]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/usb/gadget/f_midi.c
tracing: Fix compile error when static ftrace is enabled
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / gadget / f_midi.c
1 /*
2 * f_midi.c -- USB MIDI class function driver
3 *
4 * Copyright (C) 2006 Thumtronics Pty Ltd.
5 * Developed for Thumtronics by Grey Innovation
6 * Ben Williamson <ben.williamson@greyinnovation.com>
7 *
8 * Rewritten for the composite framework
9 * Copyright (C) 2011 Daniel Mack <zonque@gmail.com>
10 *
11 * Based on drivers/usb/gadget/f_audio.c,
12 * Copyright (C) 2008 Bryan Wu <cooloney@kernel.org>
13 * Copyright (C) 2008 Analog Devices, Inc
14 *
15 * and drivers/usb/gadget/midi.c,
16 * Copyright (C) 2006 Thumtronics Pty Ltd.
17 * Ben Williamson <ben.williamson@greyinnovation.com>
18 *
19 * Licensed under the GPL-2 or later.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/utsname.h>
25 #include <linux/device.h>
26
27 #include <sound/core.h>
28 #include <sound/initval.h>
29 #include <sound/rawmidi.h>
30
31 #include <linux/usb/ch9.h>
32 #include <linux/usb/gadget.h>
33 #include <linux/usb/audio.h>
34 #include <linux/usb/midi.h>
35
36 MODULE_AUTHOR("Ben Williamson");
37 MODULE_LICENSE("GPL v2");
38
39 static const char f_midi_shortname[] = "f_midi";
40 static const char f_midi_longname[] = "MIDI Gadget";
41
42 /*
43 * We can only handle 16 cables on one single endpoint, as cable numbers are
44 * stored in 4-bit fields. And as the interface currently only holds one
45 * single endpoint, this is the maximum number of ports we can allow.
46 */
47 #define MAX_PORTS 16
48
49 /*
50 * This is a gadget, and the IN/OUT naming is from the host's perspective.
51 * USB -> OUT endpoint -> rawmidi
52 * USB <- IN endpoint <- rawmidi
53 */
54 struct gmidi_in_port {
55 struct f_midi *midi;
56 int active;
57 uint8_t cable;
58 uint8_t state;
59 #define STATE_UNKNOWN 0
60 #define STATE_1PARAM 1
61 #define STATE_2PARAM_1 2
62 #define STATE_2PARAM_2 3
63 #define STATE_SYSEX_0 4
64 #define STATE_SYSEX_1 5
65 #define STATE_SYSEX_2 6
66 uint8_t data[2];
67 };
68
69 struct f_midi {
70 struct usb_function func;
71 struct usb_gadget *gadget;
72 struct usb_ep *in_ep, *out_ep;
73 struct snd_card *card;
74 struct snd_rawmidi *rmidi;
75
76 struct snd_rawmidi_substream *in_substream[MAX_PORTS];
77 struct snd_rawmidi_substream *out_substream[MAX_PORTS];
78 struct gmidi_in_port *in_port[MAX_PORTS];
79
80 unsigned long out_triggered;
81 struct tasklet_struct tasklet;
82 unsigned int in_ports;
83 unsigned int out_ports;
84 int index;
85 char *id;
86 unsigned int buflen, qlen;
87 };
88
89 static inline struct f_midi *func_to_midi(struct usb_function *f)
90 {
91 return container_of(f, struct f_midi, func);
92 }
93
94 static void f_midi_transmit(struct f_midi *midi, struct usb_request *req);
95
96 DECLARE_UAC_AC_HEADER_DESCRIPTOR(1);
97 DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(1);
98 DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(16);
99 DECLARE_USB_MS_ENDPOINT_DESCRIPTOR(16);
100
101 /* B.3.1 Standard AC Interface Descriptor */
102 static struct usb_interface_descriptor ac_interface_desc __initdata = {
103 .bLength = USB_DT_INTERFACE_SIZE,
104 .bDescriptorType = USB_DT_INTERFACE,
105 /* .bInterfaceNumber = DYNAMIC */
106 /* .bNumEndpoints = DYNAMIC */
107 .bInterfaceClass = USB_CLASS_AUDIO,
108 .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL,
109 /* .iInterface = DYNAMIC */
110 };
111
112 /* B.3.2 Class-Specific AC Interface Descriptor */
113 static struct uac1_ac_header_descriptor_1 ac_header_desc __initdata = {
114 .bLength = UAC_DT_AC_HEADER_SIZE(1),
115 .bDescriptorType = USB_DT_CS_INTERFACE,
116 .bDescriptorSubtype = USB_MS_HEADER,
117 .bcdADC = cpu_to_le16(0x0100),
118 .wTotalLength = cpu_to_le16(UAC_DT_AC_HEADER_SIZE(1)),
119 .bInCollection = 1,
