]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/gadget/function/f_fs.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / usb / gadget / function / f_fs.c
1 /*
2 * f_fs.c -- user mode file system API for USB composite function controllers
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
6 *
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41
42 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
43
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59
60
61 /* The function structure ***************************************************/
62
63 struct ffs_ep;
64
65 struct ffs_function {
66 struct usb_configuration *conf;
67 struct usb_gadget *gadget;
68 struct ffs_data *ffs;
69
70 struct ffs_ep *eps;
71 u8 eps_revmap[16];
72 short *interfaces_nums;
73
74 struct usb_function function;
75 };
76
77
78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 return container_of(f, struct ffs_function, function);
81 }
82
83
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 return (enum ffs_setup_state)
88 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90
91
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94
95 static int ffs_func_bind(struct usb_configuration *,
96 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 const struct usb_ctrlrequest *);
101 static bool ffs_func_req_match(struct usb_function *,
102 const struct usb_ctrlrequest *,
103 bool config0);
104 static void ffs_func_suspend(struct usb_function *);
105 static void ffs_func_resume(struct usb_function *);
106
107
108 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
109 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
110
111
112 /* The endpoints structures *************************************************/
113
114 struct ffs_ep {
115 struct usb_ep *ep; /* P: ffs->eps_lock */
116 struct usb_request *req; /* P: epfile->mutex */
117
118 /* [0]: full speed, [1]: high speed, [2]: super speed */
119 struct usb_endpoint_descriptor *descs[3];
120
121 u8 num;
122
123 int status; /* P: epfile->mutex */
124 };
125
126 struct ffs_epfile {
127 /* Protects ep->ep and ep->req. */
128 struct mutex mutex;
129 wait_queue_head_t wait;
130
131 struct ffs_data *ffs;
132 struct ffs_ep *ep; /* P: ffs->eps_lock */
133
134 struct dentry *dentry;
135
136 /*
137 * Buffer for holding data from partial reads which may happen since
138 * we’re rounding user read requests to a multiple of a max packet size.
139 *
140 * The pointer is initialised with NULL value and may be set by
141 * __ffs_epfile_read_data function to point to a temporary buffer.
142 *
143 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 * data from said buffer and eventually free it. Importantly, while the
145 * function is using the buffer, it sets the pointer to NULL. This is
146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 * can never run concurrently (they are synchronised by epfile->mutex)
148 * so the latter will not assign a new value to the pointer.
149 *
150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
152 * value is crux of the synchronisation between ffs_func_eps_disable and
153 * __ffs_epfile_read_data.
154 *
155 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 * pointer back to its old value (as described above), but seeing as the
157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 * the buffer.
159 *
160 * == State transitions ==
161 *
162 * • ptr == NULL: (initial state)
163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 * ◦ __ffs_epfile_read_buffered: nop
165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 * ◦ reading finishes: n/a, not in ‘and reading’ state
167 * • ptr == DROP:
168 * ◦ __ffs_epfile_read_buffer_free: nop
169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 * ◦ reading finishes: n/a, not in ‘and reading’ state
172 * • ptr == buf:
173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
176 * is always called first
177 * ◦ reading finishes: n/a, not in ‘and reading’ state
178 * • ptr == NULL and reading:
179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
181 * ◦ __ffs_epfile_read_data: n/a, mutex is held
182 * ◦ reading finishes and …
183 * … all data read: free buf, go to ptr == NULL
184 * … otherwise: go to ptr == buf and reading
185 * • ptr == DROP and reading:
186 * ◦ __ffs_epfile_read_buffer_free: nop
187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
188 * ◦ __ffs_epfile_read_data: n/a, mutex is held
189 * ◦ reading finishes: free buf, go to ptr == DROP
190 */
191 struct ffs_buffer *read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193
194 char name[5];
195
196 unsigned char in; /* P: ffs->eps_lock */
197 unsigned char isoc; /* P: ffs->eps_lock */
198
199 unsigned char _pad;
200 };
201
202 struct ffs_buffer {
203 size_t length;
204 char *data;
205 char storage[];
206 };
207
208 /* ffs_io_data structure ***************************************************/
209
210 struct ffs_io_data {
211 bool aio;
212 bool read;
213
214 struct kiocb *kiocb;
215 struct iov_iter data;
216 const void *to_free;
217 char *buf;
218
219 struct mm_struct *mm;
220 struct work_struct work;
221
222 struct usb_ep *ep;
223 struct usb_request *req;
224
225 struct ffs_data *ffs;
226 };
227
228 struct ffs_desc_helper {
229 struct ffs_data *ffs;
230 unsigned interfaces_count;
231 unsigned eps_count;
232 };
233
234 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
235 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
236
237 static struct dentry *
238 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
239 const struct file_operations *fops);
240
241 /* Devices management *******************************************************/
242
243 DEFINE_MUTEX(ffs_lock);
244 EXPORT_SYMBOL_GPL(ffs_lock);
245
246 static struct ffs_dev *_ffs_find_dev(const char *name);
247 static struct ffs_dev *_ffs_alloc_dev(void);
248 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
249 static void _ffs_free_dev(struct ffs_dev *dev);
250 static void *ffs_acquire_dev(const char *dev_name);
251 static void ffs_release_dev(struct ffs_data *ffs_data);
252 static int ffs_ready(struct ffs_data *ffs);
253 static void ffs_closed(struct ffs_data *ffs);
254
255 /* Misc helper functions ****************************************************/
256
257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
258 __attribute__((warn_unused_result, nonnull));
259 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 __attribute__((warn_unused_result, nonnull));
261
262
263 /* Control file aka ep0 *****************************************************/
264
265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
266 {
267 struct ffs_data *ffs = req->context;
268
269 complete(&ffs->ep0req_completion);
270 }
271
272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
273 {
274 struct usb_request *req = ffs->ep0req;
275 int ret;
276
277 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
278
279 spin_unlock_irq(&ffs->ev.waitq.lock);
280
281 req->buf = data;
282 req->length = len;
283
284 /*
285 * UDC layer requires to provide a buffer even for ZLP, but should
286 * not use it at all. Let's provide some poisoned pointer to catch
287 * possible bug in the driver.
288 */
289 if (req->buf == NULL)
290 req->buf = (void *)0xDEADBABE;
291
292 reinit_completion(&ffs->ep0req_completion);
293
294 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
295 if (unlikely(ret < 0))
296 return ret;
297
298 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
299 if (unlikely(ret)) {
300 usb_ep_dequeue(ffs->gadget->ep0, req);
301 return -EINTR;
302 }
303
304 ffs->setup_state = FFS_NO_SETUP;
305 return req->status ? req->status : req->actual;
306 }
307
308 static int __ffs_ep0_stall(struct ffs_data *ffs)
309 {
310 if (ffs->ev.can_stall) {
311 pr_vdebug("ep0 stall\n");
312 usb_ep_set_halt(ffs->gadget->ep0);
313 ffs->setup_state = FFS_NO_SETUP;
314 return -EL2HLT;
315 } else {
316 pr_debug("bogus ep0 stall!\n");
317 return -ESRCH;
318 }
319 }
320
321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
322 size_t len, loff_t *ptr)
323 {
324 struct ffs_data *ffs = file->private_data;
325 ssize_t ret;
326 char *data;
327
328 ENTER();
329
330 /* Fast check if setup was canceled */
331 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 return -EIDRM;
333
334 /* Acquire mutex */
335 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
336 if (unlikely(ret < 0))
337 return ret;
338
339 /* Check state */
340 switch (ffs->state) {
341 case FFS_READ_DESCRIPTORS:
342 case FFS_READ_STRINGS:
343 /* Copy data */
344 if (unlikely(len < 16)) {
345 ret = -EINVAL;
346 break;
347 }
348
349 data = ffs_prepare_buffer(buf, len);
350 if (IS_ERR(data)) {
351 ret = PTR_ERR(data);
352 break;
353 }
354
355 /* Handle data */
356 if (ffs->state == FFS_READ_DESCRIPTORS) {
357 pr_info("read descriptors\n");
358 ret = __ffs_data_got_descs(ffs, data, len);
359 if (unlikely(ret < 0))
360 break;
361
362 ffs->state = FFS_READ_STRINGS;
363 ret = len;
364 } else {
365 pr_info("read strings\n");
366 ret = __ffs_data_got_strings(ffs, data, len);
367 if (unlikely(ret < 0))
368 break;
369
370 ret = ffs_epfiles_create(ffs);
371 if (unlikely(ret)) {
372 ffs->state = FFS_CLOSING;
373 break;
374 }
375
376 ffs->state = FFS_ACTIVE;
377 mutex_unlock(&ffs->mutex);
378
379 ret = ffs_ready(ffs);
380 if (unlikely(ret < 0)) {
381 ffs->state = FFS_CLOSING;
382 return ret;
383 }
384
385 return len;
386 }
387 break;
388
389 case FFS_ACTIVE:
390 data = NULL;
391 /*
392 * We're called from user space, we can use _irq
393 * rather then _irqsave
394 */
395 spin_lock_irq(&ffs->ev.waitq.lock);
396 switch (ffs_setup_state_clear_cancelled(ffs)) {
397 case FFS_SETUP_CANCELLED:
398 ret = -EIDRM;
399 goto done_spin;
400
401 case FFS_NO_SETUP:
402 ret = -ESRCH;
403 goto done_spin;
404
405 case FFS_SETUP_PENDING:
406 break;
407 }
408
409 /* FFS_SETUP_PENDING */
410 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
411 spin_unlock_irq(&ffs->ev.waitq.lock);
412 ret = __ffs_ep0_stall(ffs);
413 break;
414 }
415
416 /* FFS_SETUP_PENDING and not stall */
417 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
418
419 spin_unlock_irq(&ffs->ev.waitq.lock);
420
421 data = ffs_prepare_buffer(buf, len);
422 if (IS_ERR(data)) {
423 ret = PTR_ERR(data);
424 break;
425 }
426
427 spin_lock_irq(&ffs->ev.waitq.lock);
428
429 /*
430 * We are guaranteed to be still in FFS_ACTIVE state
431 * but the state of setup could have changed from
432 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433 * to check for that. If that happened we copied data
434 * from user space in vain but it's unlikely.
