]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/dwc2/hcd_queue.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / dwc2 / hcd_queue.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * This file contains the functions to manage Queue Heads and Queue
40 * Transfer Descriptors for Host mode
41 */
42 #include <linux/gcd.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/io.h>
49 #include <linux/slab.h>
50 #include <linux/usb.h>
51
52 #include <linux/usb/hcd.h>
53 #include <linux/usb/ch11.h>
54
55 #include "core.h"
56 #include "hcd.h"
57
58 /* Wait this long before releasing periodic reservation */
59 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
60
61 /**
62 * dwc2_periodic_channel_available() - Checks that a channel is available for a
63 * periodic transfer
64 *
65 * @hsotg: The HCD state structure for the DWC OTG controller
66 *
67 * Return: 0 if successful, negative error code otherwise
68 */
69 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
70 {
71 /*
72 * Currently assuming that there is a dedicated host channel for
73 * each periodic transaction plus at least one host channel for
74 * non-periodic transactions
75 */
76 int status;
77 int num_channels;
78
79 num_channels = hsotg->params.host_channels;
80 if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
81 num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
82 status = 0;
83 } else {
84 dev_dbg(hsotg->dev,
85 "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
86 __func__, num_channels,
87 hsotg->periodic_channels, hsotg->non_periodic_channels);
88 status = -ENOSPC;
89 }
90
91 return status;
92 }
93
94 /**
95 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
96 * for the specified QH in the periodic schedule
97 *
98 * @hsotg: The HCD state structure for the DWC OTG controller
99 * @qh: QH containing periodic bandwidth required
100 *
101 * Return: 0 if successful, negative error code otherwise
102 *
103 * For simplicity, this calculation assumes that all the transfers in the
104 * periodic schedule may occur in the same (micro)frame
105 */
106 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
107 struct dwc2_qh *qh)
108 {
109 int status;
110 s16 max_claimed_usecs;
111
112 status = 0;
113
114 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
115 /*
116 * High speed mode
117 * Max periodic usecs is 80% x 125 usec = 100 usec
118 */
119 max_claimed_usecs = 100 - qh->host_us;
120 } else {
121 /*
122 * Full speed mode
123 * Max periodic usecs is 90% x 1000 usec = 900 usec
124 */
125 max_claimed_usecs = 900 - qh->host_us;
126 }
127
128 if (hsotg->periodic_usecs > max_claimed_usecs) {
129 dev_err(hsotg->dev,
130 "%s: already claimed usecs %d, required usecs %d\n",
131 __func__, hsotg->periodic_usecs, qh->host_us);
132 status = -ENOSPC;
133 }
134
135 return status;
136 }
137
138 /**
139 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
140 *
141 * @map: The bitmap representing the schedule; will be updated
142 * upon success.
143 * @bits_per_period: The schedule represents several periods. This is how many
144 * bits are in each period. It's assumed that the beginning
145 * of the schedule will repeat after its end.
146 * @periods_in_map: The number of periods in the schedule.
147 * @num_bits: The number of bits we need per period we want to reserve
148 * in this function call.
149 * @interval: How often we need to be scheduled for the reservation this
150 * time. 1 means every period. 2 means every other period.
151 * ...you get the picture?
152 * @start: The bit number to start at. Normally 0. Must be within
153 * the interval or we return failure right away.
154 * @only_one_period: Normally we'll allow picking a start anywhere within the
155 * first interval, since we can still make all repetition
156 * requirements by doing that. However, if you pass true
157 * here then we'll return failure if we can't fit within
158 * the period that "start" is in.
159 *
160 * The idea here is that we want to schedule time for repeating events that all
161 * want the same resource. The resource is divided into fixed-sized periods
162 * and the events want to repeat every "interval" periods. The schedule
163 * granularity is one bit.
164 *
165 * To keep things "simple", we'll represent our schedule with a bitmap that
166 * contains a fixed number of periods. This gets rid of a lot of complexity
167 * but does mean that we need to handle things specially (and non-ideally) if
168 * the number of the periods in the schedule doesn't match well with the
169 * intervals that we're trying to schedule.
170 *
171 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
172 * - If interval is 1, we need to take up space in each of the 8
173 * periods we're scheduling. Easy.
174 * - If interval is 2, we need to take up space in half of the
175 * periods. Again, easy.
176 * - If interval is 3, we actually need to fall back to interval 1.
177 * Why? Because we might need time in any period. AKA for the
178 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be
179 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to
180 * 0, 3, and 6. Since we could be in any frame we need to reserve
181 * for all of them. Sucks, but that's what you gotta do. Note that
182 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but
183 * then we need more memory and time to do scheduling.
184 * - If interval is 4, easy.
185 * - If interval is 5, we again need interval 1. The schedule will be
186 * 0, 5, 2, 7, 4, 1, 6, 3, 0
187 * - If interval is 6, we need interval 2. 0, 6, 4, 2.
188 * - If interval is 7, we need interval 1.
189 * - If interval is 8, we need interval 8.
190 *
191 * If you do the math, you'll see that we need to pretend that interval is
192 * equal to the greatest_common_divisor(interval, periods_in_map).
193 *
194 * Note that at the moment this function tends to front-pack the schedule.
195 * In some cases that's really non-ideal (it's hard to schedule things that
196 * need to repeat every period). In other cases it's perfect (you can easily
197 * schedule bigger, less often repeating things).
198 *
199 * Here's the algorithm in action (8 periods, 5 bits per period):
200 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
201 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2
202 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5
203 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2
204 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2
205 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3
206 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6
207 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4
208 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
209 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0
210 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5
211 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2
212 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3
213 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6
214 * | | | | | | | | | Remv 1 bits, intv 1 at 4
215 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
216 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2
217 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3
218 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5
219 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6
220 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8
221 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12
222 *
223 * This function is pretty generic and could be easily abstracted if anything
224 * needed similar scheduling.
225 *
226 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
227 * unschedule routine. The map bitmap will be updated on a non-error result.
228 */
229 static int pmap_schedule(unsigned long *map, int bits_per_period,
230 int periods_in_map, int num_bits,
231 int interval, int start, bool only_one_period)
232 {
233 int interval_bits;
234 int to_reserve;
235 int first_end;
236 int i;
237
238 if (num_bits > bits_per_period)
239 return -ENOSPC;
240
241 /* Adjust interval as per description */
242 interval = gcd(interval, periods_in_map);
243
244 interval_bits = bits_per_period * interval;
245 to_reserve = periods_in_map / interval;
246
247 /* If start has gotten us past interval then we can't schedule */
248 if (start >= interval_bits)
249 return -ENOSPC;
250
251 if (only_one_period)
252 /* Must fit within same period as start; end at begin of next */
253 first_end = (start / bits_per_period + 1) * bits_per_period;
254 else
255 /* Can fit anywhere in the first interval */
256 first_end = interval_bits;
257
258 /*
259 * We'll try to pick the first repetition, then see if that time
260 * is free for each of the subsequent repetitions. If it's not
261 * we'll adjust the start time for the next search of the first
262 * repetition.
263 */
264 while (start + num_bits <= first_end) {
265 int end;
266
267 /* Need to stay within this period */
268 end = (start / bits_per_period + 1) * bits_per_period;
269
270 /* Look for num_bits us in this microframe starting at start */
271 start = bitmap_find_next_zero_area(map, end, start, num_bits,
272 0);
273
274 /*
275 * We should get start >= end if we fail. We might be
276 * able to check the next microframe depending on the
277 * interval, so continue on (start already updated).