120 /* .baInterfaceNr = DYNAMIC */
121 };
122
123 /* B.4.1 Standard MS Interface Descriptor */
124 static struct usb_interface_descriptor ms_interface_desc __initdata = {
125 .bLength = USB_DT_INTERFACE_SIZE,
126 .bDescriptorType = USB_DT_INTERFACE,
127 /* .bInterfaceNumber = DYNAMIC */
128 .bNumEndpoints = 2,
129 .bInterfaceClass = USB_CLASS_AUDIO,
130 .bInterfaceSubClass = USB_SUBCLASS_MIDISTREAMING,
131 /* .iInterface = DYNAMIC */
132 };
133
134 /* B.4.2 Class-Specific MS Interface Descriptor */
135 static struct usb_ms_header_descriptor ms_header_desc __initdata = {
136 .bLength = USB_DT_MS_HEADER_SIZE,
137 .bDescriptorType = USB_DT_CS_INTERFACE,
138 .bDescriptorSubtype = USB_MS_HEADER,
139 .bcdMSC = cpu_to_le16(0x0100),
140 /* .wTotalLength = DYNAMIC */
141 };
142
143 /* B.4.3 Embedded MIDI IN Jack Descriptor */
144 static struct usb_midi_in_jack_descriptor jack_in_emb_desc = {
145 .bLength = USB_DT_MIDI_IN_SIZE,
146 .bDescriptorType = USB_DT_CS_INTERFACE,
147 .bDescriptorSubtype = USB_MS_MIDI_IN_JACK,
148 .bJackType = USB_MS_EMBEDDED,
149 /* .bJackID = DYNAMIC */
150 };
151
152 /* B.4.4 Embedded MIDI OUT Jack Descriptor */
153 static struct usb_midi_out_jack_descriptor_16 jack_out_emb_desc = {
154 /* .bLength = DYNAMIC */
155 .bDescriptorType = USB_DT_CS_INTERFACE,
156 .bDescriptorSubtype = USB_MS_MIDI_OUT_JACK,
157 .bJackType = USB_MS_EMBEDDED,
158 /* .bJackID = DYNAMIC */
159 /* .bNrInputPins = DYNAMIC */
160 /* .pins = DYNAMIC */
161 };
162
163 /* B.5.1 Standard Bulk OUT Endpoint Descriptor */
164 static struct usb_endpoint_descriptor bulk_out_desc = {
165 .bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
166 .bDescriptorType = USB_DT_ENDPOINT,
167 .bEndpointAddress = USB_DIR_OUT,
168 .bmAttributes = USB_ENDPOINT_XFER_BULK,
169 };
170
171 /* B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor */
172 static struct usb_ms_endpoint_descriptor_16 ms_out_desc = {
173 /* .bLength = DYNAMIC */
174 .bDescriptorType = USB_DT_CS_ENDPOINT,
175 .bDescriptorSubtype = USB_MS_GENERAL,
176 /* .bNumEmbMIDIJack = DYNAMIC */
177 /* .baAssocJackID = DYNAMIC */
178 };
179
180 /* B.6.1 Standard Bulk IN Endpoint Descriptor */
181 static struct usb_endpoint_descriptor bulk_in_desc = {
182 .bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
183 .bDescriptorType = USB_DT_ENDPOINT,
184 .bEndpointAddress = USB_DIR_IN,
185 .bmAttributes = USB_ENDPOINT_XFER_BULK,
186 };
187
188 /* B.6.2 Class-specific MS Bulk IN Endpoint Descriptor */
189 static struct usb_ms_endpoint_descriptor_16 ms_in_desc = {
190 /* .bLength = DYNAMIC */
191 .bDescriptorType = USB_DT_CS_ENDPOINT,
192 .bDescriptorSubtype = USB_MS_GENERAL,
193 /* .bNumEmbMIDIJack = DYNAMIC */
194 /* .baAssocJackID = DYNAMIC */
195 };
196
197 /* string IDs are assigned dynamically */
198
199 #define STRING_FUNC_IDX 0
200
201 static struct usb_string midi_string_defs[] = {
202 [STRING_FUNC_IDX].s = "MIDI function",
203 { } /* end of list */
204 };
205
206 static struct usb_gadget_strings midi_stringtab = {
207 .language = 0x0409, /* en-us */
208 .strings = midi_string_defs,
209 };
210
211 static struct usb_gadget_strings *midi_strings[] = {
212 &midi_stringtab,
213 NULL,
214 };
215
216 static struct usb_request *alloc_ep_req(struct usb_ep *ep, unsigned length)
217 {
218 struct usb_request *req;
219
220 req = usb_ep_alloc_request(ep, GFP_ATOMIC);
221 if (req) {
222 req->length = length;
223 req->buf = kmalloc(length, GFP_ATOMIC);
224 if (!req->buf) {
225 usb_ep_free_request(ep, req);
226 req = NULL;
227 }
228 }
229 return req;
230 }
231
232 static void free_ep_req(struct usb_ep *ep, struct usb_request *req)
233 {
234 kfree(req->buf);
235 usb_ep_free_request(ep, req);
236 }
237
238 static const uint8_t f_midi_cin_length[] = {
239 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
240 };
241
242 /*
243 * Receives a chunk of MIDI data.
