]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/dwc2/hcd_queue.c
x86/boot: Simplify EBDA-vs-BIOS reservation logic
[mirror_ubuntu-artful-kernel.git] / drivers / usb / dwc2 / hcd_queue.c
1 /*
2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * This file contains the functions to manage Queue Heads and Queue
39 * Transfer Descriptors for Host mode
40 */
41 #include <linux/gcd.h>
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53
54 #include "core.h"
55 #include "hcd.h"
56
57 /* Wait this long before releasing periodic reservation */
58 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
59
60 /**
61 * dwc2_periodic_channel_available() - Checks that a channel is available for a
62 * periodic transfer
63 *
64 * @hsotg: The HCD state structure for the DWC OTG controller
65 *
66 * Return: 0 if successful, negative error code otherwise
67 */
68 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
69 {
70 /*
71 * Currently assuming that there is a dedicated host channel for
72 * each periodic transaction plus at least one host channel for
73 * non-periodic transactions
74 */
75 int status;
76 int num_channels;
77
78 num_channels = hsotg->core_params->host_channels;
79 if (hsotg->periodic_channels + hsotg->non_periodic_channels <
80 num_channels
81 && hsotg->periodic_channels < num_channels - 1) {
82 status = 0;
83 } else {
84 dev_dbg(hsotg->dev,
85 "%s: Total channels: %d, Periodic: %d, "
86 "Non-periodic: %d\n", __func__, num_channels,
87 hsotg->periodic_channels, hsotg->non_periodic_channels);
88 status = -ENOSPC;
89 }
90
91 return status;
92 }
93
94 /**
95 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
96 * for the specified QH in the periodic schedule
97 *
98 * @hsotg: The HCD state structure for the DWC OTG controller
99 * @qh: QH containing periodic bandwidth required
100 *
101 * Return: 0 if successful, negative error code otherwise
102 *
103 * For simplicity, this calculation assumes that all the transfers in the
104 * periodic schedule may occur in the same (micro)frame
105 */
106 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
107 struct dwc2_qh *qh)
108 {
109 int status;
110 s16 max_claimed_usecs;
111
112 status = 0;
113
114 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
115 /*
116 * High speed mode
117 * Max periodic usecs is 80% x 125 usec = 100 usec
118 */
119 max_claimed_usecs = 100 - qh->host_us;
120 } else {
121 /*
122 * Full speed mode
123 * Max periodic usecs is 90% x 1000 usec = 900 usec
124 */
125 max_claimed_usecs = 900 - qh->host_us;
126 }
127
128 if (hsotg->periodic_usecs > max_claimed_usecs) {
129 dev_err(hsotg->dev,
130 "%s: already claimed usecs %d, required usecs %d\n",
131 __func__, hsotg->periodic_usecs, qh->host_us);
132 status = -ENOSPC;
133 }
134
135 return status;
136 }
137
138 /**
139 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
140 *
141 * @map: The bitmap representing the schedule; will be updated
142 * upon success.
143 * @bits_per_period: The schedule represents several periods. This is how many
144 * bits are in each period. It's assumed that the beginning
145 * of the schedule will repeat after its end.
146 * @periods_in_map: The number of periods in the schedule.
147 * @num_bits: The number of bits we need per period we want to reserve
148 * in this function call.
149 * @interval: How often we need to be scheduled for the reservation this
150 * time. 1 means every period. 2 means every other period.
151 * ...you get the picture?
152 * @start: The bit number to start at. Normally 0. Must be within
153 * the interval or we return failure right away.
154 * @only_one_period: Normally we'll allow picking a start anywhere within the
155 * first interval, since we can still make all repetition
156 * requirements by doing that. However, if you pass true
157 * here then we'll return failure if we can't fit within
158 * the period that "start" is in.
159 *
160 * The idea here is that we want to schedule time for repeating events that all
161 * want the same resource. The resource is divided into fixed-sized periods
162 * and the events want to repeat every "interval" periods. The schedule
163 * granularity is one bit.
164 *
165 * To keep things "simple", we'll represent our schedule with a bitmap that
166 * contains a fixed number of periods. This gets rid of a lot of complexity
167 * but does mean that we need to handle things specially (and non-ideally) if
168 * the number of the periods in the schedule doesn't match well with the
169 * intervals that we're trying to schedule.
170 *
171 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
172 * - If interval is 1, we need to take up space in each of the 8
173 * periods we're scheduling. Easy.
174 * - If interval is 2, we need to take up space in half of the
175 * periods. Again, easy.
176 * - If interval is 3, we actually need to fall back to interval 1.
177 * Why? Because we might need time in any period. AKA for the
178 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be
179 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to
180 * 0, 3, and 6. Since we could be in any frame we need to reserve
181 * for all of them. Sucks, but that's what you gotta do. Note that
182 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but
183 * then we need more memory and time to do scheduling.
184 * - If interval is 4, easy.
185 * - If interval is 5, we again need interval 1. The schedule will be
186 * 0, 5, 2, 7, 4, 1, 6, 3, 0
187 * - If interval is 6, we need interval 2. 0, 6, 4, 2.
188 * - If interval is 7, we need interval 1.
189 * - If interval is 8, we need interval 8.
190 *
191 * If you do the math, you'll see that we need to pretend that interval is
192 * equal to the greatest_common_divisor(interval, periods_in_map).
193 *
194 * Note that at the moment this function tends to front-pack the schedule.
195 * In some cases that's really non-ideal (it's hard to schedule things that
196 * need to repeat every period). In other cases it's perfect (you can easily
197 * schedule bigger, less often repeating things).
198 *
199 * Here's the algorithm in action (8 periods, 5 bits per period):
200 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
201 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2
202 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5
203 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2
204 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2
205 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3
206 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6
207 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4
208 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
209 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0
210 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5
211 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2
212 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3
213 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6
214 * | | | | | | | | | Remv 1 bits, intv 1 at 4
215 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
216 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2
217 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3
218 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5
219 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6
220 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8
221 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12
222 *
223 * This function is pretty generic and could be easily abstracted if anything
224 * needed similar scheduling.
225 *
226 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
227 * unschedule routine. The map bitmap will be updated on a non-error result.
228 */
229 static int pmap_schedule(unsigned long *map, int bits_per_period,
230 int periods_in_map, int num_bits,
231 int interval, int start, bool only_one_period)
232 {
233 int interval_bits;
234 int to_reserve;
235 int first_end;
236 int i;
237
238 if (num_bits > bits_per_period)
239 return -ENOSPC;
240
241 /* Adjust interval as per description */
242 interval = gcd(interval, periods_in_map);
243
244 interval_bits = bits_per_period * interval;
245 to_reserve = periods_in_map / interval;
246
247 /* If start has gotten us past interval then we can't schedule */
248 if (start >= interval_bits)
249 return -ENOSPC;
250
251 if (only_one_period)
252 /* Must fit within same period as start; end at begin of next */
253 first_end = (start / bits_per_period + 1) * bits_per_period;
254 else
255 /* Can fit anywhere in the first interval */
256 first_end = interval_bits;
257
258 /*
259 * We'll try to pick the first repetition, then see if that time
260 * is free for each of the subsequent repetitions. If it's not
261 * we'll adjust the start time for the next search of the first
262 * repetition.
263 */
264 while (start + num_bits <= first_end) {
265 int end;
266
267 /* Need to stay within this period */
268 end = (start / bits_per_period + 1) * bits_per_period;
269
270 /* Look for num_bits us in this microframe starting at start */
271 start = bitmap_find_next_zero_area(map, end, start, num_bits,
272 0);
273
274 /*
275 * We should get start >= end if we fail. We might be
276 * able to check the next microframe depending on the
277 * interval, so continue on (start already updated).
