]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/dwc2/gadget.c
e4c3ce0de5de11ba5532fb34c8b8d72e1fd98511
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / dwc2 / gadget.c
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30
31 #include "core.h"
32 #include "hw.h"
33
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 return container_of(req, struct dwc2_hsotg_req, req);
38 }
39
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49
50 static inline void __orr32(void __iomem *ptr, u32 val)
51 {
52 dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54
55 static inline void __bic32(void __iomem *ptr, u32 val)
56 {
57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 u32 ep_index, u32 dir_in)
62 {
63 if (dir_in)
64 return hsotg->eps_in[ep_index];
65 else
66 return hsotg->eps_out[ep_index];
67 }
68
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71
72 /**
73 * using_dma - return the DMA status of the driver.
74 * @hsotg: The driver state.
75 *
76 * Return true if we're using DMA.
77 *
78 * Currently, we have the DMA support code worked into everywhere
79 * that needs it, but the AMBA DMA implementation in the hardware can
80 * only DMA from 32bit aligned addresses. This means that gadgets such
81 * as the CDC Ethernet cannot work as they often pass packets which are
82 * not 32bit aligned.
83 *
84 * Unfortunately the choice to use DMA or not is global to the controller
85 * and seems to be only settable when the controller is being put through
86 * a core reset. This means we either need to fix the gadgets to take
87 * account of DMA alignment, or add bounce buffers (yuerk).
88 *
89 * g_using_dma is set depending on dts flag.
90 */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 return hsotg->params.g_dma;
94 }
95
96 /*
97 * using_desc_dma - return the descriptor DMA status of the driver.
98 * @hsotg: The driver state.
99 *
100 * Return true if we're using descriptor DMA.
101 */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 return hsotg->params.g_dma_desc;
105 }
106
107 /**
108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109 * @hs_ep: The endpoint
110 * @increment: The value to increment by
111 *
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114 */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 hs_ep->target_frame += hs_ep->interval;
118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 hs_ep->frame_overrun = 1;
120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 } else {
122 hs_ep->frame_overrun = 0;
123 }
124 }
125
126 /**
127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 * @hsotg: The device state
129 * @ints: A bitmask of the interrupts to enable
130 */
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132 {
133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 u32 new_gsintmsk;
135
136 new_gsintmsk = gsintmsk | ints;
137
138 if (new_gsintmsk != gsintmsk) {
139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 }
142 }
143
144 /**
145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 * @hsotg: The device state
147 * @ints: A bitmask of the interrupts to enable
148 */
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 {
151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 u32 new_gsintmsk;
153
154 new_gsintmsk = gsintmsk & ~ints;
155
156 if (new_gsintmsk != gsintmsk)
157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 }
159
160 /**
161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 * @hsotg: The device state
163 * @ep: The endpoint index
164 * @dir_in: True if direction is in.
165 * @en: The enable value, true to enable
166 *
167 * Set or clear the mask for an individual endpoint's interrupt
168 * request.
169 */
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 unsigned int ep, unsigned int dir_in,
172 unsigned int en)
173 {
174 unsigned long flags;
175 u32 bit = 1 << ep;
176 u32 daint;
177
178 if (!dir_in)
179 bit <<= 16;
180
181 local_irq_save(flags);
182 daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 if (en)
184 daint |= bit;
185 else
186 daint &= ~bit;
187 dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 local_irq_restore(flags);
189 }
190
191 /**
192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
193 */
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
195 {
196 if (hsotg->hw_params.en_multiple_tx_fifo)
197 /* In dedicated FIFO mode we need count of IN EPs */
198 return hsotg->hw_params.num_dev_in_eps;
199 else
200 /* In shared FIFO mode we need count of Periodic IN EPs */
201 return hsotg->hw_params.num_dev_perio_in_ep;
202 }
203
204 /**
205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206 * device mode TX FIFOs
207 */
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
209 {
210 int addr;
211 int tx_addr_max;
212 u32 np_tx_fifo_size;
213
214 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
215 hsotg->params.g_np_tx_fifo_size);
216
217 /* Get Endpoint Info Control block size in DWORDs. */
218 tx_addr_max = hsotg->hw_params.total_fifo_size;
219
220 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
221 if (tx_addr_max <= addr)
222 return 0;
223
224 return tx_addr_max - addr;
225 }
226
227 /**
228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
229 * TX FIFOs
230 */
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
232 {
233 int tx_fifo_count;
234 int tx_fifo_depth;
235
236 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
237
238 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
239
240 if (!tx_fifo_count)
241 return tx_fifo_depth;
242 else
243 return tx_fifo_depth / tx_fifo_count;
244 }
245
246 /**
247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248 * @hsotg: The device instance.
249 */
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251 {
252 unsigned int ep;
253 unsigned int addr;
254 int timeout;
255 u32 val;
256 u32 *txfsz = hsotg->params.g_tx_fifo_size;
257
258 /* Reset fifo map if not correctly cleared during previous session */
259 WARN_ON(hsotg->fifo_map);
260 hsotg->fifo_map = 0;
261
262 /* set RX/NPTX FIFO sizes */
263 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
264 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
265 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
266 hsotg->regs + GNPTXFSIZ);
267
268 /*
269 * arange all the rest of the TX FIFOs, as some versions of this
270 * block have overlapping default addresses. This also ensures
271 * that if the settings have been changed, then they are set to
272 * known values.
273 */
274
275 /* start at the end of the GNPTXFSIZ, rounded up */
276 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
277
278 /*
279 * Configure fifos sizes from provided configuration and assign
280 * them to endpoints dynamically according to maxpacket size value of
281 * given endpoint.
282 */
283 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
284 if (!txfsz[ep])
285 continue;
286 val = addr;
287 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
288 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
289 "insufficient fifo memory");
290 addr += txfsz[ep];
291
292 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
293 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
294 }
295
296 dwc2_writel(hsotg->hw_params.total_fifo_size |
297 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
298 hsotg->regs + GDFIFOCFG);
299 /*
300 * according to p428 of the design guide, we need to ensure that
301 * all fifos are flushed before continuing
302 */
303
304 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
305 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
306
307 /* wait until the fifos are both flushed */
308 timeout = 100;
309 while (1) {
310 val = dwc2_readl(hsotg->regs + GRSTCTL);
311
312 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
313 break;
314
315 if (--timeout == 0) {
316 dev_err(hsotg->dev,
317 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
318 __func__, val);
319 break;
320 }
321
322 udelay(1);
323 }
324
325 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
326 }
327
328 /**
329 * @ep: USB endpoint to allocate request for.
330 * @flags: Allocation flags
331 *
332 * Allocate a new USB request structure appropriate for the specified endpoint
333 */
334 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
335 gfp_t flags)
336 {
337 struct dwc2_hsotg_req *req;
338
339 req = kzalloc(sizeof(*req), flags);
340 if (!req)
341 return NULL;
342
343 INIT_LIST_HEAD(&req->queue);
344
345 return &req->req;
346 }
347
348 /**
349 * is_ep_periodic - return true if the endpoint is in periodic mode.
350 * @hs_ep: The endpoint to query.
351 *
352 * Returns true if the endpoint is in periodic mode, meaning it is being
353 * used for an Interrupt or ISO transfer.
354 */
355 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
356 {
357 return hs_ep->periodic;
358 }
359
360 /**
361 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
362 * @hsotg: The device state.
363 * @hs_ep: The endpoint for the request
364 * @hs_req: The request being processed.
365 *
366 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
367 * of a request to ensure the buffer is ready for access by the caller.
368 */
369 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
370 struct dwc2_hsotg_ep *hs_ep,
371 struct dwc2_hsotg_req *hs_req)
372 {
373 struct usb_request *req = &hs_req->req;
374
375 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
376 }
377
378 /*
379 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
380 * for Control endpoint
381 * @hsotg: The device state.
382 *
383 * This function will allocate 4 descriptor chains for EP 0: 2 for
384 * Setup stage, per one for IN and OUT data/status transactions.
385 */
386 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
387 {
388 hsotg->setup_desc[0] =
389 dmam_alloc_coherent(hsotg->dev,
390 sizeof(struct dwc2_dma_desc),
391 &hsotg->setup_desc_dma[0],
392 GFP_KERNEL);
393 if (!hsotg->setup_desc[0])
394 goto fail;
395
396 hsotg->setup_desc[1] =
397 dmam_alloc_coherent(hsotg->dev,
398 sizeof(struct dwc2_dma_desc),
399 &hsotg->setup_desc_dma[1],
400 GFP_KERNEL);
401 if (!hsotg->setup_desc[1])
402 goto fail;
403
404 hsotg->ctrl_in_desc =
405 dmam_alloc_coherent(hsotg->dev,
406 sizeof(struct dwc2_dma_desc),
407 &hsotg->ctrl_in_desc_dma,
408 GFP_KERNEL);
409 if (!hsotg->ctrl_in_desc)
410 goto fail;
411
412 hsotg->ctrl_out_desc =
413 dmam_alloc_coherent(hsotg->dev,
414 sizeof(struct dwc2_dma_desc),
415 &hsotg->ctrl_out_desc_dma,
416 GFP_KERNEL);
417 if (!hsotg->ctrl_out_desc)
418 goto fail;
419
420 return 0;
421
422 fail:
423 return -ENOMEM;
424 }
425
426 /**
427 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
428 * @hsotg: The controller state.
429 * @hs_ep: The endpoint we're going to write for.
430 * @hs_req: The request to write data for.
431 *
432 * This is called when the TxFIFO has some space in it to hold a new
433 * transmission and we have something to give it. The actual setup of
434 * the data size is done elsewhere, so all we have to do is to actually
435 * write the data.
436 *
437 * The return value is zero if there is more space (or nothing was done)
438 * otherwise -ENOSPC is returned if the FIFO space was used up.
439 *
440 * This routine is only needed for PIO
441 */
442 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
443 struct dwc2_hsotg_ep *hs_ep,
444 struct dwc2_hsotg_req *hs_req)
445 {
446 bool periodic = is_ep_periodic(hs_ep);
447 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
448 int buf_pos = hs_req->req.actual;
449 int to_write = hs_ep->size_loaded;
450 void *data;
451 int can_write;
452 int pkt_round;
453 int max_transfer;
454
455 to_write -= (buf_pos - hs_ep->last_load);
456
457 /* if there's nothing to write, get out early */
458 if (to_write == 0)
459 return 0;
460
461 if (periodic && !hsotg->dedicated_fifos) {
462 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
463 int size_left;
464 int size_done;
465
466 /*
467 * work out how much data was loaded so we can calculate
468 * how much data is left in the fifo.
469 */
470
471 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
472
473 /*
474 * if shared fifo, we cannot write anything until the
475 * previous data has been completely sent.
476 */
477 if (hs_ep->fifo_load != 0) {
478 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
479 return -ENOSPC;
480 }
481
482 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
483 __func__, size_left,
484 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
485
486 /* how much of the data has moved */
487 size_done = hs_ep->size_loaded - size_left;
488
489 /* how much data is left in the fifo */
490 can_write = hs_ep->fifo_load - size_done;
491 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
492 __func__, can_write);
493
494 can_write = hs_ep->fifo_size - can_write;
495 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
496 __func__, can_write);
497
498 if (can_write <= 0) {
499 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
500 return -ENOSPC;
501 }
502 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
503 can_write = dwc2_readl(hsotg->regs +
504 DTXFSTS(hs_ep->fifo_index));
505
506 can_write &= 0xffff;
507 can_write *= 4;
508 } else {
509 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
510 dev_dbg(hsotg->dev,
511 "%s: no queue slots available (0x%08x)\n",
512 __func__, gnptxsts);
513
514 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
515 return -ENOSPC;
516 }
517
518 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
519 can_write *= 4; /* fifo size is in 32bit quantities. */
520 }
521
522 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
523
524 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
525 __func__, gnptxsts, can_write, to_write, max_transfer);
526
527 /*
528 * limit to 512 bytes of data, it seems at least on the non-periodic
529 * FIFO, requests of >512 cause the endpoint to get stuck with a
530 * fragment of the end of the transfer in it.
531 */
532 if (can_write > 512 && !periodic)
533 can_write = 512;
534
535 /*
536 * limit the write to one max-packet size worth of data, but allow
537 * the transfer to return that it did not run out of fifo space
538 * doing it.
539 */
540 if (to_write > max_transfer) {
541 to_write = max_transfer;
542
543 /* it's needed only when we do not use dedicated fifos */
544 if (!hsotg->dedicated_fifos)
545 dwc2_hsotg_en_gsint(hsotg,
546 periodic ? GINTSTS_PTXFEMP :
547 GINTSTS_NPTXFEMP);
548 }
549
550 /* see if we can write data */
551
552 if (to_write > can_write) {
553 to_write = can_write;
554 pkt_round = to_write % max_transfer;
555
556 /*
557 * Round the write down to an
558 * exact number of packets.
559 *
560 * Note, we do not currently check to see if we can ever
561 * write a full packet or not to the FIFO.
562 */
563
564 if (pkt_round)
565 to_write -= pkt_round;
566
567 /*
568 * enable correct FIFO interrupt to alert us when there
569 * is more room left.
570 */
571
572 /* it's needed only when we do not use dedicated fifos */
573 if (!hsotg->dedicated_fifos)
574 dwc2_hsotg_en_gsint(hsotg,
575 periodic ? GINTSTS_PTXFEMP :
576 GINTSTS_NPTXFEMP);
577 }
578
579 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
580 to_write, hs_req->req.length, can_write, buf_pos);
581
582 if (to_write <= 0)
583 return -ENOSPC;
584
585 hs_req->req.actual = buf_pos + to_write;
586 hs_ep->total_data += to_write;
587
588 if (periodic)
589 hs_ep->fifo_load += to_write;
590
591 to_write = DIV_ROUND_UP(to_write, 4);
592 data = hs_req->req.buf + buf_pos;
593
594 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
595
596 return (to_write >= can_write) ? -ENOSPC : 0;
597 }
598
599 /**
600 * get_ep_limit - get the maximum data legnth for this endpoint
601 * @hs_ep: The endpoint
602 *
603 * Return the maximum data that can be queued in one go on a given endpoint
604 * so that transfers that are too long can be split.
605 */
606 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
607 {
608 int index = hs_ep->index;
609 unsigned int maxsize;
610 unsigned int maxpkt;
611
612 if (index != 0) {
613 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
614 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
615 } else {
616 maxsize = 64 + 64;
617 if (hs_ep->dir_in)
618 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
619 else
620 maxpkt = 2;
621 }
622
623 /* we made the constant loading easier above by using +1 */
624 maxpkt--;
625 maxsize--;
626
627 /*
628 * constrain by packet count if maxpkts*pktsize is greater
629 * than the length register size.
630 */
631
632 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633 maxsize = maxpkt * hs_ep->ep.maxpacket;
634
635 return maxsize;
636 }
637
638 /**
639 * dwc2_hsotg_read_frameno - read current frame number
640 * @hsotg: The device instance
641 *
642 * Return the current frame number
643 */
644 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
645 {
646 u32 dsts;
647
648 dsts = dwc2_readl(hsotg->regs + DSTS);
649 dsts &= DSTS_SOFFN_MASK;
650 dsts >>= DSTS_SOFFN_SHIFT;
651
652 return dsts;
653 }
654
655 /**
656 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
657 * DMA descriptor chain prepared for specific endpoint
658 * @hs_ep: The endpoint
659 *
660 * Return the maximum data that can be queued in one go on a given endpoint
661 * depending on its descriptor chain capacity so that transfers that
662 * are too long can be split.
663 */
664 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
665 {
666 int is_isoc = hs_ep->isochronous;
667 unsigned int maxsize;
668
669 if (is_isoc)
670 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
671 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
672 else
673 maxsize = DEV_DMA_NBYTES_LIMIT;
674
675 /* Above size of one descriptor was chosen, multiple it */
676 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
677
678 return maxsize;
679 }
680
681 /*
682 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
683 * @hs_ep: The endpoint
684 * @mask: RX/TX bytes mask to be defined
685 *
686 * Returns maximum data payload for one descriptor after analyzing endpoint
687 * characteristics.
