROL
:
3920 epctrl
|= DXEPCTL_EPTYPE_CONTROL
;
3925 * if the hardware has dedicated fifos, we must give each IN EP
3926 * a unique tx-fifo even if it is non-periodic.
3928 if (dir_in
&& hsotg
->dedicated_fifos
) {
3930 u32 fifo_size
= UINT_MAX
;
3932 size
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
3933 for (i
= 1; i
< hsotg
->num_of_eps
; ++i
) {
3934 if (hsotg
->fifo_map
& (1 << i
))
3936 val
= dwc2_readl(hsotg
->regs
+ DPTXFSIZN(i
));
3937 val
= (val
>> FIFOSIZE_DEPTH_SHIFT
) * 4;
3940 /* Search for smallest acceptable fifo */
3941 if (val
< fifo_size
) {
3948 "%s: No suitable fifo found\n", __func__
);
3952 hsotg
->fifo_map
|= 1 << fifo_index
;
3953 epctrl
|= DXEPCTL_TXFNUM(fifo_index
);
3954 hs_ep
->fifo_index
= fifo_index
;
3955 hs_ep
->fifo_size
= fifo_size
;
3958 /* for non control endpoints, set PID to D0 */
3959 if (index
&& !hs_ep
->isochronous
)
3960 epctrl
|= DXEPCTL_SETD0PID
;
3962 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
3965 dwc2_writel(epctrl
, hsotg
->regs
+ epctrl_reg
);
3966 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
3967 __func__
, dwc2_readl(hsotg
->regs
+ epctrl_reg
));
3969 /* enable the endpoint interrupt */
3970 dwc2_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
3973 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3976 if (ret
&& using_desc_dma(hsotg
) && hs_ep
->desc_list
) {
3977 dmam_free_coherent(hsotg
->dev
, MAX_DMA_DESC_NUM_GENERIC
*
3978 sizeof(struct dwc2_dma_desc
),
3979 hs_ep
->desc_list
, hs_ep
->desc_list_dma
);
3980 hs_ep
->desc_list
= NULL
;
3987 * dwc2_hsotg_ep_disable - disable given endpoint
3988 * @ep: The endpoint to disable.
3990 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
)
3992 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
3993 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
3994 int dir_in
= hs_ep
->dir_in
;
3995 int index
= hs_ep
->index
;
3996 unsigned long flags
;
4000 dev_dbg(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
4002 if (ep
== &hsotg
->eps_out
[0]->ep
) {
4003 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
4007 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
4009 spin_lock_irqsave(&hsotg
->lock
, flags
);
4011 ctrl
= dwc2_readl(hsotg
->regs
+ epctrl_reg
);
4013 if (ctrl
& DXEPCTL_EPENA
)
4014 dwc2_hsotg_ep_stop_xfr(hsotg
, hs_ep
);
4016 ctrl
&= ~DXEPCTL_EPENA
;
4017 ctrl
&= ~DXEPCTL_USBACTEP
;
4018 ctrl
|= DXEPCTL_SNAK
;
4020 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
4021 dwc2_writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
4023 /* disable endpoint interrupts */
4024 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
4026 /* terminate all requests with shutdown */
4027 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
);
4029 hsotg
->fifo_map
&= ~(1 << hs_ep
->fifo_index
);
4030 hs_ep
->fifo_index
= 0;
4031 hs_ep
->fifo_size
= 0;
4033 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4038 * on_list - check request is on the given endpoint
4039 * @ep: The endpoint to check.
4040 * @test: The request to test if it is on the endpoint.
4042 static bool on_list(struct dwc2_hsotg_ep
*ep
, struct dwc2_hsotg_req
*test
)
4044 struct dwc2_hsotg_req
*req
, *treq
;
4046 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
4055 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4056 * @ep: The endpoint to dequeue.
4057 * @req: The request to be removed from a queue.
4059 static int dwc2_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
4061 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
4062 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4063 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4064 unsigned long flags
;
4066 dev_dbg(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
4068 spin_lock_irqsave(&hs
->lock
, flags
);
4070 if (!on_list(hs_ep
, hs_req
)) {
4071 spin_unlock_irqrestore(&hs
->lock
, flags
);
4075 /* Dequeue already started request */
4076 if (req
== &hs_ep
->req
->req
)
4077 dwc2_hsotg_ep_stop_xfr(hs
, hs_ep
);
4079 dwc2_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
4080 spin_unlock_irqrestore(&hs
->lock
, flags
);
4086 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4087 * @ep: The endpoint to set halt.