278 */
279 if (start >= end) {
280 start = end;
281 continue;
282 }
283
284 /* At this point we have a valid point for first one */
285 for (i = 1; i < to_reserve; i++) {
286 int ith_start = start + interval_bits * i;
287 int ith_end = end + interval_bits * i;
288 int ret;
289
290 /* Use this as a dumb "check if bits are 0" */
291 ret = bitmap_find_next_zero_area(
292 map, ith_start + num_bits, ith_start, num_bits,
293 0);
294
295 /* We got the right place, continue checking */
296 if (ret == ith_start)
297 continue;
298
299 /* Move start up for next time and exit for loop */
300 ith_start = bitmap_find_next_zero_area(
301 map, ith_end, ith_start, num_bits, 0);
302 if (ith_start >= ith_end)
303 /* Need a while new period next time */
304 start = end;
305 else
306 start = ith_start - interval_bits * i;
307 break;
308 }
309
310 /* If didn't exit the for loop with a break, we have success */
311 if (i == to_reserve)
312 break;
313 }
314
315 if (start + num_bits > first_end)
316 return -ENOSPC;
317
318 for (i = 0; i < to_reserve; i++) {
319 int ith_start = start + interval_bits * i;
320
321 bitmap_set(map, ith_start, num_bits);
322 }
323
324 return start;
325 }
326
327 /**
328 * pmap_unschedule() - Undo work done by pmap_schedule()
329 *
330 * @map: See pmap_schedule().
331 * @bits_per_period: See pmap_schedule().
332 * @periods_in_map: See pmap_schedule().
333 * @num_bits: The number of bits that was passed to schedule.
334 * @interval: The interval that was passed to schedule.
335 * @start: The return value from pmap_schedule().
336 */
337 static void pmap_unschedule(unsigned long *map, int bits_per_period,
338 int periods_in_map, int num_bits,
339 int interval, int start)
340 {
341 int interval_bits;
342 int to_release;
343 int i;
344
345 /* Adjust interval as per description in pmap_schedule() */
346 interval = gcd(interval, periods_in_map);
347
348 interval_bits = bits_per_period * interval;
349 to_release = periods_in_map / interval;
350
351 for (i = 0; i < to_release; i++) {
352 int ith_start = start + interval_bits * i;
353
354 bitmap_clear(map, ith_start, num_bits);
355 }
356 }
357
358 /*
359 * cat_printf() - A printf() + strcat() helper
360 *
361 * This is useful for concatenating a bunch of strings where each string is
362 * constructed using printf.
363 *
364 * @buf: The destination buffer; will be updated to point after the printed
365 * data.
366 * @size: The number of bytes in the buffer (includes space for '\0').
367 * @fmt: The format for printf.
368 * @...: The args for printf.
369 */
370 static void cat_printf(char **buf, size_t *size, const char *fmt, ...)
371 {
372 va_list args;
373 int i;
374
375 if (*size == 0)
376 return;
377
378 va_start(args, fmt);
379 i = vsnprintf(*buf, *size, fmt, args);
380 va_end(args);
381
382 if (i >= *size) {
383 (*buf)[*size - 1] = '\0';
384 *buf += *size;
385 *size = 0;
386 } else {
387 *buf += i;
388 *size -= i;
389 }
390 }
391
392 /*
393 * pmap_print() - Print the given periodic map
394 *
395 * Will attempt to print out the periodic schedule.
396 *
397 * @map: See pmap_schedule().
398 * @bits_per_period: See pmap_schedule().
399 * @periods_in_map: See pmap_schedule().
400 * @period_name: The name of 1 period, like "uFrame"
401 * @units: The name of the units, like "us".
402 * @print_fn: The function to call for printing.
403 * @print_data: Opaque data to pass to the print function.
404 */
405 static void pmap_print(unsigned long *map, int bits_per_period,
406 int periods_in_map, const char *period_name,
407 const char *units,
408 void (*print_fn)(const char *str, void *data),
409 void *print_data)
410 {
411 int period;
412
413 for (period = 0; period < periods_in_map; period++) {
414 char tmp[64];
415 char *buf = tmp;
416 size_t buf_size = sizeof(tmp);
417 int period_start = period * bits_per_period;
418 int period_end = period_start + bits_per_period;
419 int start = 0;
420 int count = 0;
421 bool printed = false;
422 int i;
423
424 for (i = period_start; i < period_end + 1; i++) {
425 /* Handle case when ith bit is set */
426 if (i < period_end &&
427 bitmap_find_next_zero_area(map, i + 1,
428 i, 1, 0) != i) {
429 if (count == 0)
430 start = i - period_start;
431 count++;
432 continue;
433 }
434
435 /* ith bit isn't set; don't care if count == 0 */
436 if (count == 0)
437 continue;
438
439 if (!printed)
440 cat_printf(&buf, &buf_size, "%s %d: ",
441 period_name, period);
442 else
443 cat_printf(&buf, &buf_size, ", ");
444 printed = true;
445
446 cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
447 units, start + count - 1, units);
448 count = 0;
449 }
450
451 if (printed)
452 print_fn(tmp, print_data);
453 }
454 }
455
456 /**
457 * dwc2_get_ls_map() - Get the map used for the given qh
458 *
459 * @hsotg: The HCD state structure for the DWC OTG controller.
460 * @qh: QH for the periodic transfer.
461 *
462 * We'll always get the periodic map out of our TT. Note that even if we're
463 * running the host straight in low speed / full speed mode it appears as if
464 * a TT is allocated for us, so we'll use it. If that ever changes we can
465 * add logic here to get a map out of "hsotg" if !qh->do_split.
466 *
467 * Returns: the map or NULL if a map couldn't be found.
468 */
469 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
470 struct dwc2_qh *qh)
471 {
472 unsigned long *map;
473
474 /* Don't expect to be missing a TT and be doing low speed scheduling */
475 if (WARN_ON(!qh->dwc_tt))
476 return NULL;
477
478 /* Get the map and adjust if this is a multi_tt hub */
479 map = qh->dwc_tt->periodic_bitmaps;
480 if (qh->dwc_tt->usb_tt->multi)
481 map += DWC2_ELEMENTS_PER_LS_BITMAP * qh->ttport;
482
483 return map;
484 }
485
486 struct dwc2_qh_print_data {
487 struct dwc2_hsotg *hsotg;
488 struct dwc2_qh *qh;
489 };
490
491 /**
492 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
493 *
494 * @str: The string to print
495 * @data: A pointer to a struct dwc2_qh_print_data
496 */
497 static void dwc2_qh_print(const char *str, void *data)
498 {
499 struct dwc2_qh_print_data *print_data = data;
500
501 dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
502 }
503
504 /**
505 * dwc2_qh_schedule_print() - Print the periodic schedule
506 *
507 * @hsotg: The HCD state structure for the DWC OTG controller.
508 * @qh: QH to print.
509 */
510 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
511 struct dwc2_qh *qh)
512 {
513 struct dwc2_qh_print_data print_data = { hsotg, qh };
514 int i;
515
516 /*
517 * The printing functions are quite slow and inefficient.
518 * If we don't have tracing turned on, don't run unless the special
519 * define is turned on.