435 *
436 * For sure we are not in FFS_NO_SETUP since this is
437 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
438 * transition can be performed and it's protected by
439 * mutex.
440 */
441 if (ffs_setup_state_clear_cancelled(ffs) ==
442 FFS_SETUP_CANCELLED) {
443 ret = -EIDRM;
444 done_spin:
445 spin_unlock_irq(&ffs->ev.waitq.lock);
446 } else {
447 /* unlocks spinlock */
448 ret = __ffs_ep0_queue_wait(ffs, data, len);
449 }
450 kfree(data);
451 break;
452
453 default:
454 ret = -EBADFD;
455 break;
456 }
457
458 mutex_unlock(&ffs->mutex);
459 return ret;
460 }
461
462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
464 size_t n)
465 {
466 /*
467 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
468 * size of ffs->ev.types array (which is four) so that's how much space
469 * we reserve.
470 */
471 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
472 const size_t size = n * sizeof *events;
473 unsigned i = 0;
474
475 memset(events, 0, size);
476
477 do {
478 events[i].type = ffs->ev.types[i];
479 if (events[i].type == FUNCTIONFS_SETUP) {
480 events[i].u.setup = ffs->ev.setup;
481 ffs->setup_state = FFS_SETUP_PENDING;
482 }
483 } while (++i < n);
484
485 ffs->ev.count -= n;
486 if (ffs->ev.count)
487 memmove(ffs->ev.types, ffs->ev.types + n,
488 ffs->ev.count * sizeof *ffs->ev.types);
489
490 spin_unlock_irq(&ffs->ev.waitq.lock);
491 mutex_unlock(&ffs->mutex);
492
493 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 }
495
496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
497 size_t len, loff_t *ptr)
498 {
499 struct ffs_data *ffs = file->private_data;
500 char *data = NULL;
501 size_t n;
502 int ret;
503
504 ENTER();
505
506 /* Fast check if setup was canceled */
507 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 return -EIDRM;
509
510 /* Acquire mutex */
511 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
512 if (unlikely(ret < 0))
513 return ret;
514
515 /* Check state */
516 if (ffs->state != FFS_ACTIVE) {
517 ret = -EBADFD;
518 goto done_mutex;
519 }
520
521 /*
522 * We're called from user space, we can use _irq rather then
523 * _irqsave
524 */
525 spin_lock_irq(&ffs->ev.waitq.lock);
526
527 switch (ffs_setup_state_clear_cancelled(ffs)) {
528 case FFS_SETUP_CANCELLED:
529 ret = -EIDRM;
530 break;
531
532 case FFS_NO_SETUP:
533 n = len / sizeof(struct usb_functionfs_event);
534 if (unlikely(!n)) {
535 ret = -EINVAL;
536 break;
537 }
538
539 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
540 ret = -EAGAIN;
541 break;
542 }
543
544 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
545 ffs->ev.count)) {
546 ret = -EINTR;
547 break;
548 }
549
550 return __ffs_ep0_read_events(ffs, buf,
551 min(n, (size_t)ffs->ev.count));
552
553 case FFS_SETUP_PENDING:
554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 spin_unlock_irq(&ffs->ev.waitq.lock);
556 ret = __ffs_ep0_stall(ffs);
557 goto done_mutex;
558 }
559
560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561
562 spin_unlock_irq(&ffs->ev.waitq.lock);
563
564 if (likely(len)) {
565 data = kmalloc(len, GFP_KERNEL);
566 if (unlikely(!data)) {
567 ret = -ENOMEM;
568 goto done_mutex;
569 }
570 }
571
572 spin_lock_irq(&ffs->ev.waitq.lock);
573
574 /* See ffs_ep0_write() */
575 if (ffs_setup_state_clear_cancelled(ffs) ==
576 FFS_SETUP_CANCELLED) {
577 ret = -EIDRM;
578 break;
579 }
580
581 /* unlocks spinlock */
582 ret = __ffs_ep0_queue_wait(ffs, data, len);
583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 ret = -EFAULT;
585 goto done_mutex;
586
587 default:
588 ret = -EBADFD;
589 break;
590 }
591
592 spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 mutex_unlock(&ffs->mutex);
595 kfree(data);
596 return ret;
597 }
598
599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 struct ffs_data *ffs = inode->i_private;
602
603 ENTER();
604
605 if (unlikely(ffs->state == FFS_CLOSING))
606 return -EBUSY;
607
608 file->private_data = ffs;
609 ffs_data_opened(ffs);
610
611 return 0;
612 }
613
614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 struct ffs_data *ffs = file->private_data;
617
618 ENTER();
619
620 ffs_data_closed(ffs);
621
622 return 0;
623 }
624
625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 struct ffs_data *ffs = file->private_data;
628 struct usb_gadget *gadget = ffs->gadget;
629 long ret;
630
631 ENTER();
632
633 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 struct ffs_function *func = ffs->func;
635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 } else if (gadget && gadget->ops->ioctl) {
637 ret = gadget->ops->ioctl(gadget, code, value);
638 } else {
639 ret = -ENOTTY;
640 }
641
642 return ret;
643 }
644
645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 struct ffs_data *ffs = file->private_data;
648 unsigned int mask = POLLWRNORM;
649 int ret;
650
651 poll_wait(file, &ffs->ev.waitq, wait);
652
653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 if (unlikely(ret < 0))
655 return mask;
656
657 switch (ffs->state) {
658 case FFS_READ_DESCRIPTORS:
659 case FFS_READ_STRINGS:
660 mask |= POLLOUT;
661 break;
662
663 case FFS_ACTIVE:
664 switch (ffs->setup_state) {
665 case FFS_NO_SETUP:
666 if (ffs->ev.count)
667 mask |= POLLIN;
668 break;
669
670 case FFS_SETUP_PENDING:
671 case FFS_SETUP_CANCELLED:
672 mask |= (POLLIN | POLLOUT);
673 break;
674 }
675 case FFS_CLOSING:
676 break;
677 case FFS_DEACTIVATED:
678 break;
679 }
680
681 mutex_unlock(&ffs->mutex);
682
683 return mask;
684 }
685
686 static const struct file_operations ffs_ep0_operations = {
687 .llseek = no_llseek,
688
689 .open = ffs_ep0_open,
690 .write = ffs_ep0_write,
691 .read = ffs_ep0_read,
692 .release = ffs_ep0_release,
693 .unlocked_ioctl = ffs_ep0_ioctl,
694 .poll = ffs_ep0_poll,
695 };
696
697
698 /* "Normal" endpoints operations ********************************************/
699
700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 ENTER();
703 if (likely(req->context)) {
704 struct ffs_ep *ep = _ep->driver_data;
705 ep->status = req->status ? req->status : req->actual;
706 complete(req->context);
707 }
708 }
709
710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 ssize_t ret = copy_to_iter(data, data_len, iter);
713 if (likely(ret == data_len))
714 return ret;
715
716 if (unlikely(iov_iter_count(iter)))
717 return -EFAULT;
718
719 /*
720 * Dear user space developer!
