]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/dwc2/gadget.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / dwc2 / gadget.c
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/of_platform.h>
29
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
33
34 #include "core.h"
35 #include "hw.h"
36
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 {
40 return container_of(req, struct dwc2_hsotg_req, req);
41 }
42
43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 {
45 return container_of(ep, struct dwc2_hsotg_ep, ep);
46 }
47
48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 {
50 return container_of(gadget, struct dwc2_hsotg, gadget);
51 }
52
53 static inline void __orr32(void __iomem *ptr, u32 val)
54 {
55 dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 }
57
58 static inline void __bic32(void __iomem *ptr, u32 val)
59 {
60 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 }
62
63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 u32 ep_index, u32 dir_in)
65 {
66 if (dir_in)
67 return hsotg->eps_in[ep_index];
68 else
69 return hsotg->eps_out[ep_index];
70 }
71
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74
75 /**
76 * using_dma - return the DMA status of the driver.
77 * @hsotg: The driver state.
78 *
79 * Return true if we're using DMA.
80 *
81 * Currently, we have the DMA support code worked into everywhere
82 * that needs it, but the AMBA DMA implementation in the hardware can
83 * only DMA from 32bit aligned addresses. This means that gadgets such
84 * as the CDC Ethernet cannot work as they often pass packets which are
85 * not 32bit aligned.
86 *
87 * Unfortunately the choice to use DMA or not is global to the controller
88 * and seems to be only settable when the controller is being put through
89 * a core reset. This means we either need to fix the gadgets to take
90 * account of DMA alignment, or add bounce buffers (yuerk).
91 *
92 * g_using_dma is set depending on dts flag.
93 */
94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 {
96 return hsotg->params.g_dma;
97 }
98
99 /*
100 * using_desc_dma - return the descriptor DMA status of the driver.
101 * @hsotg: The driver state.
102 *
103 * Return true if we're using descriptor DMA.
104 */
105 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
106 {
107 return hsotg->params.g_dma_desc;
108 }
109
110 /**
111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
112 * @hs_ep: The endpoint
113 * @increment: The value to increment by
114 *
115 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
116 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
117 */
118 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
119 {
120 hs_ep->target_frame += hs_ep->interval;
121 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
122 hs_ep->frame_overrun = 1;
123 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
124 } else {
125 hs_ep->frame_overrun = 0;
126 }
127 }
128
129 /**
130 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 * @hsotg: The device state
132 * @ints: A bitmask of the interrupts to enable
133 */
134 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135 {
136 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 u32 new_gsintmsk;
138
139 new_gsintmsk = gsintmsk | ints;
140
141 if (new_gsintmsk != gsintmsk) {
142 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 }
145 }
146
147 /**
148 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 * @hsotg: The device state
150 * @ints: A bitmask of the interrupts to enable
151 */
152 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153 {
154 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 u32 new_gsintmsk;
156
157 new_gsintmsk = gsintmsk & ~ints;
158
159 if (new_gsintmsk != gsintmsk)
160 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 }
162
163 /**
164 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 * @hsotg: The device state
166 * @ep: The endpoint index
167 * @dir_in: True if direction is in.
168 * @en: The enable value, true to enable
169 *
170 * Set or clear the mask for an individual endpoint's interrupt
171 * request.
172 */
173 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 unsigned int ep, unsigned int dir_in,
175 unsigned int en)
176 {
177 unsigned long flags;
178 u32 bit = 1 << ep;
179 u32 daint;
180
181 if (!dir_in)
182 bit <<= 16;
183
184 local_irq_save(flags);
185 daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 if (en)
187 daint |= bit;
188 else
189 daint &= ~bit;
190 dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 local_irq_restore(flags);
192 }
193
194 /**
195 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 * @hsotg: The device instance.
197 */
198 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199 {
200 unsigned int ep;
201 unsigned int addr;
202 int timeout;
203 u32 val;
204 u32 *txfsz = hsotg->params.g_tx_fifo_size;
205
206 /* Reset fifo map if not correctly cleared during previous session */
207 WARN_ON(hsotg->fifo_map);
208 hsotg->fifo_map = 0;
209
210 /* set RX/NPTX FIFO sizes */
211 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
212 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
213 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
214 hsotg->regs + GNPTXFSIZ);
215
216 /*
217 * arange all the rest of the TX FIFOs, as some versions of this
218 * block have overlapping default addresses. This also ensures
219 * that if the settings have been changed, then they are set to
220 * known values.
221 */
222
223 /* start at the end of the GNPTXFSIZ, rounded up */
224 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225
226 /*
227 * Configure fifos sizes from provided configuration and assign
228 * them to endpoints dynamically according to maxpacket size value of
229 * given endpoint.
230 */
231 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232 if (!txfsz[ep])
233 continue;
234 val = addr;
235 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
236 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237 "insufficient fifo memory");
238 addr += txfsz[ep];
239
240 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242 }
243
244 /*
245 * according to p428 of the design guide, we need to ensure that
246 * all fifos are flushed before continuing
247 */
248
249 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251
252 /* wait until the fifos are both flushed */
253 timeout = 100;
254 while (1) {
255 val = dwc2_readl(hsotg->regs + GRSTCTL);
256
257 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 break;
259
260 if (--timeout == 0) {
261 dev_err(hsotg->dev,
262 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
263 __func__, val);
264 break;
265 }
266
267 udelay(1);
268 }
269
270 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 }
272
273 /**
274 * @ep: USB endpoint to allocate request for.
275 * @flags: Allocation flags
276 *
277 * Allocate a new USB request structure appropriate for the specified endpoint
278 */
279 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280 gfp_t flags)
281 {
282 struct dwc2_hsotg_req *req;
283
284 req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 if (!req)
286 return NULL;
287
288 INIT_LIST_HEAD(&req->queue);
289
290 return &req->req;
291 }
292
293 /**
294 * is_ep_periodic - return true if the endpoint is in periodic mode.
295 * @hs_ep: The endpoint to query.
296 *
297 * Returns true if the endpoint is in periodic mode, meaning it is being
298 * used for an Interrupt or ISO transfer.
299 */
300 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 {
302 return hs_ep->periodic;
303 }
304
305 /**
306 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 * @hsotg: The device state.
308 * @hs_ep: The endpoint for the request
309 * @hs_req: The request being processed.
310 *
311 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312 * of a request to ensure the buffer is ready for access by the caller.
313 */
314 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
315 struct dwc2_hsotg_ep *hs_ep,
316 struct dwc2_hsotg_req *hs_req)
317 {
318 struct usb_request *req = &hs_req->req;
319 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
320 }
321
322 /*
323 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
324 * for Control endpoint
325 * @hsotg: The device state.
326 *
327 * This function will allocate 4 descriptor chains for EP 0: 2 for
328 * Setup stage, per one for IN and OUT data/status transactions.
329 */
330 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
331 {
332 hsotg->setup_desc[0] =
333 dmam_alloc_coherent(hsotg->dev,
334 sizeof(struct dwc2_dma_desc),
335 &hsotg->setup_desc_dma[0],
336 GFP_KERNEL);
337 if (!hsotg->setup_desc[0])
338 goto fail;
339
340 hsotg->setup_desc[1] =
341 dmam_alloc_coherent(hsotg->dev,
342 sizeof(struct dwc2_dma_desc),
343 &hsotg->setup_desc_dma[1],
344 GFP_KERNEL);
345 if (!hsotg->setup_desc[1])
346 goto fail;
347
348 hsotg->ctrl_in_desc =
349 dmam_alloc_coherent(hsotg->dev,
350 sizeof(struct dwc2_dma_desc),
351 &hsotg->ctrl_in_desc_dma,
352 GFP_KERNEL);
353 if (!hsotg->ctrl_in_desc)
354 goto fail;
355
356 hsotg->ctrl_out_desc =
357 dmam_alloc_coherent(hsotg->dev,
358 sizeof(struct dwc2_dma_desc),
359 &hsotg->ctrl_out_desc_dma,
360 GFP_KERNEL);
361 if (!hsotg->ctrl_out_desc)
362 goto fail;
363
364 return 0;
365
366 fail:
367 return -ENOMEM;
368 }
369
370 /**
371 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
372 * @hsotg: The controller state.
373 * @hs_ep: The endpoint we're going to write for.
374 * @hs_req: The request to write data for.
375 *
376 * This is called when the TxFIFO has some space in it to hold a new
377 * transmission and we have something to give it. The actual setup of
378 * the data size is done elsewhere, so all we have to do is to actually
379 * write the data.
380 *
381 * The return value is zero if there is more space (or nothing was done)
382 * otherwise -ENOSPC is returned if the FIFO space was used up.
383 *
384 * This routine is only needed for PIO
385 */
386 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
387 struct dwc2_hsotg_ep *hs_ep,
388 struct dwc2_hsotg_req *hs_req)
389 {
390 bool periodic = is_ep_periodic(hs_ep);
391 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
392 int buf_pos = hs_req->req.actual;
393 int to_write = hs_ep->size_loaded;
394 void *data;
395 int can_write;
396 int pkt_round;
397 int max_transfer;
398
399 to_write -= (buf_pos - hs_ep->last_load);
400
401 /* if there's nothing to write, get out early */
402 if (to_write == 0)
403 return 0;
404
405 if (periodic && !hsotg->dedicated_fifos) {
406 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
407 int size_left;
408 int size_done;
409
410 /*
411 * work out how much data was loaded so we can calculate
412 * how much data is left in the fifo.
413 */
414
415 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
416
417 /*
418 * if shared fifo, we cannot write anything until the
419 * previous data has been completely sent.
420 */
421 if (hs_ep->fifo_load != 0) {
422 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
423 return -ENOSPC;
424 }
425
426 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
427 __func__, size_left,
428 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
429
430 /* how much of the data has moved */
431 size_done = hs_ep->size_loaded - size_left;
432
433 /* how much data is left in the fifo */
434 can_write = hs_ep->fifo_load - size_done;
435 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
436 __func__, can_write);
437
438 can_write = hs_ep->fifo_size - can_write;
439 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
440 __func__, can_write);
441
442 if (can_write <= 0) {
443 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
444 return -ENOSPC;
445 }
446 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
447 can_write = dwc2_readl(hsotg->regs +
448 DTXFSTS(hs_ep->fifo_index));
449
450 can_write &= 0xffff;
451 can_write *= 4;
452 } else {
453 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
454 dev_dbg(hsotg->dev,
455 "%s: no queue slots available (0x%08x)\n",
456 __func__, gnptxsts);
457
458 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
459 return -ENOSPC;
460 }
461
462 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
463 can_write *= 4; /* fifo size is in 32bit quantities. */
464 }
465
466 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
467
468 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
469 __func__, gnptxsts, can_write, to_write, max_transfer);
470
471 /*
472 * limit to 512 bytes of data, it seems at least on the non-periodic
473 * FIFO, requests of >512 cause the endpoint to get stuck with a
474 * fragment of the end of the transfer in it.
475 */
476 if (can_write > 512 && !periodic)
477 can_write = 512;
478
479 /*
480 * limit the write to one max-packet size worth of data, but allow
481 * the transfer to return that it did not run out of fifo space
482 * doing it.
483 */
484 if (to_write > max_transfer) {
485 to_write = max_transfer;
486
487 /* it's needed only when we do not use dedicated fifos */
488 if (!hsotg->dedicated_fifos)
489 dwc2_hsotg_en_gsint(hsotg,
490 periodic ? GINTSTS_PTXFEMP :
491 GINTSTS_NPTXFEMP);
492 }
493
494 /* see if we can write data */
495
496 if (to_write > can_write) {
497 to_write = can_write;
498 pkt_round = to_write % max_transfer;
499
500 /*
501 * Round the write down to an
502 * exact number of packets.
503 *
504 * Note, we do not currently check to see if we can ever
505 * write a full packet or not to the FIFO.
506 */
507
508 if (pkt_round)
509 to_write -= pkt_round;
510
511 /*
512 * enable correct FIFO interrupt to alert us when there
513 * is more room left.
514 */
515
516 /* it's needed only when we do not use dedicated fifos */
517 if (!hsotg->dedicated_fifos)
518 dwc2_hsotg_en_gsint(hsotg,
519 periodic ? GINTSTS_PTXFEMP :
520 GINTSTS_NPTXFEMP);
521 }
522
523 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
524 to_write, hs_req->req.length, can_write, buf_pos);
525
526 if (to_write <= 0)
527 return -ENOSPC;
528
529 hs_req->req.actual = buf_pos + to_write;
530 hs_ep->total_data += to_write;
531
532 if (periodic)
533 hs_ep->fifo_load += to_write;
534
535 to_write = DIV_ROUND_UP(to_write, 4);
536 data = hs_req->req.buf + buf_pos;
537
538 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
539
540 return (to_write >= can_write) ? -ENOSPC : 0;
541 }
542
543 /**
544 * get_ep_limit - get the maximum data legnth for this endpoint
545 * @hs_ep: The endpoint
546 *
547 * Return the maximum data that can be queued in one go on a given endpoint
548 * so that transfers that are too long can be split.
549 */
550 static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
551 {
552 int index = hs_ep->index;
553 unsigned maxsize;
554 unsigned maxpkt;
555
556 if (index != 0) {
557 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
558 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
559 } else {
560 maxsize = 64+64;
561 if (hs_ep->dir_in)
562 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
563 else
564 maxpkt = 2;
565 }
566
567 /* we made the constant loading easier above by using +1 */
568 maxpkt--;
569 maxsize--;
570
571 /*
572 * constrain by packet count if maxpkts*pktsize is greater
573 * than the length register size.
574 */
575
576 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
577 maxsize = maxpkt * hs_ep->ep.maxpacket;
578
579 return maxsize;
580 }
581
582 /**
583 * dwc2_hsotg_read_frameno - read current frame number
584 * @hsotg: The device instance
585 *
586 * Return the current frame number
587 */
588 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
589 {
590 u32 dsts;
591
592 dsts = dwc2_readl(hsotg->regs + DSTS);
593 dsts &= DSTS_SOFFN_MASK;
594 dsts >>= DSTS_SOFFN_SHIFT;
595
596 return dsts;
597 }
598
599 /**
600 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
601 * DMA descriptor chain prepared for specific endpoint
602 * @hs_ep: The endpoint
603 *
604 * Return the maximum data that can be queued in one go on a given endpoint
605 * depending on its descriptor chain capacity so that transfers that
606 * are too long can be split.
607 */
608 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
609 {
610 int is_isoc = hs_ep->isochronous;
611 unsigned int maxsize;
612
613 if (is_isoc)
614 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
615 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
616 else
617 maxsize = DEV_DMA_NBYTES_LIMIT;
618
619 /* Above size of one descriptor was chosen, multiple it */
620 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
621
622 return maxsize;
623 }
624
625 /*
626 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
627 * @hs_ep: The endpoint
628 * @mask: RX/TX bytes mask to be defined
629 *
630 * Returns maximum data payload for one descriptor after analyzing endpoint
631 * characteristics.
632 * DMA descriptor transfer bytes limit depends on EP type:
633 * Control out - MPS,
634 * Isochronous - descriptor rx/tx bytes bitfield limit,
635 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
636 * have concatenations from various descriptors within one packet.
637 *
638 * Selects corresponding mask for RX/TX bytes as well.
639 */
640 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
641 {
642 u32 mps = hs_ep->ep.maxpacket;
643 int dir_in = hs_ep->dir_in;
644 u32 desc_size = 0;
645
646 if (!hs_ep->index && !dir_in) {
647 desc_size = mps;
648 *mask = DEV_DMA_NBYTES_MASK;
649 } else if (hs_ep->isochronous) {
650 if (dir_in) {
651 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
652 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
653 } else {
654 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
655 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
656 }
657 } else {
658 desc_size = DEV_DMA_NBYTES_LIMIT;
659 *mask = DEV_DMA_NBYTES_MASK;
660
661 /* Round down desc_size to be mps multiple */
662 desc_size -= desc_size % mps;
663 }
664
665 return desc_size;
666 }
667
668 /*
669 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
670 * @hs_ep: The endpoint
671 * @dma_buff: DMA address to use
672 * @len: Length of the transfer
673 *
674 * This function will iterate over descriptor chain and fill its entries
675 * with corresponding information based on transfer data.