278 */
279 if (start >= end) {
280 start = end;
281 continue;
282 }
283
284 /* At this point we have a valid point for first one */
285 for (i = 1; i < to_reserve; i++) {
286 int ith_start = start + interval_bits * i;
287 int ith_end = end + interval_bits * i;
288 int ret;
289
290 /* Use this as a dumb "check if bits are 0" */
291 ret = bitmap_find_next_zero_area(
292 map, ith_start + num_bits, ith_start, num_bits,
293 0);
294
295 /* We got the right place, continue checking */
296 if (ret == ith_start)
297 continue;
298
299 /* Move start up for next time and exit for loop */
300 ith_start = bitmap_find_next_zero_area(
301 map, ith_end, ith_start, num_bits, 0);
302 if (ith_start >= ith_end)
303 /* Need a while new period next time */
304 start = end;
305 else
306 start = ith_start - interval_bits * i;
307 break;
308 }
309
310 /* If didn't exit the for loop with a break, we have success */
311 if (i == to_reserve)
312 break;
313 }
314
315 if (start + num_bits > first_end)
316 return -ENOSPC;
317
318 for (i = 0; i < to_reserve; i++) {
319 int ith_start = start + interval_bits * i;
320
321 bitmap_set(map, ith_start, num_bits);
322 }
323
324 return start;
325 }
326
327 /**
328 * pmap_unschedule() - Undo work done by pmap_schedule()
329 *
330 * @map: See pmap_schedule().
331 * @bits_per_period: See pmap_schedule().
332 * @periods_in_map: See pmap_schedule().
333 * @num_bits: The number of bits that was passed to schedule.
334 * @interval: The interval that was passed to schedule.
335 * @start: The return value from pmap_schedule().
336 */
337 static void pmap_unschedule(unsigned long *map, int bits_per_period,
338 int periods_in_map, int num_bits,
339 int interval, int start)
340 {
341 int interval_bits;
342 int to_release;
343 int i;
344
345 /* Adjust interval as per description in pmap_schedule() */
346 interval = gcd(interval, periods_in_map);
347
348 interval_bits = bits_per_period * interval;
349 to_release = periods_in_map / interval;
350
351 for (i = 0; i < to_release; i++) {
352 int ith_start = start + interval_bits * i;
353
354 bitmap_clear(map, ith_start, num_bits);
355 }
356 }
357
358 /**
359 * dwc2_get_ls_map() - Get the map used for the given qh
360 *
361 * @hsotg: The HCD state structure for the DWC OTG controller.
362 * @qh: QH for the periodic transfer.
363 *
364 * We'll always get the periodic map out of our TT. Note that even if we're
365 * running the host straight in low speed / full speed mode it appears as if
366 * a TT is allocated for us, so we'll use it. If that ever changes we can
367 * add logic here to get a map out of "hsotg" if !qh->do_split.
368 *
369 * Returns: the map or NULL if a map couldn't be found.
370 */
371 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
372 struct dwc2_qh *qh)
373 {
374 unsigned long *map;
375
376 /* Don't expect to be missing a TT and be doing low speed scheduling */
377 if (WARN_ON(!qh->dwc_tt))
378 return NULL;
379
380 /* Get the map and adjust if this is a multi_tt hub */
381 map = qh->dwc_tt->periodic_bitmaps;
382 if (qh->dwc_tt->usb_tt->multi)
383 map += DWC2_ELEMENTS_PER_LS_BITMAP * qh->ttport;
384
385 return map;
386 }
387
388 #ifdef DWC2_PRINT_SCHEDULE
389 /*
390 * cat_printf() - A printf() + strcat() helper
391 *
392 * This is useful for concatenating a bunch of strings where each string is
393 * constructed using printf.
394 *
395 * @buf: The destination buffer; will be updated to point after the printed
396 * data.
397 * @size: The number of bytes in the buffer (includes space for '\0').
398 * @fmt: The format for printf.
399 * @...: The args for printf.
400 */
401 static __printf(3, 4)
402 void cat_printf(char **buf, size_t *size, const char *fmt, ...)
403 {
404 va_list args;
405 int i;
406
407 if (*size == 0)
408 return;
409
410 va_start(args, fmt);
411 i = vsnprintf(*buf, *size, fmt, args);
412 va_end(args);
413
414 if (i >= *size) {
415 (*buf)[*size - 1] = '\0';
416 *buf += *size;
417 *size = 0;
418 } else {
419 *buf += i;
420 *size -= i;
421 }
422 }
423
424 /*
425 * pmap_print() - Print the given periodic map
426 *
427 * Will attempt to print out the periodic schedule.
428 *
429 * @map: See pmap_schedule().
430 * @bits_per_period: See pmap_schedule().
431 * @periods_in_map: See pmap_schedule().
432 * @period_name: The name of 1 period, like "uFrame"
433 * @units: The name of the units, like "us".
434 * @print_fn: The function to call for printing.
435 * @print_data: Opaque data to pass to the print function.
436 */
437 static void pmap_print(unsigned long *map, int bits_per_period,
438 int periods_in_map, const char *period_name,
439 const char *units,
440 void (*print_fn)(const char *str, void *data),
441 void *print_data)
442 {
443 int period;
444
445 for (period = 0; period < periods_in_map; period++) {
446 char tmp[64];
447 char *buf = tmp;
448 size_t buf_size = sizeof(tmp);
449 int period_start = period * bits_per_period;
450 int period_end = period_start + bits_per_period;
451 int start = 0;
452 int count = 0;
453 bool printed = false;
454 int i;
455
456 for (i = period_start; i < period_end + 1; i++) {
457 /* Handle case when ith bit is set */
458 if (i < period_end &&
459 bitmap_find_next_zero_area(map, i + 1,
460 i, 1, 0) != i) {
461 if (count == 0)
462 start = i - period_start;
463 count++;
464 continue;
465 }
466
467 /* ith bit isn't set; don't care if count == 0 */
468 if (count == 0)
469 continue;
470
471 if (!printed)
472 cat_printf(&buf, &buf_size, "%s %d: ",
473 period_name, period);
474 else
475 cat_printf(&buf, &buf_size, ", ");
476 printed = true;
477
478 cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
479 units, start + count - 1, units);
480 count = 0;
481 }
482
483 if (printed)
484 print_fn(tmp, print_data);
485 }
486 }
487
488 struct dwc2_qh_print_data {
489 struct dwc2_hsotg *hsotg;
490 struct dwc2_qh *qh;
491 };
492
493 /**
494 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
495 *
496 * @str: The string to print
497 * @data: A pointer to a struct dwc2_qh_print_data
498 */
499 static void dwc2_qh_print(const char *str, void *data)
500 {
501 struct dwc2_qh_print_data *print_data = data;
502
503 dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
504 }
505
506 /**
507 * dwc2_qh_schedule_print() - Print the periodic schedule
508 *
509 * @hsotg: The HCD state structure for the DWC OTG controller.
510 * @qh: QH to print.
511 */
512 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
513 struct dwc2_qh *qh)
514 {
515 struct dwc2_qh_print_data print_data = { hsotg, qh };
516 int i;
517
518 /*
519 * The printing functions are quite slow and inefficient.
520 * If we don't have tracing turned on, don't run unless the special
521 * define is turned on.
522 */
523
524 if (qh->schedule_low_speed) {
525 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
526
527 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
528 qh, qh->device_us,
529 DWC2_ROUND_US_TO_SLICE(qh->device_us),
530 DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
531
532 if (map) {
533 dwc2_sch_dbg(hsotg,
534 "QH=%p Whole low/full speed map %p now:\n",
535 qh, map);
536 pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
537 DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
538 dwc2_qh_print, &print_data);
539 }
540 }
541
542 for (i = 0; i < qh->num_hs_transfers; i++) {
543 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
544 int uframe = trans_time->start_schedule_us /
545 DWC2_HS_PERIODIC_US_PER_UFRAME;
546 int rel_us = trans_time->start_schedule_us %
547 DWC2_HS_PERIODIC_US_PER_UFRAME;
548
549 dwc2_sch_dbg(hsotg,
550 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
551 qh, i, trans_time->duration_us, uframe, rel_us);
552 }
553 if (qh->num_hs_transfers) {
554 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
555 pmap_print(hsotg->hs_periodic_bitmap,
556 DWC2_HS_PERIODIC_US_PER_UFRAME,
557 DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
558 dwc2_qh_print, &print_data);
559 }
560 }
561 #else
562 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
563 struct dwc2_qh *qh) {};
564 #endif
565
566 /**
567 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
568 *
569 * @hsotg: The HCD state structure for the DWC OTG controller.
