]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/dwc2/gadget.c
usb: dwc2: gadget: don't erase gahbcfg register when enabling dma
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / dwc2 / gadget.c
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/mutex.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/of_platform.h>
32 #include <linux/phy/phy.h>
33
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 #include <linux/platform_data/s3c-hsotg.h>
38
39 #include "core.h"
40 #include "hw.h"
41
42 /* conversion functions */
43 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
44 {
45 return container_of(req, struct s3c_hsotg_req, req);
46 }
47
48 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
49 {
50 return container_of(ep, struct s3c_hsotg_ep, ep);
51 }
52
53 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54 {
55 return container_of(gadget, struct dwc2_hsotg, gadget);
56 }
57
58 static inline void __orr32(void __iomem *ptr, u32 val)
59 {
60 writel(readl(ptr) | val, ptr);
61 }
62
63 static inline void __bic32(void __iomem *ptr, u32 val)
64 {
65 writel(readl(ptr) & ~val, ptr);
66 }
67
68 /* forward declaration of functions */
69 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
70
71 /**
72 * using_dma - return the DMA status of the driver.
73 * @hsotg: The driver state.
74 *
75 * Return true if we're using DMA.
76 *
77 * Currently, we have the DMA support code worked into everywhere
78 * that needs it, but the AMBA DMA implementation in the hardware can
79 * only DMA from 32bit aligned addresses. This means that gadgets such
80 * as the CDC Ethernet cannot work as they often pass packets which are
81 * not 32bit aligned.
82 *
83 * Unfortunately the choice to use DMA or not is global to the controller
84 * and seems to be only settable when the controller is being put through
85 * a core reset. This means we either need to fix the gadgets to take
86 * account of DMA alignment, or add bounce buffers (yuerk).
87 *
88 * Until this issue is sorted out, we always return 'false'.
89 */
90 static inline bool using_dma(struct dwc2_hsotg *hsotg)
91 {
92 return false; /* support is not complete */
93 }
94
95 /**
96 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
97 * @hsotg: The device state
98 * @ints: A bitmask of the interrupts to enable
99 */
100 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
101 {
102 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
103 u32 new_gsintmsk;
104
105 new_gsintmsk = gsintmsk | ints;
106
107 if (new_gsintmsk != gsintmsk) {
108 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
109 writel(new_gsintmsk, hsotg->regs + GINTMSK);
110 }
111 }
112
113 /**
114 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
115 * @hsotg: The device state
116 * @ints: A bitmask of the interrupts to enable
117 */
118 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
119 {
120 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
121 u32 new_gsintmsk;
122
123 new_gsintmsk = gsintmsk & ~ints;
124
125 if (new_gsintmsk != gsintmsk)
126 writel(new_gsintmsk, hsotg->regs + GINTMSK);
127 }
128
129 /**
130 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
131 * @hsotg: The device state
132 * @ep: The endpoint index
133 * @dir_in: True if direction is in.
134 * @en: The enable value, true to enable
135 *
136 * Set or clear the mask for an individual endpoint's interrupt
137 * request.
138 */
139 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
140 unsigned int ep, unsigned int dir_in,
141 unsigned int en)
142 {
143 unsigned long flags;
144 u32 bit = 1 << ep;
145 u32 daint;
146
147 if (!dir_in)
148 bit <<= 16;
149
150 local_irq_save(flags);
151 daint = readl(hsotg->regs + DAINTMSK);
152 if (en)
153 daint |= bit;
154 else
155 daint &= ~bit;
156 writel(daint, hsotg->regs + DAINTMSK);
157 local_irq_restore(flags);
158 }
159
160 /**
161 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
162 * @hsotg: The device instance.
163 */
164 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
165 {
166 unsigned int ep;
167 unsigned int addr;
168 unsigned int size;
169 int timeout;
170 u32 val;
171
172 /* set FIFO sizes to 2048/1024 */
173
174 writel(2048, hsotg->regs + GRXFSIZ);
175 writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
176 (1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
177
178 /*
179 * arange all the rest of the TX FIFOs, as some versions of this
180 * block have overlapping default addresses. This also ensures
181 * that if the settings have been changed, then they are set to
182 * known values.
183 */
184
185 /* start at the end of the GNPTXFSIZ, rounded up */
186 addr = 2048 + 1024;
187
188 /*
189 * Because we have not enough memory to have each TX FIFO of size at
190 * least 3072 bytes (the maximum single packet size), we create four
191 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
192 * them to endpoints dynamically according to maxpacket size value of
193 * given endpoint.
194 */
195
196 /* 256*4=1024 bytes FIFO length */
197 size = 256;
198 for (ep = 1; ep <= 4; ep++) {
199 val = addr;
200 val |= size << FIFOSIZE_DEPTH_SHIFT;
201 WARN_ONCE(addr + size > hsotg->fifo_mem,
202 "insufficient fifo memory");
203 addr += size;
204
205 writel(val, hsotg->regs + DPTXFSIZN(ep));
206 }
207 /* 768*4=3072 bytes FIFO length */
208 size = 768;
209 for (ep = 5; ep <= 8; ep++) {
210 val = addr;
211 val |= size << FIFOSIZE_DEPTH_SHIFT;
212 WARN_ONCE(addr + size > hsotg->fifo_mem,
213 "insufficient fifo memory");
214 addr += size;
215
216 writel(val, hsotg->regs + DPTXFSIZN(ep));
217 }
218
219 /*
220 * according to p428 of the design guide, we need to ensure that
221 * all fifos are flushed before continuing
222 */
223
224 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
225 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
226
227 /* wait until the fifos are both flushed */
228 timeout = 100;
229 while (1) {
230 val = readl(hsotg->regs + GRSTCTL);
231
232 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
233 break;
234
235 if (--timeout == 0) {
236 dev_err(hsotg->dev,
237 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
238 __func__, val);
239 }
240
241 udelay(1);
242 }
243
244 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 }
246
247 /**
248 * @ep: USB endpoint to allocate request for.
249 * @flags: Allocation flags
250 *
251 * Allocate a new USB request structure appropriate for the specified endpoint
252 */
253 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
254 gfp_t flags)
255 {
256 struct s3c_hsotg_req *req;
257
258 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
259 if (!req)
260 return NULL;
261
262 INIT_LIST_HEAD(&req->queue);
263
264 return &req->req;
265 }
266
267 /**
268 * is_ep_periodic - return true if the endpoint is in periodic mode.
269 * @hs_ep: The endpoint to query.
270 *
271 * Returns true if the endpoint is in periodic mode, meaning it is being
272 * used for an Interrupt or ISO transfer.
273 */
274 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
275 {
276 return hs_ep->periodic;
277 }
278
279 /**
280 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
281 * @hsotg: The device state.
282 * @hs_ep: The endpoint for the request
283 * @hs_req: The request being processed.
284 *
285 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
286 * of a request to ensure the buffer is ready for access by the caller.
287 */
288 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 struct s3c_hsotg_ep *hs_ep,
290 struct s3c_hsotg_req *hs_req)
291 {
292 struct usb_request *req = &hs_req->req;
293
294 /* ignore this if we're not moving any data */
295 if (hs_req->req.length == 0)
296 return;
297
298 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 }
300
301 /**
302 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
303 * @hsotg: The controller state.
304 * @hs_ep: The endpoint we're going to write for.
305 * @hs_req: The request to write data for.
306 *
307 * This is called when the TxFIFO has some space in it to hold a new
308 * transmission and we have something to give it. The actual setup of
309 * the data size is done elsewhere, so all we have to do is to actually
310 * write the data.
311 *
312 * The return value is zero if there is more space (or nothing was done)
313 * otherwise -ENOSPC is returned if the FIFO space was used up.
314 *
315 * This routine is only needed for PIO
316 */
317 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 struct s3c_hsotg_ep *hs_ep,
319 struct s3c_hsotg_req *hs_req)
320 {
321 bool periodic = is_ep_periodic(hs_ep);
322 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 int buf_pos = hs_req->req.actual;
324 int to_write = hs_ep->size_loaded;
325 void *data;
326 int can_write;
327 int pkt_round;
328 int max_transfer;
329
330 to_write -= (buf_pos - hs_ep->last_load);
331
332 /* if there's nothing to write, get out early */
333 if (to_write == 0)
334 return 0;
335
336 if (periodic && !hsotg->dedicated_fifos) {
337 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 int size_left;
339 int size_done;
340
341 /*
342 * work out how much data was loaded so we can calculate
343 * how much data is left in the fifo.
344 */
345
346 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347
348 /*
349 * if shared fifo, we cannot write anything until the
350 * previous data has been completely sent.
351 */
352 if (hs_ep->fifo_load != 0) {
353 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 return -ENOSPC;
355 }
356
357 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
358 __func__, size_left,
359 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
360
361 /* how much of the data has moved */
362 size_done = hs_ep->size_loaded - size_left;
363
364 /* how much data is left in the fifo */
365 can_write = hs_ep->fifo_load - size_done;
366 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
367 __func__, can_write);
368
369 can_write = hs_ep->fifo_size - can_write;
370 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
371 __func__, can_write);
372
373 if (can_write <= 0) {
374 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 return -ENOSPC;
376 }
377 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379
380 can_write &= 0xffff;
381 can_write *= 4;
382 } else {
383 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 dev_dbg(hsotg->dev,
385 "%s: no queue slots available (0x%08x)\n",
386 __func__, gnptxsts);
387
388 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 return -ENOSPC;
390 }
391
392 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393 can_write *= 4; /* fifo size is in 32bit quantities. */
394 }
395
396 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
397
398 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
399 __func__, gnptxsts, can_write, to_write, max_transfer);
400
401 /*
402 * limit to 512 bytes of data, it seems at least on the non-periodic
403 * FIFO, requests of >512 cause the endpoint to get stuck with a
404 * fragment of the end of the transfer in it.
405 */
406 if (can_write > 512 && !periodic)
407 can_write = 512;
408
409 /*
410 * limit the write to one max-packet size worth of data, but allow
411 * the transfer to return that it did not run out of fifo space
412 * doing it.
413 */
414 if (to_write > max_transfer) {
415 to_write = max_transfer;
416
417 /* it's needed only when we do not use dedicated fifos */
418 if (!hsotg->dedicated_fifos)
419 s3c_hsotg_en_gsint(hsotg,
420 periodic ? GINTSTS_PTXFEMP :
421 GINTSTS_NPTXFEMP);
422 }
423
424 /* see if we can write data */
425
426 if (to_write > can_write) {
427 to_write = can_write;
428 pkt_round = to_write % max_transfer;
429
430 /*
431 * Round the write down to an
432 * exact number of packets.
433 *
434 * Note, we do not currently check to see if we can ever
435 * write a full packet or not to the FIFO.
436 */
437
438 if (pkt_round)
439 to_write -= pkt_round;
440
441 /*
442 * enable correct FIFO interrupt to alert us when there
443 * is more room left.
444 */
445
446 /* it's needed only when we do not use dedicated fifos */
447 if (!hsotg->dedicated_fifos)
448 s3c_hsotg_en_gsint(hsotg,
449 periodic ? GINTSTS_PTXFEMP :
450 GINTSTS_NPTXFEMP);
451 }
452
453 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
454 to_write, hs_req->req.length, can_write, buf_pos);
455
456 if (to_write <= 0)
457 return -ENOSPC;
458
459 hs_req->req.actual = buf_pos + to_write;
460 hs_ep->total_data += to_write;
461
462 if (periodic)
463 hs_ep->fifo_load += to_write;
464
465 to_write = DIV_ROUND_UP(to_write, 4);
466 data = hs_req->req.buf + buf_pos;
467
468 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469
470 return (to_write >= can_write) ? -ENOSPC : 0;
471 }
472
473 /**
474 * get_ep_limit - get the maximum data legnth for this endpoint
475 * @hs_ep: The endpoint
476 *
477 * Return the maximum data that can be queued in one go on a given endpoint
478 * so that transfers that are too long can be split.
479 */
480 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
481 {
482 int index = hs_ep->index;
483 unsigned maxsize;
484 unsigned maxpkt;
485
486 if (index != 0) {
487 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
488 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489 } else {
490 maxsize = 64+64;
491 if (hs_ep->dir_in)
492 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493 else
494 maxpkt = 2;
495 }
496
497 /* we made the constant loading easier above by using +1 */
498 maxpkt--;
499 maxsize--;
500
501 /*
502 * constrain by packet count if maxpkts*pktsize is greater
503 * than the length register size.