688 * DMA descriptor transfer bytes limit depends on EP type:
689 * Control out - MPS,
690 * Isochronous - descriptor rx/tx bytes bitfield limit,
691 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
692 * have concatenations from various descriptors within one packet.
693 *
694 * Selects corresponding mask for RX/TX bytes as well.
695 */
696 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
697 {
698 u32 mps = hs_ep->ep.maxpacket;
699 int dir_in = hs_ep->dir_in;
700 u32 desc_size = 0;
701
702 if (!hs_ep->index && !dir_in) {
703 desc_size = mps;
704 *mask = DEV_DMA_NBYTES_MASK;
705 } else if (hs_ep->isochronous) {
706 if (dir_in) {
707 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
708 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
709 } else {
710 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
711 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
712 }
713 } else {
714 desc_size = DEV_DMA_NBYTES_LIMIT;
715 *mask = DEV_DMA_NBYTES_MASK;
716
717 /* Round down desc_size to be mps multiple */
718 desc_size -= desc_size % mps;
719 }
720
721 return desc_size;
722 }
723
724 /*
725 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
726 * @hs_ep: The endpoint
727 * @dma_buff: DMA address to use
728 * @len: Length of the transfer
729 *
730 * This function will iterate over descriptor chain and fill its entries
731 * with corresponding information based on transfer data.
732 */
733 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
734 dma_addr_t dma_buff,
735 unsigned int len)
736 {
737 struct dwc2_hsotg *hsotg = hs_ep->parent;
738 int dir_in = hs_ep->dir_in;
739 struct dwc2_dma_desc *desc = hs_ep->desc_list;
740 u32 mps = hs_ep->ep.maxpacket;
741 u32 maxsize = 0;
742 u32 offset = 0;
743 u32 mask = 0;
744 int i;
745
746 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
747
748 hs_ep->desc_count = (len / maxsize) +
749 ((len % maxsize) ? 1 : 0);
750 if (len == 0)
751 hs_ep->desc_count = 1;
752
753 for (i = 0; i < hs_ep->desc_count; ++i) {
754 desc->status = 0;
755 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
756 << DEV_DMA_BUFF_STS_SHIFT);
757
758 if (len > maxsize) {
759 if (!hs_ep->index && !dir_in)
760 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
761
762 desc->status |= (maxsize <<
763 DEV_DMA_NBYTES_SHIFT & mask);
764 desc->buf = dma_buff + offset;
765
766 len -= maxsize;
767 offset += maxsize;
768 } else {
769 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
770
771 if (dir_in)
772 desc->status |= (len % mps) ? DEV_DMA_SHORT :
773 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
774 if (len > maxsize)
775 dev_err(hsotg->dev, "wrong len %d\n", len);
776
777 desc->status |=
778 len << DEV_DMA_NBYTES_SHIFT & mask;
779 desc->buf = dma_buff + offset;
780 }
781
782 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
783 desc->status |= (DEV_DMA_BUFF_STS_HREADY
784 << DEV_DMA_BUFF_STS_SHIFT);
785 desc++;
786 }
787 }
788
789 /*
790 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
791 * @hs_ep: The isochronous endpoint.
792 * @dma_buff: usb requests dma buffer.
793 * @len: usb request transfer length.
794 *
795 * Finds out index of first free entry either in the bottom or up half of
796 * descriptor chain depend on which is under SW control and not processed
797 * by HW. Then fills that descriptor with the data of the arrived usb request,
798 * frame info, sets Last and IOC bits increments next_desc. If filled
799 * descriptor is not the first one, removes L bit from the previous descriptor
800 * status.
801 */
802 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
803 dma_addr_t dma_buff, unsigned int len)
804 {
805 struct dwc2_dma_desc *desc;
806 struct dwc2_hsotg *hsotg = hs_ep->parent;
807 u32 index;
808 u32 maxsize = 0;
809 u32 mask = 0;
810
811 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
812 if (len > maxsize) {
813 dev_err(hsotg->dev, "wrong len %d\n", len);
814 return -EINVAL;
815 }
816
817 /*
818 * If SW has already filled half of chain, then return and wait for
819 * the other chain to be processed by HW.
820 */
821 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
822 return -EBUSY;
823
824 /* Increment frame number by interval for IN */
825 if (hs_ep->dir_in)
826 dwc2_gadget_incr_frame_num(hs_ep);
827
828 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
829 hs_ep->next_desc;
830
831 /* Sanity check of calculated index */
832 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
833 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
834 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
835 return -EINVAL;
836 }
837
838 desc = &hs_ep->desc_list[index];
839
840 /* Clear L bit of previous desc if more than one entries in the chain */
841 if (hs_ep->next_desc)
842 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
843
844 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
845 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
846
847 desc->status = 0;
848 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
849
850 desc->buf = dma_buff;
851 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
852 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
853
854 if (hs_ep->dir_in) {
855 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
856 DEV_DMA_ISOC_PID_MASK) |
857 ((len % hs_ep->ep.maxpacket) ?
858 DEV_DMA_SHORT : 0) |
859 ((hs_ep->target_frame <<
860 DEV_DMA_ISOC_FRNUM_SHIFT) &
861 DEV_DMA_ISOC_FRNUM_MASK);
862 }
863
864 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
865 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
866
867 /* Update index of last configured entry in the chain */
868 hs_ep->next_desc++;
869
870 return 0;
871 }
872
873 /*
874 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
875 * @hs_ep: The isochronous endpoint.
876 *
877 * Prepare first descriptor chain for isochronous endpoints. Afterwards
878 * write DMA address to HW and enable the endpoint.
879 *
880 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
881 * to prepare second descriptor chain while first one is being processed by HW.
882 */
883 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
884 {
885 struct dwc2_hsotg *hsotg = hs_ep->parent;
886 struct dwc2_hsotg_req *hs_req, *treq;
887 int index = hs_ep->index;
888 int ret;
889 u32 dma_reg;
890 u32 depctl;
891 u32 ctrl;
892
893 if (list_empty(&hs_ep->queue)) {
894 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
895 return;
896 }
897
898 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
899 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
900 hs_req->req.length);
901 if (ret) {
902 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
903 break;
904 }
905 }
906
907 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
908 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
909
910 /* write descriptor chain address to control register */
911 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
912
913 ctrl = dwc2_readl(hsotg->regs + depctl);
914 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
915 dwc2_writel(ctrl, hsotg->regs + depctl);
916
917 /* Switch ISOC descriptor chain number being processed by SW*/
918 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
919 hs_ep->next_desc = 0;
920 }
921
922 /**
923 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
924 * @hsotg: The controller state.
925 * @hs_ep: The endpoint to process a request for
926 * @hs_req: The request to start.
927 * @continuing: True if we are doing more for the current request.
928 *
929 * Start the given request running by setting the endpoint registers
930 * appropriately, and writing any data to the FIFOs.
931 */
932 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
933 struct dwc2_hsotg_ep *hs_ep,
934 struct dwc2_hsotg_req *hs_req,
935 bool continuing)
936 {
937 struct usb_request *ureq = &hs_req->req;
938 int index = hs_ep->index;
939 int dir_in = hs_ep->dir_in;
940 u32 epctrl_reg;
941 u32 epsize_reg;
942 u32 epsize;
943 u32 ctrl;
944 unsigned int length;
945 unsigned int packets;
946 unsigned int maxreq;
947 unsigned int dma_reg;
948
949 if (index != 0) {
950 if (hs_ep->req && !continuing) {
951 dev_err(hsotg->dev, "%s: active request\n", __func__);
952 WARN_ON(1);
953 return;
954 } else if (hs_ep->req != hs_req && continuing) {
955 dev_err(hsotg->dev,
956 "%s: continue different req\n", __func__);
957 WARN_ON(1);
958 return;
959 }
960 }
961
962 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
963 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
964 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
965
966 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
967 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
968 hs_ep->dir_in ? "in" : "out");
969
970 /* If endpoint is stalled, we will restart request later */
971 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
972
973 if (index && ctrl & DXEPCTL_STALL) {
974 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
975 return;
976 }
977
978 length = ureq->length - ureq->actual;
979 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
980 ureq->length, ureq->actual);
981
982 if (!using_desc_dma(hsotg))
983 maxreq = get_ep_limit(hs_ep);
984 else
985 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
986
987 if (length > maxreq) {
988 int round = maxreq % hs_ep->ep.maxpacket;
989
990 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
991 __func__, length, maxreq, round);
992
993 /* round down to multiple of packets */
994 if (round)
995 maxreq -= round;
996
997 length = maxreq;
998 }
999
1000 if (length)
1001 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1002 else
1003 packets = 1; /* send one packet if length is zero. */
1004
1005 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1006 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1007 return;
1008 }
1009
1010 if (dir_in && index != 0)
1011 if (hs_ep->isochronous)
1012 epsize = DXEPTSIZ_MC(packets);
1013 else
1014 epsize = DXEPTSIZ_MC(1);
1015 else
1016 epsize = 0;
1017
1018 /*
1019 * zero length packet should be programmed on its own and should not
1020 * be counted in DIEPTSIZ.PktCnt with other packets.
1021 */
1022 if (dir_in && ureq->zero && !continuing) {
1023 /* Test if zlp is actually required. */
1024 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1025 !(ureq->length % hs_ep->ep.maxpacket))
1026 hs_ep->send_zlp = 1;
1027 }
1028
1029 epsize |= DXEPTSIZ_PKTCNT(packets);
1030 epsize |= DXEPTSIZ_XFERSIZE(length);
1031
1032 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1033 __func__, packets, length, ureq->length, epsize, epsize_reg);
1034
1035 /* store the request as the current one we're doing */
1036 hs_ep->req = hs_req;
1037
1038 if (using_desc_dma(hsotg)) {
1039 u32 offset = 0;
1040 u32 mps = hs_ep->ep.maxpacket;
1041
1042 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1043 if (!dir_in) {
1044 if (!index)
1045 length = mps;
1046 else if (length % mps)
1047 length += (mps - (length % mps));
1048 }
1049
1050 /*
1051 * If more data to send, adjust DMA for EP0 out data stage.
1052 * ureq->dma stays unchanged, hence increment it by already
1053 * passed passed data count before starting new transaction.
1054 */
1055 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1056 continuing)
1057 offset = ureq->actual;
1058
1059 /* Fill DDMA chain entries */
1060 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1061 length);
1062
1063 /* write descriptor chain address to control register */
1064 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1065
1066 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1067 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1068 } else {
1069 /* write size / packets */
1070 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1071
1072 if (using_dma(hsotg) && !continuing && (length != 0)) {
1073 /*
1074 * write DMA address to control register, buffer
1075 * already synced by dwc2_hsotg_ep_queue().
1076 */
1077
1078 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1079
1080 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1081 __func__, &ureq->dma, dma_reg);
1082 }
1083 }
1084
1085 if (hs_ep->isochronous && hs_ep->interval == 1) {
1086 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1087 dwc2_gadget_incr_frame_num(hs_ep);
1088
1089 if (hs_ep->target_frame & 0x1)
1090 ctrl |= DXEPCTL_SETODDFR;
1091 else
1092 ctrl |= DXEPCTL_SETEVENFR;
1093 }
1094
1095 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1096
1097 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1098
1099 /* For Setup request do not clear NAK */
1100 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1101 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1102
1103 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1104 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1105
1106 /*
1107 * set these, it seems that DMA support increments past the end
1108 * of the packet buffer so we need to calculate the length from
1109 * this information.
1110 */
1111 hs_ep->size_loaded = length;
1112 hs_ep->last_load = ureq->actual;
1113
1114 if (dir_in && !using_dma(hsotg)) {
1115 /* set these anyway, we may need them for non-periodic in */
1116 hs_ep->fifo_load = 0;
1117
1118 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1119 }
1120
1121 /*
1122 * Note, trying to clear the NAK here causes problems with transmit
1123 * on the S3C6400 ending up with the TXFIFO becoming full.
1124 */
1125
1126 /* check ep is enabled */
1127 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1128 dev_dbg(hsotg->dev,
1129 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1130 index, dwc2_readl(hsotg->regs + epctrl_reg));
1131
1132 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1133 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1134
1135 /* enable ep interrupts */
1136 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1137 }
1138
1139 /**
1140 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1141 * @hsotg: The device state.
1142 * @hs_ep: The endpoint the request is on.
1143 * @req: The request being processed.
1144 *
1145 * We've been asked to queue a request, so ensure that the memory buffer
1146 * is correctly setup for DMA. If we've been passed an extant DMA address
1147 * then ensure the buffer has been synced to memory. If our buffer has no
1148 * DMA memory, then we map the memory and mark our request to allow us to
1149 * cleanup on completion.
1150 */
1151 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1152 struct dwc2_hsotg_ep *hs_ep,
1153 struct usb_request *req)
1154 {
1155 int ret;
1156
1157 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1158 if (ret)
1159 goto dma_error;
1160
1161 return 0;
1162
1163 dma_error:
1164 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1165 __func__, req->buf, req->length);
1166
1167 return -EIO;
1168 }
1169
1170 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1171 struct dwc2_hsotg_ep *hs_ep,
1172 struct dwc2_hsotg_req *hs_req)
1173 {
1174 void *req_buf = hs_req->req.buf;
1175
1176 /* If dma is not being used or buffer is aligned */
1177 if (!using_dma(hsotg) || !((long)req_buf & 3))
1178 return 0;
1179
1180 WARN_ON(hs_req->saved_req_buf);
1181
1182 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1183 hs_ep->ep.name, req_buf, hs_req->req.length);
1184
1185 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1186 if (!hs_req->req.buf) {
1187 hs_req->req.buf = req_buf;
1188 dev_err(hsotg->dev,
1189 "%s: unable to allocate memory for bounce buffer\n",
1190 __func__);
1191 return -ENOMEM;
1192 }
1193
1194 /* Save actual buffer */
1195 hs_req->saved_req_buf = req_buf;
1196
1197 if (hs_ep->dir_in)
1198 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1199 return 0;
1200 }
1201
1202 static void
1203 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1204 struct dwc2_hsotg_ep *hs_ep,
1205 struct dwc2_hsotg_req *hs_req)
1206 {
1207 /* If dma is not being used or buffer was aligned */
1208 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1209 return;
1210
1211 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1212 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1213
1214 /* Copy data from bounce buffer on successful out transfer */
1215 if (!hs_ep->dir_in && !hs_req->req.status)
1216 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1217 hs_req->req.actual);
1218
1219 /* Free bounce buffer */
1220 kfree(hs_req->req.buf);
1221
1222 hs_req->req.buf = hs_req->saved_req_buf;
1223 hs_req->saved_req_buf = NULL;
1224 }
1225
1226 /**
1227 * dwc2_gadget_target_frame_elapsed - Checks target frame
1228 * @hs_ep: The driver endpoint to check
1229 *
1230 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1231 * corresponding transfer.
1232 */
1233 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1234 {
1235 struct dwc2_hsotg *hsotg = hs_ep->parent;
1236 u32 target_frame = hs_ep->target_frame;
1237 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1238 bool frame_overrun = hs_ep->frame_overrun;
1239
1240 if (!frame_overrun && current_frame >= target_frame)
1241 return true;
1242
1243 if (frame_overrun && current_frame >= target_frame &&
1244 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1245 return true;
1246
1247 return false;
1248 }
1249
1250 /*
1251 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1252 * @hsotg: The driver state
1253 * @hs_ep: the ep descriptor chain is for
1254 *
1255 * Called to update EP0 structure's pointers depend on stage of
1256 * control transfer.
