]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/dwc2/gadget.c
Merge tag 'drm-intel-next-fixes-2014-12-30' of git://anongit.freedesktop.org/drm...
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / dwc2 / gadget.c
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/mutex.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/of_platform.h>
32 #include <linux/phy/phy.h>
33
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 #include <linux/platform_data/s3c-hsotg.h>
38
39 #include "core.h"
40 #include "hw.h"
41
42 /* conversion functions */
43 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
44 {
45 return container_of(req, struct s3c_hsotg_req, req);
46 }
47
48 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
49 {
50 return container_of(ep, struct s3c_hsotg_ep, ep);
51 }
52
53 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54 {
55 return container_of(gadget, struct dwc2_hsotg, gadget);
56 }
57
58 static inline void __orr32(void __iomem *ptr, u32 val)
59 {
60 writel(readl(ptr) | val, ptr);
61 }
62
63 static inline void __bic32(void __iomem *ptr, u32 val)
64 {
65 writel(readl(ptr) & ~val, ptr);
66 }
67
68 /* forward decleration of functions */
69 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
70
71 /**
72 * using_dma - return the DMA status of the driver.
73 * @hsotg: The driver state.
74 *
75 * Return true if we're using DMA.
76 *
77 * Currently, we have the DMA support code worked into everywhere
78 * that needs it, but the AMBA DMA implementation in the hardware can
79 * only DMA from 32bit aligned addresses. This means that gadgets such
80 * as the CDC Ethernet cannot work as they often pass packets which are
81 * not 32bit aligned.
82 *
83 * Unfortunately the choice to use DMA or not is global to the controller
84 * and seems to be only settable when the controller is being put through
85 * a core reset. This means we either need to fix the gadgets to take
86 * account of DMA alignment, or add bounce buffers (yuerk).
87 *
88 * Until this issue is sorted out, we always return 'false'.
89 */
90 static inline bool using_dma(struct dwc2_hsotg *hsotg)
91 {
92 return false; /* support is not complete */
93 }
94
95 /**
96 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
97 * @hsotg: The device state
98 * @ints: A bitmask of the interrupts to enable
99 */
100 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
101 {
102 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
103 u32 new_gsintmsk;
104
105 new_gsintmsk = gsintmsk | ints;
106
107 if (new_gsintmsk != gsintmsk) {
108 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
109 writel(new_gsintmsk, hsotg->regs + GINTMSK);
110 }
111 }
112
113 /**
114 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
115 * @hsotg: The device state
116 * @ints: A bitmask of the interrupts to enable
117 */
118 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
119 {
120 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
121 u32 new_gsintmsk;
122
123 new_gsintmsk = gsintmsk & ~ints;
124
125 if (new_gsintmsk != gsintmsk)
126 writel(new_gsintmsk, hsotg->regs + GINTMSK);
127 }
128
129 /**
130 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
131 * @hsotg: The device state
132 * @ep: The endpoint index
133 * @dir_in: True if direction is in.
134 * @en: The enable value, true to enable
135 *
136 * Set or clear the mask for an individual endpoint's interrupt
137 * request.
138 */
139 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
140 unsigned int ep, unsigned int dir_in,
141 unsigned int en)
142 {
143 unsigned long flags;
144 u32 bit = 1 << ep;
145 u32 daint;
146
147 if (!dir_in)
148 bit <<= 16;
149
150 local_irq_save(flags);
151 daint = readl(hsotg->regs + DAINTMSK);
152 if (en)
153 daint |= bit;
154 else
155 daint &= ~bit;
156 writel(daint, hsotg->regs + DAINTMSK);
157 local_irq_restore(flags);
158 }
159
160 /**
161 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
162 * @hsotg: The device instance.
163 */
164 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
165 {
166 unsigned int ep;
167 unsigned int addr;
168 unsigned int size;
169 int timeout;
170 u32 val;
171
172 /* set FIFO sizes to 2048/1024 */
173
174 writel(2048, hsotg->regs + GRXFSIZ);
175 writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
176 (1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
177
178 /*
179 * arange all the rest of the TX FIFOs, as some versions of this
180 * block have overlapping default addresses. This also ensures
181 * that if the settings have been changed, then they are set to
182 * known values.
183 */
184
185 /* start at the end of the GNPTXFSIZ, rounded up */
186 addr = 2048 + 1024;
187
188 /*
189 * Because we have not enough memory to have each TX FIFO of size at
190 * least 3072 bytes (the maximum single packet size), we create four
191 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
192 * them to endpoints dynamically according to maxpacket size value of
193 * given endpoint.
194 */
195
196 /* 256*4=1024 bytes FIFO length */
197 size = 256;
198 for (ep = 1; ep <= 4; ep++) {
199 val = addr;
200 val |= size << FIFOSIZE_DEPTH_SHIFT;
201 WARN_ONCE(addr + size > hsotg->fifo_mem,
202 "insufficient fifo memory");
203 addr += size;
204
205 writel(val, hsotg->regs + DPTXFSIZN(ep));
206 }
207 /* 768*4=3072 bytes FIFO length */
208 size = 768;
209 for (ep = 5; ep <= 8; ep++) {
210 val = addr;
211 val |= size << FIFOSIZE_DEPTH_SHIFT;
212 WARN_ONCE(addr + size > hsotg->fifo_mem,
213 "insufficient fifo memory");
214 addr += size;
215
216 writel(val, hsotg->regs + DPTXFSIZN(ep));
217 }
218
219 /*
220 * according to p428 of the design guide, we need to ensure that
221 * all fifos are flushed before continuing
222 */
223
224 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
225 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
226
227 /* wait until the fifos are both flushed */
228 timeout = 100;
229 while (1) {
230 val = readl(hsotg->regs + GRSTCTL);
231
232 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
233 break;
234
235 if (--timeout == 0) {
236 dev_err(hsotg->dev,
237 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
238 __func__, val);
239 }
240
241 udelay(1);
242 }
243
244 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 }
246
247 /**
248 * @ep: USB endpoint to allocate request for.
249 * @flags: Allocation flags
250 *
251 * Allocate a new USB request structure appropriate for the specified endpoint
252 */
253 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
254 gfp_t flags)
255 {
256 struct s3c_hsotg_req *req;
257
258 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
259 if (!req)
260 return NULL;
261
262 INIT_LIST_HEAD(&req->queue);
263
264 return &req->req;
265 }
266
267 /**
268 * is_ep_periodic - return true if the endpoint is in periodic mode.
269 * @hs_ep: The endpoint to query.
270 *
271 * Returns true if the endpoint is in periodic mode, meaning it is being
272 * used for an Interrupt or ISO transfer.
273 */
274 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
275 {
276 return hs_ep->periodic;
277 }
278
279 /**
280 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
281 * @hsotg: The device state.
282 * @hs_ep: The endpoint for the request
283 * @hs_req: The request being processed.
284 *
285 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
286 * of a request to ensure the buffer is ready for access by the caller.
287 */
288 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 struct s3c_hsotg_ep *hs_ep,
290 struct s3c_hsotg_req *hs_req)
291 {
292 struct usb_request *req = &hs_req->req;
293
294 /* ignore this if we're not moving any data */
295 if (hs_req->req.length == 0)
296 return;
297
298 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 }
300
301 /**
302 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
303 * @hsotg: The controller state.
304 * @hs_ep: The endpoint we're going to write for.
305 * @hs_req: The request to write data for.
306 *
307 * This is called when the TxFIFO has some space in it to hold a new
308 * transmission and we have something to give it. The actual setup of
309 * the data size is done elsewhere, so all we have to do is to actually
310 * write the data.
311 *
312 * The return value is zero if there is more space (or nothing was done)
313 * otherwise -ENOSPC is returned if the FIFO space was used up.
314 *
315 * This routine is only needed for PIO
316 */
317 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 struct s3c_hsotg_ep *hs_ep,
319 struct s3c_hsotg_req *hs_req)
320 {
321 bool periodic = is_ep_periodic(hs_ep);
322 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 int buf_pos = hs_req->req.actual;
324 int to_write = hs_ep->size_loaded;
325 void *data;
326 int can_write;
327 int pkt_round;
328 int max_transfer;
329
330 to_write -= (buf_pos - hs_ep->last_load);
331
332 /* if there's nothing to write, get out early */
333 if (to_write == 0)
334 return 0;
335
336 if (periodic && !hsotg->dedicated_fifos) {
337 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 int size_left;
339 int size_done;
340
341 /*
342 * work out how much data was loaded so we can calculate
343 * how much data is left in the fifo.
344 */
345
346 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347
348 /*
349 * if shared fifo, we cannot write anything until the
350 * previous data has been completely sent.
351 */
352 if (hs_ep->fifo_load != 0) {
353 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 return -ENOSPC;
355 }
356
357 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
358 __func__, size_left,
359 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
360
361 /* how much of the data has moved */
362 size_done = hs_ep->size_loaded - size_left;
363
364 /* how much data is left in the fifo */
365 can_write = hs_ep->fifo_load - size_done;
366 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
367 __func__, can_write);
368
369 can_write = hs_ep->fifo_size - can_write;
370 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
371 __func__, can_write);
372
373 if (can_write <= 0) {
374 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 return -ENOSPC;
376 }
377 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379
380 can_write &= 0xffff;
381 can_write *= 4;
382 } else {
383 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 dev_dbg(hsotg->dev,
385 "%s: no queue slots available (0x%08x)\n",
386 __func__, gnptxsts);
387
388 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 return -ENOSPC;
390 }
391
392 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393 can_write *= 4; /* fifo size is in 32bit quantities. */
394 }
395
396 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
397
398 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
399 __func__, gnptxsts, can_write, to_write, max_transfer);
400
401 /*
402 * limit to 512 bytes of data, it seems at least on the non-periodic
403 * FIFO, requests of >512 cause the endpoint to get stuck with a
404 * fragment of the end of the transfer in it.
405 */
406 if (can_write > 512 && !periodic)
407 can_write = 512;
408
409 /*
410 * limit the write to one max-packet size worth of data, but allow
411 * the transfer to return that it did not run out of fifo space
412 * doing it.
413 */
414 if (to_write > max_transfer) {
415 to_write = max_transfer;
416
417 /* it's needed only when we do not use dedicated fifos */
418 if (!hsotg->dedicated_fifos)
419 s3c_hsotg_en_gsint(hsotg,
420 periodic ? GINTSTS_PTXFEMP :
421 GINTSTS_NPTXFEMP);
422 }
423
424 /* see if we can write data */
425
426 if (to_write > can_write) {
427 to_write = can_write;
428 pkt_round = to_write % max_transfer;
429
430 /*
431 * Round the write down to an
432 * exact number of packets.
433 *
434 * Note, we do not currently check to see if we can ever
435 * write a full packet or not to the FIFO.
436 */
437
438 if (pkt_round)
439 to_write -= pkt_round;
440
441 /*
442 * enable correct FIFO interrupt to alert us when there
443 * is more room left.
444 */
445
446 /* it's needed only when we do not use dedicated fifos */
447 if (!hsotg->dedicated_fifos)
448 s3c_hsotg_en_gsint(hsotg,
449 periodic ? GINTSTS_PTXFEMP :
450 GINTSTS_NPTXFEMP);
451 }
452
453 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
454 to_write, hs_req->req.length, can_write, buf_pos);
455
456 if (to_write <= 0)
457 return -ENOSPC;
458
459 hs_req->req.actual = buf_pos + to_write;
460 hs_ep->total_data += to_write;
461
462 if (periodic)
463 hs_ep->fifo_load += to_write;
464
465 to_write = DIV_ROUND_UP(to_write, 4);
466 data = hs_req->req.buf + buf_pos;
467
468 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469
470 return (to_write >= can_write) ? -ENOSPC : 0;
471 }
472
473 /**
474 * get_ep_limit - get the maximum data legnth for this endpoint
475 * @hs_ep: The endpoint
476 *
477 * Return the maximum data that can be queued in one go on a given endpoint
478 * so that transfers that are too long can be split.
479 */
480 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
481 {
482 int index = hs_ep->index;
483 unsigned maxsize;
484 unsigned maxpkt;
485
486 if (index != 0) {
487 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
488 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489 } else {
490 maxsize = 64+64;
491 if (hs_ep->dir_in)
492 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493 else
494 maxpkt = 2;
495 }
496
497 /* we made the constant loading easier above by using +1 */
498 maxpkt--;
499 maxsize--;
500
501 /*
502 * constrain by packet count if maxpkts*pktsize is greater
503 * than the length register size.