244 */
245 static void f_midi_read_data(struct usb_ep *ep, int cable,
246 uint8_t *data, int length)
247 {
248 struct f_midi *midi = ep->driver_data;
249 struct snd_rawmidi_substream *substream = midi->out_substream[cable];
250
251 if (!substream)
252 /* Nobody is listening - throw it on the floor. */
253 return;
254
255 if (!test_bit(cable, &midi->out_triggered))
256 return;
257
258 snd_rawmidi_receive(substream, data, length);
259 }
260
261 static void f_midi_handle_out_data(struct usb_ep *ep, struct usb_request *req)
262 {
263 unsigned int i;
264 u8 *buf = req->buf;
265
266 for (i = 0; i + 3 < req->actual; i += 4)
267 if (buf[i] != 0) {
268 int cable = buf[i] >> 4;
269 int length = f_midi_cin_length[buf[i] & 0x0f];
270 f_midi_read_data(ep, cable, &buf[i + 1], length);
271 }
272 }
273
274 static void
275 f_midi_complete(struct usb_ep *ep, struct usb_request *req)
276 {
277 struct f_midi *midi = ep->driver_data;
278 struct usb_composite_dev *cdev = midi->func.config->cdev;
279 int status = req->status;
280
281 switch (status) {
282 case 0: /* normal completion */
283 if (ep == midi->out_ep) {
284 /* We received stuff. req is queued again, below */
285 f_midi_handle_out_data(ep, req);
286 } else if (ep == midi->in_ep) {
287 /* Our transmit completed. See if there's more to go.
288 * f_midi_transmit eats req, don't queue it again. */
289 f_midi_transmit(midi, req);
290 return;
291 }
292 break;
293
294 /* this endpoint is normally active while we're configured */
295 case -ECONNABORTED: /* hardware forced ep reset */
296 case -ECONNRESET: /* request dequeued */
297 case -ESHUTDOWN: /* disconnect from host */
298 VDBG(cdev, "%s gone (%d), %d/%d\n", ep->name, status,
299 req->actual, req->length);
300 if (ep == midi->out_ep)
301 f_midi_handle_out_data(ep, req);
302
303 free_ep_req(ep, req);
304 return;
305
306 case -EOVERFLOW: /* buffer overrun on read means that
307 * we didn't provide a big enough buffer.
308 */
309 default:
310 DBG(cdev, "%s complete --> %d, %d/%d\n", ep->name,
311 status, req->actual, req->length);
312 break;
313 case -EREMOTEIO: /* short read */
314 break;
315 }
316
317 status = usb_ep_queue(ep, req, GFP_ATOMIC);
318 if (status) {
319 ERROR(cdev, "kill %s: resubmit %d bytes --> %d\n",
320 ep->name, req->length, status);
321 usb_ep_set_halt(ep);
322 /* FIXME recover later ... somehow */
323 }
324 }
325
326 static int f_midi_start_ep(struct f_midi *midi,
327 struct usb_function *f,
328 struct usb_ep *ep)
329 {
330 int err;
331 struct usb_composite_dev *cdev = f->config->cdev;
332
333 if (ep->driver_data)
334 usb_ep_disable(ep);
335
336 err = config_ep_by_speed(midi->gadget, f, ep);
337 if (err) {
338 ERROR(cdev, "can't configure %s: %d\n", ep->name, err);
339 return err;
340 }
341
342 err = usb_ep_enable(ep);
343 if (err) {