721 *
722 * TL;DR: To stop getting below error message in your kernel log, change
723 * user space code using functionfs to align read buffers to a max
724 * packet size.
725 *
726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 * packet size. When unaligned buffer is passed to functionfs, it
728 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 *
730 * Unfortunately, this means that host may send more data than was
731 * requested in read(2) system call. f_fs doesn’t know what to do with
732 * that excess data so it simply drops it.
733 *
734 * Was the buffer aligned in the first place, no such problem would
735 * happen.
736 *
737 * Data may be dropped only in AIO reads. Synchronous reads are handled
738 * by splitting a request into multiple parts. This splitting may still
739 * be a problem though so it’s likely best to align the buffer
740 * regardless of it being AIO or not..
741 *
742 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
744 * affected.
745 */
746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 "Align read buffer size to max packet size to avoid the problem.\n",
748 data_len, ret);
749
750 return ret;
751 }
752
753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 work);
757 int ret = io_data->req->status ? io_data->req->status :
758 io_data->req->actual;
759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760
761 if (io_data->read && ret > 0) {
762 use_mm(io_data->mm);
763 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
764 unuse_mm(io_data->mm);
765 }
766
767 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
768
769 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
770 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
771
772 usb_ep_free_request(io_data->ep, io_data->req);
773
774 if (io_data->read)
775 kfree(io_data->to_free);
776 kfree(io_data->buf);
777 kfree(io_data);
778 }
779
780 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
781 struct usb_request *req)
782 {
783 struct ffs_io_data *io_data = req->context;
784
785 ENTER();
786
787 INIT_WORK(&io_data->work, ffs_user_copy_worker);
788 schedule_work(&io_data->work);
789 }
790
791 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
792 {
793 /*
794 * See comment in struct ffs_epfile for full read_buffer pointer
795 * synchronisation story.
796 */
797 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
798 if (buf && buf != READ_BUFFER_DROP)
799 kfree(buf);
800 }
801
802 /* Assumes epfile->mutex is held. */
803 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
804 struct iov_iter *iter)
805 {
806 /*
807 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
808 * the buffer while we are using it. See comment in struct ffs_epfile
809 * for full read_buffer pointer synchronisation story.
810 */
811 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
812 ssize_t ret;
813 if (!buf || buf == READ_BUFFER_DROP)
814 return 0;
815
816 ret = copy_to_iter(buf->data, buf->length, iter);
817 if (buf->length == ret) {
818 kfree(buf);
819 return ret;
820 }
821
822 if (unlikely(iov_iter_count(iter))) {
823 ret = -EFAULT;
824 } else {
825 buf->length -= ret;
826 buf->data += ret;
827 }
828
829 if (cmpxchg(&epfile->read_buffer, NULL, buf))
830 kfree(buf);
831
832 return ret;
833 }
834
835 /* Assumes epfile->mutex is held. */
836 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
837 void *data, int data_len,
838 struct iov_iter *iter)
839 {
840 struct ffs_buffer *buf;
841
842 ssize_t ret = copy_to_iter(data, data_len, iter);
843 if (likely(data_len == ret))
844 return ret;
845
846 if (unlikely(iov_iter_count(iter)))
847 return -EFAULT;
848
849 /* See ffs_copy_to_iter for more context. */
850 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
851 data_len, ret);
852
853 data_len -= ret;
854 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
855 if (!buf)
856 return -ENOMEM;
857 buf->length = data_len;
858 buf->data = buf->storage;
859 memcpy(buf->storage, data + ret, data_len);
860
861 /*
862 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
863 * ffs_func_eps_disable has been called in the meanwhile). See comment
864 * in struct ffs_epfile for full read_buffer pointer synchronisation
865 * story.
866 */
867 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
868 kfree(buf);
869
870 return ret;
871 }
872
873 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
874 {
875 struct ffs_epfile *epfile = file->private_data;
876 struct usb_request *req;
877 struct ffs_ep *ep;
878 char *data = NULL;
879 ssize_t ret, data_len = -EINVAL;
880 int halt;
881
882 /* Are we still active? */
883 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
884 return -ENODEV;
885
886 /* Wait for endpoint to be enabled */
887 ep = epfile->ep;
888 if (!ep) {
889 if (file->f_flags & O_NONBLOCK)
890 return -EAGAIN;
891
892 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
893 if (ret)
894 return -EINTR;
895 }
896
897 /* Do we halt? */
898 halt = (!io_data->read == !epfile->in);
899 if (halt && epfile->isoc)
900 return -EINVAL;
901
902 /* We will be using request and read_buffer */
903 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
904 if (unlikely(ret))
905 goto error;
906
907 /* Allocate & copy */
908 if (!halt) {
909 struct usb_gadget *gadget;
910
911 /*
912 * Do we have buffered data from previous partial read? Check
913 * that for synchronous case only because we do not have
914 * facility to ‘wake up’ a pending asynchronous read and push
915 * buffered data to it which we would need to make things behave
916 * consistently.
917 */
918 if (!io_data->aio && io_data->read) {
919 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
920 if (ret)
921 goto error_mutex;
922 }
923
924 /*
925 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
926 * before the waiting completes, so do not assign to 'gadget'
927 * earlier
928 */
929 gadget = epfile->ffs->gadget;
930
931 spin_lock_irq(&epfile->ffs->eps_lock);
932 /* In the meantime, endpoint got disabled or changed. */
933 if (epfile->ep != ep) {
934 ret = -ESHUTDOWN;
935 goto error_lock;
936 }
937 data_len = iov_iter_count(&io_data->data);
938 /*
939 * Controller may require buffer size to be aligned to
940 * maxpacketsize of an out endpoint.
941 */
942 if (io_data->read)
943 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
944 spin_unlock_irq(&epfile->ffs->eps_lock);
945
946 data = kmalloc(data_len, GFP_KERNEL);
947 if (unlikely(!data)) {
948 ret = -ENOMEM;
949 goto error_mutex;
950 }
951 if (!io_data->read &&
952 !copy_from_iter_full(data, data_len, &io_data->data)) {
953 ret = -EFAULT;
954 goto error_mutex;
955 }
956 }
957
958 spin_lock_irq(&epfile->ffs->eps_lock);
959
960 if (epfile->ep != ep) {
961 /* In the meantime, endpoint got disabled or changed. */
962 ret = -ESHUTDOWN;
963 } else if (halt) {
964 /* Halt */
965 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
966 usb_ep_set_halt(ep->ep);
967 ret = -EBADMSG;
968 } else if (unlikely(data_len == -EINVAL)) {
969 /*
970 * Sanity Check: even though data_len can't be used
971 * uninitialized at the time I write this comment, some
972 * compilers complain about this situation.
973 * In order to keep the code clean from warnings, data_len is
974 * being initialized to -EINVAL during its declaration, which
975 * means we can't rely on compiler anymore to warn no future
976 * changes won't result in data_len being used uninitialized.
977 * For such reason, we're adding this redundant sanity check
978 * here.
979 */
980 WARN(1, "%s: data_len == -EINVAL\n", __func__);
981 ret = -EINVAL;
982 } else if (!io_data->aio) {
983 DECLARE_COMPLETION_ONSTACK(done);
984 bool interrupted = false;
985
986 req = ep->req;
987 req->buf = data;
988 req->length = data_len;
989
990 req->context = &done;
991 req->complete = ffs_epfile_io_complete;
992
993 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
994 if (unlikely(ret < 0))
995 goto error_lock;
996
997 spin_unlock_irq(&epfile->ffs->eps_lock);
998
999 if (unlikely(wait_for_completion_interruptible(&done))) {
1000 /*
1001 * To avoid race condition with ffs_epfile_io_complete,
1002 * dequeue the request first then check
1003 * status. usb_ep_dequeue API should guarantee no race
1004 * condition with req->complete callback.