504 */
505
506 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
507 maxsize = maxpkt * hs_ep->ep.maxpacket;
508
509 return maxsize;
510 }
511
512 /**
513 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
514 * @hsotg: The controller state.
515 * @hs_ep: The endpoint to process a request for
516 * @hs_req: The request to start.
517 * @continuing: True if we are doing more for the current request.
518 *
519 * Start the given request running by setting the endpoint registers
520 * appropriately, and writing any data to the FIFOs.
521 */
522 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 struct s3c_hsotg_ep *hs_ep,
524 struct s3c_hsotg_req *hs_req,
525 bool continuing)
526 {
527 struct usb_request *ureq = &hs_req->req;
528 int index = hs_ep->index;
529 int dir_in = hs_ep->dir_in;
530 u32 epctrl_reg;
531 u32 epsize_reg;
532 u32 epsize;
533 u32 ctrl;
534 unsigned length;
535 unsigned packets;
536 unsigned maxreq;
537
538 if (index != 0) {
539 if (hs_ep->req && !continuing) {
540 dev_err(hsotg->dev, "%s: active request\n", __func__);
541 WARN_ON(1);
542 return;
543 } else if (hs_ep->req != hs_req && continuing) {
544 dev_err(hsotg->dev,
545 "%s: continue different req\n", __func__);
546 WARN_ON(1);
547 return;
548 }
549 }
550
551 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
552 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553
554 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
555 __func__, readl(hsotg->regs + epctrl_reg), index,
556 hs_ep->dir_in ? "in" : "out");
557
558 /* If endpoint is stalled, we will restart request later */
559 ctrl = readl(hsotg->regs + epctrl_reg);
560
561 if (ctrl & DXEPCTL_STALL) {
562 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
563 return;
564 }
565
566 length = ureq->length - ureq->actual;
567 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
568 ureq->length, ureq->actual);
569 if (0)
570 dev_dbg(hsotg->dev,
571 "REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
572 ureq->buf, length, &ureq->dma,
573 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
574
575 maxreq = get_ep_limit(hs_ep);
576 if (length > maxreq) {
577 int round = maxreq % hs_ep->ep.maxpacket;
578
579 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
580 __func__, length, maxreq, round);
581
582 /* round down to multiple of packets */
583 if (round)
584 maxreq -= round;
585
586 length = maxreq;
587 }
588
589 if (length)
590 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
591 else
592 packets = 1; /* send one packet if length is zero. */
593
594 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
595 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
596 return;
597 }
598
599 if (dir_in && index != 0)
600 if (hs_ep->isochronous)
601 epsize = DXEPTSIZ_MC(packets);
602 else
603 epsize = DXEPTSIZ_MC(1);
604 else
605 epsize = 0;
606
607 if (index != 0 && ureq->zero) {
608 /*
609 * test for the packets being exactly right for the
610 * transfer
611 */
612
613 if (length == (packets * hs_ep->ep.maxpacket))
614 packets++;
615 }
616
617 epsize |= DXEPTSIZ_PKTCNT(packets);
618 epsize |= DXEPTSIZ_XFERSIZE(length);
619
620 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
621 __func__, packets, length, ureq->length, epsize, epsize_reg);
622
623 /* store the request as the current one we're doing */
624 hs_ep->req = hs_req;
625
626 /* write size / packets */
627 writel(epsize, hsotg->regs + epsize_reg);
628
629 if (using_dma(hsotg) && !continuing) {
630 unsigned int dma_reg;
631
632 /*
633 * write DMA address to control register, buffer already
634 * synced by s3c_hsotg_ep_queue().
635 */
636
637 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
638 writel(ureq->dma, hsotg->regs + dma_reg);
639
640 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
641 __func__, &ureq->dma, dma_reg);
642 }
643
644 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
645 ctrl |= DXEPCTL_USBACTEP;
646
647 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
648
649 /* For Setup request do not clear NAK */
650 if (hsotg->setup && index == 0)
651 hsotg->setup = 0;
652 else
653 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
654
655
656 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
657 writel(ctrl, hsotg->regs + epctrl_reg);
658
659 /*
660 * set these, it seems that DMA support increments past the end
661 * of the packet buffer so we need to calculate the length from
662 * this information.
663 */
664 hs_ep->size_loaded = length;
665 hs_ep->last_load = ureq->actual;
666
667 if (dir_in && !using_dma(hsotg)) {
668 /* set these anyway, we may need them for non-periodic in */
669 hs_ep->fifo_load = 0;
670
671 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
672 }
673
674 /*
675 * clear the INTknTXFEmpMsk when we start request, more as a aide
676 * to debugging to see what is going on.
677 */
678 if (dir_in)
679 writel(DIEPMSK_INTKNTXFEMPMSK,
680 hsotg->regs + DIEPINT(index));
681
682 /*
683 * Note, trying to clear the NAK here causes problems with transmit
684 * on the S3C6400 ending up with the TXFIFO becoming full.
685 */
686
687 /* check ep is enabled */
688 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
689 dev_warn(hsotg->dev,
690 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
691 index, readl(hsotg->regs + epctrl_reg));
692
693 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
694 __func__, readl(hsotg->regs + epctrl_reg));
695
696 /* enable ep interrupts */
697 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
698 }
699
700 /**
701 * s3c_hsotg_map_dma - map the DMA memory being used for the request
702 * @hsotg: The device state.
703 * @hs_ep: The endpoint the request is on.
704 * @req: The request being processed.
705 *
706 * We've been asked to queue a request, so ensure that the memory buffer
707 * is correctly setup for DMA. If we've been passed an extant DMA address
708 * then ensure the buffer has been synced to memory. If our buffer has no
709 * DMA memory, then we map the memory and mark our request to allow us to
710 * cleanup on completion.
711 */
712 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
713 struct s3c_hsotg_ep *hs_ep,
714 struct usb_request *req)
715 {
716 struct s3c_hsotg_req *hs_req = our_req(req);
717 int ret;
718
719 /* if the length is zero, ignore the DMA data */
720 if (hs_req->req.length == 0)
721 return 0;
722
723 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
724 if (ret)
725 goto dma_error;
726
727 return 0;
728
729 dma_error:
730 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
731 __func__, req->buf, req->length);
732
733 return -EIO;
734 }
735
736 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
737 gfp_t gfp_flags)
738 {
739 struct s3c_hsotg_req *hs_req = our_req(req);
740 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
741 struct dwc2_hsotg *hs = hs_ep->parent;
742 bool first;
743
744 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
745 ep->name, req, req->length, req->buf, req->no_interrupt,
746 req->zero, req->short_not_ok);
747
748 /* initialise status of the request */
749 INIT_LIST_HEAD(&hs_req->queue);
750 req->actual = 0;
751 req->status = -EINPROGRESS;
752
753 /* if we're using DMA, sync the buffers as necessary */
754 if (using_dma(hs)) {
755 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
756 if (ret)
757 return ret;
758 }
759
760 first = list_empty(&hs_ep->queue);
761 list_add_tail(&hs_req->queue, &hs_ep->queue);
762
763 if (first)
764 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
765
766 return 0;
767 }
768
769 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
770 gfp_t gfp_flags)
771 {
772 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
773 struct dwc2_hsotg *hs = hs_ep->parent;
774 unsigned long flags = 0;
775 int ret = 0;
776
777 spin_lock_irqsave(&hs->lock, flags);
778 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
779 spin_unlock_irqrestore(&hs->lock, flags);
780
781 return ret;
782 }
783
784 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
785 struct usb_request *req)
786 {
787 struct s3c_hsotg_req *hs_req = our_req(req);
788
789 kfree(hs_req);
790 }
791
792 /**
793 * s3c_hsotg_complete_oursetup - setup completion callback
794 * @ep: The endpoint the request was on.
795 * @req: The request completed.
796 *
797 * Called on completion of any requests the driver itself
798 * submitted that need cleaning up.
799 */
800 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
801 struct usb_request *req)
802 {
803 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
804 struct dwc2_hsotg *hsotg = hs_ep->parent;
805
806 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
807
808 s3c_hsotg_ep_free_request(ep, req);
809 }
810
811 /**
812 * ep_from_windex - convert control wIndex value to endpoint
813 * @hsotg: The driver state.
814 * @windex: The control request wIndex field (in host order).
815 *
816 * Convert the given wIndex into a pointer to an driver endpoint
817 * structure, or return NULL if it is not a valid endpoint.
818 */
819 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
820 u32 windex)
821 {
822 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
823 int dir = (windex & USB_DIR_IN) ? 1 : 0;
824 int idx = windex & 0x7F;
825
826 if (windex >= 0x100)
827 return NULL;
828
829 if (idx > hsotg->num_of_eps)
830 return NULL;
831
832 if (idx && ep->dir_in != dir)
833 return NULL;
834
835 return ep;
836 }
837
838 /**
839 * s3c_hsotg_send_reply - send reply to control request
840 * @hsotg: The device state
841 * @ep: Endpoint 0
842 * @buff: Buffer for request
843 * @length: Length of reply.
844 *
845 * Create a request and queue it on the given endpoint. This is useful as
846 * an internal method of sending replies to certain control requests, etc.
847 */
848 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
849 struct s3c_hsotg_ep *ep,
850 void *buff,
851 int length)
852 {
853 struct usb_request *req;
854 int ret;
855
856 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
857
858 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
859 hsotg->ep0_reply = req;
860 if (!req) {
861 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
862 return -ENOMEM;
863 }
864
865 req->buf = hsotg->ep0_buff;
866 req->length = length;
867 req->zero = 1; /* always do zero-length final transfer */
868 req->complete = s3c_hsotg_complete_oursetup;
869
870 if (length)
871 memcpy(req->buf, buff, length);
872 else
873 ep->sent_zlp = 1;
874
875 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
876 if (ret) {
877 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
878 return ret;
879 }
880
881 return 0;
882 }
883
884 /**
885 * s3c_hsotg_process_req_status - process request GET_STATUS
886 * @hsotg: The device state
887 * @ctrl: USB control request
888 */
889 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
890 struct usb_ctrlrequest *ctrl)
891 {
892 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
893 struct s3c_hsotg_ep *ep;
894 __le16 reply;
895 int ret;
896
897 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
898
899 if (!ep0->dir_in) {
900 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
901 return -EINVAL;
902 }
903
904 switch (ctrl->bRequestType & USB_RECIP_MASK) {
905 case USB_RECIP_DEVICE:
906 reply = cpu_to_le16(0); /* bit 0 => self powered,
907 * bit 1 => remote wakeup */
908 break;
909
910 case USB_RECIP_INTERFACE:
911 /* currently, the data result should be zero */
912 reply = cpu_to_le16(0);
913 break;
914
915 case USB_RECIP_ENDPOINT:
916 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
917 if (!ep)
918 return -ENOENT;
919
920 reply = cpu_to_le16(ep->halted ? 1 : 0);
921 break;
922
923 default:
924 return 0;
925 }
926
927 if (le16_to_cpu(ctrl->wLength) != 2)
928 return -EINVAL;
929
930 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
931 if (ret) {
932 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
933 return ret;
934 }
935
936 return 1;
937 }
938
939 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
940
941 /**
942 * get_ep_head - return the first request on the endpoint
943 * @hs_ep: The controller endpoint to get
944 *
945 * Get the first request on the endpoint.
946 */
947 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
948 {
949 if (list_empty(&hs_ep->queue))
950 return NULL;
951
952 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
953 }
954
955 /**
956 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
957 * @hsotg: The device state
958 * @ctrl: USB control request
959 */
960 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
961 struct usb_ctrlrequest *ctrl)
962 {
963 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
964 struct s3c_hsotg_req *hs_req;
965 bool restart;
966 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
967 struct s3c_hsotg_ep *ep;
968 int ret;
969 bool halted;
970
971 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
972 __func__, set ? "SET" : "CLEAR");
973
974 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
975 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
976 if (!ep) {
977 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
978 __func__, le16_to_cpu(ctrl->wIndex));
979 return -ENOENT;
980 }
981
982 switch (le16_to_cpu(ctrl->wValue)) {
983 case USB_ENDPOINT_HALT:
984 halted = ep->halted;
985
986 s3c_hsotg_ep_sethalt(&ep->ep, set);
987
988 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
989 if (ret) {
990 dev_err(hsotg->dev,
991 "%s: failed to send reply\n", __func__);
992 return ret;
993 }
994
995 /*
996 * we have to complete all requests for ep if it was
997 * halted, and the halt was cleared by CLEAR_FEATURE
998 */
999
1000 if (!set && halted) {
1001 /*
1002 * If we have request in progress,
1003 * then complete it
1004 */
1005 if (ep->req) {
1006 hs_req = ep->req;
1007 ep->req = NULL;
1008 list_del_init(&hs_req->queue);
1009 usb_gadget_giveback_request(&ep->ep,
1010 &hs_req->req);
1011 }
1012
1013 /* If we have pending request, then start it */
1014 restart = !list_empty(&ep->queue);
1015 if (restart) {
1016 hs_req = get_ep_head(ep);
1017 s3c_hsotg_start_req(hsotg, ep,
1018 hs_req, false);
1019 }
1020 }
1021
1022 break;
1023
1024 default:
1025 return -ENOENT;
1026 }
1027 } else
1028 return -ENOENT; /* currently only deal with endpoint */
1029
1030 return 1;
1031 }
1032
1033 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1034
1035 /**
1036 * s3c_hsotg_stall_ep0 - stall ep0
1037 * @hsotg: The device state
1038 *
1039 * Set stall for ep0 as response for setup request.