570 * @qh: QH for the periodic transfer.
571 * @search_slice: We'll start trying to schedule at the passed slice.
572 * Remember that slices are the units of the low speed
573 * schedule (think 25us or so).
574 *
575 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
576 *
577 * Normally we schedule low speed devices on the map associated with the TT.
578 *
579 * Returns: 0 for success or an error code.
580 */
581 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
582 int search_slice)
583 {
584 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
585 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
586 int slice;
587
588 if (!map)
589 return -EINVAL;
590
591 /*
592 * Schedule on the proper low speed map with our low speed scheduling
593 * parameters. Note that we use the "device_interval" here since
594 * we want the low speed interval and the only way we'd be in this
595 * function is if the device is low speed.
596 *
597 * If we happen to be doing low speed and high speed scheduling for the
598 * same transaction (AKA we have a split) we always do low speed first.
599 * That means we can always pass "false" for only_one_period (that
600 * parameters is only useful when we're trying to get one schedule to
601 * match what we already planned in the other schedule).
602 */
603 slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
604 DWC2_LS_SCHEDULE_FRAMES, slices,
605 qh->device_interval, search_slice, false);
606
607 if (slice < 0)
608 return slice;
609
610 qh->ls_start_schedule_slice = slice;
611 return 0;
612 }
613
614 /**
615 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
616 *
617 * @hsotg: The HCD state structure for the DWC OTG controller.
618 * @qh: QH for the periodic transfer.
619 */
620 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
621 struct dwc2_qh *qh)
622 {
623 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
624 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
625
626 /* Schedule should have failed, so no worries about no error code */
627 if (!map)
628 return;
629
630 pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
631 DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
632 qh->ls_start_schedule_slice);
633 }
634
635 /**
636 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
637 *
638 * This will schedule something on the main dwc2 schedule.
639 *
640 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll
641 * update this with the result upon success. We also use the duration from
642 * the same structure.
643 *
644 * @hsotg: The HCD state structure for the DWC OTG controller.
645 * @qh: QH for the periodic transfer.
646 * @only_one_period: If true we will limit ourselves to just looking at
647 * one period (aka one 100us chunk). This is used if we have
648 * already scheduled something on the low speed schedule and
649 * need to find something that matches on the high speed one.
650 * @index: The index into qh->hs_transfers that we're working with.
651 *
652 * Returns: 0 for success or an error code. Upon success the
653 * dwc2_hs_transfer_time specified by "index" will be updated.
654 */
655 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
656 bool only_one_period, int index)
657 {
658 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
659 int us;
660
661 us = pmap_schedule(hsotg->hs_periodic_bitmap,
662 DWC2_HS_PERIODIC_US_PER_UFRAME,
663 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
664 qh->host_interval, trans_time->start_schedule_us,
665 only_one_period);
666
667 if (us < 0)
668 return us;
669
670 trans_time->start_schedule_us = us;
671 return 0;
672 }
673
674 /**
675 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
676 *
677 * @hsotg: The HCD state structure for the DWC OTG controller.
678 * @qh: QH for the periodic transfer.
679 */
680 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
681 struct dwc2_qh *qh, int index)
682 {
683 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
684
685 pmap_unschedule(hsotg->hs_periodic_bitmap,
686 DWC2_HS_PERIODIC_US_PER_UFRAME,
687 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
688 qh->host_interval, trans_time->start_schedule_us);
689 }
690
691 /**
692 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
693 *
694 * This is the most complicated thing in USB. We have to find matching time
695 * in both the global high speed schedule for the port and the low speed
696 * schedule for the TT associated with the given device.
697 *
698 * Being here means that the host must be running in high speed mode and the
699 * device is in low or full speed mode (and behind a hub).
700 *
701 * @hsotg: The HCD state structure for the DWC OTG controller.
702 * @qh: QH for the periodic transfer.
703 */
704 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
705 struct dwc2_qh *qh)
706 {
707 int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
708 int ls_search_slice;
709 int err = 0;
710 int host_interval_in_sched;
711
712 /*
713 * The interval (how often to repeat) in the actual host schedule.
714 * See pmap_schedule() for gcd() explanation.
715 */
716 host_interval_in_sched = gcd(qh->host_interval,
717 DWC2_HS_SCHEDULE_UFRAMES);
718
719 /*
720 * We always try to find space in the low speed schedule first, then
721 * try to find high speed time that matches. If we don't, we'll bump
722 * up the place we start searching in the low speed schedule and try
723 * again. To start we'll look right at the beginning of the low speed
724 * schedule.
725 *
726 * Note that this will tend to front-load the high speed schedule.
727 * We may eventually want to try to avoid this by either considering
728 * both schedules together or doing some sort of round robin.
729 */
730 ls_search_slice = 0;
731
732 while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
733 int start_s_uframe;
734 int ssplit_s_uframe;
735 int second_s_uframe;
736 int rel_uframe;
737 int first_count;
738 int middle_count;
739 int end_count;
740 int first_data_bytes;
741 int other_data_bytes;
742 int i;
743
744 if (qh->schedule_low_speed) {
745 err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
746
747 /*
748 * If we got an error here there's no other magic we
749 * can do, so bail. All the looping above is only
750 * helpful to redo things if we got a low speed slot
751 * and then couldn't find a matching high speed slot.
752 */
753 if (err)
754 return err;
755 } else {
756 /* Must be missing the tt structure? Why? */
757 WARN_ON_ONCE(1);
758 }
759
760 /*
761 * This will give us a number 0 - 7 if
762 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
763 */
764 start_s_uframe = qh->ls_start_schedule_slice /
765 DWC2_SLICES_PER_UFRAME;
766
767 /* Get a number that's always 0 - 7 */
768 rel_uframe = (start_s_uframe % 8);
769
770 /*
771 * If we were going to start in uframe 7 then we would need to
772 * issue a start split in uframe 6, which spec says is not OK.
773 * Move on to the next full frame (assuming there is one).
774 *
775 * See 11.18.4 Host Split Transaction Scheduling Requirements
776 * bullet 1.
777 */
778 if (rel_uframe == 7) {
779 if (qh->schedule_low_speed)
780 dwc2_ls_pmap_unschedule(hsotg, qh);
781 ls_search_slice =
782 (qh->ls_start_schedule_slice /
783 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
784 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
785 continue;
786 }
787
788 /*
789 * For ISOC in:
790 * - start split (frame -1)
791 * - complete split w/ data (frame +1)
792 * - complete split w/ data (frame +2)
793 * - ...
794 * - complete split w/ data (frame +num_data_packets)
795 * - complete split w/ data (frame +num_data_packets+1)
796 * - complete split w/ data (frame +num_data_packets+2, max 8)
797 * ...though if frame was "0" then max is 7...
798 *
799 * For ISOC out we might need to do:
800 * - start split w/ data (frame -1)
801 * - start split w/ data (frame +0)
802 * - ...