676 */
677 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
678 dma_addr_t dma_buff,
679 unsigned int len)
680 {
681 struct dwc2_hsotg *hsotg = hs_ep->parent;
682 int dir_in = hs_ep->dir_in;
683 struct dwc2_dma_desc *desc = hs_ep->desc_list;
684 u32 mps = hs_ep->ep.maxpacket;
685 u32 maxsize = 0;
686 u32 offset = 0;
687 u32 mask = 0;
688 int i;
689
690 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
691
692 hs_ep->desc_count = (len / maxsize) +
693 ((len % maxsize) ? 1 : 0);
694 if (len == 0)
695 hs_ep->desc_count = 1;
696
697 for (i = 0; i < hs_ep->desc_count; ++i) {
698 desc->status = 0;
699 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
700 << DEV_DMA_BUFF_STS_SHIFT);
701
702 if (len > maxsize) {
703 if (!hs_ep->index && !dir_in)
704 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
705
706 desc->status |= (maxsize <<
707 DEV_DMA_NBYTES_SHIFT & mask);
708 desc->buf = dma_buff + offset;
709
710 len -= maxsize;
711 offset += maxsize;
712 } else {
713 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
714
715 if (dir_in)
716 desc->status |= (len % mps) ? DEV_DMA_SHORT :
717 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
718 if (len > maxsize)
719 dev_err(hsotg->dev, "wrong len %d\n", len);
720
721 desc->status |=
722 len << DEV_DMA_NBYTES_SHIFT & mask;
723 desc->buf = dma_buff + offset;
724 }
725
726 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
727 desc->status |= (DEV_DMA_BUFF_STS_HREADY
728 << DEV_DMA_BUFF_STS_SHIFT);
729 desc++;
730 }
731 }
732
733 /*
734 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
735 * @hs_ep: The isochronous endpoint.
736 * @dma_buff: usb requests dma buffer.
737 * @len: usb request transfer length.
738 *
739 * Finds out index of first free entry either in the bottom or up half of
740 * descriptor chain depend on which is under SW control and not processed
741 * by HW. Then fills that descriptor with the data of the arrived usb request,
742 * frame info, sets Last and IOC bits increments next_desc. If filled
743 * descriptor is not the first one, removes L bit from the previous descriptor
744 * status.
745 */
746 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
747 dma_addr_t dma_buff, unsigned int len)
748 {
749 struct dwc2_dma_desc *desc;
750 struct dwc2_hsotg *hsotg = hs_ep->parent;
751 u32 index;
752 u32 maxsize = 0;
753 u32 mask = 0;
754
755 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
756 if (len > maxsize) {
757 dev_err(hsotg->dev, "wrong len %d\n", len);
758 return -EINVAL;
759 }
760
761 /*
762 * If SW has already filled half of chain, then return and wait for
763 * the other chain to be processed by HW.
764 */
765 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
766 return -EBUSY;
767
768 /* Increment frame number by interval for IN */
769 if (hs_ep->dir_in)
770 dwc2_gadget_incr_frame_num(hs_ep);
771
772 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
773 hs_ep->next_desc;
774
775 /* Sanity check of calculated index */
776 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
777 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
778 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
779 return -EINVAL;
780 }
781
782 desc = &hs_ep->desc_list[index];
783
784 /* Clear L bit of previous desc if more than one entries in the chain */
785 if (hs_ep->next_desc)
786 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
787
788 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
789 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
790
791 desc->status = 0;
792 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
793
794 desc->buf = dma_buff;
795 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
796 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
797
798 if (hs_ep->dir_in) {
799 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
800 DEV_DMA_ISOC_PID_MASK) |
801 ((len % hs_ep->ep.maxpacket) ?
802 DEV_DMA_SHORT : 0) |
803 ((hs_ep->target_frame <<
804 DEV_DMA_ISOC_FRNUM_SHIFT) &
805 DEV_DMA_ISOC_FRNUM_MASK);
806 }
807
808 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
809 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
810
811 /* Update index of last configured entry in the chain */
812 hs_ep->next_desc++;
813
814 return 0;
815 }
816
817 /*
818 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
819 * @hs_ep: The isochronous endpoint.
820 *
821 * Prepare first descriptor chain for isochronous endpoints. Afterwards
822 * write DMA address to HW and enable the endpoint.
823 *
824 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
825 * to prepare second descriptor chain while first one is being processed by HW.
826 */
827 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
828 {
829 struct dwc2_hsotg *hsotg = hs_ep->parent;
830 struct dwc2_hsotg_req *hs_req, *treq;
831 int index = hs_ep->index;
832 int ret;
833 u32 dma_reg;
834 u32 depctl;
835 u32 ctrl;
836
837 if (list_empty(&hs_ep->queue)) {
838 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
839 return;
840 }
841
842 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
843 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
844 hs_req->req.length);
845 if (ret) {
846 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
847 break;
848 }
849 }
850
851 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
852 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
853
854 /* write descriptor chain address to control register */
855 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
856
857 ctrl = dwc2_readl(hsotg->regs + depctl);
858 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
859 dwc2_writel(ctrl, hsotg->regs + depctl);
860
861 /* Switch ISOC descriptor chain number being processed by SW*/
862 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
863 hs_ep->next_desc = 0;
864 }
865
866 /**
867 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
868 * @hsotg: The controller state.
869 * @hs_ep: The endpoint to process a request for
870 * @hs_req: The request to start.
871 * @continuing: True if we are doing more for the current request.
872 *
873 * Start the given request running by setting the endpoint registers
874 * appropriately, and writing any data to the FIFOs.
875 */
876 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
877 struct dwc2_hsotg_ep *hs_ep,
878 struct dwc2_hsotg_req *hs_req,
879 bool continuing)
880 {
881 struct usb_request *ureq = &hs_req->req;
882 int index = hs_ep->index;
883 int dir_in = hs_ep->dir_in;
884 u32 epctrl_reg;
885 u32 epsize_reg;
886 u32 epsize;
887 u32 ctrl;
888 unsigned length;
889 unsigned packets;
890 unsigned maxreq;
891 unsigned int dma_reg;
892
893 if (index != 0) {
894 if (hs_ep->req && !continuing) {
895 dev_err(hsotg->dev, "%s: active request\n", __func__);
896 WARN_ON(1);
897 return;
898 } else if (hs_ep->req != hs_req && continuing) {
899 dev_err(hsotg->dev,
900 "%s: continue different req\n", __func__);
901 WARN_ON(1);
902 return;
903 }
904 }
905
906 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
907 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
908 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
909
910 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
911 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
912 hs_ep->dir_in ? "in" : "out");
913
914 /* If endpoint is stalled, we will restart request later */
915 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
916
917 if (index && ctrl & DXEPCTL_STALL) {
918 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
919 return;
920 }
921
922 length = ureq->length - ureq->actual;
923 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
924 ureq->length, ureq->actual);
925
926 if (!using_desc_dma(hsotg))
927 maxreq = get_ep_limit(hs_ep);
928 else
929 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
930
931 if (length > maxreq) {
932 int round = maxreq % hs_ep->ep.maxpacket;
933
934 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
935 __func__, length, maxreq, round);
936
937 /* round down to multiple of packets */
938 if (round)
939 maxreq -= round;
940
941 length = maxreq;
942 }
943
944 if (length)
945 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
946 else
947 packets = 1; /* send one packet if length is zero. */
948
949 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
950 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
951 return;
952 }
953
954 if (dir_in && index != 0)
955 if (hs_ep->isochronous)
956 epsize = DXEPTSIZ_MC(packets);
957 else
958 epsize = DXEPTSIZ_MC(1);
959 else
960 epsize = 0;
961
962 /*
963 * zero length packet should be programmed on its own and should not
964 * be counted in DIEPTSIZ.PktCnt with other packets.
965 */
966 if (dir_in && ureq->zero && !continuing) {
967 /* Test if zlp is actually required. */
968 if ((ureq->length >= hs_ep->ep.maxpacket) &&
969 !(ureq->length % hs_ep->ep.maxpacket))
970 hs_ep->send_zlp = 1;
971 }
972
973 epsize |= DXEPTSIZ_PKTCNT(packets);
974 epsize |= DXEPTSIZ_XFERSIZE(length);
975
976 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
977 __func__, packets, length, ureq->length, epsize, epsize_reg);
978
979 /* store the request as the current one we're doing */
980 hs_ep->req = hs_req;
981
982 if (using_desc_dma(hsotg)) {
983 u32 offset = 0;
984 u32 mps = hs_ep->ep.maxpacket;
985
986 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
987 if (!dir_in) {
988 if (!index)
989 length = mps;
990 else if (length % mps)
991 length += (mps - (length % mps));
992 }
993
994 /*
995 * If more data to send, adjust DMA for EP0 out data stage.
996 * ureq->dma stays unchanged, hence increment it by already
997 * passed passed data count before starting new transaction.
998 */
999 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1000 continuing)
1001 offset = ureq->actual;
1002
1003 /* Fill DDMA chain entries */
1004 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1005 length);
1006
1007 /* write descriptor chain address to control register */
1008 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1009
1010 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1011 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1012 } else {
1013 /* write size / packets */
1014 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1015
1016 if (using_dma(hsotg) && !continuing && (length != 0)) {
1017 /*
1018 * write DMA address to control register, buffer
1019 * already synced by dwc2_hsotg_ep_queue().
1020 */
1021
1022 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1023
1024 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1025 __func__, &ureq->dma, dma_reg);
1026 }
1027 }
1028
1029 if (hs_ep->isochronous && hs_ep->interval == 1) {
1030 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1031 dwc2_gadget_incr_frame_num(hs_ep);
1032
1033 if (hs_ep->target_frame & 0x1)
1034 ctrl |= DXEPCTL_SETODDFR;
1035 else
1036 ctrl |= DXEPCTL_SETEVENFR;
1037 }
1038
1039 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1040
1041 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1042
1043 /* For Setup request do not clear NAK */
1044 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1045 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1046
1047 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1048 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1049
1050 /*
1051 * set these, it seems that DMA support increments past the end
1052 * of the packet buffer so we need to calculate the length from
1053 * this information.
1054 */
1055 hs_ep->size_loaded = length;
1056 hs_ep->last_load = ureq->actual;
1057
1058 if (dir_in && !using_dma(hsotg)) {
1059 /* set these anyway, we may need them for non-periodic in */
1060 hs_ep->fifo_load = 0;
1061
1062 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1063 }
1064
1065 /*
1066 * Note, trying to clear the NAK here causes problems with transmit
1067 * on the S3C6400 ending up with the TXFIFO becoming full.
1068 */
1069
1070 /* check ep is enabled */
1071 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1072 dev_dbg(hsotg->dev,
1073 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1074 index, dwc2_readl(hsotg->regs + epctrl_reg));
1075
1076 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1077 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1078
1079 /* enable ep interrupts */
1080 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1081 }
1082
1083 /**
1084 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1085 * @hsotg: The device state.
1086 * @hs_ep: The endpoint the request is on.
1087 * @req: The request being processed.
1088 *
1089 * We've been asked to queue a request, so ensure that the memory buffer
1090 * is correctly setup for DMA. If we've been passed an extant DMA address
1091 * then ensure the buffer has been synced to memory. If our buffer has no
1092 * DMA memory, then we map the memory and mark our request to allow us to
1093 * cleanup on completion.
1094 */
1095 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1096 struct dwc2_hsotg_ep *hs_ep,
1097 struct usb_request *req)
1098 {
1099 int ret;
1100
1101 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1102 if (ret)
1103 goto dma_error;
1104
1105 return 0;
1106
1107 dma_error:
1108 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1109 __func__, req->buf, req->length);
1110
1111 return -EIO;
1112 }
1113
1114 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1115 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1116 {
1117 void *req_buf = hs_req->req.buf;
1118
1119 /* If dma is not being used or buffer is aligned */
1120 if (!using_dma(hsotg) || !((long)req_buf & 3))
1121 return 0;
1122
1123 WARN_ON(hs_req->saved_req_buf);
1124
1125 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1126 hs_ep->ep.name, req_buf, hs_req->req.length);
1127
1128 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1129 if (!hs_req->req.buf) {
1130 hs_req->req.buf = req_buf;
1131 dev_err(hsotg->dev,
1132 "%s: unable to allocate memory for bounce buffer\n",
1133 __func__);
1134 return -ENOMEM;
1135 }
1136
1137 /* Save actual buffer */
1138 hs_req->saved_req_buf = req_buf;
1139
1140 if (hs_ep->dir_in)
1141 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1142 return 0;
1143 }
1144
1145 static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1146 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1147 {
1148 /* If dma is not being used or buffer was aligned */
1149 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1150 return;
1151
1152 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1153 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1154
1155 /* Copy data from bounce buffer on successful out transfer */
1156 if (!hs_ep->dir_in && !hs_req->req.status)
1157 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1158 hs_req->req.actual);
1159
1160 /* Free bounce buffer */
1161 kfree(hs_req->req.buf);
1162
1163 hs_req->req.buf = hs_req->saved_req_buf;
1164 hs_req->saved_req_buf = NULL;
1165 }
1166
1167 /**
1168 * dwc2_gadget_target_frame_elapsed - Checks target frame
1169 * @hs_ep: The driver endpoint to check
1170 *
1171 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1172 * corresponding transfer.
1173 */
1174 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1175 {
1176 struct dwc2_hsotg *hsotg = hs_ep->parent;
1177 u32 target_frame = hs_ep->target_frame;
1178 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1179 bool frame_overrun = hs_ep->frame_overrun;
1180
1181 if (!frame_overrun && current_frame >= target_frame)
1182 return true;
1183
1184 if (frame_overrun && current_frame >= target_frame &&
1185 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1186 return true;
1187
1188 return false;
1189 }
1190
1191 /*
1192 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1193 * @hsotg: The driver state
1194 * @hs_ep: the ep descriptor chain is for
1195 *
1196 * Called to update EP0 structure's pointers depend on stage of
1197 * control transfer.
1198 */
1199 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1200 struct dwc2_hsotg_ep *hs_ep)
1201 {
1202 switch (hsotg->ep0_state) {
1203 case DWC2_EP0_SETUP:
1204 case DWC2_EP0_STATUS_OUT:
1205 hs_ep->desc_list = hsotg->setup_desc[0];
1206 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1207 break;
1208 case DWC2_EP0_DATA_IN:
1209 case DWC2_EP0_STATUS_IN:
1210 hs_ep->desc_list = hsotg->ctrl_in_desc;
1211 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1212 break;
1213 case DWC2_EP0_DATA_OUT:
1214 hs_ep->desc_list = hsotg->ctrl_out_desc;
1215 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1216 break;
1217 default:
1218 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1219 hsotg->ep0_state);
1220 return -EINVAL;
1221 }
1222
1223 return 0;
1224 }
1225
1226 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1227 gfp_t gfp_flags)
1228 {
1229 struct dwc2_hsotg_req *hs_req = our_req(req);
1230 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1231 struct dwc2_hsotg *hs = hs_ep->parent;
1232 bool first;
1233 int ret;
1234
1235 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1236 ep->name, req, req->length, req->buf, req->no_interrupt,
1237 req->zero, req->short_not_ok);
1238
1239 /* Prevent new request submission when controller is suspended */
1240 if (hs->lx_state == DWC2_L2) {
1241 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1242 __func__);
1243 return -EAGAIN;
1244 }
1245
1246 /* initialise status of the request */
1247 INIT_LIST_HEAD(&hs_req->queue);
1248 req->actual = 0;
1249 req->status = -EINPROGRESS;
1250
1251 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1252 if (ret)
1253 return ret;
1254
1255 /* if we're using DMA, sync the buffers as necessary */
1256 if (using_dma(hs)) {
1257 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1258 if (ret)
1259 return ret;
1260 }
1261 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1262 if (using_desc_dma(hs) && !hs_ep->index) {
1263 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1264 if (ret)
1265 return ret;
1266 }
1267
1268 first = list_empty(&hs_ep->queue);
1269 list_add_tail(&hs_req->queue, &hs_ep->queue);
1270
1271 /*
1272 * Handle DDMA isochronous transfers separately - just add new entry
1273 * to the half of descriptor chain that is not processed by HW.