1257 */
1258 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1259 struct dwc2_hsotg_ep *hs_ep)
1260 {
1261 switch (hsotg->ep0_state) {
1262 case DWC2_EP0_SETUP:
1263 case DWC2_EP0_STATUS_OUT:
1264 hs_ep->desc_list = hsotg->setup_desc[0];
1265 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1266 break;
1267 case DWC2_EP0_DATA_IN:
1268 case DWC2_EP0_STATUS_IN:
1269 hs_ep->desc_list = hsotg->ctrl_in_desc;
1270 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1271 break;
1272 case DWC2_EP0_DATA_OUT:
1273 hs_ep->desc_list = hsotg->ctrl_out_desc;
1274 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1275 break;
1276 default:
1277 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1278 hsotg->ep0_state);
1279 return -EINVAL;
1280 }
1281
1282 return 0;
1283 }
1284
1285 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1286 gfp_t gfp_flags)
1287 {
1288 struct dwc2_hsotg_req *hs_req = our_req(req);
1289 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1290 struct dwc2_hsotg *hs = hs_ep->parent;
1291 bool first;
1292 int ret;
1293
1294 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1295 ep->name, req, req->length, req->buf, req->no_interrupt,
1296 req->zero, req->short_not_ok);
1297
1298 /* Prevent new request submission when controller is suspended */
1299 if (hs->lx_state == DWC2_L2) {
1300 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1301 __func__);
1302 return -EAGAIN;
1303 }
1304
1305 /* initialise status of the request */
1306 INIT_LIST_HEAD(&hs_req->queue);
1307 req->actual = 0;
1308 req->status = -EINPROGRESS;
1309
1310 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1311 if (ret)
1312 return ret;
1313
1314 /* if we're using DMA, sync the buffers as necessary */
1315 if (using_dma(hs)) {
1316 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1317 if (ret)
1318 return ret;
1319 }
1320 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1321 if (using_desc_dma(hs) && !hs_ep->index) {
1322 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1323 if (ret)
1324 return ret;
1325 }
1326
1327 first = list_empty(&hs_ep->queue);
1328 list_add_tail(&hs_req->queue, &hs_ep->queue);
1329
1330 /*
1331 * Handle DDMA isochronous transfers separately - just add new entry
1332 * to the half of descriptor chain that is not processed by HW.
1333 * Transfer will be started once SW gets either one of NAK or
1334 * OutTknEpDis interrupts.
1335 */
1336 if (using_desc_dma(hs) && hs_ep->isochronous &&
1337 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1338 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1339 hs_req->req.length);
1340 if (ret)
1341 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1342
1343 return 0;
1344 }
1345
1346 if (first) {
1347 if (!hs_ep->isochronous) {
1348 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1349 return 0;
1350 }
1351
1352 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1353 dwc2_gadget_incr_frame_num(hs_ep);
1354
1355 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1356 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1357 }
1358 return 0;
1359 }
1360
1361 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1362 gfp_t gfp_flags)
1363 {
1364 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1365 struct dwc2_hsotg *hs = hs_ep->parent;
1366 unsigned long flags = 0;
1367 int ret = 0;
1368
1369 spin_lock_irqsave(&hs->lock, flags);
1370 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1371 spin_unlock_irqrestore(&hs->lock, flags);
1372
1373 return ret;
1374 }
1375
1376 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1377 struct usb_request *req)
1378 {
1379 struct dwc2_hsotg_req *hs_req = our_req(req);
1380
1381 kfree(hs_req);
1382 }
1383
1384 /**
1385 * dwc2_hsotg_complete_oursetup - setup completion callback
1386 * @ep: The endpoint the request was on.
1387 * @req: The request completed.
1388 *
1389 * Called on completion of any requests the driver itself
1390 * submitted that need cleaning up.
1391 */
1392 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1393 struct usb_request *req)
1394 {
1395 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1396 struct dwc2_hsotg *hsotg = hs_ep->parent;
1397
1398 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1399
1400 dwc2_hsotg_ep_free_request(ep, req);
1401 }
1402
1403 /**
1404 * ep_from_windex - convert control wIndex value to endpoint
1405 * @hsotg: The driver state.
1406 * @windex: The control request wIndex field (in host order).
1407 *
1408 * Convert the given wIndex into a pointer to an driver endpoint
1409 * structure, or return NULL if it is not a valid endpoint.
1410 */
1411 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1412 u32 windex)
1413 {
1414 struct dwc2_hsotg_ep *ep;
1415 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1416 int idx = windex & 0x7F;
1417
1418 if (windex >= 0x100)
1419 return NULL;
1420
1421 if (idx > hsotg->num_of_eps)
1422 return NULL;
1423
1424 ep = index_to_ep(hsotg, idx, dir);
1425
1426 if (idx && ep->dir_in != dir)
1427 return NULL;
1428
1429 return ep;
1430 }
1431
1432 /**
1433 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1434 * @hsotg: The driver state.
1435 * @testmode: requested usb test mode
1436 * Enable usb Test Mode requested by the Host.
1437 */
1438 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1439 {
1440 int dctl = dwc2_readl(hsotg->regs + DCTL);
1441
1442 dctl &= ~DCTL_TSTCTL_MASK;
1443 switch (testmode) {
1444 case TEST_J:
1445 case TEST_K:
1446 case TEST_SE0_NAK:
1447 case TEST_PACKET:
1448 case TEST_FORCE_EN:
1449 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1450 break;
1451 default:
1452 return -EINVAL;
1453 }
1454 dwc2_writel(dctl, hsotg->regs + DCTL);
1455 return 0;
1456 }
1457
1458 /**
1459 * dwc2_hsotg_send_reply - send reply to control request
1460 * @hsotg: The device state
1461 * @ep: Endpoint 0
1462 * @buff: Buffer for request
1463 * @length: Length of reply.
1464 *
1465 * Create a request and queue it on the given endpoint. This is useful as
1466 * an internal method of sending replies to certain control requests, etc.
1467 */
1468 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1469 struct dwc2_hsotg_ep *ep,
1470 void *buff,
1471 int length)
1472 {
1473 struct usb_request *req;
1474 int ret;
1475
1476 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1477
1478 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1479 hsotg->ep0_reply = req;
1480 if (!req) {
1481 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1482 return -ENOMEM;
1483 }
1484
1485 req->buf = hsotg->ep0_buff;
1486 req->length = length;
1487 /*
1488 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1489 * STATUS stage.
1490 */
1491 req->zero = 0;
1492 req->complete = dwc2_hsotg_complete_oursetup;
1493
1494 if (length)
1495 memcpy(req->buf, buff, length);
1496
1497 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1498 if (ret) {
1499 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1500 return ret;
1501 }
1502
1503 return 0;
1504 }
1505
1506 /**
1507 * dwc2_hsotg_process_req_status - process request GET_STATUS
1508 * @hsotg: The device state
1509 * @ctrl: USB control request
1510 */
1511 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1512 struct usb_ctrlrequest *ctrl)
1513 {
1514 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1515 struct dwc2_hsotg_ep *ep;
1516 __le16 reply;
1517 int ret;
1518
1519 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1520
1521 if (!ep0->dir_in) {
1522 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1523 return -EINVAL;
1524 }
1525
1526 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1527 case USB_RECIP_DEVICE:
1528 /*
1529 * bit 0 => self powered
1530 * bit 1 => remote wakeup
1531 */
1532 reply = cpu_to_le16(0);
1533 break;
1534
1535 case USB_RECIP_INTERFACE:
1536 /* currently, the data result should be zero */
1537 reply = cpu_to_le16(0);
1538 break;
1539
1540 case USB_RECIP_ENDPOINT:
1541 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1542 if (!ep)
1543 return -ENOENT;
1544
1545 reply = cpu_to_le16(ep->halted ? 1 : 0);
1546 break;
1547
1548 default:
1549 return 0;
1550 }
1551
1552 if (le16_to_cpu(ctrl->wLength) != 2)
1553 return -EINVAL;
1554
1555 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1556 if (ret) {
1557 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1558 return ret;
1559 }
1560
1561 return 1;
1562 }
1563
1564 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1565
1566 /**
1567 * get_ep_head - return the first request on the endpoint
1568 * @hs_ep: The controller endpoint to get
1569 *
1570 * Get the first request on the endpoint.
1571 */
1572 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1573 {
1574 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1575 queue);
1576 }
1577
1578 /**
1579 * dwc2_gadget_start_next_request - Starts next request from ep queue
1580 * @hs_ep: Endpoint structure
1581 *
1582 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1583 * in its handler. Hence we need to unmask it here to be able to do
1584 * resynchronization.
1585 */
1586 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1587 {
1588 u32 mask;
1589 struct dwc2_hsotg *hsotg = hs_ep->parent;
1590 int dir_in = hs_ep->dir_in;
1591 struct dwc2_hsotg_req *hs_req;
1592 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1593
1594 if (!list_empty(&hs_ep->queue)) {
1595 hs_req = get_ep_head(hs_ep);
1596 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1597 return;
1598 }
1599 if (!hs_ep->isochronous)
1600 return;
1601
1602 if (dir_in) {
1603 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1604 __func__);
1605 } else {
1606 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1607 __func__);
1608 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1609 mask |= DOEPMSK_OUTTKNEPDISMSK;
1610 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1611 }
1612 }
1613
1614 /**
1615 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1616 * @hsotg: The device state
1617 * @ctrl: USB control request
1618 */
1619 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1620 struct usb_ctrlrequest *ctrl)
1621 {
1622 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1623 struct dwc2_hsotg_req *hs_req;
1624 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1625 struct dwc2_hsotg_ep *ep;
1626 int ret;
1627 bool halted;
1628 u32 recip;
1629 u32 wValue;
1630 u32 wIndex;
1631
1632 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1633 __func__, set ? "SET" : "CLEAR");
1634
1635 wValue = le16_to_cpu(ctrl->wValue);
1636 wIndex = le16_to_cpu(ctrl->wIndex);
1637 recip = ctrl->bRequestType & USB_RECIP_MASK;
1638
1639 switch (recip) {
1640 case USB_RECIP_DEVICE:
1641 switch (wValue) {
1642 case USB_DEVICE_TEST_MODE:
1643 if ((wIndex & 0xff) != 0)
1644 return -EINVAL;
1645 if (!set)
1646 return -EINVAL;
1647
1648 hsotg->test_mode = wIndex >> 8;
1649 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1650 if (ret) {
1651 dev_err(hsotg->dev,
1652 "%s: failed to send reply\n", __func__);
1653 return ret;
1654 }
1655 break;
1656 default:
1657 return -ENOENT;
1658 }
1659 break;
1660
1661 case USB_RECIP_ENDPOINT:
1662 ep = ep_from_windex(hsotg, wIndex);
1663 if (!ep) {
1664 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1665 __func__, wIndex);
1666 return -ENOENT;
1667 }
1668
1669 switch (wValue) {
1670 case USB_ENDPOINT_HALT:
1671 halted = ep->halted;
1672
1673 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1674
1675 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1676 if (ret) {
1677 dev_err(hsotg->dev,
1678 "%s: failed to send reply\n", __func__);
1679 return ret;
1680 }
1681
1682 /*
1683 * we have to complete all requests for ep if it was
1684 * halted, and the halt was cleared by CLEAR_FEATURE
1685 */
1686
1687 if (!set && halted) {
1688 /*
1689 * If we have request in progress,
1690 * then complete it
1691 */
1692 if (ep->req) {
1693 hs_req = ep->req;
1694 ep->req = NULL;
1695 list_del_init(&hs_req->queue);
1696 if (hs_req->req.complete) {
1697 spin_unlock(&hsotg->lock);
1698 usb_gadget_giveback_request(
1699 &ep->ep, &hs_req->req);
1700 spin_lock(&hsotg->lock);
1701 }
1702 }
1703
1704 /* If we have pending request, then start it */
1705 if (!ep->req)
1706 dwc2_gadget_start_next_request(ep);
1707 }
1708
1709 break;
1710
1711 default:
1712 return -ENOENT;
1713 }
1714 break;
1715 default:
1716 return -ENOENT;
1717 }
1718 return 1;
1719 }
1720
1721 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1722
1723 /**
1724 * dwc2_hsotg_stall_ep0 - stall ep0
1725 * @hsotg: The device state
1726 *
1727 * Set stall for ep0 as response for setup request.
1728 */
1729 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1730 {
1731 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1732 u32 reg;
1733 u32 ctrl;
1734
1735 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1736 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1737
1738 /*
1739 * DxEPCTL_Stall will be cleared by EP once it has
1740 * taken effect, so no need to clear later.
1741 */
1742
1743 ctrl = dwc2_readl(hsotg->regs + reg);
1744 ctrl |= DXEPCTL_STALL;
1745 ctrl |= DXEPCTL_CNAK;
1746 dwc2_writel(ctrl, hsotg->regs + reg);
1747
1748 dev_dbg(hsotg->dev,
1749 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1750 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1751
1752 /*
1753 * complete won't be called, so we enqueue
1754 * setup request here
1755 */
1756 dwc2_hsotg_enqueue_setup(hsotg);
1757 }
1758
1759 /**
1760 * dwc2_hsotg_process_control - process a control request
1761 * @hsotg: The device state
1762 * @ctrl: The control request received
1763 *
1764 * The controller has received the SETUP phase of a control request, and
1765 * needs to work out what to do next (and whether to pass it on to the
1766 * gadget driver).
1767 */
1768 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1769 struct usb_ctrlrequest *ctrl)
1770 {
1771 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1772 int ret = 0;
1773 u32 dcfg;
1774
1775 dev_dbg(hsotg->dev,
1776 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1777 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1778 ctrl->wIndex, ctrl->wLength);
1779
1780 if (ctrl->wLength == 0) {
1781 ep0->dir_in = 1;
1782 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1783 } else if (ctrl->bRequestType & USB_DIR_IN) {
1784 ep0->dir_in = 1;
1785 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1786 } else {
1787 ep0->dir_in = 0;
1788 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1789 }
1790
1791 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1792 switch (ctrl->bRequest) {
1793 case USB_REQ_SET_ADDRESS:
1794 hsotg->connected = 1;
1795 dcfg = dwc2_readl(hsotg->regs + DCFG);
1796 dcfg &= ~DCFG_DEVADDR_MASK;
1797 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1798 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1799 dwc2_writel(dcfg, hsotg->regs + DCFG);
1800
1801 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1802
1803 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 return;
1805
1806 case USB_REQ_GET_STATUS:
1807 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1808 break;
1809
1810 case USB_REQ_CLEAR_FEATURE:
1811 case USB_REQ_SET_FEATURE:
1812 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1813 break;
1814 }
1815 }
1816
1817 /* as a fallback, try delivering it to the driver to deal with */
1818
1819 if (ret == 0 && hsotg->driver) {
1820 spin_unlock(&hsotg->lock);
1821 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1822 spin_lock(&hsotg->lock);
1823 if (ret < 0)
1824 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1825 }
1826
1827 /*
1828 * the request is either unhandlable, or is not formatted correctly
1829 * so respond with a STALL for the status stage to indicate failure.
1830 */
1831
1832 if (ret < 0)
1833 dwc2_hsotg_stall_ep0(hsotg);
1834 }
1835
1836 /**
1837 * dwc2_hsotg_complete_setup - completion of a setup transfer
1838 * @ep: The endpoint the request was on.
1839 * @req: The request completed.
1840 *
1841 * Called on completion of any requests the driver itself submitted for
1842 * EP0 setup packets
1843 */
1844 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1845 struct usb_request *req)
1846 {
1847 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1848 struct dwc2_hsotg *hsotg = hs_ep->parent;
1849
1850 if (req->status < 0) {
1851 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1852 return;
1853 }
1854
1855 spin_lock(&hsotg->lock);
1856 if (req->actual == 0)
1857 dwc2_hsotg_enqueue_setup(hsotg);
1858 else
1859 dwc2_hsotg_process_control(hsotg, req->buf);
1860 spin_unlock(&hsotg->lock);
1861 }
1862
1863 /**
1864 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1865 * @hsotg: The device state.
1866 *
1867 * Enqueue a request on EP0 if necessary to received any SETUP packets
1868 * received from the host.
1869 */
1870 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1871 {
1872 struct usb_request *req = hsotg->ctrl_req;
1873 struct dwc2_hsotg_req *hs_req = our_req(req);
1874 int ret;
1875
1876 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1877
1878 req->zero = 0;
1879 req->length = 8;
1880 req->buf = hsotg->ctrl_buff;
1881 req->complete = dwc2_hsotg_complete_setup;
1882
1883 if (!list_empty(&hs_req->queue)) {
1884 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1885 return;
1886 }
1887
1888 hsotg->eps_out[0]->dir_in = 0;
1889 hsotg->eps_out[0]->send_zlp = 0;
1890 hsotg->ep0_state = DWC2_EP0_SETUP;
1891
1892 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1893 if (ret < 0) {
1894 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1895 /*
1896 * Don't think there's much we can do other than watch the
1897 * driver fail.