1005 */
1006 usb_ep_dequeue(ep->ep, req);
1007 interrupted = ep->status < 0;
1008 }
1009
1010 if (interrupted)
1011 ret = -EINTR;
1012 else if (io_data->read && ep->status > 0)
1013 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014 &io_data->data);
1015 else
1016 ret = ep->status;
1017 goto error_mutex;
1018 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1019 ret = -ENOMEM;
1020 } else {
1021 req->buf = data;
1022 req->length = data_len;
1023
1024 io_data->buf = data;
1025 io_data->ep = ep->ep;
1026 io_data->req = req;
1027 io_data->ffs = epfile->ffs;
1028
1029 req->context = io_data;
1030 req->complete = ffs_epfile_async_io_complete;
1031
1032 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033 if (unlikely(ret)) {
1034 usb_ep_free_request(ep->ep, req);
1035 goto error_lock;
1036 }
1037
1038 ret = -EIOCBQUEUED;
1039 /*
1040 * Do not kfree the buffer in this function. It will be freed
1041 * by ffs_user_copy_worker.
1042 */
1043 data = NULL;
1044 }
1045
1046 error_lock:
1047 spin_unlock_irq(&epfile->ffs->eps_lock);
1048 error_mutex:
1049 mutex_unlock(&epfile->mutex);
1050 error:
1051 kfree(data);
1052 return ret;
1053 }
1054
1055 static int
1056 ffs_epfile_open(struct inode *inode, struct file *file)
1057 {
1058 struct ffs_epfile *epfile = inode->i_private;
1059
1060 ENTER();
1061
1062 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063 return -ENODEV;
1064
1065 file->private_data = epfile;
1066 ffs_data_opened(epfile->ffs);
1067
1068 return 0;
1069 }
1070
1071 static int ffs_aio_cancel(struct kiocb *kiocb)
1072 {
1073 struct ffs_io_data *io_data = kiocb->private;
1074 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075 int value;
1076
1077 ENTER();
1078
1079 spin_lock_irq(&epfile->ffs->eps_lock);
1080
1081 if (likely(io_data && io_data->ep && io_data->req))
1082 value = usb_ep_dequeue(io_data->ep, io_data->req);
1083 else
1084 value = -EINVAL;
1085
1086 spin_unlock_irq(&epfile->ffs->eps_lock);
1087
1088 return value;
1089 }
1090
1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092 {
1093 struct ffs_io_data io_data, *p = &io_data;
1094 ssize_t res;
1095
1096 ENTER();
1097
1098 if (!is_sync_kiocb(kiocb)) {
1099 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100 if (unlikely(!p))
1101 return -ENOMEM;
1102 p->aio = true;
1103 } else {
1104 p->aio = false;
1105 }
1106
1107 p->read = false;
1108 p->kiocb = kiocb;
1109 p->data = *from;
1110 p->mm = current->mm;
1111
1112 kiocb->private = p;
1113
1114 if (p->aio)
1115 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116
1117 res = ffs_epfile_io(kiocb->ki_filp, p);
1118 if (res == -EIOCBQUEUED)
1119 return res;
1120 if (p->aio)
1121 kfree(p);
1122 else
1123 *from = p->data;
1124 return res;
1125 }
1126
1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128 {
1129 struct ffs_io_data io_data, *p = &io_data;
1130 ssize_t res;
1131
1132 ENTER();
1133
1134 if (!is_sync_kiocb(kiocb)) {
1135 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136 if (unlikely(!p))
1137 return -ENOMEM;
1138 p->aio = true;
1139 } else {
1140 p->aio = false;
1141 }
1142
1143 p->read = true;
1144 p->kiocb = kiocb;
1145 if (p->aio) {
1146 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147 if (!p->to_free) {
1148 kfree(p);
1149 return -ENOMEM;
1150 }
1151 } else {
1152 p->data = *to;
1153 p->to_free = NULL;
1154 }
1155 p->mm = current->mm;
1156
1157 kiocb->private = p;
1158
1159 if (p->aio)
1160 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161
1162 res = ffs_epfile_io(kiocb->ki_filp, p);
1163 if (res == -EIOCBQUEUED)
1164 return res;
1165
1166 if (p->aio) {
1167 kfree(p->to_free);
1168 kfree(p);
1169 } else {
1170 *to = p->data;
1171 }
1172 return res;
1173 }
1174
1175 static int
1176 ffs_epfile_release(struct inode *inode, struct file *file)
1177 {
1178 struct ffs_epfile *epfile = inode->i_private;
1179
1180 ENTER();
1181
1182 __ffs_epfile_read_buffer_free(epfile);
1183 ffs_data_closed(epfile->ffs);
1184
1185 return 0;
1186 }
1187
1188 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189 unsigned long value)
1190 {
1191 struct ffs_epfile *epfile = file->private_data;
1192 int ret;
1193
1194 ENTER();
1195
1196 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1197 return -ENODEV;
1198
1199 spin_lock_irq(&epfile->ffs->eps_lock);
1200 if (likely(epfile->ep)) {
1201 switch (code) {
1202 case FUNCTIONFS_FIFO_STATUS:
1203 ret = usb_ep_fifo_status(epfile->ep->ep);
1204 break;
1205 case FUNCTIONFS_FIFO_FLUSH:
1206 usb_ep_fifo_flush(epfile->ep->ep);
1207 ret = 0;
1208 break;
1209 case FUNCTIONFS_CLEAR_HALT:
1210 ret = usb_ep_clear_halt(epfile->ep->ep);
1211 break;
1212 case FUNCTIONFS_ENDPOINT_REVMAP:
1213 ret = epfile->ep->num;
1214 break;
1215 case FUNCTIONFS_ENDPOINT_DESC:
1216 {
1217 int desc_idx;
1218 struct usb_endpoint_descriptor *desc;
1219
1220 switch (epfile->ffs->gadget->speed) {
1221 case USB_SPEED_SUPER:
1222 desc_idx = 2;
1223 break;
1224 case USB_SPEED_HIGH:
1225 desc_idx = 1;
1226 break;
1227 default:
1228 desc_idx = 0;
1229 }
1230 desc = epfile->ep->descs[desc_idx];
1231
1232 spin_unlock_irq(&epfile->ffs->eps_lock);
1233 ret = copy_to_user((void *)value, desc, desc->bLength);
1234 if (ret)
1235 ret = -EFAULT;
1236 return ret;
1237 }
1238 default:
1239 ret = -ENOTTY;
1240 }
1241 } else {
1242 ret = -ENODEV;
1243 }
1244 spin_unlock_irq(&epfile->ffs->eps_lock);
1245
1246 return ret;
1247 }
1248
1249 static const struct file_operations ffs_epfile_operations = {
1250 .llseek = no_llseek,
1251
1252 .open = ffs_epfile_open,
1253 .write_iter = ffs_epfile_write_iter,
1254 .read_iter = ffs_epfile_read_iter,
1255 .release = ffs_epfile_release,
1256 .unlocked_ioctl = ffs_epfile_ioctl,
1257 };
1258
1259
1260 /* File system and super block operations ***********************************/
1261
1262 /*
1263 * Mounting the file system creates a controller file, used first for
1264 * function configuration then later for event monitoring.