344 ERROR(cdev, "can't start %s: %d\n", ep->name, err);
345 return err;
346 }
347
348 ep->driver_data = midi;
349
350 return 0;
351 }
352
353 static int f_midi_set_alt(struct usb_function *f, unsigned intf, unsigned alt)
354 {
355 struct f_midi *midi = func_to_midi(f);
356 struct usb_composite_dev *cdev = f->config->cdev;
357 unsigned i;
358 int err;
359
360 err = f_midi_start_ep(midi, f, midi->in_ep);
361 if (err)
362 return err;
363
364 err = f_midi_start_ep(midi, f, midi->out_ep);
365 if (err)
366 return err;
367
368 if (midi->out_ep->driver_data)
369 usb_ep_disable(midi->out_ep);
370
371 err = config_ep_by_speed(midi->gadget, f, midi->out_ep);
372 if (err) {
373 ERROR(cdev, "can't configure %s: %d\n",
374 midi->out_ep->name, err);
375 return err;
376 }
377
378 err = usb_ep_enable(midi->out_ep);
379 if (err) {
380 ERROR(cdev, "can't start %s: %d\n",
381 midi->out_ep->name, err);
382 return err;
383 }
384
385 midi->out_ep->driver_data = midi;
386
387 /* allocate a bunch of read buffers and queue them all at once. */
388 for (i = 0; i < midi->qlen && err == 0; i++) {
389 struct usb_request *req =
390 alloc_ep_req(midi->out_ep, midi->buflen);
391 if (req == NULL)
392 return -ENOMEM;
393
394 req->complete = f_midi_complete;
395 err = usb_ep_queue(midi->out_ep, req, GFP_ATOMIC);
396 if (err) {
397 ERROR(midi, "%s queue req: %d\n",
398 midi->out_ep->name, err);
399 }
400 }
401
402 return 0;
403 }
404
405 static void f_midi_disable(struct usb_function *f)
406 {
407 struct f_midi *midi = func_to_midi(f);
408 struct usb_composite_dev *cdev = f->config->cdev;
409
410 DBG(cdev, "disable\n");
411
412 /*
413 * just disable endpoints, forcing completion of pending i/o.
414 * all our completion handlers free their requests in this case.
415 */
416 usb_ep_disable(midi->in_ep);
417 usb_ep_disable(midi->out_ep);
418 }
419
420 static void f_midi_unbind(struct usb_configuration *c, struct usb_function *f)
421 {
422 struct usb_composite_dev *cdev = f->config->cdev;
423 struct f_midi *midi = func_to_midi(f);
424 struct snd_card *card;
425
426 DBG(cdev, "unbind\n");
427
428 /* just to be sure */
429 f_midi_disable(f);
430
431 card = midi->card;
432 midi->card = NULL;
433 if (card)
434 snd_card_free(card);
435
436 kfree(midi->id);
437 midi->id = NULL;
438
439 usb_free_descriptors(f->descriptors);
440 kfree(midi);
441 }
442
443 static int f_midi_snd_free(struct snd_device *device)
444 {
445 return 0;
446 }
447
448 static void f_midi_transmit_packet(struct usb_request *req, uint8_t p0,
449 uint8_t p1, uint8_t p2, uint8_t p3)
450 {
451 unsigned length = req->length;
452 u8 *buf = (u8 *)req->buf + length;
453
454 buf[0] = p0;
455 buf[1] = p1;
456 buf[2] = p2;
457 buf[3] = p3;
458 req->length = length + 4;
459 }
460
461 /*
462 * Converts MIDI commands to USB MIDI packets.