4088 * @value: Set or unset the halt.
4089 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4090 * the endpoint is busy processing requests.
4092 * We need to stall the endpoint immediately if request comes from set_feature
4093 * protocol command handler.
4095 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
)
4097 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4098 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4099 int index
= hs_ep
->index
;
4104 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
4108 dwc2_hsotg_stall_ep0(hs
);
4111 "%s: can't clear halt on ep0\n", __func__
);
4115 if (hs_ep
->isochronous
) {
4116 dev_err(hs
->dev
, "%s is Isochronous Endpoint\n", ep
->name
);
4120 if (!now
&& value
&& !list_empty(&hs_ep
->queue
)) {
4121 dev_dbg(hs
->dev
, "%s request is pending, cannot halt\n",
4126 if (hs_ep
->dir_in
) {
4127 epreg
= DIEPCTL(index
);
4128 epctl
= dwc2_readl(hs
->regs
+ epreg
);
4131 epctl
|= DXEPCTL_STALL
| DXEPCTL_SNAK
;
4132 if (epctl
& DXEPCTL_EPENA
)
4133 epctl
|= DXEPCTL_EPDIS
;
4135 epctl
&= ~DXEPCTL_STALL
;
4136 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4137 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4138 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4139 epctl
|= DXEPCTL_SETD0PID
;
4141 dwc2_writel(epctl
, hs
->regs
+ epreg
);
4143 epreg
= DOEPCTL(index
);
4144 epctl
= dwc2_readl(hs
->regs
+ epreg
);
4147 epctl
|= DXEPCTL_STALL
;
4149 epctl
&= ~DXEPCTL_STALL
;
4150 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4151 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4152 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4153 epctl
|= DXEPCTL_SETD0PID
;
4155 dwc2_writel(epctl
, hs
->regs
+ epreg
);
4158 hs_ep
->halted
= value
;
4164 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4165 * @ep: The endpoint to set halt.
4166 * @value: Set or unset the halt.
4168 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep
*ep
, int value
)
4170 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4171 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4172 unsigned long flags
= 0;
4175 spin_lock_irqsave(&hs
->lock
, flags
);
4176 ret
= dwc2_hsotg_ep_sethalt(ep
, value
, false);
4177 spin_unlock_irqrestore(&hs
->lock
, flags
);
4182 static struct usb_ep_ops dwc2_hsotg_ep_ops
= {
4183 .enable
= dwc2_hsotg_ep_enable
,
4184 .disable
= dwc2_hsotg_ep_disable
,
4185 .alloc_request
= dwc2_hsotg_ep_alloc_request
,
4186 .free_request
= dwc2_hsotg_ep_free_request
,
4187 .queue
= dwc2_hsotg_ep_queue_lock
,
4188 .dequeue
= dwc2_hsotg_ep_dequeue
,
4189 .set_halt
= dwc2_hsotg_ep_sethalt_lock
,
4190 /* note, don't believe we have any call for the fifo routines */
4194 * dwc2_hsotg_init - initialize the usb core
4195 * @hsotg: The driver state
4197 static void dwc2_hsotg_init(struct dwc2_hsotg
*hsotg
)
4201 /* unmask subset of endpoint interrupts */
4203 dwc2_writel(DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
|
4204 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
,
4205 hsotg
->regs
+ DIEPMSK
);
4207 dwc2_writel(DOEPMSK_SETUPMSK
| DOEPMSK_AHBERRMSK
|
4208 DOEPMSK_EPDISBLDMSK
| DOEPMSK_XFERCOMPLMSK
,
4209 hsotg
->regs
+ DOEPMSK
);
4211 dwc2_writel(0, hsotg
->regs
+ DAINTMSK
);
4213 /* Be in disconnected state until gadget is registered */
4214 __orr32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
4218 dev_dbg(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4219 dwc2_readl(hsotg
->regs
+ GRXFSIZ
),
4220 dwc2_readl(hsotg
->regs
+ GNPTXFSIZ
));
4222 dwc2_hsotg_init_fifo(hsotg
);
4224 /* keep other bits untouched (so e.g. forced modes are not lost) */
4225 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
4226 usbcfg
&= ~(GUSBCFG_TOUTCAL_MASK
| GUSBCFG_PHYIF16
| GUSBCFG_SRPCAP
|
4227 GUSBCFG_HNPCAP
| GUSBCFG_USBTRDTIM_MASK
);
4229 /* set the PLL on, remove the HNP/SRP and set the PHY */
4230 trdtim
= (hsotg
->phyif
== GUSBCFG_PHYIF8
) ? 9 : 5;
4231 usbcfg
|= hsotg
->phyif
| GUSBCFG_TOUTCAL(7) |
4232 (trdtim
<< GUSBCFG_USBTRDTIM_SHIFT
);
4233 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
4235 if (using_dma(hsotg
))
4236 __orr32(hsotg
->regs
+ GAHBCFG
, GAHBCFG_DMA_EN
);
4240 * dwc2_hsotg_udc_start - prepare the udc for work
4241 * @gadget: The usb gadget state
4242 * @driver: The usb gadget driver
4244 * Perform initialization to prepare udc device and driver
4247 static int dwc2_hsotg_udc_start(struct usb_gadget