1265 */
1266
1267 static struct inode *__must_check
1268 ffs_sb_make_inode(struct super_block *sb, void *data,
1269 const struct file_operations *fops,
1270 const struct inode_operations *iops,
1271 struct ffs_file_perms *perms)
1272 {
1273 struct inode *inode;
1274
1275 ENTER();
1276
1277 inode = new_inode(sb);
1278
1279 if (likely(inode)) {
1280 struct timespec ts = current_time(inode);
1281
1282 inode->i_ino = get_next_ino();
1283 inode->i_mode = perms->mode;
1284 inode->i_uid = perms->uid;
1285 inode->i_gid = perms->gid;
1286 inode->i_atime = ts;
1287 inode->i_mtime = ts;
1288 inode->i_ctime = ts;
1289 inode->i_private = data;
1290 if (fops)
1291 inode->i_fop = fops;
1292 if (iops)
1293 inode->i_op = iops;
1294 }
1295
1296 return inode;
1297 }
1298
1299 /* Create "regular" file */
1300 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1301 const char *name, void *data,
1302 const struct file_operations *fops)
1303 {
1304 struct ffs_data *ffs = sb->s_fs_info;
1305 struct dentry *dentry;
1306 struct inode *inode;
1307
1308 ENTER();
1309
1310 dentry = d_alloc_name(sb->s_root, name);
1311 if (unlikely(!dentry))
1312 return NULL;
1313
1314 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1315 if (unlikely(!inode)) {
1316 dput(dentry);
1317 return NULL;
1318 }
1319
1320 d_add(dentry, inode);
1321 return dentry;
1322 }
1323
1324 /* Super block */
1325 static const struct super_operations ffs_sb_operations = {
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 };
1329
1330 struct ffs_sb_fill_data {
1331 struct ffs_file_perms perms;
1332 umode_t root_mode;
1333 const char *dev_name;
1334 bool no_disconnect;
1335 struct ffs_data *ffs_data;
1336 };
1337
1338 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1339 {
1340 struct ffs_sb_fill_data *data = _data;
1341 struct inode *inode;
1342 struct ffs_data *ffs = data->ffs_data;
1343
1344 ENTER();
1345
1346 ffs->sb = sb;
1347 data->ffs_data = NULL;
1348 sb->s_fs_info = ffs;
1349 sb->s_blocksize = PAGE_SIZE;
1350 sb->s_blocksize_bits = PAGE_SHIFT;
1351 sb->s_magic = FUNCTIONFS_MAGIC;
1352 sb->s_op = &ffs_sb_operations;
1353 sb->s_time_gran = 1;
1354
1355 /* Root inode */
1356 data->perms.mode = data->root_mode;
1357 inode = ffs_sb_make_inode(sb, NULL,
1358 &simple_dir_operations,
1359 &simple_dir_inode_operations,
1360 &data->perms);
1361 sb->s_root = d_make_root(inode);
1362 if (unlikely(!sb->s_root))
1363 return -ENOMEM;
1364
1365 /* EP0 file */
1366 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1367 &ffs_ep0_operations)))
1368 return -ENOMEM;
1369
1370 return 0;
1371 }
1372
1373 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1374 {
1375 ENTER();
1376
1377 if (!opts || !*opts)
1378 return 0;
1379
1380 for (;;) {
1381 unsigned long value;
1382 char *eq, *comma;
1383
1384 /* Option limit */
1385 comma = strchr(opts, ',');
1386 if (comma)
1387 *comma = 0;
1388
1389 /* Value limit */
1390 eq = strchr(opts, '=');
1391 if (unlikely(!eq)) {
1392 pr_err("'=' missing in %s\n", opts);
1393 return -EINVAL;
1394 }
1395 *eq = 0;
1396
1397 /* Parse value */
1398 if (kstrtoul(eq + 1, 0, &value)) {
1399 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1400 return -EINVAL;
1401 }
1402
1403 /* Interpret option */
1404 switch (eq - opts) {
1405 case 13:
1406 if (!memcmp(opts, "no_disconnect", 13))
1407 data->no_disconnect = !!value;
1408 else
1409 goto invalid;
1410 break;
1411 case 5:
1412 if (!memcmp(opts, "rmode", 5))
1413 data->root_mode = (value & 0555) | S_IFDIR;
1414 else if (!memcmp(opts, "fmode", 5))
1415 data->perms.mode = (value & 0666) | S_IFREG;
1416 else
1417 goto invalid;
1418 break;
1419
1420 case 4:
1421 if (!memcmp(opts, "mode", 4)) {
1422 data->root_mode = (value & 0555) | S_IFDIR;
1423 data->perms.mode = (value & 0666) | S_IFREG;
1424 } else {
1425 goto invalid;
1426 }
1427 break;
1428
1429 case 3:
1430 if (!memcmp(opts, "uid", 3)) {
1431 data->perms.uid = make_kuid(current_user_ns(), value);
1432 if (!uid_valid(data->perms.uid)) {
1433 pr_err("%s: unmapped value: %lu\n", opts, value);
1434 return -EINVAL;
1435 }
1436 } else if (!memcmp(opts, "gid", 3)) {
1437 data->perms.gid = make_kgid(current_user_ns(), value);
1438 if (!gid_valid(data->perms.gid)) {
1439 pr_err("%s: unmapped value: %lu\n", opts, value);
1440 return -EINVAL;
1441 }
1442 } else {
1443 goto invalid;
1444 }
1445 break;
1446
1447 default:
1448 invalid:
1449 pr_err("%s: invalid option\n", opts);
1450 return -EINVAL;
1451 }
1452
1453 /* Next iteration */
1454 if (!comma)
1455 break;
1456 opts = comma + 1;
1457 }
1458
1459 return 0;
1460 }
1461
1462 /* "mount -t functionfs dev_name /dev/function" ends up here */
1463
1464 static struct dentry *
1465 ffs_fs_mount(struct file_system_type *t, int flags,
1466 const char *dev_name, void *opts)
1467 {
1468 struct ffs_sb_fill_data data = {
1469 .perms = {
1470 .mode = S_IFREG | 0600,
1471 .uid = GLOBAL_ROOT_UID,
1472 .gid = GLOBAL_ROOT_GID,
1473 },
1474 .root_mode = S_IFDIR | 0500,
1475 .no_disconnect = false,
1476 };
1477 struct dentry *rv;
1478 int ret;
1479 void *ffs_dev;
1480 struct ffs_data *ffs;
1481
1482 ENTER();
1483
1484 ret = ffs_fs_parse_opts(&data, opts);
1485 if (unlikely(ret < 0))
1486 return ERR_PTR(ret);
1487
1488 ffs = ffs_data_new();
1489 if (unlikely(!ffs))
1490 return ERR_PTR(-ENOMEM);
1491 ffs->file_perms = data.perms;
1492 ffs->no_disconnect = data.no_disconnect;
1493
1494 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1495 if (unlikely(!ffs->dev_name)) {
1496 ffs_data_put(ffs);
1497 return ERR_PTR(-ENOMEM);
1498 }
1499
1500 ffs_dev = ffs_acquire_dev(dev_name);
1501 if (IS_ERR(ffs_dev)) {
1502 ffs_data_put(ffs);
1503 return ERR_CAST(ffs_dev);
1504 }
1505 ffs->private_data = ffs_dev;
1506 data.ffs_data = ffs;
1507
1508 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1509 if (IS_ERR(rv) && data.ffs_data) {
1510 ffs_release_dev(data.ffs_data);
1511 ffs_data_put(data.ffs_data);
1512 }
1513 return rv;
1514 }
1515
1516 static void
1517 ffs_fs_kill_sb(struct super_block *sb)
1518 {
1519 ENTER();
1520
1521 kill_litter_super(sb);
1522 if (sb->s_fs_info) {
1523 ffs_release_dev(sb->s_fs_info);
1524 ffs_data_closed(sb->s_fs_info);
1525 ffs_data_put(sb->s_fs_info);
1526 }
1527 }
1528
1529 static struct file_system_type ffs_fs_type = {
1530 .owner = THIS_MODULE,
1531 .name = "functionfs",
1532 .mount = ffs_fs_mount,
1533 .kill_sb = ffs_fs_kill_sb,
1534 };
1535 MODULE_ALIAS_FS("functionfs");
1536
1537
1538 /* Driver's main init/cleanup functions *************************************/
1539
1540 static int functionfs_init(void)
1541 {
1542 int ret;
1543
1544 ENTER();
1545
1546 ret = register_filesystem(&ffs_fs_type);
1547 if (likely(!ret))
1548 pr_info("file system registered\n");
1549 else
1550 pr_err("failed registering file system (%d)\n", ret);
1551
1552 return ret;
1553 }
1554
1555 static void functionfs_cleanup(void)
1556 {
1557 ENTER();
1558
1559 pr_info("unloading\n");
1560 unregister_filesystem(&ffs_fs_type);
1561 }
1562
1563
1564 /* ffs_data and ffs_function construction and destruction code **************/
1565
1566 static void ffs_data_clear(struct ffs_data *ffs);
1567 static void ffs_data_reset(struct ffs_data *ffs);
1568
1569 static void ffs_data_get(struct ffs_data *ffs)
1570 {
1571 ENTER();
1572
1573 atomic_inc(&ffs->ref);
1574 }
1575
1576 static void ffs_data_opened(struct ffs_data *ffs)
1577 {
1578 ENTER();
1579
1580 atomic_inc(&ffs->ref);
1581 if (atomic_add_return(1, &ffs->opened) == 1 &&