504 */
505
506 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
507 maxsize = maxpkt * hs_ep->ep.maxpacket;
508
509 return maxsize;
510 }
511
512 /**
513 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
514 * @hsotg: The controller state.
515 * @hs_ep: The endpoint to process a request for
516 * @hs_req: The request to start.
517 * @continuing: True if we are doing more for the current request.
518 *
519 * Start the given request running by setting the endpoint registers
520 * appropriately, and writing any data to the FIFOs.
521 */
522 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 struct s3c_hsotg_ep *hs_ep,
524 struct s3c_hsotg_req *hs_req,
525 bool continuing)
526 {
527 struct usb_request *ureq = &hs_req->req;
528 int index = hs_ep->index;
529 int dir_in = hs_ep->dir_in;
530 u32 epctrl_reg;
531 u32 epsize_reg;
532 u32 epsize;
533 u32 ctrl;
534 unsigned length;
535 unsigned packets;
536 unsigned maxreq;
537
538 if (index != 0) {
539 if (hs_ep->req && !continuing) {
540 dev_err(hsotg->dev, "%s: active request\n", __func__);
541 WARN_ON(1);
542 return;
543 } else if (hs_ep->req != hs_req && continuing) {
544 dev_err(hsotg->dev,
545 "%s: continue different req\n", __func__);
546 WARN_ON(1);
547 return;
548 }
549 }
550
551 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
552 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553
554 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
555 __func__, readl(hsotg->regs + epctrl_reg), index,
556 hs_ep->dir_in ? "in" : "out");
557
558 /* If endpoint is stalled, we will restart request later */
559 ctrl = readl(hsotg->regs + epctrl_reg);
560
561 if (ctrl & DXEPCTL_STALL) {
562 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
563 return;
564 }
565
566 length = ureq->length - ureq->actual;
567 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
568 ureq->length, ureq->actual);
569 if (0)
570 dev_dbg(hsotg->dev,
571 "REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
572 ureq->buf, length, &ureq->dma,
573 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
574
575 maxreq = get_ep_limit(hs_ep);
576 if (length > maxreq) {
577 int round = maxreq % hs_ep->ep.maxpacket;
578
579 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
580 __func__, length, maxreq, round);
581
582 /* round down to multiple of packets */
583 if (round)
584 maxreq -= round;
585
586 length = maxreq;
587 }
588
589 if (length)
590 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
591 else
592 packets = 1; /* send one packet if length is zero. */
593
594 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
595 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
596 return;
597 }
598
599 if (dir_in && index != 0)
600 if (hs_ep->isochronous)
601 epsize = DXEPTSIZ_MC(packets);
602 else
603 epsize = DXEPTSIZ_MC(1);
604 else
605 epsize = 0;
606
607 if (index != 0 && ureq->zero) {
608 /*
609 * test for the packets being exactly right for the
610 * transfer
611 */
612
613 if (length == (packets * hs_ep->ep.maxpacket))
614 packets++;
615 }
616
617 epsize |= DXEPTSIZ_PKTCNT(packets);
618 epsize |= DXEPTSIZ_XFERSIZE(length);
619
620 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
621 __func__, packets, length, ureq->length, epsize, epsize_reg);
622
623 /* store the request as the current one we're doing */
624 hs_ep->req = hs_req;
625
626 /* write size / packets */
627 writel(epsize, hsotg->regs + epsize_reg);
628
629 if (using_dma(hsotg) && !continuing) {
630 unsigned int dma_reg;
631
632 /*
633 * write DMA address to control register, buffer already
634 * synced by s3c_hsotg_ep_queue().
635 */
636
637 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
638 writel(ureq->dma, hsotg->regs + dma_reg);
639
640 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
641 __func__, &ureq->dma, dma_reg);
642 }
643
644 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
645 ctrl |= DXEPCTL_USBACTEP;
646
647 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
648
649 /* For Setup request do not clear NAK */
650 if (hsotg->setup && index == 0)
651 hsotg->setup = 0;
652 else
653 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
654
655
656 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
657 writel(ctrl, hsotg->regs + epctrl_reg);
658
659 /*
660 * set these, it seems that DMA support increments past the end
661 * of the packet buffer so we need to calculate the length from
662 * this information.
663 */
664 hs_ep->size_loaded = length;
665 hs_ep->last_load = ureq->actual;
666
667 if (dir_in && !using_dma(hsotg)) {
668 /* set these anyway, we may need them for non-periodic in */
669 hs_ep->fifo_load = 0;
670
671 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
672 }
673
674 /*
675 * clear the INTknTXFEmpMsk when we start request, more as a aide
676 * to debugging to see what is going on.
677 */
678 if (dir_in)
679 writel(DIEPMSK_INTKNTXFEMPMSK,
680 hsotg->regs + DIEPINT(index));
681
682 /*
683 * Note, trying to clear the NAK here causes problems with transmit
684 * on the S3C6400 ending up with the TXFIFO becoming full.
685 */
686
687 /* check ep is enabled */
688 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
689 dev_warn(hsotg->dev,
690 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
691 index, readl(hsotg->regs + epctrl_reg));
692
693 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
694 __func__, readl(hsotg->regs + epctrl_reg));
695
696 /* enable ep interrupts */
697 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
698 }
699
700 /**
701 * s3c_hsotg_map_dma - map the DMA memory being used for the request
702 * @hsotg: The device state.
703 * @hs_ep: The endpoint the request is on.
704 * @req: The request being processed.
705 *
706 * We've been asked to queue a request, so ensure that the memory buffer
707 * is correctly setup for DMA. If we've been passed an extant DMA address
708 * then ensure the buffer has been synced to memory. If our buffer has no
709 * DMA memory, then we map the memory and mark our request to allow us to
710 * cleanup on completion.
711 */
712 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
713 struct s3c_hsotg_ep *hs_ep,
714 struct usb_request *req)
715 {
716 struct s3c_hsotg_req *hs_req = our_req(req);
717 int ret;
718
719 /* if the length is zero, ignore the DMA data */
720 if (hs_req->req.length == 0)
721 return 0;
722
723 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
724 if (ret)
725 goto dma_error;
726
727 return 0;
728
729 dma_error:
730 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
731 __func__, req->buf, req->length);
732
733 return -EIO;
734 }
735
736 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
737 gfp_t gfp_flags)
738 {
739 struct s3c_hsotg_req *hs_req = our_req(req);
740 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
741 struct dwc2_hsotg *hs = hs_ep->parent;
742 bool first;
743
744 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
745 ep->name, req, req->length, req->buf, req->no_interrupt,
746 req->zero, req->short_not_ok);
747
748 /* initialise status of the request */
749 INIT_LIST_HEAD(&hs_req->queue);
750 req->actual = 0;
751 req->status = -EINPROGRESS;
752
753 /* if we're using DMA, sync the buffers as necessary */
754 if (using_dma(hs)) {
755 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
756 if (ret)
757 return ret;
758 }
759
760 first = list_empty(&hs_ep->queue);
761 list_add_tail(&hs_req->queue, &hs_ep->queue);
762
763 if (first)
764 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
765
766 return 0;
767 }
768
769 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
770 gfp_t gfp_flags)
771 {
772 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
773 struct dwc2_hsotg *hs = hs_ep->parent;
774 unsigned long flags = 0;
775 int ret = 0;
776
777 spin_lock_irqsave(&hs->lock, flags);
778 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
779 spin_unlock_irqrestore(&hs->lock, flags);
780
781 return ret;
782 }
783
784 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
785 struct usb_request *req)
786 {
787 struct s3c_hsotg_req *hs_req = our_req(req);
788
789 kfree(hs_req);
790 }
791
792 /**
793 * s3c_hsotg_complete_oursetup - setup completion callback
794 * @ep: The endpoint the request was on.
795 * @req: The request completed.
796 *
797 * Called on completion of any requests the driver itself
798 * submitted that need cleaning up.
799 */
800 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
801 struct usb_request *req)
802 {
803 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
804 struct dwc2_hsotg *hsotg = hs_ep->parent;
805
806 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
807
808 s3c_hsotg_ep_free_request(ep, req);
809 }
810
811 /**
812 * ep_from_windex - convert control wIndex value to endpoint
813 * @hsotg: The driver state.
814 * @windex: The control request wIndex field (in host order).
815 *
816 * Convert the given wIndex into a pointer to an driver endpoint
817 * structure, or return NULL if it is not a valid endpoint.
818 */
819 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
820 u32 windex)
821 {
822 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
823 int dir = (windex & USB_DIR_IN) ? 1 : 0;
824 int idx = windex & 0x7F;
825
826 if (windex >= 0x100)
827 return NULL;
828
829 if (idx > hsotg->num_of_eps)
830 return NULL;
831
832 if (idx && ep->dir_in != dir)
833 return NULL;
834
835 return ep;
836 }
837
838 /**
839 * s3c_hsotg_send_reply - send reply to control request
840 * @hsotg: The device state
841 * @ep: Endpoint 0
842 * @buff: Buffer for request
843 * @length: Length of reply.
844 *
845 * Create a request and queue it on the given endpoint. This is useful as
846 * an internal method of sending replies to certain control requests, etc.
847 */
848 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
849 struct s3c_hsotg_ep *ep,
850 void *buff,
851 int length)
852 {
853 struct usb_request *req;
854 int ret;
855
856 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
857
858 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
859 hsotg->ep0_reply = req;
860 if (!req) {
861 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
862 return -ENOMEM;
863 }
864
865 req->buf = hsotg->ep0_buff;
866 req->length = length;
867 req->zero = 1; /* always do zero-length final transfer */
868 req->complete = s3c_hsotg_complete_oursetup;
869
870 if (length)
871 memcpy(req->buf, buff, length);
872 else
873 ep->sent_zlp = 1;
874
875 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
876 if (ret) {
877 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
878 return ret;
879 }
880
881 return 0;
882 }
883
884 /**
885 * s3c_hsotg_process_req_status - process request GET_STATUS
886 * @hsotg: The device state
887 * @ctrl: USB control request
888 */
889 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
890 struct usb_ctrlrequest *ctrl)
891 {
892 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
893 struct s3c_hsotg_ep *ep;
894 __le16 reply;
895 int ret;
896
897 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
898
899 if (!ep0->dir_in) {
900 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
901 return -EINVAL;
902 }
903
904 switch (ctrl->bRequestType & USB_RECIP_MASK) {
905 case USB_RECIP_DEVICE:
906 reply = cpu_to_le16(0); /* bit 0 => self powered,
907 * bit 1 => remote wakeup */
908 break;
909
910 case USB_RECIP_INTERFACE:
911 /* currently, the data result should be zero */
912 reply = cpu_to_le16(0);
913 break;
914
915 case USB_RECIP_ENDPOINT:
916 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
917 if (!ep)
918 return -ENOENT;
919
920 reply = cpu_to_le16(ep->halted ? 1 : 0);
921 break;
922
923 default:
924 return 0;
925 }
926
927 if (le16_to_cpu(ctrl->wLength) != 2)
928 return -EINVAL;
929
930 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
931 if (ret) {
932 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
933 return ret;
934 }
935
936 return 1;
937 }
938
939 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
940
941 /**
942 * get_ep_head - return the first request on the endpoint
943 * @hs_ep: The controller endpoint to get
944 *
945 * Get the first request on the endpoint.
946 */
947 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
948 {
949 if (list_empty(&hs_ep->queue))
950 return NULL;
951
952 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
953 }
954
955 /**
956 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
957 * @hsotg: The device state
958 * @ctrl: USB control request
959 */
960 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
961 struct usb_ctrlrequest *ctrl)
962 {
963 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
964 struct s3c_hsotg_req *hs_req;
965 bool restart;
966 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
967 struct s3c_hsotg_ep *ep;
968 int ret;
969 bool halted;
970
971 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
972 __func__, set ? "SET" : "CLEAR");
973
974 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
975 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
976 if (!ep) {
977 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
978 __func__, le16_to_cpu(ctrl->wIndex));
979 return -ENOENT;
980 }
981
982 switch (le16_to_cpu(ctrl->wValue)) {
983 case USB_ENDPOINT_HALT:
984 halted = ep->halted;
985
986 s3c_hsotg_ep_sethalt(&ep->ep, set);
987
988 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
989 if (ret) {
990 dev_err(hsotg->dev,
991 "%s: failed to send reply\n", __func__);
992 return ret;
993 }
994
995 /*
996 * we have to complete all requests for ep if it was
997 * halted, and the halt was cleared by CLEAR_FEATURE
998 */
999
1000 if (!set && halted) {
1001 /*
1002 * If we have request in progress,
1003 * then complete it
1004 */
1005 if (ep->req) {
1006 hs_req = ep->req;
1007 ep->req = NULL;
1008 list_del_init(&hs_req->queue);
1009 usb_gadget_giveback_request(&ep->ep,
1010 &hs_req->req);
1011 }
1012
1013 /* If we have pending request, then start it */
1014 restart = !list_empty(&ep->queue);
1015 if (restart) {
1016 hs_req = get_ep_head(ep);
1017 s3c_hsotg_start_req(hsotg, ep,
1018 hs_req, false);
1019 }
1020 }
1021
1022 break;
1023
1024 default:
1025 return -ENOENT;
1026 }
1027 } else
1028 return -ENOENT; /* currently only deal with endpoint */
1029
1030 return 1;
1031 }
1032
1033 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1034
1035 /**
1036 * s3c_hsotg_stall_ep0 - stall ep0
1037 * @hsotg: The device state
1038 *
1039 * Set stall for ep0 as response for setup request.