463 */
464 static void f_midi_transmit_byte(struct usb_request *req,
465 struct gmidi_in_port *port, uint8_t b)
466 {
467 uint8_t p0 = port->cable << 4;
468
469 if (b >= 0xf8) {
470 f_midi_transmit_packet(req, p0 | 0x0f, b, 0, 0);
471 } else if (b >= 0xf0) {
472 switch (b) {
473 case 0xf0:
474 port->data[0] = b;
475 port->state = STATE_SYSEX_1;
476 break;
477 case 0xf1:
478 case 0xf3:
479 port->data[0] = b;
480 port->state = STATE_1PARAM;
481 break;
482 case 0xf2:
483 port->data[0] = b;
484 port->state = STATE_2PARAM_1;
485 break;
486 case 0xf4:
487 case 0xf5:
488 port->state = STATE_UNKNOWN;
489 break;
490 case 0xf6:
491 f_midi_transmit_packet(req, p0 | 0x05, 0xf6, 0, 0);
492 port->state = STATE_UNKNOWN;
493 break;
494 case 0xf7:
495 switch (port->state) {
496 case STATE_SYSEX_0:
497 f_midi_transmit_packet(req,
498 p0 | 0x05, 0xf7, 0, 0);
499 break;
500 case STATE_SYSEX_1:
501 f_midi_transmit_packet(req,
502 p0 | 0x06, port->data[0], 0xf7, 0);
503 break;
504 case STATE_SYSEX_2:
505 f_midi_transmit_packet(req,
506 p0 | 0x07, port->data[0],
507 port->data[1], 0xf7);
508 break;
509 }
510 port->state = STATE_UNKNOWN;
511 break;
512 }
513 } else if (b >= 0x80) {
514 port->data[0] = b;
515 if (b >= 0xc0 && b <= 0xdf)
516 port->state = STATE_1PARAM;
517 else
518 port->state = STATE_2PARAM_1;
519 } else { /* b < 0x80 */
520 switch (port->state) {
521 case STATE_1PARAM:
522 if (port->data[0] < 0xf0) {
523 p0 |= port->data[0] >> 4;
524 } else {
525 p0 |= 0x02;
526 port->state = STATE_UNKNOWN;
527 }
528 f_midi_transmit_packet(req, p0, port->data[0], b, 0);
529 break;
530 case STATE_2PARAM_1:
531 port->data[1] = b;
532 port->state = STATE_2PARAM_2;
533 break;
534 case STATE_2PARAM_2:
535 if (port->data[0] < 0xf0) {
536 p0 |= port->data[0] >> 4;
537 port->state = STATE_2PARAM_1;
538 } else {
539 p0 |= 0x03;
540 port->state = STATE_UNKNOWN;
541 }
542 f_midi_transmit_packet(req,
543 p0, port->data[0], port->data[1], b);
544 break;
545 case STATE_SYSEX_0:
546 port->data[0] = b;
547 port->state = STATE_SYSEX_1;
548 break;
549 case STATE_SYSEX_1:
550 port->data[1] = b;
551 port->state = STATE_SYSEX_2;
552 break;
553 case STATE_SYSEX_2:
554 f_midi_transmit_packet(req,
555 p0 | 0x04, port->data[0], port->data[1], b);
556 port->state = STATE_SYSEX_0;
557 break;
558 }
559 }
560 }
561
562 static void f_midi_transmit(struct f_midi *midi, struct usb_request *req)
563 {
564 struct usb_ep *ep = midi->in_ep;
565 int i;
566
567 if (!ep)
568 return;
569
570 if (!req)
571 req = alloc_ep_req(ep, midi->buflen);
572
573 if (!req) {
574 ERROR(midi, "gmidi_transmit: alloc_ep_request failed\n");
575 return;
576 }
577 req->length = 0;
578 req->complete = f_midi_complete;
579
580 for (i = 0; i < MAX_PORTS; i++) {
581 struct gmidi_in_port *port = midi->in_port[i];
582 struct snd_rawmidi_substream *substream = midi->in_substream[i];
583
584 if (!port || !port->active || !substream)
585 continue;
586
587 while (req->length + 3 < midi->buflen) {
588 uint8_t b;
589 if (snd_rawmidi_transmit(substream, &b, 1) != 1) {
590 port->active = 0;
591 break;
592 }
593 f_midi_transmit_byte(req, port, b);
594 }
595 }
596
597 if (req->length > 0)
598 usb_ep_queue(ep, req, GFP_ATOMIC);
599 else
600 free_ep_req(ep, req);
601 }
602
603 static void f_midi_in_tasklet(unsigned long data)
604 {
605 struct f_midi *midi = (struct f_midi *) data;
606 f_midi_transmit(midi, NULL);
607 }
608
609 static int f_midi_in_open(struct snd_rawmidi_substream *substream)
610 {
611 struct f_midi *midi = substream->rmidi->private_data;
612
613 if (!midi->in_port[substream->number])
614 return -EINVAL;
615
616 VDBG(midi, "%s()\n", __func__);
617 midi->in_substream[substream->number] = substream;
618 midi->in_port[substream->number]->state = STATE_UNKNOWN;
619 return 0;
620 }
621
622 static int f_midi_in_close(struct snd_rawmidi_substream *substream)
623 {
624 struct f_midi *midi = substream->rmidi->private_data;
625
626 VDBG(midi, "%s()\n", __func__);
627 return 0;
628 }
629
630 static void f_midi_in_trigger(struct snd_rawmidi_substream *substream, int up)
631 {
632 struct f_midi *midi = substream->rmidi->private_data;
633
634 if (!midi->in_port[substream->number])
635 return;
636
637 VDBG(midi, "%s() %d\n", __func__, up);
638 midi->in_port[substream->number]->active = up;
639 if (up)
640 tasklet_hi_schedule(&midi->tasklet);
641 }
642
643 static int f_midi_out_open(struct snd_rawmidi_substream *substream)
644 {
645 struct f_midi *midi = substream->rmidi->private_data;
646
647 if (substream->number >= MAX_PORTS)