1582 ffs->state == FFS_DEACTIVATED) {
1583 ffs->state = FFS_CLOSING;
1584 ffs_data_reset(ffs);
1585 }
1586 }
1587
1588 static void ffs_data_put(struct ffs_data *ffs)
1589 {
1590 ENTER();
1591
1592 if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1593 pr_info("%s(): freeing\n", __func__);
1594 ffs_data_clear(ffs);
1595 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1596 waitqueue_active(&ffs->ep0req_completion.wait));
1597 kfree(ffs->dev_name);
1598 kfree(ffs);
1599 }
1600 }
1601
1602 static void ffs_data_closed(struct ffs_data *ffs)
1603 {
1604 ENTER();
1605
1606 if (atomic_dec_and_test(&ffs->opened)) {
1607 if (ffs->no_disconnect) {
1608 ffs->state = FFS_DEACTIVATED;
1609 if (ffs->epfiles) {
1610 ffs_epfiles_destroy(ffs->epfiles,
1611 ffs->eps_count);
1612 ffs->epfiles = NULL;
1613 }
1614 if (ffs->setup_state == FFS_SETUP_PENDING)
1615 __ffs_ep0_stall(ffs);
1616 } else {
1617 ffs->state = FFS_CLOSING;
1618 ffs_data_reset(ffs);
1619 }
1620 }
1621 if (atomic_read(&ffs->opened) < 0) {
1622 ffs->state = FFS_CLOSING;
1623 ffs_data_reset(ffs);
1624 }
1625
1626 ffs_data_put(ffs);
1627 }
1628
1629 static struct ffs_data *ffs_data_new(void)
1630 {
1631 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1632 if (unlikely(!ffs))
1633 return NULL;
1634
1635 ENTER();
1636
1637 atomic_set(&ffs->ref, 1);
1638 atomic_set(&ffs->opened, 0);
1639 ffs->state = FFS_READ_DESCRIPTORS;
1640 mutex_init(&ffs->mutex);
1641 spin_lock_init(&ffs->eps_lock);
1642 init_waitqueue_head(&ffs->ev.waitq);
1643 init_completion(&ffs->ep0req_completion);
1644
1645 /* XXX REVISIT need to update it in some places, or do we? */
1646 ffs->ev.can_stall = 1;
1647
1648 return ffs;
1649 }
1650
1651 static void ffs_data_clear(struct ffs_data *ffs)
1652 {
1653 ENTER();
1654
1655 ffs_closed(ffs);
1656
1657 BUG_ON(ffs->gadget);
1658
1659 if (ffs->epfiles)
1660 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1661
1662 if (ffs->ffs_eventfd)
1663 eventfd_ctx_put(ffs->ffs_eventfd);
1664
1665 kfree(ffs->raw_descs_data);
1666 kfree(ffs->raw_strings);
1667 kfree(ffs->stringtabs);
1668 }
1669
1670 static void ffs_data_reset(struct ffs_data *ffs)
1671 {
1672 ENTER();
1673
1674 ffs_data_clear(ffs);
1675
1676 ffs->epfiles = NULL;
1677 ffs->raw_descs_data = NULL;
1678 ffs->raw_descs = NULL;
1679 ffs->raw_strings = NULL;
1680 ffs->stringtabs = NULL;
1681
1682 ffs->raw_descs_length = 0;
1683 ffs->fs_descs_count = 0;
1684 ffs->hs_descs_count = 0;
1685 ffs->ss_descs_count = 0;
1686
1687 ffs->strings_count = 0;
1688 ffs->interfaces_count = 0;
1689 ffs->eps_count = 0;
1690
1691 ffs->ev.count = 0;
1692
1693 ffs->state = FFS_READ_DESCRIPTORS;
1694 ffs->setup_state = FFS_NO_SETUP;
1695 ffs->flags = 0;
1696 }
1697
1698
1699 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1700 {
1701 struct usb_gadget_strings **lang;
1702 int first_id;
1703
1704 ENTER();
1705
1706 if (WARN_ON(ffs->state != FFS_ACTIVE
1707 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1708 return -EBADFD;
1709
1710 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1711 if (unlikely(first_id < 0))
1712 return first_id;
1713
1714 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1715 if (unlikely(!ffs->ep0req))
1716 return -ENOMEM;
1717 ffs->ep0req->complete = ffs_ep0_complete;
1718 ffs->ep0req->context = ffs;
1719
1720 lang = ffs->stringtabs;
1721 if (lang) {
1722 for (; *lang; ++lang) {
1723 struct usb_string *str = (*lang)->strings;
1724 int id = first_id;
1725 for (; str->s; ++id, ++str)
1726 str->id = id;
1727 }
1728 }
1729
1730 ffs->gadget = cdev->gadget;
1731 ffs_data_get(ffs);
1732 return 0;
1733 }
1734
1735 static void functionfs_unbind(struct ffs_data *ffs)
1736 {
1737 ENTER();
1738
1739 if (!WARN_ON(!ffs->gadget)) {
1740 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1741 ffs->ep0req = NULL;
1742 ffs->gadget = NULL;
1743 clear_bit(FFS_FL_BOUND, &ffs->flags);
1744 ffs_data_put(ffs);
1745 }
1746 }
1747
1748 static int ffs_epfiles_create(struct ffs_data *ffs)
1749 {
1750 struct ffs_epfile *epfile, *epfiles;
1751 unsigned i, count;
1752
1753 ENTER();
1754
1755 count = ffs->eps_count;
1756 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1757 if (!epfiles)
1758 return -ENOMEM;
1759
1760 epfile = epfiles;
1761 for (i = 1; i <= count; ++i, ++epfile) {
1762 epfile->ffs = ffs;
1763 mutex_init(&epfile->mutex);
1764 init_waitqueue_head(&epfile->wait);
1765 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1766 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1767 else
1768 sprintf(epfile->name, "ep%u", i);
1769 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1770 epfile,
1771 &ffs_epfile_operations);
1772 if (unlikely(!epfile->dentry)) {
1773 ffs_epfiles_destroy(epfiles, i - 1);
1774 return -ENOMEM;
1775 }
1776 }
1777
1778 ffs->epfiles = epfiles;
1779 return 0;
1780 }
1781
1782 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1783 {
1784 struct ffs_epfile *epfile = epfiles;
1785
1786 ENTER();
1787
1788 for (; count; --count, ++epfile) {
1789 BUG_ON(mutex_is_locked(&epfile->mutex) ||
1790 waitqueue_active(&epfile->wait));
1791 if (epfile->dentry) {
1792 d_delete(epfile->dentry);
1793 dput(epfile->dentry);
1794 epfile->dentry = NULL;
1795 }
1796 }
1797
1798 kfree(epfiles);
1799 }
1800
1801 static void ffs_func_eps_disable(struct ffs_function *func)
1802 {
1803 struct ffs_ep *ep = func->eps;
1804 struct ffs_epfile *epfile = func->ffs->epfiles;
1805 unsigned count = func->ffs->eps_count;
1806 unsigned long flags;
1807
1808 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1809 while (count--) {
1810 /* pending requests get nuked */
1811 if (likely(ep->ep))
1812 usb_ep_disable(ep->ep);
1813 ++ep;
1814
1815 if (epfile) {
1816 epfile->ep = NULL;
1817 __ffs_epfile_read_buffer_free(epfile);
1818 ++epfile;
1819 }
1820 }
1821 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1822 }
1823
1824 static int ffs_func_eps_enable(struct ffs_function *func)
1825 {
1826 struct ffs_data *ffs = func->ffs;
1827 struct ffs_ep *ep = func->eps;
1828 struct ffs_epfile *epfile = ffs->epfiles;
1829 unsigned count = ffs->eps_count;
1830 unsigned long flags;
1831 int ret = 0;
1832
1833 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1834 while(count--) {
1835 struct usb_endpoint_descriptor *ds;
1836 int desc_idx;
1837
1838 if (ffs->gadget->speed == USB_SPEED_SUPER)
1839 desc_idx = 2;
1840 else if (ffs->gadget->speed == USB_SPEED_HIGH)
1841 desc_idx = 1;
1842 else
1843 desc_idx = 0;
1844
1845 /* fall-back to lower speed if desc missing for current speed */
1846 do {
1847 ds = ep->descs[desc_idx];
1848 } while (!ds && --desc_idx >= 0);
1849
1850 if (!ds) {
1851 ret = -EINVAL;
1852 break;
1853 }
1854
1855 ep->ep->driver_data = ep;
1856 ep->ep->desc = ds;
1857 ret = usb_ep_enable(ep->ep);
1858 if (likely(!ret)) {
1859 epfile->ep = ep;
1860 epfile->in = usb_endpoint_dir_in(ds);
1861 epfile->isoc = usb_endpoint_xfer_isoc(ds);
1862 } else {
1863 break;
1864 }
1865
1866 wake_up(&epfile->wait);
1867
1868 ++ep;
1869 ++epfile;
1870 }
1871 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1872
1873 return ret;
1874 }
1875
1876
1877 /* Parsing and building descriptors and strings *****************************/
1878
1879 /*
1880 * This validates if data pointed by data is a valid USB descriptor as
1881 * well as record how many interfaces, endpoints and strings are
1882 * required by given configuration. Returns address after the
1883 * descriptor or NULL if data is invalid.