803 * - start split w/ data (frame +num_data_packets-2)
804 *
805 * For INTERRUPT in we might need to do:
806 * - start split (frame -1)
807 * - complete split w/ data (frame +1)
808 * - complete split w/ data (frame +2)
809 * - complete split w/ data (frame +3, max 8)
810 *
811 * For INTERRUPT out we might need to do:
812 * - start split w/ data (frame -1)
813 * - complete split (frame +1)
814 * - complete split (frame +2)
815 * - complete split (frame +3, max 8)
816 *
817 * Start adjusting!
818 */
819 ssplit_s_uframe = (start_s_uframe +
820 host_interval_in_sched - 1) %
821 host_interval_in_sched;
822 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
823 second_s_uframe = start_s_uframe;
824 else
825 second_s_uframe = start_s_uframe + 1;
826
827 /* First data transfer might not be all 188 bytes. */
828 first_data_bytes = 188 -
829 DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
830 DWC2_SLICES_PER_UFRAME),
831 DWC2_SLICES_PER_UFRAME);
832 if (first_data_bytes > bytecount)
833 first_data_bytes = bytecount;
834 other_data_bytes = bytecount - first_data_bytes;
835
836 /*
837 * For now, skip OUT xfers where first xfer is partial
838 *
839 * Main dwc2 code assumes:
840 * - INT transfers never get split in two.
841 * - ISOC transfers can always transfer 188 bytes the first
842 * time.
843 *
844 * Until that code is fixed, try again if the first transfer
845 * couldn't transfer everything.
846 *
847 * This code can be removed if/when the rest of dwc2 handles
848 * the above cases. Until it's fixed we just won't be able
849 * to schedule quite as tightly.
850 */
851 if (!qh->ep_is_in &&
852 (first_data_bytes != min_t(int, 188, bytecount))) {
853 dwc2_sch_dbg(hsotg,
854 "QH=%p avoiding broken 1st xfer (%d, %d)\n",
855 qh, first_data_bytes, bytecount);
856 if (qh->schedule_low_speed)
857 dwc2_ls_pmap_unschedule(hsotg, qh);
858 ls_search_slice = (start_s_uframe + 1) *
859 DWC2_SLICES_PER_UFRAME;
860 continue;
861 }
862
863 /* Start by assuming transfers for the bytes */
864 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
865
866 /*
867 * Everything except ISOC OUT has extra transfers. Rules are
868 * complicated. See 11.18.4 Host Split Transaction Scheduling
869 * Requirements bullet 3.
870 */
871 if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
872 if (rel_uframe == 6)
873 qh->num_hs_transfers += 2;
874 else
875 qh->num_hs_transfers += 3;
876
877 if (qh->ep_is_in) {
878 /*
879 * First is start split, middle/end is data.
880 * Allocate full data bytes for all data.
881 */
882 first_count = 4;
883 middle_count = bytecount;
884 end_count = bytecount;
885 } else {
886 /*
887 * First is data, middle/end is complete.
888 * First transfer and second can have data.
889 * Rest should just have complete split.
890 */
891 first_count = first_data_bytes;
892 middle_count = max_t(int, 4, other_data_bytes);
893 end_count = 4;
894 }
895 } else {
896 if (qh->ep_is_in) {
897 int last;
898
899 /* Account for the start split */
900 qh->num_hs_transfers++;
901
902 /* Calculate "L" value from spec */
903 last = rel_uframe + qh->num_hs_transfers + 1;
904
905 /* Start with basic case */
906 if (last <= 6)
907 qh->num_hs_transfers += 2;
908 else
909 qh->num_hs_transfers += 1;
910
911 /* Adjust downwards */
912 if (last >= 6 && rel_uframe == 0)
913 qh->num_hs_transfers--;
914
915 /* 1st = start; rest can contain data */
916 first_count = 4;
917 middle_count = min_t(int, 188, bytecount);
918 end_count = middle_count;
919 } else {
920 /* All contain data, last might be smaller */
921 first_count = first_data_bytes;
922 middle_count = min_t(int, 188,
923 other_data_bytes);
924 end_count = other_data_bytes % 188;
925 }
926 }
927
928 /* Assign durations per uFrame */
929 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
930 for (i = 1; i < qh->num_hs_transfers - 1; i++)
931 qh->hs_transfers[i].duration_us =
932 HS_USECS_ISO(middle_count);
933 if (qh->num_hs_transfers > 1)
934 qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
935 HS_USECS_ISO(end_count);
936
937 /*
938 * Assign start us. The call below to dwc2_hs_pmap_schedule()
939 * will start with these numbers but may adjust within the same
940 * microframe.
941 */
942 qh->hs_transfers[0].start_schedule_us =
943 ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
944 for (i = 1; i < qh->num_hs_transfers; i++)
945 qh->hs_transfers[i].start_schedule_us =
946 ((second_s_uframe + i - 1) %
947 DWC2_HS_SCHEDULE_UFRAMES) *
948 DWC2_HS_PERIODIC_US_PER_UFRAME;
949
950 /* Try to schedule with filled in hs_transfers above */
951 for (i = 0; i < qh->num_hs_transfers; i++) {
952 err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
953 if (err)
954 break;
955 }
956
957 /* If we scheduled all w/out breaking out then we're all good */
958 if (i == qh->num_hs_transfers)
959 break;
960
961 for (; i >= 0; i--)
962 dwc2_hs_pmap_unschedule(hsotg, qh, i);
963
964 if (qh->schedule_low_speed)
965 dwc2_ls_pmap_unschedule(hsotg, qh);
966
967 /* Try again starting in the next microframe */
968 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
969 }
970
971 if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
972 return -ENOSPC;
973
974 return 0;
975 }
976
977 /**
978 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
979 *
980 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
981 * interface.
982 *
983 * @hsotg: The HCD state structure for the DWC OTG controller.
984 * @qh: QH for the periodic transfer.
985 */
986 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
987 {
988 /* In non-split host and device time are the same */
989 WARN_ON(qh->host_us != qh->device_us);
990 WARN_ON(qh->host_interval != qh->device_interval);
991 WARN_ON(qh->num_hs_transfers != 1);
992
993 /* We'll have one transfer; init start to 0 before calling scheduler */
994 qh->hs_transfers[0].start_schedule_us = 0;
995 qh->hs_transfers[0].duration_us = qh->host_us;
996
997 return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
998 }
999
1000 /**
1001 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1002 *
1003 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1004 * interface.
1005 *
1006 * @hsotg: The HCD state structure for the DWC OTG controller.
1007 * @qh: QH for the periodic transfer.
1008 */
1009 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1010 {
1011 /* In non-split host and device time are the same */
1012 WARN_ON(qh->host_us != qh->device_us);
1013 WARN_ON(qh->host_interval != qh->device_interval);
1014 WARN_ON(!qh->schedule_low_speed);
1015
1016 /* Run on the main low speed schedule (no split = no hub = no TT) */
1017 return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1018 }
1019
1020 /**
1021 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1022 *
1023 * Calls one of the 3 sub-function depending on what type of transfer this QH
1024 * is for. Also adds some printing.
1025 *
1026 * @hsotg: The HCD state structure for the DWC OTG controller.
1027 * @qh: QH for the periodic transfer.
1028 */
1029 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1030 {
1031 int ret;
1032
1033 if (qh->dev_speed == USB_SPEED_HIGH)
1034 ret = dwc2_uframe_schedule_hs(hsotg, qh);
1035 else if (!qh->do_split)
1036 ret = dwc2_uframe_schedule_ls(hsotg, qh);
1037 else
1038 ret = dwc2_uframe_schedule_split(hsotg, qh);
1039
1040 if (ret)
1041 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1042 else
1043 dwc2_qh_schedule_print(hsotg, qh);
1044
1045 return ret;
1046 }
1047
1048 /**
1049 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1050 *
1051 * @hsotg: The HCD state structure for the DWC OTG controller.
1052 * @qh: QH for the periodic transfer.