1040 */
1041 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1042 {
1043 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1044 u32 reg;
1045 u32 ctrl;
1046
1047 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1048 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1049
1050 /*
1051 * DxEPCTL_Stall will be cleared by EP once it has
1052 * taken effect, so no need to clear later.
1053 */
1054
1055 ctrl = readl(hsotg->regs + reg);
1056 ctrl |= DXEPCTL_STALL;
1057 ctrl |= DXEPCTL_CNAK;
1058 writel(ctrl, hsotg->regs + reg);
1059
1060 dev_dbg(hsotg->dev,
1061 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1062 ctrl, reg, readl(hsotg->regs + reg));
1063
1064 /*
1065 * complete won't be called, so we enqueue
1066 * setup request here
1067 */
1068 s3c_hsotg_enqueue_setup(hsotg);
1069 }
1070
1071 /**
1072 * s3c_hsotg_process_control - process a control request
1073 * @hsotg: The device state
1074 * @ctrl: The control request received
1075 *
1076 * The controller has received the SETUP phase of a control request, and
1077 * needs to work out what to do next (and whether to pass it on to the
1078 * gadget driver).
1079 */
1080 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1081 struct usb_ctrlrequest *ctrl)
1082 {
1083 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1084 int ret = 0;
1085 u32 dcfg;
1086
1087 ep0->sent_zlp = 0;
1088
1089 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1090 ctrl->bRequest, ctrl->bRequestType,
1091 ctrl->wValue, ctrl->wLength);
1092
1093 /*
1094 * record the direction of the request, for later use when enquing
1095 * packets onto EP0.
1096 */
1097
1098 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1099 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1100
1101 /*
1102 * if we've no data with this request, then the last part of the
1103 * transaction is going to implicitly be IN.
1104 */
1105 if (ctrl->wLength == 0)
1106 ep0->dir_in = 1;
1107
1108 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1109 switch (ctrl->bRequest) {
1110 case USB_REQ_SET_ADDRESS:
1111 dcfg = readl(hsotg->regs + DCFG);
1112 dcfg &= ~DCFG_DEVADDR_MASK;
1113 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1114 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1115 writel(dcfg, hsotg->regs + DCFG);
1116
1117 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1118
1119 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1120 return;
1121
1122 case USB_REQ_GET_STATUS:
1123 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1124 break;
1125
1126 case USB_REQ_CLEAR_FEATURE:
1127 case USB_REQ_SET_FEATURE:
1128 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1129 break;
1130 }
1131 }
1132
1133 /* as a fallback, try delivering it to the driver to deal with */
1134
1135 if (ret == 0 && hsotg->driver) {
1136 spin_unlock(&hsotg->lock);
1137 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1138 spin_lock(&hsotg->lock);
1139 if (ret < 0)
1140 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1141 }
1142
1143 /*
1144 * the request is either unhandlable, or is not formatted correctly
1145 * so respond with a STALL for the status stage to indicate failure.
1146 */
1147
1148 if (ret < 0)
1149 s3c_hsotg_stall_ep0(hsotg);
1150 }
1151
1152 /**
1153 * s3c_hsotg_complete_setup - completion of a setup transfer
1154 * @ep: The endpoint the request was on.
1155 * @req: The request completed.
1156 *
1157 * Called on completion of any requests the driver itself submitted for
1158 * EP0 setup packets
1159 */
1160 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1161 struct usb_request *req)
1162 {
1163 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1164 struct dwc2_hsotg *hsotg = hs_ep->parent;
1165
1166 if (req->status < 0) {
1167 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1168 return;
1169 }
1170
1171 spin_lock(&hsotg->lock);
1172 if (req->actual == 0)
1173 s3c_hsotg_enqueue_setup(hsotg);
1174 else
1175 s3c_hsotg_process_control(hsotg, req->buf);
1176 spin_unlock(&hsotg->lock);
1177 }
1178
1179 /**
1180 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1181 * @hsotg: The device state.
1182 *
1183 * Enqueue a request on EP0 if necessary to received any SETUP packets
1184 * received from the host.
1185 */
1186 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1187 {
1188 struct usb_request *req = hsotg->ctrl_req;
1189 struct s3c_hsotg_req *hs_req = our_req(req);
1190 int ret;
1191
1192 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1193
1194 req->zero = 0;
1195 req->length = 8;
1196 req->buf = hsotg->ctrl_buff;
1197 req->complete = s3c_hsotg_complete_setup;
1198
1199 if (!list_empty(&hs_req->queue)) {
1200 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1201 return;
1202 }
1203
1204 hsotg->eps[0].dir_in = 0;
1205
1206 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1207 if (ret < 0) {
1208 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1209 /*
1210 * Don't think there's much we can do other than watch the
1211 * driver fail.
1212 */
1213 }
1214 }
1215
1216 /**
1217 * s3c_hsotg_complete_request - complete a request given to us
1218 * @hsotg: The device state.
1219 * @hs_ep: The endpoint the request was on.
1220 * @hs_req: The request to complete.
1221 * @result: The result code (0 => Ok, otherwise errno)
1222 *
1223 * The given request has finished, so call the necessary completion
1224 * if it has one and then look to see if we can start a new request
1225 * on the endpoint.
1226 *
1227 * Note, expects the ep to already be locked as appropriate.
1228 */
1229 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1230 struct s3c_hsotg_ep *hs_ep,
1231 struct s3c_hsotg_req *hs_req,
1232 int result)
1233 {
1234 bool restart;
1235
1236 if (!hs_req) {
1237 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1238 return;
1239 }
1240
1241 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1242 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1243
1244 /*
1245 * only replace the status if we've not already set an error
1246 * from a previous transaction
1247 */
1248
1249 if (hs_req->req.status == -EINPROGRESS)
1250 hs_req->req.status = result;
1251
1252 hs_ep->req = NULL;
1253 list_del_init(&hs_req->queue);
1254
1255 if (using_dma(hsotg))
1256 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1257
1258 /*
1259 * call the complete request with the locks off, just in case the
1260 * request tries to queue more work for this endpoint.
1261 */
1262
1263 if (hs_req->req.complete) {
1264 spin_unlock(&hsotg->lock);
1265 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1266 spin_lock(&hsotg->lock);
1267 }
1268
1269 /*
1270 * Look to see if there is anything else to do. Note, the completion
1271 * of the previous request may have caused a new request to be started
1272 * so be careful when doing this.
1273 */
1274
1275 if (!hs_ep->req && result >= 0) {
1276 restart = !list_empty(&hs_ep->queue);
1277 if (restart) {
1278 hs_req = get_ep_head(hs_ep);
1279 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1280 }
1281 }
1282 }
1283
1284 /**
1285 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1286 * @hsotg: The device state.
1287 * @ep_idx: The endpoint index for the data
1288 * @size: The size of data in the fifo, in bytes
1289 *
1290 * The FIFO status shows there is data to read from the FIFO for a given
1291 * endpoint, so sort out whether we need to read the data into a request
1292 * that has been made for that endpoint.
1293 */
1294 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1295 {
1296 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1297 struct s3c_hsotg_req *hs_req = hs_ep->req;
1298 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1299 int to_read;
1300 int max_req;
1301 int read_ptr;
1302
1303
1304 if (!hs_req) {
1305 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1306 int ptr;
1307
1308 dev_warn(hsotg->dev,
1309 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1310 __func__, size, ep_idx, epctl);
1311
1312 /* dump the data from the FIFO, we've nothing we can do */
1313 for (ptr = 0; ptr < size; ptr += 4)
1314 (void)readl(fifo);
1315
1316 return;
1317 }
1318
1319 to_read = size;
1320 read_ptr = hs_req->req.actual;
1321 max_req = hs_req->req.length - read_ptr;
1322
1323 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1324 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1325
1326 if (to_read > max_req) {
1327 /*
1328 * more data appeared than we where willing
1329 * to deal with in this request.
1330 */
1331
1332 /* currently we don't deal this */
1333 WARN_ON_ONCE(1);
1334 }
1335
1336 hs_ep->total_data += to_read;
1337 hs_req->req.actual += to_read;
1338 to_read = DIV_ROUND_UP(to_read, 4);
1339
1340 /*
1341 * note, we might over-write the buffer end by 3 bytes depending on
1342 * alignment of the data.
1343 */
1344 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1345 }
1346
1347 /**
1348 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1349 * @hsotg: The device instance
1350 * @req: The request currently on this endpoint
1351 *
1352 * Generate a zero-length IN packet request for terminating a SETUP
1353 * transaction.
1354 *
1355 * Note, since we don't write any data to the TxFIFO, then it is
1356 * currently believed that we do not need to wait for any space in
1357 * the TxFIFO.
1358 */
1359 static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1360 struct s3c_hsotg_req *req)
1361 {
1362 u32 ctrl;
1363
1364 if (!req) {
1365 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1366 return;
1367 }
1368
1369 if (req->req.length == 0) {
1370 hsotg->eps[0].sent_zlp = 1;
1371 s3c_hsotg_enqueue_setup(hsotg);
1372 return;
1373 }
1374
1375 hsotg->eps[0].dir_in = 1;
1376 hsotg->eps[0].sent_zlp = 1;
1377
1378 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1379
1380 /* issue a zero-sized packet to terminate this */
1381 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1382 DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1383
1384 ctrl = readl(hsotg->regs + DIEPCTL0);
1385 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1386 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1387 ctrl |= DXEPCTL_USBACTEP;
1388 writel(ctrl, hsotg->regs + DIEPCTL0);
1389 }
1390
1391 /**
1392 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1393 * @hsotg: The device instance
1394 * @epnum: The endpoint received from
1395 * @was_setup: Set if processing a SetupDone event.
1396 *
1397 * The RXFIFO has delivered an OutDone event, which means that the data
1398 * transfer for an OUT endpoint has been completed, either by a short
1399 * packet or by the finish of a transfer.
1400 */
1401 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1402 int epnum, bool was_setup)
1403 {
1404 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1406 struct s3c_hsotg_req *hs_req = hs_ep->req;
1407 struct usb_request *req = &hs_req->req;
1408 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409 int result = 0;
1410
1411 if (!hs_req) {
1412 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1413 return;
1414 }
1415
1416 if (using_dma(hsotg)) {
1417 unsigned size_done;
1418
1419 /*
1420 * Calculate the size of the transfer by checking how much
1421 * is left in the endpoint size register and then working it
1422 * out from the amount we loaded for the transfer.
1423 *
1424 * We need to do this as DMA pointers are always 32bit aligned
1425 * so may overshoot/undershoot the transfer.
1426 */
1427
1428 size_done = hs_ep->size_loaded - size_left;
1429 size_done += hs_ep->last_load;
1430
1431 req->actual = size_done;
1432 }
1433
1434 /* if there is more request to do, schedule new transfer */
1435 if (req->actual < req->length && size_left == 0) {
1436 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1437 return;
1438 } else if (epnum == 0) {
1439 /*
1440 * After was_setup = 1 =>
1441 * set CNAK for non Setup requests
1442 */
1443 hsotg->setup = was_setup ? 0 : 1;
1444 }
1445
1446 if (req->actual < req->length && req->short_not_ok) {
1447 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1448 __func__, req->actual, req->length);
1449
1450 /*
1451 * todo - what should we return here? there's no one else
1452 * even bothering to check the status.