1274 * Transfer will be started once SW gets either one of NAK or
1275 * OutTknEpDis interrupts.
1276 */
1277 if (using_desc_dma(hs) && hs_ep->isochronous &&
1278 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1279 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1280 hs_req->req.length);
1281 if (ret)
1282 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1283
1284 return 0;
1285 }
1286
1287 if (first) {
1288 if (!hs_ep->isochronous) {
1289 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1290 return 0;
1291 }
1292
1293 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1294 dwc2_gadget_incr_frame_num(hs_ep);
1295
1296 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1297 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1298 }
1299 return 0;
1300 }
1301
1302 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1303 gfp_t gfp_flags)
1304 {
1305 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1306 struct dwc2_hsotg *hs = hs_ep->parent;
1307 unsigned long flags = 0;
1308 int ret = 0;
1309
1310 spin_lock_irqsave(&hs->lock, flags);
1311 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1312 spin_unlock_irqrestore(&hs->lock, flags);
1313
1314 return ret;
1315 }
1316
1317 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1318 struct usb_request *req)
1319 {
1320 struct dwc2_hsotg_req *hs_req = our_req(req);
1321
1322 kfree(hs_req);
1323 }
1324
1325 /**
1326 * dwc2_hsotg_complete_oursetup - setup completion callback
1327 * @ep: The endpoint the request was on.
1328 * @req: The request completed.
1329 *
1330 * Called on completion of any requests the driver itself
1331 * submitted that need cleaning up.
1332 */
1333 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1334 struct usb_request *req)
1335 {
1336 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1337 struct dwc2_hsotg *hsotg = hs_ep->parent;
1338
1339 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1340
1341 dwc2_hsotg_ep_free_request(ep, req);
1342 }
1343
1344 /**
1345 * ep_from_windex - convert control wIndex value to endpoint
1346 * @hsotg: The driver state.
1347 * @windex: The control request wIndex field (in host order).
1348 *
1349 * Convert the given wIndex into a pointer to an driver endpoint
1350 * structure, or return NULL if it is not a valid endpoint.
1351 */
1352 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1353 u32 windex)
1354 {
1355 struct dwc2_hsotg_ep *ep;
1356 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1357 int idx = windex & 0x7F;
1358
1359 if (windex >= 0x100)
1360 return NULL;
1361
1362 if (idx > hsotg->num_of_eps)
1363 return NULL;
1364
1365 ep = index_to_ep(hsotg, idx, dir);
1366
1367 if (idx && ep->dir_in != dir)
1368 return NULL;
1369
1370 return ep;
1371 }
1372
1373 /**
1374 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1375 * @hsotg: The driver state.
1376 * @testmode: requested usb test mode
1377 * Enable usb Test Mode requested by the Host.
1378 */
1379 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1380 {
1381 int dctl = dwc2_readl(hsotg->regs + DCTL);
1382
1383 dctl &= ~DCTL_TSTCTL_MASK;
1384 switch (testmode) {
1385 case TEST_J:
1386 case TEST_K:
1387 case TEST_SE0_NAK:
1388 case TEST_PACKET:
1389 case TEST_FORCE_EN:
1390 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1391 break;
1392 default:
1393 return -EINVAL;
1394 }
1395 dwc2_writel(dctl, hsotg->regs + DCTL);
1396 return 0;
1397 }
1398
1399 /**
1400 * dwc2_hsotg_send_reply - send reply to control request
1401 * @hsotg: The device state
1402 * @ep: Endpoint 0
1403 * @buff: Buffer for request
1404 * @length: Length of reply.
1405 *
1406 * Create a request and queue it on the given endpoint. This is useful as
1407 * an internal method of sending replies to certain control requests, etc.
1408 */
1409 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1410 struct dwc2_hsotg_ep *ep,
1411 void *buff,
1412 int length)
1413 {
1414 struct usb_request *req;
1415 int ret;
1416
1417 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1418
1419 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1420 hsotg->ep0_reply = req;
1421 if (!req) {
1422 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1423 return -ENOMEM;
1424 }
1425
1426 req->buf = hsotg->ep0_buff;
1427 req->length = length;
1428 /*
1429 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1430 * STATUS stage.
1431 */
1432 req->zero = 0;
1433 req->complete = dwc2_hsotg_complete_oursetup;
1434
1435 if (length)
1436 memcpy(req->buf, buff, length);
1437
1438 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1439 if (ret) {
1440 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1441 return ret;
1442 }
1443
1444 return 0;
1445 }
1446
1447 /**
1448 * dwc2_hsotg_process_req_status - process request GET_STATUS
1449 * @hsotg: The device state
1450 * @ctrl: USB control request
1451 */
1452 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1453 struct usb_ctrlrequest *ctrl)
1454 {
1455 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1456 struct dwc2_hsotg_ep *ep;
1457 __le16 reply;
1458 int ret;
1459
1460 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1461
1462 if (!ep0->dir_in) {
1463 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1464 return -EINVAL;
1465 }
1466
1467 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1468 case USB_RECIP_DEVICE:
1469 reply = cpu_to_le16(0); /* bit 0 => self powered,
1470 * bit 1 => remote wakeup */
1471 break;
1472
1473 case USB_RECIP_INTERFACE:
1474 /* currently, the data result should be zero */
1475 reply = cpu_to_le16(0);
1476 break;
1477
1478 case USB_RECIP_ENDPOINT:
1479 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1480 if (!ep)
1481 return -ENOENT;
1482
1483 reply = cpu_to_le16(ep->halted ? 1 : 0);
1484 break;
1485
1486 default:
1487 return 0;
1488 }
1489
1490 if (le16_to_cpu(ctrl->wLength) != 2)
1491 return -EINVAL;
1492
1493 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1494 if (ret) {
1495 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1496 return ret;
1497 }
1498
1499 return 1;
1500 }
1501
1502 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1503
1504 /**
1505 * get_ep_head - return the first request on the endpoint
1506 * @hs_ep: The controller endpoint to get
1507 *
1508 * Get the first request on the endpoint.
1509 */
1510 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1511 {
1512 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1513 queue);
1514 }
1515
1516 /**
1517 * dwc2_gadget_start_next_request - Starts next request from ep queue
1518 * @hs_ep: Endpoint structure
1519 *
1520 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1521 * in its handler. Hence we need to unmask it here to be able to do
1522 * resynchronization.
1523 */
1524 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1525 {
1526 u32 mask;
1527 struct dwc2_hsotg *hsotg = hs_ep->parent;
1528 int dir_in = hs_ep->dir_in;
1529 struct dwc2_hsotg_req *hs_req;
1530 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1531
1532 if (!list_empty(&hs_ep->queue)) {
1533 hs_req = get_ep_head(hs_ep);
1534 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1535 return;
1536 }
1537 if (!hs_ep->isochronous)
1538 return;
1539
1540 if (dir_in) {
1541 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1542 __func__);
1543 } else {
1544 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1545 __func__);
1546 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1547 mask |= DOEPMSK_OUTTKNEPDISMSK;
1548 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1549 }
1550 }
1551
1552 /**
1553 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1554 * @hsotg: The device state
1555 * @ctrl: USB control request
1556 */
1557 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1558 struct usb_ctrlrequest *ctrl)
1559 {
1560 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1561 struct dwc2_hsotg_req *hs_req;
1562 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1563 struct dwc2_hsotg_ep *ep;
1564 int ret;
1565 bool halted;
1566 u32 recip;
1567 u32 wValue;
1568 u32 wIndex;
1569
1570 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1571 __func__, set ? "SET" : "CLEAR");
1572
1573 wValue = le16_to_cpu(ctrl->wValue);
1574 wIndex = le16_to_cpu(ctrl->wIndex);
1575 recip = ctrl->bRequestType & USB_RECIP_MASK;
1576
1577 switch (recip) {
1578 case USB_RECIP_DEVICE:
1579 switch (wValue) {
1580 case USB_DEVICE_TEST_MODE:
1581 if ((wIndex & 0xff) != 0)
1582 return -EINVAL;
1583 if (!set)
1584 return -EINVAL;
1585
1586 hsotg->test_mode = wIndex >> 8;
1587 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1588 if (ret) {
1589 dev_err(hsotg->dev,
1590 "%s: failed to send reply\n", __func__);
1591 return ret;
1592 }
1593 break;
1594 default:
1595 return -ENOENT;
1596 }
1597 break;
1598
1599 case USB_RECIP_ENDPOINT:
1600 ep = ep_from_windex(hsotg, wIndex);
1601 if (!ep) {
1602 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1603 __func__, wIndex);
1604 return -ENOENT;
1605 }
1606
1607 switch (wValue) {
1608 case USB_ENDPOINT_HALT:
1609 halted = ep->halted;
1610
1611 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1612
1613 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1614 if (ret) {
1615 dev_err(hsotg->dev,
1616 "%s: failed to send reply\n", __func__);
1617 return ret;
1618 }
1619
1620 /*
1621 * we have to complete all requests for ep if it was
1622 * halted, and the halt was cleared by CLEAR_FEATURE
1623 */
1624
1625 if (!set && halted) {
1626 /*
1627 * If we have request in progress,
1628 * then complete it
1629 */
1630 if (ep->req) {
1631 hs_req = ep->req;
1632 ep->req = NULL;
1633 list_del_init(&hs_req->queue);
1634 if (hs_req->req.complete) {
1635 spin_unlock(&hsotg->lock);
1636 usb_gadget_giveback_request(
1637 &ep->ep, &hs_req->req);
1638 spin_lock(&hsotg->lock);
1639 }
1640 }
1641
1642 /* If we have pending request, then start it */
1643 if (!ep->req) {
1644 dwc2_gadget_start_next_request(ep);
1645 }
1646 }
1647
1648 break;
1649
1650 default:
1651 return -ENOENT;
1652 }
1653 break;
1654 default:
1655 return -ENOENT;
1656 }
1657 return 1;
1658 }
1659
1660 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1661
1662 /**
1663 * dwc2_hsotg_stall_ep0 - stall ep0
1664 * @hsotg: The device state
1665 *
1666 * Set stall for ep0 as response for setup request.
1667 */
1668 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1669 {
1670 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671 u32 reg;
1672 u32 ctrl;
1673
1674 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1675 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1676
1677 /*
1678 * DxEPCTL_Stall will be cleared by EP once it has
1679 * taken effect, so no need to clear later.
1680 */
1681
1682 ctrl = dwc2_readl(hsotg->regs + reg);
1683 ctrl |= DXEPCTL_STALL;
1684 ctrl |= DXEPCTL_CNAK;
1685 dwc2_writel(ctrl, hsotg->regs + reg);
1686
1687 dev_dbg(hsotg->dev,
1688 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1689 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1690
1691 /*
1692 * complete won't be called, so we enqueue
1693 * setup request here
1694 */
1695 dwc2_hsotg_enqueue_setup(hsotg);
1696 }
1697
1698 /**
1699 * dwc2_hsotg_process_control - process a control request
1700 * @hsotg: The device state
1701 * @ctrl: The control request received
1702 *
1703 * The controller has received the SETUP phase of a control request, and
1704 * needs to work out what to do next (and whether to pass it on to the
1705 * gadget driver).
1706 */
1707 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1708 struct usb_ctrlrequest *ctrl)
1709 {
1710 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1711 int ret = 0;
1712 u32 dcfg;
1713
1714 dev_dbg(hsotg->dev,
1715 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1716 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1717 ctrl->wIndex, ctrl->wLength);
1718
1719 if (ctrl->wLength == 0) {
1720 ep0->dir_in = 1;
1721 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1722 } else if (ctrl->bRequestType & USB_DIR_IN) {
1723 ep0->dir_in = 1;
1724 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1725 } else {
1726 ep0->dir_in = 0;
1727 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1728 }
1729
1730 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1731 switch (ctrl->bRequest) {
1732 case USB_REQ_SET_ADDRESS:
1733 hsotg->connected = 1;
1734 dcfg = dwc2_readl(hsotg->regs + DCFG);
1735 dcfg &= ~DCFG_DEVADDR_MASK;
1736 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1737 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1738 dwc2_writel(dcfg, hsotg->regs + DCFG);
1739
1740 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1741
1742 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1743 return;
1744
1745 case USB_REQ_GET_STATUS:
1746 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1747 break;
1748
1749 case USB_REQ_CLEAR_FEATURE:
1750 case USB_REQ_SET_FEATURE:
1751 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1752 break;
1753 }
1754 }
1755
1756 /* as a fallback, try delivering it to the driver to deal with */
1757
1758 if (ret == 0 && hsotg->driver) {
1759 spin_unlock(&hsotg->lock);
1760 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1761 spin_lock(&hsotg->lock);
1762 if (ret < 0)
1763 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1764 }
1765
1766 /*
1767 * the request is either unhandlable, or is not formatted correctly
1768 * so respond with a STALL for the status stage to indicate failure.
1769 */
1770
1771 if (ret < 0)
1772 dwc2_hsotg_stall_ep0(hsotg);
1773 }
1774
1775 /**
1776 * dwc2_hsotg_complete_setup - completion of a setup transfer
1777 * @ep: The endpoint the request was on.
1778 * @req: The request completed.
1779 *
1780 * Called on completion of any requests the driver itself submitted for
1781 * EP0 setup packets
1782 */
1783 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1784 struct usb_request *req)
1785 {
1786 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1787 struct dwc2_hsotg *hsotg = hs_ep->parent;
1788
1789 if (req->status < 0) {
1790 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1791 return;
1792 }
1793
1794 spin_lock(&hsotg->lock);
1795 if (req->actual == 0)
1796 dwc2_hsotg_enqueue_setup(hsotg);
1797 else
1798 dwc2_hsotg_process_control(hsotg, req->buf);
1799 spin_unlock(&hsotg->lock);
1800 }
1801
1802 /**
1803 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1804 * @hsotg: The device state.
1805 *
1806 * Enqueue a request on EP0 if necessary to received any SETUP packets
1807 * received from the host.
1808 */
1809 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1810 {
1811 struct usb_request *req = hsotg->ctrl_req;
1812 struct dwc2_hsotg_req *hs_req = our_req(req);
1813 int ret;
1814
1815 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1816
1817 req->zero = 0;
1818 req->length = 8;
1819 req->buf = hsotg->ctrl_buff;
1820 req->complete = dwc2_hsotg_complete_setup;
1821
1822 if (!list_empty(&hs_req->queue)) {
1823 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1824 return;
1825 }
1826
1827 hsotg->eps_out[0]->dir_in = 0;
1828 hsotg->eps_out[0]->send_zlp = 0;
1829 hsotg->ep0_state = DWC2_EP0_SETUP;
1830
1831 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1832 if (ret < 0) {
1833 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1834 /*
1835 * Don't think there's much we can do other than watch the
1836 * driver fail.
1837 */
1838 }
1839 }
1840
1841 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1842 struct dwc2_hsotg_ep *hs_ep)
1843 {
1844 u32 ctrl;
1845 u8 index = hs_ep->index;
1846 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1847 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1848
1849 if (hs_ep->dir_in)
1850 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1851 index);
1852 else
1853 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1854 index);
1855 if (using_desc_dma(hsotg)) {
1856 /* Not specific buffer needed for ep0 ZLP */
1857 dma_addr_t dma = hs_ep->desc_list_dma;
1858
1859 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1860 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1861 } else {
1862 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1863 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1864 epsiz_reg);
1865 }
1866
1867 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1868 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1869 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1870 ctrl |= DXEPCTL_USBACTEP;
1871 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1872 }
1873
1874 /**
1875 * dwc2_hsotg_complete_request - complete a request given to us
1876 * @hsotg: The device state.