520 */
521 #ifndef DWC2_PRINT_SCHEDULE
522 return;
523 #endif
524
525 if (qh->schedule_low_speed) {
526 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
527
528 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
529 qh, qh->device_us,
530 DWC2_ROUND_US_TO_SLICE(qh->device_us),
531 DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
532
533 if (map) {
534 dwc2_sch_dbg(hsotg,
535 "QH=%p Whole low/full speed map %p now:\n",
536 qh, map);
537 pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
538 DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
539 dwc2_qh_print, &print_data);
540 }
541 }
542
543 for (i = 0; i < qh->num_hs_transfers; i++) {
544 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
545 int uframe = trans_time->start_schedule_us /
546 DWC2_HS_PERIODIC_US_PER_UFRAME;
547 int rel_us = trans_time->start_schedule_us %
548 DWC2_HS_PERIODIC_US_PER_UFRAME;
549
550 dwc2_sch_dbg(hsotg,
551 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
552 qh, i, trans_time->duration_us, uframe, rel_us);
553 }
554 if (qh->num_hs_transfers) {
555 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
556 pmap_print(hsotg->hs_periodic_bitmap,
557 DWC2_HS_PERIODIC_US_PER_UFRAME,
558 DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
559 dwc2_qh_print, &print_data);
560 }
561
562 }
563
564 /**
565 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
566 *
567 * @hsotg: The HCD state structure for the DWC OTG controller.
568 * @qh: QH for the periodic transfer.
569 * @search_slice: We'll start trying to schedule at the passed slice.
570 * Remember that slices are the units of the low speed
571 * schedule (think 25us or so).
572 *
573 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
574 *
575 * Normally we schedule low speed devices on the map associated with the TT.
576 *
577 * Returns: 0 for success or an error code.
578 */
579 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
580 int search_slice)
581 {
582 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
583 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
584 int slice;
585
586 if (map == NULL)
587 return -EINVAL;
588
589 /*
590 * Schedule on the proper low speed map with our low speed scheduling
591 * parameters. Note that we use the "device_interval" here since
592 * we want the low speed interval and the only way we'd be in this
593 * function is if the device is low speed.
594 *
595 * If we happen to be doing low speed and high speed scheduling for the
596 * same transaction (AKA we have a split) we always do low speed first.
597 * That means we can always pass "false" for only_one_period (that
598 * parameters is only useful when we're trying to get one schedule to
599 * match what we already planned in the other schedule).
600 */
601 slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
602 DWC2_LS_SCHEDULE_FRAMES, slices,
603 qh->device_interval, search_slice, false);
604
605 if (slice < 0)
606 return slice;
607
608 qh->ls_start_schedule_slice = slice;
609 return 0;
610 }
611
612 /**
613 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
614 *
615 * @hsotg: The HCD state structure for the DWC OTG controller.
616 * @qh: QH for the periodic transfer.
617 */
618 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
619 struct dwc2_qh *qh)
620 {
621 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
622 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
623
624 /* Schedule should have failed, so no worries about no error code */
625 if (map == NULL)
626 return;
627
628 pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
629 DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
630 qh->ls_start_schedule_slice);
631 }
632
633 /**
634 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
635 *
636 * This will schedule something on the main dwc2 schedule.
637 *
638 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll
639 * update this with the result upon success. We also use the duration from
640 * the same structure.
641 *
642 * @hsotg: The HCD state structure for the DWC OTG controller.
643 * @qh: QH for the periodic transfer.
644 * @only_one_period: If true we will limit ourselves to just looking at
645 * one period (aka one 100us chunk). This is used if we have
646 * already scheduled something on the low speed schedule and
647 * need to find something that matches on the high speed one.
648 * @index: The index into qh->hs_transfers that we're working with.
649 *
650 * Returns: 0 for success or an error code. Upon success the
651 * dwc2_hs_transfer_time specified by "index" will be updated.
652 */
653 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
654 bool only_one_period, int index)
655 {
656 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
657 int us;
658
659 us = pmap_schedule(hsotg->hs_periodic_bitmap,
660 DWC2_HS_PERIODIC_US_PER_UFRAME,
661 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
662 qh->host_interval, trans_time->start_schedule_us,
663 only_one_period);
664
665 if (us < 0)
666 return us;
667
668 trans_time->start_schedule_us = us;
669 return 0;
670 }
671
672 /**
673 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
674 *
675 * @hsotg: The HCD state structure for the DWC OTG controller.
676 * @qh: QH for the periodic transfer.
677 */
678 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
679 struct dwc2_qh *qh, int index)
680 {
681 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
682
683 pmap_unschedule(hsotg->hs_periodic_bitmap,
684 DWC2_HS_PERIODIC_US_PER_UFRAME,
685 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
686 qh->host_interval, trans_time->start_schedule_us);
687 }
688
689 /**
690 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
691 *
692 * This is the most complicated thing in USB. We have to find matching time
693 * in both the global high speed schedule for the port and the low speed
694 * schedule for the TT associated with the given device.
695 *
696 * Being here means that the host must be running in high speed mode and the
697 * device is in low or full speed mode (and behind a hub).
698 *
699 * @hsotg: The HCD state structure for the DWC OTG controller.
700 * @qh: QH for the periodic transfer.
701 */
702 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
703 struct dwc2_qh *qh)
704 {
705 int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
706 int ls_search_slice;
707 int err = 0;
708 int host_interval_in_sched;
709
710 /*
711 * The interval (how often to repeat) in the actual host schedule.
712 * See pmap_schedule() for gcd() explanation.
713 */
714 host_interval_in_sched = gcd(qh->host_interval,
715 DWC2_HS_SCHEDULE_UFRAMES);
716
717 /*
718 * We always try to find space in the low speed schedule first, then
719 * try to find high speed time that matches. If we don't, we'll bump
720 * up the place we start searching in the low speed schedule and try
721 * again. To start we'll look right at the beginning of the low speed
722 * schedule.
723 *
724 * Note that this will tend to front-load the high speed schedule.
725 * We may eventually want to try to avoid this by either considering
726 * both schedules together or doing some sort of round robin.
727 */
728 ls_search_slice = 0;
729
730 while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
731 int start_s_uframe;
732 int ssplit_s_uframe;
733 int second_s_uframe;
734 int rel_uframe;
735 int first_count;
736 int middle_count;
737 int end_count;
738 int first_data_bytes;
739 int other_data_bytes;
740 int i;
741
742 if (qh->schedule_low_speed) {
743 err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
744
745 /*
746 * If we got an error here there's no other magic we
747 * can do, so bail. All the looping above is only
748 * helpful to redo things if we got a low speed slot
749 * and then couldn't find a matching high speed slot.
750 */
751 if (err)
752 return err;
753 } else {
754 /* Must be missing the tt structure? Why? */
755 WARN_ON_ONCE(1);
756 }
757
758 /*
759 * This will give us a number 0 - 7 if
760 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
761 */
762 start_s_uframe = qh->ls_start_schedule_slice /
763 DWC2_SLICES_PER_UFRAME;
764
765 /* Get a number that's always 0 - 7 */
766 rel_uframe = (start_s_uframe % 8);
767
768 /*
769 * If we were going to start in uframe 7 then we would need to
770 * issue a start split in uframe 6, which spec says is not OK.
771 * Move on to the next full frame (assuming there is one).
772 *
773 * See 11.18.4 Host Split Transaction Scheduling Requirements
774 * bullet 1.
775 */
776 if (rel_uframe == 7) {
777 if (qh->schedule_low_speed)
778 dwc2_ls_pmap_unschedule(hsotg, qh);
779 ls_search_slice =
780 (qh->ls_start_schedule_slice /
781 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
782 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
783 continue;
784 }
785
786 /*
787 * For ISOC in:
788 * - start split (frame -1)
789 * - complete split w/ data (frame +1)
790 * - complete split w/ data (frame +2)
791 * - ...
792 * - complete split w/ data (frame +num_data_packets)
793 * - complete split w/ data (frame +num_data_packets+1)
794 * - complete split w/ data (frame +num_data_packets+2, max 8)
795 * ...though if frame was "0" then max is 7...
796 *
797 * For ISOC out we might need to do:
798 * - start split w/ data (frame -1)
799 * - start split w/ data (frame +0)
800 * - ...