1453 */
1454 }
1455
1456 if (epnum == 0) {
1457 /*
1458 * Condition req->complete != s3c_hsotg_complete_setup says:
1459 * send ZLP when we have an asynchronous request from gadget
1460 */
1461 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1462 s3c_hsotg_send_zlp(hsotg, hs_req);
1463 }
1464
1465 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1466 }
1467
1468 /**
1469 * s3c_hsotg_read_frameno - read current frame number
1470 * @hsotg: The device instance
1471 *
1472 * Return the current frame number
1473 */
1474 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1475 {
1476 u32 dsts;
1477
1478 dsts = readl(hsotg->regs + DSTS);
1479 dsts &= DSTS_SOFFN_MASK;
1480 dsts >>= DSTS_SOFFN_SHIFT;
1481
1482 return dsts;
1483 }
1484
1485 /**
1486 * s3c_hsotg_handle_rx - RX FIFO has data
1487 * @hsotg: The device instance
1488 *
1489 * The IRQ handler has detected that the RX FIFO has some data in it
1490 * that requires processing, so find out what is in there and do the
1491 * appropriate read.
1492 *
1493 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1494 * chunks, so if you have x packets received on an endpoint you'll get x
1495 * FIFO events delivered, each with a packet's worth of data in it.
1496 *
1497 * When using DMA, we should not be processing events from the RXFIFO
1498 * as the actual data should be sent to the memory directly and we turn
1499 * on the completion interrupts to get notifications of transfer completion.
1500 */
1501 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1502 {
1503 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1504 u32 epnum, status, size;
1505
1506 WARN_ON(using_dma(hsotg));
1507
1508 epnum = grxstsr & GRXSTS_EPNUM_MASK;
1509 status = grxstsr & GRXSTS_PKTSTS_MASK;
1510
1511 size = grxstsr & GRXSTS_BYTECNT_MASK;
1512 size >>= GRXSTS_BYTECNT_SHIFT;
1513
1514 if (1)
1515 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1516 __func__, grxstsr, size, epnum);
1517
1518 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1519 case GRXSTS_PKTSTS_GLOBALOUTNAK:
1520 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1521 break;
1522
1523 case GRXSTS_PKTSTS_OUTDONE:
1524 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1525 s3c_hsotg_read_frameno(hsotg));
1526
1527 if (!using_dma(hsotg))
1528 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1529 break;
1530
1531 case GRXSTS_PKTSTS_SETUPDONE:
1532 dev_dbg(hsotg->dev,
1533 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1534 s3c_hsotg_read_frameno(hsotg),
1535 readl(hsotg->regs + DOEPCTL(0)));
1536
1537 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1538 break;
1539
1540 case GRXSTS_PKTSTS_OUTRX:
1541 s3c_hsotg_rx_data(hsotg, epnum, size);
1542 break;
1543
1544 case GRXSTS_PKTSTS_SETUPRX:
1545 dev_dbg(hsotg->dev,
1546 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1547 s3c_hsotg_read_frameno(hsotg),
1548 readl(hsotg->regs + DOEPCTL(0)));
1549
1550 s3c_hsotg_rx_data(hsotg, epnum, size);
1551 break;
1552
1553 default:
1554 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1555 __func__, grxstsr);
1556
1557 s3c_hsotg_dump(hsotg);
1558 break;
1559 }
1560 }
1561
1562 /**
1563 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1564 * @mps: The maximum packet size in bytes.
1565 */
1566 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1567 {
1568 switch (mps) {
1569 case 64:
1570 return D0EPCTL_MPS_64;
1571 case 32:
1572 return D0EPCTL_MPS_32;
1573 case 16:
1574 return D0EPCTL_MPS_16;
1575 case 8:
1576 return D0EPCTL_MPS_8;
1577 }
1578
1579 /* bad max packet size, warn and return invalid result */
1580 WARN_ON(1);
1581 return (u32)-1;
1582 }
1583
1584 /**
1585 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1586 * @hsotg: The driver state.
1587 * @ep: The index number of the endpoint
1588 * @mps: The maximum packet size in bytes
1589 *
1590 * Configure the maximum packet size for the given endpoint, updating
1591 * the hardware control registers to reflect this.
1592 */
1593 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1594 unsigned int ep, unsigned int mps)
1595 {
1596 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1597 void __iomem *regs = hsotg->regs;
1598 u32 mpsval;
1599 u32 mcval;
1600 u32 reg;
1601
1602 if (ep == 0) {
1603 /* EP0 is a special case */
1604 mpsval = s3c_hsotg_ep0_mps(mps);
1605 if (mpsval > 3)
1606 goto bad_mps;
1607 hs_ep->ep.maxpacket = mps;
1608 hs_ep->mc = 1;
1609 } else {
1610 mpsval = mps & DXEPCTL_MPS_MASK;
1611 if (mpsval > 1024)
1612 goto bad_mps;
1613 mcval = ((mps >> 11) & 0x3) + 1;
1614 hs_ep->mc = mcval;
1615 if (mcval > 3)
1616 goto bad_mps;
1617 hs_ep->ep.maxpacket = mpsval;
1618 }
1619
1620 /*
1621 * update both the in and out endpoint controldir_ registers, even
1622 * if one of the directions may not be in use.
1623 */
1624
1625 reg = readl(regs + DIEPCTL(ep));
1626 reg &= ~DXEPCTL_MPS_MASK;
1627 reg |= mpsval;
1628 writel(reg, regs + DIEPCTL(ep));
1629
1630 if (ep) {
1631 reg = readl(regs + DOEPCTL(ep));
1632 reg &= ~DXEPCTL_MPS_MASK;
1633 reg |= mpsval;
1634 writel(reg, regs + DOEPCTL(ep));
1635 }
1636
1637 return;
1638
1639 bad_mps:
1640 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1641 }
1642
1643 /**
1644 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1645 * @hsotg: The driver state
1646 * @idx: The index for the endpoint (0..15)
1647 */
1648 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1649 {
1650 int timeout;
1651 int val;
1652
1653 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1654 hsotg->regs + GRSTCTL);
1655
1656 /* wait until the fifo is flushed */
1657 timeout = 100;
1658
1659 while (1) {
1660 val = readl(hsotg->regs + GRSTCTL);
1661
1662 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1663 break;
1664
1665 if (--timeout == 0) {
1666 dev_err(hsotg->dev,
1667 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1668 __func__, val);
1669 break;
1670 }
1671
1672 udelay(1);
1673 }
1674 }
1675
1676 /**
1677 * s3c_hsotg_trytx - check to see if anything needs transmitting
1678 * @hsotg: The driver state
1679 * @hs_ep: The driver endpoint to check.
1680 *
1681 * Check to see if there is a request that has data to send, and if so
1682 * make an attempt to write data into the FIFO.
1683 */
1684 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1685 struct s3c_hsotg_ep *hs_ep)
1686 {
1687 struct s3c_hsotg_req *hs_req = hs_ep->req;
1688
1689 if (!hs_ep->dir_in || !hs_req) {
1690 /**
1691 * if request is not enqueued, we disable interrupts
1692 * for endpoints, excepting ep0
1693 */
1694 if (hs_ep->index != 0)
1695 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1696 hs_ep->dir_in, 0);
1697 return 0;
1698 }
1699
1700 if (hs_req->req.actual < hs_req->req.length) {
1701 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1702 hs_ep->index);
1703 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1704 }
1705
1706 return 0;
1707 }
1708
1709 /**
1710 * s3c_hsotg_complete_in - complete IN transfer
1711 * @hsotg: The device state.
1712 * @hs_ep: The endpoint that has just completed.
1713 *
1714 * An IN transfer has been completed, update the transfer's state and then
1715 * call the relevant completion routines.
1716 */
1717 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1718 struct s3c_hsotg_ep *hs_ep)
1719 {
1720 struct s3c_hsotg_req *hs_req = hs_ep->req;
1721 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1722 int size_left, size_done;
1723
1724 if (!hs_req) {
1725 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1726 return;
1727 }
1728
1729 /* Finish ZLP handling for IN EP0 transactions */
1730 if (hsotg->eps[0].sent_zlp) {
1731 dev_dbg(hsotg->dev, "zlp packet received\n");
1732 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1733 return;
1734 }
1735
1736 /*
1737 * Calculate the size of the transfer by checking how much is left
1738 * in the endpoint size register and then working it out from
1739 * the amount we loaded for the transfer.
1740 *
1741 * We do this even for DMA, as the transfer may have incremented
1742 * past the end of the buffer (DMA transfers are always 32bit
1743 * aligned).
1744 */
1745
1746 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1747
1748 size_done = hs_ep->size_loaded - size_left;
1749 size_done += hs_ep->last_load;
1750
1751 if (hs_req->req.actual != size_done)
1752 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1753 __func__, hs_req->req.actual, size_done);
1754
1755 hs_req->req.actual = size_done;
1756 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1757 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1758
1759 /*
1760 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1761 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1762 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1763 * inform the host that no more data is available.
1764 * The state of req.zero member is checked to be sure that the value to
1765 * send is smaller than wValue expected from host.
1766 * Check req.length to NOT send another ZLP when the current one is
1767 * under completion (the one for which this completion has been called).
1768 */
1769 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1770 hs_req->req.length == hs_req->req.actual &&
1771 !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1772
1773 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1774 s3c_hsotg_send_zlp(hsotg, hs_req);
1775
1776 return;
1777 }
1778
1779 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1780 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1781 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1782 } else
1783 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1784 }
1785
1786 /**
1787 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1788 * @hsotg: The driver state
1789 * @idx: The index for the endpoint (0..15)
1790 * @dir_in: Set if this is an IN endpoint
1791 *
1792 * Process and clear any interrupt pending for an individual endpoint
1793 */
1794 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1795 int dir_in)
1796 {
1797 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1798 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1799 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1800 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1801 u32 ints;
1802 u32 ctrl;
1803
1804 ints = readl(hsotg->regs + epint_reg);
1805 ctrl = readl(hsotg->regs + epctl_reg);
1806
1807 /* Clear endpoint interrupts */
1808 writel(ints, hsotg->regs + epint_reg);
1809
1810 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1811 __func__, idx, dir_in ? "in" : "out", ints);
1812
1813 if (ints & DXEPINT_XFERCOMPL) {
1814 if (hs_ep->isochronous && hs_ep->interval == 1) {
1815 if (ctrl & DXEPCTL_EOFRNUM)
1816 ctrl |= DXEPCTL_SETEVENFR;
1817 else
1818 ctrl |= DXEPCTL_SETODDFR;
1819 writel(ctrl, hsotg->regs + epctl_reg);
1820 }
1821
1822 dev_dbg(hsotg->dev,
1823 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1824 __func__, readl(hsotg->regs + epctl_reg),
1825 readl(hsotg->regs + epsiz_reg));
1826
1827 /*
1828 * we get OutDone from the FIFO, so we only need to look
1829 * at completing IN requests here
1830 */
1831 if (dir_in) {
1832 s3c_hsotg_complete_in(hsotg, hs_ep);
1833
1834 if (idx == 0 && !hs_ep->req)
1835 s3c_hsotg_enqueue_setup(hsotg);
1836 } else if (using_dma(hsotg)) {
1837 /*
1838 * We're using DMA, we need to fire an OutDone here
1839 * as we ignore the RXFIFO.
1840 */
1841
1842 s3c_hsotg_handle_outdone(hsotg, idx, false);
1843 }
1844 }
1845
1846 if (ints & DXEPINT_EPDISBLD) {
1847 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1848
1849 if (dir_in) {
1850 int epctl = readl(hsotg->regs + epctl_reg);
1851
1852 s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1853
1854 if ((epctl & DXEPCTL_STALL) &&
1855 (epctl & DXEPCTL_EPTYPE_BULK)) {
1856 int dctl = readl(hsotg->regs + DCTL);
1857
1858 dctl |= DCTL_CGNPINNAK;
1859 writel(dctl, hsotg->regs + DCTL);
1860 }
1861 }
1862 }
1863
1864 if (ints & DXEPINT_AHBERR)
1865 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1866
1867 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
1868 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1869
1870 if (using_dma(hsotg) && idx == 0) {
1871 /*
1872 * this is the notification we've received a
1873 * setup packet. In non-DMA mode we'd get this
1874 * from the RXFIFO, instead we need to process
1875 * the setup here.