*gadget
,
4248 struct usb_gadget_driver
*driver
)
4250 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4251 unsigned long flags
;
4255 pr_err("%s: called with no device\n", __func__
);
4260 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
4264 if (driver
->max_speed
< USB_SPEED_FULL
)
4265 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
4267 if (!driver
->setup
) {
4268 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
4272 WARN_ON(hsotg
->driver
);
4274 driver
->driver
.bus
= NULL
;
4275 hsotg
->driver
= driver
;
4276 hsotg
->gadget
.dev
.of_node
= hsotg
->dev
->of_node
;
4277 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4279 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
) {
4280 ret
= dwc2_lowlevel_hw_enable(hsotg
);
4285 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4286 otg_set_peripheral(hsotg
->uphy
->otg
, &hsotg
->gadget
);
4288 spin_lock_irqsave(&hsotg
->lock
, flags
);
4289 if (dwc2_hw_is_device(hsotg
)) {
4290 dwc2_hsotg_init(hsotg
);
4291 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4295 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4297 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
4302 hsotg
->driver
= NULL
;
4307 * dwc2_hsotg_udc_stop - stop the udc
4308 * @gadget: The usb gadget state
4309 * @driver: The usb gadget driver
4311 * Stop udc hw block and stay tunned for future transmissions
4313 static int dwc2_hsotg_udc_stop(struct usb_gadget
*gadget
)
4315 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4316 unsigned long flags
= 0;
4322 /* all endpoints should be shutdown */
4323 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
4324 if (hsotg
->eps_in
[ep
])
4325 dwc2_hsotg_ep_disable(&hsotg
->eps_in
[ep
]->ep
);
4326 if (hsotg
->eps_out
[ep
])
4327 dwc2_hsotg_ep_disable(&hsotg
->eps_out
[ep
]->ep
);
4330 spin_lock_irqsave(&hsotg
->lock
, flags
);
4332 hsotg
->driver
= NULL
;
4333 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4336 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4338 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4339 otg_set_peripheral(hsotg
->uphy
->otg
, NULL
);
4341 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4342 dwc2_lowlevel_hw_disable(hsotg
);
4348 * dwc2_hsotg_gadget_getframe - read the frame number
4349 * @gadget: The usb gadget state
4351 * Read the {micro} frame number
4353 static int dwc2_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
4355 return dwc2_hsotg_read_frameno(to_hsotg(gadget
));
4359 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4360 * @gadget: The usb gadget state
4361 * @is_on: Current state of the USB PHY
4363 * Connect/Disconnect the USB PHY pullup
4365 static int dwc2_hsotg_pullup(struct usb_gadget
*gadget
, int is_on
)
4367 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4368 unsigned long flags
= 0;
4370 dev_dbg(hsotg
->dev
, "%s: is_on: %d op_state: %d\n", __func__
, is_on
,
4373 /* Don't modify pullup state while in host mode */
4374 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4375 hsotg
->enabled
= is_on
;
4379 spin_lock_irqsave(&hsotg
->lock
, flags
);
4382 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4383 dwc2_hsotg_core_connect(hsotg
);
4385 dwc2_hsotg_core_disconnect(hsotg
);
4386 dwc2_hsotg_disconnect(hsotg
);
4390 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4391 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4396 static int dwc2_hsotg_vbus_session(struct usb_gadget
*gadget
, int is_active
)
4398 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4399 unsigned long flags
;
4401 dev_dbg(hsotg
->dev
, "%s: is_active: %d\n", __func__
, is_active
);
4402 spin_lock_irqsave(&hsotg
->lock
, flags
);
4405 * If controller is hibernated, it must exit from hibernation
4406 * before being initialized / de-initialized
4408 if (hsotg
->lx_state
== DWC2_L2
)
4409 dwc2_exit_hibernation(hsotg
, false);
4412 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4414 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4416 dwc2_hsotg_core_connect(hsotg
);
4418 dwc2_hsotg_core_disconnect(hsotg
);
4419 dwc2_hsotg_disconnect(hsotg
);
4422 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4427 * dwc2_hsotg_vbus_draw - report bMaxPower field
4428 * @gadget: The usb gadget state
4429 * @mA: Amount of current
4431 * Report how much power the device may consume to the phy.