1877 * @hs_ep: The endpoint the request was on.
1878 * @hs_req: The request to complete.
1879 * @result: The result code (0 => Ok, otherwise errno)
1880 *
1881 * The given request has finished, so call the necessary completion
1882 * if it has one and then look to see if we can start a new request
1883 * on the endpoint.
1884 *
1885 * Note, expects the ep to already be locked as appropriate.
1886 */
1887 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1888 struct dwc2_hsotg_ep *hs_ep,
1889 struct dwc2_hsotg_req *hs_req,
1890 int result)
1891 {
1892
1893 if (!hs_req) {
1894 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1895 return;
1896 }
1897
1898 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1899 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1900
1901 /*
1902 * only replace the status if we've not already set an error
1903 * from a previous transaction
1904 */
1905
1906 if (hs_req->req.status == -EINPROGRESS)
1907 hs_req->req.status = result;
1908
1909 if (using_dma(hsotg))
1910 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1911
1912 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1913
1914 hs_ep->req = NULL;
1915 list_del_init(&hs_req->queue);
1916
1917 /*
1918 * call the complete request with the locks off, just in case the
1919 * request tries to queue more work for this endpoint.
1920 */
1921
1922 if (hs_req->req.complete) {
1923 spin_unlock(&hsotg->lock);
1924 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1925 spin_lock(&hsotg->lock);
1926 }
1927
1928 /* In DDMA don't need to proceed to starting of next ISOC request */
1929 if (using_desc_dma(hsotg) && hs_ep->isochronous)
1930 return;
1931
1932 /*
1933 * Look to see if there is anything else to do. Note, the completion
1934 * of the previous request may have caused a new request to be started
1935 * so be careful when doing this.
1936 */
1937
1938 if (!hs_ep->req && result >= 0) {
1939 dwc2_gadget_start_next_request(hs_ep);
1940 }
1941 }
1942
1943 /*
1944 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
1945 * @hs_ep: The endpoint the request was on.
1946 *
1947 * Get first request from the ep queue, determine descriptor on which complete
1948 * happened. SW based on isoc_chain_num discovers which half of the descriptor
1949 * chain is currently in use by HW, adjusts dma_address and calculates index
1950 * of completed descriptor based on the value of DEPDMA register. Update actual
1951 * length of request, giveback to gadget.
1952 */
1953 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
1954 {
1955 struct dwc2_hsotg *hsotg = hs_ep->parent;
1956 struct dwc2_hsotg_req *hs_req;
1957 struct usb_request *ureq;
1958 int index;
1959 dma_addr_t dma_addr;
1960 u32 dma_reg;
1961 u32 depdma;
1962 u32 desc_sts;
1963 u32 mask;
1964
1965 hs_req = get_ep_head(hs_ep);
1966 if (!hs_req) {
1967 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
1968 return;
1969 }
1970 ureq = &hs_req->req;
1971
1972 dma_addr = hs_ep->desc_list_dma;
1973
1974 /*
1975 * If lower half of descriptor chain is currently use by SW,
1976 * that means higher half is being processed by HW, so shift
1977 * DMA address to higher half of descriptor chain.
1978 */
1979 if (!hs_ep->isoc_chain_num)
1980 dma_addr += sizeof(struct dwc2_dma_desc) *
1981 (MAX_DMA_DESC_NUM_GENERIC / 2);
1982
1983 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
1984 depdma = dwc2_readl(hsotg->regs + dma_reg);
1985
1986 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
1987 desc_sts = hs_ep->desc_list[index].status;
1988
1989 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
1990 DEV_DMA_ISOC_RX_NBYTES_MASK;
1991 ureq->actual = ureq->length -
1992 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
1993
1994 /* Adjust actual length for ISOC Out if length is not align of 4 */
1995 if (!hs_ep->dir_in && ureq->length & 0x3)
1996 ureq->actual += 4 - (ureq->length & 0x3);
1997
1998 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1999 }
2000
2001 /*
2002 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2003 * @hs_ep: The isochronous endpoint to be re-enabled.
2004 *
2005 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2006 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2007 * was under SW control till HW was busy and restart the endpoint if needed.
2008 */
2009 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2010 {
2011 struct dwc2_hsotg *hsotg = hs_ep->parent;
2012 u32 depctl;
2013 u32 dma_reg;
2014 u32 ctrl;
2015 u32 dma_addr = hs_ep->desc_list_dma;
2016 unsigned char index = hs_ep->index;
2017
2018 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2019 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2020
2021 ctrl = dwc2_readl(hsotg->regs + depctl);
2022
2023 /*
2024 * EP was disabled if HW has processed last descriptor or BNA was set.
2025 * So restart ep if SW has prepared new descriptor chain in ep_queue
2026 * routine while HW was busy.
2027 */
2028 if (!(ctrl & DXEPCTL_EPENA)) {
2029 if (!hs_ep->next_desc) {
2030 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2031 __func__);
2032 return;
2033 }
2034
2035 dma_addr += sizeof(struct dwc2_dma_desc) *
2036 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2037 hs_ep->isoc_chain_num;
2038 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2039
2040 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2041 dwc2_writel(ctrl, hsotg->regs + depctl);
2042
2043 /* Switch ISOC descriptor chain number being processed by SW*/
2044 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2045 hs_ep->next_desc = 0;
2046
2047 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2048 __func__);
2049 }
2050 }
2051
2052 /**
2053 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2054 * @hsotg: The device state.
2055 * @ep_idx: The endpoint index for the data
2056 * @size: The size of data in the fifo, in bytes
2057 *
2058 * The FIFO status shows there is data to read from the FIFO for a given
2059 * endpoint, so sort out whether we need to read the data into a request
2060 * that has been made for that endpoint.
2061 */
2062 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2063 {
2064 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2065 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2066 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2067 int to_read;
2068 int max_req;
2069 int read_ptr;
2070
2071
2072 if (!hs_req) {
2073 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2074 int ptr;
2075
2076 dev_dbg(hsotg->dev,
2077 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2078 __func__, size, ep_idx, epctl);
2079
2080 /* dump the data from the FIFO, we've nothing we can do */
2081 for (ptr = 0; ptr < size; ptr += 4)
2082 (void)dwc2_readl(fifo);
2083
2084 return;
2085 }
2086
2087 to_read = size;
2088 read_ptr = hs_req->req.actual;
2089 max_req = hs_req->req.length - read_ptr;
2090
2091 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2092 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2093
2094 if (to_read > max_req) {
2095 /*
2096 * more data appeared than we where willing
2097 * to deal with in this request.
2098 */
2099
2100 /* currently we don't deal this */
2101 WARN_ON_ONCE(1);
2102 }
2103
2104 hs_ep->total_data += to_read;
2105 hs_req->req.actual += to_read;
2106 to_read = DIV_ROUND_UP(to_read, 4);
2107
2108 /*
2109 * note, we might over-write the buffer end by 3 bytes depending on
2110 * alignment of the data.
2111 */
2112 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2113 }
2114
2115 /**
2116 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2117 * @hsotg: The device instance
2118 * @dir_in: If IN zlp
2119 *
2120 * Generate a zero-length IN packet request for terminating a SETUP
2121 * transaction.
2122 *
2123 * Note, since we don't write any data to the TxFIFO, then it is
2124 * currently believed that we do not need to wait for any space in
2125 * the TxFIFO.
2126 */
2127 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2128 {
2129 /* eps_out[0] is used in both directions */
2130 hsotg->eps_out[0]->dir_in = dir_in;
2131 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2132
2133 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2134 }
2135
2136 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2137 u32 epctl_reg)
2138 {
2139 u32 ctrl;
2140
2141 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2142 if (ctrl & DXEPCTL_EOFRNUM)
2143 ctrl |= DXEPCTL_SETEVENFR;
2144 else
2145 ctrl |= DXEPCTL_SETODDFR;
2146 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2147 }
2148
2149 /*
2150 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2151 * @hs_ep - The endpoint on which transfer went
2152 *
2153 * Iterate over endpoints descriptor chain and get info on bytes remained
2154 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2155 */
2156 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2157 {
2158 struct dwc2_hsotg *hsotg = hs_ep->parent;
2159 unsigned int bytes_rem = 0;
2160 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2161 int i;
2162 u32 status;
2163
2164 if (!desc)
2165 return -EINVAL;
2166
2167 for (i = 0; i < hs_ep->desc_count; ++i) {
2168 status = desc->status;
2169 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2170
2171 if (status & DEV_DMA_STS_MASK)
2172 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2173 i, status & DEV_DMA_STS_MASK);
2174 }
2175
2176 return bytes_rem;
2177 }
2178
2179 /**
2180 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2181 * @hsotg: The device instance
2182 * @epnum: The endpoint received from
2183 *
2184 * The RXFIFO has delivered an OutDone event, which means that the data
2185 * transfer for an OUT endpoint has been completed, either by a short
2186 * packet or by the finish of a transfer.
2187 */
2188 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2189 {
2190 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2191 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2192 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2193 struct usb_request *req = &hs_req->req;
2194 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2195 int result = 0;
2196
2197 if (!hs_req) {
2198 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2199 return;
2200 }
2201
2202 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2203 dev_dbg(hsotg->dev, "zlp packet received\n");
2204 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2205 dwc2_hsotg_enqueue_setup(hsotg);
2206 return;
2207 }
2208
2209 if (using_desc_dma(hsotg))
2210 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2211
2212 if (using_dma(hsotg)) {
2213 unsigned size_done;
2214
2215 /*
2216 * Calculate the size of the transfer by checking how much
2217 * is left in the endpoint size register and then working it
2218 * out from the amount we loaded for the transfer.
2219 *
2220 * We need to do this as DMA pointers are always 32bit aligned
2221 * so may overshoot/undershoot the transfer.
2222 */
2223
2224 size_done = hs_ep->size_loaded - size_left;
2225 size_done += hs_ep->last_load;
2226
2227 req->actual = size_done;
2228 }
2229
2230 /* if there is more request to do, schedule new transfer */
2231 if (req->actual < req->length && size_left == 0) {
2232 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2233 return;
2234 }
2235
2236 if (req->actual < req->length && req->short_not_ok) {
2237 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2238 __func__, req->actual, req->length);
2239
2240 /*
2241 * todo - what should we return here? there's no one else
2242 * even bothering to check the status.
2243 */
2244 }
2245
2246 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2247 if (!using_desc_dma(hsotg) && epnum == 0 &&
2248 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2249 /* Move to STATUS IN */
2250 dwc2_hsotg_ep0_zlp(hsotg, true);
2251 return;
2252 }
2253
2254 /*
2255 * Slave mode OUT transfers do not go through XferComplete so
2256 * adjust the ISOC parity here.
2257 */
2258 if (!using_dma(hsotg)) {
2259 if (hs_ep->isochronous && hs_ep->interval == 1)
2260 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2261 else if (hs_ep->isochronous && hs_ep->interval > 1)
2262 dwc2_gadget_incr_frame_num(hs_ep);
2263 }
2264
2265 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2266 }
2267
2268 /**
2269 * dwc2_hsotg_handle_rx - RX FIFO has data
2270 * @hsotg: The device instance
2271 *
2272 * The IRQ handler has detected that the RX FIFO has some data in it
2273 * that requires processing, so find out what is in there and do the
2274 * appropriate read.
2275 *
2276 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2277 * chunks, so if you have x packets received on an endpoint you'll get x
2278 * FIFO events delivered, each with a packet's worth of data in it.
2279 *
2280 * When using DMA, we should not be processing events from the RXFIFO
2281 * as the actual data should be sent to the memory directly and we turn
2282 * on the completion interrupts to get notifications of transfer completion.
2283 */
2284 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2285 {
2286 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2287 u32 epnum, status, size;
2288
2289 WARN_ON(using_dma(hsotg));
2290
2291 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2292 status = grxstsr & GRXSTS_PKTSTS_MASK;
2293
2294 size = grxstsr & GRXSTS_BYTECNT_MASK;
2295 size >>= GRXSTS_BYTECNT_SHIFT;
2296
2297 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2298 __func__, grxstsr, size, epnum);
2299
2300 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2301 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2302 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2303 break;
2304
2305 case GRXSTS_PKTSTS_OUTDONE:
2306 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2307 dwc2_hsotg_read_frameno(hsotg));
2308
2309 if (!using_dma(hsotg))
2310 dwc2_hsotg_handle_outdone(hsotg, epnum);
2311 break;
2312
2313 case GRXSTS_PKTSTS_SETUPDONE:
2314 dev_dbg(hsotg->dev,
2315 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2316 dwc2_hsotg_read_frameno(hsotg),
2317 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2318 /*
2319 * Call dwc2_hsotg_handle_outdone here if it was not called from
2320 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2321 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2322 */
2323 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2324 dwc2_hsotg_handle_outdone(hsotg, epnum);
2325 break;
2326
2327 case GRXSTS_PKTSTS_OUTRX:
2328 dwc2_hsotg_rx_data(hsotg, epnum, size);
2329 break;
2330
2331 case GRXSTS_PKTSTS_SETUPRX:
2332 dev_dbg(hsotg->dev,
2333 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2334 dwc2_hsotg_read_frameno(hsotg),
2335 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2336
2337 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2338
2339 dwc2_hsotg_rx_data(hsotg, epnum, size);
2340 break;
2341
2342 default:
2343 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2344 __func__, grxstsr);
2345
2346 dwc2_hsotg_dump(hsotg);
2347 break;
2348 }
2349 }
2350
2351 /**
2352 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2353 * @mps: The maximum packet size in bytes.
2354 */
2355 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2356 {
2357 switch (mps) {
2358 case 64:
2359 return D0EPCTL_MPS_64;
2360 case 32:
2361 return D0EPCTL_MPS_32;
2362 case 16:
2363 return D0EPCTL_MPS_16;
2364 case 8:
2365 return D0EPCTL_MPS_8;
2366 }
2367
2368 /* bad max packet size, warn and return invalid result */
2369 WARN_ON(1);
2370 return (u32)-1;
2371 }
2372
2373 /**
2374 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2375 * @hsotg: The driver state.
2376 * @ep: The index number of the endpoint
2377 * @mps: The maximum packet size in bytes
2378 * @mc: The multicount value
2379 *
2380 * Configure the maximum packet size for the given endpoint, updating
2381 * the hardware control registers to reflect this.
2382 */
2383 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2384 unsigned int ep, unsigned int mps,
2385 unsigned int mc, unsigned int dir_in)
2386 {
2387 struct dwc2_hsotg_ep *hs_ep;
2388 void __iomem *regs = hsotg->regs;
2389 u32 reg;
2390
2391 hs_ep = index_to_ep(hsotg, ep, dir_in);
2392 if (!hs_ep)
2393 return;
2394
2395 if (ep == 0) {
2396 u32 mps_bytes = mps;
2397
2398 /* EP0 is a special case */
2399 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2400 if (mps > 3)
2401 goto bad_mps;
2402 hs_ep->ep.maxpacket = mps_bytes;
2403 hs_ep->mc = 1;
2404 } else {
2405 if (mps > 1024)
2406 goto bad_mps;
2407 hs_ep->mc = mc;
2408 if (mc > 3)
2409 goto bad_mps;
2410 hs_ep->ep.maxpacket = mps;
2411 }
2412
2413 if (dir_in) {
2414 reg = dwc2_readl(regs + DIEPCTL(ep));
2415 reg &= ~DXEPCTL_MPS_MASK;
2416 reg |= mps;
2417 dwc2_writel(reg, regs + DIEPCTL(ep));
2418 } else {
2419 reg = dwc2_readl(regs + DOEPCTL(ep));
2420 reg &= ~DXEPCTL_MPS_MASK;
2421 reg |= mps;
2422 dwc2_writel(reg, regs + DOEPCTL(ep));
2423 }
2424
2425 return;
2426
2427 bad_mps:
2428 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2429 }
2430
2431 /**
2432 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2433 * @hsotg: The driver state
2434 * @idx: The index for the endpoint (0..15)
2435 */
2436 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2437 {
2438 int timeout;
2439 int val;
2440
2441 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2442 hsotg->regs + GRSTCTL);
2443
2444 /* wait until the fifo is flushed */
2445 timeout = 100;
2446
2447 while (1) {
2448 val = dwc2_readl(hsotg->regs + GRSTCTL);
2449
2450 if ((val & (GRSTCTL_TXFFLSH)) == 0)
2451 break;
2452
2453 if (--timeout == 0) {
2454 dev_err(hsotg->dev,
2455 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2456 __func__, val);
2457 break;
2458 }
2459
2460 udelay(1);
2461 }
2462 }
2463
2464 /**
2465 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2466 * @hsotg: The driver state
2467 * @hs_ep: The driver endpoint to check.