801 * - start split w/ data (frame +num_data_packets-2)
802 *
803 * For INTERRUPT in we might need to do:
804 * - start split (frame -1)
805 * - complete split w/ data (frame +1)
806 * - complete split w/ data (frame +2)
807 * - complete split w/ data (frame +3, max 8)
808 *
809 * For INTERRUPT out we might need to do:
810 * - start split w/ data (frame -1)
811 * - complete split (frame +1)
812 * - complete split (frame +2)
813 * - complete split (frame +3, max 8)
814 *
815 * Start adjusting!
816 */
817 ssplit_s_uframe = (start_s_uframe +
818 host_interval_in_sched - 1) %
819 host_interval_in_sched;
820 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
821 second_s_uframe = start_s_uframe;
822 else
823 second_s_uframe = start_s_uframe + 1;
824
825 /* First data transfer might not be all 188 bytes. */
826 first_data_bytes = 188 -
827 DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
828 DWC2_SLICES_PER_UFRAME),
829 DWC2_SLICES_PER_UFRAME);
830 if (first_data_bytes > bytecount)
831 first_data_bytes = bytecount;
832 other_data_bytes = bytecount - first_data_bytes;
833
834 /*
835 * For now, skip OUT xfers where first xfer is partial
836 *
837 * Main dwc2 code assumes:
838 * - INT transfers never get split in two.
839 * - ISOC transfers can always transfer 188 bytes the first
840 * time.
841 *
842 * Until that code is fixed, try again if the first transfer
843 * couldn't transfer everything.
844 *
845 * This code can be removed if/when the rest of dwc2 handles
846 * the above cases. Until it's fixed we just won't be able
847 * to schedule quite as tightly.
848 */
849 if (!qh->ep_is_in &&
850 (first_data_bytes != min_t(int, 188, bytecount))) {
851 dwc2_sch_dbg(hsotg,
852 "QH=%p avoiding broken 1st xfer (%d, %d)\n",
853 qh, first_data_bytes, bytecount);
854 if (qh->schedule_low_speed)
855 dwc2_ls_pmap_unschedule(hsotg, qh);
856 ls_search_slice = (start_s_uframe + 1) *
857 DWC2_SLICES_PER_UFRAME;
858 continue;
859 }
860
861 /* Start by assuming transfers for the bytes */
862 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
863
864 /*
865 * Everything except ISOC OUT has extra transfers. Rules are
866 * complicated. See 11.18.4 Host Split Transaction Scheduling
867 * Requirements bullet 3.
868 */
869 if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
870 if (rel_uframe == 6)
871 qh->num_hs_transfers += 2;
872 else
873 qh->num_hs_transfers += 3;
874
875 if (qh->ep_is_in) {
876 /*
877 * First is start split, middle/end is data.
878 * Allocate full data bytes for all data.
879 */
880 first_count = 4;
881 middle_count = bytecount;
882 end_count = bytecount;
883 } else {
884 /*
885 * First is data, middle/end is complete.
886 * First transfer and second can have data.
887 * Rest should just have complete split.
888 */
889 first_count = first_data_bytes;
890 middle_count = max_t(int, 4, other_data_bytes);
891 end_count = 4;
892 }
893 } else {
894 if (qh->ep_is_in) {
895 int last;
896
897 /* Account for the start split */
898 qh->num_hs_transfers++;
899
900 /* Calculate "L" value from spec */
901 last = rel_uframe + qh->num_hs_transfers + 1;
902
903 /* Start with basic case */
904 if (last <= 6)
905 qh->num_hs_transfers += 2;
906 else
907 qh->num_hs_transfers += 1;
908
909 /* Adjust downwards */
910 if (last >= 6 && rel_uframe == 0)
911 qh->num_hs_transfers--;
912
913 /* 1st = start; rest can contain data */
914 first_count = 4;
915 middle_count = min_t(int, 188, bytecount);
916 end_count = middle_count;
917 } else {
918 /* All contain data, last might be smaller */
919 first_count = first_data_bytes;
920 middle_count = min_t(int, 188,
921 other_data_bytes);
922 end_count = other_data_bytes % 188;
923 }
924 }
925
926 /* Assign durations per uFrame */
927 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
928 for (i = 1; i < qh->num_hs_transfers - 1; i++)
929 qh->hs_transfers[i].duration_us =
930 HS_USECS_ISO(middle_count);
931 if (qh->num_hs_transfers > 1)
932 qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
933 HS_USECS_ISO(end_count);
934
935 /*
936 * Assign start us. The call below to dwc2_hs_pmap_schedule()
937 * will start with these numbers but may adjust within the same
938 * microframe.
939 */
940 qh->hs_transfers[0].start_schedule_us =
941 ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
942 for (i = 1; i < qh->num_hs_transfers; i++)
943 qh->hs_transfers[i].start_schedule_us =
944 ((second_s_uframe + i - 1) %
945 DWC2_HS_SCHEDULE_UFRAMES) *
946 DWC2_HS_PERIODIC_US_PER_UFRAME;
947
948 /* Try to schedule with filled in hs_transfers above */
949 for (i = 0; i < qh->num_hs_transfers; i++) {
950 err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
951 if (err)
952 break;
953 }
954
955 /* If we scheduled all w/out breaking out then we're all good */
956 if (i == qh->num_hs_transfers)
957 break;
958
959 for (; i >= 0; i--)
960 dwc2_hs_pmap_unschedule(hsotg, qh, i);
961
962 if (qh->schedule_low_speed)
963 dwc2_ls_pmap_unschedule(hsotg, qh);
964
965 /* Try again starting in the next microframe */
966 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
967 }
968
969 if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
970 return -ENOSPC;
971
972 return 0;
973 }
974
975 /**
976 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
977 *
978 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
979 * interface.
980 *
981 * @hsotg: The HCD state structure for the DWC OTG controller.
982 * @qh: QH for the periodic transfer.
983 */
984 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
985 {
986 /* In non-split host and device time are the same */
987 WARN_ON(qh->host_us != qh->device_us);
988 WARN_ON(qh->host_interval != qh->device_interval);
989 WARN_ON(qh->num_hs_transfers != 1);
990
991 /* We'll have one transfer; init start to 0 before calling scheduler */
992 qh->hs_transfers[0].start_schedule_us = 0;
993 qh->hs_transfers[0].duration_us = qh->host_us;
994
995 return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
996 }
997
998 /**
999 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1000 *
1001 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1002 * interface.
1003 *
1004 * @hsotg: The HCD state structure for the DWC OTG controller.
1005 * @qh: QH for the periodic transfer.
1006 */
1007 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1008 {
1009 /* In non-split host and device time are the same */
1010 WARN_ON(qh->host_us != qh->device_us);
1011 WARN_ON(qh->host_interval != qh->device_interval);
1012 WARN_ON(!qh->schedule_low_speed);
1013
1014 /* Run on the main low speed schedule (no split = no hub = no TT) */
1015 return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1016 }
1017
1018 /**
1019 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1020 *
1021 * Calls one of the 3 sub-function depending on what type of transfer this QH
1022 * is for. Also adds some printing.
1023 *
1024 * @hsotg: The HCD state structure for the DWC OTG controller.
1025 * @qh: QH for the periodic transfer.
1026 */
1027 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1028 {
1029 int ret;
1030
1031 if (qh->dev_speed == USB_SPEED_HIGH)
1032 ret = dwc2_uframe_schedule_hs(hsotg, qh);
1033 else if (!qh->do_split)
1034 ret = dwc2_uframe_schedule_ls(hsotg, qh);
1035 else
1036 ret = dwc2_uframe_schedule_split(hsotg, qh);
1037
1038 if (ret)
1039 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1040 else
1041 dwc2_qh_schedule_print(hsotg, qh);
1042
1043 return ret;
1044 }
1045
1046 /**
1047 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1048 *
1049 * @hsotg: The HCD state structure for the DWC OTG controller.
1050 * @qh: QH for the periodic transfer.