4433 static int dwc2_hsotg_vbus_draw(struct usb_gadget
*gadget
, unsigned int mA
)
4435 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4437 if (IS_ERR_OR_NULL(hsotg
->uphy
))
4439 return usb_phy_set_power(hsotg
->uphy
, mA
);
4442 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops
= {
4443 .get_frame
= dwc2_hsotg_gadget_getframe
,
4444 .udc_start
= dwc2_hsotg_udc_start
,
4445 .udc_stop
= dwc2_hsotg_udc_stop
,
4446 .pullup
= dwc2_hsotg_pullup
,
4447 .vbus_session
= dwc2_hsotg_vbus_session
,
4448 .vbus_draw
= dwc2_hsotg_vbus_draw
,
4452 * dwc2_hsotg_initep - initialise a single endpoint
4453 * @hsotg: The device state.
4454 * @hs_ep: The endpoint to be initialised.
4455 * @epnum: The endpoint number
4457 * Initialise the given endpoint (as part of the probe and device state
4458 * creation) to give to the gadget driver. Setup the endpoint name, any
4459 * direction information and other state that may be required.
4461 static void dwc2_hsotg_initep(struct dwc2_hsotg
*hsotg
,
4462 struct dwc2_hsotg_ep
*hs_ep
,
4475 hs_ep
->dir_in
= dir_in
;
4476 hs_ep
->index
= epnum
;
4478 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
4480 INIT_LIST_HEAD(&hs_ep
->queue
);
4481 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
4483 /* add to the list of endpoints known by the gadget driver */
4485 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
4487 hs_ep
->parent
= hsotg
;
4488 hs_ep
->ep
.name
= hs_ep
->name
;
4490 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
)
4491 usb_ep_set_maxpacket_limit(&hs_ep
->ep
, 8);
4493 usb_ep_set_maxpacket_limit(&hs_ep
->ep
,
4494 epnum
? 1024 : EP0_MPS_LIMIT
);
4495 hs_ep
->ep
.ops
= &dwc2_hsotg_ep_ops
;
4498 hs_ep
->ep
.caps
.type_control
= true;
4500 if (hsotg
->params
.speed
!= DWC2_SPEED_PARAM_LOW
) {
4501 hs_ep
->ep
.caps
.type_iso
= true;
4502 hs_ep
->ep
.caps
.type_bulk
= true;
4504 hs_ep
->ep
.caps
.type_int
= true;
4508 hs_ep
->ep
.caps
.dir_in
= true;
4510 hs_ep
->ep
.caps
.dir_out
= true;
4513 * if we're using dma, we need to set the next-endpoint pointer
4514 * to be something valid.