1884 */
1885
1886 enum ffs_entity_type {
1887 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1888 };
1889
1890 enum ffs_os_desc_type {
1891 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1892 };
1893
1894 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1895 u8 *valuep,
1896 struct usb_descriptor_header *desc,
1897 void *priv);
1898
1899 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1900 struct usb_os_desc_header *h, void *data,
1901 unsigned len, void *priv);
1902
1903 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1904 ffs_entity_callback entity,
1905 void *priv)
1906 {
1907 struct usb_descriptor_header *_ds = (void *)data;
1908 u8 length;
1909 int ret;
1910
1911 ENTER();
1912
1913 /* At least two bytes are required: length and type */
1914 if (len < 2) {
1915 pr_vdebug("descriptor too short\n");
1916 return -EINVAL;
1917 }
1918
1919 /* If we have at least as many bytes as the descriptor takes? */
1920 length = _ds->bLength;
1921 if (len < length) {
1922 pr_vdebug("descriptor longer then available data\n");
1923 return -EINVAL;
1924 }
1925
1926 #define __entity_check_INTERFACE(val) 1
1927 #define __entity_check_STRING(val) (val)
1928 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1929 #define __entity(type, val) do { \
1930 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1931 if (unlikely(!__entity_check_ ##type(val))) { \
1932 pr_vdebug("invalid entity's value\n"); \
1933 return -EINVAL; \
1934 } \
1935 ret = entity(FFS_ ##type, &val, _ds, priv); \
1936 if (unlikely(ret < 0)) { \
1937 pr_debug("entity " #type "(%02x); ret = %d\n", \
1938 (val), ret); \
1939 return ret; \
1940 } \
1941 } while (0)
1942
1943 /* Parse descriptor depending on type. */
1944 switch (_ds->bDescriptorType) {
1945 case USB_DT_DEVICE:
1946 case USB_DT_CONFIG:
1947 case USB_DT_STRING:
1948 case USB_DT_DEVICE_QUALIFIER:
1949 /* function can't have any of those */
1950 pr_vdebug("descriptor reserved for gadget: %d\n",
1951 _ds->bDescriptorType);
1952 return -EINVAL;
1953
1954 case USB_DT_INTERFACE: {
1955 struct usb_interface_descriptor *ds = (void *)_ds;
1956 pr_vdebug("interface descriptor\n");
1957 if (length != sizeof *ds)
1958 goto inv_length;
1959
1960 __entity(INTERFACE, ds->bInterfaceNumber);
1961 if (ds->iInterface)
1962 __entity(STRING, ds->iInterface);
1963 }
1964 break;
1965
1966 case USB_DT_ENDPOINT: {
1967 struct usb_endpoint_descriptor *ds = (void *)_ds;
1968 pr_vdebug("endpoint descriptor\n");
1969 if (length != USB_DT_ENDPOINT_SIZE &&
1970 length != USB_DT_ENDPOINT_AUDIO_SIZE)
1971 goto inv_length;
1972 __entity(ENDPOINT, ds->bEndpointAddress);
1973 }
1974 break;
1975
1976 case HID_DT_HID:
1977 pr_vdebug("hid descriptor\n");
1978 if (length != sizeof(struct hid_descriptor))
1979 goto inv_length;
1980 break;
1981
1982 case USB_DT_OTG:
1983 if (length != sizeof(struct usb_otg_descriptor))
1984 goto inv_length;
1985 break;
1986
1987 case USB_DT_INTERFACE_ASSOCIATION: {
1988 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1989 pr_vdebug("interface association descriptor\n");
1990 if (length != sizeof *ds)
1991 goto inv_length;
1992 if (ds->iFunction)
1993 __entity(STRING, ds->iFunction);
1994 }
1995 break;
1996
1997 case USB_DT_SS_ENDPOINT_COMP:
1998 pr_vdebug("EP SS companion descriptor\n");
1999 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2000 goto inv_length;
2001 break;
2002
2003 case USB_DT_OTHER_SPEED_CONFIG:
2004 case USB_DT_INTERFACE_POWER:
2005 case USB_DT_DEBUG:
2006 case USB_DT_SECURITY:
2007 case USB_DT_CS_RADIO_CONTROL:
2008 /* TODO */
2009 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2010 return -EINVAL;
2011
2012 default:
2013 /* We should never be here */
2014 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2015 return -EINVAL;
2016
2017 inv_length:
2018 pr_vdebug("invalid length: %d (descriptor %d)\n",
2019 _ds->bLength, _ds->bDescriptorType);
2020 return -EINVAL;
2021 }
2022
2023 #undef __entity
2024 #undef __entity_check_DESCRIPTOR
2025 #undef __entity_check_INTERFACE
2026 #undef __entity_check_STRING
2027 #undef __entity_check_ENDPOINT
2028
2029 return length;
2030 }
2031
2032 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2033 ffs_entity_callback entity, void *priv)
2034 {
2035 const unsigned _len = len;
2036 unsigned long num = 0;
2037
2038 ENTER();
2039
2040 for (;;) {
2041 int ret;
2042
2043 if (num == count)
2044 data = NULL;
2045
2046 /* Record "descriptor" entity */
2047 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2048 if (unlikely(ret < 0)) {
2049 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2050 num, ret);
2051 return ret;
2052 }
2053
2054 if (!data)
2055 return _len - len;
2056
2057 ret = ffs_do_single_desc(data, len, entity, priv);
2058 if (unlikely(ret < 0)) {
2059 pr_debug("%s returns %d\n", __func__, ret);
2060 return ret;
2061 }
2062
2063 len -= ret;
2064 data += ret;
2065 ++num;
2066 }
2067 }
2068
2069 static int __ffs_data_do_entity(enum ffs_entity_type type,
2070 u8 *valuep, struct usb_descriptor_header *desc,
2071 void *priv)
2072 {
2073 struct ffs_desc_helper *helper = priv;
2074 struct usb_endpoint_descriptor *d;
2075
2076 ENTER();
2077
2078 switch (type) {
2079 case FFS_DESCRIPTOR:
2080 break;
2081
2082 case FFS_INTERFACE:
2083 /*
2084 * Interfaces are indexed from zero so if we
2085 * encountered interface "n" then there are at least
2086 * "n+1" interfaces.