1051 */
1052 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1053 {
1054 int i;
1055
1056 for (i = 0; i < qh->num_hs_transfers; i++)
1057 dwc2_hs_pmap_unschedule(hsotg, qh, i);
1058
1059 if (qh->schedule_low_speed)
1060 dwc2_ls_pmap_unschedule(hsotg, qh);
1061
1062 dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1063 }
1064
1065 /**
1066 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1067 *
1068 * Takes a qh that has already been scheduled (which means we know we have the
1069 * bandwdith reserved for us) and set the next_active_frame and the
1070 * start_active_frame.
1071 *
1072 * This is expected to be called on qh's that weren't previously actively
1073 * running. It just picks the next frame that we can fit into without any
1074 * thought about the past.
1075 *
1076 * @hsotg: The HCD state structure for the DWC OTG controller
1077 * @qh: QH for a periodic endpoint
1078 *
1079 */
1080 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1081 {
1082 u16 frame_number;
1083 u16 earliest_frame;
1084 u16 next_active_frame;
1085 u16 relative_frame;
1086 u16 interval;
1087
1088 /*
1089 * Use the real frame number rather than the cached value as of the
1090 * last SOF to give us a little extra slop.
1091 */
1092 frame_number = dwc2_hcd_get_frame_number(hsotg);
1093
1094 /*
1095 * We wouldn't want to start any earlier than the next frame just in
1096 * case the frame number ticks as we're doing this calculation.
1097 *
1098 * NOTE: if we could quantify how long till we actually get scheduled
1099 * we might be able to avoid the "+ 1" by looking at the upper part of
1100 * HFNUM (the FRREM field). For now we'll just use the + 1 though.
1101 */
1102 earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1103 next_active_frame = earliest_frame;
1104
1105 /* Get the "no microframe schduler" out of the way... */
1106 if (hsotg->core_params->uframe_sched <= 0) {
1107 if (qh->do_split)
1108 /* Splits are active at microframe 0 minus 1 */
1109 next_active_frame |= 0x7;
1110 goto exit;
1111 }
1112
1113 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1114 /*
1115 * We're either at high speed or we're doing a split (which
1116 * means we're talking high speed to a hub). In any case
1117 * the first frame should be based on when the first scheduled
1118 * event is.
1119 */
1120 WARN_ON(qh->num_hs_transfers < 1);
1121
1122 relative_frame = qh->hs_transfers[0].start_schedule_us /
1123 DWC2_HS_PERIODIC_US_PER_UFRAME;
1124
1125 /* Adjust interval as per high speed schedule */
1126 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1127
1128 } else {
1129 /*
1130 * Low or full speed directly on dwc2. Just about the same
1131 * as high speed but on a different schedule and with slightly
1132 * different adjustments. Note that this works because when
1133 * the host and device are both low speed then frames in the
1134 * controller tick at low speed.
1135 */
1136 relative_frame = qh->ls_start_schedule_slice /
1137 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1138 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1139 }
1140
1141 /* Scheduler messed up if frame is past interval */
1142 WARN_ON(relative_frame >= interval);
1143
1144 /*
1145 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1146 * done the gcd(), so it's safe to move to the beginning of the current
1147 * interval like this.
1148 *
1149 * After this we might be before earliest_frame, but don't worry,
1150 * we'll fix it...
1151 */
1152 next_active_frame = (next_active_frame / interval) * interval;
1153
1154 /*
1155 * Actually choose to start at the frame number we've been
1156 * scheduled for.
1157 */
1158 next_active_frame = dwc2_frame_num_inc(next_active_frame,
1159 relative_frame);
1160
1161 /*
1162 * We actually need 1 frame before since the next_active_frame is
1163 * the frame number we'll be put on the ready list and we won't be on
1164 * the bus until 1 frame later.
1165 */
1166 next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1167
1168 /*
1169 * By now we might actually be before the earliest_frame. Let's move
1170 * up intervals until we're not.
1171 */
1172 while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1173 next_active_frame = dwc2_frame_num_inc(next_active_frame,
1174 interval);
1175
1176 exit:
1177 qh->next_active_frame = next_active_frame;
1178 qh->start_active_frame = next_active_frame;
1179
1180 dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1181 qh, frame_number, qh->next_active_frame);
1182 }
1183
1184 /**
1185 * dwc2_do_reserve() - Make a periodic reservation
1186 *
1187 * Try to allocate space in the periodic schedule. Depending on parameters
1188 * this might use the microframe scheduler or the dumb scheduler.
1189 *
1190 * @hsotg: The HCD state structure for the DWC OTG controller
1191 * @qh: QH for the periodic transfer.
1192 *
1193 * Returns: 0 upon success; error upon failure.
1194 */
1195 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1196 {
1197 int status;
1198
1199 if (hsotg->core_params->uframe_sched > 0) {
1200 status = dwc2_uframe_schedule(hsotg, qh);
1201 } else {
1202 status = dwc2_periodic_channel_available(hsotg);
1203 if (status) {
1204 dev_info(hsotg->dev,
1205 "%s: No host channel available for periodic transfer\n",
1206 __func__);
1207 return status;
1208 }
1209
1210 status = dwc2_check_periodic_bandwidth(hsotg, qh);
1211 }
1212
1213 if (status) {
1214 dev_dbg(hsotg->dev,
1215 "%s: Insufficient periodic bandwidth for periodic transfer\n",
1216 __func__);
1217 return status;
1218 }
1219
1220 if (hsotg->core_params->uframe_sched <= 0)
1221 /* Reserve periodic channel */
1222 hsotg->periodic_channels++;
1223
1224 /* Update claimed usecs per (micro)frame */
1225 hsotg->periodic_usecs += qh->host_us;
1226
1227 dwc2_pick_first_frame(hsotg, qh);
1228
1229 return 0;
1230 }
1231
1232 /**
1233 * dwc2_do_unreserve() - Actually release the periodic reservation
1234 *
1235 * This function actually releases the periodic bandwidth that was reserved
1236 * by the given qh.
1237 *
1238 * @hsotg: The HCD state structure for the DWC OTG controller
1239 * @qh: QH for the periodic transfer.
1240 */
1241 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1242 {
1243 assert_spin_locked(&hsotg->lock);
1244
1245 WARN_ON(!qh->unreserve_pending);
1246
1247 /* No more unreserve pending--we're doing it */
1248 qh->unreserve_pending = false;
1249
1250 if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1251 list_del_init(&qh->qh_list_entry);
1252
1253 /* Update claimed usecs per (micro)frame */
1254 hsotg->periodic_usecs -= qh->host_us;
1255
1256 if (hsotg->core_params->uframe_sched > 0) {
1257 dwc2_uframe_unschedule(hsotg, qh);
1258 } else {
1259 /* Release periodic channel reservation */
1260 hsotg->periodic_channels--;
1261 }
1262 }
1263
1264 /**
1265 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1266 *
1267 * According to the kernel doc for usb_submit_urb() (specifically the part about
1268 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1269 * long as a device driver keeps submitting. Since we're using HCD_BH to give
1270 * back the URB we need to give the driver a little bit of time before we
1271 * release the reservation. This worker is called after the appropriate
1272 * delay.
1273 *
1274 * @work: Pointer to a qh unreserve_work.
1275 */
1276 static void dwc2_unreserve_timer_fn(unsigned long data)
1277 {
1278 struct dwc2_qh *qh = (struct dwc2_qh *)data;
1279 struct dwc2_hsotg *hsotg = qh->hsotg;
1280 unsigned long flags;
1281
1282 /*
1283 * Wait for the lock, or for us to be scheduled again. We
1284 * could be scheduled again if:
1285 * - We started executing but didn't get the lock yet.
1286 * - A new reservation came in, but cancel didn't take effect
1287 * because we already started executing.
1288 * - The timer has been kicked again.