4517 if (using_dma(hsotg
)) {
4518 u32 next
= DXEPCTL_NEXTEP((epnum
+ 1) % 15);
4521 dwc2_writel(next
, hsotg
->regs
+ DIEPCTL(epnum
));
4523 dwc2_writel(next
, hsotg
->regs
+ DOEPCTL(epnum
));
4528 * dwc2_hsotg_hw_cfg - read HW configuration registers
4529 * @param: The device state
4531 * Read the USB core HW configuration registers
4533 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg
*hsotg
)
4539 /* check hardware configuration */
4541 hsotg
->num_of_eps
= hsotg
->hw_params
.num_dev_ep
;
4544 hsotg
->num_of_eps
++;
4546 hsotg
->eps_in
[0] = devm_kzalloc(hsotg
->dev
,
4547 sizeof(struct dwc2_hsotg_ep
),
4549 if (!hsotg
->eps_in
[0])
4551 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4552 hsotg
->eps_out
[0] = hsotg
->eps_in
[0];
4554 cfg
= hsotg
->hw_params
.dev_ep_dirs
;
4555 for (i
= 1, cfg
>>= 2; i
< hsotg
->num_of_eps
; i
++, cfg
>>= 2) {
4557 /* Direction in or both */
4558 if (!(ep_type
& 2)) {
4559 hsotg
->eps_in
[i
] = devm_kzalloc(hsotg
->dev
,
4560 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4561 if (!hsotg
->eps_in
[i
])
4564 /* Direction out or both */
4565 if (!(ep_type
& 1)) {
4566 hsotg
->eps_out
[i
] = devm_kzalloc(hsotg
->dev
,
4567 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4568 if (!hsotg
->eps_out
[i
])
4573 hsotg
->fifo_mem
= hsotg
->hw_params
.total_fifo_size
;
4574 hsotg
->dedicated_fifos
= hsotg
->hw_params
.en_multiple_tx_fifo
;
4576 dev_info(hsotg
->dev
, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4578 hsotg
->dedicated_fifos
? "dedicated" : "shared",
4584 * dwc2_hsotg_dump - dump state of the udc
4585 * @param: The device state
4587 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
)
4590 struct device
*dev
= hsotg
->dev
;
4591 void __iomem
*regs
= hsotg
->regs
;
4595 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4596 dwc2_readl(regs
+ DCFG
), dwc2_readl(regs
+ DCTL
),
4597 dwc2_readl(regs
+ DIEPMSK
));
4599 dev_info(dev
, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4600 dwc2_readl(regs
+ GAHBCFG
), dwc2_readl(regs
+ GHWCFG1
));
4602 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4603 dwc2_readl(regs
+ GRXFSIZ
), dwc2_readl(regs
+ GNPTXFSIZ
));
4605 /* show periodic fifo settings */
4607 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
4608 val
= dwc2_readl(regs
+ DPTXFSIZN(idx
));
4609 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
4610 val
>> FIFOSIZE_DEPTH_SHIFT
,
4611 val
& FIFOSIZE_STARTADDR_MASK
);
4614 for (idx
= 0; idx
< hsotg
->num_of_eps
; idx
++) {
4616 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
4617 dwc2_readl(regs
+ DIEPCTL(idx
)),
4618 dwc2_readl(regs
+ DIEPTSIZ(idx
)),
4619 dwc2_readl(regs
+ DIEPDMA(idx
)));
4621 val
= dwc2_readl(regs
+ DOEPCTL(idx
));
4623 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4624 idx
, dwc2_readl(regs
+ DOEPCTL(idx
)),
4625 dwc2_readl(regs
+ DOEPTSIZ(idx
)),
4626 dwc2_readl(regs
+ DOEPDMA(idx
)));
4629 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4630 dwc2_readl(regs
+ DVBUSDIS
), dwc2_readl(regs
+ DVBUSPULSE
));
4635 * dwc2_gadget_init - init function for gadget
4636 * @dwc2: The data structure for the DWC2 driver.
4637 * @irq: The IRQ number for the controller.