2468 *
2469 * Check to see if there is a request that has data to send, and if so
2470 * make an attempt to write data into the FIFO.
2471 */
2472 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2473 struct dwc2_hsotg_ep *hs_ep)
2474 {
2475 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2476
2477 if (!hs_ep->dir_in || !hs_req) {
2478 /**
2479 * if request is not enqueued, we disable interrupts
2480 * for endpoints, excepting ep0
2481 */
2482 if (hs_ep->index != 0)
2483 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2484 hs_ep->dir_in, 0);
2485 return 0;
2486 }
2487
2488 if (hs_req->req.actual < hs_req->req.length) {
2489 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2490 hs_ep->index);
2491 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2492 }
2493
2494 return 0;
2495 }
2496
2497 /**
2498 * dwc2_hsotg_complete_in - complete IN transfer
2499 * @hsotg: The device state.
2500 * @hs_ep: The endpoint that has just completed.
2501 *
2502 * An IN transfer has been completed, update the transfer's state and then
2503 * call the relevant completion routines.
2504 */
2505 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2506 struct dwc2_hsotg_ep *hs_ep)
2507 {
2508 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2509 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2510 int size_left, size_done;
2511
2512 if (!hs_req) {
2513 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2514 return;
2515 }
2516
2517 /* Finish ZLP handling for IN EP0 transactions */
2518 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2519 dev_dbg(hsotg->dev, "zlp packet sent\n");
2520
2521 /*
2522 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2523 * changed to IN. Change back to complete OUT transfer request
2524 */
2525 hs_ep->dir_in = 0;
2526
2527 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2528 if (hsotg->test_mode) {
2529 int ret;
2530
2531 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2532 if (ret < 0) {
2533 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2534 hsotg->test_mode);
2535 dwc2_hsotg_stall_ep0(hsotg);
2536 return;
2537 }
2538 }
2539 dwc2_hsotg_enqueue_setup(hsotg);
2540 return;
2541 }
2542
2543 /*
2544 * Calculate the size of the transfer by checking how much is left
2545 * in the endpoint size register and then working it out from
2546 * the amount we loaded for the transfer.
2547 *
2548 * We do this even for DMA, as the transfer may have incremented
2549 * past the end of the buffer (DMA transfers are always 32bit
2550 * aligned).
2551 */
2552 if (using_desc_dma(hsotg)) {
2553 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2554 if (size_left < 0)
2555 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2556 size_left);
2557 } else {
2558 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2559 }
2560
2561 size_done = hs_ep->size_loaded - size_left;
2562 size_done += hs_ep->last_load;
2563
2564 if (hs_req->req.actual != size_done)
2565 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2566 __func__, hs_req->req.actual, size_done);
2567
2568 hs_req->req.actual = size_done;
2569 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2570 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2571
2572 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2573 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2574 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2575 return;
2576 }
2577
2578 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2579 if (hs_ep->send_zlp) {
2580 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2581 hs_ep->send_zlp = 0;
2582 /* transfer will be completed on next complete interrupt */
2583 return;
2584 }
2585
2586 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2587 /* Move to STATUS OUT */
2588 dwc2_hsotg_ep0_zlp(hsotg, false);
2589 return;
2590 }
2591
2592 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2593 }
2594
2595 /**
2596 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2597 * @hsotg: The device state.
2598 * @idx: Index of ep.
2599 * @dir_in: Endpoint direction 1-in 0-out.
2600 *
2601 * Reads for endpoint with given index and direction, by masking
2602 * epint_reg with coresponding mask.
2603 */
2604 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2605 unsigned int idx, int dir_in)
2606 {
2607 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2608 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2609 u32 ints;
2610 u32 mask;
2611 u32 diepempmsk;
2612
2613 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2614 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2615 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2616 mask |= DXEPINT_SETUP_RCVD;
2617
2618 ints = dwc2_readl(hsotg->regs + epint_reg);
2619 ints &= mask;
2620 return ints;
2621 }
2622
2623 /**
2624 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2625 * @hs_ep: The endpoint on which interrupt is asserted.
2626 *
2627 * This interrupt indicates that the endpoint has been disabled per the
2628 * application's request.
2629 *
2630 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2631 * in case of ISOC completes current request.
2632 *
2633 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2634 * request starts it.
2635 */
2636 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2637 {
2638 struct dwc2_hsotg *hsotg = hs_ep->parent;
2639 struct dwc2_hsotg_req *hs_req;
2640 unsigned char idx = hs_ep->index;
2641 int dir_in = hs_ep->dir_in;
2642 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2643 int dctl = dwc2_readl(hsotg->regs + DCTL);
2644
2645 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2646
2647 if (dir_in) {
2648 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2649
2650 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2651
2652 if (hs_ep->isochronous) {
2653 dwc2_hsotg_complete_in(hsotg, hs_ep);
2654 return;
2655 }
2656
2657 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2658 int dctl = dwc2_readl(hsotg->regs + DCTL);
2659
2660 dctl |= DCTL_CGNPINNAK;
2661 dwc2_writel(dctl, hsotg->regs + DCTL);
2662 }
2663 return;
2664 }
2665
2666 if (dctl & DCTL_GOUTNAKSTS) {
2667 dctl |= DCTL_CGOUTNAK;
2668 dwc2_writel(dctl, hsotg->regs + DCTL);
2669 }
2670
2671 if (!hs_ep->isochronous)
2672 return;
2673
2674 if (list_empty(&hs_ep->queue)) {
2675 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2676 __func__, hs_ep);
2677 return;
2678 }
2679
2680 do {
2681 hs_req = get_ep_head(hs_ep);
2682 if (hs_req)
2683 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2684 -ENODATA);
2685 dwc2_gadget_incr_frame_num(hs_ep);
2686 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2687
2688 dwc2_gadget_start_next_request(hs_ep);
2689 }
2690
2691 /**
2692 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2693 * @hs_ep: The endpoint on which interrupt is asserted.
2694 *
2695 * This is starting point for ISOC-OUT transfer, synchronization done with
2696 * first out token received from host while corresponding EP is disabled.
2697 *
2698 * Device does not know initial frame in which out token will come. For this
2699 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2700 * getting this interrupt SW starts calculation for next transfer frame.
2701 */
2702 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2703 {
2704 struct dwc2_hsotg *hsotg = ep->parent;
2705 int dir_in = ep->dir_in;
2706 u32 doepmsk;
2707 u32 tmp;
2708
2709 if (dir_in || !ep->isochronous)
2710 return;
2711
2712 /*
2713 * Store frame in which irq was asserted here, as
2714 * it can change while completing request below.
2715 */
2716 tmp = dwc2_hsotg_read_frameno(hsotg);
2717
2718 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2719
2720 if (using_desc_dma(hsotg)) {
2721 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2722 /* Start first ISO Out */
2723 ep->target_frame = tmp;
2724 dwc2_gadget_start_isoc_ddma(ep);
2725 }
2726 return;
2727 }
2728
2729 if (ep->interval > 1 &&
2730 ep->target_frame == TARGET_FRAME_INITIAL) {
2731 u32 dsts;
2732 u32 ctrl;
2733
2734 dsts = dwc2_readl(hsotg->regs + DSTS);
2735 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2736 dwc2_gadget_incr_frame_num(ep);
2737
2738 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2739 if (ep->target_frame & 0x1)
2740 ctrl |= DXEPCTL_SETODDFR;
2741 else
2742 ctrl |= DXEPCTL_SETEVENFR;
2743
2744 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2745 }
2746
2747 dwc2_gadget_start_next_request(ep);
2748 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2749 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2750 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2751 }
2752
2753 /**
2754 * dwc2_gadget_handle_nak - handle NAK interrupt
2755 * @hs_ep: The endpoint on which interrupt is asserted.
2756 *
2757 * This is starting point for ISOC-IN transfer, synchronization done with
2758 * first IN token received from host while corresponding EP is disabled.
2759 *
2760 * Device does not know when first one token will arrive from host. On first
2761 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2762 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2763 * sent in response to that as there was no data in FIFO. SW is basing on this
2764 * interrupt to obtain frame in which token has come and then based on the
2765 * interval calculates next frame for transfer.
2766 */
2767 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2768 {
2769 struct dwc2_hsotg *hsotg = hs_ep->parent;
2770 int dir_in = hs_ep->dir_in;
2771
2772 if (!dir_in || !hs_ep->isochronous)
2773 return;
2774
2775 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2776 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2777
2778 if (using_desc_dma(hsotg)) {
2779 dwc2_gadget_start_isoc_ddma(hs_ep);
2780 return;
2781 }
2782
2783 if (hs_ep->interval > 1) {
2784 u32 ctrl = dwc2_readl(hsotg->regs +
2785 DIEPCTL(hs_ep->index));
2786 if (hs_ep->target_frame & 0x1)
2787 ctrl |= DXEPCTL_SETODDFR;
2788 else
2789 ctrl |= DXEPCTL_SETEVENFR;
2790
2791 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2792 }
2793
2794 dwc2_hsotg_complete_request(hsotg, hs_ep,
2795 get_ep_head(hs_ep), 0);
2796 }
2797
2798 dwc2_gadget_incr_frame_num(hs_ep);
2799 }
2800
2801 /**
2802 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2803 * @hsotg: The driver state
2804 * @idx: The index for the endpoint (0..15)
2805 * @dir_in: Set if this is an IN endpoint
2806 *
2807 * Process and clear any interrupt pending for an individual endpoint
2808 */
2809 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2810 int dir_in)
2811 {
2812 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2813 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2814 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2815 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2816 u32 ints;
2817 u32 ctrl;
2818
2819 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2820 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2821
2822 /* Clear endpoint interrupts */
2823 dwc2_writel(ints, hsotg->regs + epint_reg);
2824
2825 if (!hs_ep) {
2826 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2827 __func__, idx, dir_in ? "in" : "out");
2828 return;
2829 }
2830
2831 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2832 __func__, idx, dir_in ? "in" : "out", ints);
2833
2834 /* Don't process XferCompl interrupt if it is a setup packet */
2835 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2836 ints &= ~DXEPINT_XFERCOMPL;
2837
2838 /*
2839 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2840 * stage and xfercomplete was generated without SETUP phase done
2841 * interrupt. SW should parse received setup packet only after host's
2842 * exit from setup phase of control transfer.
2843 */
2844 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2845 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2846 ints &= ~DXEPINT_XFERCOMPL;
2847
2848 if (ints & DXEPINT_XFERCOMPL) {
2849 dev_dbg(hsotg->dev,
2850 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2851 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2852 dwc2_readl(hsotg->regs + epsiz_reg));
2853
2854 /* In DDMA handle isochronous requests separately */
2855 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2856 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2857 /* Try to start next isoc request */
2858 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2859 } else if (dir_in) {
2860 /*
2861 * We get OutDone from the FIFO, so we only
2862 * need to look at completing IN requests here
2863 * if operating slave mode
2864 */
2865 if (hs_ep->isochronous && hs_ep->interval > 1)
2866 dwc2_gadget_incr_frame_num(hs_ep);
2867
2868 dwc2_hsotg_complete_in(hsotg, hs_ep);
2869 if (ints & DXEPINT_NAKINTRPT)
2870 ints &= ~DXEPINT_NAKINTRPT;
2871
2872 if (idx == 0 && !hs_ep->req)
2873 dwc2_hsotg_enqueue_setup(hsotg);
2874 } else if (using_dma(hsotg)) {
2875 /*
2876 * We're using DMA, we need to fire an OutDone here
2877 * as we ignore the RXFIFO.
2878 */
2879 if (hs_ep->isochronous && hs_ep->interval > 1)
2880 dwc2_gadget_incr_frame_num(hs_ep);
2881
2882 dwc2_hsotg_handle_outdone(hsotg, idx);
2883 }
2884 }
2885
2886 if (ints & DXEPINT_EPDISBLD)
2887 dwc2_gadget_handle_ep_disabled(hs_ep);
2888
2889 if (ints & DXEPINT_OUTTKNEPDIS)
2890 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2891
2892 if (ints & DXEPINT_NAKINTRPT)
2893 dwc2_gadget_handle_nak(hs_ep);
2894
2895 if (ints & DXEPINT_AHBERR)
2896 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2897
2898 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2899 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2900
2901 if (using_dma(hsotg) && idx == 0) {
2902 /*
2903 * this is the notification we've received a
2904 * setup packet. In non-DMA mode we'd get this
2905 * from the RXFIFO, instead we need to process
2906 * the setup here.
2907 */
2908
2909 if (dir_in)
2910 WARN_ON_ONCE(1);
2911 else
2912 dwc2_hsotg_handle_outdone(hsotg, 0);
2913 }
2914 }
2915
2916 if (ints & DXEPINT_STSPHSERCVD) {
2917 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2918
2919 /* Move to STATUS IN for DDMA */
2920 if (using_desc_dma(hsotg))
2921 dwc2_hsotg_ep0_zlp(hsotg, true);
2922 }
2923
2924 if (ints & DXEPINT_BACK2BACKSETUP)
2925 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2926
2927 if (ints & DXEPINT_BNAINTR) {
2928 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2929
2930 /*
2931 * Try to start next isoc request, if any.
2932 * Sometimes the endpoint remains enabled after BNA interrupt
2933 * assertion, which is not expected, hence we can enter here
2934 * couple of times.
2935 */
2936 if (hs_ep->isochronous)
2937 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2938 }
2939
2940 if (dir_in && !hs_ep->isochronous) {
2941 /* not sure if this is important, but we'll clear it anyway */
2942 if (ints & DXEPINT_INTKNTXFEMP) {
2943 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2944 __func__, idx);
2945 }
2946
2947 /* this probably means something bad is happening */
2948 if (ints & DXEPINT_INTKNEPMIS) {
2949 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2950 __func__, idx);
2951 }
2952
2953 /* FIFO has space or is empty (see GAHBCFG) */
2954 if (hsotg->dedicated_fifos &&
2955 ints & DXEPINT_TXFEMP) {
2956 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2957 __func__, idx);
2958 if (!using_dma(hsotg))
2959 dwc2_hsotg_trytx(hsotg, hs_ep);
2960 }
2961 }
2962 }
2963
2964 /**
2965 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2966 * @hsotg: The device state.
2967 *
2968 * Handle updating the device settings after the enumeration phase has
2969 * been completed.
2970 */
2971 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2972 {
2973 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2974 int ep0_mps = 0, ep_mps = 8;
2975
2976 /*
2977 * This should signal the finish of the enumeration phase
2978 * of the USB handshaking, so we should now know what rate
2979 * we connected at.
2980 */
2981
2982 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2983
2984 /*
2985 * note, since we're limited by the size of transfer on EP0, and
2986 * it seems IN transfers must be a even number of packets we do
2987 * not advertise a 64byte MPS on EP0.