1289 * In that case cancel and wait for the next call.
1290 */
1291 while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1292 if (timer_pending(&qh->unreserve_timer))
1293 return;
1294 }
1295
1296 /*
1297 * Might be no more unreserve pending if:
1298 * - We started executing but didn't get the lock yet.
1299 * - A new reservation came in, but cancel didn't take effect
1300 * because we already started executing.
1301 *
1302 * We can't put this in the loop above because unreserve_pending needs
1303 * to be accessed under lock, so we can only check it once we got the
1304 * lock.
1305 */
1306 if (qh->unreserve_pending)
1307 dwc2_do_unreserve(hsotg, qh);
1308
1309 spin_unlock_irqrestore(&hsotg->lock, flags);
1310 }
1311
1312 /**
1313 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1314 * host channel is large enough to handle the maximum data transfer in a single
1315 * (micro)frame for a periodic transfer
1316 *
1317 * @hsotg: The HCD state structure for the DWC OTG controller
1318 * @qh: QH for a periodic endpoint
1319 *
1320 * Return: 0 if successful, negative error code otherwise
1321 */
1322 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1323 struct dwc2_qh *qh)
1324 {
1325 u32 max_xfer_size;
1326 u32 max_channel_xfer_size;
1327 int status = 0;
1328
1329 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
1330 max_channel_xfer_size = hsotg->core_params->max_transfer_size;
1331
1332 if (max_xfer_size > max_channel_xfer_size) {
1333 dev_err(hsotg->dev,
1334 "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1335 __func__, max_xfer_size, max_channel_xfer_size);
1336 status = -ENOSPC;
1337 }
1338
1339 return status;
1340 }
1341
1342 /**
1343 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1344 * the periodic schedule
1345 *
1346 * @hsotg: The HCD state structure for the DWC OTG controller
1347 * @qh: QH for the periodic transfer. The QH should already contain the
1348 * scheduling information.
1349 *
1350 * Return: 0 if successful, negative error code otherwise
1351 */
1352 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1353 {
1354 int status;
1355
1356 status = dwc2_check_max_xfer_size(hsotg, qh);
1357 if (status) {
1358 dev_dbg(hsotg->dev,
1359 "%s: Channel max transfer size too small for periodic transfer\n",
1360 __func__);
1361 return status;
1362 }
1363
1364 /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1365 if (del_timer(&qh->unreserve_timer))
1366 WARN_ON(!qh->unreserve_pending);
1367
1368 /*
1369 * Only need to reserve if there's not an unreserve pending, since if an
1370 * unreserve is pending then by definition our old reservation is still
1371 * valid. Unreserve might still be pending even if we didn't cancel if
1372 * dwc2_unreserve_timer_fn() already started. Code in the timer handles
1373 * that case.
1374 */
1375 if (!qh->unreserve_pending) {
1376 status = dwc2_do_reserve(hsotg, qh);
1377 if (status)
1378 return status;
1379 } else {
1380 /*
1381 * It might have been a while, so make sure that frame_number
1382 * is still good. Note: we could also try to use the similar
1383 * dwc2_next_periodic_start() but that schedules much more
1384 * tightly and we might need to hurry and queue things up.
1385 */
1386 if (dwc2_frame_num_le(qh->next_active_frame,
1387 hsotg->frame_number))
1388 dwc2_pick_first_frame(hsotg, qh);
1389 }
1390
1391 qh->unreserve_pending = 0;
1392
1393 if (hsotg->core_params->dma_desc_enable > 0)
1394 /* Don't rely on SOF and start in ready schedule */
1395 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1396 else
1397 /* Always start in inactive schedule */
1398 list_add_tail(&qh->qh_list_entry,
1399 &hsotg->periodic_sched_inactive);
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1406 * from the periodic schedule
1407 *
1408 * @hsotg: The HCD state structure for the DWC OTG controller
1409 * @qh: QH for the periodic transfer
1410 */
1411 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1412 struct dwc2_qh *qh)
1413 {
1414 bool did_modify;
1415
1416 assert_spin_locked(&hsotg->lock);
1417
1418 /*
1419 * Schedule the unreserve to happen in a little bit. Cases here:
1420 * - Unreserve worker might be sitting there waiting to grab the lock.
1421 * In this case it will notice it's been schedule again and will
1422 * quit.
1423 * - Unreserve worker might not be scheduled.
1424 *
1425 * We should never already be scheduled since dwc2_schedule_periodic()
1426 * should have canceled the scheduled unreserve timer (hence the
1427 * warning on did_modify).
1428 *
1429 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1430 * passed (otherwise if the jiffy counter might tick right after we
1431 * read it and we'll get no delay).
1432 */
1433 did_modify = mod_timer(&qh->unreserve_timer,
1434 jiffies + DWC2_UNRESERVE_DELAY + 1);
1435 WARN_ON(did_modify);
1436 qh->unreserve_pending = 1;
1437
1438 list_del_init(&qh->qh_list_entry);
1439 }
1440
1441 /**
1442 * dwc2_qh_init() - Initializes a QH structure
1443 *
1444 * @hsotg: The HCD state structure for the DWC OTG controller
1445 * @qh: The QH to init
1446 * @urb: Holds the information about the device/endpoint needed to initialize
1447 * the QH
1448 * @mem_flags: Flags for allocating memory.
1449 */
1450 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1451 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1452 {
1453 int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1454 u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1455 bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1456 bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1457 bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1458 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
1459 u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1460 bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1461 dev_speed != USB_SPEED_HIGH);
1462 int maxp = dwc2_hcd_get_mps(&urb->pipe_info);
1463 int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp);
1464 char *speed, *type;
1465
1466 /* Initialize QH */
1467 qh->hsotg = hsotg;
1468 setup_timer(&qh->unreserve_timer, dwc2_unreserve_timer_fn,
1469 (unsigned long)qh);
1470 qh->ep_type = ep_type;
1471 qh->ep_is_in = ep_is_in;
1472
1473 qh->data_toggle = DWC2_HC_PID_DATA0;
1474 qh->maxp = maxp;
1475 INIT_LIST_HEAD(&qh->qtd_list);
1476 INIT_LIST_HEAD(&qh->qh_list_entry);
1477
1478 qh->do_split = do_split;
1479 qh->dev_speed = dev_speed;
1480
1481 if (ep_is_int || ep_is_isoc) {
1482 /* Compute scheduling parameters once and save them */
1483 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1484 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1485 mem_flags,
1486 &qh->ttport);
1487 int device_ns;
1488
1489 qh->dwc_tt = dwc_tt;
1490
1491 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1492 ep_is_isoc, bytecount));
1493 device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1494 ep_is_isoc, bytecount);
1495
1496 if (do_split && dwc_tt)
1497 device_ns += dwc_tt->usb_tt->think_time;
1498 qh->device_us = NS_TO_US(device_ns);
1499
1500
1501 qh->device_interval = urb->interval;
1502 qh->host_interval = urb->interval * (do_split ? 8 : 1);
1503
1504 /*
1505 * Schedule low speed if we're running the host in low or
1506 * full speed OR if we've got a "TT" to deal with to access this
1507 * device.