1876 */
1877
1878 if (dir_in)
1879 WARN_ON_ONCE(1);
1880 else
1881 s3c_hsotg_handle_outdone(hsotg, 0, true);
1882 }
1883 }
1884
1885 if (ints & DXEPINT_BACK2BACKSETUP)
1886 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1887
1888 if (dir_in && !hs_ep->isochronous) {
1889 /* not sure if this is important, but we'll clear it anyway */
1890 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1891 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1892 __func__, idx);
1893 }
1894
1895 /* this probably means something bad is happening */
1896 if (ints & DIEPMSK_INTKNEPMISMSK) {
1897 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1898 __func__, idx);
1899 }
1900
1901 /* FIFO has space or is empty (see GAHBCFG) */
1902 if (hsotg->dedicated_fifos &&
1903 ints & DIEPMSK_TXFIFOEMPTY) {
1904 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1905 __func__, idx);
1906 if (!using_dma(hsotg))
1907 s3c_hsotg_trytx(hsotg, hs_ep);
1908 }
1909 }
1910 }
1911
1912 /**
1913 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1914 * @hsotg: The device state.
1915 *
1916 * Handle updating the device settings after the enumeration phase has
1917 * been completed.
1918 */
1919 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1920 {
1921 u32 dsts = readl(hsotg->regs + DSTS);
1922 int ep0_mps = 0, ep_mps = 8;
1923
1924 /*
1925 * This should signal the finish of the enumeration phase
1926 * of the USB handshaking, so we should now know what rate
1927 * we connected at.
1928 */
1929
1930 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1931
1932 /*
1933 * note, since we're limited by the size of transfer on EP0, and
1934 * it seems IN transfers must be a even number of packets we do
1935 * not advertise a 64byte MPS on EP0.
1936 */
1937
1938 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1939 switch (dsts & DSTS_ENUMSPD_MASK) {
1940 case DSTS_ENUMSPD_FS:
1941 case DSTS_ENUMSPD_FS48:
1942 hsotg->gadget.speed = USB_SPEED_FULL;
1943 ep0_mps = EP0_MPS_LIMIT;
1944 ep_mps = 1023;
1945 break;
1946
1947 case DSTS_ENUMSPD_HS:
1948 hsotg->gadget.speed = USB_SPEED_HIGH;
1949 ep0_mps = EP0_MPS_LIMIT;
1950 ep_mps = 1024;
1951 break;
1952
1953 case DSTS_ENUMSPD_LS:
1954 hsotg->gadget.speed = USB_SPEED_LOW;
1955 /*
1956 * note, we don't actually support LS in this driver at the
1957 * moment, and the documentation seems to imply that it isn't
1958 * supported by the PHYs on some of the devices.
1959 */
1960 break;
1961 }
1962 dev_info(hsotg->dev, "new device is %s\n",
1963 usb_speed_string(hsotg->gadget.speed));
1964
1965 /*
1966 * we should now know the maximum packet size for an
1967 * endpoint, so set the endpoints to a default value.
1968 */
1969
1970 if (ep0_mps) {
1971 int i;
1972 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1973 for (i = 1; i < hsotg->num_of_eps; i++)
1974 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1975 }
1976
1977 /* ensure after enumeration our EP0 is active */
1978
1979 s3c_hsotg_enqueue_setup(hsotg);
1980
1981 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1982 readl(hsotg->regs + DIEPCTL0),
1983 readl(hsotg->regs + DOEPCTL0));
1984 }
1985
1986 /**
1987 * kill_all_requests - remove all requests from the endpoint's queue
1988 * @hsotg: The device state.
1989 * @ep: The endpoint the requests may be on.
1990 * @result: The result code to use.
1991 * @force: Force removal of any current requests
1992 *
1993 * Go through the requests on the given endpoint and mark them
1994 * completed with the given result code.
1995 */
1996 static void kill_all_requests(struct dwc2_hsotg *hsotg,
1997 struct s3c_hsotg_ep *ep,
1998 int result, bool force)
1999 {
2000 struct s3c_hsotg_req *req, *treq;
2001 unsigned size;
2002
2003 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2004 /*
2005 * currently, we can't do much about an already
2006 * running request on an in endpoint
2007 */
2008
2009 if (ep->req == req && ep->dir_in && !force)
2010 continue;
2011
2012 s3c_hsotg_complete_request(hsotg, ep, req,
2013 result);
2014 }
2015 if (!hsotg->dedicated_fifos)
2016 return;
2017 size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2018 if (size < ep->fifo_size)
2019 s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2020 }
2021
2022 /**
2023 * s3c_hsotg_disconnect - disconnect service
2024 * @hsotg: The device state.
2025 *
2026 * The device has been disconnected. Remove all current
2027 * transactions and signal the gadget driver that this
2028 * has happened.
2029 */
2030 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2031 {
2032 unsigned ep;
2033
2034 if (!hsotg->connected)
2035 return;
2036
2037 hsotg->connected = 0;
2038 for (ep = 0; ep < hsotg->num_of_eps; ep++)
2039 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2040
2041 call_gadget(hsotg, disconnect);
2042 }
2043 EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2044
2045 /**
2046 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2047 * @hsotg: The device state:
2048 * @periodic: True if this is a periodic FIFO interrupt
2049 */
2050 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2051 {
2052 struct s3c_hsotg_ep *ep;
2053 int epno, ret;
2054
2055 /* look through for any more data to transmit */
2056
2057 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2058 ep = &hsotg->eps[epno];
2059
2060 if (!ep->dir_in)
2061 continue;
2062
2063 if ((periodic && !ep->periodic) ||
2064 (!periodic && ep->periodic))
2065 continue;
2066
2067 ret = s3c_hsotg_trytx(hsotg, ep);
2068 if (ret < 0)
2069 break;
2070 }
2071 }
2072
2073 /* IRQ flags which will trigger a retry around the IRQ loop */
2074 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2075 GINTSTS_PTXFEMP | \
2076 GINTSTS_RXFLVL)
2077
2078 /**
2079 * s3c_hsotg_corereset - issue softreset to the core
2080 * @hsotg: The device state
2081 *
2082 * Issue a soft reset to the core, and await the core finishing it.
2083 */
2084 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2085 {
2086 int timeout;
2087 u32 grstctl;
2088
2089 dev_dbg(hsotg->dev, "resetting core\n");
2090
2091 /* issue soft reset */
2092 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2093
2094 timeout = 10000;
2095 do {
2096 grstctl = readl(hsotg->regs + GRSTCTL);
2097 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2098
2099 if (grstctl & GRSTCTL_CSFTRST) {
2100 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2101 return -EINVAL;
2102 }
2103
2104 timeout = 10000;
2105
2106 while (1) {
2107 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2108
2109 if (timeout-- < 0) {
2110 dev_info(hsotg->dev,
2111 "%s: reset failed, GRSTCTL=%08x\n",
2112 __func__, grstctl);
2113 return -ETIMEDOUT;
2114 }
2115
2116 if (!(grstctl & GRSTCTL_AHBIDLE))
2117 continue;
2118
2119 break; /* reset done */
2120 }
2121
2122 dev_dbg(hsotg->dev, "reset successful\n");
2123 return 0;
2124 }
2125
2126 /**
2127 * s3c_hsotg_core_init - issue softreset to the core
2128 * @hsotg: The device state
2129 *
2130 * Issue a soft reset to the core, and await the core finishing it.
2131 */
2132 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2133 {
2134 s3c_hsotg_corereset(hsotg);
2135
2136 /*
2137 * we must now enable ep0 ready for host detection and then
2138 * set configuration.
2139 */
2140
2141 /* set the PLL on, remove the HNP/SRP and set the PHY */
2142 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2143 (0x5 << 10), hsotg->regs + GUSBCFG);
2144
2145 s3c_hsotg_init_fifo(hsotg);
2146
2147 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2148
2149 writel(1 << 18 | DCFG_DEVSPD_HS, hsotg->regs + DCFG);
2150
2151 /* Clear any pending OTG interrupts */
2152 writel(0xffffffff, hsotg->regs + GOTGINT);
2153
2154 /* Clear any pending interrupts */
2155 writel(0xffffffff, hsotg->regs + GINTSTS);
2156
2157 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2158 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2159 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2160 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2161 GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2162 hsotg->regs + GINTMSK);
2163
2164 if (using_dma(hsotg))
2165 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2166 GAHBCFG_HBSTLEN_INCR4,
2167 hsotg->regs + GAHBCFG);
2168 else
2169 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2170 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2171 GAHBCFG_GLBL_INTR_EN,
2172 hsotg->regs + GAHBCFG);
2173
2174 /*
2175 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2176 * when we have no data to transfer. Otherwise we get being flooded by
2177 * interrupts.
2178 */
2179
2180 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2181 DIEPMSK_INTKNTXFEMPMSK : 0) |
2182 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2183 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2184 DIEPMSK_INTKNEPMISMSK,
2185 hsotg->regs + DIEPMSK);
2186
2187 /*
2188 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2189 * DMA mode we may need this.
2190 */
2191 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2192 DIEPMSK_TIMEOUTMSK) : 0) |
2193 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2194 DOEPMSK_SETUPMSK,
2195 hsotg->regs + DOEPMSK);
2196
2197 writel(0, hsotg->regs + DAINTMSK);
2198
2199 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2200 readl(hsotg->regs + DIEPCTL0),
2201 readl(hsotg->regs + DOEPCTL0));
2202
2203 /* enable in and out endpoint interrupts */
2204 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2205
2206 /*
2207 * Enable the RXFIFO when in slave mode, as this is how we collect
2208 * the data. In DMA mode, we get events from the FIFO but also
2209 * things we cannot process, so do not use it.
2210 */
2211 if (!using_dma(hsotg))
2212 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2213
2214 /* Enable interrupts for EP0 in and out */
2215 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2216 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2217
2218 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2219 udelay(10); /* see openiboot */
2220 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2221
2222 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2223
2224 /*
2225 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2226 * writing to the EPCTL register..
2227 */
2228
2229 /* set to read 1 8byte packet */
2230 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2231 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2232
2233 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2234 DXEPCTL_CNAK | DXEPCTL_EPENA |
2235 DXEPCTL_USBACTEP,
2236 hsotg->regs + DOEPCTL0);
2237
2238 /* enable, but don't activate EP0in */
2239 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2240 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2241
2242 s3c_hsotg_enqueue_setup(hsotg);
2243
2244 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2245 readl(hsotg->regs + DIEPCTL0),
2246 readl(hsotg->regs + DOEPCTL0));
2247
2248 /* clear global NAKs */
2249 writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2250 hsotg->regs + DCTL);
2251
2252 /* must be at-least 3ms to allow bus to see disconnect */
2253 mdelay(3);
2254
2255 hsotg->last_rst = jiffies;
2256 }
2257
2258 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2259 {
2260 /* set the soft-disconnect bit */
2261 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2262 }
2263
2264 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2265 {
2266 /* remove the soft-disconnect and let's go */
2267 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2268 }
2269
2270 /**
2271 * s3c_hsotg_irq - handle device interrupt
2272 * @irq: The IRQ number triggered
2273 * @pw: The pw value when registered the handler.
2274 */
2275 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2276 {
2277 struct dwc2_hsotg *hsotg = pw;
2278 int retry_count = 8;
2279 u32 gintsts;
2280 u32 gintmsk;
2281
2282 spin_lock(&hsotg->lock);
2283 irq_retry:
2284 gintsts = readl(hsotg->regs + GINTSTS);
2285 gintmsk = readl(hsotg->regs + GINTMSK);
2286
2287 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2288 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2289
2290 gintsts &= gintmsk;
2291
2292 if (gintsts & GINTSTS_ENUMDONE) {
2293 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2294
2295 s3c_hsotg_irq_enumdone(hsotg);
2296 hsotg->connected = 1;
2297 }
2298
2299 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2300 u32 daint = readl(hsotg->regs + DAINT);
2301 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2302 u32 daint_out, daint_in;
2303 int ep;
2304
2305 daint &= daintmsk;
2306 daint_out = daint >> DAINT_OUTEP_SHIFT;
2307 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2308
2309 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2310
2311 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2312 if (daint_out & 1)
2313 s3c_hsotg_epint(hsotg, ep, 0);
2314 }
2315
2316 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2317 if (daint_in & 1)
2318 s3c_hsotg_epint(hsotg, ep, 1);
2319 }
2320 }
2321
2322 if (gintsts & GINTSTS_USBRST) {
2323
2324 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2325
2326 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2327 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2328 readl(hsotg->regs + GNPTXSTS));
2329
2330 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2331
2332 if (usb_status & GOTGCTL_BSESVLD) {
2333 if (time_after(jiffies, hsotg->last_rst +
2334 msecs_to_jiffies(200))) {
2335
2336 kill_all_requests(hsotg, &hsotg->eps[0],
2337 -ECONNRESET, true);
2338
2339 s3c_hsotg_core_init_disconnected(hsotg);
2340 s3c_hsotg_core_connect(hsotg);
2341 }
2342 }
2343 }
2344
2345 /* check both FIFOs */
2346
2347 if (gintsts & GINTSTS_NPTXFEMP) {
2348 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2349
2350 /*
2351 * Disable the interrupt to stop it happening again
2352 * unless one of these endpoint routines decides that
2353 * it needs re-enabling
2354 */
2355
2356 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2357 s3c_hsotg_irq_fifoempty(hsotg, false);
2358 }
2359
2360 if (gintsts & GINTSTS_PTXFEMP) {
2361 dev_dbg(hsotg->dev, "PTxFEmp\n");
2362
2363 /* See note in GINTSTS_NPTxFEmp */
2364
2365 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2366 s3c_hsotg_irq_fifoempty(hsotg, true);
2367 }
2368
2369 if (gintsts & GINTSTS_RXFLVL) {
2370 /*
2371 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2372 * we need to retry s3c_hsotg_handle_rx if this is still
2373 * set.