1040 */
1041 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1042 {
1043 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1044 u32 reg;
1045 u32 ctrl;
1046
1047 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1048 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1049
1050 /*
1051 * DxEPCTL_Stall will be cleared by EP once it has
1052 * taken effect, so no need to clear later.
1053 */
1054
1055 ctrl = readl(hsotg->regs + reg);
1056 ctrl |= DXEPCTL_STALL;
1057 ctrl |= DXEPCTL_CNAK;
1058 writel(ctrl, hsotg->regs + reg);
1059
1060 dev_dbg(hsotg->dev,
1061 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1062 ctrl, reg, readl(hsotg->regs + reg));
1063
1064 /*
1065 * complete won't be called, so we enqueue
1066 * setup request here
1067 */
1068 s3c_hsotg_enqueue_setup(hsotg);
1069 }
1070
1071 /**
1072 * s3c_hsotg_process_control - process a control request
1073 * @hsotg: The device state
1074 * @ctrl: The control request received
1075 *
1076 * The controller has received the SETUP phase of a control request, and
1077 * needs to work out what to do next (and whether to pass it on to the
1078 * gadget driver).
1079 */
1080 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1081 struct usb_ctrlrequest *ctrl)
1082 {
1083 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1084 int ret = 0;
1085 u32 dcfg;
1086
1087 ep0->sent_zlp = 0;
1088
1089 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1090 ctrl->bRequest, ctrl->bRequestType,
1091 ctrl->wValue, ctrl->wLength);
1092
1093 /*
1094 * record the direction of the request, for later use when enquing
1095 * packets onto EP0.
1096 */
1097
1098 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1099 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1100
1101 /*
1102 * if we've no data with this request, then the last part of the
1103 * transaction is going to implicitly be IN.
1104 */
1105 if (ctrl->wLength == 0)
1106 ep0->dir_in = 1;
1107
1108 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1109 switch (ctrl->bRequest) {
1110 case USB_REQ_SET_ADDRESS:
1111 dcfg = readl(hsotg->regs + DCFG);
1112 dcfg &= ~DCFG_DEVADDR_MASK;
1113 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1114 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1115 writel(dcfg, hsotg->regs + DCFG);
1116
1117 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1118
1119 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1120 return;
1121
1122 case USB_REQ_GET_STATUS:
1123 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1124 break;
1125
1126 case USB_REQ_CLEAR_FEATURE:
1127 case USB_REQ_SET_FEATURE:
1128 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1129 break;
1130 }
1131 }
1132
1133 /* as a fallback, try delivering it to the driver to deal with */
1134
1135 if (ret == 0 && hsotg->driver) {
1136 spin_unlock(&hsotg->lock);
1137 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1138 spin_lock(&hsotg->lock);
1139 if (ret < 0)
1140 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1141 }
1142
1143 /*
1144 * the request is either unhandlable, or is not formatted correctly
1145 * so respond with a STALL for the status stage to indicate failure.
1146 */
1147
1148 if (ret < 0)
1149 s3c_hsotg_stall_ep0(hsotg);
1150 }
1151
1152 /**
1153 * s3c_hsotg_complete_setup - completion of a setup transfer
1154 * @ep: The endpoint the request was on.
1155 * @req: The request completed.
1156 *
1157 * Called on completion of any requests the driver itself submitted for
1158 * EP0 setup packets
1159 */
1160 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1161 struct usb_request *req)
1162 {
1163 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1164 struct dwc2_hsotg *hsotg = hs_ep->parent;
1165
1166 if (req->status < 0) {
1167 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1168 return;
1169 }
1170
1171 spin_lock(&hsotg->lock);
1172 if (req->actual == 0)
1173 s3c_hsotg_enqueue_setup(hsotg);
1174 else
1175 s3c_hsotg_process_control(hsotg, req->buf);
1176 spin_unlock(&hsotg->lock);
1177 }
1178
1179 /**
1180 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1181 * @hsotg: The device state.
1182 *
1183 * Enqueue a request on EP0 if necessary to received any SETUP packets
1184 * received from the host.
1185 */
1186 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1187 {
1188 struct usb_request *req = hsotg->ctrl_req;
1189 struct s3c_hsotg_req *hs_req = our_req(req);
1190 int ret;
1191
1192 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1193
1194 req->zero = 0;
1195 req->length = 8;
1196 req->buf = hsotg->ctrl_buff;
1197 req->complete = s3c_hsotg_complete_setup;
1198
1199 if (!list_empty(&hs_req->queue)) {
1200 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1201 return;
1202 }
1203
1204 hsotg->eps[0].dir_in = 0;
1205
1206 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1207 if (ret < 0) {
1208 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1209 /*
1210 * Don't think there's much we can do other than watch the
1211 * driver fail.
1212 */
1213 }
1214 }
1215
1216 /**
1217 * s3c_hsotg_complete_request - complete a request given to us
1218 * @hsotg: The device state.
1219 * @hs_ep: The endpoint the request was on.
1220 * @hs_req: The request to complete.
1221 * @result: The result code (0 => Ok, otherwise errno)
1222 *
1223 * The given request has finished, so call the necessary completion
1224 * if it has one and then look to see if we can start a new request
1225 * on the endpoint.
1226 *
1227 * Note, expects the ep to already be locked as appropriate.
1228 */
1229 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1230 struct s3c_hsotg_ep *hs_ep,
1231 struct s3c_hsotg_req *hs_req,
1232 int result)
1233 {
1234 bool restart;
1235
1236 if (!hs_req) {
1237 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1238 return;
1239 }
1240
1241 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1242 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1243
1244 /*
1245 * only replace the status if we've not already set an error
1246 * from a previous transaction
1247 */
1248
1249 if (hs_req->req.status == -EINPROGRESS)
1250 hs_req->req.status = result;
1251
1252 hs_ep->req = NULL;
1253 list_del_init(&hs_req->queue);
1254
1255 if (using_dma(hsotg))
1256 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1257
1258 /*
1259 * call the complete request with the locks off, just in case the
1260 * request tries to queue more work for this endpoint.
1261 */
1262
1263 if (hs_req->req.complete) {
1264 spin_unlock(&hsotg->lock);
1265 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1266 spin_lock(&hsotg->lock);
1267 }
1268
1269 /*
1270 * Look to see if there is anything else to do. Note, the completion
1271 * of the previous request may have caused a new request to be started
1272 * so be careful when doing this.
1273 */
1274
1275 if (!hs_ep->req && result >= 0) {
1276 restart = !list_empty(&hs_ep->queue);
1277 if (restart) {
1278 hs_req = get_ep_head(hs_ep);
1279 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1280 }
1281 }
1282 }
1283
1284 /**
1285 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1286 * @hsotg: The device state.
1287 * @ep_idx: The endpoint index for the data
1288 * @size: The size of data in the fifo, in bytes
1289 *
1290 * The FIFO status shows there is data to read from the FIFO for a given
1291 * endpoint, so sort out whether we need to read the data into a request
1292 * that has been made for that endpoint.
1293 */
1294 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1295 {
1296 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1297 struct s3c_hsotg_req *hs_req = hs_ep->req;
1298 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1299 int to_read;
1300 int max_req;
1301 int read_ptr;
1302
1303
1304 if (!hs_req) {
1305 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1306 int ptr;
1307
1308 dev_dbg(hsotg->dev,
1309 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1310 __func__, size, ep_idx, epctl);
1311
1312 /* dump the data from the FIFO, we've nothing we can do */
1313 for (ptr = 0; ptr < size; ptr += 4)
1314 (void)readl(fifo);
1315
1316 return;
1317 }
1318
1319 to_read = size;
1320 read_ptr = hs_req->req.actual;
1321 max_req = hs_req->req.length - read_ptr;
1322
1323 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1324 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1325
1326 if (to_read > max_req) {
1327 /*
1328 * more data appeared than we where willing
1329 * to deal with in this request.
1330 */
1331
1332 /* currently we don't deal this */
1333 WARN_ON_ONCE(1);
1334 }
1335
1336 hs_ep->total_data += to_read;
1337 hs_req->req.actual += to_read;
1338 to_read = DIV_ROUND_UP(to_read, 4);
1339
1340 /*
1341 * note, we might over-write the buffer end by 3 bytes depending on
1342 * alignment of the data.
1343 */
1344 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1345 }
1346
1347 /**
1348 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1349 * @hsotg: The device instance
1350 * @req: The request currently on this endpoint
1351 *
1352 * Generate a zero-length IN packet request for terminating a SETUP
1353 * transaction.
1354 *
1355 * Note, since we don't write any data to the TxFIFO, then it is
1356 * currently believed that we do not need to wait for any space in
1357 * the TxFIFO.
1358 */
1359 static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1360 struct s3c_hsotg_req *req)
1361 {
1362 u32 ctrl;
1363
1364 if (!req) {
1365 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1366 return;
1367 }
1368
1369 if (req->req.length == 0) {
1370 hsotg->eps[0].sent_zlp = 1;
1371 s3c_hsotg_enqueue_setup(hsotg);
1372 return;
1373 }
1374
1375 hsotg->eps[0].dir_in = 1;
1376 hsotg->eps[0].sent_zlp = 1;
1377
1378 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1379
1380 /* issue a zero-sized packet to terminate this */
1381 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1382 DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1383
1384 ctrl = readl(hsotg->regs + DIEPCTL0);
1385 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1386 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1387 ctrl |= DXEPCTL_USBACTEP;
1388 writel(ctrl, hsotg->regs + DIEPCTL0);
1389 }
1390
1391 /**
1392 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1393 * @hsotg: The device instance
1394 * @epnum: The endpoint received from
1395 * @was_setup: Set if processing a SetupDone event.
1396 *
1397 * The RXFIFO has delivered an OutDone event, which means that the data
1398 * transfer for an OUT endpoint has been completed, either by a short
1399 * packet or by the finish of a transfer.
1400 */
1401 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1402 int epnum, bool was_setup)
1403 {
1404 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1406 struct s3c_hsotg_req *hs_req = hs_ep->req;
1407 struct usb_request *req = &hs_req->req;
1408 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409 int result = 0;
1410
1411 if (!hs_req) {
1412 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1413 return;
1414 }
1415
1416 if (using_dma(hsotg)) {
1417 unsigned size_done;
1418
1419 /*
1420 * Calculate the size of the transfer by checking how much
1421 * is left in the endpoint size register and then working it
1422 * out from the amount we loaded for the transfer.
1423 *
1424 * We need to do this as DMA pointers are always 32bit aligned
1425 * so may overshoot/undershoot the transfer.
1426 */
1427
1428 size_done = hs_ep->size_loaded - size_left;
1429 size_done += hs_ep->last_load;
1430
1431 req->actual = size_done;
1432 }
1433
1434 /* if there is more request to do, schedule new transfer */
1435 if (req->actual < req->length && size_left == 0) {
1436 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1437 return;
1438 } else if (epnum == 0) {
1439 /*
1440 * After was_setup = 1 =>
1441 * set CNAK for non Setup requests
1442 */
1443 hsotg->setup = was_setup ? 0 : 1;
1444 }
1445
1446 if (req->actual < req->length && req->short_not_ok) {
1447 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1448 __func__, req->actual, req->length);
1449
1450 /*
1451 * todo - what should we return here? there's no one else
1452 * even bothering to check the status.