2988 */
2989
2990 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2991 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2992 case DSTS_ENUMSPD_FS:
2993 case DSTS_ENUMSPD_FS48:
2994 hsotg->gadget.speed = USB_SPEED_FULL;
2995 ep0_mps = EP0_MPS_LIMIT;
2996 ep_mps = 1023;
2997 break;
2998
2999 case DSTS_ENUMSPD_HS:
3000 hsotg->gadget.speed = USB_SPEED_HIGH;
3001 ep0_mps = EP0_MPS_LIMIT;
3002 ep_mps = 1024;
3003 break;
3004
3005 case DSTS_ENUMSPD_LS:
3006 hsotg->gadget.speed = USB_SPEED_LOW;
3007 ep0_mps = 8;
3008 ep_mps = 8;
3009 /*
3010 * note, we don't actually support LS in this driver at the
3011 * moment, and the documentation seems to imply that it isn't
3012 * supported by the PHYs on some of the devices.
3013 */
3014 break;
3015 }
3016 dev_info(hsotg->dev, "new device is %s\n",
3017 usb_speed_string(hsotg->gadget.speed));
3018
3019 /*
3020 * we should now know the maximum packet size for an
3021 * endpoint, so set the endpoints to a default value.
3022 */
3023
3024 if (ep0_mps) {
3025 int i;
3026 /* Initialize ep0 for both in and out directions */
3027 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3028 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3029 for (i = 1; i < hsotg->num_of_eps; i++) {
3030 if (hsotg->eps_in[i])
3031 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3032 0, 1);
3033 if (hsotg->eps_out[i])
3034 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3035 0, 0);
3036 }
3037 }
3038
3039 /* ensure after enumeration our EP0 is active */
3040
3041 dwc2_hsotg_enqueue_setup(hsotg);
3042
3043 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3044 dwc2_readl(hsotg->regs + DIEPCTL0),
3045 dwc2_readl(hsotg->regs + DOEPCTL0));
3046 }
3047
3048 /**
3049 * kill_all_requests - remove all requests from the endpoint's queue
3050 * @hsotg: The device state.
3051 * @ep: The endpoint the requests may be on.
3052 * @result: The result code to use.
3053 *
3054 * Go through the requests on the given endpoint and mark them
3055 * completed with the given result code.
3056 */
3057 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3058 struct dwc2_hsotg_ep *ep,
3059 int result)
3060 {
3061 struct dwc2_hsotg_req *req, *treq;
3062 unsigned size;
3063
3064 ep->req = NULL;
3065
3066 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3067 dwc2_hsotg_complete_request(hsotg, ep, req,
3068 result);
3069
3070 if (!hsotg->dedicated_fifos)
3071 return;
3072 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3073 if (size < ep->fifo_size)
3074 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3075 }
3076
3077 /**
3078 * dwc2_hsotg_disconnect - disconnect service
3079 * @hsotg: The device state.
3080 *
3081 * The device has been disconnected. Remove all current
3082 * transactions and signal the gadget driver that this
3083 * has happened.
3084 */
3085 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3086 {
3087 unsigned ep;
3088
3089 if (!hsotg->connected)
3090 return;
3091
3092 hsotg->connected = 0;
3093 hsotg->test_mode = 0;
3094
3095 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3096 if (hsotg->eps_in[ep])
3097 kill_all_requests(hsotg, hsotg->eps_in[ep],
3098 -ESHUTDOWN);
3099 if (hsotg->eps_out[ep])
3100 kill_all_requests(hsotg, hsotg->eps_out[ep],
3101 -ESHUTDOWN);
3102 }
3103
3104 call_gadget(hsotg, disconnect);
3105 hsotg->lx_state = DWC2_L3;
3106 }
3107
3108 /**
3109 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3110 * @hsotg: The device state:
3111 * @periodic: True if this is a periodic FIFO interrupt
3112 */
3113 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3114 {
3115 struct dwc2_hsotg_ep *ep;
3116 int epno, ret;
3117
3118 /* look through for any more data to transmit */
3119 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3120 ep = index_to_ep(hsotg, epno, 1);
3121
3122 if (!ep)
3123 continue;
3124
3125 if (!ep->dir_in)
3126 continue;
3127
3128 if ((periodic && !ep->periodic) ||
3129 (!periodic && ep->periodic))
3130 continue;
3131
3132 ret = dwc2_hsotg_trytx(hsotg, ep);
3133 if (ret < 0)
3134 break;
3135 }
3136 }
3137
3138 /* IRQ flags which will trigger a retry around the IRQ loop */
3139 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3140 GINTSTS_PTXFEMP | \
3141 GINTSTS_RXFLVL)
3142
3143 /**
3144 * dwc2_hsotg_core_init - issue softreset to the core
3145 * @hsotg: The device state
3146 *
3147 * Issue a soft reset to the core, and await the core finishing it.
3148 */
3149 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3150 bool is_usb_reset)
3151 {
3152 u32 intmsk;
3153 u32 val;
3154 u32 usbcfg;
3155 u32 dcfg = 0;
3156
3157 /* Kill any ep0 requests as controller will be reinitialized */
3158 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3159
3160 if (!is_usb_reset)
3161 if (dwc2_core_reset(hsotg))
3162 return;
3163
3164 /*
3165 * we must now enable ep0 ready for host detection and then
3166 * set configuration.
3167 */
3168
3169 /* keep other bits untouched (so e.g. forced modes are not lost) */
3170 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3171 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3172 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3173
3174 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3175 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3176 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3177 /* FS/LS Dedicated Transceiver Interface */
3178 usbcfg |= GUSBCFG_PHYSEL;
3179 } else {
3180 /* set the PLL on, remove the HNP/SRP and set the PHY */
3181 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3182 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3183 (val << GUSBCFG_USBTRDTIM_SHIFT);
3184 }
3185 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3186
3187 dwc2_hsotg_init_fifo(hsotg);
3188
3189 if (!is_usb_reset)
3190 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3191
3192 dcfg |= DCFG_EPMISCNT(1);
3193
3194 switch (hsotg->params.speed) {
3195 case DWC2_SPEED_PARAM_LOW:
3196 dcfg |= DCFG_DEVSPD_LS;
3197 break;
3198 case DWC2_SPEED_PARAM_FULL:
3199 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3200 dcfg |= DCFG_DEVSPD_FS48;
3201 else
3202 dcfg |= DCFG_DEVSPD_FS;
3203 break;
3204 default:
3205 dcfg |= DCFG_DEVSPD_HS;
3206 }
3207
3208 dwc2_writel(dcfg, hsotg->regs + DCFG);
3209
3210 /* Clear any pending OTG interrupts */
3211 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3212
3213 /* Clear any pending interrupts */
3214 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3215 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3216 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3217 GINTSTS_USBRST | GINTSTS_RESETDET |
3218 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3219 GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3220
3221 if (!using_desc_dma(hsotg))
3222 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3223
3224 if (hsotg->params.external_id_pin_ctl <= 0)
3225 intmsk |= GINTSTS_CONIDSTSCHNG;
3226
3227 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3228
3229 if (using_dma(hsotg)) {
3230 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3231 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3232 hsotg->regs + GAHBCFG);
3233
3234 /* Set DDMA mode support in the core if needed */
3235 if (using_desc_dma(hsotg))
3236 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3237
3238 } else {
3239 dwc2_writel(((hsotg->dedicated_fifos) ?
3240 (GAHBCFG_NP_TXF_EMP_LVL |
3241 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3242 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3243 }
3244
3245 /*
3246 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3247 * when we have no data to transfer. Otherwise we get being flooded by
3248 * interrupts.
3249 */
3250
3251 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3252 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3253 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3254 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3255 hsotg->regs + DIEPMSK);
3256
3257 /*
3258 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3259 * DMA mode we may need this and StsPhseRcvd.
3260 */
3261 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3262 DOEPMSK_STSPHSERCVDMSK) : 0) |
3263 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3264 DOEPMSK_SETUPMSK,
3265 hsotg->regs + DOEPMSK);
3266
3267 /* Enable BNA interrupt for DDMA */
3268 if (using_desc_dma(hsotg))
3269 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3270
3271 dwc2_writel(0, hsotg->regs + DAINTMSK);
3272
3273 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3274 dwc2_readl(hsotg->regs + DIEPCTL0),
3275 dwc2_readl(hsotg->regs + DOEPCTL0));
3276
3277 /* enable in and out endpoint interrupts */
3278 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3279
3280 /*
3281 * Enable the RXFIFO when in slave mode, as this is how we collect
3282 * the data. In DMA mode, we get events from the FIFO but also
3283 * things we cannot process, so do not use it.
3284 */
3285 if (!using_dma(hsotg))
3286 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3287
3288 /* Enable interrupts for EP0 in and out */
3289 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3290 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3291
3292 if (!is_usb_reset) {
3293 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3294 udelay(10); /* see openiboot */
3295 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3296 }
3297
3298 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3299
3300 /*
3301 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3302 * writing to the EPCTL register..
3303 */
3304
3305 /* set to read 1 8byte packet */
3306 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3307 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3308
3309 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3310 DXEPCTL_CNAK | DXEPCTL_EPENA |
3311 DXEPCTL_USBACTEP,
3312 hsotg->regs + DOEPCTL0);
3313
3314 /* enable, but don't activate EP0in */
3315 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3316 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3317
3318 dwc2_hsotg_enqueue_setup(hsotg);
3319
3320 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3321 dwc2_readl(hsotg->regs + DIEPCTL0),
3322 dwc2_readl(hsotg->regs + DOEPCTL0));
3323
3324 /* clear global NAKs */
3325 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3326 if (!is_usb_reset)
3327 val |= DCTL_SFTDISCON;
3328 __orr32(hsotg->regs + DCTL, val);
3329
3330 /* must be at-least 3ms to allow bus to see disconnect */
3331 mdelay(3);
3332
3333 hsotg->lx_state = DWC2_L0;
3334 }
3335
3336 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3337 {
3338 /* set the soft-disconnect bit */
3339 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3340 }
3341
3342 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3343 {
3344 /* remove the soft-disconnect and let's go */
3345 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3346 }
3347
3348 /**
3349 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3350 * @hsotg: The device state:
3351 *
3352 * This interrupt indicates one of the following conditions occurred while
3353 * transmitting an ISOC transaction.
3354 * - Corrupted IN Token for ISOC EP.
3355 * - Packet not complete in FIFO.
3356 *
3357 * The following actions will be taken:
3358 * - Determine the EP
3359 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3360 */
3361 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3362 {
3363 struct dwc2_hsotg_ep *hs_ep;
3364 u32 epctrl;
3365 u32 idx;
3366
3367 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3368
3369 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3370 hs_ep = hsotg->eps_in[idx];
3371 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3372 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3373 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3374 epctrl |= DXEPCTL_SNAK;
3375 epctrl |= DXEPCTL_EPDIS;
3376 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3377 }
3378 }
3379
3380 /* Clear interrupt */
3381 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3382 }
3383
3384 /**
3385 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3386 * @hsotg: The device state:
3387 *
3388 * This interrupt indicates one of the following conditions occurred while
3389 * transmitting an ISOC transaction.
3390 * - Corrupted OUT Token for ISOC EP.
3391 * - Packet not complete in FIFO.
3392 *
3393 * The following actions will be taken:
3394 * - Determine the EP
3395 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3396 */
3397 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3398 {
3399 u32 gintsts;
3400 u32 gintmsk;
3401 u32 epctrl;
3402 struct dwc2_hsotg_ep *hs_ep;
3403 int idx;
3404
3405 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3406
3407 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3408 hs_ep = hsotg->eps_out[idx];
3409 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3410 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3411 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3412 /* Unmask GOUTNAKEFF interrupt */
3413 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3414 gintmsk |= GINTSTS_GOUTNAKEFF;
3415 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3416
3417 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3418 if (!(gintsts & GINTSTS_GOUTNAKEFF))
3419 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3420 }
3421 }
3422
3423 /* Clear interrupt */
3424 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3425 }
3426
3427 /**
3428 * dwc2_hsotg_irq - handle device interrupt
3429 * @irq: The IRQ number triggered
3430 * @pw: The pw value when registered the handler.
3431 */
3432 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3433 {
3434 struct dwc2_hsotg *hsotg = pw;
3435 int retry_count = 8;
3436 u32 gintsts;
3437 u32 gintmsk;
3438
3439 if (!dwc2_is_device_mode(hsotg))
3440 return IRQ_NONE;
3441
3442 spin_lock(&hsotg->lock);
3443 irq_retry:
3444 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3445 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3446
3447 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3448 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3449
3450 gintsts &= gintmsk;
3451
3452 if (gintsts & GINTSTS_RESETDET) {
3453 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3454
3455 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3456
3457 /* This event must be used only if controller is suspended */
3458 if (hsotg->lx_state == DWC2_L2) {
3459 dwc2_exit_hibernation(hsotg, true);
3460 hsotg->lx_state = DWC2_L0;
3461 }
3462 }
3463
3464 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3465
3466 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3467 u32 connected = hsotg->connected;
3468
3469 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3470 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3471 dwc2_readl(hsotg->regs + GNPTXSTS));
3472
3473 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3474
3475 /* Report disconnection if it is not already done. */
3476 dwc2_hsotg_disconnect(hsotg);
3477
3478 if (usb_status & GOTGCTL_BSESVLD && connected)
3479 dwc2_hsotg_core_init_disconnected(hsotg, true);
3480 }
3481
3482 if (gintsts & GINTSTS_ENUMDONE) {
3483 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3484
3485 dwc2_hsotg_irq_enumdone(hsotg);
3486 }
3487
3488 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3489 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3490 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3491 u32 daint_out, daint_in;
3492 int ep;
3493
3494 daint &= daintmsk;
3495 daint_out = daint >> DAINT_OUTEP_SHIFT;
3496 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3497
3498 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3499
3500 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3501 ep++, daint_out >>= 1) {
3502 if (daint_out & 1)
3503 dwc2_hsotg_epint(hsotg, ep, 0);
3504 }
3505
3506 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3507 ep++, daint_in >>= 1) {
3508 if (daint_in & 1)
3509 dwc2_hsotg_epint(hsotg, ep, 1);
3510 }
3511 }
3512
3513 /* check both FIFOs */
3514
3515 if (gintsts & GINTSTS_NPTXFEMP) {
3516 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3517
3518 /*
3519 * Disable the interrupt to stop it happening again
3520 * unless one of these endpoint routines decides that
3521 * it needs re-enabling
3522 */
3523
3524 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3525 dwc2_hsotg_irq_fifoempty(hsotg, false);
3526 }
3527
3528 if (gintsts & GINTSTS_PTXFEMP) {
3529 dev_dbg(hsotg->dev, "PTxFEmp\n");
3530
3531 /* See note in GINTSTS_NPTxFEmp */
3532
3533 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3534 dwc2_hsotg_irq_fifoempty(hsotg, true);
3535 }
3536
3537 if (gintsts & GINTSTS_RXFLVL) {
3538 /*
3539 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3540 * we need to retry dwc2_hsotg_handle_rx if this is still
3541 * set.
3542 */
3543
3544 dwc2_hsotg_handle_rx(hsotg);
3545 }
3546
3547 if (gintsts & GINTSTS_ERLYSUSP) {
3548 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3549 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3550 }
3551
3552 /*
3553 * these next two seem to crop-up occasionally causing the core
3554 * to shutdown the USB transfer, so try clearing them and logging
3555 * the occurrence.
3556 */
3557
3558 if (gintsts & GINTSTS_GOUTNAKEFF) {
3559 u8 idx;
3560 u32 epctrl;
3561 u32 gintmsk;
3562 struct dwc2_hsotg_ep *hs_ep;
3563
3564 /* Mask this interrupt */
3565 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3566 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3567 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3568
3569 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3570 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3571 hs_ep = hsotg->eps_out[idx];
3572 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3573
3574 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3575 epctrl |= DXEPCTL_SNAK;
3576 epctrl |= DXEPCTL_EPDIS;
3577 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3578 }
3579 }
3580
3581 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3582 }
3583
3584 if (gintsts & GINTSTS_GINNAKEFF) {
3585 dev_info(hsotg->dev, "GINNakEff triggered\n");
3586
3587 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3588
3589 dwc2_hsotg_dump(hsotg);
3590 }
3591
3592 if (gintsts & GINTSTS_INCOMPL_SOIN)
3593 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3594
3595 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3596 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3597
3598 /*
3599 * if we've had fifo events, we should try and go around the
3600 * loop again to see if there's any point in returning yet.