1053 */
1054 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1055 {
1056 int i;
1057
1058 for (i = 0; i < qh->num_hs_transfers; i++)
1059 dwc2_hs_pmap_unschedule(hsotg, qh, i);
1060
1061 if (qh->schedule_low_speed)
1062 dwc2_ls_pmap_unschedule(hsotg, qh);
1063
1064 dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1065 }
1066
1067 /**
1068 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1069 *
1070 * Takes a qh that has already been scheduled (which means we know we have the
1071 * bandwdith reserved for us) and set the next_active_frame and the
1072 * start_active_frame.
1073 *
1074 * This is expected to be called on qh's that weren't previously actively
1075 * running. It just picks the next frame that we can fit into without any
1076 * thought about the past.
1077 *
1078 * @hsotg: The HCD state structure for the DWC OTG controller
1079 * @qh: QH for a periodic endpoint
1080 *
1081 */
1082 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1083 {
1084 u16 frame_number;
1085 u16 earliest_frame;
1086 u16 next_active_frame;
1087 u16 relative_frame;
1088 u16 interval;
1089
1090 /*
1091 * Use the real frame number rather than the cached value as of the
1092 * last SOF to give us a little extra slop.
1093 */
1094 frame_number = dwc2_hcd_get_frame_number(hsotg);
1095
1096 /*
1097 * We wouldn't want to start any earlier than the next frame just in
1098 * case the frame number ticks as we're doing this calculation.
1099 *
1100 * NOTE: if we could quantify how long till we actually get scheduled
1101 * we might be able to avoid the "+ 1" by looking at the upper part of
1102 * HFNUM (the FRREM field). For now we'll just use the + 1 though.
1103 */
1104 earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1105 next_active_frame = earliest_frame;
1106
1107 /* Get the "no microframe schduler" out of the way... */
1108 if (!hsotg->params.uframe_sched) {
1109 if (qh->do_split)
1110 /* Splits are active at microframe 0 minus 1 */
1111 next_active_frame |= 0x7;
1112 goto exit;
1113 }
1114
1115 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1116 /*
1117 * We're either at high speed or we're doing a split (which
1118 * means we're talking high speed to a hub). In any case
1119 * the first frame should be based on when the first scheduled
1120 * event is.
1121 */
1122 WARN_ON(qh->num_hs_transfers < 1);
1123
1124 relative_frame = qh->hs_transfers[0].start_schedule_us /
1125 DWC2_HS_PERIODIC_US_PER_UFRAME;
1126
1127 /* Adjust interval as per high speed schedule */
1128 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1129
1130 } else {
1131 /*
1132 * Low or full speed directly on dwc2. Just about the same
1133 * as high speed but on a different schedule and with slightly
1134 * different adjustments. Note that this works because when
1135 * the host and device are both low speed then frames in the
1136 * controller tick at low speed.
1137 */
1138 relative_frame = qh->ls_start_schedule_slice /
1139 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1140 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1141 }
1142
1143 /* Scheduler messed up if frame is past interval */
1144 WARN_ON(relative_frame >= interval);
1145
1146 /*
1147 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1148 * done the gcd(), so it's safe to move to the beginning of the current
1149 * interval like this.
1150 *
1151 * After this we might be before earliest_frame, but don't worry,
1152 * we'll fix it...
1153 */
1154 next_active_frame = (next_active_frame / interval) * interval;
1155
1156 /*
1157 * Actually choose to start at the frame number we've been
1158 * scheduled for.
1159 */
1160 next_active_frame = dwc2_frame_num_inc(next_active_frame,
1161 relative_frame);
1162
1163 /*
1164 * We actually need 1 frame before since the next_active_frame is
1165 * the frame number we'll be put on the ready list and we won't be on
1166 * the bus until 1 frame later.
1167 */
1168 next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1169
1170 /*
1171 * By now we might actually be before the earliest_frame. Let's move
1172 * up intervals until we're not.
1173 */
1174 while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1175 next_active_frame = dwc2_frame_num_inc(next_active_frame,
1176 interval);
1177
1178 exit:
1179 qh->next_active_frame = next_active_frame;
1180 qh->start_active_frame = next_active_frame;
1181
1182 dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1183 qh, frame_number, qh->next_active_frame);
1184 }
1185
1186 /**
1187 * dwc2_do_reserve() - Make a periodic reservation
1188 *
1189 * Try to allocate space in the periodic schedule. Depending on parameters
1190 * this might use the microframe scheduler or the dumb scheduler.
1191 *
1192 * @hsotg: The HCD state structure for the DWC OTG controller
1193 * @qh: QH for the periodic transfer.
1194 *
1195 * Returns: 0 upon success; error upon failure.
1196 */
1197 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1198 {
1199 int status;
1200
1201 if (hsotg->params.uframe_sched) {
1202 status = dwc2_uframe_schedule(hsotg, qh);
1203 } else {
1204 status = dwc2_periodic_channel_available(hsotg);
1205 if (status) {
1206 dev_info(hsotg->dev,
1207 "%s: No host channel available for periodic transfer\n",
1208 __func__);
1209 return status;
1210 }
1211
1212 status = dwc2_check_periodic_bandwidth(hsotg, qh);
1213 }
1214
1215 if (status) {
1216 dev_dbg(hsotg->dev,
1217 "%s: Insufficient periodic bandwidth for periodic transfer\n",
1218 __func__);
1219 return status;
1220 }
1221
1222 if (!hsotg->params.uframe_sched)
1223 /* Reserve periodic channel */
1224 hsotg->periodic_channels++;
1225
1226 /* Update claimed usecs per (micro)frame */
1227 hsotg->periodic_usecs += qh->host_us;
1228
1229 dwc2_pick_first_frame(hsotg, qh);
1230
1231 return 0;
1232 }
1233
1234 /**
1235 * dwc2_do_unreserve() - Actually release the periodic reservation
1236 *
1237 * This function actually releases the periodic bandwidth that was reserved
1238 * by the given qh.
1239 *
1240 * @hsotg: The HCD state structure for the DWC OTG controller
1241 * @qh: QH for the periodic transfer.
1242 */
1243 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1244 {
1245 assert_spin_locked(&hsotg->lock);
1246
1247 WARN_ON(!qh->unreserve_pending);
1248
1249 /* No more unreserve pending--we're doing it */
1250 qh->unreserve_pending = false;
1251
1252 if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1253 list_del_init(&qh->qh_list_entry);
1254
1255 /* Update claimed usecs per (micro)frame */
1256 hsotg->periodic_usecs -= qh->host_us;
1257
1258 if (hsotg->params.uframe_sched) {
1259 dwc2_uframe_unschedule(hsotg, qh);
1260 } else {
1261 /* Release periodic channel reservation */
1262 hsotg->periodic_channels--;
1263 }
1264 }
1265
1266 /**
1267 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1268 *
1269 * According to the kernel doc for usb_submit_urb() (specifically the part about
1270 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1271 * long as a device driver keeps submitting. Since we're using HCD_BH to give
1272 * back the URB we need to give the driver a little bit of time before we
1273 * release the reservation. This worker is called after the appropriate
1274 * delay.
1275 *
1276 * @work: Pointer to a qh unreserve_work.
1277 */
1278 static void dwc2_unreserve_timer_fn(unsigned long data)
1279 {
1280 struct dwc2_qh *qh = (struct dwc2_qh *)data;
1281 struct dwc2_hsotg *hsotg = qh->hsotg;
1282 unsigned long flags;
1283
1284 /*
1285 * Wait for the lock, or for us to be scheduled again. We
1286 * could be scheduled again if:
1287 * - We started executing but didn't get the lock yet.
1288 * - A new reservation came in, but cancel didn't take effect
1289 * because we already started executing.
1290 * - The timer has been kicked again.
1291 * In that case cancel and wait for the next call.