2374 */
2375
2376 s3c_hsotg_handle_rx(hsotg);
2377 }
2378
2379 if (gintsts & GINTSTS_ERLYSUSP) {
2380 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2381 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2382 }
2383
2384 /*
2385 * these next two seem to crop-up occasionally causing the core
2386 * to shutdown the USB transfer, so try clearing them and logging
2387 * the occurrence.
2388 */
2389
2390 if (gintsts & GINTSTS_GOUTNAKEFF) {
2391 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2392
2393 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2394
2395 s3c_hsotg_dump(hsotg);
2396 }
2397
2398 if (gintsts & GINTSTS_GINNAKEFF) {
2399 dev_info(hsotg->dev, "GINNakEff triggered\n");
2400
2401 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2402
2403 s3c_hsotg_dump(hsotg);
2404 }
2405
2406 /*
2407 * if we've had fifo events, we should try and go around the
2408 * loop again to see if there's any point in returning yet.
2409 */
2410
2411 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2412 goto irq_retry;
2413
2414 spin_unlock(&hsotg->lock);
2415
2416 return IRQ_HANDLED;
2417 }
2418
2419 /**
2420 * s3c_hsotg_ep_enable - enable the given endpoint
2421 * @ep: The USB endpint to configure
2422 * @desc: The USB endpoint descriptor to configure with.
2423 *
2424 * This is called from the USB gadget code's usb_ep_enable().
2425 */
2426 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2427 const struct usb_endpoint_descriptor *desc)
2428 {
2429 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2430 struct dwc2_hsotg *hsotg = hs_ep->parent;
2431 unsigned long flags;
2432 int index = hs_ep->index;
2433 u32 epctrl_reg;
2434 u32 epctrl;
2435 u32 mps;
2436 int dir_in;
2437 int i, val, size;
2438 int ret = 0;
2439
2440 dev_dbg(hsotg->dev,
2441 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2442 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2443 desc->wMaxPacketSize, desc->bInterval);
2444
2445 /* not to be called for EP0 */
2446 WARN_ON(index == 0);
2447
2448 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2449 if (dir_in != hs_ep->dir_in) {
2450 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2451 return -EINVAL;
2452 }
2453
2454 mps = usb_endpoint_maxp(desc);
2455
2456 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2457
2458 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2459 epctrl = readl(hsotg->regs + epctrl_reg);
2460
2461 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2462 __func__, epctrl, epctrl_reg);
2463
2464 spin_lock_irqsave(&hsotg->lock, flags);
2465
2466 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2467 epctrl |= DXEPCTL_MPS(mps);
2468
2469 /*
2470 * mark the endpoint as active, otherwise the core may ignore
2471 * transactions entirely for this endpoint
2472 */
2473 epctrl |= DXEPCTL_USBACTEP;
2474
2475 /*
2476 * set the NAK status on the endpoint, otherwise we might try and
2477 * do something with data that we've yet got a request to process
2478 * since the RXFIFO will take data for an endpoint even if the
2479 * size register hasn't been set.
2480 */
2481
2482 epctrl |= DXEPCTL_SNAK;
2483
2484 /* update the endpoint state */
2485 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2486
2487 /* default, set to non-periodic */
2488 hs_ep->isochronous = 0;
2489 hs_ep->periodic = 0;
2490 hs_ep->halted = 0;
2491 hs_ep->interval = desc->bInterval;
2492
2493 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2494 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2495
2496 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2497 case USB_ENDPOINT_XFER_ISOC:
2498 epctrl |= DXEPCTL_EPTYPE_ISO;
2499 epctrl |= DXEPCTL_SETEVENFR;
2500 hs_ep->isochronous = 1;
2501 if (dir_in)
2502 hs_ep->periodic = 1;
2503 break;
2504
2505 case USB_ENDPOINT_XFER_BULK:
2506 epctrl |= DXEPCTL_EPTYPE_BULK;
2507 break;
2508
2509 case USB_ENDPOINT_XFER_INT:
2510 if (dir_in)
2511 hs_ep->periodic = 1;
2512
2513 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2514 break;
2515
2516 case USB_ENDPOINT_XFER_CONTROL:
2517 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2518 break;
2519 }
2520
2521 /*
2522 * if the hardware has dedicated fifos, we must give each IN EP
2523 * a unique tx-fifo even if it is non-periodic.
2524 */
2525 if (dir_in && hsotg->dedicated_fifos) {
2526 size = hs_ep->ep.maxpacket*hs_ep->mc;
2527 for (i = 1; i <= 8; ++i) {
2528 if (hsotg->fifo_map & (1<<i))
2529 continue;
2530 val = readl(hsotg->regs + DPTXFSIZN(i));
2531 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2532 if (val < size)
2533 continue;
2534 hsotg->fifo_map |= 1<<i;
2535
2536 epctrl |= DXEPCTL_TXFNUM(i);
2537 hs_ep->fifo_index = i;
2538 hs_ep->fifo_size = val;
2539 break;
2540 }
2541 if (i == 8) {
2542 ret = -ENOMEM;
2543 goto error;
2544 }
2545 }
2546
2547 /* for non control endpoints, set PID to D0 */
2548 if (index)
2549 epctrl |= DXEPCTL_SETD0PID;
2550
2551 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2552 __func__, epctrl);
2553
2554 writel(epctrl, hsotg->regs + epctrl_reg);
2555 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2556 __func__, readl(hsotg->regs + epctrl_reg));
2557
2558 /* enable the endpoint interrupt */
2559 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2560
2561 error:
2562 spin_unlock_irqrestore(&hsotg->lock, flags);
2563 return ret;
2564 }
2565
2566 /**
2567 * s3c_hsotg_ep_disable - disable given endpoint
2568 * @ep: The endpoint to disable.
2569 */
2570 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2571 {
2572 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2573 struct dwc2_hsotg *hsotg = hs_ep->parent;
2574 int dir_in = hs_ep->dir_in;
2575 int index = hs_ep->index;
2576 unsigned long flags;
2577 u32 epctrl_reg;
2578 u32 ctrl;
2579
2580 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2581
2582 if (ep == &hsotg->eps[0].ep) {
2583 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2584 return -EINVAL;
2585 }
2586
2587 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2588
2589 spin_lock_irqsave(&hsotg->lock, flags);
2590 /* terminate all requests with shutdown */
2591 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2592
2593 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2594 hs_ep->fifo_index = 0;
2595 hs_ep->fifo_size = 0;
2596
2597 ctrl = readl(hsotg->regs + epctrl_reg);
2598 ctrl &= ~DXEPCTL_EPENA;
2599 ctrl &= ~DXEPCTL_USBACTEP;
2600 ctrl |= DXEPCTL_SNAK;
2601
2602 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2603 writel(ctrl, hsotg->regs + epctrl_reg);
2604
2605 /* disable endpoint interrupts */
2606 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2607
2608 spin_unlock_irqrestore(&hsotg->lock, flags);
2609 return 0;
2610 }
2611
2612 /**
2613 * on_list - check request is on the given endpoint
2614 * @ep: The endpoint to check.
2615 * @test: The request to test if it is on the endpoint.
2616 */
2617 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2618 {
2619 struct s3c_hsotg_req *req, *treq;
2620
2621 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2622 if (req == test)
2623 return true;
2624 }
2625
2626 return false;
2627 }
2628
2629 /**
2630 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2631 * @ep: The endpoint to dequeue.
2632 * @req: The request to be removed from a queue.
2633 */
2634 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2635 {
2636 struct s3c_hsotg_req *hs_req = our_req(req);
2637 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2638 struct dwc2_hsotg *hs = hs_ep->parent;
2639 unsigned long flags;
2640
2641 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2642
2643 spin_lock_irqsave(&hs->lock, flags);
2644
2645 if (!on_list(hs_ep, hs_req)) {
2646 spin_unlock_irqrestore(&hs->lock, flags);
2647 return -EINVAL;
2648 }
2649
2650 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2651 spin_unlock_irqrestore(&hs->lock, flags);
2652
2653 return 0;
2654 }
2655
2656 /**
2657 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2658 * @ep: The endpoint to set halt.
2659 * @value: Set or unset the halt.
2660 */
2661 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2662 {
2663 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2664 struct dwc2_hsotg *hs = hs_ep->parent;
2665 int index = hs_ep->index;
2666 u32 epreg;
2667 u32 epctl;
2668 u32 xfertype;
2669
2670 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2671
2672 if (index == 0) {
2673 if (value)
2674 s3c_hsotg_stall_ep0(hs);
2675 else
2676 dev_warn(hs->dev,
2677 "%s: can't clear halt on ep0\n", __func__);
2678 return 0;
2679 }
2680
2681 /* write both IN and OUT control registers */
2682
2683 epreg = DIEPCTL(index);
2684 epctl = readl(hs->regs + epreg);
2685
2686 if (value) {
2687 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2688 if (epctl & DXEPCTL_EPENA)
2689 epctl |= DXEPCTL_EPDIS;
2690 } else {
2691 epctl &= ~DXEPCTL_STALL;
2692 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2693 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2694 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2695 epctl |= DXEPCTL_SETD0PID;
2696 }
2697
2698 writel(epctl, hs->regs + epreg);
2699
2700 epreg = DOEPCTL(index);
2701 epctl = readl(hs->regs + epreg);
2702
2703 if (value)
2704 epctl |= DXEPCTL_STALL;
2705 else {
2706 epctl &= ~DXEPCTL_STALL;
2707 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2708 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2709 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2710 epctl |= DXEPCTL_SETD0PID;
2711 }
2712
2713 writel(epctl, hs->regs + epreg);
2714
2715 hs_ep->halted = value;
2716
2717 return 0;
2718 }
2719
2720 /**
2721 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2722 * @ep: The endpoint to set halt.
2723 * @value: Set or unset the halt.