648 return -EINVAL;
649
650 VDBG(midi, "%s()\n", __func__);
651 midi->out_substream[substream->number] = substream;
652 return 0;
653 }
654
655 static int f_midi_out_close(struct snd_rawmidi_substream *substream)
656 {
657 struct f_midi *midi = substream->rmidi->private_data;
658
659 VDBG(midi, "%s()\n", __func__);
660 return 0;
661 }
662
663 static void f_midi_out_trigger(struct snd_rawmidi_substream *substream, int up)
664 {
665 struct f_midi *midi = substream->rmidi->private_data;
666
667 VDBG(midi, "%s()\n", __func__);
668
669 if (up)
670 set_bit(substream->number, &midi->out_triggered);
671 else
672 clear_bit(substream->number, &midi->out_triggered);
673 }
674
675 static struct snd_rawmidi_ops gmidi_in_ops = {
676 .open = f_midi_in_open,
677 .close = f_midi_in_close,
678 .trigger = f_midi_in_trigger,
679 };
680
681 static struct snd_rawmidi_ops gmidi_out_ops = {
682 .open = f_midi_out_open,
683 .close = f_midi_out_close,
684 .trigger = f_midi_out_trigger
685 };
686
687 /* register as a sound "card" */
688 static int f_midi_register_card(struct f_midi *midi)
689 {
690 struct snd_card *card;
691 struct snd_rawmidi *rmidi;
692 int err;
693 static struct snd_device_ops ops = {
694 .dev_free = f_midi_snd_free,
695 };
696
697 err = snd_card_create(midi->index, midi->id, THIS_MODULE, 0, &card);
698 if (err < 0) {
699 ERROR(midi, "snd_card_create() failed\n");
700 goto fail;
701 }
702 midi->card = card;
703
704 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, midi, &ops);
705 if (err < 0) {
706 ERROR(midi, "snd_device_new() failed: error %d\n", err);
707 goto fail;
708 }
709
710 strcpy(card->driver, f_midi_longname);
711 strcpy(card->longname, f_midi_longname);
712 strcpy(card->shortname, f_midi_shortname);
713
714 /* Set up rawmidi */
715 snd_component_add(card, "MIDI");
716 err = snd_rawmidi_new(card, card->longname, 0,
717 midi->out_ports, midi->in_ports, &rmidi);
718 if (err < 0) {
719 ERROR(midi, "snd_rawmidi_new() failed: error %d\n", err);
720 goto fail;
721 }
722 midi->rmidi = rmidi;
723 strcpy(rmidi->name, card->shortname);
724 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
725 SNDRV_RAWMIDI_INFO_INPUT |
726 SNDRV_RAWMIDI_INFO_DUPLEX;
727 rmidi->private_data = midi;
728
729 /*
730 * Yes, rawmidi OUTPUT = USB IN, and rawmidi INPUT = USB OUT.
731 * It's an upside-down world being a gadget.
732 */
733 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &gmidi_in_ops);
734 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &gmidi_out_ops);
735
736 snd_card_set_dev(card, &midi->gadget->dev);
737
738 /* register it - we're ready to go */
739 err = snd_card_register(card);
740 if (err < 0) {
741 ERROR(midi, "snd_card_register() failed\n");
742 goto fail;
743 }
744
745 VDBG(midi, "%s() finished ok\n", __func__);
746 return 0;
747
748 fail:
749 if (midi->card) {
750 snd_card_free(midi->card);
751 midi->card = NULL;
752 }
753 return err;
754 }
755
756 /* MIDI function driver setup/binding */
757
758 static int __init
759 f_midi_bind(struct usb_configuration *c, struct usb_function *f)
760 {
761 struct usb_descriptor_header *midi_function[(MAX_PORTS * 2) + 12];
762 struct usb_midi_in_jack_descriptor jack_in_ext_desc[MAX_PORTS];
763 struct usb_midi_out_jack_descriptor_1 jack_out_ext_desc[MAX_PORTS];
764 struct usb_composite_dev *cdev = c->cdev;
765 struct f_midi *midi = func_to_midi(f);
766 int status, n, jack = 1, i = 0;
767
768 /* maybe allocate device-global string ID */
769 if (midi_string_defs[0].id == 0) {
770 status = usb_string_id(c->cdev);
771 if (status < 0)
772 goto fail;
773 midi_string_defs[0].id = status;
774 }
775
776 /* We have two interfaces, AudioControl and MIDIStreaming */
777 status = usb_interface_id(c, f);
778 if (status < 0)
779 goto fail;
780 ac_interface_desc.bInterfaceNumber = status;
781
782 status = usb_interface_id(c, f);
783 if (status < 0)
784 goto fail;
785 ms_interface_desc.bInterfaceNumber = status;
786 ac_header_desc.baInterfaceNr[0] = status;
787
788 status = -ENODEV;
789
790 /* allocate instance-specific endpoints */
791 midi->in_ep = usb_ep_autoconfig(cdev->gadget, &bulk_in_desc);
792 if (!midi->in_ep)
793 goto fail;
794 midi->in_ep->driver_data = cdev; /* claim */
795
796 midi->out_ep = usb_ep_autoconfig(cdev->gadget, &bulk_out_desc);
797 if (!midi->out_ep)
798 goto fail;
799 midi->out_ep->driver_data = cdev; /* claim */
800
801 /*
802 * construct the function's descriptor set. As the number of
803 * input and output MIDI ports is configurable, we have to do
804 * it that way.