1508 */
1509 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1510 dwc_tt;
1511
1512 if (do_split) {
1513 /* We won't know num transfers until we schedule */
1514 qh->num_hs_transfers = -1;
1515 } else if (dev_speed == USB_SPEED_HIGH) {
1516 qh->num_hs_transfers = 1;
1517 } else {
1518 qh->num_hs_transfers = 0;
1519 }
1520
1521 /* We'll schedule later when we have something to do */
1522 }
1523
1524 switch (dev_speed) {
1525 case USB_SPEED_LOW:
1526 speed = "low";
1527 break;
1528 case USB_SPEED_FULL:
1529 speed = "full";
1530 break;
1531 case USB_SPEED_HIGH:
1532 speed = "high";
1533 break;
1534 default:
1535 speed = "?";
1536 break;
1537 }
1538
1539 switch (qh->ep_type) {
1540 case USB_ENDPOINT_XFER_ISOC:
1541 type = "isochronous";
1542 break;
1543 case USB_ENDPOINT_XFER_INT:
1544 type = "interrupt";
1545 break;
1546 case USB_ENDPOINT_XFER_CONTROL:
1547 type = "control";
1548 break;
1549 case USB_ENDPOINT_XFER_BULK:
1550 type = "bulk";
1551 break;
1552 default:
1553 type = "?";
1554 break;
1555 }
1556
1557 dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1558 speed, bytecount);
1559 dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1560 dwc2_hcd_get_dev_addr(&urb->pipe_info),
1561 dwc2_hcd_get_ep_num(&urb->pipe_info),
1562 ep_is_in ? "IN" : "OUT");
1563 if (ep_is_int || ep_is_isoc) {
1564 dwc2_sch_dbg(hsotg,
1565 "QH=%p ...duration: host=%d us, device=%d us\n",
1566 qh, qh->host_us, qh->device_us);
1567 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1568 qh, qh->host_interval, qh->device_interval);
1569 if (qh->schedule_low_speed)
1570 dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1571 qh, dwc2_get_ls_map(hsotg, qh));
1572 }
1573 }
1574
1575 /**
1576 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1577 *
1578 * @hsotg: The HCD state structure for the DWC OTG controller
1579 * @urb: Holds the information about the device/endpoint needed
1580 * to initialize the QH
1581 * @atomic_alloc: Flag to do atomic allocation if needed
1582 *
1583 * Return: Pointer to the newly allocated QH, or NULL on error
1584 */
1585 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1586 struct dwc2_hcd_urb *urb,
1587 gfp_t mem_flags)
1588 {
1589 struct dwc2_qh *qh;
1590
1591 if (!urb->priv)
1592 return NULL;
1593
1594 /* Allocate memory */
1595 qh = kzalloc(sizeof(*qh), mem_flags);
1596 if (!qh)
1597 return NULL;
1598
1599 dwc2_qh_init(hsotg, qh, urb, mem_flags);
1600
1601 if (hsotg->core_params->dma_desc_enable > 0 &&
1602 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1603 dwc2_hcd_qh_free(hsotg, qh);
1604 return NULL;
1605 }
1606
1607 return qh;
1608 }
1609
1610 /**
1611 * dwc2_hcd_qh_free() - Frees the QH
1612 *
1613 * @hsotg: HCD instance
1614 * @qh: The QH to free
1615 *
1616 * QH should already be removed from the list. QTD list should already be empty
1617 * if called from URB Dequeue.
1618 *
1619 * Must NOT be called with interrupt disabled or spinlock held
1620 */
1621 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1622 {
1623 /* Make sure any unreserve work is finished. */
1624 if (del_timer_sync(&qh->unreserve_timer)) {
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(&hsotg->lock, flags);
1628 dwc2_do_unreserve(hsotg, qh);
1629 spin_unlock_irqrestore(&hsotg->lock, flags);
1630 }
1631 dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1632
1633 if (qh->desc_list)
1634 dwc2_hcd_qh_free_ddma(hsotg, qh);
1635 kfree(qh);
1636 }
1637
1638 /**
1639 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1640 * schedule if it is not already in the schedule. If the QH is already in
1641 * the schedule, no action is taken.
1642 *
1643 * @hsotg: The HCD state structure for the DWC OTG controller
1644 * @qh: The QH to add
1645 *
1646 * Return: 0 if successful, negative error code otherwise
1647 */
1648 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1649 {
1650 int status;
1651 u32 intr_mask;
1652
1653 if (dbg_qh(qh))
1654 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1655
1656 if (!list_empty(&qh->qh_list_entry))
1657 /* QH already in a schedule */
1658 return 0;
1659
1660 /* Add the new QH to the appropriate schedule */
1661 if (dwc2_qh_is_non_per(qh)) {
1662 /* Schedule right away */
1663 qh->start_active_frame = hsotg->frame_number;
1664 qh->next_active_frame = qh->start_active_frame;
1665
1666 /* Always start in inactive schedule */
1667 list_add_tail(&qh->qh_list_entry,
1668 &hsotg->non_periodic_sched_inactive);
1669 return 0;
1670 }
1671
1672 status = dwc2_schedule_periodic(hsotg, qh);
1673 if (status)
1674 return status;
1675 if (!hsotg->periodic_qh_count) {
1676 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1677 intr_mask |= GINTSTS_SOF;
1678 dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1679 }
1680 hsotg->periodic_qh_count++;
1681
1682 return 0;
1683 }
1684
1685 /**
1686 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1687 * schedule. Memory is not freed.
1688 *
1689 * @hsotg: The HCD state structure
1690 * @qh: QH to remove from schedule
1691 */
1692 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1693 {
1694 u32 intr_mask;
1695
1696 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1697
1698 if (list_empty(&qh->qh_list_entry))
1699 /* QH is not in a schedule */
1700 return;
1701
1702 if (dwc2_qh_is_non_per(qh)) {
1703 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1704 hsotg->non_periodic_qh_ptr =
1705 hsotg->non_periodic_qh_ptr->next;
1706 list_del_init(&qh->qh_list_entry);
1707 return;
1708 }
1709
1710 dwc2_deschedule_periodic(hsotg, qh);
1711 hsotg->periodic_qh_count--;
1712 if (!hsotg->periodic_qh_count &&
1713 hsotg->core_params->dma_desc_enable <= 0) {
1714 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1715 intr_mask &= ~GINTSTS_SOF;
1716 dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1717 }
1718 }
1719
1720 /**
1721 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1722 *
1723 * This is called for setting next_active_frame for periodic splits for all but
1724 * the first packet of the split. Confusing? I thought so...
1725 *
1726 * Periodic splits are single low/full speed transfers that we end up splitting
1727 * up into several high speed transfers. They always fit into one full (1 ms)
1728 * frame but might be split over several microframes (125 us each). We to put
1729 * each of the parts on a very specific high speed frame.
1730 *
1731 * This function figures out where the next active uFrame needs to be.
1732 *
1733 * @hsotg: The HCD state structure
1734 * @qh: QH for the periodic transfer.
1735 * @frame_number: The current frame number.
1736 *
1737 * Return: number missed by (or 0 if we didn't miss).
1738 */
1739 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1740 struct dwc2_qh *qh, u16 frame_number)
1741 {
1742 u16 old_frame = qh->next_active_frame;
1743 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1744 int missed = 0;
1745 u16 incr;
1746
1747 /*
1748 * See dwc2_uframe_schedule_split() for split scheduling.
1749 *
1750 * Basically: increment 1 normally, but 2 right after the start split
1751 * (except for ISOC out).
1752 */
1753 if (old_frame == qh->start_active_frame &&
1754 !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1755 incr = 2;
1756 else
1757 incr = 1;
1758
1759 qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1760
1761 /*
1762 * Note that it's OK for frame_number to be 1 frame past
1763 * next_active_frame. Remember that next_active_frame is supposed to
1764 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame
1765 * past it just means schedule ASAP.
1766 *
1767 * It's _not_ OK, however, if we're more than one frame past.
1768 */
1769 if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1770 /*
1771 * OOPS, we missed. That's actually pretty bad since
1772 * the hub will be unhappy; try ASAP I guess.
1773 */
1774 missed = dwc2_frame_num_dec(prev_frame_number,
1775 qh->next_active_frame);
1776 qh->next_active_frame = frame_number;
1777 }
1778
1779 return missed;
1780 }
1781
1782 /**
1783 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1784 *
1785 * This is called for setting next_active_frame for a periodic transfer for
1786 * all cases other than midway through a periodic split. This will also update
1787 * start_active_frame.