1292 */
1293 while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1294 if (timer_pending(&qh->unreserve_timer))
1295 return;
1296 }
1297
1298 /*
1299 * Might be no more unreserve pending if:
1300 * - We started executing but didn't get the lock yet.
1301 * - A new reservation came in, but cancel didn't take effect
1302 * because we already started executing.
1303 *
1304 * We can't put this in the loop above because unreserve_pending needs
1305 * to be accessed under lock, so we can only check it once we got the
1306 * lock.
1307 */
1308 if (qh->unreserve_pending)
1309 dwc2_do_unreserve(hsotg, qh);
1310
1311 spin_unlock_irqrestore(&hsotg->lock, flags);
1312 }
1313
1314 /**
1315 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1316 * host channel is large enough to handle the maximum data transfer in a single
1317 * (micro)frame for a periodic transfer
1318 *
1319 * @hsotg: The HCD state structure for the DWC OTG controller
1320 * @qh: QH for a periodic endpoint
1321 *
1322 * Return: 0 if successful, negative error code otherwise
1323 */
1324 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1325 struct dwc2_qh *qh)
1326 {
1327 u32 max_xfer_size;
1328 u32 max_channel_xfer_size;
1329 int status = 0;
1330
1331 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
1332 max_channel_xfer_size = hsotg->params.max_transfer_size;
1333
1334 if (max_xfer_size > max_channel_xfer_size) {
1335 dev_err(hsotg->dev,
1336 "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1337 __func__, max_xfer_size, max_channel_xfer_size);
1338 status = -ENOSPC;
1339 }
1340
1341 return status;
1342 }
1343
1344 /**
1345 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1346 * the periodic schedule
1347 *
1348 * @hsotg: The HCD state structure for the DWC OTG controller
1349 * @qh: QH for the periodic transfer. The QH should already contain the
1350 * scheduling information.
1351 *
1352 * Return: 0 if successful, negative error code otherwise
1353 */
1354 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1355 {
1356 int status;
1357
1358 status = dwc2_check_max_xfer_size(hsotg, qh);
1359 if (status) {
1360 dev_dbg(hsotg->dev,
1361 "%s: Channel max transfer size too small for periodic transfer\n",
1362 __func__);
1363 return status;
1364 }
1365
1366 /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1367 if (del_timer(&qh->unreserve_timer))
1368 WARN_ON(!qh->unreserve_pending);
1369
1370 /*
1371 * Only need to reserve if there's not an unreserve pending, since if an
1372 * unreserve is pending then by definition our old reservation is still
1373 * valid. Unreserve might still be pending even if we didn't cancel if
1374 * dwc2_unreserve_timer_fn() already started. Code in the timer handles
1375 * that case.
1376 */
1377 if (!qh->unreserve_pending) {
1378 status = dwc2_do_reserve(hsotg, qh);
1379 if (status)
1380 return status;
1381 } else {
1382 /*
1383 * It might have been a while, so make sure that frame_number
1384 * is still good. Note: we could also try to use the similar
1385 * dwc2_next_periodic_start() but that schedules much more
1386 * tightly and we might need to hurry and queue things up.
1387 */
1388 if (dwc2_frame_num_le(qh->next_active_frame,
1389 hsotg->frame_number))
1390 dwc2_pick_first_frame(hsotg, qh);
1391 }
1392
1393 qh->unreserve_pending = 0;
1394
1395 if (hsotg->params.dma_desc_enable)
1396 /* Don't rely on SOF and start in ready schedule */
1397 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1398 else
1399 /* Always start in inactive schedule */
1400 list_add_tail(&qh->qh_list_entry,
1401 &hsotg->periodic_sched_inactive);
1402
1403 return 0;
1404 }
1405
1406 /**
1407 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1408 * from the periodic schedule
1409 *
1410 * @hsotg: The HCD state structure for the DWC OTG controller
1411 * @qh: QH for the periodic transfer
1412 */
1413 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1414 struct dwc2_qh *qh)
1415 {
1416 bool did_modify;
1417
1418 assert_spin_locked(&hsotg->lock);
1419
1420 /*
1421 * Schedule the unreserve to happen in a little bit. Cases here:
1422 * - Unreserve worker might be sitting there waiting to grab the lock.
1423 * In this case it will notice it's been schedule again and will
1424 * quit.
1425 * - Unreserve worker might not be scheduled.
1426 *
1427 * We should never already be scheduled since dwc2_schedule_periodic()
1428 * should have canceled the scheduled unreserve timer (hence the
1429 * warning on did_modify).
1430 *
1431 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1432 * passed (otherwise if the jiffy counter might tick right after we
1433 * read it and we'll get no delay).
1434 */
1435 did_modify = mod_timer(&qh->unreserve_timer,
1436 jiffies + DWC2_UNRESERVE_DELAY + 1);
1437 WARN_ON(did_modify);
1438 qh->unreserve_pending = 1;
1439
1440 list_del_init(&qh->qh_list_entry);
1441 }
1442
1443 /**
1444 * dwc2_qh_init() - Initializes a QH structure
1445 *
1446 * @hsotg: The HCD state structure for the DWC OTG controller
1447 * @qh: The QH to init
1448 * @urb: Holds the information about the device/endpoint needed to initialize
1449 * the QH
1450 * @mem_flags: Flags for allocating memory.
1451 */
1452 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1453 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1454 {
1455 int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1456 u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1457 bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1458 bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1459 bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1460 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
1461 u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1462 bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1463 dev_speed != USB_SPEED_HIGH);
1464 int maxp = dwc2_hcd_get_mps(&urb->pipe_info);
1465 int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp);
1466 char *speed, *type;
1467
1468 /* Initialize QH */
1469 qh->hsotg = hsotg;
1470 setup_timer(&qh->unreserve_timer, dwc2_unreserve_timer_fn,
1471 (unsigned long)qh);
1472 qh->ep_type = ep_type;
1473 qh->ep_is_in = ep_is_in;
1474
1475 qh->data_toggle = DWC2_HC_PID_DATA0;
1476 qh->maxp = maxp;
1477 INIT_LIST_HEAD(&qh->qtd_list);
1478 INIT_LIST_HEAD(&qh->qh_list_entry);
1479
1480 qh->do_split = do_split;
1481 qh->dev_speed = dev_speed;
1482
1483 if (ep_is_int || ep_is_isoc) {
1484 /* Compute scheduling parameters once and save them */
1485 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1486 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1487 mem_flags,
1488 &qh->ttport);
1489 int device_ns;
1490
1491 qh->dwc_tt = dwc_tt;
1492
1493 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1494 ep_is_isoc, bytecount));
1495 device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1496 ep_is_isoc, bytecount);
1497
1498 if (do_split && dwc_tt)
1499 device_ns += dwc_tt->usb_tt->think_time;
1500 qh->device_us = NS_TO_US(device_ns);
1501
1502 qh->device_interval = urb->interval;
1503 qh->host_interval = urb->interval * (do_split ? 8 : 1);
1504
1505 /*
1506 * Schedule low speed if we're running the host in low or
1507 * full speed OR if we've got a "TT" to deal with to access this
1508 * device.