1453 */
1454 }
1455
1456 if (epnum == 0) {
1457 /*
1458 * Condition req->complete != s3c_hsotg_complete_setup says:
1459 * send ZLP when we have an asynchronous request from gadget
1460 */
1461 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1462 s3c_hsotg_send_zlp(hsotg, hs_req);
1463 }
1464
1465 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1466 }
1467
1468 /**
1469 * s3c_hsotg_read_frameno - read current frame number
1470 * @hsotg: The device instance
1471 *
1472 * Return the current frame number
1473 */
1474 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1475 {
1476 u32 dsts;
1477
1478 dsts = readl(hsotg->regs + DSTS);
1479 dsts &= DSTS_SOFFN_MASK;
1480 dsts >>= DSTS_SOFFN_SHIFT;
1481
1482 return dsts;
1483 }
1484
1485 /**
1486 * s3c_hsotg_handle_rx - RX FIFO has data
1487 * @hsotg: The device instance
1488 *
1489 * The IRQ handler has detected that the RX FIFO has some data in it
1490 * that requires processing, so find out what is in there and do the
1491 * appropriate read.
1492 *
1493 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1494 * chunks, so if you have x packets received on an endpoint you'll get x
1495 * FIFO events delivered, each with a packet's worth of data in it.
1496 *
1497 * When using DMA, we should not be processing events from the RXFIFO
1498 * as the actual data should be sent to the memory directly and we turn
1499 * on the completion interrupts to get notifications of transfer completion.
1500 */
1501 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1502 {
1503 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1504 u32 epnum, status, size;
1505
1506 WARN_ON(using_dma(hsotg));
1507
1508 epnum = grxstsr & GRXSTS_EPNUM_MASK;
1509 status = grxstsr & GRXSTS_PKTSTS_MASK;
1510
1511 size = grxstsr & GRXSTS_BYTECNT_MASK;
1512 size >>= GRXSTS_BYTECNT_SHIFT;
1513
1514 if (1)
1515 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1516 __func__, grxstsr, size, epnum);
1517
1518 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1519 case GRXSTS_PKTSTS_GLOBALOUTNAK:
1520 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1521 break;
1522
1523 case GRXSTS_PKTSTS_OUTDONE:
1524 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1525 s3c_hsotg_read_frameno(hsotg));
1526
1527 if (!using_dma(hsotg))
1528 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1529 break;
1530
1531 case GRXSTS_PKTSTS_SETUPDONE:
1532 dev_dbg(hsotg->dev,
1533 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1534 s3c_hsotg_read_frameno(hsotg),
1535 readl(hsotg->regs + DOEPCTL(0)));
1536
1537 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1538 break;
1539
1540 case GRXSTS_PKTSTS_OUTRX:
1541 s3c_hsotg_rx_data(hsotg, epnum, size);
1542 break;
1543
1544 case GRXSTS_PKTSTS_SETUPRX:
1545 dev_dbg(hsotg->dev,
1546 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1547 s3c_hsotg_read_frameno(hsotg),
1548 readl(hsotg->regs + DOEPCTL(0)));
1549
1550 s3c_hsotg_rx_data(hsotg, epnum, size);
1551 break;
1552
1553 default:
1554 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1555 __func__, grxstsr);
1556
1557 s3c_hsotg_dump(hsotg);
1558 break;
1559 }
1560 }
1561
1562 /**
1563 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1564 * @mps: The maximum packet size in bytes.
1565 */
1566 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1567 {
1568 switch (mps) {
1569 case 64:
1570 return D0EPCTL_MPS_64;
1571 case 32:
1572 return D0EPCTL_MPS_32;
1573 case 16:
1574 return D0EPCTL_MPS_16;
1575 case 8:
1576 return D0EPCTL_MPS_8;
1577 }
1578
1579 /* bad max packet size, warn and return invalid result */
1580 WARN_ON(1);
1581 return (u32)-1;
1582 }
1583
1584 /**
1585 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1586 * @hsotg: The driver state.
1587 * @ep: The index number of the endpoint
1588 * @mps: The maximum packet size in bytes
1589 *
1590 * Configure the maximum packet size for the given endpoint, updating
1591 * the hardware control registers to reflect this.
1592 */
1593 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1594 unsigned int ep, unsigned int mps)
1595 {
1596 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1597 void __iomem *regs = hsotg->regs;
1598 u32 mpsval;
1599 u32 mcval;
1600 u32 reg;
1601
1602 if (ep == 0) {
1603 /* EP0 is a special case */
1604 mpsval = s3c_hsotg_ep0_mps(mps);
1605 if (mpsval > 3)
1606 goto bad_mps;
1607 hs_ep->ep.maxpacket = mps;
1608 hs_ep->mc = 1;
1609 } else {
1610 mpsval = mps & DXEPCTL_MPS_MASK;
1611 if (mpsval > 1024)
1612 goto bad_mps;
1613 mcval = ((mps >> 11) & 0x3) + 1;
1614 hs_ep->mc = mcval;
1615 if (mcval > 3)
1616 goto bad_mps;
1617 hs_ep->ep.maxpacket = mpsval;
1618 }
1619
1620 /*
1621 * update both the in and out endpoint controldir_ registers, even
1622 * if one of the directions may not be in use.
1623 */
1624
1625 reg = readl(regs + DIEPCTL(ep));
1626 reg &= ~DXEPCTL_MPS_MASK;
1627 reg |= mpsval;
1628 writel(reg, regs + DIEPCTL(ep));
1629
1630 if (ep) {
1631 reg = readl(regs + DOEPCTL(ep));
1632 reg &= ~DXEPCTL_MPS_MASK;
1633 reg |= mpsval;
1634 writel(reg, regs + DOEPCTL(ep));
1635 }
1636
1637 return;
1638
1639 bad_mps:
1640 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1641 }
1642
1643 /**
1644 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1645 * @hsotg: The driver state
1646 * @idx: The index for the endpoint (0..15)
1647 */
1648 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1649 {
1650 int timeout;
1651 int val;
1652
1653 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1654 hsotg->regs + GRSTCTL);
1655
1656 /* wait until the fifo is flushed */
1657 timeout = 100;
1658
1659 while (1) {
1660 val = readl(hsotg->regs + GRSTCTL);
1661
1662 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1663 break;
1664
1665 if (--timeout == 0) {
1666 dev_err(hsotg->dev,
1667 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1668 __func__, val);
1669 break;
1670 }
1671
1672 udelay(1);
1673 }
1674 }
1675
1676 /**
1677 * s3c_hsotg_trytx - check to see if anything needs transmitting
1678 * @hsotg: The driver state
1679 * @hs_ep: The driver endpoint to check.
1680 *
1681 * Check to see if there is a request that has data to send, and if so
1682 * make an attempt to write data into the FIFO.
1683 */
1684 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1685 struct s3c_hsotg_ep *hs_ep)
1686 {
1687 struct s3c_hsotg_req *hs_req = hs_ep->req;
1688
1689 if (!hs_ep->dir_in || !hs_req) {
1690 /**
1691 * if request is not enqueued, we disable interrupts
1692 * for endpoints, excepting ep0
1693 */
1694 if (hs_ep->index != 0)
1695 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1696 hs_ep->dir_in, 0);
1697 return 0;
1698 }
1699
1700 if (hs_req->req.actual < hs_req->req.length) {
1701 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1702 hs_ep->index);
1703 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1704 }
1705
1706 return 0;
1707 }
1708
1709 /**
1710 * s3c_hsotg_complete_in - complete IN transfer
1711 * @hsotg: The device state.
1712 * @hs_ep: The endpoint that has just completed.
1713 *
1714 * An IN transfer has been completed, update the transfer's state and then
1715 * call the relevant completion routines.
1716 */
1717 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1718 struct s3c_hsotg_ep *hs_ep)
1719 {
1720 struct s3c_hsotg_req *hs_req = hs_ep->req;
1721 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1722 int size_left, size_done;
1723
1724 if (!hs_req) {
1725 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1726 return;
1727 }
1728
1729 /* Finish ZLP handling for IN EP0 transactions */
1730 if (hsotg->eps[0].sent_zlp) {
1731 dev_dbg(hsotg->dev, "zlp packet received\n");
1732 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1733 return;
1734 }
1735
1736 /*
1737 * Calculate the size of the transfer by checking how much is left
1738 * in the endpoint size register and then working it out from
1739 * the amount we loaded for the transfer.
1740 *
1741 * We do this even for DMA, as the transfer may have incremented
1742 * past the end of the buffer (DMA transfers are always 32bit
1743 * aligned).
1744 */
1745
1746 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1747
1748 size_done = hs_ep->size_loaded - size_left;
1749 size_done += hs_ep->last_load;
1750
1751 if (hs_req->req.actual != size_done)
1752 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1753 __func__, hs_req->req.actual, size_done);
1754
1755 hs_req->req.actual = size_done;
1756 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1757 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1758
1759 /*
1760 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1761 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1762 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1763 * inform the host that no more data is available.
1764 * The state of req.zero member is checked to be sure that the value to
1765 * send is smaller than wValue expected from host.
1766 * Check req.length to NOT send another ZLP when the current one is
1767 * under completion (the one for which this completion has been called).
1768 */
1769 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1770 hs_req->req.length == hs_req->req.actual &&
1771 !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1772
1773 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1774 s3c_hsotg_send_zlp(hsotg, hs_req);
1775
1776 return;
1777 }
1778
1779 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1780 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1781 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1782 } else
1783 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1784 }
1785
1786 /**
1787 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1788 * @hsotg: The driver state
1789 * @idx: The index for the endpoint (0..15)
1790 * @dir_in: Set if this is an IN endpoint
1791 *
1792 * Process and clear any interrupt pending for an individual endpoint
1793 */
1794 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1795 int dir_in)
1796 {
1797 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1798 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1799 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1800 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1801 u32 ints;
1802 u32 ctrl;
1803
1804 ints = readl(hsotg->regs + epint_reg);
1805 ctrl = readl(hsotg->regs + epctl_reg);
1806
1807 /* Clear endpoint interrupts */
1808 writel(ints, hsotg->regs + epint_reg);
1809
1810 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1811 __func__, idx, dir_in ? "in" : "out", ints);
1812
1813 /* Don't process XferCompl interrupt if it is a setup packet */
1814 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1815 ints &= ~DXEPINT_XFERCOMPL;
1816
1817 if (ints & DXEPINT_XFERCOMPL) {
1818 if (hs_ep->isochronous && hs_ep->interval == 1) {
1819 if (ctrl & DXEPCTL_EOFRNUM)
1820 ctrl |= DXEPCTL_SETEVENFR;
1821 else
1822 ctrl |= DXEPCTL_SETODDFR;
1823 writel(ctrl, hsotg->regs + epctl_reg);
1824 }
1825
1826 dev_dbg(hsotg->dev,
1827 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1828 __func__, readl(hsotg->regs + epctl_reg),
1829 readl(hsotg->regs + epsiz_reg));
1830
1831 /*
1832 * we get OutDone from the FIFO, so we only need to look
1833 * at completing IN requests here
1834 */
1835 if (dir_in) {
1836 s3c_hsotg_complete_in(hsotg, hs_ep);
1837
1838 if (idx == 0 && !hs_ep->req)
1839 s3c_hsotg_enqueue_setup(hsotg);
1840 } else if (using_dma(hsotg)) {
1841 /*
1842 * We're using DMA, we need to fire an OutDone here
1843 * as we ignore the RXFIFO.
1844 */
1845
1846 s3c_hsotg_handle_outdone(hsotg, idx, false);
1847 }
1848 }
1849
1850 if (ints & DXEPINT_EPDISBLD) {
1851 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1852
1853 if (dir_in) {
1854 int epctl = readl(hsotg->regs + epctl_reg);
1855
1856 s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1857
1858 if ((epctl & DXEPCTL_STALL) &&
1859 (epctl & DXEPCTL_EPTYPE_BULK)) {
1860 int dctl = readl(hsotg->regs + DCTL);
1861
1862 dctl |= DCTL_CGNPINNAK;
1863 writel(dctl, hsotg->regs + DCTL);
1864 }
1865 }
1866 }
1867
1868 if (ints & DXEPINT_AHBERR)
1869 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1870
1871 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
1872 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1873
1874 if (using_dma(hsotg) && idx == 0) {
1875 /*
1876 * this is the notification we've received a
1877 * setup packet. In non-DMA mode we'd get this
1878 * from the RXFIFO, instead we need to process
1879 * the setup here.