1898 */
1899 }
1900 }
1901
1902 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1903 struct dwc2_hsotg_ep *hs_ep)
1904 {
1905 u32 ctrl;
1906 u8 index = hs_ep->index;
1907 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1908 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1909
1910 if (hs_ep->dir_in)
1911 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1912 index);
1913 else
1914 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1915 index);
1916 if (using_desc_dma(hsotg)) {
1917 /* Not specific buffer needed for ep0 ZLP */
1918 dma_addr_t dma = hs_ep->desc_list_dma;
1919
1920 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1921 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1922 } else {
1923 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1924 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1925 epsiz_reg);
1926 }
1927
1928 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1929 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1930 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1931 ctrl |= DXEPCTL_USBACTEP;
1932 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1933 }
1934
1935 /**
1936 * dwc2_hsotg_complete_request - complete a request given to us
1937 * @hsotg: The device state.
1938 * @hs_ep: The endpoint the request was on.
1939 * @hs_req: The request to complete.
1940 * @result: The result code (0 => Ok, otherwise errno)
1941 *
1942 * The given request has finished, so call the necessary completion
1943 * if it has one and then look to see if we can start a new request
1944 * on the endpoint.
1945 *
1946 * Note, expects the ep to already be locked as appropriate.
1947 */
1948 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1949 struct dwc2_hsotg_ep *hs_ep,
1950 struct dwc2_hsotg_req *hs_req,
1951 int result)
1952 {
1953 if (!hs_req) {
1954 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1955 return;
1956 }
1957
1958 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1959 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1960
1961 /*
1962 * only replace the status if we've not already set an error
1963 * from a previous transaction
1964 */
1965
1966 if (hs_req->req.status == -EINPROGRESS)
1967 hs_req->req.status = result;
1968
1969 if (using_dma(hsotg))
1970 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1971
1972 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1973
1974 hs_ep->req = NULL;
1975 list_del_init(&hs_req->queue);
1976
1977 /*
1978 * call the complete request with the locks off, just in case the
1979 * request tries to queue more work for this endpoint.
1980 */
1981
1982 if (hs_req->req.complete) {
1983 spin_unlock(&hsotg->lock);
1984 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1985 spin_lock(&hsotg->lock);
1986 }
1987
1988 /* In DDMA don't need to proceed to starting of next ISOC request */
1989 if (using_desc_dma(hsotg) && hs_ep->isochronous)
1990 return;
1991
1992 /*
1993 * Look to see if there is anything else to do. Note, the completion
1994 * of the previous request may have caused a new request to be started
1995 * so be careful when doing this.
1996 */
1997
1998 if (!hs_ep->req && result >= 0)
1999 dwc2_gadget_start_next_request(hs_ep);
2000 }
2001
2002 /*
2003 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2004 * @hs_ep: The endpoint the request was on.
2005 *
2006 * Get first request from the ep queue, determine descriptor on which complete
2007 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2008 * chain is currently in use by HW, adjusts dma_address and calculates index
2009 * of completed descriptor based on the value of DEPDMA register. Update actual
2010 * length of request, giveback to gadget.
2011 */
2012 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2013 {
2014 struct dwc2_hsotg *hsotg = hs_ep->parent;
2015 struct dwc2_hsotg_req *hs_req;
2016 struct usb_request *ureq;
2017 int index;
2018 dma_addr_t dma_addr;
2019 u32 dma_reg;
2020 u32 depdma;
2021 u32 desc_sts;
2022 u32 mask;
2023
2024 hs_req = get_ep_head(hs_ep);
2025 if (!hs_req) {
2026 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2027 return;
2028 }
2029 ureq = &hs_req->req;
2030
2031 dma_addr = hs_ep->desc_list_dma;
2032
2033 /*
2034 * If lower half of descriptor chain is currently use by SW,
2035 * that means higher half is being processed by HW, so shift
2036 * DMA address to higher half of descriptor chain.
2037 */
2038 if (!hs_ep->isoc_chain_num)
2039 dma_addr += sizeof(struct dwc2_dma_desc) *
2040 (MAX_DMA_DESC_NUM_GENERIC / 2);
2041
2042 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2043 depdma = dwc2_readl(hsotg->regs + dma_reg);
2044
2045 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2046 desc_sts = hs_ep->desc_list[index].status;
2047
2048 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2049 DEV_DMA_ISOC_RX_NBYTES_MASK;
2050 ureq->actual = ureq->length -
2051 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2052
2053 /* Adjust actual length for ISOC Out if length is not align of 4 */
2054 if (!hs_ep->dir_in && ureq->length & 0x3)
2055 ureq->actual += 4 - (ureq->length & 0x3);
2056
2057 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2058 }
2059
2060 /*
2061 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2062 * @hs_ep: The isochronous endpoint to be re-enabled.
2063 *
2064 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2065 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2066 * was under SW control till HW was busy and restart the endpoint if needed.
2067 */
2068 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2069 {
2070 struct dwc2_hsotg *hsotg = hs_ep->parent;
2071 u32 depctl;
2072 u32 dma_reg;
2073 u32 ctrl;
2074 u32 dma_addr = hs_ep->desc_list_dma;
2075 unsigned char index = hs_ep->index;
2076
2077 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2078 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2079
2080 ctrl = dwc2_readl(hsotg->regs + depctl);
2081
2082 /*
2083 * EP was disabled if HW has processed last descriptor or BNA was set.
2084 * So restart ep if SW has prepared new descriptor chain in ep_queue
2085 * routine while HW was busy.
2086 */
2087 if (!(ctrl & DXEPCTL_EPENA)) {
2088 if (!hs_ep->next_desc) {
2089 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2090 __func__);
2091 return;
2092 }
2093
2094 dma_addr += sizeof(struct dwc2_dma_desc) *
2095 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2096 hs_ep->isoc_chain_num;
2097 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2098
2099 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2100 dwc2_writel(ctrl, hsotg->regs + depctl);
2101
2102 /* Switch ISOC descriptor chain number being processed by SW*/
2103 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2104 hs_ep->next_desc = 0;
2105
2106 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2107 __func__);
2108 }
2109 }
2110
2111 /**
2112 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2113 * @hsotg: The device state.
2114 * @ep_idx: The endpoint index for the data
2115 * @size: The size of data in the fifo, in bytes
2116 *
2117 * The FIFO status shows there is data to read from the FIFO for a given
2118 * endpoint, so sort out whether we need to read the data into a request
2119 * that has been made for that endpoint.
2120 */
2121 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2122 {
2123 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2124 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2125 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2126 int to_read;
2127 int max_req;
2128 int read_ptr;
2129
2130 if (!hs_req) {
2131 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2132 int ptr;
2133
2134 dev_dbg(hsotg->dev,
2135 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2136 __func__, size, ep_idx, epctl);
2137
2138 /* dump the data from the FIFO, we've nothing we can do */
2139 for (ptr = 0; ptr < size; ptr += 4)
2140 (void)dwc2_readl(fifo);
2141
2142 return;
2143 }
2144
2145 to_read = size;
2146 read_ptr = hs_req->req.actual;
2147 max_req = hs_req->req.length - read_ptr;
2148
2149 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2150 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2151
2152 if (to_read > max_req) {
2153 /*
2154 * more data appeared than we where willing
2155 * to deal with in this request.
2156 */
2157
2158 /* currently we don't deal this */
2159 WARN_ON_ONCE(1);
2160 }
2161
2162 hs_ep->total_data += to_read;
2163 hs_req->req.actual += to_read;
2164 to_read = DIV_ROUND_UP(to_read, 4);
2165
2166 /*
2167 * note, we might over-write the buffer end by 3 bytes depending on
2168 * alignment of the data.
2169 */
2170 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2171 }
2172
2173 /**
2174 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2175 * @hsotg: The device instance
2176 * @dir_in: If IN zlp
2177 *
2178 * Generate a zero-length IN packet request for terminating a SETUP
2179 * transaction.
2180 *
2181 * Note, since we don't write any data to the TxFIFO, then it is
2182 * currently believed that we do not need to wait for any space in
2183 * the TxFIFO.
2184 */
2185 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2186 {
2187 /* eps_out[0] is used in both directions */
2188 hsotg->eps_out[0]->dir_in = dir_in;
2189 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2190
2191 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2192 }
2193
2194 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2195 u32 epctl_reg)
2196 {
2197 u32 ctrl;
2198
2199 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2200 if (ctrl & DXEPCTL_EOFRNUM)
2201 ctrl |= DXEPCTL_SETEVENFR;
2202 else
2203 ctrl |= DXEPCTL_SETODDFR;
2204 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2205 }
2206
2207 /*
2208 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2209 * @hs_ep - The endpoint on which transfer went
2210 *
2211 * Iterate over endpoints descriptor chain and get info on bytes remained
2212 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2213 */
2214 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2215 {
2216 struct dwc2_hsotg *hsotg = hs_ep->parent;
2217 unsigned int bytes_rem = 0;
2218 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2219 int i;
2220 u32 status;
2221
2222 if (!desc)
2223 return -EINVAL;
2224
2225 for (i = 0; i < hs_ep->desc_count; ++i) {
2226 status = desc->status;
2227 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2228
2229 if (status & DEV_DMA_STS_MASK)
2230 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2231 i, status & DEV_DMA_STS_MASK);
2232 }
2233
2234 return bytes_rem;
2235 }
2236
2237 /**
2238 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2239 * @hsotg: The device instance
2240 * @epnum: The endpoint received from
2241 *
2242 * The RXFIFO has delivered an OutDone event, which means that the data
2243 * transfer for an OUT endpoint has been completed, either by a short
2244 * packet or by the finish of a transfer.
2245 */
2246 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2247 {
2248 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2249 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2250 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2251 struct usb_request *req = &hs_req->req;
2252 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2253 int result = 0;
2254
2255 if (!hs_req) {
2256 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2257 return;
2258 }
2259
2260 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2261 dev_dbg(hsotg->dev, "zlp packet received\n");
2262 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2263 dwc2_hsotg_enqueue_setup(hsotg);
2264 return;
2265 }
2266
2267 if (using_desc_dma(hsotg))
2268 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2269
2270 if (using_dma(hsotg)) {
2271 unsigned int size_done;
2272
2273 /*
2274 * Calculate the size of the transfer by checking how much
2275 * is left in the endpoint size register and then working it
2276 * out from the amount we loaded for the transfer.
2277 *
2278 * We need to do this as DMA pointers are always 32bit aligned
2279 * so may overshoot/undershoot the transfer.
2280 */
2281
2282 size_done = hs_ep->size_loaded - size_left;
2283 size_done += hs_ep->last_load;
2284
2285 req->actual = size_done;
2286 }
2287
2288 /* if there is more request to do, schedule new transfer */
2289 if (req->actual < req->length && size_left == 0) {
2290 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2291 return;
2292 }
2293
2294 if (req->actual < req->length && req->short_not_ok) {
2295 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2296 __func__, req->actual, req->length);
2297
2298 /*
2299 * todo - what should we return here? there's no one else
2300 * even bothering to check the status.
2301 */
2302 }
2303
2304 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2305 if (!using_desc_dma(hsotg) && epnum == 0 &&
2306 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2307 /* Move to STATUS IN */
2308 dwc2_hsotg_ep0_zlp(hsotg, true);
2309 return;
2310 }
2311
2312 /*
2313 * Slave mode OUT transfers do not go through XferComplete so
2314 * adjust the ISOC parity here.
2315 */
2316 if (!using_dma(hsotg)) {
2317 if (hs_ep->isochronous && hs_ep->interval == 1)
2318 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2319 else if (hs_ep->isochronous && hs_ep->interval > 1)
2320 dwc2_gadget_incr_frame_num(hs_ep);
2321 }
2322
2323 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2324 }
2325
2326 /**
2327 * dwc2_hsotg_handle_rx - RX FIFO has data
2328 * @hsotg: The device instance
2329 *
2330 * The IRQ handler has detected that the RX FIFO has some data in it
2331 * that requires processing, so find out what is in there and do the
2332 * appropriate read.
2333 *
2334 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2335 * chunks, so if you have x packets received on an endpoint you'll get x
2336 * FIFO events delivered, each with a packet's worth of data in it.
2337 *
2338 * When using DMA, we should not be processing events from the RXFIFO
2339 * as the actual data should be sent to the memory directly and we turn
2340 * on the completion interrupts to get notifications of transfer completion.
2341 */
2342 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2343 {
2344 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2345 u32 epnum, status, size;
2346
2347 WARN_ON(using_dma(hsotg));
2348
2349 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2350 status = grxstsr & GRXSTS_PKTSTS_MASK;
2351
2352 size = grxstsr & GRXSTS_BYTECNT_MASK;
2353 size >>= GRXSTS_BYTECNT_SHIFT;
2354
2355 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2356 __func__, grxstsr, size, epnum);
2357
2358 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2359 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2360 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2361 break;
2362
2363 case GRXSTS_PKTSTS_OUTDONE:
2364 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2365 dwc2_hsotg_read_frameno(hsotg));
2366
2367 if (!using_dma(hsotg))
2368 dwc2_hsotg_handle_outdone(hsotg, epnum);
2369 break;
2370
2371 case GRXSTS_PKTSTS_SETUPDONE:
2372 dev_dbg(hsotg->dev,
2373 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2374 dwc2_hsotg_read_frameno(hsotg),
2375 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2376 /*
2377 * Call dwc2_hsotg_handle_outdone here if it was not called from
2378 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2379 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2380 */
2381 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2382 dwc2_hsotg_handle_outdone(hsotg, epnum);
2383 break;
2384
2385 case GRXSTS_PKTSTS_OUTRX:
2386 dwc2_hsotg_rx_data(hsotg, epnum, size);
2387 break;
2388
2389 case GRXSTS_PKTSTS_SETUPRX:
2390 dev_dbg(hsotg->dev,
2391 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2392 dwc2_hsotg_read_frameno(hsotg),
2393 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2394
2395 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2396
2397 dwc2_hsotg_rx_data(hsotg, epnum, size);
2398 break;
2399
2400 default:
2401 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2402 __func__, grxstsr);
2403
2404 dwc2_hsotg_dump(hsotg);
2405 break;
2406 }
2407 }
2408
2409 /**
2410 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2411 * @mps: The maximum packet size in bytes.
2412 */
2413 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2414 {
2415 switch (mps) {
2416 case 64:
2417 return D0EPCTL_MPS_64;
2418 case 32:
2419 return D0EPCTL_MPS_32;
2420 case 16:
2421 return D0EPCTL_MPS_16;
2422 case 8:
2423 return D0EPCTL_MPS_8;
2424 }
2425
2426 /* bad max packet size, warn and return invalid result */
2427 WARN_ON(1);
2428 return (u32)-1;
2429 }
2430
2431 /**
2432 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2433 * @hsotg: The driver state.
2434 * @ep: The index number of the endpoint
2435 * @mps: The maximum packet size in bytes
2436 * @mc: The multicount value
2437 *
2438 * Configure the maximum packet size for the given endpoint, updating
2439 * the hardware control registers to reflect this.