2724 */
2725 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2726 {
2727 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2728 struct dwc2_hsotg *hs = hs_ep->parent;
2729 unsigned long flags = 0;
2730 int ret = 0;
2731
2732 spin_lock_irqsave(&hs->lock, flags);
2733 ret = s3c_hsotg_ep_sethalt(ep, value);
2734 spin_unlock_irqrestore(&hs->lock, flags);
2735
2736 return ret;
2737 }
2738
2739 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2740 .enable = s3c_hsotg_ep_enable,
2741 .disable = s3c_hsotg_ep_disable,
2742 .alloc_request = s3c_hsotg_ep_alloc_request,
2743 .free_request = s3c_hsotg_ep_free_request,
2744 .queue = s3c_hsotg_ep_queue_lock,
2745 .dequeue = s3c_hsotg_ep_dequeue,
2746 .set_halt = s3c_hsotg_ep_sethalt_lock,
2747 /* note, don't believe we have any call for the fifo routines */
2748 };
2749
2750 /**
2751 * s3c_hsotg_phy_enable - enable platform phy dev
2752 * @hsotg: The driver state
2753 *
2754 * A wrapper for platform code responsible for controlling
2755 * low-level USB code
2756 */
2757 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2758 {
2759 struct platform_device *pdev = to_platform_device(hsotg->dev);
2760
2761 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2762
2763 if (hsotg->uphy)
2764 usb_phy_init(hsotg->uphy);
2765 else if (hsotg->plat && hsotg->plat->phy_init)
2766 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2767 else {
2768 phy_init(hsotg->phy);
2769 phy_power_on(hsotg->phy);
2770 }
2771 }
2772
2773 /**
2774 * s3c_hsotg_phy_disable - disable platform phy dev
2775 * @hsotg: The driver state
2776 *
2777 * A wrapper for platform code responsible for controlling
2778 * low-level USB code
2779 */
2780 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2781 {
2782 struct platform_device *pdev = to_platform_device(hsotg->dev);
2783
2784 if (hsotg->uphy)
2785 usb_phy_shutdown(hsotg->uphy);
2786 else if (hsotg->plat && hsotg->plat->phy_exit)
2787 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2788 else {
2789 phy_power_off(hsotg->phy);
2790 phy_exit(hsotg->phy);
2791 }
2792 }
2793
2794 /**
2795 * s3c_hsotg_init - initalize the usb core
2796 * @hsotg: The driver state
2797 */
2798 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2799 {
2800 /* unmask subset of endpoint interrupts */
2801
2802 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2803 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2804 hsotg->regs + DIEPMSK);
2805
2806 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2807 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2808 hsotg->regs + DOEPMSK);
2809
2810 writel(0, hsotg->regs + DAINTMSK);
2811
2812 /* Be in disconnected state until gadget is registered */
2813 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2814
2815 if (0) {
2816 /* post global nak until we're ready */
2817 writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2818 hsotg->regs + DCTL);
2819 }
2820
2821 /* setup fifos */
2822
2823 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2824 readl(hsotg->regs + GRXFSIZ),
2825 readl(hsotg->regs + GNPTXFSIZ));
2826
2827 s3c_hsotg_init_fifo(hsotg);
2828
2829 /* set the PLL on, remove the HNP/SRP and set the PHY */
2830 writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2831 hsotg->regs + GUSBCFG);
2832
2833 writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2834 hsotg->regs + GAHBCFG);
2835 }
2836
2837 /**
2838 * s3c_hsotg_udc_start - prepare the udc for work
2839 * @gadget: The usb gadget state
2840 * @driver: The usb gadget driver
2841 *
2842 * Perform initialization to prepare udc device and driver
2843 * to work.
2844 */
2845 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2846 struct usb_gadget_driver *driver)
2847 {
2848 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2849 unsigned long flags;
2850 int ret;
2851
2852 if (!hsotg) {
2853 pr_err("%s: called with no device\n", __func__);
2854 return -ENODEV;
2855 }
2856
2857 if (!driver) {
2858 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2859 return -EINVAL;
2860 }
2861
2862 if (driver->max_speed < USB_SPEED_FULL)
2863 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2864
2865 if (!driver->setup) {
2866 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2867 return -EINVAL;
2868 }
2869
2870 mutex_lock(&hsotg->init_mutex);
2871 WARN_ON(hsotg->driver);
2872
2873 driver->driver.bus = NULL;
2874 hsotg->driver = driver;
2875 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2876 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2877
2878 clk_enable(hsotg->clk);
2879
2880 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2881 hsotg->supplies);
2882 if (ret) {
2883 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2884 goto err;
2885 }
2886
2887 s3c_hsotg_phy_enable(hsotg);
2888
2889 spin_lock_irqsave(&hsotg->lock, flags);
2890 s3c_hsotg_init(hsotg);
2891 s3c_hsotg_core_init_disconnected(hsotg);
2892 hsotg->enabled = 0;
2893 spin_unlock_irqrestore(&hsotg->lock, flags);
2894
2895 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2896
2897 mutex_unlock(&hsotg->init_mutex);
2898
2899 return 0;
2900
2901 err:
2902 mutex_unlock(&hsotg->init_mutex);
2903 hsotg->driver = NULL;
2904 return ret;
2905 }
2906
2907 /**
2908 * s3c_hsotg_udc_stop - stop the udc
2909 * @gadget: The usb gadget state
2910 * @driver: The usb gadget driver
2911 *
2912 * Stop udc hw block and stay tunned for future transmissions
2913 */
2914 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2915 {
2916 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2917 unsigned long flags = 0;
2918 int ep;
2919
2920 if (!hsotg)
2921 return -ENODEV;
2922
2923 mutex_lock(&hsotg->init_mutex);
2924
2925 /* all endpoints should be shutdown */
2926 for (ep = 1; ep < hsotg->num_of_eps; ep++)
2927 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2928
2929 spin_lock_irqsave(&hsotg->lock, flags);
2930
2931 hsotg->driver = NULL;
2932 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2933 hsotg->enabled = 0;
2934
2935 spin_unlock_irqrestore(&hsotg->lock, flags);
2936
2937 s3c_hsotg_phy_disable(hsotg);
2938
2939 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2940
2941 clk_disable(hsotg->clk);
2942
2943 mutex_unlock(&hsotg->init_mutex);
2944
2945 return 0;
2946 }
2947
2948 /**
2949 * s3c_hsotg_gadget_getframe - read the frame number
2950 * @gadget: The usb gadget state
2951 *
2952 * Read the {micro} frame number
2953 */
2954 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2955 {
2956 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2957 }
2958
2959 /**
2960 * s3c_hsotg_pullup - connect/disconnect the USB PHY
2961 * @gadget: The usb gadget state
2962 * @is_on: Current state of the USB PHY
2963 *
2964 * Connect/Disconnect the USB PHY pullup
2965 */
2966 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2967 {
2968 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2969 unsigned long flags = 0;
2970
2971 dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2972
2973 mutex_lock(&hsotg->init_mutex);
2974 spin_lock_irqsave(&hsotg->lock, flags);
2975 if (is_on) {
2976 clk_enable(hsotg->clk);
2977 hsotg->enabled = 1;
2978 s3c_hsotg_core_connect(hsotg);
2979 } else {
2980 s3c_hsotg_core_disconnect(hsotg);
2981 hsotg->enabled = 0;
2982 clk_disable(hsotg->clk);
2983 }
2984
2985 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2986 spin_unlock_irqrestore(&hsotg->lock, flags);
2987 mutex_unlock(&hsotg->init_mutex);
2988
2989 return 0;
2990 }
2991
2992 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2993 .get_frame = s3c_hsotg_gadget_getframe,
2994 .udc_start = s3c_hsotg_udc_start,
2995 .udc_stop = s3c_hsotg_udc_stop,
2996 .pullup = s3c_hsotg_pullup,
2997 };
2998
2999 /**
3000 * s3c_hsotg_initep - initialise a single endpoint
3001 * @hsotg: The device state.
3002 * @hs_ep: The endpoint to be initialised.
3003 * @epnum: The endpoint number
3004 *
3005 * Initialise the given endpoint (as part of the probe and device state
3006 * creation) to give to the gadget driver. Setup the endpoint name, any
3007 * direction information and other state that may be required.
3008 */
3009 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3010 struct s3c_hsotg_ep *hs_ep,
3011 int epnum)
3012 {
3013 char *dir;
3014
3015 if (epnum == 0)
3016 dir = "";
3017 else if ((epnum % 2) == 0) {
3018 dir = "out";
3019 } else {
3020 dir = "in";
3021 hs_ep->dir_in = 1;
3022 }
3023
3024 hs_ep->index = epnum;
3025
3026 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3027
3028 INIT_LIST_HEAD(&hs_ep->queue);
3029 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3030
3031 /* add to the list of endpoints known by the gadget driver */
3032 if (epnum)
3033 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3034
3035 hs_ep->parent = hsotg;
3036 hs_ep->ep.name = hs_ep->name;
3037 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3038 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3039
3040 /*
3041 * if we're using dma, we need to set the next-endpoint pointer
3042 * to be something valid.
3043 */
3044
3045 if (using_dma(hsotg)) {
3046 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3047 writel(next, hsotg->regs + DIEPCTL(epnum));
3048 writel(next, hsotg->regs + DOEPCTL(epnum));
3049 }
3050 }
3051
3052 /**
3053 * s3c_hsotg_hw_cfg - read HW configuration registers
3054 * @param: The device state
3055 *
3056 * Read the USB core HW configuration registers
3057 */
3058 static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3059 {
3060 u32 cfg2, cfg3, cfg4;
3061 /* check hardware configuration */
3062
3063 cfg2 = readl(hsotg->regs + 0x48);
3064 hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3065
3066 cfg3 = readl(hsotg->regs + 0x4C);
3067 hsotg->fifo_mem = (cfg3 >> 16);
3068
3069 cfg4 = readl(hsotg->regs + 0x50);
3070 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3071
3072 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3073 hsotg->num_of_eps,
3074 hsotg->dedicated_fifos ? "dedicated" : "shared",
3075 hsotg->fifo_mem);
3076 }
3077
3078 /**
3079 * s3c_hsotg_dump - dump state of the udc
3080 * @param: The device state
3081 */
3082 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3083 {
3084 #ifdef DEBUG
3085 struct device *dev = hsotg->dev;
3086 void __iomem *regs = hsotg->regs;
3087 u32 val;
3088 int idx;
3089
3090 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3091 readl(regs + DCFG), readl(regs + DCTL),
3092 readl(regs + DIEPMSK));
3093
3094 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3095 readl(regs + GAHBCFG), readl(regs + 0x44));
3096
3097 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3098 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3099
3100 /* show periodic fifo settings */
3101
3102 for (idx = 1; idx <= 15; idx++) {
3103 val = readl(regs + DPTXFSIZN(idx));
3104 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3105 val >> FIFOSIZE_DEPTH_SHIFT,
3106 val & FIFOSIZE_STARTADDR_MASK);
3107 }
3108
3109 for (idx = 0; idx < 15; idx++) {
3110 dev_info(dev,
3111 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3112 readl(regs + DIEPCTL(idx)),
3113 readl(regs + DIEPTSIZ(idx)),
3114 readl(regs + DIEPDMA(idx)));
3115
3116 val = readl(regs + DOEPCTL(idx));
3117 dev_info(dev,
3118 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3119 idx, readl(regs + DOEPCTL(idx)),
3120 readl(regs + DOEPTSIZ(idx)),
3121 readl(regs + DOEPDMA(idx)));
3122
3123 }
3124
3125 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3126 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3127 #endif
3128 }
3129
3130 /**
3131 * state_show - debugfs: show overall driver and device state.
3132 * @seq: The seq file to write to.
3133 * @v: Unused parameter.
3134 *
3135 * This debugfs entry shows the overall state of the hardware and
3136 * some general information about each of the endpoints available
3137 * to the system.
3138 */
3139 static int state_show(struct seq_file *seq, void *v)
3140 {
3141 struct dwc2_hsotg *hsotg = seq->private;
3142 void __iomem *regs = hsotg->regs;
3143 int idx;
3144
3145 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3146 readl(regs + DCFG),
3147 readl(regs + DCTL),
3148 readl(regs + DSTS));
3149
3150 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3151 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3152
3153 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3154 readl(regs + GINTMSK),
3155 readl(regs + GINTSTS));
3156
3157 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3158 readl(regs + DAINTMSK),
3159 readl(regs + DAINT));
3160
3161 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3162 readl(regs + GNPTXSTS),
3163 readl(regs + GRXSTSR));
3164
3165 seq_puts(seq, "\nEndpoint status:\n");
3166
3167 for (idx = 0; idx < 15; idx++) {
3168 u32 in, out;
3169
3170 in = readl(regs + DIEPCTL(idx));
3171 out = readl(regs + DOEPCTL(idx));
3172
3173 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3174 idx, in, out);
3175
3176 in = readl(regs + DIEPTSIZ(idx));
3177 out = readl(regs + DOEPTSIZ(idx));
3178
3179 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3180 in, out);
3181
3182 seq_puts(seq, "\n");
3183 }
3184
3185 return 0;
3186 }
3187
3188 static int state_open(struct inode *inode, struct file *file)
3189 {
3190 return single_open(file, state_show, inode->i_private);
3191 }
3192
3193 static const struct file_operations state_fops = {
3194 .owner = THIS_MODULE,
3195 .open = state_open,
3196 .read = seq_read,
3197 .llseek = seq_lseek,
3198 .release = single_release,
3199 };
3200
3201 /**
3202 * fifo_show - debugfs: show the fifo information
3203 * @seq: The seq_file to write data to.
3204 * @v: Unused parameter.
3205 *
3206 * Show the FIFO information for the overall fifo and all the
3207 * periodic transmission FIFOs.