1880 */
1881
1882 if (dir_in)
1883 WARN_ON_ONCE(1);
1884 else
1885 s3c_hsotg_handle_outdone(hsotg, 0, true);
1886 }
1887 }
1888
1889 if (ints & DXEPINT_BACK2BACKSETUP)
1890 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1891
1892 if (dir_in && !hs_ep->isochronous) {
1893 /* not sure if this is important, but we'll clear it anyway */
1894 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1895 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1896 __func__, idx);
1897 }
1898
1899 /* this probably means something bad is happening */
1900 if (ints & DIEPMSK_INTKNEPMISMSK) {
1901 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1902 __func__, idx);
1903 }
1904
1905 /* FIFO has space or is empty (see GAHBCFG) */
1906 if (hsotg->dedicated_fifos &&
1907 ints & DIEPMSK_TXFIFOEMPTY) {
1908 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1909 __func__, idx);
1910 if (!using_dma(hsotg))
1911 s3c_hsotg_trytx(hsotg, hs_ep);
1912 }
1913 }
1914 }
1915
1916 /**
1917 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1918 * @hsotg: The device state.
1919 *
1920 * Handle updating the device settings after the enumeration phase has
1921 * been completed.
1922 */
1923 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1924 {
1925 u32 dsts = readl(hsotg->regs + DSTS);
1926 int ep0_mps = 0, ep_mps = 8;
1927
1928 /*
1929 * This should signal the finish of the enumeration phase
1930 * of the USB handshaking, so we should now know what rate
1931 * we connected at.
1932 */
1933
1934 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1935
1936 /*
1937 * note, since we're limited by the size of transfer on EP0, and
1938 * it seems IN transfers must be a even number of packets we do
1939 * not advertise a 64byte MPS on EP0.
1940 */
1941
1942 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1943 switch (dsts & DSTS_ENUMSPD_MASK) {
1944 case DSTS_ENUMSPD_FS:
1945 case DSTS_ENUMSPD_FS48:
1946 hsotg->gadget.speed = USB_SPEED_FULL;
1947 ep0_mps = EP0_MPS_LIMIT;
1948 ep_mps = 1023;
1949 break;
1950
1951 case DSTS_ENUMSPD_HS:
1952 hsotg->gadget.speed = USB_SPEED_HIGH;
1953 ep0_mps = EP0_MPS_LIMIT;
1954 ep_mps = 1024;
1955 break;
1956
1957 case DSTS_ENUMSPD_LS:
1958 hsotg->gadget.speed = USB_SPEED_LOW;
1959 /*
1960 * note, we don't actually support LS in this driver at the
1961 * moment, and the documentation seems to imply that it isn't
1962 * supported by the PHYs on some of the devices.
1963 */
1964 break;
1965 }
1966 dev_info(hsotg->dev, "new device is %s\n",
1967 usb_speed_string(hsotg->gadget.speed));
1968
1969 /*
1970 * we should now know the maximum packet size for an
1971 * endpoint, so set the endpoints to a default value.
1972 */
1973
1974 if (ep0_mps) {
1975 int i;
1976 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1977 for (i = 1; i < hsotg->num_of_eps; i++)
1978 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1979 }
1980
1981 /* ensure after enumeration our EP0 is active */
1982
1983 s3c_hsotg_enqueue_setup(hsotg);
1984
1985 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1986 readl(hsotg->regs + DIEPCTL0),
1987 readl(hsotg->regs + DOEPCTL0));
1988 }
1989
1990 /**
1991 * kill_all_requests - remove all requests from the endpoint's queue
1992 * @hsotg: The device state.
1993 * @ep: The endpoint the requests may be on.
1994 * @result: The result code to use.
1995 *
1996 * Go through the requests on the given endpoint and mark them
1997 * completed with the given result code.
1998 */
1999 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2000 struct s3c_hsotg_ep *ep,
2001 int result)
2002 {
2003 struct s3c_hsotg_req *req, *treq;
2004 unsigned size;
2005
2006 ep->req = NULL;
2007
2008 list_for_each_entry_safe(req, treq, &ep->queue, queue)
2009 s3c_hsotg_complete_request(hsotg, ep, req,
2010 result);
2011
2012 if (!hsotg->dedicated_fifos)
2013 return;
2014 size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2015 if (size < ep->fifo_size)
2016 s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2017 }
2018
2019 /**
2020 * s3c_hsotg_disconnect - disconnect service
2021 * @hsotg: The device state.
2022 *
2023 * The device has been disconnected. Remove all current
2024 * transactions and signal the gadget driver that this
2025 * has happened.
2026 */
2027 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2028 {
2029 unsigned ep;
2030
2031 if (!hsotg->connected)
2032 return;
2033
2034 hsotg->connected = 0;
2035 for (ep = 0; ep < hsotg->num_of_eps; ep++)
2036 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN);
2037
2038 call_gadget(hsotg, disconnect);
2039 }
2040 EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2041
2042 /**
2043 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2044 * @hsotg: The device state:
2045 * @periodic: True if this is a periodic FIFO interrupt
2046 */
2047 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2048 {
2049 struct s3c_hsotg_ep *ep;
2050 int epno, ret;
2051
2052 /* look through for any more data to transmit */
2053
2054 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2055 ep = &hsotg->eps[epno];
2056
2057 if (!ep->dir_in)
2058 continue;
2059
2060 if ((periodic && !ep->periodic) ||
2061 (!periodic && ep->periodic))
2062 continue;
2063
2064 ret = s3c_hsotg_trytx(hsotg, ep);
2065 if (ret < 0)
2066 break;
2067 }
2068 }
2069
2070 /* IRQ flags which will trigger a retry around the IRQ loop */
2071 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2072 GINTSTS_PTXFEMP | \
2073 GINTSTS_RXFLVL)
2074
2075 /**
2076 * s3c_hsotg_corereset - issue softreset to the core
2077 * @hsotg: The device state
2078 *
2079 * Issue a soft reset to the core, and await the core finishing it.
2080 */
2081 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2082 {
2083 int timeout;
2084 u32 grstctl;
2085
2086 dev_dbg(hsotg->dev, "resetting core\n");
2087
2088 /* issue soft reset */
2089 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2090
2091 timeout = 10000;
2092 do {
2093 grstctl = readl(hsotg->regs + GRSTCTL);
2094 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2095
2096 if (grstctl & GRSTCTL_CSFTRST) {
2097 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2098 return -EINVAL;
2099 }
2100
2101 timeout = 10000;
2102
2103 while (1) {
2104 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2105
2106 if (timeout-- < 0) {
2107 dev_info(hsotg->dev,
2108 "%s: reset failed, GRSTCTL=%08x\n",
2109 __func__, grstctl);
2110 return -ETIMEDOUT;
2111 }
2112
2113 if (!(grstctl & GRSTCTL_AHBIDLE))
2114 continue;
2115
2116 break; /* reset done */
2117 }
2118
2119 dev_dbg(hsotg->dev, "reset successful\n");
2120 return 0;
2121 }
2122
2123 /**
2124 * s3c_hsotg_core_init - issue softreset to the core
2125 * @hsotg: The device state
2126 *
2127 * Issue a soft reset to the core, and await the core finishing it.
2128 */
2129 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2130 {
2131 s3c_hsotg_corereset(hsotg);
2132
2133 /*
2134 * we must now enable ep0 ready for host detection and then
2135 * set configuration.
2136 */
2137
2138 /* set the PLL on, remove the HNP/SRP and set the PHY */
2139 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2140 (0x5 << 10), hsotg->regs + GUSBCFG);
2141
2142 s3c_hsotg_init_fifo(hsotg);
2143
2144 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2145
2146 writel(1 << 18 | DCFG_DEVSPD_HS, hsotg->regs + DCFG);
2147
2148 /* Clear any pending OTG interrupts */
2149 writel(0xffffffff, hsotg->regs + GOTGINT);
2150
2151 /* Clear any pending interrupts */
2152 writel(0xffffffff, hsotg->regs + GINTSTS);
2153
2154 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2155 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2156 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2157 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2158 GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2159 hsotg->regs + GINTMSK);
2160
2161 if (using_dma(hsotg))
2162 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2163 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2164 hsotg->regs + GAHBCFG);
2165 else
2166 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2167 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2168 GAHBCFG_GLBL_INTR_EN,
2169 hsotg->regs + GAHBCFG);
2170
2171 /*
2172 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2173 * when we have no data to transfer. Otherwise we get being flooded by
2174 * interrupts.
2175 */
2176
2177 writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2178 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2179 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2180 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2181 DIEPMSK_INTKNEPMISMSK,
2182 hsotg->regs + DIEPMSK);
2183
2184 /*
2185 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2186 * DMA mode we may need this.
2187 */
2188 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2189 DIEPMSK_TIMEOUTMSK) : 0) |
2190 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2191 DOEPMSK_SETUPMSK,
2192 hsotg->regs + DOEPMSK);
2193
2194 writel(0, hsotg->regs + DAINTMSK);
2195
2196 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2197 readl(hsotg->regs + DIEPCTL0),
2198 readl(hsotg->regs + DOEPCTL0));
2199
2200 /* enable in and out endpoint interrupts */
2201 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2202
2203 /*
2204 * Enable the RXFIFO when in slave mode, as this is how we collect
2205 * the data. In DMA mode, we get events from the FIFO but also
2206 * things we cannot process, so do not use it.
2207 */
2208 if (!using_dma(hsotg))
2209 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2210
2211 /* Enable interrupts for EP0 in and out */
2212 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2213 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2214
2215 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2216 udelay(10); /* see openiboot */
2217 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2218
2219 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2220
2221 /*
2222 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2223 * writing to the EPCTL register..
2224 */
2225
2226 /* set to read 1 8byte packet */
2227 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2228 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2229
2230 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2231 DXEPCTL_CNAK | DXEPCTL_EPENA |
2232 DXEPCTL_USBACTEP,
2233 hsotg->regs + DOEPCTL0);
2234
2235 /* enable, but don't activate EP0in */
2236 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2237 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2238
2239 s3c_hsotg_enqueue_setup(hsotg);
2240
2241 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2242 readl(hsotg->regs + DIEPCTL0),
2243 readl(hsotg->regs + DOEPCTL0));
2244
2245 /* clear global NAKs */
2246 writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2247 hsotg->regs + DCTL);
2248
2249 /* must be at-least 3ms to allow bus to see disconnect */
2250 mdelay(3);
2251
2252 hsotg->last_rst = jiffies;
2253 }
2254
2255 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2256 {
2257 /* set the soft-disconnect bit */
2258 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2259 }
2260
2261 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2262 {
2263 /* remove the soft-disconnect and let's go */
2264 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2265 }
2266
2267 /**
2268 * s3c_hsotg_irq - handle device interrupt
2269 * @irq: The IRQ number triggered
2270 * @pw: The pw value when registered the handler.
2271 */
2272 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2273 {
2274 struct dwc2_hsotg *hsotg = pw;
2275 int retry_count = 8;
2276 u32 gintsts;
2277 u32 gintmsk;
2278
2279 spin_lock(&hsotg->lock);
2280 irq_retry:
2281 gintsts = readl(hsotg->regs + GINTSTS);
2282 gintmsk = readl(hsotg->regs + GINTMSK);
2283
2284 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2285 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2286
2287 gintsts &= gintmsk;
2288
2289 if (gintsts & GINTSTS_ENUMDONE) {
2290 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2291
2292 s3c_hsotg_irq_enumdone(hsotg);
2293 hsotg->connected = 1;
2294 }
2295
2296 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2297 u32 daint = readl(hsotg->regs + DAINT);
2298 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2299 u32 daint_out, daint_in;
2300 int ep;
2301
2302 daint &= daintmsk;
2303 daint_out = daint >> DAINT_OUTEP_SHIFT;
2304 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2305
2306 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2307
2308 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2309 if (daint_out & 1)
2310 s3c_hsotg_epint(hsotg, ep, 0);
2311 }
2312
2313 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2314 if (daint_in & 1)
2315 s3c_hsotg_epint(hsotg, ep, 1);
2316 }
2317 }
2318
2319 if (gintsts & GINTSTS_USBRST) {
2320
2321 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2322
2323 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2324 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2325 readl(hsotg->regs + GNPTXSTS));
2326
2327 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2328
2329 if (usb_status & GOTGCTL_BSESVLD) {
2330 if (time_after(jiffies, hsotg->last_rst +
2331 msecs_to_jiffies(200))) {
2332
2333 kill_all_requests(hsotg, &hsotg->eps[0],
2334 -ECONNRESET);
2335
2336 s3c_hsotg_core_init_disconnected(hsotg);
2337 s3c_hsotg_core_connect(hsotg);
2338 }
2339 }
2340 }
2341
2342 /* check both FIFOs */
2343
2344 if (gintsts & GINTSTS_NPTXFEMP) {
2345 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2346
2347 /*
2348 * Disable the interrupt to stop it happening again
2349 * unless one of these endpoint routines decides that
2350 * it needs re-enabling
2351 */
2352
2353 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2354 s3c_hsotg_irq_fifoempty(hsotg, false);
2355 }
2356
2357 if (gintsts & GINTSTS_PTXFEMP) {
2358 dev_dbg(hsotg->dev, "PTxFEmp\n");
2359
2360 /* See note in GINTSTS_NPTxFEmp */
2361
2362 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2363 s3c_hsotg_irq_fifoempty(hsotg, true);
2364 }
2365
2366 if (gintsts & GINTSTS_RXFLVL) {
2367 /*
2368 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2369 * we need to retry s3c_hsotg_handle_rx if this is still
2370 * set.