2440 */
2441 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2442 unsigned int ep, unsigned int mps,
2443 unsigned int mc, unsigned int dir_in)
2444 {
2445 struct dwc2_hsotg_ep *hs_ep;
2446 void __iomem *regs = hsotg->regs;
2447 u32 reg;
2448
2449 hs_ep = index_to_ep(hsotg, ep, dir_in);
2450 if (!hs_ep)
2451 return;
2452
2453 if (ep == 0) {
2454 u32 mps_bytes = mps;
2455
2456 /* EP0 is a special case */
2457 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2458 if (mps > 3)
2459 goto bad_mps;
2460 hs_ep->ep.maxpacket = mps_bytes;
2461 hs_ep->mc = 1;
2462 } else {
2463 if (mps > 1024)
2464 goto bad_mps;
2465 hs_ep->mc = mc;
2466 if (mc > 3)
2467 goto bad_mps;
2468 hs_ep->ep.maxpacket = mps;
2469 }
2470
2471 if (dir_in) {
2472 reg = dwc2_readl(regs + DIEPCTL(ep));
2473 reg &= ~DXEPCTL_MPS_MASK;
2474 reg |= mps;
2475 dwc2_writel(reg, regs + DIEPCTL(ep));
2476 } else {
2477 reg = dwc2_readl(regs + DOEPCTL(ep));
2478 reg &= ~DXEPCTL_MPS_MASK;
2479 reg |= mps;
2480 dwc2_writel(reg, regs + DOEPCTL(ep));
2481 }
2482
2483 return;
2484
2485 bad_mps:
2486 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2487 }
2488
2489 /**
2490 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2491 * @hsotg: The driver state
2492 * @idx: The index for the endpoint (0..15)
2493 */
2494 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2495 {
2496 int timeout;
2497 int val;
2498
2499 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2500 hsotg->regs + GRSTCTL);
2501
2502 /* wait until the fifo is flushed */
2503 timeout = 100;
2504
2505 while (1) {
2506 val = dwc2_readl(hsotg->regs + GRSTCTL);
2507
2508 if ((val & (GRSTCTL_TXFFLSH)) == 0)
2509 break;
2510
2511 if (--timeout == 0) {
2512 dev_err(hsotg->dev,
2513 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2514 __func__, val);
2515 break;
2516 }
2517
2518 udelay(1);
2519 }
2520 }
2521
2522 /**
2523 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2524 * @hsotg: The driver state
2525 * @hs_ep: The driver endpoint to check.
2526 *
2527 * Check to see if there is a request that has data to send, and if so
2528 * make an attempt to write data into the FIFO.
2529 */
2530 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2531 struct dwc2_hsotg_ep *hs_ep)
2532 {
2533 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2534
2535 if (!hs_ep->dir_in || !hs_req) {
2536 /**
2537 * if request is not enqueued, we disable interrupts
2538 * for endpoints, excepting ep0
2539 */
2540 if (hs_ep->index != 0)
2541 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2542 hs_ep->dir_in, 0);
2543 return 0;
2544 }
2545
2546 if (hs_req->req.actual < hs_req->req.length) {
2547 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2548 hs_ep->index);
2549 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2550 }
2551
2552 return 0;
2553 }
2554
2555 /**
2556 * dwc2_hsotg_complete_in - complete IN transfer
2557 * @hsotg: The device state.
2558 * @hs_ep: The endpoint that has just completed.
2559 *
2560 * An IN transfer has been completed, update the transfer's state and then
2561 * call the relevant completion routines.
2562 */
2563 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2564 struct dwc2_hsotg_ep *hs_ep)
2565 {
2566 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2567 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2568 int size_left, size_done;
2569
2570 if (!hs_req) {
2571 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2572 return;
2573 }
2574
2575 /* Finish ZLP handling for IN EP0 transactions */
2576 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2577 dev_dbg(hsotg->dev, "zlp packet sent\n");
2578
2579 /*
2580 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2581 * changed to IN. Change back to complete OUT transfer request
2582 */
2583 hs_ep->dir_in = 0;
2584
2585 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2586 if (hsotg->test_mode) {
2587 int ret;
2588
2589 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2590 if (ret < 0) {
2591 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2592 hsotg->test_mode);
2593 dwc2_hsotg_stall_ep0(hsotg);
2594 return;
2595 }
2596 }
2597 dwc2_hsotg_enqueue_setup(hsotg);
2598 return;
2599 }
2600
2601 /*
2602 * Calculate the size of the transfer by checking how much is left
2603 * in the endpoint size register and then working it out from
2604 * the amount we loaded for the transfer.
2605 *
2606 * We do this even for DMA, as the transfer may have incremented
2607 * past the end of the buffer (DMA transfers are always 32bit
2608 * aligned).
2609 */
2610 if (using_desc_dma(hsotg)) {
2611 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2612 if (size_left < 0)
2613 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2614 size_left);
2615 } else {
2616 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2617 }
2618
2619 size_done = hs_ep->size_loaded - size_left;
2620 size_done += hs_ep->last_load;
2621
2622 if (hs_req->req.actual != size_done)
2623 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2624 __func__, hs_req->req.actual, size_done);
2625
2626 hs_req->req.actual = size_done;
2627 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2628 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2629
2630 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2631 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2632 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2633 return;
2634 }
2635
2636 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2637 if (hs_ep->send_zlp) {
2638 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2639 hs_ep->send_zlp = 0;
2640 /* transfer will be completed on next complete interrupt */
2641 return;
2642 }
2643
2644 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2645 /* Move to STATUS OUT */
2646 dwc2_hsotg_ep0_zlp(hsotg, false);
2647 return;
2648 }
2649
2650 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2651 }
2652
2653 /**
2654 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2655 * @hsotg: The device state.
2656 * @idx: Index of ep.
2657 * @dir_in: Endpoint direction 1-in 0-out.
2658 *
2659 * Reads for endpoint with given index and direction, by masking
2660 * epint_reg with coresponding mask.
2661 */
2662 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2663 unsigned int idx, int dir_in)
2664 {
2665 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2666 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2667 u32 ints;
2668 u32 mask;
2669 u32 diepempmsk;
2670
2671 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2672 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2673 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2674 mask |= DXEPINT_SETUP_RCVD;
2675
2676 ints = dwc2_readl(hsotg->regs + epint_reg);
2677 ints &= mask;
2678 return ints;
2679 }
2680
2681 /**
2682 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2683 * @hs_ep: The endpoint on which interrupt is asserted.
2684 *
2685 * This interrupt indicates that the endpoint has been disabled per the
2686 * application's request.
2687 *
2688 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2689 * in case of ISOC completes current request.
2690 *
2691 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2692 * request starts it.
2693 */
2694 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2695 {
2696 struct dwc2_hsotg *hsotg = hs_ep->parent;
2697 struct dwc2_hsotg_req *hs_req;
2698 unsigned char idx = hs_ep->index;
2699 int dir_in = hs_ep->dir_in;
2700 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2701 int dctl = dwc2_readl(hsotg->regs + DCTL);
2702
2703 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2704
2705 if (dir_in) {
2706 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2707
2708 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2709
2710 if (hs_ep->isochronous) {
2711 dwc2_hsotg_complete_in(hsotg, hs_ep);
2712 return;
2713 }
2714
2715 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2716 int dctl = dwc2_readl(hsotg->regs + DCTL);
2717
2718 dctl |= DCTL_CGNPINNAK;
2719 dwc2_writel(dctl, hsotg->regs + DCTL);
2720 }
2721 return;
2722 }
2723
2724 if (dctl & DCTL_GOUTNAKSTS) {
2725 dctl |= DCTL_CGOUTNAK;
2726 dwc2_writel(dctl, hsotg->regs + DCTL);
2727 }
2728
2729 if (!hs_ep->isochronous)
2730 return;
2731
2732 if (list_empty(&hs_ep->queue)) {
2733 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2734 __func__, hs_ep);
2735 return;
2736 }
2737
2738 do {
2739 hs_req = get_ep_head(hs_ep);
2740 if (hs_req)
2741 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2742 -ENODATA);
2743 dwc2_gadget_incr_frame_num(hs_ep);
2744 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2745
2746 dwc2_gadget_start_next_request(hs_ep);
2747 }
2748
2749 /**
2750 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2751 * @hs_ep: The endpoint on which interrupt is asserted.
2752 *
2753 * This is starting point for ISOC-OUT transfer, synchronization done with
2754 * first out token received from host while corresponding EP is disabled.
2755 *
2756 * Device does not know initial frame in which out token will come. For this
2757 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2758 * getting this interrupt SW starts calculation for next transfer frame.
2759 */
2760 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2761 {
2762 struct dwc2_hsotg *hsotg = ep->parent;
2763 int dir_in = ep->dir_in;
2764 u32 doepmsk;
2765 u32 tmp;
2766
2767 if (dir_in || !ep->isochronous)
2768 return;
2769
2770 /*
2771 * Store frame in which irq was asserted here, as
2772 * it can change while completing request below.
2773 */
2774 tmp = dwc2_hsotg_read_frameno(hsotg);
2775
2776 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2777
2778 if (using_desc_dma(hsotg)) {
2779 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2780 /* Start first ISO Out */
2781 ep->target_frame = tmp;
2782 dwc2_gadget_start_isoc_ddma(ep);
2783 }
2784 return;
2785 }
2786
2787 if (ep->interval > 1 &&
2788 ep->target_frame == TARGET_FRAME_INITIAL) {
2789 u32 dsts;
2790 u32 ctrl;
2791
2792 dsts = dwc2_readl(hsotg->regs + DSTS);
2793 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2794 dwc2_gadget_incr_frame_num(ep);
2795
2796 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2797 if (ep->target_frame & 0x1)
2798 ctrl |= DXEPCTL_SETODDFR;
2799 else
2800 ctrl |= DXEPCTL_SETEVENFR;
2801
2802 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2803 }
2804
2805 dwc2_gadget_start_next_request(ep);
2806 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2807 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2808 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2809 }
2810
2811 /**
2812 * dwc2_gadget_handle_nak - handle NAK interrupt
2813 * @hs_ep: The endpoint on which interrupt is asserted.
2814 *
2815 * This is starting point for ISOC-IN transfer, synchronization done with
2816 * first IN token received from host while corresponding EP is disabled.
2817 *
2818 * Device does not know when first one token will arrive from host. On first
2819 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2820 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2821 * sent in response to that as there was no data in FIFO. SW is basing on this
2822 * interrupt to obtain frame in which token has come and then based on the
2823 * interval calculates next frame for transfer.
2824 */
2825 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2826 {
2827 struct dwc2_hsotg *hsotg = hs_ep->parent;
2828 int dir_in = hs_ep->dir_in;
2829
2830 if (!dir_in || !hs_ep->isochronous)
2831 return;
2832
2833 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2834 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2835
2836 if (using_desc_dma(hsotg)) {
2837 dwc2_gadget_start_isoc_ddma(hs_ep);
2838 return;
2839 }
2840
2841 if (hs_ep->interval > 1) {
2842 u32 ctrl = dwc2_readl(hsotg->regs +
2843 DIEPCTL(hs_ep->index));
2844 if (hs_ep->target_frame & 0x1)
2845 ctrl |= DXEPCTL_SETODDFR;
2846 else
2847 ctrl |= DXEPCTL_SETEVENFR;
2848
2849 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2850 }
2851
2852 dwc2_hsotg_complete_request(hsotg, hs_ep,
2853 get_ep_head(hs_ep), 0);
2854 }
2855
2856 dwc2_gadget_incr_frame_num(hs_ep);
2857 }
2858
2859 /**
2860 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2861 * @hsotg: The driver state
2862 * @idx: The index for the endpoint (0..15)
2863 * @dir_in: Set if this is an IN endpoint
2864 *
2865 * Process and clear any interrupt pending for an individual endpoint
2866 */
2867 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2868 int dir_in)
2869 {
2870 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2871 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2872 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2873 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2874 u32 ints;
2875 u32 ctrl;
2876
2877 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2878 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2879
2880 /* Clear endpoint interrupts */
2881 dwc2_writel(ints, hsotg->regs + epint_reg);
2882
2883 if (!hs_ep) {
2884 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2885 __func__, idx, dir_in ? "in" : "out");
2886 return;
2887 }
2888
2889 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2890 __func__, idx, dir_in ? "in" : "out", ints);
2891
2892 /* Don't process XferCompl interrupt if it is a setup packet */
2893 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2894 ints &= ~DXEPINT_XFERCOMPL;
2895
2896 /*
2897 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2898 * stage and xfercomplete was generated without SETUP phase done
2899 * interrupt. SW should parse received setup packet only after host's
2900 * exit from setup phase of control transfer.
2901 */
2902 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2903 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2904 ints &= ~DXEPINT_XFERCOMPL;
2905
2906 if (ints & DXEPINT_XFERCOMPL) {
2907 dev_dbg(hsotg->dev,
2908 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2909 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2910 dwc2_readl(hsotg->regs + epsiz_reg));
2911
2912 /* In DDMA handle isochronous requests separately */
2913 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2914 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2915 /* Try to start next isoc request */
2916 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2917 } else if (dir_in) {
2918 /*
2919 * We get OutDone from the FIFO, so we only
2920 * need to look at completing IN requests here
2921 * if operating slave mode
2922 */
2923 if (hs_ep->isochronous && hs_ep->interval > 1)
2924 dwc2_gadget_incr_frame_num(hs_ep);
2925
2926 dwc2_hsotg_complete_in(hsotg, hs_ep);
2927 if (ints & DXEPINT_NAKINTRPT)
2928 ints &= ~DXEPINT_NAKINTRPT;
2929
2930 if (idx == 0 && !hs_ep->req)
2931 dwc2_hsotg_enqueue_setup(hsotg);
2932 } else if (using_dma(hsotg)) {
2933 /*
2934 * We're using DMA, we need to fire an OutDone here
2935 * as we ignore the RXFIFO.
2936 */
2937 if (hs_ep->isochronous && hs_ep->interval > 1)
2938 dwc2_gadget_incr_frame_num(hs_ep);
2939
2940 dwc2_hsotg_handle_outdone(hsotg, idx);
2941 }
2942 }
2943
2944 if (ints & DXEPINT_EPDISBLD)
2945 dwc2_gadget_handle_ep_disabled(hs_ep);
2946
2947 if (ints & DXEPINT_OUTTKNEPDIS)
2948 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2949
2950 if (ints & DXEPINT_NAKINTRPT)
2951 dwc2_gadget_handle_nak(hs_ep);
2952
2953 if (ints & DXEPINT_AHBERR)
2954 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2955
2956 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2957 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2958
2959 if (using_dma(hsotg) && idx == 0) {
2960 /*
2961 * this is the notification we've received a
2962 * setup packet. In non-DMA mode we'd get this
2963 * from the RXFIFO, instead we need to process
2964 * the setup here.
2965 */
2966
2967 if (dir_in)
2968 WARN_ON_ONCE(1);
2969 else
2970 dwc2_hsotg_handle_outdone(hsotg, 0);
2971 }
2972 }
2973
2974 if (ints & DXEPINT_STSPHSERCVD) {
2975 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2976
2977 /* Move to STATUS IN for DDMA */
2978 if (using_desc_dma(hsotg))
2979 dwc2_hsotg_ep0_zlp(hsotg, true);
2980 }
2981
2982 if (ints & DXEPINT_BACK2BACKSETUP)
2983 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2984
2985 if (ints & DXEPINT_BNAINTR) {
2986 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2987
2988 /*
2989 * Try to start next isoc request, if any.
2990 * Sometimes the endpoint remains enabled after BNA interrupt
2991 * assertion, which is not expected, hence we can enter here
2992 * couple of times.
2993 */
2994 if (hs_ep->isochronous)
2995 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2996 }
2997
2998 if (dir_in && !hs_ep->isochronous) {
2999 /* not sure if this is important, but we'll clear it anyway */
3000 if (ints & DXEPINT_INTKNTXFEMP) {
3001 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3002 __func__, idx);
3003 }
3004
3005 /* this probably means something bad is happening */
3006 if (ints & DXEPINT_INTKNEPMIS) {
3007 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3008 __func__, idx);
3009 }
3010
3011 /* FIFO has space or is empty (see GAHBCFG) */
3012 if (hsotg->dedicated_fifos &&
3013 ints & DXEPINT_TXFEMP) {
3014 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3015 __func__, idx);
3016 if (!using_dma(hsotg))
3017 dwc2_hsotg_trytx(hsotg, hs_ep);
3018 }
3019 }
3020 }
3021
3022 /**
3023 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3024 * @hsotg: The device state.
3025 *
3026 * Handle updating the device settings after the enumeration phase has
3027 * been completed.
3028 */
3029 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3030 {
3031 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3032 int ep0_mps = 0, ep_mps = 8;
3033
3034 /*
3035 * This should signal the finish of the enumeration phase
3036 * of the USB handshaking, so we should now know what rate
3037 * we connected at.