4639 int dwc2_gadget_init(struct dwc2_hsotg
*hsotg
, int irq
)
4641 struct device
*dev
= hsotg
->dev
;
4645 /* Dump fifo information */
4646 dev_dbg(dev
, "NonPeriodic TXFIFO size: %d\n",
4647 hsotg
->params
.g_np_tx_fifo_size
);
4648 dev_dbg(dev
, "RXFIFO size: %d\n", hsotg
->params
.g_rx_fifo_size
);
4650 hsotg
->gadget
.max_speed
= USB_SPEED_HIGH
;
4651 hsotg
->gadget
.ops
= &dwc2_hsotg_gadget_ops
;
4652 hsotg
->gadget
.name
= dev_name(dev
);
4653 if (hsotg
->dr_mode
== USB_DR_MODE_OTG
)
4654 hsotg
->gadget
.is_otg
= 1;
4655 else if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4656 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4658 ret
= dwc2_hsotg_hw_cfg(hsotg
);
4660 dev_err(hsotg
->dev
, "Hardware configuration failed: %d\n", ret
);
4664 hsotg
->ctrl_buff
= devm_kzalloc(hsotg
->dev
,
4665 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4666 if (!hsotg
->ctrl_buff
)
4669 hsotg
->ep0_buff
= devm_kzalloc(hsotg
->dev
,
4670 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4671 if (!hsotg
->ep0_buff
)
4674 if (using_desc_dma(hsotg
)) {
4675 ret
= dwc2_gadget_alloc_ctrl_desc_chains(hsotg
);
4680 ret
= devm_request_irq(hsotg
->dev
, irq
, dwc2_hsotg_irq
, IRQF_SHARED
,
4681 dev_name(hsotg
->dev
), hsotg
);
4683 dev_err(dev
, "cannot claim IRQ for gadget\n");
4687 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4689 if (hsotg
->num_of_eps
== 0) {
4690 dev_err(dev
, "wrong number of EPs (zero)\n");
4694 /* setup endpoint information */
4696 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
4697 hsotg
->gadget
.ep0
= &hsotg
->eps_out
[0]->ep
;
4699 /* allocate EP0 request */
4701 hsotg
->ctrl_req
= dwc2_hsotg_ep_alloc_request(&hsotg
->eps_out
[0]->ep
,
4703 if (!hsotg
->ctrl_req
) {
4704 dev_err(dev
, "failed to allocate ctrl req\n");
4708 /* initialise the endpoints now the core has been initialised */
4709 for (epnum
= 0; epnum
< hsotg
->num_of_eps
; epnum
++) {
4710 if (hsotg
->eps_in
[epnum
])
4711 dwc2_hsotg_initep(hsotg
, hsotg
->eps_in
[epnum
],
4713 if (hsotg
->eps_out
[epnum
])
4714 dwc2_hsotg_initep(hsotg
, hsotg
->eps_out
[epnum
],
4718 ret
= usb_add_gadget_udc(dev
, &hsotg
->gadget
);
4722 dwc2_hsotg_dump(hsotg
);
4728 * dwc2_hsotg_remove - remove function for hsotg driver
4729 * @pdev: The platform information for the driver
4731 int dwc2_hsotg_remove(struct dwc2_hsotg
*hsotg
)
4733 usb_del_gadget_udc(&hsotg
->gadget
);
4738 int dwc2_hsotg_suspend(struct dwc2_hsotg
*hsotg
)
4740 unsigned long flags
;
4742 if (hsotg
->lx_state
!= DWC2_L0
)
4745 if (hsotg
->driver
) {
4748 dev_info(hsotg
->dev
, "suspending usb gadget %s\n",
4749 hsotg
->driver
->driver
.name
);
4751 spin_lock_irqsave(&hsotg
->lock
, flags
);
4753 dwc2_hsotg_core_disconnect(hsotg
);
4754 dwc2_hsotg_disconnect(hsotg
);
4755 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4756 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4758 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
4759 if (hsotg
->eps_in
[ep
])
4760 dwc2_hsotg_ep_disable(&hsotg
->eps_in
[ep
]->ep
);
4761 if (hsotg
->eps_out
[ep
])
4762 dwc2_hsotg_ep_disable(&hsotg
->eps_out
[ep
]->ep
);
4769 int dwc2_hsotg_resume(struct dwc2_hsotg
*hsotg
)
4771 unsigned long flags
;
4773 if (hsotg
->lx_state
== DWC2_L2
)
4776 if (hsotg
->driver
) {
4777 dev_info(hsotg
->dev
, "resuming usb gadget %s\n",
4778 hsotg
->driver
->driver
.name
);
4780 spin_lock_irqsave(&hsotg
->lock
, flags
);
4781 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4783 dwc2_hsotg_core_connect(hsotg
);
4784 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4791 * dwc2_backup_device_registers() - Backup controller device registers.
4792 * When suspending usb bus, registers needs to be backuped
4793 * if controller power is disabled once suspended.