1509 */
1510 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1511 dwc_tt;
1512
1513 if (do_split) {
1514 /* We won't know num transfers until we schedule */
1515 qh->num_hs_transfers = -1;
1516 } else if (dev_speed == USB_SPEED_HIGH) {
1517 qh->num_hs_transfers = 1;
1518 } else {
1519 qh->num_hs_transfers = 0;
1520 }
1521
1522 /* We'll schedule later when we have something to do */
1523 }
1524
1525 switch (dev_speed) {
1526 case USB_SPEED_LOW:
1527 speed = "low";
1528 break;
1529 case USB_SPEED_FULL:
1530 speed = "full";
1531 break;
1532 case USB_SPEED_HIGH:
1533 speed = "high";
1534 break;
1535 default:
1536 speed = "?";
1537 break;
1538 }
1539
1540 switch (qh->ep_type) {
1541 case USB_ENDPOINT_XFER_ISOC:
1542 type = "isochronous";
1543 break;
1544 case USB_ENDPOINT_XFER_INT:
1545 type = "interrupt";
1546 break;
1547 case USB_ENDPOINT_XFER_CONTROL:
1548 type = "control";
1549 break;
1550 case USB_ENDPOINT_XFER_BULK:
1551 type = "bulk";
1552 break;
1553 default:
1554 type = "?";
1555 break;
1556 }
1557
1558 dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1559 speed, bytecount);
1560 dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1561 dwc2_hcd_get_dev_addr(&urb->pipe_info),
1562 dwc2_hcd_get_ep_num(&urb->pipe_info),
1563 ep_is_in ? "IN" : "OUT");
1564 if (ep_is_int || ep_is_isoc) {
1565 dwc2_sch_dbg(hsotg,
1566 "QH=%p ...duration: host=%d us, device=%d us\n",
1567 qh, qh->host_us, qh->device_us);
1568 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1569 qh, qh->host_interval, qh->device_interval);
1570 if (qh->schedule_low_speed)
1571 dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1572 qh, dwc2_get_ls_map(hsotg, qh));
1573 }
1574 }
1575
1576 /**
1577 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1578 *
1579 * @hsotg: The HCD state structure for the DWC OTG controller
1580 * @urb: Holds the information about the device/endpoint needed
1581 * to initialize the QH
1582 * @atomic_alloc: Flag to do atomic allocation if needed
1583 *
1584 * Return: Pointer to the newly allocated QH, or NULL on error
1585 */
1586 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1587 struct dwc2_hcd_urb *urb,
1588 gfp_t mem_flags)
1589 {
1590 struct dwc2_qh *qh;
1591
1592 if (!urb->priv)
1593 return NULL;
1594
1595 /* Allocate memory */
1596 qh = kzalloc(sizeof(*qh), mem_flags);
1597 if (!qh)
1598 return NULL;
1599
1600 dwc2_qh_init(hsotg, qh, urb, mem_flags);
1601
1602 if (hsotg->params.dma_desc_enable &&
1603 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1604 dwc2_hcd_qh_free(hsotg, qh);
1605 return NULL;
1606 }
1607
1608 return qh;
1609 }
1610
1611 /**
1612 * dwc2_hcd_qh_free() - Frees the QH
1613 *
1614 * @hsotg: HCD instance
1615 * @qh: The QH to free
1616 *
1617 * QH should already be removed from the list. QTD list should already be empty
1618 * if called from URB Dequeue.
1619 *
1620 * Must NOT be called with interrupt disabled or spinlock held
1621 */
1622 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1623 {
1624 /* Make sure any unreserve work is finished. */
1625 if (del_timer_sync(&qh->unreserve_timer)) {
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&hsotg->lock, flags);
1629 dwc2_do_unreserve(hsotg, qh);
1630 spin_unlock_irqrestore(&hsotg->lock, flags);
1631 }
1632 dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1633
1634 if (qh->desc_list)
1635 dwc2_hcd_qh_free_ddma(hsotg, qh);
1636 kfree(qh);
1637 }
1638
1639 /**
1640 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1641 * schedule if it is not already in the schedule. If the QH is already in
1642 * the schedule, no action is taken.
1643 *
1644 * @hsotg: The HCD state structure for the DWC OTG controller
1645 * @qh: The QH to add
1646 *
1647 * Return: 0 if successful, negative error code otherwise
1648 */
1649 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1650 {
1651 int status;
1652 u32 intr_mask;
1653
1654 if (dbg_qh(qh))
1655 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1656
1657 if (!list_empty(&qh->qh_list_entry))
1658 /* QH already in a schedule */
1659 return 0;
1660
1661 /* Add the new QH to the appropriate schedule */
1662 if (dwc2_qh_is_non_per(qh)) {
1663 /* Schedule right away */
1664 qh->start_active_frame = hsotg->frame_number;
1665 qh->next_active_frame = qh->start_active_frame;
1666
1667 /* Always start in inactive schedule */
1668 list_add_tail(&qh->qh_list_entry,
1669 &hsotg->non_periodic_sched_inactive);
1670 return 0;
1671 }
1672
1673 status = dwc2_schedule_periodic(hsotg, qh);
1674 if (status)
1675 return status;
1676 if (!hsotg->periodic_qh_count) {
1677 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1678 intr_mask |= GINTSTS_SOF;
1679 dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1680 }
1681 hsotg->periodic_qh_count++;
1682
1683 return 0;
1684 }
1685
1686 /**
1687 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1688 * schedule. Memory is not freed.
1689 *
1690 * @hsotg: The HCD state structure
1691 * @qh: QH to remove from schedule
1692 */
1693 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1694 {
1695 u32 intr_mask;
1696
1697 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1698
1699 if (list_empty(&qh->qh_list_entry))
1700 /* QH is not in a schedule */
1701 return;
1702
1703 if (dwc2_qh_is_non_per(qh)) {
1704 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1705 hsotg->non_periodic_qh_ptr =
1706 hsotg->non_periodic_qh_ptr->next;
1707 list_del_init(&qh->qh_list_entry);
1708 return;
1709 }
1710
1711 dwc2_deschedule_periodic(hsotg, qh);
1712 hsotg->periodic_qh_count--;
1713 if (!hsotg->periodic_qh_count &&
1714 !hsotg->params.dma_desc_enable) {
1715 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1716 intr_mask &= ~GINTSTS_SOF;
1717 dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1718 }
1719 }
1720
1721 /**
1722 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1723 *
1724 * This is called for setting next_active_frame for periodic splits for all but
1725 * the first packet of the split. Confusing? I thought so...
1726 *
1727 * Periodic splits are single low/full speed transfers that we end up splitting
1728 * up into several high speed transfers. They always fit into one full (1 ms)
1729 * frame but might be split over several microframes (125 us each). We to put
1730 * each of the parts on a very specific high speed frame.
1731 *
1732 * This function figures out where the next active uFrame needs to be.
1733 *
1734 * @hsotg: The HCD state structure
1735 * @qh: QH for the periodic transfer.
1736 * @frame_number: The current frame number.
1737 *
1738 * Return: number missed by (or 0 if we didn't miss).
1739 */
1740 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1741 struct dwc2_qh *qh, u16 frame_number)
1742 {
1743 u16 old_frame = qh->next_active_frame;
1744 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1745 int missed = 0;
1746 u16 incr;
1747
1748 /*
1749 * See dwc2_uframe_schedule_split() for split scheduling.
1750 *
1751 * Basically: increment 1 normally, but 2 right after the start split
1752 * (except for ISOC out).
1753 */
1754 if (old_frame == qh->start_active_frame &&
1755 !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1756 incr = 2;
1757 else
1758 incr = 1;
1759
1760 qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1761
1762 /*
1763 * Note that it's OK for frame_number to be 1 frame past
1764 * next_active_frame. Remember that next_active_frame is supposed to
1765 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame
1766 * past it just means schedule ASAP.
1767 *
1768 * It's _not_ OK, however, if we're more than one frame past.
1769 */
1770 if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1771 /*
1772 * OOPS, we missed. That's actually pretty bad since
1773 * the hub will be unhappy; try ASAP I guess.
1774 */
1775 missed = dwc2_frame_num_dec(prev_frame_number,
1776 qh->next_active_frame);
1777 qh->next_active_frame = frame_number;
1778 }
1779
1780 return missed;
1781 }
1782
1783 /**
1784 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1785 *
1786 * This is called for setting next_active_frame for a periodic transfer for
1787 * all cases other than midway through a periodic split. This will also update
1788 * start_active_frame.