3038 */
3039
3040 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3041
3042 /*
3043 * note, since we're limited by the size of transfer on EP0, and
3044 * it seems IN transfers must be a even number of packets we do
3045 * not advertise a 64byte MPS on EP0.
3046 */
3047
3048 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3049 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3050 case DSTS_ENUMSPD_FS:
3051 case DSTS_ENUMSPD_FS48:
3052 hsotg->gadget.speed = USB_SPEED_FULL;
3053 ep0_mps = EP0_MPS_LIMIT;
3054 ep_mps = 1023;
3055 break;
3056
3057 case DSTS_ENUMSPD_HS:
3058 hsotg->gadget.speed = USB_SPEED_HIGH;
3059 ep0_mps = EP0_MPS_LIMIT;
3060 ep_mps = 1024;
3061 break;
3062
3063 case DSTS_ENUMSPD_LS:
3064 hsotg->gadget.speed = USB_SPEED_LOW;
3065 ep0_mps = 8;
3066 ep_mps = 8;
3067 /*
3068 * note, we don't actually support LS in this driver at the
3069 * moment, and the documentation seems to imply that it isn't
3070 * supported by the PHYs on some of the devices.
3071 */
3072 break;
3073 }
3074 dev_info(hsotg->dev, "new device is %s\n",
3075 usb_speed_string(hsotg->gadget.speed));
3076
3077 /*
3078 * we should now know the maximum packet size for an
3079 * endpoint, so set the endpoints to a default value.
3080 */
3081
3082 if (ep0_mps) {
3083 int i;
3084 /* Initialize ep0 for both in and out directions */
3085 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3086 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3087 for (i = 1; i < hsotg->num_of_eps; i++) {
3088 if (hsotg->eps_in[i])
3089 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3090 0, 1);
3091 if (hsotg->eps_out[i])
3092 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3093 0, 0);
3094 }
3095 }
3096
3097 /* ensure after enumeration our EP0 is active */
3098
3099 dwc2_hsotg_enqueue_setup(hsotg);
3100
3101 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3102 dwc2_readl(hsotg->regs + DIEPCTL0),
3103 dwc2_readl(hsotg->regs + DOEPCTL0));
3104 }
3105
3106 /**
3107 * kill_all_requests - remove all requests from the endpoint's queue
3108 * @hsotg: The device state.
3109 * @ep: The endpoint the requests may be on.
3110 * @result: The result code to use.
3111 *
3112 * Go through the requests on the given endpoint and mark them
3113 * completed with the given result code.
3114 */
3115 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3116 struct dwc2_hsotg_ep *ep,
3117 int result)
3118 {
3119 struct dwc2_hsotg_req *req, *treq;
3120 unsigned int size;
3121
3122 ep->req = NULL;
3123
3124 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3125 dwc2_hsotg_complete_request(hsotg, ep, req,
3126 result);
3127
3128 if (!hsotg->dedicated_fifos)
3129 return;
3130 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3131 if (size < ep->fifo_size)
3132 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3133 }
3134
3135 /**
3136 * dwc2_hsotg_disconnect - disconnect service
3137 * @hsotg: The device state.
3138 *
3139 * The device has been disconnected. Remove all current
3140 * transactions and signal the gadget driver that this
3141 * has happened.
3142 */
3143 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3144 {
3145 unsigned int ep;
3146
3147 if (!hsotg->connected)
3148 return;
3149
3150 hsotg->connected = 0;
3151 hsotg->test_mode = 0;
3152
3153 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3154 if (hsotg->eps_in[ep])
3155 kill_all_requests(hsotg, hsotg->eps_in[ep],
3156 -ESHUTDOWN);
3157 if (hsotg->eps_out[ep])
3158 kill_all_requests(hsotg, hsotg->eps_out[ep],
3159 -ESHUTDOWN);
3160 }
3161
3162 call_gadget(hsotg, disconnect);
3163 hsotg->lx_state = DWC2_L3;
3164
3165 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3166 }
3167
3168 /**
3169 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3170 * @hsotg: The device state:
3171 * @periodic: True if this is a periodic FIFO interrupt
3172 */
3173 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3174 {
3175 struct dwc2_hsotg_ep *ep;
3176 int epno, ret;
3177
3178 /* look through for any more data to transmit */
3179 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3180 ep = index_to_ep(hsotg, epno, 1);
3181
3182 if (!ep)
3183 continue;
3184
3185 if (!ep->dir_in)
3186 continue;
3187
3188 if ((periodic && !ep->periodic) ||
3189 (!periodic && ep->periodic))
3190 continue;
3191
3192 ret = dwc2_hsotg_trytx(hsotg, ep);
3193 if (ret < 0)
3194 break;
3195 }
3196 }
3197
3198 /* IRQ flags which will trigger a retry around the IRQ loop */
3199 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3200 GINTSTS_PTXFEMP | \
3201 GINTSTS_RXFLVL)
3202
3203 /**
3204 * dwc2_hsotg_core_init - issue softreset to the core
3205 * @hsotg: The device state
3206 *
3207 * Issue a soft reset to the core, and await the core finishing it.
3208 */
3209 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3210 bool is_usb_reset)
3211 {
3212 u32 intmsk;
3213 u32 val;
3214 u32 usbcfg;
3215 u32 dcfg = 0;
3216
3217 /* Kill any ep0 requests as controller will be reinitialized */
3218 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3219
3220 if (!is_usb_reset)
3221 if (dwc2_core_reset(hsotg, true))
3222 return;
3223
3224 /*
3225 * we must now enable ep0 ready for host detection and then
3226 * set configuration.
3227 */
3228
3229 /* keep other bits untouched (so e.g. forced modes are not lost) */
3230 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3231 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3232 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3233
3234 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3235 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3236 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3237 /* FS/LS Dedicated Transceiver Interface */
3238 usbcfg |= GUSBCFG_PHYSEL;
3239 } else {
3240 /* set the PLL on, remove the HNP/SRP and set the PHY */
3241 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3242 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3243 (val << GUSBCFG_USBTRDTIM_SHIFT);
3244 }
3245 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3246
3247 dwc2_hsotg_init_fifo(hsotg);
3248
3249 if (!is_usb_reset)
3250 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3251
3252 dcfg |= DCFG_EPMISCNT(1);
3253
3254 switch (hsotg->params.speed) {
3255 case DWC2_SPEED_PARAM_LOW:
3256 dcfg |= DCFG_DEVSPD_LS;
3257 break;
3258 case DWC2_SPEED_PARAM_FULL:
3259 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3260 dcfg |= DCFG_DEVSPD_FS48;
3261 else
3262 dcfg |= DCFG_DEVSPD_FS;
3263 break;
3264 default:
3265 dcfg |= DCFG_DEVSPD_HS;
3266 }
3267
3268 dwc2_writel(dcfg, hsotg->regs + DCFG);
3269
3270 /* Clear any pending OTG interrupts */
3271 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3272
3273 /* Clear any pending interrupts */
3274 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3275 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3276 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3277 GINTSTS_USBRST | GINTSTS_RESETDET |
3278 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3279 GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3280
3281 if (!using_desc_dma(hsotg))
3282 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3283
3284 if (!hsotg->params.external_id_pin_ctl)
3285 intmsk |= GINTSTS_CONIDSTSCHNG;
3286
3287 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3288
3289 if (using_dma(hsotg)) {
3290 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3291 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3292 hsotg->regs + GAHBCFG);
3293
3294 /* Set DDMA mode support in the core if needed */
3295 if (using_desc_dma(hsotg))
3296 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3297
3298 } else {
3299 dwc2_writel(((hsotg->dedicated_fifos) ?
3300 (GAHBCFG_NP_TXF_EMP_LVL |
3301 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3302 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3303 }
3304
3305 /*
3306 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3307 * when we have no data to transfer. Otherwise we get being flooded by
3308 * interrupts.
3309 */
3310
3311 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3312 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3313 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3314 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3315 hsotg->regs + DIEPMSK);
3316
3317 /*
3318 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3319 * DMA mode we may need this and StsPhseRcvd.
3320 */
3321 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3322 DOEPMSK_STSPHSERCVDMSK) : 0) |
3323 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3324 DOEPMSK_SETUPMSK,
3325 hsotg->regs + DOEPMSK);
3326
3327 /* Enable BNA interrupt for DDMA */
3328 if (using_desc_dma(hsotg))
3329 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3330
3331 dwc2_writel(0, hsotg->regs + DAINTMSK);
3332
3333 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3334 dwc2_readl(hsotg->regs + DIEPCTL0),
3335 dwc2_readl(hsotg->regs + DOEPCTL0));
3336
3337 /* enable in and out endpoint interrupts */
3338 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3339
3340 /*
3341 * Enable the RXFIFO when in slave mode, as this is how we collect
3342 * the data. In DMA mode, we get events from the FIFO but also
3343 * things we cannot process, so do not use it.
3344 */
3345 if (!using_dma(hsotg))
3346 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3347
3348 /* Enable interrupts for EP0 in and out */
3349 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3350 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3351
3352 if (!is_usb_reset) {
3353 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3354 udelay(10); /* see openiboot */
3355 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3356 }
3357
3358 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3359
3360 /*
3361 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3362 * writing to the EPCTL register..
3363 */
3364
3365 /* set to read 1 8byte packet */
3366 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3367 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3368
3369 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3370 DXEPCTL_CNAK | DXEPCTL_EPENA |
3371 DXEPCTL_USBACTEP,
3372 hsotg->regs + DOEPCTL0);
3373
3374 /* enable, but don't activate EP0in */
3375 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3376 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3377
3378 dwc2_hsotg_enqueue_setup(hsotg);
3379
3380 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3381 dwc2_readl(hsotg->regs + DIEPCTL0),
3382 dwc2_readl(hsotg->regs + DOEPCTL0));
3383
3384 /* clear global NAKs */
3385 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3386 if (!is_usb_reset)
3387 val |= DCTL_SFTDISCON;
3388 __orr32(hsotg->regs + DCTL, val);
3389
3390 /* must be at-least 3ms to allow bus to see disconnect */
3391 mdelay(3);
3392
3393 hsotg->lx_state = DWC2_L0;
3394 }
3395
3396 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3397 {
3398 /* set the soft-disconnect bit */
3399 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3400 }
3401
3402 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3403 {
3404 /* remove the soft-disconnect and let's go */
3405 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3406 }
3407
3408 /**
3409 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3410 * @hsotg: The device state:
3411 *
3412 * This interrupt indicates one of the following conditions occurred while
3413 * transmitting an ISOC transaction.
3414 * - Corrupted IN Token for ISOC EP.
3415 * - Packet not complete in FIFO.
3416 *
3417 * The following actions will be taken:
3418 * - Determine the EP
3419 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3420 */
3421 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3422 {
3423 struct dwc2_hsotg_ep *hs_ep;
3424 u32 epctrl;
3425 u32 idx;
3426
3427 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3428
3429 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3430 hs_ep = hsotg->eps_in[idx];
3431 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3432 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3433 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3434 epctrl |= DXEPCTL_SNAK;
3435 epctrl |= DXEPCTL_EPDIS;
3436 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3437 }
3438 }
3439
3440 /* Clear interrupt */
3441 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3442 }
3443
3444 /**
3445 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3446 * @hsotg: The device state:
3447 *
3448 * This interrupt indicates one of the following conditions occurred while
3449 * transmitting an ISOC transaction.
3450 * - Corrupted OUT Token for ISOC EP.
3451 * - Packet not complete in FIFO.
3452 *
3453 * The following actions will be taken:
3454 * - Determine the EP
3455 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3456 */
3457 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3458 {
3459 u32 gintsts;
3460 u32 gintmsk;
3461 u32 epctrl;
3462 struct dwc2_hsotg_ep *hs_ep;
3463 int idx;
3464
3465 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3466
3467 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3468 hs_ep = hsotg->eps_out[idx];
3469 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3470 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3471 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3472 /* Unmask GOUTNAKEFF interrupt */
3473 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3474 gintmsk |= GINTSTS_GOUTNAKEFF;
3475 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3476
3477 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3478 if (!(gintsts & GINTSTS_GOUTNAKEFF))
3479 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3480 }
3481 }
3482
3483 /* Clear interrupt */
3484 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3485 }
3486
3487 /**
3488 * dwc2_hsotg_irq - handle device interrupt
3489 * @irq: The IRQ number triggered
3490 * @pw: The pw value when registered the handler.
3491 */
3492 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3493 {
3494 struct dwc2_hsotg *hsotg = pw;
3495 int retry_count = 8;
3496 u32 gintsts;
3497 u32 gintmsk;
3498
3499 if (!dwc2_is_device_mode(hsotg))
3500 return IRQ_NONE;
3501
3502 spin_lock(&hsotg->lock);
3503 irq_retry:
3504 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3505 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3506
3507 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3508 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3509
3510 gintsts &= gintmsk;
3511
3512 if (gintsts & GINTSTS_RESETDET) {
3513 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3514
3515 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3516
3517 /* This event must be used only if controller is suspended */
3518 if (hsotg->lx_state == DWC2_L2) {
3519 dwc2_exit_hibernation(hsotg, true);
3520 hsotg->lx_state = DWC2_L0;
3521 }
3522 }
3523
3524 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3525 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3526 u32 connected = hsotg->connected;
3527
3528 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3529 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3530 dwc2_readl(hsotg->regs + GNPTXSTS));
3531
3532 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3533
3534 /* Report disconnection if it is not already done. */
3535 dwc2_hsotg_disconnect(hsotg);
3536
3537 /* Reset device address to zero */
3538 __bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3539
3540 if (usb_status & GOTGCTL_BSESVLD && connected)
3541 dwc2_hsotg_core_init_disconnected(hsotg, true);
3542 }
3543
3544 if (gintsts & GINTSTS_ENUMDONE) {
3545 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3546
3547 dwc2_hsotg_irq_enumdone(hsotg);
3548 }
3549
3550 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3551 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3552 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3553 u32 daint_out, daint_in;
3554 int ep;
3555
3556 daint &= daintmsk;
3557 daint_out = daint >> DAINT_OUTEP_SHIFT;
3558 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3559
3560 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3561
3562 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3563 ep++, daint_out >>= 1) {
3564 if (daint_out & 1)
3565 dwc2_hsotg_epint(hsotg, ep, 0);
3566 }
3567
3568 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3569 ep++, daint_in >>= 1) {
3570 if (daint_in & 1)
3571 dwc2_hsotg_epint(hsotg, ep, 1);
3572 }
3573 }
3574
3575 /* check both FIFOs */
3576
3577 if (gintsts & GINTSTS_NPTXFEMP) {
3578 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3579
3580 /*
3581 * Disable the interrupt to stop it happening again
3582 * unless one of these endpoint routines decides that
3583 * it needs re-enabling
3584 */
3585
3586 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3587 dwc2_hsotg_irq_fifoempty(hsotg, false);
3588 }
3589
3590 if (gintsts & GINTSTS_PTXFEMP) {
3591 dev_dbg(hsotg->dev, "PTxFEmp\n");
3592
3593 /* See note in GINTSTS_NPTxFEmp */
3594
3595 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3596 dwc2_hsotg_irq_fifoempty(hsotg, true);
3597 }
3598
3599 if (gintsts & GINTSTS_RXFLVL) {
3600 /*
3601 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3602 * we need to retry dwc2_hsotg_handle_rx if this is still
3603 * set.
3604 */
3605
3606 dwc2_hsotg_handle_rx(hsotg);
3607 }
3608
3609 if (gintsts & GINTSTS_ERLYSUSP) {
3610 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3611 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3612 }
3613
3614 /*
3615 * these next two seem to crop-up occasionally causing the core
3616 * to shutdown the USB transfer, so try clearing them and logging
3617 * the occurrence.