805 */
806
807 /* add the headers - these are always the same */
808 midi_function[i++] = (struct usb_descriptor_header *) &ac_interface_desc;
809 midi_function[i++] = (struct usb_descriptor_header *) &ac_header_desc;
810 midi_function[i++] = (struct usb_descriptor_header *) &ms_interface_desc;
811
812 /* calculate the header's wTotalLength */
813 n = USB_DT_MS_HEADER_SIZE
814 + (1 + midi->in_ports) * USB_DT_MIDI_IN_SIZE
815 + (1 + midi->out_ports) * USB_DT_MIDI_OUT_SIZE(1);
816 ms_header_desc.wTotalLength = cpu_to_le16(n);
817
818 midi_function[i++] = (struct usb_descriptor_header *) &ms_header_desc;
819
820 /* we have one embedded IN jack */
821 jack_in_emb_desc.bJackID = jack++;
822 midi_function[i++] = (struct usb_descriptor_header *) &jack_in_emb_desc;
823
824 /* and a dynamic amount of external IN jacks */
825 for (n = 0; n < midi->in_ports; n++) {
826 struct usb_midi_in_jack_descriptor *ext = &jack_in_ext_desc[n];
827
828 ext->bLength = USB_DT_MIDI_IN_SIZE;
829 ext->bDescriptorType = USB_DT_CS_INTERFACE;
830 ext->bDescriptorSubtype = USB_MS_MIDI_IN_JACK;
831 ext->bJackType = USB_MS_EXTERNAL;
832 ext->bJackID = jack++;
833 ext->iJack = 0;
834
835 midi_function[i++] = (struct usb_descriptor_header *) ext;
836 }
837
838 /* one embedded OUT jack ... */
839 jack_out_emb_desc.bLength = USB_DT_MIDI_OUT_SIZE(midi->in_ports);
840 jack_out_emb_desc.bJackID = jack++;
841 jack_out_emb_desc.bNrInputPins = midi->in_ports;
842 /* ... which referencess all external IN jacks */
843 for (n = 0; n < midi->in_ports; n++) {
844 jack_out_emb_desc.pins[n].baSourceID = jack_in_ext_desc[n].bJackID;
845 jack_out_emb_desc.pins[n].baSourcePin = 1;
846 }
847
848 midi_function[i++] = (struct usb_descriptor_header *) &jack_out_emb_desc;
849
850 /* and multiple external OUT jacks ... */
851 for (n = 0; n < midi->out_ports; n++) {
852 struct usb_midi_out_jack_descriptor_1 *ext = &jack_out_ext_desc[n];
853 int m;
854
855 ext->bLength = USB_DT_MIDI_OUT_SIZE(1);
856 ext->bDescriptorType = USB_DT_CS_INTERFACE;
857 ext->bDescriptorSubtype = USB_MS_MIDI_OUT_JACK;
858 ext->bJackType = USB_MS_EXTERNAL;
859 ext->bJackID = jack++;
860 ext->bNrInputPins = 1;
861 ext->iJack = 0;
862 /* ... which all reference the same embedded IN jack */
863 for (m = 0; m < midi->out_ports; m++) {
864 ext->pins[m].baSourceID = jack_in_emb_desc.bJackID;
865 ext->pins[m].baSourcePin = 1;
866 }
867
868 midi_function[i++] = (struct usb_descriptor_header *) ext;
869 }
870
871 /* configure the endpoint descriptors ... */
872 ms_out_desc.bLength = USB_DT_MS_ENDPOINT_SIZE(midi->in_ports);
873 ms_out_desc.bNumEmbMIDIJack = midi->in_ports;
874 for (n = 0; n < midi->in_ports; n++)
875 ms_out_desc.baAssocJackID[n] = jack_in_emb_desc.bJackID;
876
877 ms_in_desc.bLength = USB_DT_MS_ENDPOINT_SIZE(midi->out_ports);
878 ms_in_desc.bNumEmbMIDIJack = midi->out_ports;
879 for (n = 0; n < midi->out_ports; n++)
880 ms_in_desc.baAssocJackID[n] = jack_out_emb_desc.bJackID;
881
882 /* ... and add them to the list */
883 midi_function[i++] = (struct usb_descriptor_header *) &bulk_out_desc;
884 midi_function[i++] = (struct usb_descriptor_header *) &ms_out_desc;