1788 *
1789 * Since we _always_ keep start_active_frame as the start of the previous
1790 * transfer this is normally pretty easy: we just add our interval to
1791 * start_active_frame and we've got our answer.
1792 *
1793 * The tricks come into play if we miss. In that case we'll look for the next
1794 * slot we can fit into.
1795 *
1796 * @hsotg: The HCD state structure
1797 * @qh: QH for the periodic transfer.
1798 * @frame_number: The current frame number.
1799 *
1800 * Return: number missed by (or 0 if we didn't miss).
1801 */
1802 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1803 struct dwc2_qh *qh, u16 frame_number)
1804 {
1805 int missed = 0;
1806 u16 interval = qh->host_interval;
1807 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1808
1809 qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1810 interval);
1811
1812 /*
1813 * The dwc2_frame_num_gt() function used below won't work terribly well
1814 * with if we just incremented by a really large intervals since the
1815 * frame counter only goes to 0x3fff. It's terribly unlikely that we
1816 * will have missed in this case anyway. Just go to exit. If we want
1817 * to try to do better we'll need to keep track of a bigger counter
1818 * somewhere in the driver and handle overflows.
1819 */
1820 if (interval >= 0x1000)
1821 goto exit;
1822
1823 /*
1824 * Test for misses, which is when it's too late to schedule.
1825 *
1826 * A few things to note:
1827 * - We compare against prev_frame_number since start_active_frame
1828 * and next_active_frame are always 1 frame before we want things
1829 * to be active and we assume we can still get scheduled in the
1830 * current frame number.
1831 * - It's possible for start_active_frame (now incremented) to be
1832 * next_active_frame if we got an EO MISS (even_odd miss) which
1833 * basically means that we detected there wasn't enough time for
1834 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1835 * at the last second. We want to make sure we don't schedule
1836 * another transfer for the same frame. My test webcam doesn't seem
1837 * terribly upset by missing a transfer but really doesn't like when
1838 * we do two transfers in the same frame.
1839 * - Some misses are expected. Specifically, in order to work
1840 * perfectly dwc2 really needs quite spectacular interrupt latency
1841 * requirements. It needs to be able to handle its interrupts
1842 * completely within 125 us of them being asserted. That not only
1843 * means that the dwc2 interrupt handler needs to be fast but it
1844 * means that nothing else in the system has to block dwc2 for a long
1845 * time. We can help with the dwc2 parts of this, but it's hard to
1846 * guarantee that a system will have interrupt latency < 125 us, so
1847 * we have to be robust to some misses.
1848 */
1849 if (qh->start_active_frame == qh->next_active_frame ||
1850 dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1851 u16 ideal_start = qh->start_active_frame;
1852 int periods_in_map;
1853
1854 /*
1855 * Adjust interval as per gcd with map size.
1856 * See pmap_schedule() for more details here.
1857 */
1858 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1859 periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1860 else
1861 periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1862 interval = gcd(interval, periods_in_map);
1863
1864 do {
1865 qh->start_active_frame = dwc2_frame_num_inc(
1866 qh->start_active_frame, interval);
1867 } while (dwc2_frame_num_gt(prev_frame_number,
1868 qh->start_active_frame));
1869
1870 missed = dwc2_frame_num_dec(qh->start_active_frame,
1871 ideal_start);
1872 }
1873
1874 exit:
1875 qh->next_active_frame = qh->start_active_frame;
1876
1877 return missed;
1878 }
1879
1880 /*
1881 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1882 * non-periodic schedule. The QH is added to the inactive non-periodic
1883 * schedule if any QTDs are still attached to the QH.
1884 *
1885 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1886 * there are any QTDs still attached to the QH, the QH is added to either the
1887 * periodic inactive schedule or the periodic ready schedule and its next
1888 * scheduled frame is calculated. The QH is placed in the ready schedule if
1889 * the scheduled frame has been reached already. Otherwise it's placed in the
1890 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1891 * completely removed from the periodic schedule.
1892 */
1893 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1894 int sched_next_periodic_split)
1895 {
1896 u16 old_frame = qh->next_active_frame;
1897 u16 frame_number;
1898 int missed;
1899
1900 if (dbg_qh(qh))
1901 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1902
1903 if (dwc2_qh_is_non_per(qh)) {
1904 dwc2_hcd_qh_unlink(hsotg, qh);
1905 if (!list_empty(&qh->qtd_list))
1906 /* Add back to inactive non-periodic schedule */
1907 dwc2_hcd_qh_add(hsotg, qh);
1908 return;
1909 }
1910
1911 /*
1912 * Use the real frame number rather than the cached value as of the
1913 * last SOF just to get us a little closer to reality. Note that
1914 * means we don't actually know if we've already handled the SOF
1915 * interrupt for this frame.
1916 */
1917 frame_number = dwc2_hcd_get_frame_number(hsotg);
1918
1919 if (sched_next_periodic_split)
1920 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1921 else
1922 missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1923
1924 dwc2_sch_vdbg(hsotg,
1925 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1926 qh, sched_next_periodic_split, frame_number, old_frame,
1927 qh->next_active_frame,
1928 dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1929 missed, missed ? "MISS" : "");
1930
1931 if (list_empty(&qh->qtd_list)) {
1932 dwc2_hcd_qh_unlink(hsotg, qh);
1933 return;
1934 }
1935
1936 /*
1937 * Remove from periodic_sched_queued and move to
1938 * appropriate queue
1939 *
1940 * Note: we purposely use the frame_number from the "hsotg" structure
1941 * since we know SOF interrupt will handle future frames.
1942 */
1943 if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1944 list_move_tail(&qh->qh_list_entry,
1945 &hsotg->periodic_sched_ready);
1946 else
1947 list_move_tail(&qh->qh_list_entry,
1948 &hsotg->periodic_sched_inactive);
1949 }
1950
1951 /**
1952 * dwc2_hcd_qtd_init() - Initializes a QTD structure
1953 *
1954 * @qtd: The QTD to initialize
1955 * @urb: The associated URB
1956 */
1957 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
1958 {
1959 qtd->urb = urb;
1960 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
1961 USB_ENDPOINT_XFER_CONTROL) {
1962 /*
1963 * The only time the QTD data toggle is used is on the data
1964 * phase of control transfers. This phase always starts with
1965 * DATA1.
1966 */
1967 qtd->data_toggle = DWC2_HC_PID_DATA1;
1968 qtd->control_phase = DWC2_CONTROL_SETUP;
1969 }
1970
1971 /* Start split */
1972 qtd->complete_split = 0;
1973 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
1974 qtd->isoc_split_offset = 0;
1975 qtd->in_process = 0;
1976
1977 /* Store the qtd ptr in the urb to reference the QTD */
1978 urb->qtd = qtd;
1979 }
1980
1981 /**
1982 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
1983 * Caller must hold driver lock.
1984 *
1985 * @hsotg: The DWC HCD structure
1986 * @qtd: The QTD to add
1987 * @qh: Queue head to add qtd to
1988 *
1989 * Return: 0 if successful, negative error code otherwise
1990 *
1991 * If the QH to which the QTD is added is not currently scheduled, it is placed
1992 * into the proper schedule based on its EP type.
1993 */
1994 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
1995 struct dwc2_qh *qh)
1996 {
1997 int retval;
1998
1999 if (unlikely(!qh)) {
2000 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2001 retval = -EINVAL;
2002 goto fail;
2003 }
2004
2005 retval = dwc2_hcd_qh_add(hsotg, qh);
2006 if (retval)
2007 goto fail;
2008
2009 qtd->qh = qh;
2010 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2011
2012 return 0;
2013 fail:
2014 return retval;
2015 }