3618 */
3619
3620 if (gintsts & GINTSTS_GOUTNAKEFF) {
3621 u8 idx;
3622 u32 epctrl;
3623 u32 gintmsk;
3624 struct dwc2_hsotg_ep *hs_ep;
3625
3626 /* Mask this interrupt */
3627 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3628 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3629 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3630
3631 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3632 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3633 hs_ep = hsotg->eps_out[idx];
3634 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3635
3636 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3637 epctrl |= DXEPCTL_SNAK;
3638 epctrl |= DXEPCTL_EPDIS;
3639 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3640 }
3641 }
3642
3643 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3644 }
3645
3646 if (gintsts & GINTSTS_GINNAKEFF) {
3647 dev_info(hsotg->dev, "GINNakEff triggered\n");
3648
3649 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3650
3651 dwc2_hsotg_dump(hsotg);
3652 }
3653
3654 if (gintsts & GINTSTS_INCOMPL_SOIN)
3655 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3656
3657 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3658 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3659
3660 /*
3661 * if we've had fifo events, we should try and go around the
3662 * loop again to see if there's any point in returning yet.
3663 */
3664
3665 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3666 goto irq_retry;
3667
3668 spin_unlock(&hsotg->lock);
3669
3670 return IRQ_HANDLED;
3671 }
3672
3673 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3674 u32 bit, u32 timeout)
3675 {
3676 u32 i;
3677
3678 for (i = 0; i < timeout; i++) {
3679 if (dwc2_readl(hs_otg->regs + reg) & bit)
3680 return 0;
3681 udelay(1);
3682 }
3683
3684 return -ETIMEDOUT;
3685 }
3686
3687 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3688 struct dwc2_hsotg_ep *hs_ep)
3689 {
3690 u32 epctrl_reg;
3691 u32 epint_reg;
3692
3693 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3694 DOEPCTL(hs_ep->index);
3695 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3696 DOEPINT(hs_ep->index);
3697
3698 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3699 hs_ep->name);
3700
3701 if (hs_ep->dir_in) {
3702 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3703 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3704 /* Wait for Nak effect */
3705 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3706 DXEPINT_INEPNAKEFF, 100))
3707 dev_warn(hsotg->dev,
3708 "%s: timeout DIEPINT.NAKEFF\n",
3709 __func__);
3710 } else {
3711 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3712 /* Wait for Nak effect */
3713 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3714 GINTSTS_GINNAKEFF, 100))
3715 dev_warn(hsotg->dev,
3716 "%s: timeout GINTSTS.GINNAKEFF\n",
3717 __func__);
3718 }
3719 } else {
3720 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3721 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3722
3723 /* Wait for global nak to take effect */
3724 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3725 GINTSTS_GOUTNAKEFF, 100))
3726 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3727 __func__);
3728 }
3729
3730 /* Disable ep */
3731 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3732
3733 /* Wait for ep to be disabled */
3734 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3735 dev_warn(hsotg->dev,
3736 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3737
3738 /* Clear EPDISBLD interrupt */
3739 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3740
3741 if (hs_ep->dir_in) {
3742 unsigned short fifo_index;
3743
3744 if (hsotg->dedicated_fifos || hs_ep->periodic)
3745 fifo_index = hs_ep->fifo_index;
3746 else
3747 fifo_index = 0;
3748
3749 /* Flush TX FIFO */
3750 dwc2_flush_tx_fifo(hsotg, fifo_index);
3751
3752 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3753 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3754 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3755
3756 } else {
3757 /* Remove global NAKs */
3758 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3759 }
3760 }
3761
3762 /**
3763 * dwc2_hsotg_ep_enable - enable the given endpoint
3764 * @ep: The USB endpint to configure
3765 * @desc: The USB endpoint descriptor to configure with.
3766 *
3767 * This is called from the USB gadget code's usb_ep_enable().
3768 */
3769 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3770 const struct usb_endpoint_descriptor *desc)
3771 {
3772 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3773 struct dwc2_hsotg *hsotg = hs_ep->parent;
3774 unsigned long flags;
3775 unsigned int index = hs_ep->index;
3776 u32 epctrl_reg;
3777 u32 epctrl;
3778 u32 mps;
3779 u32 mc;
3780 u32 mask;
3781 unsigned int dir_in;
3782 unsigned int i, val, size;
3783 int ret = 0;
3784
3785 dev_dbg(hsotg->dev,
3786 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3787 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3788 desc->wMaxPacketSize, desc->bInterval);
3789
3790 /* not to be called for EP0 */
3791 if (index == 0) {
3792 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3793 return -EINVAL;
3794 }
3795
3796 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3797 if (dir_in != hs_ep->dir_in) {
3798 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3799 return -EINVAL;
3800 }
3801
3802 mps = usb_endpoint_maxp(desc);
3803 mc = usb_endpoint_maxp_mult(desc);
3804
3805 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3806
3807 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3808 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3809
3810 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3811 __func__, epctrl, epctrl_reg);
3812
3813 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3814 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3815 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3816 MAX_DMA_DESC_NUM_GENERIC *
3817 sizeof(struct dwc2_dma_desc),
3818 &hs_ep->desc_list_dma, GFP_ATOMIC);
3819 if (!hs_ep->desc_list) {
3820 ret = -ENOMEM;
3821 goto error2;
3822 }
3823 }
3824
3825 spin_lock_irqsave(&hsotg->lock, flags);
3826
3827 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3828 epctrl |= DXEPCTL_MPS(mps);
3829
3830 /*
3831 * mark the endpoint as active, otherwise the core may ignore
3832 * transactions entirely for this endpoint
3833 */
3834 epctrl |= DXEPCTL_USBACTEP;
3835
3836 /* update the endpoint state */
3837 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3838
3839 /* default, set to non-periodic */
3840 hs_ep->isochronous = 0;
3841 hs_ep->periodic = 0;
3842 hs_ep->halted = 0;
3843 hs_ep->interval = desc->bInterval;
3844
3845 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3846 case USB_ENDPOINT_XFER_ISOC:
3847 epctrl |= DXEPCTL_EPTYPE_ISO;
3848 epctrl |= DXEPCTL_SETEVENFR;
3849 hs_ep->isochronous = 1;
3850 hs_ep->interval = 1 << (desc->bInterval - 1);
3851 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3852 hs_ep->isoc_chain_num = 0;
3853 hs_ep->next_desc = 0;
3854 if (dir_in) {
3855 hs_ep->periodic = 1;
3856 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3857 mask |= DIEPMSK_NAKMSK;
3858 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3859 } else {
3860 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3861 mask |= DOEPMSK_OUTTKNEPDISMSK;
3862 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3863 }
3864 break;
3865
3866 case USB_ENDPOINT_XFER_BULK:
3867 epctrl |= DXEPCTL_EPTYPE_BULK;
3868 break;
3869
3870 case USB_ENDPOINT_XFER_INT:
3871 if (dir_in)
3872 hs_ep->periodic = 1;
3873
3874 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3875 hs_ep->interval = 1 << (desc->bInterval - 1);
3876
3877 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3878 break;
3879
3880 case USB_ENDPOINT_XFER_CONTROL:
3881 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3882 break;
3883 }
3884
3885 /*
3886 * if the hardware has dedicated fifos, we must give each IN EP
3887 * a unique tx-fifo even if it is non-periodic.
3888 */
3889 if (dir_in && hsotg->dedicated_fifos) {
3890 u32 fifo_index = 0;
3891 u32 fifo_size = UINT_MAX;
3892
3893 size = hs_ep->ep.maxpacket * hs_ep->mc;
3894 for (i = 1; i < hsotg->num_of_eps; ++i) {
3895 if (hsotg->fifo_map & (1 << i))
3896 continue;
3897 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3898 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3899 if (val < size)
3900 continue;
3901 /* Search for smallest acceptable fifo */
3902 if (val < fifo_size) {
3903 fifo_size = val;
3904 fifo_index = i;
3905 }
3906 }
3907 if (!fifo_index) {
3908 dev_err(hsotg->dev,
3909 "%s: No suitable fifo found\n", __func__);
3910 ret = -ENOMEM;
3911 goto error1;
3912 }
3913 hsotg->fifo_map |= 1 << fifo_index;
3914 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3915 hs_ep->fifo_index = fifo_index;
3916 hs_ep->fifo_size = fifo_size;
3917 }
3918
3919 /* for non control endpoints, set PID to D0 */
3920 if (index && !hs_ep->isochronous)
3921 epctrl |= DXEPCTL_SETD0PID;
3922
3923 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3924 __func__, epctrl);
3925
3926 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3927 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3928 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3929
3930 /* enable the endpoint interrupt */
3931 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3932
3933 error1:
3934 spin_unlock_irqrestore(&hsotg->lock, flags);
3935
3936 error2:
3937 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3938 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3939 sizeof(struct dwc2_dma_desc),
3940 hs_ep->desc_list, hs_ep->desc_list_dma);
3941 hs_ep->desc_list = NULL;
3942 }
3943
3944 return ret;
3945 }
3946
3947 /**
3948 * dwc2_hsotg_ep_disable - disable given endpoint
3949 * @ep: The endpoint to disable.
3950 */
3951 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3952 {
3953 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3954 struct dwc2_hsotg *hsotg = hs_ep->parent;
3955 int dir_in = hs_ep->dir_in;
3956 int index = hs_ep->index;
3957 unsigned long flags;
3958 u32 epctrl_reg;
3959 u32 ctrl;
3960
3961 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3962
3963 if (ep == &hsotg->eps_out[0]->ep) {
3964 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3965 return -EINVAL;
3966 }
3967
3968 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3969 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3970 return -EINVAL;
3971 }
3972
3973 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3974
3975 spin_lock_irqsave(&hsotg->lock, flags);
3976
3977 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3978
3979 if (ctrl & DXEPCTL_EPENA)
3980 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3981
3982 ctrl &= ~DXEPCTL_EPENA;
3983 ctrl &= ~DXEPCTL_USBACTEP;
3984 ctrl |= DXEPCTL_SNAK;
3985
3986 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3987 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3988
3989 /* disable endpoint interrupts */
3990 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3991
3992 /* terminate all requests with shutdown */
3993 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3994
3995 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3996 hs_ep->fifo_index = 0;
3997 hs_ep->fifo_size = 0;
3998
3999 spin_unlock_irqrestore(&hsotg->lock, flags);
4000 return 0;
4001 }
4002
4003 /**
4004 * on_list - check request is on the given endpoint
4005 * @ep: The endpoint to check.
4006 * @test: The request to test if it is on the endpoint.
4007 */
4008 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4009 {
4010 struct dwc2_hsotg_req *req, *treq;
4011
4012 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4013 if (req == test)
4014 return true;
4015 }
4016
4017 return false;
4018 }
4019
4020 /**
4021 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4022 * @ep: The endpoint to dequeue.
4023 * @req: The request to be removed from a queue.
4024 */
4025 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4026 {
4027 struct dwc2_hsotg_req *hs_req = our_req(req);
4028 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4029 struct dwc2_hsotg *hs = hs_ep->parent;
4030 unsigned long flags;
4031
4032 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4033
4034 spin_lock_irqsave(&hs->lock, flags);
4035
4036 if (!on_list(hs_ep, hs_req)) {
4037 spin_unlock_irqrestore(&hs->lock, flags);
4038 return -EINVAL;
4039 }
4040
4041 /* Dequeue already started request */
4042 if (req == &hs_ep->req->req)
4043 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4044
4045 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4046 spin_unlock_irqrestore(&hs->lock, flags);
4047
4048 return 0;
4049 }
4050
4051 /**
4052 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4053 * @ep: The endpoint to set halt.
4054 * @value: Set or unset the halt.
4055 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4056 * the endpoint is busy processing requests.
4057 *
4058 * We need to stall the endpoint immediately if request comes from set_feature
4059 * protocol command handler.
4060 */
4061 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4062 {
4063 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4064 struct dwc2_hsotg *hs = hs_ep->parent;
4065 int index = hs_ep->index;
4066 u32 epreg;
4067 u32 epctl;
4068 u32 xfertype;
4069
4070 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4071
4072 if (index == 0) {
4073 if (value)
4074 dwc2_hsotg_stall_ep0(hs);
4075 else
4076 dev_warn(hs->dev,
4077 "%s: can't clear halt on ep0\n", __func__);
4078 return 0;
4079 }
4080
4081 if (hs_ep->isochronous) {
4082 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4083 return -EINVAL;
4084 }
4085
4086 if (!now && value && !list_empty(&hs_ep->queue)) {
4087 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4088 ep->name);
4089 return -EAGAIN;
4090 }
4091
4092 if (hs_ep->dir_in) {
4093 epreg = DIEPCTL(index);
4094 epctl = dwc2_readl(hs->regs + epreg);
4095
4096 if (value) {
4097 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4098 if (epctl & DXEPCTL_EPENA)
4099 epctl |= DXEPCTL_EPDIS;
4100 } else {
4101 epctl &= ~DXEPCTL_STALL;
4102 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4103 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4104 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4105 epctl |= DXEPCTL_SETD0PID;
4106 }
4107 dwc2_writel(epctl, hs->regs + epreg);
4108 } else {
4109 epreg = DOEPCTL(index);
4110 epctl = dwc2_readl(hs->regs + epreg);
4111
4112 if (value) {
4113 epctl |= DXEPCTL_STALL;
4114 } else {
4115 epctl &= ~DXEPCTL_STALL;
4116 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4117 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4118 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4119 epctl |= DXEPCTL_SETD0PID;
4120 }
4121 dwc2_writel(epctl, hs->regs + epreg);
4122 }
4123
4124 hs_ep->halted = value;
4125
4126 return 0;
4127 }
4128
4129 /**
4130 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4131 * @ep: The endpoint to set halt.
4132 * @value: Set or unset the halt.
4133 */
4134 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4135 {
4136 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4137 struct dwc2_hsotg *hs = hs_ep->parent;
4138 unsigned long flags = 0;
4139 int ret = 0;
4140
4141 spin_lock_irqsave(&hs->lock, flags);
4142 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4143 spin_unlock_irqrestore(&hs->lock, flags);
4144
4145 return ret;
4146 }
4147
4148 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4149 .enable = dwc2_hsotg_ep_enable,
4150 .disable = dwc2_hsotg_ep_disable,
4151 .alloc_request = dwc2_hsotg_ep_alloc_request,
4152 .free_request = dwc2_hsotg_ep_free_request,
4153 .queue = dwc2_hsotg_ep_queue_lock,
4154 .dequeue = dwc2_hsotg_ep_dequeue,
4155 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4156 /* note, don't believe we have any call for the fifo routines */
4157 };
4158
4159 /**
4160 * dwc2_hsotg_init - initialize the usb core
4161 * @hsotg: The driver state
4162 */
4163 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4164 {
4165 u32 trdtim;
4166 u32 usbcfg;
4167 /* unmask subset of endpoint interrupts */
4168
4169 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4170 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4171 hsotg->regs + DIEPMSK);
4172
4173 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4174 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4175 hsotg->regs + DOEPMSK);
4176
4177 dwc2_writel(0, hsotg->regs + DAINTMSK);
4178
4179 /* Be in disconnected state until gadget is registered */
4180 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4181
4182 /* setup fifos */
4183
4184 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4185 dwc2_readl(hsotg->regs + GRXFSIZ),
4186 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4187
4188 dwc2_hsotg_init_fifo(hsotg);
4189
4190 /* keep other bits untouched (so e.g. forced modes are not lost) */
4191 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4192 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4193 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4194
4195 /* set the PLL on, remove the HNP/SRP and set the PHY */
4196 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4197 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4198 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4199 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4200
4201 if (using_dma(hsotg))
4202 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4203 }
4204
4205 /**
4206 * dwc2_hsotg_udc_start - prepare the udc for work
4207 * @gadget: The usb gadget state
4208 * @driver: The usb gadget driver
4209 *
4210 * Perform initialization to prepare udc device and driver
4211 * to work.