3601 */
3602
3603 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3604 goto irq_retry;
3605
3606 spin_unlock(&hsotg->lock);
3607
3608 return IRQ_HANDLED;
3609 }
3610
3611 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3612 u32 bit, u32 timeout)
3613 {
3614 u32 i;
3615
3616 for (i = 0; i < timeout; i++) {
3617 if (dwc2_readl(hs_otg->regs + reg) & bit)
3618 return 0;
3619 udelay(1);
3620 }
3621
3622 return -ETIMEDOUT;
3623 }
3624
3625 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3626 struct dwc2_hsotg_ep *hs_ep)
3627 {
3628 u32 epctrl_reg;
3629 u32 epint_reg;
3630
3631 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3632 DOEPCTL(hs_ep->index);
3633 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3634 DOEPINT(hs_ep->index);
3635
3636 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3637 hs_ep->name);
3638
3639 if (hs_ep->dir_in) {
3640 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3641 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3642 /* Wait for Nak effect */
3643 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3644 DXEPINT_INEPNAKEFF, 100))
3645 dev_warn(hsotg->dev,
3646 "%s: timeout DIEPINT.NAKEFF\n",
3647 __func__);
3648 } else {
3649 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3650 /* Wait for Nak effect */
3651 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3652 GINTSTS_GINNAKEFF, 100))
3653 dev_warn(hsotg->dev,
3654 "%s: timeout GINTSTS.GINNAKEFF\n",
3655 __func__);
3656 }
3657 } else {
3658 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3659 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3660
3661 /* Wait for global nak to take effect */
3662 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3663 GINTSTS_GOUTNAKEFF, 100))
3664 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3665 __func__);
3666 }
3667
3668 /* Disable ep */
3669 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3670
3671 /* Wait for ep to be disabled */
3672 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3673 dev_warn(hsotg->dev,
3674 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3675
3676 /* Clear EPDISBLD interrupt */
3677 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3678
3679 if (hs_ep->dir_in) {
3680 unsigned short fifo_index;
3681
3682 if (hsotg->dedicated_fifos || hs_ep->periodic)
3683 fifo_index = hs_ep->fifo_index;
3684 else
3685 fifo_index = 0;
3686
3687 /* Flush TX FIFO */
3688 dwc2_flush_tx_fifo(hsotg, fifo_index);
3689
3690 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3691 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3692 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3693
3694 } else {
3695 /* Remove global NAKs */
3696 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3697 }
3698 }
3699
3700 /**
3701 * dwc2_hsotg_ep_enable - enable the given endpoint
3702 * @ep: The USB endpint to configure
3703 * @desc: The USB endpoint descriptor to configure with.
3704 *
3705 * This is called from the USB gadget code's usb_ep_enable().
3706 */
3707 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3708 const struct usb_endpoint_descriptor *desc)
3709 {
3710 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3711 struct dwc2_hsotg *hsotg = hs_ep->parent;
3712 unsigned long flags;
3713 unsigned int index = hs_ep->index;
3714 u32 epctrl_reg;
3715 u32 epctrl;
3716 u32 mps;
3717 u32 mc;
3718 u32 mask;
3719 unsigned int dir_in;
3720 unsigned int i, val, size;
3721 int ret = 0;
3722
3723 dev_dbg(hsotg->dev,
3724 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3725 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3726 desc->wMaxPacketSize, desc->bInterval);
3727
3728 /* not to be called for EP0 */
3729 if (index == 0) {
3730 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3731 return -EINVAL;
3732 }
3733
3734 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3735 if (dir_in != hs_ep->dir_in) {
3736 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3737 return -EINVAL;
3738 }
3739
3740 mps = usb_endpoint_maxp(desc);
3741 mc = usb_endpoint_maxp_mult(desc);
3742
3743 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3744
3745 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3746 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3747
3748 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3749 __func__, epctrl, epctrl_reg);
3750
3751 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3752 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3753 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3754 MAX_DMA_DESC_NUM_GENERIC *
3755 sizeof(struct dwc2_dma_desc),
3756 &hs_ep->desc_list_dma, GFP_ATOMIC);
3757 if (!hs_ep->desc_list) {
3758 ret = -ENOMEM;
3759 goto error2;
3760 }
3761 }
3762
3763 spin_lock_irqsave(&hsotg->lock, flags);
3764
3765 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3766 epctrl |= DXEPCTL_MPS(mps);
3767
3768 /*
3769 * mark the endpoint as active, otherwise the core may ignore
3770 * transactions entirely for this endpoint
3771 */
3772 epctrl |= DXEPCTL_USBACTEP;
3773
3774 /* update the endpoint state */
3775 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3776
3777 /* default, set to non-periodic */
3778 hs_ep->isochronous = 0;
3779 hs_ep->periodic = 0;
3780 hs_ep->halted = 0;
3781 hs_ep->interval = desc->bInterval;
3782
3783 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3784 case USB_ENDPOINT_XFER_ISOC:
3785 epctrl |= DXEPCTL_EPTYPE_ISO;
3786 epctrl |= DXEPCTL_SETEVENFR;
3787 hs_ep->isochronous = 1;
3788 hs_ep->interval = 1 << (desc->bInterval - 1);
3789 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3790 hs_ep->isoc_chain_num = 0;
3791 hs_ep->next_desc = 0;
3792 if (dir_in) {
3793 hs_ep->periodic = 1;
3794 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3795 mask |= DIEPMSK_NAKMSK;
3796 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3797 } else {
3798 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3799 mask |= DOEPMSK_OUTTKNEPDISMSK;
3800 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3801 }
3802 break;
3803
3804 case USB_ENDPOINT_XFER_BULK:
3805 epctrl |= DXEPCTL_EPTYPE_BULK;
3806 break;
3807
3808 case USB_ENDPOINT_XFER_INT:
3809 if (dir_in)
3810 hs_ep->periodic = 1;
3811
3812 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3813 hs_ep->interval = 1 << (desc->bInterval - 1);
3814
3815 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3816 break;
3817
3818 case USB_ENDPOINT_XFER_CONTROL:
3819 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3820 break;
3821 }
3822
3823 /*
3824 * if the hardware has dedicated fifos, we must give each IN EP
3825 * a unique tx-fifo even if it is non-periodic.
3826 */
3827 if (dir_in && hsotg->dedicated_fifos) {
3828 u32 fifo_index = 0;
3829 u32 fifo_size = UINT_MAX;
3830 size = hs_ep->ep.maxpacket*hs_ep->mc;
3831 for (i = 1; i < hsotg->num_of_eps; ++i) {
3832 if (hsotg->fifo_map & (1<<i))
3833 continue;
3834 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3835 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
3836 if (val < size)
3837 continue;
3838 /* Search for smallest acceptable fifo */
3839 if (val < fifo_size) {
3840 fifo_size = val;
3841 fifo_index = i;
3842 }
3843 }
3844 if (!fifo_index) {
3845 dev_err(hsotg->dev,
3846 "%s: No suitable fifo found\n", __func__);
3847 ret = -ENOMEM;
3848 goto error1;
3849 }
3850 hsotg->fifo_map |= 1 << fifo_index;
3851 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3852 hs_ep->fifo_index = fifo_index;
3853 hs_ep->fifo_size = fifo_size;
3854 }
3855
3856 /* for non control endpoints, set PID to D0 */
3857 if (index && !hs_ep->isochronous)
3858 epctrl |= DXEPCTL_SETD0PID;
3859
3860 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3861 __func__, epctrl);
3862
3863 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3864 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3865 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3866
3867 /* enable the endpoint interrupt */
3868 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3869
3870 error1:
3871 spin_unlock_irqrestore(&hsotg->lock, flags);
3872
3873 error2:
3874 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3875 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3876 sizeof(struct dwc2_dma_desc),
3877 hs_ep->desc_list, hs_ep->desc_list_dma);
3878 hs_ep->desc_list = NULL;
3879 }
3880
3881 return ret;
3882 }
3883
3884 /**
3885 * dwc2_hsotg_ep_disable - disable given endpoint
3886 * @ep: The endpoint to disable.
3887 */
3888 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3889 {
3890 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3891 struct dwc2_hsotg *hsotg = hs_ep->parent;
3892 int dir_in = hs_ep->dir_in;
3893 int index = hs_ep->index;
3894 unsigned long flags;
3895 u32 epctrl_reg;
3896 u32 ctrl;
3897
3898 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3899
3900 if (ep == &hsotg->eps_out[0]->ep) {
3901 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3902 return -EINVAL;
3903 }
3904
3905 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3906
3907 spin_lock_irqsave(&hsotg->lock, flags);
3908
3909 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3910
3911 if (ctrl & DXEPCTL_EPENA)
3912 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3913
3914 ctrl &= ~DXEPCTL_EPENA;
3915 ctrl &= ~DXEPCTL_USBACTEP;
3916 ctrl |= DXEPCTL_SNAK;
3917
3918 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3919 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3920
3921 /* disable endpoint interrupts */
3922 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3923
3924 /* terminate all requests with shutdown */
3925 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3926
3927 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3928 hs_ep->fifo_index = 0;
3929 hs_ep->fifo_size = 0;
3930
3931 spin_unlock_irqrestore(&hsotg->lock, flags);
3932 return 0;
3933 }
3934
3935 /**
3936 * on_list - check request is on the given endpoint
3937 * @ep: The endpoint to check.
3938 * @test: The request to test if it is on the endpoint.
3939 */
3940 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3941 {
3942 struct dwc2_hsotg_req *req, *treq;
3943
3944 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
3945 if (req == test)
3946 return true;
3947 }
3948
3949 return false;
3950 }
3951
3952 /**
3953 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3954 * @ep: The endpoint to dequeue.
3955 * @req: The request to be removed from a queue.
3956 */
3957 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3958 {
3959 struct dwc2_hsotg_req *hs_req = our_req(req);
3960 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3961 struct dwc2_hsotg *hs = hs_ep->parent;
3962 unsigned long flags;
3963
3964 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3965
3966 spin_lock_irqsave(&hs->lock, flags);
3967
3968 if (!on_list(hs_ep, hs_req)) {
3969 spin_unlock_irqrestore(&hs->lock, flags);
3970 return -EINVAL;
3971 }
3972
3973 /* Dequeue already started request */
3974 if (req == &hs_ep->req->req)
3975 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
3976
3977 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3978 spin_unlock_irqrestore(&hs->lock, flags);
3979
3980 return 0;
3981 }
3982
3983 /**
3984 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3985 * @ep: The endpoint to set halt.
3986 * @value: Set or unset the halt.
3987 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
3988 * the endpoint is busy processing requests.
3989 *
3990 * We need to stall the endpoint immediately if request comes from set_feature
3991 * protocol command handler.
3992 */
3993 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3994 {
3995 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3996 struct dwc2_hsotg *hs = hs_ep->parent;
3997 int index = hs_ep->index;
3998 u32 epreg;
3999 u32 epctl;
4000 u32 xfertype;
4001
4002 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4003
4004 if (index == 0) {
4005 if (value)
4006 dwc2_hsotg_stall_ep0(hs);
4007 else
4008 dev_warn(hs->dev,
4009 "%s: can't clear halt on ep0\n", __func__);
4010 return 0;
4011 }
4012
4013 if (hs_ep->isochronous) {
4014 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4015 return -EINVAL;
4016 }
4017
4018 if (!now && value && !list_empty(&hs_ep->queue)) {
4019 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4020 ep->name);
4021 return -EAGAIN;
4022 }
4023
4024 if (hs_ep->dir_in) {
4025 epreg = DIEPCTL(index);
4026 epctl = dwc2_readl(hs->regs + epreg);
4027
4028 if (value) {
4029 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4030 if (epctl & DXEPCTL_EPENA)
4031 epctl |= DXEPCTL_EPDIS;
4032 } else {
4033 epctl &= ~DXEPCTL_STALL;
4034 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4035 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4036 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4037 epctl |= DXEPCTL_SETD0PID;
4038 }
4039 dwc2_writel(epctl, hs->regs + epreg);
4040 } else {
4041
4042 epreg = DOEPCTL(index);
4043 epctl = dwc2_readl(hs->regs + epreg);
4044
4045 if (value)
4046 epctl |= DXEPCTL_STALL;
4047 else {
4048 epctl &= ~DXEPCTL_STALL;
4049 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4050 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4051 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4052 epctl |= DXEPCTL_SETD0PID;
4053 }
4054 dwc2_writel(epctl, hs->regs + epreg);
4055 }
4056
4057 hs_ep->halted = value;
4058
4059 return 0;
4060 }
4061
4062 /**
4063 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4064 * @ep: The endpoint to set halt.
4065 * @value: Set or unset the halt.
4066 */
4067 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4068 {
4069 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070 struct dwc2_hsotg *hs = hs_ep->parent;
4071 unsigned long flags = 0;
4072 int ret = 0;
4073
4074 spin_lock_irqsave(&hs->lock, flags);
4075 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4076 spin_unlock_irqrestore(&hs->lock, flags);
4077
4078 return ret;
4079 }
4080
4081 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
4082 .enable = dwc2_hsotg_ep_enable,
4083 .disable = dwc2_hsotg_ep_disable,
4084 .alloc_request = dwc2_hsotg_ep_alloc_request,
4085 .free_request = dwc2_hsotg_ep_free_request,
4086 .queue = dwc2_hsotg_ep_queue_lock,
4087 .dequeue = dwc2_hsotg_ep_dequeue,
4088 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4089 /* note, don't believe we have any call for the fifo routines */
4090 };
4091
4092 /**
4093 * dwc2_hsotg_init - initalize the usb core
4094 * @hsotg: The driver state
4095 */
4096 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4097 {
4098 u32 trdtim;
4099 u32 usbcfg;
4100 /* unmask subset of endpoint interrupts */
4101
4102 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4103 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4104 hsotg->regs + DIEPMSK);
4105
4106 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4107 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4108 hsotg->regs + DOEPMSK);
4109
4110 dwc2_writel(0, hsotg->regs + DAINTMSK);
4111
4112 /* Be in disconnected state until gadget is registered */
4113 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4114
4115 /* setup fifos */
4116
4117 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4118 dwc2_readl(hsotg->regs + GRXFSIZ),
4119 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4120
4121 dwc2_hsotg_init_fifo(hsotg);
4122
4123 /* keep other bits untouched (so e.g. forced modes are not lost) */
4124 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4125 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4126 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4127
4128 /* set the PLL on, remove the HNP/SRP and set the PHY */
4129 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4130 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4131 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4132 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4133
4134 if (using_dma(hsotg))
4135 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4136 }
4137
4138 /**
4139 * dwc2_hsotg_udc_start - prepare the udc for work
4140 * @gadget: The usb gadget state
4141 * @driver: The usb gadget driver
4142 *
4143 * Perform initialization to prepare udc device and driver
4144 * to work.