2371 */
2372
2373 s3c_hsotg_handle_rx(hsotg);
2374 }
2375
2376 if (gintsts & GINTSTS_ERLYSUSP) {
2377 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2378 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2379 }
2380
2381 /*
2382 * these next two seem to crop-up occasionally causing the core
2383 * to shutdown the USB transfer, so try clearing them and logging
2384 * the occurrence.
2385 */
2386
2387 if (gintsts & GINTSTS_GOUTNAKEFF) {
2388 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2389
2390 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2391
2392 s3c_hsotg_dump(hsotg);
2393 }
2394
2395 if (gintsts & GINTSTS_GINNAKEFF) {
2396 dev_info(hsotg->dev, "GINNakEff triggered\n");
2397
2398 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2399
2400 s3c_hsotg_dump(hsotg);
2401 }
2402
2403 /*
2404 * if we've had fifo events, we should try and go around the
2405 * loop again to see if there's any point in returning yet.
2406 */
2407
2408 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2409 goto irq_retry;
2410
2411 spin_unlock(&hsotg->lock);
2412
2413 return IRQ_HANDLED;
2414 }
2415
2416 /**
2417 * s3c_hsotg_ep_enable - enable the given endpoint
2418 * @ep: The USB endpint to configure
2419 * @desc: The USB endpoint descriptor to configure with.
2420 *
2421 * This is called from the USB gadget code's usb_ep_enable().
2422 */
2423 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2424 const struct usb_endpoint_descriptor *desc)
2425 {
2426 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2427 struct dwc2_hsotg *hsotg = hs_ep->parent;
2428 unsigned long flags;
2429 int index = hs_ep->index;
2430 u32 epctrl_reg;
2431 u32 epctrl;
2432 u32 mps;
2433 int dir_in;
2434 int i, val, size;
2435 int ret = 0;
2436
2437 dev_dbg(hsotg->dev,
2438 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2439 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2440 desc->wMaxPacketSize, desc->bInterval);
2441
2442 /* not to be called for EP0 */
2443 WARN_ON(index == 0);
2444
2445 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2446 if (dir_in != hs_ep->dir_in) {
2447 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2448 return -EINVAL;
2449 }
2450
2451 mps = usb_endpoint_maxp(desc);
2452
2453 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2454
2455 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2456 epctrl = readl(hsotg->regs + epctrl_reg);
2457
2458 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2459 __func__, epctrl, epctrl_reg);
2460
2461 spin_lock_irqsave(&hsotg->lock, flags);
2462
2463 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2464 epctrl |= DXEPCTL_MPS(mps);
2465
2466 /*
2467 * mark the endpoint as active, otherwise the core may ignore
2468 * transactions entirely for this endpoint
2469 */
2470 epctrl |= DXEPCTL_USBACTEP;
2471
2472 /*
2473 * set the NAK status on the endpoint, otherwise we might try and
2474 * do something with data that we've yet got a request to process
2475 * since the RXFIFO will take data for an endpoint even if the
2476 * size register hasn't been set.
2477 */
2478
2479 epctrl |= DXEPCTL_SNAK;
2480
2481 /* update the endpoint state */
2482 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2483
2484 /* default, set to non-periodic */
2485 hs_ep->isochronous = 0;
2486 hs_ep->periodic = 0;
2487 hs_ep->halted = 0;
2488 hs_ep->interval = desc->bInterval;
2489
2490 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2491 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2492
2493 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2494 case USB_ENDPOINT_XFER_ISOC:
2495 epctrl |= DXEPCTL_EPTYPE_ISO;
2496 epctrl |= DXEPCTL_SETEVENFR;
2497 hs_ep->isochronous = 1;
2498 if (dir_in)
2499 hs_ep->periodic = 1;
2500 break;
2501
2502 case USB_ENDPOINT_XFER_BULK:
2503 epctrl |= DXEPCTL_EPTYPE_BULK;
2504 break;
2505
2506 case USB_ENDPOINT_XFER_INT:
2507 if (dir_in)
2508 hs_ep->periodic = 1;
2509
2510 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2511 break;
2512
2513 case USB_ENDPOINT_XFER_CONTROL:
2514 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2515 break;
2516 }
2517
2518 /*
2519 * if the hardware has dedicated fifos, we must give each IN EP
2520 * a unique tx-fifo even if it is non-periodic.
2521 */
2522 if (dir_in && hsotg->dedicated_fifos) {
2523 size = hs_ep->ep.maxpacket*hs_ep->mc;
2524 for (i = 1; i <= 8; ++i) {
2525 if (hsotg->fifo_map & (1<<i))
2526 continue;
2527 val = readl(hsotg->regs + DPTXFSIZN(i));
2528 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2529 if (val < size)
2530 continue;
2531 hsotg->fifo_map |= 1<<i;
2532
2533 epctrl |= DXEPCTL_TXFNUM(i);
2534 hs_ep->fifo_index = i;
2535 hs_ep->fifo_size = val;
2536 break;
2537 }
2538 if (i == 8) {
2539 ret = -ENOMEM;
2540 goto error;
2541 }
2542 }
2543
2544 /* for non control endpoints, set PID to D0 */
2545 if (index)
2546 epctrl |= DXEPCTL_SETD0PID;
2547
2548 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2549 __func__, epctrl);
2550
2551 writel(epctrl, hsotg->regs + epctrl_reg);
2552 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2553 __func__, readl(hsotg->regs + epctrl_reg));
2554
2555 /* enable the endpoint interrupt */
2556 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2557
2558 error:
2559 spin_unlock_irqrestore(&hsotg->lock, flags);
2560 return ret;
2561 }
2562
2563 /**
2564 * s3c_hsotg_ep_disable - disable given endpoint
2565 * @ep: The endpoint to disable.
2566 */
2567 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2568 {
2569 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2570 struct dwc2_hsotg *hsotg = hs_ep->parent;
2571 int dir_in = hs_ep->dir_in;
2572 int index = hs_ep->index;
2573 unsigned long flags;
2574 u32 epctrl_reg;
2575 u32 ctrl;
2576
2577 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2578
2579 if (ep == &hsotg->eps[0].ep) {
2580 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2581 return -EINVAL;
2582 }
2583
2584 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2585
2586 spin_lock_irqsave(&hsotg->lock, flags);
2587 /* terminate all requests with shutdown */
2588 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2589
2590 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2591 hs_ep->fifo_index = 0;
2592 hs_ep->fifo_size = 0;
2593
2594 ctrl = readl(hsotg->regs + epctrl_reg);
2595 ctrl &= ~DXEPCTL_EPENA;
2596 ctrl &= ~DXEPCTL_USBACTEP;
2597 ctrl |= DXEPCTL_SNAK;
2598
2599 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2600 writel(ctrl, hsotg->regs + epctrl_reg);
2601
2602 /* disable endpoint interrupts */
2603 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2604
2605 spin_unlock_irqrestore(&hsotg->lock, flags);
2606 return 0;
2607 }
2608
2609 /**
2610 * on_list - check request is on the given endpoint
2611 * @ep: The endpoint to check.
2612 * @test: The request to test if it is on the endpoint.
2613 */
2614 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2615 {
2616 struct s3c_hsotg_req *req, *treq;
2617
2618 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2619 if (req == test)
2620 return true;
2621 }
2622
2623 return false;
2624 }
2625
2626 /**
2627 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2628 * @ep: The endpoint to dequeue.
2629 * @req: The request to be removed from a queue.
2630 */
2631 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2632 {
2633 struct s3c_hsotg_req *hs_req = our_req(req);
2634 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2635 struct dwc2_hsotg *hs = hs_ep->parent;
2636 unsigned long flags;
2637
2638 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2639
2640 spin_lock_irqsave(&hs->lock, flags);
2641
2642 if (!on_list(hs_ep, hs_req)) {
2643 spin_unlock_irqrestore(&hs->lock, flags);
2644 return -EINVAL;
2645 }
2646
2647 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2648 spin_unlock_irqrestore(&hs->lock, flags);
2649
2650 return 0;
2651 }
2652
2653 /**
2654 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2655 * @ep: The endpoint to set halt.
2656 * @value: Set or unset the halt.
2657 */
2658 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2659 {
2660 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2661 struct dwc2_hsotg *hs = hs_ep->parent;
2662 int index = hs_ep->index;
2663 u32 epreg;
2664 u32 epctl;
2665 u32 xfertype;
2666
2667 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2668
2669 if (index == 0) {
2670 if (value)
2671 s3c_hsotg_stall_ep0(hs);
2672 else
2673 dev_warn(hs->dev,
2674 "%s: can't clear halt on ep0\n", __func__);
2675 return 0;
2676 }
2677
2678 /* write both IN and OUT control registers */
2679
2680 epreg = DIEPCTL(index);
2681 epctl = readl(hs->regs + epreg);
2682
2683 if (value) {
2684 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2685 if (epctl & DXEPCTL_EPENA)
2686 epctl |= DXEPCTL_EPDIS;
2687 } else {
2688 epctl &= ~DXEPCTL_STALL;
2689 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2690 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2691 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2692 epctl |= DXEPCTL_SETD0PID;
2693 }
2694
2695 writel(epctl, hs->regs + epreg);
2696
2697 epreg = DOEPCTL(index);
2698 epctl = readl(hs->regs + epreg);
2699
2700 if (value)
2701 epctl |= DXEPCTL_STALL;
2702 else {
2703 epctl &= ~DXEPCTL_STALL;
2704 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2705 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2706 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2707 epctl |= DXEPCTL_SETD0PID;
2708 }
2709
2710 writel(epctl, hs->regs + epreg);
2711
2712 hs_ep->halted = value;
2713
2714 return 0;
2715 }
2716
2717 /**
2718 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2719 * @ep: The endpoint to set halt.
2720 * @value: Set or unset the halt.
2721 */
2722 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2723 {
2724 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2725 struct dwc2_hsotg *hs = hs_ep->parent;
2726 unsigned long flags = 0;
2727 int ret = 0;
2728
2729 spin_lock_irqsave(&hs->lock, flags);
2730 ret = s3c_hsotg_ep_sethalt(ep, value);
2731 spin_unlock_irqrestore(&hs->lock, flags);
2732
2733 return ret;
2734 }
2735
2736 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2737 .enable = s3c_hsotg_ep_enable,
2738 .disable = s3c_hsotg_ep_disable,
2739 .alloc_request = s3c_hsotg_ep_alloc_request,
2740 .free_request = s3c_hsotg_ep_free_request,
2741 .queue = s3c_hsotg_ep_queue_lock,
2742 .dequeue = s3c_hsotg_ep_dequeue,
2743 .set_halt = s3c_hsotg_ep_sethalt_lock,
2744 /* note, don't believe we have any call for the fifo routines */
2745 };
2746
2747 /**
2748 * s3c_hsotg_phy_enable - enable platform phy dev
2749 * @hsotg: The driver state
2750 *
2751 * A wrapper for platform code responsible for controlling
2752 * low-level USB code
2753 */
2754 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2755 {
2756 struct platform_device *pdev = to_platform_device(hsotg->dev);
2757
2758 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2759
2760 if (hsotg->uphy)
2761 usb_phy_init(hsotg->uphy);
2762 else if (hsotg->plat && hsotg->plat->phy_init)
2763 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2764 else {
2765 phy_init(hsotg->phy);
2766 phy_power_on(hsotg->phy);
2767 }
2768 }
2769
2770 /**
2771 * s3c_hsotg_phy_disable - disable platform phy dev
2772 * @hsotg: The driver state
2773 *
2774 * A wrapper for platform code responsible for controlling
2775 * low-level USB code
2776 */
2777 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2778 {
2779 struct platform_device *pdev = to_platform_device(hsotg->dev);
2780
2781 if (hsotg->uphy)
2782 usb_phy_shutdown(hsotg->uphy);
2783 else if (hsotg->plat && hsotg->plat->phy_exit)
2784 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2785 else {
2786 phy_power_off(hsotg->phy);
2787 phy_exit(hsotg->phy);
2788 }
2789 }
2790
2791 /**
2792 * s3c_hsotg_init - initalize the usb core
2793 * @hsotg: The driver state
2794 */
2795 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2796 {
2797 /* unmask subset of endpoint interrupts */
2798
2799 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2800 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2801 hsotg->regs + DIEPMSK);
2802
2803 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2804 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2805 hsotg->regs + DOEPMSK);
2806
2807 writel(0, hsotg->regs + DAINTMSK);
2808
2809 /* Be in disconnected state until gadget is registered */
2810 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2811
2812 if (0) {
2813 /* post global nak until we're ready */
2814 writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2815 hsotg->regs + DCTL);
2816 }
2817
2818 /* setup fifos */
2819
2820 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2821 readl(hsotg->regs + GRXFSIZ),
2822 readl(hsotg->regs + GNPTXFSIZ));
2823
2824 s3c_hsotg_init_fifo(hsotg);
2825
2826 /* set the PLL on, remove the HNP/SRP and set the PHY */
2827 writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2828 hsotg->regs + GUSBCFG);
2829
2830 if (using_dma(hsotg))
2831 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2832 }
2833
2834 /**
2835 * s3c_hsotg_udc_start - prepare the udc for work
2836 * @gadget: The usb gadget state
2837 * @driver: The usb gadget driver
2838 *
2839 * Perform initialization to prepare udc device and driver
2840 * to work.