3208 */
3209 static int fifo_show(struct seq_file *seq, void *v)
3210 {
3211 struct dwc2_hsotg *hsotg = seq->private;
3212 void __iomem *regs = hsotg->regs;
3213 u32 val;
3214 int idx;
3215
3216 seq_puts(seq, "Non-periodic FIFOs:\n");
3217 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3218
3219 val = readl(regs + GNPTXFSIZ);
3220 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3221 val >> FIFOSIZE_DEPTH_SHIFT,
3222 val & FIFOSIZE_DEPTH_MASK);
3223
3224 seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3225
3226 for (idx = 1; idx <= 15; idx++) {
3227 val = readl(regs + DPTXFSIZN(idx));
3228
3229 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3230 val >> FIFOSIZE_DEPTH_SHIFT,
3231 val & FIFOSIZE_STARTADDR_MASK);
3232 }
3233
3234 return 0;
3235 }
3236
3237 static int fifo_open(struct inode *inode, struct file *file)
3238 {
3239 return single_open(file, fifo_show, inode->i_private);
3240 }
3241
3242 static const struct file_operations fifo_fops = {
3243 .owner = THIS_MODULE,
3244 .open = fifo_open,
3245 .read = seq_read,
3246 .llseek = seq_lseek,
3247 .release = single_release,
3248 };
3249
3250
3251 static const char *decode_direction(int is_in)
3252 {
3253 return is_in ? "in" : "out";
3254 }
3255
3256 /**
3257 * ep_show - debugfs: show the state of an endpoint.
3258 * @seq: The seq_file to write data to.
3259 * @v: Unused parameter.
3260 *
3261 * This debugfs entry shows the state of the given endpoint (one is
3262 * registered for each available).
3263 */
3264 static int ep_show(struct seq_file *seq, void *v)
3265 {
3266 struct s3c_hsotg_ep *ep = seq->private;
3267 struct dwc2_hsotg *hsotg = ep->parent;
3268 struct s3c_hsotg_req *req;
3269 void __iomem *regs = hsotg->regs;
3270 int index = ep->index;
3271 int show_limit = 15;
3272 unsigned long flags;
3273
3274 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3275 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3276
3277 /* first show the register state */
3278
3279 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3280 readl(regs + DIEPCTL(index)),
3281 readl(regs + DOEPCTL(index)));
3282
3283 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3284 readl(regs + DIEPDMA(index)),
3285 readl(regs + DOEPDMA(index)));
3286
3287 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3288 readl(regs + DIEPINT(index)),
3289 readl(regs + DOEPINT(index)));
3290
3291 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3292 readl(regs + DIEPTSIZ(index)),
3293 readl(regs + DOEPTSIZ(index)));
3294
3295 seq_puts(seq, "\n");
3296 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3297 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3298
3299 seq_printf(seq, "request list (%p,%p):\n",
3300 ep->queue.next, ep->queue.prev);
3301
3302 spin_lock_irqsave(&hsotg->lock, flags);
3303
3304 list_for_each_entry(req, &ep->queue, queue) {
3305 if (--show_limit < 0) {
3306 seq_puts(seq, "not showing more requests...\n");
3307 break;
3308 }
3309
3310 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3311 req == ep->req ? '*' : ' ',
3312 req, req->req.length, req->req.buf);
3313 seq_printf(seq, "%d done, res %d\n",
3314 req->req.actual, req->req.status);
3315 }
3316
3317 spin_unlock_irqrestore(&hsotg->lock, flags);
3318
3319 return 0;
3320 }
3321
3322 static int ep_open(struct inode *inode, struct file *file)
3323 {
3324 return single_open(file, ep_show, inode->i_private);
3325 }
3326
3327 static const struct file_operations ep_fops = {
3328 .owner = THIS_MODULE,
3329 .open = ep_open,
3330 .read = seq_read,
3331 .llseek = seq_lseek,
3332 .release = single_release,
3333 };
3334
3335 /**
3336 * s3c_hsotg_create_debug - create debugfs directory and files
3337 * @hsotg: The driver state
3338 *
3339 * Create the debugfs files to allow the user to get information
3340 * about the state of the system. The directory name is created
3341 * with the same name as the device itself, in case we end up
3342 * with multiple blocks in future systems.
3343 */
3344 static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3345 {
3346 struct dentry *root;
3347 unsigned epidx;
3348
3349 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3350 hsotg->debug_root = root;
3351 if (IS_ERR(root)) {
3352 dev_err(hsotg->dev, "cannot create debug root\n");
3353 return;
3354 }
3355
3356 /* create general state file */
3357
3358 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3359 hsotg, &state_fops);
3360
3361 if (IS_ERR(hsotg->debug_file))
3362 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3363
3364 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3365 hsotg, &fifo_fops);
3366
3367 if (IS_ERR(hsotg->debug_fifo))
3368 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3369
3370 /* create one file for each endpoint */
3371
3372 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3373 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3374
3375 ep->debugfs = debugfs_create_file(ep->name, 0444,
3376 root, ep, &ep_fops);
3377
3378 if (IS_ERR(ep->debugfs))
3379 dev_err(hsotg->dev, "failed to create %s debug file\n",
3380 ep->name);
3381 }
3382 }
3383
3384 /**
3385 * s3c_hsotg_delete_debug - cleanup debugfs entries
3386 * @hsotg: The driver state
3387 *
3388 * Cleanup (remove) the debugfs files for use on module exit.
3389 */
3390 static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3391 {
3392 unsigned epidx;
3393
3394 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3395 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3396 debugfs_remove(ep->debugfs);
3397 }
3398
3399 debugfs_remove(hsotg->debug_file);
3400 debugfs_remove(hsotg->debug_fifo);
3401 debugfs_remove(hsotg->debug_root);
3402 }
3403
3404 /**
3405 * dwc2_gadget_init - init function for gadget
3406 * @dwc2: The data structure for the DWC2 driver.
3407 * @irq: The IRQ number for the controller.
3408 */
3409 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3410 {
3411 struct device *dev = hsotg->dev;
3412 struct s3c_hsotg_plat *plat = dev->platform_data;
3413 struct phy *phy;
3414 struct usb_phy *uphy;
3415 struct s3c_hsotg_ep *eps;
3416 int epnum;
3417 int ret;
3418 int i;
3419
3420 /* Set default UTMI width */
3421 hsotg->phyif = GUSBCFG_PHYIF16;
3422
3423 /*
3424 * Attempt to find a generic PHY, then look for an old style
3425 * USB PHY, finally fall back to pdata
3426 */
3427 phy = devm_phy_get(dev, "usb2-phy");
3428 if (IS_ERR(phy)) {
3429 uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3430 if (IS_ERR(uphy)) {
3431 /* Fallback for pdata */
3432 plat = dev_get_platdata(dev);
3433 if (!plat) {
3434 dev_err(dev,
3435 "no platform data or transceiver defined\n");
3436 return -EPROBE_DEFER;
3437 }
3438 hsotg->plat = plat;
3439 } else
3440 hsotg->uphy = uphy;
3441 } else {
3442 hsotg->phy = phy;
3443 /*
3444 * If using the generic PHY framework, check if the PHY bus
3445 * width is 8-bit and set the phyif appropriately.
3446 */
3447 if (phy_get_bus_width(phy) == 8)
3448 hsotg->phyif = GUSBCFG_PHYIF8;
3449 }
3450
3451 hsotg->clk = devm_clk_get(dev, "otg");
3452 if (IS_ERR(hsotg->clk)) {
3453 hsotg->clk = NULL;
3454 dev_dbg(dev, "cannot get otg clock\n");
3455 }
3456
3457 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3458 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3459 hsotg->gadget.name = dev_name(dev);
3460
3461 /* reset the system */
3462
3463 ret = clk_prepare_enable(hsotg->clk);
3464 if (ret) {
3465 dev_err(dev, "failed to enable otg clk\n");
3466 goto err_clk;
3467 }
3468
3469
3470 /* regulators */
3471
3472 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3473 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3474
3475 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3476 hsotg->supplies);
3477 if (ret) {
3478 dev_err(dev, "failed to request supplies: %d\n", ret);
3479 goto err_clk;
3480 }
3481
3482 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3483 hsotg->supplies);
3484
3485 if (ret) {
3486 dev_err(dev, "failed to enable supplies: %d\n", ret);
3487 goto err_supplies;
3488 }
3489
3490 /* usb phy enable */
3491 s3c_hsotg_phy_enable(hsotg);
3492
3493 s3c_hsotg_corereset(hsotg);
3494 s3c_hsotg_hw_cfg(hsotg);
3495 s3c_hsotg_init(hsotg);
3496
3497 ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
3498 dev_name(hsotg->dev), hsotg);
3499 if (ret < 0) {
3500 s3c_hsotg_phy_disable(hsotg);
3501 clk_disable_unprepare(hsotg->clk);
3502 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3503 hsotg->supplies);
3504 dev_err(dev, "cannot claim IRQ for gadget\n");
3505 goto err_clk;
3506 }
3507
3508 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3509
3510 if (hsotg->num_of_eps == 0) {
3511 dev_err(dev, "wrong number of EPs (zero)\n");
3512 ret = -EINVAL;
3513 goto err_supplies;
3514 }
3515
3516 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3517 GFP_KERNEL);
3518 if (!eps) {
3519 ret = -ENOMEM;
3520 goto err_supplies;
3521 }
3522
3523 hsotg->eps = eps;
3524
3525 /* setup endpoint information */
3526
3527 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3528 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3529
3530 /* allocate EP0 request */
3531
3532 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3533 GFP_KERNEL);
3534 if (!hsotg->ctrl_req) {
3535 dev_err(dev, "failed to allocate ctrl req\n");
3536 ret = -ENOMEM;
3537 goto err_ep_mem;
3538 }
3539
3540 /* initialise the endpoints now the core has been initialised */
3541 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3542 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3543
3544 /* disable power and clock */
3545 s3c_hsotg_phy_disable(hsotg);
3546
3547 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3548 hsotg->supplies);
3549 if (ret) {
3550 dev_err(dev, "failed to disable supplies: %d\n", ret);
3551 goto err_ep_mem;
3552 }
3553
3554 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3555 if (ret)
3556 goto err_ep_mem;
3557
3558 s3c_hsotg_create_debug(hsotg);
3559
3560 s3c_hsotg_dump(hsotg);
3561
3562 return 0;
3563
3564 err_ep_mem:
3565 kfree(eps);
3566 err_supplies:
3567 s3c_hsotg_phy_disable(hsotg);
3568 err_clk:
3569 clk_disable_unprepare(hsotg->clk);
3570
3571 return ret;
3572 }
3573 EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3574
3575 /**
3576 * s3c_hsotg_remove - remove function for hsotg driver
3577 * @pdev: The platform information for the driver
3578 */
3579 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3580 {
3581 usb_del_gadget_udc(&hsotg->gadget);
3582 s3c_hsotg_delete_debug(hsotg);
3583 clk_disable_unprepare(hsotg->clk);
3584
3585 return 0;
3586 }
3587 EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3588
3589 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3590 {
3591 unsigned long flags;
3592 int ret = 0;
3593
3594 mutex_lock(&hsotg->init_mutex);
3595
3596 if (hsotg->driver) {
3597 int ep;
3598
3599 dev_info(hsotg->dev, "suspending usb gadget %s\n",
3600 hsotg->driver->driver.name);
3601
3602 spin_lock_irqsave(&hsotg->lock, flags);
3603 if (hsotg->enabled)
3604 s3c_hsotg_core_disconnect(hsotg);
3605 s3c_hsotg_disconnect(hsotg);
3606 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3607 spin_unlock_irqrestore(&hsotg->lock, flags);
3608
3609 s3c_hsotg_phy_disable(hsotg);
3610
3611 for (ep = 0; ep < hsotg->num_of_eps; ep++)
3612 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3613
3614 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3615 hsotg->supplies);
3616 clk_disable(hsotg->clk);
3617 }
3618
3619 mutex_unlock(&hsotg->init_mutex);
3620
3621 return ret;
3622 }
3623 EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3624
3625 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3626 {
3627 unsigned long flags;
3628 int ret = 0;
3629
3630 mutex_lock(&hsotg->init_mutex);
3631
3632 if (hsotg->driver) {
3633 dev_info(hsotg->dev, "resuming usb gadget %s\n",
3634 hsotg->driver->driver.name);
3635
3636 clk_enable(hsotg->clk);
3637 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3638 hsotg->supplies);
3639
3640 s3c_hsotg_phy_enable(hsotg);
3641
3642 spin_lock_irqsave(&hsotg->lock, flags);
3643 s3c_hsotg_core_init_disconnected(hsotg);
3644 if (hsotg->enabled)
3645 s3c_hsotg_core_connect(hsotg);
3646 spin_unlock_irqrestore(&hsotg->lock, flags);
3647 }
3648 mutex_unlock(&hsotg->init_mutex);
3649
3650 return ret;
3651 }
3652 EXPORT_SYMBOL_GPL(s3c_hsotg_resume);