4212 */
4213 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4214 struct usb_gadget_driver *driver)
4215 {
4216 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4217 unsigned long flags;
4218 int ret;
4219
4220 if (!hsotg) {
4221 pr_err("%s: called with no device\n", __func__);
4222 return -ENODEV;
4223 }
4224
4225 if (!driver) {
4226 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4227 return -EINVAL;
4228 }
4229
4230 if (driver->max_speed < USB_SPEED_FULL)
4231 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4232
4233 if (!driver->setup) {
4234 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4235 return -EINVAL;
4236 }
4237
4238 WARN_ON(hsotg->driver);
4239
4240 driver->driver.bus = NULL;
4241 hsotg->driver = driver;
4242 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4243 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4244
4245 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4246 ret = dwc2_lowlevel_hw_enable(hsotg);
4247 if (ret)
4248 goto err;
4249 }
4250
4251 if (!IS_ERR_OR_NULL(hsotg->uphy))
4252 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4253
4254 spin_lock_irqsave(&hsotg->lock, flags);
4255 if (dwc2_hw_is_device(hsotg)) {
4256 dwc2_hsotg_init(hsotg);
4257 dwc2_hsotg_core_init_disconnected(hsotg, false);
4258 }
4259
4260 hsotg->enabled = 0;
4261 spin_unlock_irqrestore(&hsotg->lock, flags);
4262
4263 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4264
4265 return 0;
4266
4267 err:
4268 hsotg->driver = NULL;
4269 return ret;
4270 }
4271
4272 /**
4273 * dwc2_hsotg_udc_stop - stop the udc
4274 * @gadget: The usb gadget state
4275 * @driver: The usb gadget driver
4276 *
4277 * Stop udc hw block and stay tunned for future transmissions
4278 */
4279 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4280 {
4281 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4282 unsigned long flags = 0;
4283 int ep;
4284
4285 if (!hsotg)
4286 return -ENODEV;
4287
4288 /* all endpoints should be shutdown */
4289 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4290 if (hsotg->eps_in[ep])
4291 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4292 if (hsotg->eps_out[ep])
4293 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4294 }
4295
4296 spin_lock_irqsave(&hsotg->lock, flags);
4297
4298 hsotg->driver = NULL;
4299 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4300 hsotg->enabled = 0;
4301
4302 spin_unlock_irqrestore(&hsotg->lock, flags);
4303
4304 if (!IS_ERR_OR_NULL(hsotg->uphy))
4305 otg_set_peripheral(hsotg->uphy->otg, NULL);
4306
4307 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4308 dwc2_lowlevel_hw_disable(hsotg);
4309
4310 return 0;
4311 }
4312
4313 /**
4314 * dwc2_hsotg_gadget_getframe - read the frame number
4315 * @gadget: The usb gadget state
4316 *
4317 * Read the {micro} frame number
4318 */
4319 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4320 {
4321 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4322 }
4323
4324 /**
4325 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4326 * @gadget: The usb gadget state
4327 * @is_on: Current state of the USB PHY
4328 *
4329 * Connect/Disconnect the USB PHY pullup
4330 */
4331 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4332 {
4333 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4334 unsigned long flags = 0;
4335
4336 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4337 hsotg->op_state);
4338
4339 /* Don't modify pullup state while in host mode */
4340 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4341 hsotg->enabled = is_on;
4342 return 0;
4343 }
4344
4345 spin_lock_irqsave(&hsotg->lock, flags);
4346 if (is_on) {
4347 hsotg->enabled = 1;
4348 dwc2_hsotg_core_init_disconnected(hsotg, false);
4349 dwc2_hsotg_core_connect(hsotg);
4350 } else {
4351 dwc2_hsotg_core_disconnect(hsotg);
4352 dwc2_hsotg_disconnect(hsotg);
4353 hsotg->enabled = 0;
4354 }
4355
4356 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4357 spin_unlock_irqrestore(&hsotg->lock, flags);
4358
4359 return 0;
4360 }
4361
4362 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4363 {
4364 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4365 unsigned long flags;
4366
4367 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4368 spin_lock_irqsave(&hsotg->lock, flags);
4369
4370 /*
4371 * If controller is hibernated, it must exit from hibernation
4372 * before being initialized / de-initialized
4373 */
4374 if (hsotg->lx_state == DWC2_L2)
4375 dwc2_exit_hibernation(hsotg, false);
4376
4377 if (is_active) {
4378 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4379
4380 dwc2_hsotg_core_init_disconnected(hsotg, false);
4381 if (hsotg->enabled)
4382 dwc2_hsotg_core_connect(hsotg);
4383 } else {
4384 dwc2_hsotg_core_disconnect(hsotg);
4385 dwc2_hsotg_disconnect(hsotg);
4386 }
4387
4388 spin_unlock_irqrestore(&hsotg->lock, flags);
4389 return 0;
4390 }
4391
4392 /**
4393 * dwc2_hsotg_vbus_draw - report bMaxPower field
4394 * @gadget: The usb gadget state
4395 * @mA: Amount of current
4396 *
4397 * Report how much power the device may consume to the phy.
4398 */
4399 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4400 {
4401 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4402
4403 if (IS_ERR_OR_NULL(hsotg->uphy))
4404 return -ENOTSUPP;
4405 return usb_phy_set_power(hsotg->uphy, mA);
4406 }
4407
4408 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4409 .get_frame = dwc2_hsotg_gadget_getframe,
4410 .udc_start = dwc2_hsotg_udc_start,
4411 .udc_stop = dwc2_hsotg_udc_stop,
4412 .pullup = dwc2_hsotg_pullup,
4413 .vbus_session = dwc2_hsotg_vbus_session,
4414 .vbus_draw = dwc2_hsotg_vbus_draw,
4415 };
4416
4417 /**
4418 * dwc2_hsotg_initep - initialise a single endpoint
4419 * @hsotg: The device state.
4420 * @hs_ep: The endpoint to be initialised.
4421 * @epnum: The endpoint number
4422 *
4423 * Initialise the given endpoint (as part of the probe and device state
4424 * creation) to give to the gadget driver. Setup the endpoint name, any
4425 * direction information and other state that may be required.
4426 */
4427 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4428 struct dwc2_hsotg_ep *hs_ep,
4429 int epnum,
4430 bool dir_in)
4431 {
4432 char *dir;
4433
4434 if (epnum == 0)
4435 dir = "";
4436 else if (dir_in)
4437 dir = "in";
4438 else
4439 dir = "out";
4440
4441 hs_ep->dir_in = dir_in;
4442 hs_ep->index = epnum;
4443
4444 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4445
4446 INIT_LIST_HEAD(&hs_ep->queue);
4447 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4448
4449 /* add to the list of endpoints known by the gadget driver */
4450 if (epnum)
4451 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4452
4453 hs_ep->parent = hsotg;
4454 hs_ep->ep.name = hs_ep->name;
4455
4456 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4457 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4458 else
4459 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4460 epnum ? 1024 : EP0_MPS_LIMIT);
4461 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4462
4463 if (epnum == 0) {
4464 hs_ep->ep.caps.type_control = true;
4465 } else {
4466 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4467 hs_ep->ep.caps.type_iso = true;
4468 hs_ep->ep.caps.type_bulk = true;
4469 }
4470 hs_ep->ep.caps.type_int = true;
4471 }
4472
4473 if (dir_in)
4474 hs_ep->ep.caps.dir_in = true;
4475 else
4476 hs_ep->ep.caps.dir_out = true;
4477
4478 /*
4479 * if we're using dma, we need to set the next-endpoint pointer
4480 * to be something valid.
4481 */
4482
4483 if (using_dma(hsotg)) {
4484 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4485
4486 if (dir_in)
4487 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4488 else
4489 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4490 }
4491 }
4492
4493 /**
4494 * dwc2_hsotg_hw_cfg - read HW configuration registers
4495 * @param: The device state
4496 *
4497 * Read the USB core HW configuration registers
4498 */
4499 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4500 {
4501 u32 cfg;
4502 u32 ep_type;
4503 u32 i;
4504
4505 /* check hardware configuration */
4506
4507 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4508
4509 /* Add ep0 */
4510 hsotg->num_of_eps++;
4511
4512 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4513 sizeof(struct dwc2_hsotg_ep),
4514 GFP_KERNEL);
4515 if (!hsotg->eps_in[0])
4516 return -ENOMEM;
4517 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4518 hsotg->eps_out[0] = hsotg->eps_in[0];
4519
4520 cfg = hsotg->hw_params.dev_ep_dirs;
4521 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4522 ep_type = cfg & 3;
4523 /* Direction in or both */
4524 if (!(ep_type & 2)) {
4525 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4526 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4527 if (!hsotg->eps_in[i])
4528 return -ENOMEM;
4529 }
4530 /* Direction out or both */
4531 if (!(ep_type & 1)) {
4532 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4533 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4534 if (!hsotg->eps_out[i])
4535 return -ENOMEM;
4536 }
4537 }
4538
4539 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4540 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4541
4542 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4543 hsotg->num_of_eps,
4544 hsotg->dedicated_fifos ? "dedicated" : "shared",
4545 hsotg->fifo_mem);
4546 return 0;
4547 }
4548
4549 /**
4550 * dwc2_hsotg_dump - dump state of the udc
4551 * @param: The device state
4552 */
4553 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4554 {
4555 #ifdef DEBUG
4556 struct device *dev = hsotg->dev;
4557 void __iomem *regs = hsotg->regs;
4558 u32 val;
4559 int idx;
4560
4561 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4562 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4563 dwc2_readl(regs + DIEPMSK));
4564
4565 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4566 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4567
4568 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4569 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4570
4571 /* show periodic fifo settings */
4572
4573 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4574 val = dwc2_readl(regs + DPTXFSIZN(idx));
4575 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4576 val >> FIFOSIZE_DEPTH_SHIFT,
4577 val & FIFOSIZE_STARTADDR_MASK);
4578 }
4579
4580 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4581 dev_info(dev,
4582 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4583 dwc2_readl(regs + DIEPCTL(idx)),
4584 dwc2_readl(regs + DIEPTSIZ(idx)),
4585 dwc2_readl(regs + DIEPDMA(idx)));
4586
4587 val = dwc2_readl(regs + DOEPCTL(idx));
4588 dev_info(dev,
4589 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4590 idx, dwc2_readl(regs + DOEPCTL(idx)),
4591 dwc2_readl(regs + DOEPTSIZ(idx)),
4592 dwc2_readl(regs + DOEPDMA(idx)));
4593 }
4594
4595 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4596 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4597 #endif
4598 }
4599
4600 /**
4601 * dwc2_gadget_init - init function for gadget
4602 * @dwc2: The data structure for the DWC2 driver.
4603 * @irq: The IRQ number for the controller.
4604 */
4605 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4606 {
4607 struct device *dev = hsotg->dev;
4608 int epnum;
4609 int ret;
4610
4611 /* Dump fifo information */
4612 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4613 hsotg->params.g_np_tx_fifo_size);
4614 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4615
4616 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4617 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4618 hsotg->gadget.name = dev_name(dev);
4619 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4620 hsotg->gadget.is_otg = 1;
4621 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4622 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4623
4624 ret = dwc2_hsotg_hw_cfg(hsotg);
4625 if (ret) {
4626 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4627 return ret;
4628 }
4629
4630 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4631 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4632 if (!hsotg->ctrl_buff)
4633 return -ENOMEM;
4634
4635 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4636 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4637 if (!hsotg->ep0_buff)
4638 return -ENOMEM;
4639
4640 if (using_desc_dma(hsotg)) {
4641 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4642 if (ret < 0)
4643 return ret;
4644 }
4645
4646 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4647 dev_name(hsotg->dev), hsotg);
4648 if (ret < 0) {
4649 dev_err(dev, "cannot claim IRQ for gadget\n");
4650 return ret;
4651 }
4652
4653 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4654
4655 if (hsotg->num_of_eps == 0) {
4656 dev_err(dev, "wrong number of EPs (zero)\n");
4657 return -EINVAL;
4658 }
4659
4660 /* setup endpoint information */
4661
4662 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4663 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4664
4665 /* allocate EP0 request */
4666
4667 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4668 GFP_KERNEL);
4669 if (!hsotg->ctrl_req) {
4670 dev_err(dev, "failed to allocate ctrl req\n");
4671 return -ENOMEM;
4672 }
4673
4674 /* initialise the endpoints now the core has been initialised */
4675 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4676 if (hsotg->eps_in[epnum])
4677 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4678 epnum, 1);
4679 if (hsotg->eps_out[epnum])
4680 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4681 epnum, 0);
4682 }
4683
4684 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4685 if (ret)
4686 return ret;
4687
4688 dwc2_hsotg_dump(hsotg);
4689
4690 return 0;
4691 }
4692
4693 /**
4694 * dwc2_hsotg_remove - remove function for hsotg driver
4695 * @pdev: The platform information for the driver
4696 */
4697 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4698 {
4699 usb_del_gadget_udc(&hsotg->gadget);
4700
4701 return 0;
4702 }
4703
4704 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4705 {
4706 unsigned long flags;
4707
4708 if (hsotg->lx_state != DWC2_L0)
4709 return 0;
4710
4711 if (hsotg->driver) {
4712 int ep;
4713
4714 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4715 hsotg->driver->driver.name);
4716
4717 spin_lock_irqsave(&hsotg->lock, flags);
4718 if (hsotg->enabled)
4719 dwc2_hsotg_core_disconnect(hsotg);
4720 dwc2_hsotg_disconnect(hsotg);
4721 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4722 spin_unlock_irqrestore(&hsotg->lock, flags);
4723
4724 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4725 if (hsotg->eps_in[ep])
4726 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4727 if (hsotg->eps_out[ep])
4728 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4729 }
4730 }
4731
4732 return 0;
4733 }
4734
4735 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4736 {
4737 unsigned long flags;
4738
4739 if (hsotg->lx_state == DWC2_L2)
4740 return 0;
4741
4742 if (hsotg->driver) {
4743 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4744 hsotg->driver->driver.name);
4745
4746 spin_lock_irqsave(&hsotg->lock, flags);
4747 dwc2_hsotg_core_init_disconnected(hsotg, false);
4748 if (hsotg->enabled)
4749 dwc2_hsotg_core_connect(hsotg);
4750 spin_unlock_irqrestore(&hsotg->lock, flags);
4751 }
4752
4753 return 0;
4754 }
4755
4756 /**
4757 * dwc2_backup_device_registers() - Backup controller device registers.
4758 * When suspending usb bus, registers needs to be backuped
4759 * if controller power is disabled once suspended.
4760 *
4761 * @hsotg: Programming view of the DWC_otg controller
4762 */
4763 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4764 {
4765 struct dwc2_dregs_backup *dr;
4766 int i;
4767
4768 dev_dbg(hsotg->dev, "%s\n", __func__);
4769
4770 /* Backup dev regs */
4771 dr = &hsotg->dr_backup;
4772
4773 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4774 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4775 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4776 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4777 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4778
4779 for (i = 0; i < hsotg->num_of_eps; i++) {
4780 /* Backup IN EPs */
4781 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4782
4783 /* Ensure DATA PID is correctly configured */
4784 if (dr->diepctl[i] & DXEPCTL_DPID)
4785 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4786 else
4787 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4788
4789 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4790 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4791
4792 /* Backup OUT EPs */
4793 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4794
4795 /* Ensure DATA PID is correctly configured */
4796 if (dr->doepctl[i] & DXEPCTL_DPID)
4797 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4798 else
4799 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4800
4801 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4802 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4803 }
4804 dr->valid = true;
4805 return 0;
4806 }
4807
4808 /**
4809 * dwc2_restore_device_registers() - Restore controller device registers.
4810 * When resuming usb bus, device registers needs to be restored
4811 * if controller power were disabled.
4812 *
4813 * @hsotg: Programming view of the DWC_otg controller
4814 */
4815 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4816 {
4817 struct dwc2_dregs_backup *dr;
4818 u32 dctl;
4819 int i;
4820
4821 dev_dbg(hsotg->dev, "%s\n", __func__);
4822
4823 /* Restore dev regs */
4824 dr = &hsotg->dr_backup;
4825 if (!dr->valid) {
4826 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4827 __func__);
4828 return -EINVAL;
4829 }
4830 dr->valid = false;
4831
4832 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4833 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4834 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4835 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4836 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4837
4838 for (i = 0; i < hsotg->num_of_eps; i++) {
4839 /* Restore IN EPs */
4840 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4841 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4842 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4843
4844 /* Restore OUT EPs */
4845 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4846 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4847 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4848 }
4849
4850 /* Set the Power-On Programming done bit */
4851 dctl = dwc2_readl(hsotg->regs + DCTL);
4852 dctl |= DCTL_PWRONPRGDONE;
4853 dwc2_writel(dctl, hsotg->regs + DCTL);
4854
4855 return 0;
4856 }