2841 */
2842 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2843 struct usb_gadget_driver *driver)
2844 {
2845 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2846 unsigned long flags;
2847 int ret;
2848
2849 if (!hsotg) {
2850 pr_err("%s: called with no device\n", __func__);
2851 return -ENODEV;
2852 }
2853
2854 if (!driver) {
2855 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2856 return -EINVAL;
2857 }
2858
2859 if (driver->max_speed < USB_SPEED_FULL)
2860 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2861
2862 if (!driver->setup) {
2863 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2864 return -EINVAL;
2865 }
2866
2867 mutex_lock(&hsotg->init_mutex);
2868 WARN_ON(hsotg->driver);
2869
2870 driver->driver.bus = NULL;
2871 hsotg->driver = driver;
2872 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2873 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2874
2875 clk_enable(hsotg->clk);
2876
2877 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2878 hsotg->supplies);
2879 if (ret) {
2880 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2881 goto err;
2882 }
2883
2884 s3c_hsotg_phy_enable(hsotg);
2885 if (!IS_ERR_OR_NULL(hsotg->uphy))
2886 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2887
2888 spin_lock_irqsave(&hsotg->lock, flags);
2889 s3c_hsotg_init(hsotg);
2890 s3c_hsotg_core_init_disconnected(hsotg);
2891 hsotg->enabled = 0;
2892 spin_unlock_irqrestore(&hsotg->lock, flags);
2893
2894 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2895
2896 mutex_unlock(&hsotg->init_mutex);
2897
2898 return 0;
2899
2900 err:
2901 mutex_unlock(&hsotg->init_mutex);
2902 hsotg->driver = NULL;
2903 return ret;
2904 }
2905
2906 /**
2907 * s3c_hsotg_udc_stop - stop the udc
2908 * @gadget: The usb gadget state
2909 * @driver: The usb gadget driver
2910 *
2911 * Stop udc hw block and stay tunned for future transmissions
2912 */
2913 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2914 {
2915 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2916 unsigned long flags = 0;
2917 int ep;
2918
2919 if (!hsotg)
2920 return -ENODEV;
2921
2922 mutex_lock(&hsotg->init_mutex);
2923
2924 /* all endpoints should be shutdown */
2925 for (ep = 1; ep < hsotg->num_of_eps; ep++)
2926 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2927
2928 spin_lock_irqsave(&hsotg->lock, flags);
2929
2930 hsotg->driver = NULL;
2931 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2932 hsotg->enabled = 0;
2933
2934 spin_unlock_irqrestore(&hsotg->lock, flags);
2935
2936 if (!IS_ERR_OR_NULL(hsotg->uphy))
2937 otg_set_peripheral(hsotg->uphy->otg, NULL);
2938 s3c_hsotg_phy_disable(hsotg);
2939
2940 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2941
2942 clk_disable(hsotg->clk);
2943
2944 mutex_unlock(&hsotg->init_mutex);
2945
2946 return 0;
2947 }
2948
2949 /**
2950 * s3c_hsotg_gadget_getframe - read the frame number
2951 * @gadget: The usb gadget state
2952 *
2953 * Read the {micro} frame number
2954 */
2955 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2956 {
2957 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2958 }
2959
2960 /**
2961 * s3c_hsotg_pullup - connect/disconnect the USB PHY
2962 * @gadget: The usb gadget state
2963 * @is_on: Current state of the USB PHY
2964 *
2965 * Connect/Disconnect the USB PHY pullup
2966 */
2967 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2968 {
2969 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2970 unsigned long flags = 0;
2971
2972 dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2973
2974 mutex_lock(&hsotg->init_mutex);
2975 spin_lock_irqsave(&hsotg->lock, flags);
2976 if (is_on) {
2977 clk_enable(hsotg->clk);
2978 hsotg->enabled = 1;
2979 s3c_hsotg_core_connect(hsotg);
2980 } else {
2981 s3c_hsotg_core_disconnect(hsotg);
2982 hsotg->enabled = 0;
2983 clk_disable(hsotg->clk);
2984 }
2985
2986 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2987 spin_unlock_irqrestore(&hsotg->lock, flags);
2988 mutex_unlock(&hsotg->init_mutex);
2989
2990 return 0;
2991 }
2992
2993 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2994 .get_frame = s3c_hsotg_gadget_getframe,
2995 .udc_start = s3c_hsotg_udc_start,
2996 .udc_stop = s3c_hsotg_udc_stop,
2997 .pullup = s3c_hsotg_pullup,
2998 };
2999
3000 /**
3001 * s3c_hsotg_initep - initialise a single endpoint
3002 * @hsotg: The device state.
3003 * @hs_ep: The endpoint to be initialised.
3004 * @epnum: The endpoint number
3005 *
3006 * Initialise the given endpoint (as part of the probe and device state
3007 * creation) to give to the gadget driver. Setup the endpoint name, any
3008 * direction information and other state that may be required.
3009 */
3010 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3011 struct s3c_hsotg_ep *hs_ep,
3012 int epnum)
3013 {
3014 char *dir;
3015
3016 if (epnum == 0)
3017 dir = "";
3018 else if ((epnum % 2) == 0) {
3019 dir = "out";
3020 } else {
3021 dir = "in";
3022 hs_ep->dir_in = 1;
3023 }
3024
3025 hs_ep->index = epnum;
3026
3027 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3028
3029 INIT_LIST_HEAD(&hs_ep->queue);
3030 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3031
3032 /* add to the list of endpoints known by the gadget driver */
3033 if (epnum)
3034 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3035
3036 hs_ep->parent = hsotg;
3037 hs_ep->ep.name = hs_ep->name;
3038 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3039 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3040
3041 /*
3042 * if we're using dma, we need to set the next-endpoint pointer
3043 * to be something valid.
3044 */
3045
3046 if (using_dma(hsotg)) {
3047 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3048 writel(next, hsotg->regs + DIEPCTL(epnum));
3049 writel(next, hsotg->regs + DOEPCTL(epnum));
3050 }
3051 }
3052
3053 /**
3054 * s3c_hsotg_hw_cfg - read HW configuration registers
3055 * @param: The device state
3056 *
3057 * Read the USB core HW configuration registers
3058 */
3059 static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3060 {
3061 u32 cfg2, cfg3, cfg4;
3062 /* check hardware configuration */
3063
3064 cfg2 = readl(hsotg->regs + 0x48);
3065 hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3066
3067 cfg3 = readl(hsotg->regs + 0x4C);
3068 hsotg->fifo_mem = (cfg3 >> 16);
3069
3070 cfg4 = readl(hsotg->regs + 0x50);
3071 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3072
3073 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3074 hsotg->num_of_eps,
3075 hsotg->dedicated_fifos ? "dedicated" : "shared",
3076 hsotg->fifo_mem);
3077 }
3078
3079 /**
3080 * s3c_hsotg_dump - dump state of the udc
3081 * @param: The device state
3082 */
3083 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3084 {
3085 #ifdef DEBUG
3086 struct device *dev = hsotg->dev;
3087 void __iomem *regs = hsotg->regs;
3088 u32 val;
3089 int idx;
3090
3091 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3092 readl(regs + DCFG), readl(regs + DCTL),
3093 readl(regs + DIEPMSK));
3094
3095 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3096 readl(regs + GAHBCFG), readl(regs + 0x44));
3097
3098 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3099 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3100
3101 /* show periodic fifo settings */
3102
3103 for (idx = 1; idx <= 15; idx++) {
3104 val = readl(regs + DPTXFSIZN(idx));
3105 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3106 val >> FIFOSIZE_DEPTH_SHIFT,
3107 val & FIFOSIZE_STARTADDR_MASK);
3108 }
3109
3110 for (idx = 0; idx < 15; idx++) {
3111 dev_info(dev,
3112 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3113 readl(regs + DIEPCTL(idx)),
3114 readl(regs + DIEPTSIZ(idx)),
3115 readl(regs + DIEPDMA(idx)));
3116
3117 val = readl(regs + DOEPCTL(idx));
3118 dev_info(dev,
3119 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3120 idx, readl(regs + DOEPCTL(idx)),
3121 readl(regs + DOEPTSIZ(idx)),
3122 readl(regs + DOEPDMA(idx)));
3123
3124 }
3125
3126 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3127 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3128 #endif
3129 }
3130
3131 /**
3132 * state_show - debugfs: show overall driver and device state.
3133 * @seq: The seq file to write to.
3134 * @v: Unused parameter.
3135 *
3136 * This debugfs entry shows the overall state of the hardware and
3137 * some general information about each of the endpoints available
3138 * to the system.
3139 */
3140 static int state_show(struct seq_file *seq, void *v)
3141 {
3142 struct dwc2_hsotg *hsotg = seq->private;
3143 void __iomem *regs = hsotg->regs;
3144 int idx;
3145
3146 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3147 readl(regs + DCFG),
3148 readl(regs + DCTL),
3149 readl(regs + DSTS));
3150
3151 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3152 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3153
3154 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3155 readl(regs + GINTMSK),
3156 readl(regs + GINTSTS));
3157
3158 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3159 readl(regs + DAINTMSK),
3160 readl(regs + DAINT));
3161
3162 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3163 readl(regs + GNPTXSTS),
3164 readl(regs + GRXSTSR));
3165
3166 seq_puts(seq, "\nEndpoint status:\n");
3167
3168 for (idx = 0; idx < 15; idx++) {
3169 u32 in, out;
3170
3171 in = readl(regs + DIEPCTL(idx));
3172 out = readl(regs + DOEPCTL(idx));
3173
3174 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3175 idx, in, out);
3176
3177 in = readl(regs + DIEPTSIZ(idx));
3178 out = readl(regs + DOEPTSIZ(idx));
3179
3180 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3181 in, out);
3182
3183 seq_puts(seq, "\n");
3184 }
3185
3186 return 0;
3187 }
3188
3189 static int state_open(struct inode *inode, struct file *file)
3190 {
3191 return single_open(file, state_show, inode->i_private);
3192 }
3193
3194 static const struct file_operations state_fops = {
3195 .owner = THIS_MODULE,
3196 .open = state_open,
3197 .read = seq_read,
3198 .llseek = seq_lseek,
3199 .release = single_release,
3200 };
3201
3202 /**
3203 * fifo_show - debugfs: show the fifo information
3204 * @seq: The seq_file to write data to.
3205 * @v: Unused parameter.
3206 *
3207 * Show the FIFO information for the overall fifo and all the
3208 * periodic transmission FIFOs.