1789 *
1790 * Since we _always_ keep start_active_frame as the start of the previous
1791 * transfer this is normally pretty easy: we just add our interval to
1792 * start_active_frame and we've got our answer.
1793 *
1794 * The tricks come into play if we miss. In that case we'll look for the next
1795 * slot we can fit into.
1796 *
1797 * @hsotg: The HCD state structure
1798 * @qh: QH for the periodic transfer.
1799 * @frame_number: The current frame number.
1800 *
1801 * Return: number missed by (or 0 if we didn't miss).
1802 */
1803 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1804 struct dwc2_qh *qh, u16 frame_number)
1805 {
1806 int missed = 0;
1807 u16 interval = qh->host_interval;
1808 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1809
1810 qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1811 interval);
1812
1813 /*
1814 * The dwc2_frame_num_gt() function used below won't work terribly well
1815 * with if we just incremented by a really large intervals since the
1816 * frame counter only goes to 0x3fff. It's terribly unlikely that we
1817 * will have missed in this case anyway. Just go to exit. If we want
1818 * to try to do better we'll need to keep track of a bigger counter
1819 * somewhere in the driver and handle overflows.
1820 */
1821 if (interval >= 0x1000)
1822 goto exit;
1823
1824 /*
1825 * Test for misses, which is when it's too late to schedule.
1826 *
1827 * A few things to note:
1828 * - We compare against prev_frame_number since start_active_frame
1829 * and next_active_frame are always 1 frame before we want things
1830 * to be active and we assume we can still get scheduled in the
1831 * current frame number.
1832 * - It's possible for start_active_frame (now incremented) to be
1833 * next_active_frame if we got an EO MISS (even_odd miss) which
1834 * basically means that we detected there wasn't enough time for
1835 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1836 * at the last second. We want to make sure we don't schedule
1837 * another transfer for the same frame. My test webcam doesn't seem
1838 * terribly upset by missing a transfer but really doesn't like when
1839 * we do two transfers in the same frame.
1840 * - Some misses are expected. Specifically, in order to work
1841 * perfectly dwc2 really needs quite spectacular interrupt latency
1842 * requirements. It needs to be able to handle its interrupts
1843 * completely within 125 us of them being asserted. That not only
1844 * means that the dwc2 interrupt handler needs to be fast but it
1845 * means that nothing else in the system has to block dwc2 for a long
1846 * time. We can help with the dwc2 parts of this, but it's hard to
1847 * guarantee that a system will have interrupt latency < 125 us, so
1848 * we have to be robust to some misses.
1849 */
1850 if (qh->start_active_frame == qh->next_active_frame ||
1851 dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1852 u16 ideal_start = qh->start_active_frame;
1853 int periods_in_map;
1854
1855 /*
1856 * Adjust interval as per gcd with map size.
1857 * See pmap_schedule() for more details here.
1858 */
1859 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1860 periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1861 else
1862 periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1863 interval = gcd(interval, periods_in_map);
1864
1865 do {
1866 qh->start_active_frame = dwc2_frame_num_inc(
1867 qh->start_active_frame, interval);
1868 } while (dwc2_frame_num_gt(prev_frame_number,
1869 qh->start_active_frame));
1870
1871 missed = dwc2_frame_num_dec(qh->start_active_frame,
1872 ideal_start);
1873 }
1874
1875 exit:
1876 qh->next_active_frame = qh->start_active_frame;
1877
1878 return missed;
1879 }
1880
1881 /*
1882 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1883 * non-periodic schedule. The QH is added to the inactive non-periodic
1884 * schedule if any QTDs are still attached to the QH.
1885 *
1886 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1887 * there are any QTDs still attached to the QH, the QH is added to either the
1888 * periodic inactive schedule or the periodic ready schedule and its next
1889 * scheduled frame is calculated. The QH is placed in the ready schedule if
1890 * the scheduled frame has been reached already. Otherwise it's placed in the
1891 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1892 * completely removed from the periodic schedule.
1893 */
1894 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1895 int sched_next_periodic_split)
1896 {
1897 u16 old_frame = qh->next_active_frame;
1898 u16 frame_number;
1899 int missed;
1900
1901 if (dbg_qh(qh))
1902 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1903
1904 if (dwc2_qh_is_non_per(qh)) {
1905 dwc2_hcd_qh_unlink(hsotg, qh);
1906 if (!list_empty(&qh->qtd_list))
1907 /* Add back to inactive non-periodic schedule */
1908 dwc2_hcd_qh_add(hsotg, qh);
1909 return;
1910 }
1911
1912 /*
1913 * Use the real frame number rather than the cached value as of the
1914 * last SOF just to get us a little closer to reality. Note that
1915 * means we don't actually know if we've already handled the SOF
1916 * interrupt for this frame.
1917 */
1918 frame_number = dwc2_hcd_get_frame_number(hsotg);
1919
1920 if (sched_next_periodic_split)
1921 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1922 else
1923 missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1924
1925 dwc2_sch_vdbg(hsotg,
1926 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1927 qh, sched_next_periodic_split, frame_number, old_frame,
1928 qh->next_active_frame,
1929 dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1930 missed, missed ? "MISS" : "");
1931
1932 if (list_empty(&qh->qtd_list)) {
1933 dwc2_hcd_qh_unlink(hsotg, qh);
1934 return;
1935 }
1936
1937 /*
1938 * Remove from periodic_sched_queued and move to
1939 * appropriate queue
1940 *
1941 * Note: we purposely use the frame_number from the "hsotg" structure
1942 * since we know SOF interrupt will handle future frames.
1943 */
1944 if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1945 list_move_tail(&qh->qh_list_entry,
1946 &hsotg->periodic_sched_ready);
1947 else
1948 list_move_tail(&qh->qh_list_entry,
1949 &hsotg->periodic_sched_inactive);
1950 }
1951
1952 /**
1953 * dwc2_hcd_qtd_init() - Initializes a QTD structure
1954 *
1955 * @qtd: The QTD to initialize
1956 * @urb: The associated URB
1957 */
1958 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
1959 {
1960 qtd->urb = urb;
1961 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
1962 USB_ENDPOINT_XFER_CONTROL) {
1963 /*
1964 * The only time the QTD data toggle is used is on the data
1965 * phase of control transfers. This phase always starts with
1966 * DATA1.
1967 */
1968 qtd->data_toggle = DWC2_HC_PID_DATA1;
1969 qtd->control_phase = DWC2_CONTROL_SETUP;
1970 }
1971
1972 /* Start split */
1973 qtd->complete_split = 0;
1974 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
1975 qtd->isoc_split_offset = 0;
1976 qtd->in_process = 0;
1977
1978 /* Store the qtd ptr in the urb to reference the QTD */
1979 urb->qtd = qtd;
1980 }
1981
1982 /**
1983 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
1984 * Caller must hold driver lock.
1985 *
1986 * @hsotg: The DWC HCD structure
1987 * @qtd: The QTD to add
1988 * @qh: Queue head to add qtd to
1989 *
1990 * Return: 0 if successful, negative error code otherwise
1991 *
1992 * If the QH to which the QTD is added is not currently scheduled, it is placed
1993 * into the proper schedule based on its EP type.
1994 */
1995 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
1996 struct dwc2_qh *qh)
1997 {
1998 int retval;
1999
2000 if (unlikely(!qh)) {
2001 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2002 retval = -EINVAL;
2003 goto fail;
2004 }
2005
2006 retval = dwc2_hcd_qh_add(hsotg, qh);
2007 if (retval)
2008 goto fail;
2009
2010 qtd->qh = qh;
2011 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2012
2013 return 0;
2014 fail:
2015 return retval;
2016 }