4795 * @hsotg: Programming view of the DWC_otg controller
4797 int dwc2_backup_device_registers(struct dwc2_hsotg
*hsotg
)
4799 struct dwc2_dregs_backup
*dr
;
4802 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
4804 /* Backup dev regs */
4805 dr
= &hsotg
->dr_backup
;
4807 dr
->dcfg
= dwc2_readl(hsotg
->regs
+ DCFG
);
4808 dr
->dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
4809 dr
->daintmsk
= dwc2_readl(hsotg
->regs
+ DAINTMSK
);
4810 dr
->diepmsk
= dwc2_readl(hsotg
->regs
+ DIEPMSK
);
4811 dr
->doepmsk
= dwc2_readl(hsotg
->regs
+ DOEPMSK
);
4813 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
4815 dr
->diepctl
[i
] = dwc2_readl(hsotg
->regs
+ DIEPCTL(i
));
4817 /* Ensure DATA PID is correctly configured */
4818 if (dr
->diepctl
[i
] & DXEPCTL_DPID
)
4819 dr
->diepctl
[i
] |= DXEPCTL_SETD1PID
;
4821 dr
->diepctl
[i
] |= DXEPCTL_SETD0PID
;
4823 dr
->dieptsiz
[i
] = dwc2_readl(hsotg
->regs
+ DIEPTSIZ(i
));
4824 dr
->diepdma
[i
] = dwc2_readl(hsotg
->regs
+ DIEPDMA(i
));
4826 /* Backup OUT EPs */
4827 dr
->doepctl
[i
] = dwc2_readl(hsotg
->regs
+ DOEPCTL(i
));
4829 /* Ensure DATA PID is correctly configured */
4830 if (dr
->doepctl
[i
] & DXEPCTL_DPID
)
4831 dr
->doepctl
[i
] |= DXEPCTL_SETD1PID
;
4833 dr
->doepctl
[i
] |= DXEPCTL_SETD0PID
;
4835 dr
->doeptsiz
[i
] = dwc2_readl(hsotg
->regs
+ DOEPTSIZ(i
));
4836 dr
->doepdma
[i
] = dwc2_readl(hsotg
->regs
+ DOEPDMA(i
));
4843 * dwc2_restore_device_registers() - Restore controller device registers.
4844 * When resuming usb bus, device registers needs to be restored
4845 * if controller power were disabled.
4847 * @hsotg: Programming view of the DWC_otg controller
4849 int dwc2_restore_device_registers(struct dwc2_hsotg
*hsotg
)
4851 struct dwc2_dregs_backup
*dr
;
4855 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
4857 /* Restore dev regs */
4858 dr
= &hsotg
->dr_backup
;
4860 dev_err(hsotg
->dev
, "%s: no device registers to restore\n",
4866 dwc2_writel(dr
->dcfg
, hsotg
->regs
+ DCFG
);
4867 dwc2_writel(dr
->dctl
, hsotg
->regs
+ DCTL
);
4868 dwc2_writel(dr
->daintmsk
, hsotg
->regs
+ DAINTMSK
);
4869 dwc2_writel(dr
->diepmsk
, hsotg
->regs
+ DIEPMSK
);
4870 dwc2_writel(dr
->doepmsk
, hsotg
->regs
+ DOEPMSK
);
4872 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
4873 /* Restore IN EPs */
4874 dwc2_writel(dr
->diepctl
[i
], hsotg
->regs
+ DIEPCTL(i
));
4875 dwc2_writel(dr
->dieptsiz
[i
], hsotg
->regs
+ DIEPTSIZ(i
));
4876 dwc2_writel(dr
->diepdma
[i
], hsotg
->regs
+ DIEPDMA(i
));
4878 /* Restore OUT EPs */
4879 dwc2_writel(dr
->doepctl
[i
], hsotg
->regs
+ DOEPCTL(i
));
4880 dwc2_writel(dr
->doeptsiz
[i
], hsotg
->regs
+ DOEPTSIZ(i
));
4881 dwc2_writel(dr
->doepdma
[i
], hsotg
->regs
+ DOEPDMA(i
));
4884 /* Set the Power-On Programming done bit */
4885 dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
4886 dctl
|= DCTL_PWRONPRGDONE
;
4887 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);