4145 */
4146 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4147 struct usb_gadget_driver *driver)
4148 {
4149 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4150 unsigned long flags;
4151 int ret;
4152
4153 if (!hsotg) {
4154 pr_err("%s: called with no device\n", __func__);
4155 return -ENODEV;
4156 }
4157
4158 if (!driver) {
4159 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4160 return -EINVAL;
4161 }
4162
4163 if (driver->max_speed < USB_SPEED_FULL)
4164 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4165
4166 if (!driver->setup) {
4167 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4168 return -EINVAL;
4169 }
4170
4171 WARN_ON(hsotg->driver);
4172
4173 driver->driver.bus = NULL;
4174 hsotg->driver = driver;
4175 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4176 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4177
4178 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4179 ret = dwc2_lowlevel_hw_enable(hsotg);
4180 if (ret)
4181 goto err;
4182 }
4183
4184 if (!IS_ERR_OR_NULL(hsotg->uphy))
4185 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4186
4187 spin_lock_irqsave(&hsotg->lock, flags);
4188 if (dwc2_hw_is_device(hsotg)) {
4189 dwc2_hsotg_init(hsotg);
4190 dwc2_hsotg_core_init_disconnected(hsotg, false);
4191 }
4192
4193 hsotg->enabled = 0;
4194 spin_unlock_irqrestore(&hsotg->lock, flags);
4195
4196 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4197
4198 return 0;
4199
4200 err:
4201 hsotg->driver = NULL;
4202 return ret;
4203 }
4204
4205 /**
4206 * dwc2_hsotg_udc_stop - stop the udc
4207 * @gadget: The usb gadget state
4208 * @driver: The usb gadget driver
4209 *
4210 * Stop udc hw block and stay tunned for future transmissions
4211 */
4212 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4213 {
4214 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4215 unsigned long flags = 0;
4216 int ep;
4217
4218 if (!hsotg)
4219 return -ENODEV;
4220
4221 /* all endpoints should be shutdown */
4222 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4223 if (hsotg->eps_in[ep])
4224 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4225 if (hsotg->eps_out[ep])
4226 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4227 }
4228
4229 spin_lock_irqsave(&hsotg->lock, flags);
4230
4231 hsotg->driver = NULL;
4232 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4233 hsotg->enabled = 0;
4234
4235 spin_unlock_irqrestore(&hsotg->lock, flags);
4236
4237 if (!IS_ERR_OR_NULL(hsotg->uphy))
4238 otg_set_peripheral(hsotg->uphy->otg, NULL);
4239
4240 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4241 dwc2_lowlevel_hw_disable(hsotg);
4242
4243 return 0;
4244 }
4245
4246 /**
4247 * dwc2_hsotg_gadget_getframe - read the frame number
4248 * @gadget: The usb gadget state
4249 *
4250 * Read the {micro} frame number
4251 */
4252 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4253 {
4254 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4255 }
4256
4257 /**
4258 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4259 * @gadget: The usb gadget state
4260 * @is_on: Current state of the USB PHY
4261 *
4262 * Connect/Disconnect the USB PHY pullup
4263 */
4264 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4265 {
4266 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4267 unsigned long flags = 0;
4268
4269 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4270 hsotg->op_state);
4271
4272 /* Don't modify pullup state while in host mode */
4273 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4274 hsotg->enabled = is_on;
4275 return 0;
4276 }
4277
4278 spin_lock_irqsave(&hsotg->lock, flags);
4279 if (is_on) {
4280 hsotg->enabled = 1;
4281 dwc2_hsotg_core_init_disconnected(hsotg, false);
4282 dwc2_hsotg_core_connect(hsotg);
4283 } else {
4284 dwc2_hsotg_core_disconnect(hsotg);
4285 dwc2_hsotg_disconnect(hsotg);
4286 hsotg->enabled = 0;
4287 }
4288
4289 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4290 spin_unlock_irqrestore(&hsotg->lock, flags);
4291
4292 return 0;
4293 }
4294
4295 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4296 {
4297 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4298 unsigned long flags;
4299
4300 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4301 spin_lock_irqsave(&hsotg->lock, flags);
4302
4303 /*
4304 * If controller is hibernated, it must exit from hibernation
4305 * before being initialized / de-initialized
4306 */
4307 if (hsotg->lx_state == DWC2_L2)
4308 dwc2_exit_hibernation(hsotg, false);
4309
4310 if (is_active) {
4311 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4312
4313 dwc2_hsotg_core_init_disconnected(hsotg, false);
4314 if (hsotg->enabled)
4315 dwc2_hsotg_core_connect(hsotg);
4316 } else {
4317 dwc2_hsotg_core_disconnect(hsotg);
4318 dwc2_hsotg_disconnect(hsotg);
4319 }
4320
4321 spin_unlock_irqrestore(&hsotg->lock, flags);
4322 return 0;
4323 }
4324
4325 /**
4326 * dwc2_hsotg_vbus_draw - report bMaxPower field
4327 * @gadget: The usb gadget state
4328 * @mA: Amount of current
4329 *
4330 * Report how much power the device may consume to the phy.
4331 */
4332 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
4333 {
4334 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4335
4336 if (IS_ERR_OR_NULL(hsotg->uphy))
4337 return -ENOTSUPP;
4338 return usb_phy_set_power(hsotg->uphy, mA);
4339 }
4340
4341 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4342 .get_frame = dwc2_hsotg_gadget_getframe,
4343 .udc_start = dwc2_hsotg_udc_start,
4344 .udc_stop = dwc2_hsotg_udc_stop,
4345 .pullup = dwc2_hsotg_pullup,
4346 .vbus_session = dwc2_hsotg_vbus_session,
4347 .vbus_draw = dwc2_hsotg_vbus_draw,
4348 };
4349
4350 /**
4351 * dwc2_hsotg_initep - initialise a single endpoint
4352 * @hsotg: The device state.
4353 * @hs_ep: The endpoint to be initialised.
4354 * @epnum: The endpoint number
4355 *
4356 * Initialise the given endpoint (as part of the probe and device state
4357 * creation) to give to the gadget driver. Setup the endpoint name, any
4358 * direction information and other state that may be required.
4359 */
4360 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4361 struct dwc2_hsotg_ep *hs_ep,
4362 int epnum,
4363 bool dir_in)
4364 {
4365 char *dir;
4366
4367 if (epnum == 0)
4368 dir = "";
4369 else if (dir_in)
4370 dir = "in";
4371 else
4372 dir = "out";
4373
4374 hs_ep->dir_in = dir_in;
4375 hs_ep->index = epnum;
4376
4377 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4378
4379 INIT_LIST_HEAD(&hs_ep->queue);
4380 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4381
4382 /* add to the list of endpoints known by the gadget driver */
4383 if (epnum)
4384 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4385
4386 hs_ep->parent = hsotg;
4387 hs_ep->ep.name = hs_ep->name;
4388
4389 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4390 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4391 else
4392 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4393 epnum ? 1024 : EP0_MPS_LIMIT);
4394 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4395
4396 if (epnum == 0) {
4397 hs_ep->ep.caps.type_control = true;
4398 } else {
4399 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4400 hs_ep->ep.caps.type_iso = true;
4401 hs_ep->ep.caps.type_bulk = true;
4402 }
4403 hs_ep->ep.caps.type_int = true;
4404 }
4405
4406 if (dir_in)
4407 hs_ep->ep.caps.dir_in = true;
4408 else
4409 hs_ep->ep.caps.dir_out = true;
4410
4411 /*
4412 * if we're using dma, we need to set the next-endpoint pointer
4413 * to be something valid.
4414 */
4415
4416 if (using_dma(hsotg)) {
4417 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4418 if (dir_in)
4419 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4420 else
4421 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4422 }
4423 }
4424
4425 /**
4426 * dwc2_hsotg_hw_cfg - read HW configuration registers
4427 * @param: The device state
4428 *
4429 * Read the USB core HW configuration registers
4430 */
4431 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4432 {
4433 u32 cfg;
4434 u32 ep_type;
4435 u32 i;
4436
4437 /* check hardware configuration */
4438
4439 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4440
4441 /* Add ep0 */
4442 hsotg->num_of_eps++;
4443
4444 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4445 GFP_KERNEL);
4446 if (!hsotg->eps_in[0])
4447 return -ENOMEM;
4448 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4449 hsotg->eps_out[0] = hsotg->eps_in[0];
4450
4451 cfg = hsotg->hw_params.dev_ep_dirs;
4452 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4453 ep_type = cfg & 3;
4454 /* Direction in or both */
4455 if (!(ep_type & 2)) {
4456 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4457 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4458 if (!hsotg->eps_in[i])
4459 return -ENOMEM;
4460 }
4461 /* Direction out or both */
4462 if (!(ep_type & 1)) {
4463 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4464 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4465 if (!hsotg->eps_out[i])
4466 return -ENOMEM;
4467 }
4468 }
4469
4470 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4471 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4472
4473 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4474 hsotg->num_of_eps,
4475 hsotg->dedicated_fifos ? "dedicated" : "shared",
4476 hsotg->fifo_mem);
4477 return 0;
4478 }
4479
4480 /**
4481 * dwc2_hsotg_dump - dump state of the udc
4482 * @param: The device state
4483 */
4484 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4485 {
4486 #ifdef DEBUG
4487 struct device *dev = hsotg->dev;
4488 void __iomem *regs = hsotg->regs;
4489 u32 val;
4490 int idx;
4491
4492 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4493 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4494 dwc2_readl(regs + DIEPMSK));
4495
4496 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4497 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4498
4499 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4500 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4501
4502 /* show periodic fifo settings */
4503
4504 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4505 val = dwc2_readl(regs + DPTXFSIZN(idx));
4506 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4507 val >> FIFOSIZE_DEPTH_SHIFT,
4508 val & FIFOSIZE_STARTADDR_MASK);
4509 }
4510
4511 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4512 dev_info(dev,
4513 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4514 dwc2_readl(regs + DIEPCTL(idx)),
4515 dwc2_readl(regs + DIEPTSIZ(idx)),
4516 dwc2_readl(regs + DIEPDMA(idx)));
4517
4518 val = dwc2_readl(regs + DOEPCTL(idx));
4519 dev_info(dev,
4520 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4521 idx, dwc2_readl(regs + DOEPCTL(idx)),
4522 dwc2_readl(regs + DOEPTSIZ(idx)),
4523 dwc2_readl(regs + DOEPDMA(idx)));
4524
4525 }
4526
4527 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4528 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4529 #endif
4530 }
4531
4532 /**
4533 * dwc2_gadget_init - init function for gadget
4534 * @dwc2: The data structure for the DWC2 driver.
4535 * @irq: The IRQ number for the controller.
4536 */
4537 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4538 {
4539 struct device *dev = hsotg->dev;
4540 int epnum;
4541 int ret;
4542
4543 /* Dump fifo information */
4544 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4545 hsotg->params.g_np_tx_fifo_size);
4546 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4547
4548 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4549 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4550 hsotg->gadget.name = dev_name(dev);
4551 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4552 hsotg->gadget.is_otg = 1;
4553 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4554 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4555
4556 ret = dwc2_hsotg_hw_cfg(hsotg);
4557 if (ret) {
4558 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4559 return ret;
4560 }
4561
4562 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4563 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4564 if (!hsotg->ctrl_buff)
4565 return -ENOMEM;
4566
4567 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4568 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4569 if (!hsotg->ep0_buff)
4570 return -ENOMEM;
4571
4572 if (using_desc_dma(hsotg)) {
4573 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4574 if (ret < 0)
4575 return ret;
4576 }
4577
4578 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4579 dev_name(hsotg->dev), hsotg);
4580 if (ret < 0) {
4581 dev_err(dev, "cannot claim IRQ for gadget\n");
4582 return ret;
4583 }
4584
4585 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4586
4587 if (hsotg->num_of_eps == 0) {
4588 dev_err(dev, "wrong number of EPs (zero)\n");
4589 return -EINVAL;
4590 }
4591
4592 /* setup endpoint information */
4593
4594 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4595 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4596
4597 /* allocate EP0 request */
4598
4599 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4600 GFP_KERNEL);
4601 if (!hsotg->ctrl_req) {
4602 dev_err(dev, "failed to allocate ctrl req\n");
4603 return -ENOMEM;
4604 }
4605
4606 /* initialise the endpoints now the core has been initialised */
4607 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4608 if (hsotg->eps_in[epnum])
4609 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4610 epnum, 1);
4611 if (hsotg->eps_out[epnum])
4612 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4613 epnum, 0);
4614 }
4615
4616 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4617 if (ret)
4618 return ret;
4619
4620 dwc2_hsotg_dump(hsotg);
4621
4622 return 0;
4623 }
4624
4625 /**
4626 * dwc2_hsotg_remove - remove function for hsotg driver
4627 * @pdev: The platform information for the driver
4628 */
4629 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4630 {
4631 usb_del_gadget_udc(&hsotg->gadget);
4632
4633 return 0;
4634 }
4635
4636 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4637 {
4638 unsigned long flags;
4639
4640 if (hsotg->lx_state != DWC2_L0)
4641 return 0;
4642
4643 if (hsotg->driver) {
4644 int ep;
4645
4646 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4647 hsotg->driver->driver.name);
4648
4649 spin_lock_irqsave(&hsotg->lock, flags);
4650 if (hsotg->enabled)
4651 dwc2_hsotg_core_disconnect(hsotg);
4652 dwc2_hsotg_disconnect(hsotg);
4653 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4654 spin_unlock_irqrestore(&hsotg->lock, flags);
4655
4656 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4657 if (hsotg->eps_in[ep])
4658 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4659 if (hsotg->eps_out[ep])
4660 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4661 }
4662 }
4663
4664 return 0;
4665 }
4666
4667 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4668 {
4669 unsigned long flags;
4670
4671 if (hsotg->lx_state == DWC2_L2)
4672 return 0;
4673
4674 if (hsotg->driver) {
4675 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4676 hsotg->driver->driver.name);
4677
4678 spin_lock_irqsave(&hsotg->lock, flags);
4679 dwc2_hsotg_core_init_disconnected(hsotg, false);
4680 if (hsotg->enabled)
4681 dwc2_hsotg_core_connect(hsotg);
4682 spin_unlock_irqrestore(&hsotg->lock, flags);
4683 }
4684
4685 return 0;
4686 }
4687
4688 /**
4689 * dwc2_backup_device_registers() - Backup controller device registers.
4690 * When suspending usb bus, registers needs to be backuped
4691 * if controller power is disabled once suspended.
4692 *
4693 * @hsotg: Programming view of the DWC_otg controller
4694 */
4695 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4696 {
4697 struct dwc2_dregs_backup *dr;
4698 int i;
4699
4700 dev_dbg(hsotg->dev, "%s\n", __func__);
4701
4702 /* Backup dev regs */
4703 dr = &hsotg->dr_backup;
4704
4705 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4706 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4707 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4708 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4709 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4710
4711 for (i = 0; i < hsotg->num_of_eps; i++) {
4712 /* Backup IN EPs */
4713 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4714
4715 /* Ensure DATA PID is correctly configured */
4716 if (dr->diepctl[i] & DXEPCTL_DPID)
4717 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4718 else
4719 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4720
4721 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4722 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4723
4724 /* Backup OUT EPs */
4725 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4726
4727 /* Ensure DATA PID is correctly configured */
4728 if (dr->doepctl[i] & DXEPCTL_DPID)
4729 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4730 else
4731 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4732
4733 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4734 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4735 }
4736 dr->valid = true;
4737 return 0;
4738 }
4739
4740 /**
4741 * dwc2_restore_device_registers() - Restore controller device registers.
4742 * When resuming usb bus, device registers needs to be restored
4743 * if controller power were disabled.
4744 *
4745 * @hsotg: Programming view of the DWC_otg controller
4746 */
4747 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4748 {
4749 struct dwc2_dregs_backup *dr;
4750 u32 dctl;
4751 int i;
4752
4753 dev_dbg(hsotg->dev, "%s\n", __func__);
4754
4755 /* Restore dev regs */
4756 dr = &hsotg->dr_backup;
4757 if (!dr->valid) {
4758 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4759 __func__);
4760 return -EINVAL;
4761 }
4762 dr->valid = false;
4763
4764 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4765 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4766 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4767 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4768 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4769
4770 for (i = 0; i < hsotg->num_of_eps; i++) {
4771 /* Restore IN EPs */
4772 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4773 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4774 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4775
4776 /* Restore OUT EPs */
4777 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4778 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4779 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4780 }
4781
4782 /* Set the Power-On Programming done bit */
4783 dctl = dwc2_readl(hsotg->regs + DCTL);
4784 dctl |= DCTL_PWRONPRGDONE;
4785 dwc2_writel(dctl, hsotg->regs + DCTL);
4786
4787 return 0;
4788 }