3209 */
3210 static int fifo_show(struct seq_file *seq, void *v)
3211 {
3212 struct dwc2_hsotg *hsotg = seq->private;
3213 void __iomem *regs = hsotg->regs;
3214 u32 val;
3215 int idx;
3216
3217 seq_puts(seq, "Non-periodic FIFOs:\n");
3218 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3219
3220 val = readl(regs + GNPTXFSIZ);
3221 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3222 val >> FIFOSIZE_DEPTH_SHIFT,
3223 val & FIFOSIZE_DEPTH_MASK);
3224
3225 seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3226
3227 for (idx = 1; idx <= 15; idx++) {
3228 val = readl(regs + DPTXFSIZN(idx));
3229
3230 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3231 val >> FIFOSIZE_DEPTH_SHIFT,
3232 val & FIFOSIZE_STARTADDR_MASK);
3233 }
3234
3235 return 0;
3236 }
3237
3238 static int fifo_open(struct inode *inode, struct file *file)
3239 {
3240 return single_open(file, fifo_show, inode->i_private);
3241 }
3242
3243 static const struct file_operations fifo_fops = {
3244 .owner = THIS_MODULE,
3245 .open = fifo_open,
3246 .read = seq_read,
3247 .llseek = seq_lseek,
3248 .release = single_release,
3249 };
3250
3251
3252 static const char *decode_direction(int is_in)
3253 {
3254 return is_in ? "in" : "out";
3255 }
3256
3257 /**
3258 * ep_show - debugfs: show the state of an endpoint.
3259 * @seq: The seq_file to write data to.
3260 * @v: Unused parameter.
3261 *
3262 * This debugfs entry shows the state of the given endpoint (one is
3263 * registered for each available).
3264 */
3265 static int ep_show(struct seq_file *seq, void *v)
3266 {
3267 struct s3c_hsotg_ep *ep = seq->private;
3268 struct dwc2_hsotg *hsotg = ep->parent;
3269 struct s3c_hsotg_req *req;
3270 void __iomem *regs = hsotg->regs;
3271 int index = ep->index;
3272 int show_limit = 15;
3273 unsigned long flags;
3274
3275 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3276 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3277
3278 /* first show the register state */
3279
3280 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3281 readl(regs + DIEPCTL(index)),
3282 readl(regs + DOEPCTL(index)));
3283
3284 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3285 readl(regs + DIEPDMA(index)),
3286 readl(regs + DOEPDMA(index)));
3287
3288 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3289 readl(regs + DIEPINT(index)),
3290 readl(regs + DOEPINT(index)));
3291
3292 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3293 readl(regs + DIEPTSIZ(index)),
3294 readl(regs + DOEPTSIZ(index)));
3295
3296 seq_puts(seq, "\n");
3297 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3298 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3299
3300 seq_printf(seq, "request list (%p,%p):\n",
3301 ep->queue.next, ep->queue.prev);
3302
3303 spin_lock_irqsave(&hsotg->lock, flags);
3304
3305 list_for_each_entry(req, &ep->queue, queue) {
3306 if (--show_limit < 0) {
3307 seq_puts(seq, "not showing more requests...\n");
3308 break;
3309 }
3310
3311 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3312 req == ep->req ? '*' : ' ',
3313 req, req->req.length, req->req.buf);
3314 seq_printf(seq, "%d done, res %d\n",
3315 req->req.actual, req->req.status);
3316 }
3317
3318 spin_unlock_irqrestore(&hsotg->lock, flags);
3319
3320 return 0;
3321 }
3322
3323 static int ep_open(struct inode *inode, struct file *file)
3324 {
3325 return single_open(file, ep_show, inode->i_private);
3326 }
3327
3328 static const struct file_operations ep_fops = {
3329 .owner = THIS_MODULE,
3330 .open = ep_open,
3331 .read = seq_read,
3332 .llseek = seq_lseek,
3333 .release = single_release,
3334 };
3335
3336 /**
3337 * s3c_hsotg_create_debug - create debugfs directory and files
3338 * @hsotg: The driver state
3339 *
3340 * Create the debugfs files to allow the user to get information
3341 * about the state of the system. The directory name is created
3342 * with the same name as the device itself, in case we end up
3343 * with multiple blocks in future systems.
3344 */
3345 static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3346 {
3347 struct dentry *root;
3348 unsigned epidx;
3349
3350 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3351 hsotg->debug_root = root;
3352 if (IS_ERR(root)) {
3353 dev_err(hsotg->dev, "cannot create debug root\n");
3354 return;
3355 }
3356
3357 /* create general state file */
3358
3359 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3360 hsotg, &state_fops);
3361
3362 if (IS_ERR(hsotg->debug_file))
3363 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3364
3365 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3366 hsotg, &fifo_fops);
3367
3368 if (IS_ERR(hsotg->debug_fifo))
3369 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3370
3371 /* create one file for each endpoint */
3372
3373 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3374 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3375
3376 ep->debugfs = debugfs_create_file(ep->name, 0444,
3377 root, ep, &ep_fops);
3378
3379 if (IS_ERR(ep->debugfs))
3380 dev_err(hsotg->dev, "failed to create %s debug file\n",
3381 ep->name);
3382 }
3383 }
3384
3385 /**
3386 * s3c_hsotg_delete_debug - cleanup debugfs entries
3387 * @hsotg: The driver state
3388 *
3389 * Cleanup (remove) the debugfs files for use on module exit.
3390 */
3391 static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3392 {
3393 unsigned epidx;
3394
3395 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3396 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3397 debugfs_remove(ep->debugfs);
3398 }
3399
3400 debugfs_remove(hsotg->debug_file);
3401 debugfs_remove(hsotg->debug_fifo);
3402 debugfs_remove(hsotg->debug_root);
3403 }
3404
3405 /**
3406 * dwc2_gadget_init - init function for gadget
3407 * @dwc2: The data structure for the DWC2 driver.
3408 * @irq: The IRQ number for the controller.
3409 */
3410 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3411 {
3412 struct device *dev = hsotg->dev;
3413 struct s3c_hsotg_plat *plat = dev->platform_data;
3414 struct s3c_hsotg_ep *eps;
3415 int epnum;
3416 int ret;
3417 int i;
3418
3419 /* Set default UTMI width */
3420 hsotg->phyif = GUSBCFG_PHYIF16;
3421
3422 /*
3423 * If platform probe couldn't find a generic PHY or an old style
3424 * USB PHY, fall back to pdata
3425 */
3426 if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3427 plat = dev_get_platdata(dev);
3428 if (!plat) {
3429 dev_err(dev,
3430 "no platform data or transceiver defined\n");
3431 return -EPROBE_DEFER;
3432 }
3433 hsotg->plat = plat;
3434 } else if (hsotg->phy) {
3435 /*
3436 * If using the generic PHY framework, check if the PHY bus
3437 * width is 8-bit and set the phyif appropriately.
3438 */
3439 if (phy_get_bus_width(hsotg->phy) == 8)
3440 hsotg->phyif = GUSBCFG_PHYIF8;
3441 }
3442
3443 hsotg->clk = devm_clk_get(dev, "otg");
3444 if (IS_ERR(hsotg->clk)) {
3445 hsotg->clk = NULL;
3446 dev_dbg(dev, "cannot get otg clock\n");
3447 }
3448
3449 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3450 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3451 hsotg->gadget.name = dev_name(dev);
3452
3453 /* reset the system */
3454
3455 ret = clk_prepare_enable(hsotg->clk);
3456 if (ret) {
3457 dev_err(dev, "failed to enable otg clk\n");
3458 goto err_clk;
3459 }
3460
3461
3462 /* regulators */
3463
3464 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3465 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3466
3467 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3468 hsotg->supplies);
3469 if (ret) {
3470 dev_err(dev, "failed to request supplies: %d\n", ret);
3471 goto err_clk;
3472 }
3473
3474 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3475 hsotg->supplies);
3476
3477 if (ret) {
3478 dev_err(dev, "failed to enable supplies: %d\n", ret);
3479 goto err_clk;
3480 }
3481
3482 /* usb phy enable */
3483 s3c_hsotg_phy_enable(hsotg);
3484
3485 s3c_hsotg_corereset(hsotg);
3486 s3c_hsotg_hw_cfg(hsotg);
3487 s3c_hsotg_init(hsotg);
3488
3489 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3490 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3491 if (!hsotg->ctrl_buff) {
3492 dev_err(dev, "failed to allocate ctrl request buff\n");
3493 ret = -ENOMEM;
3494 goto err_supplies;
3495 }
3496
3497 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3498 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3499 if (!hsotg->ep0_buff) {
3500 dev_err(dev, "failed to allocate ctrl reply buff\n");
3501 ret = -ENOMEM;
3502 goto err_supplies;
3503 }
3504
3505 ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
3506 dev_name(hsotg->dev), hsotg);
3507 if (ret < 0) {
3508 s3c_hsotg_phy_disable(hsotg);
3509 clk_disable_unprepare(hsotg->clk);
3510 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3511 hsotg->supplies);
3512 dev_err(dev, "cannot claim IRQ for gadget\n");
3513 goto err_supplies;
3514 }
3515
3516 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3517
3518 if (hsotg->num_of_eps == 0) {
3519 dev_err(dev, "wrong number of EPs (zero)\n");
3520 ret = -EINVAL;
3521 goto err_supplies;
3522 }
3523
3524 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3525 GFP_KERNEL);
3526 if (!eps) {
3527 ret = -ENOMEM;
3528 goto err_supplies;
3529 }
3530
3531 hsotg->eps = eps;
3532
3533 /* setup endpoint information */
3534
3535 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3536 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3537
3538 /* allocate EP0 request */
3539
3540 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3541 GFP_KERNEL);
3542 if (!hsotg->ctrl_req) {
3543 dev_err(dev, "failed to allocate ctrl req\n");
3544 ret = -ENOMEM;
3545 goto err_ep_mem;
3546 }
3547
3548 /* initialise the endpoints now the core has been initialised */
3549 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3550 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3551
3552 /* disable power and clock */
3553 s3c_hsotg_phy_disable(hsotg);
3554
3555 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3556 hsotg->supplies);
3557 if (ret) {
3558 dev_err(dev, "failed to disable supplies: %d\n", ret);
3559 goto err_ep_mem;
3560 }
3561
3562 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3563 if (ret)
3564 goto err_ep_mem;
3565
3566 s3c_hsotg_create_debug(hsotg);
3567
3568 s3c_hsotg_dump(hsotg);
3569
3570 return 0;
3571
3572 err_ep_mem:
3573 kfree(eps);
3574 err_supplies:
3575 s3c_hsotg_phy_disable(hsotg);
3576 err_clk:
3577 clk_disable_unprepare(hsotg->clk);
3578
3579 return ret;
3580 }
3581 EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3582
3583 /**
3584 * s3c_hsotg_remove - remove function for hsotg driver
3585 * @pdev: The platform information for the driver
3586 */
3587 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3588 {
3589 usb_del_gadget_udc(&hsotg->gadget);
3590 s3c_hsotg_delete_debug(hsotg);
3591 clk_disable_unprepare(hsotg->clk);
3592
3593 return 0;
3594 }
3595 EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3596
3597 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3598 {
3599 unsigned long flags;
3600 int ret = 0;
3601
3602 mutex_lock(&hsotg->init_mutex);
3603
3604 if (hsotg->driver) {
3605 int ep;
3606
3607 dev_info(hsotg->dev, "suspending usb gadget %s\n",
3608 hsotg->driver->driver.name);
3609
3610 spin_lock_irqsave(&hsotg->lock, flags);
3611 if (hsotg->enabled)
3612 s3c_hsotg_core_disconnect(hsotg);
3613 s3c_hsotg_disconnect(hsotg);
3614 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3615 spin_unlock_irqrestore(&hsotg->lock, flags);
3616
3617 s3c_hsotg_phy_disable(hsotg);
3618
3619 for (ep = 0; ep < hsotg->num_of_eps; ep++)
3620 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3621
3622 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3623 hsotg->supplies);
3624 clk_disable(hsotg->clk);
3625 }
3626
3627 mutex_unlock(&hsotg->init_mutex);
3628
3629 return ret;
3630 }
3631 EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3632
3633 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3634 {
3635 unsigned long flags;
3636 int ret = 0;
3637
3638 mutex_lock(&hsotg->init_mutex);
3639
3640 if (hsotg->driver) {
3641 dev_info(hsotg->dev, "resuming usb gadget %s\n",
3642 hsotg->driver->driver.name);
3643
3644 clk_enable(hsotg->clk);
3645 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3646 hsotg->supplies);
3647
3648 s3c_hsotg_phy_enable(hsotg);
3649
3650 spin_lock_irqsave(&hsotg->lock, flags);
3651 s3c_hsotg_core_init_disconnected(hsotg);
3652 if (hsotg->enabled)
3653 s3c_hsotg_core_connect(hsotg);
3654 spin_unlock_irqrestore(&hsotg->lock, flags);
3655 }
3656 mutex_unlock(&hsotg->init_mutex);
3657
3658 return ret;
3659 }
3660 EXPORT_SYMBOL_GPL(s3c_hsotg_resume);