885 midi_function[i++] = (struct usb_descriptor_header *) &bulk_in_desc;
886 midi_function[i++] = (struct usb_descriptor_header *) &ms_in_desc;
887 midi_function[i++] = NULL;
888
889 /*
890 * support all relevant hardware speeds... we expect that when
891 * hardware is dual speed, all bulk-capable endpoints work at
892 * both speeds
893 */
894 /* copy descriptors, and track endpoint copies */
895 if (gadget_is_dualspeed(c->cdev->gadget)) {
896 c->highspeed = true;
897 bulk_in_desc.wMaxPacketSize = cpu_to_le16(512);
898 bulk_out_desc.wMaxPacketSize = cpu_to_le16(512);
899 f->hs_descriptors = usb_copy_descriptors(midi_function);
900 } else {
901 f->descriptors = usb_copy_descriptors(midi_function);
902 }
903
904 return 0;
905
906 fail:
907 /* we might as well release our claims on endpoints */
908 if (midi->out_ep)
909 midi->out_ep->driver_data = NULL;
910 if (midi->in_ep)
911 midi->in_ep->driver_data = NULL;
912
913 ERROR(cdev, "%s: can't bind, err %d\n", f->name, status);
914
915 return status;
916 }
917
918 /**
919 * f_midi_bind_config - add USB MIDI function to a configuration
920 * @c: the configuration to supcard the USB audio function
921 * @index: the soundcard index to use for the ALSA device creation
922 * @id: the soundcard id to use for the ALSA device creation
923 * @buflen: the buffer length to use
924 * @qlen the number of read requests to pre-allocate
925 * Context: single threaded during gadget setup
926 *
927 * Returns zero on success, else negative errno.
928 */
929 int __init f_midi_bind_config(struct usb_configuration *c,
930 int index, char *id,
931 unsigned int in_ports,
932 unsigned int out_ports,
933 unsigned int buflen,
934 unsigned int qlen)
935 {
936 struct f_midi *midi;
937 int status, i;
938
939 /* sanity check */
940 if (in_ports > MAX_PORTS || out_ports > MAX_PORTS)
941 return -EINVAL;
942
943 /* allocate and initialize one new instance */
944 midi = kzalloc(sizeof *midi, GFP_KERNEL);
945 if (!midi) {
946 status = -ENOMEM;
947 goto fail;
948 }
949
950 for (i = 0; i < in_ports; i++) {
951 struct gmidi_in_port *port = kzalloc(sizeof(*port), GFP_KERNEL);
952 if (!port) {
953 status = -ENOMEM;
954 goto setup_fail;
955 }
956
957 port->midi = midi;
958 port->active = 0;
959 port->cable = i;
960 midi->in_port[i] = port;
961 }
962
963 midi->gadget = c->cdev->gadget;
964 tasklet_init(&midi->tasklet, f_midi_in_tasklet, (unsigned long) midi);
965
966 /* set up ALSA midi devices */
967 midi->in_ports = in_ports;
968 midi->out_ports = out_ports;
969 status = f_midi_register_card(midi);
970 if (status < 0)
971 goto setup_fail;
972
973 midi->func.name = "gmidi function";
974 midi->func.strings = midi_strings;
975 midi->func.bind = f_midi_bind;
976 midi->func.unbind = f_midi_unbind;
977 midi->func.set_alt = f_midi_set_alt;
978 midi->func.disable = f_midi_disable;
979
980 midi->id = kstrdup(id, GFP_KERNEL);
981 midi->index = index;
982 midi->buflen = buflen;
983 midi->qlen = qlen;
984
985 status = usb_add_function(c, &midi->func);
986 if (status)
987 goto setup_fail;
988
989 return 0;
990
991 setup_fail:
992 for (--i; i >= 0; i--)
993 kfree(midi->in_port[i]);
994 kfree(midi);
995 fail:
996 return status;
997 }
998