2087 */
2088 if (*valuep >= helper->interfaces_count)
2089 helper->interfaces_count = *valuep + 1;
2090 break;
2091
2092 case FFS_STRING:
2093 /*
2094 * Strings are indexed from 1 (0 is reserved
2095 * for languages list)
2096 */
2097 if (*valuep > helper->ffs->strings_count)
2098 helper->ffs->strings_count = *valuep;
2099 break;
2100
2101 case FFS_ENDPOINT:
2102 d = (void *)desc;
2103 helper->eps_count++;
2104 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2105 return -EINVAL;
2106 /* Check if descriptors for any speed were already parsed */
2107 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2108 helper->ffs->eps_addrmap[helper->eps_count] =
2109 d->bEndpointAddress;
2110 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2111 d->bEndpointAddress)
2112 return -EINVAL;
2113 break;
2114 }
2115
2116 return 0;
2117 }
2118
2119 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2120 struct usb_os_desc_header *desc)
2121 {
2122 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2123 u16 w_index = le16_to_cpu(desc->wIndex);
2124
2125 if (bcd_version != 1) {
2126 pr_vdebug("unsupported os descriptors version: %d",
2127 bcd_version);
2128 return -EINVAL;
2129 }
2130 switch (w_index) {
2131 case 0x4:
2132 *next_type = FFS_OS_DESC_EXT_COMPAT;
2133 break;
2134 case 0x5:
2135 *next_type = FFS_OS_DESC_EXT_PROP;
2136 break;
2137 default:
2138 pr_vdebug("unsupported os descriptor type: %d", w_index);
2139 return -EINVAL;
2140 }
2141
2142 return sizeof(*desc);
2143 }
2144
2145 /*
2146 * Process all extended compatibility/extended property descriptors
2147 * of a feature descriptor
2148 */
2149 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2150 enum ffs_os_desc_type type,
2151 u16 feature_count,
2152 ffs_os_desc_callback entity,
2153 void *priv,
2154 struct usb_os_desc_header *h)
2155 {
2156 int ret;
2157 const unsigned _len = len;
2158
2159 ENTER();
2160
2161 /* loop over all ext compat/ext prop descriptors */
2162 while (feature_count--) {
2163 ret = entity(type, h, data, len, priv);
2164 if (unlikely(ret < 0)) {
2165 pr_debug("bad OS descriptor, type: %d\n", type);
2166 return ret;
2167 }
2168 data += ret;
2169 len -= ret;
2170 }
2171 return _len - len;
2172 }
2173
2174 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2175 static int __must_check ffs_do_os_descs(unsigned count,
2176 char *data, unsigned len,
2177 ffs_os_desc_callback entity, void *priv)
2178 {
2179 const unsigned _len = len;
2180 unsigned long num = 0;
2181
2182 ENTER();
2183
2184 for (num = 0; num < count; ++num) {
2185 int ret;
2186 enum ffs_os_desc_type type;
2187 u16 feature_count;
2188 struct usb_os_desc_header *desc = (void *)data;
2189
2190 if (len < sizeof(*desc))
2191 return -EINVAL;
2192
2193 /*
2194 * Record "descriptor" entity.
2195 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2196 * Move the data pointer to the beginning of extended
2197 * compatibilities proper or extended properties proper
2198 * portions of the data
2199 */
2200 if (le32_to_cpu(desc->dwLength) > len)
2201 return -EINVAL;
2202
2203 ret = __ffs_do_os_desc_header(&type, desc);
2204 if (unlikely(ret < 0)) {
2205 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2206 num, ret);
2207 return ret;
2208 }
2209 /*
2210 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2211 */
2212 feature_count = le16_to_cpu(desc->wCount);
2213 if (type == FFS_OS_DESC_EXT_COMPAT &&
2214 (feature_count > 255 || desc->Reserved))
2215 return -EINVAL;
2216 len -= ret;
2217 data += ret;
2218
2219 /*
2220 * Process all function/property descriptors
2221 * of this Feature Descriptor
2222 */
2223 ret = ffs_do_single_os_desc(data, len, type,
2224 feature_count, entity, priv, desc);
2225 if (unlikely(ret < 0)) {
2226 pr_debug("%s returns %d\n", __func__, ret);
2227 return ret;
2228 }
2229
2230 len -= ret;
2231 data += ret;
2232 }
2233 return _len - len;
2234 }
2235
2236 /**
2237 * Validate contents of the buffer from userspace related to OS descriptors.
2238 */
2239 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2240 struct usb_os_desc_header *h, void *data,
2241 unsigned len, void *priv)
2242 {
2243 struct ffs_data *ffs = priv;
2244 u8 length;
2245
2246 ENTER();
2247
2248 switch (type) {
2249 case FFS_OS_DESC_EXT_COMPAT: {
2250 struct usb_ext_compat_desc *d = data;
2251 int i;
2252
2253 if (len < sizeof(*d) ||
2254 d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2255 d->Reserved1)
2256 return -EINVAL;
2257 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2258 if (d->Reserved2[i])
2259 return -EINVAL;
2260
2261 length = sizeof(struct usb_ext_compat_desc);
2262 }
2263 break;
2264 case FFS_OS_DESC_EXT_PROP: {
2265 struct usb_ext_prop_desc *d = data;
2266 u32 type, pdl;
2267 u16 pnl;
2268
2269 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2270 return -EINVAL;
2271 length = le32_to_cpu(d->dwSize);
2272 if (len < length)
2273 return -EINVAL;
2274 type = le32_to_cpu(d->dwPropertyDataType);
2275 if (type < USB_EXT_PROP_UNICODE ||
2276 type > USB_EXT_PROP_UNICODE_MULTI) {
2277 pr_vdebug("unsupported os descriptor property type: %d",
2278 type);
2279 return -EINVAL;
2280 }
2281 pnl = le16_to_cpu(d->wPropertyNameLength);
2282 if (length < 14 + pnl) {
2283 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2284 length, pnl, type);
2285 return -EINVAL;
2286 }
2287 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2288 if (length != 14 + pnl + pdl) {
2289 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2290 length, pnl, pdl, type);
2291 return -EINVAL;
2292 }
2293 ++ffs->ms_os_descs_ext_prop_count;
2294 /* property name reported to the host as "WCHAR"s */
2295 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2296 ffs->ms_os_descs_ext_prop_data_len += pdl;
2297 }
2298 break;
2299 default:
2300 pr_vdebug("unknown descriptor: %d\n", type);
2301 return -EINVAL;
2302 }
2303 return length;
2304 }
2305
2306 static int __ffs_data_got_descs(struct ffs_data *ffs,
2307 char *const _data, size_t len)
2308 {
2309 char *data = _data, *raw_descs;
2310 unsigned os_descs_count = 0, counts[3], flags;
2311 int ret = -EINVAL, i;
2312 struct ffs_desc_helper helper;
2313
2314 ENTER();
2315
2316 if (get_unaligned_le32(data + 4) != len)
2317 goto error;
2318
2319 switch (get_unaligned_le32(data)) {
2320 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2321 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2322 data += 8;
2323 len -= 8;
2324 break;
2325 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2326 flags = get_unaligned_le32(data + 8);
2327 ffs->user_flags = flags;
2328 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2329 FUNCTIONFS_HAS_HS_DESC |
2330 FUNCTIONFS_HAS_SS_DESC |
2331 FUNCTIONFS_HAS_MS_OS_DESC |
2332 FUNCTIONFS_VIRTUAL_ADDR |
2333 FUNCTIONFS_EVENTFD |
2334 FUNCTIONFS_ALL_CTRL_RECIP |
2335 FUNCTIONFS_CONFIG0_SETUP)) {
2336 ret = -ENOSYS;
2337 goto error;
2338 }
2339 data += 12;
2340 len -= 12;
2341 break;
2342 default:
2343 goto error;
2344 }
2345
2346 if (flags & FUNCTIONFS_EVENTFD) {
2347 if (len < 4)
2348 goto error;
2349 ffs->ffs_eventfd =
2350 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2351 if (IS_ERR(ffs->ffs_eventfd)) {
2352 ret = PTR_ERR(ffs->ffs_eventfd);
2353 ffs->ffs_eventfd = NULL;
2354 goto error;
2355 }
2356 data += 4;
2357 len -= 4;
2358 }
2359
2360 /* Read fs_count, hs_count and ss_count (if present) */
2361 for (i = 0; i < 3; ++i) {
2362 if (!(flags & (1 << i))) {
2363 counts[i] = 0;
2364 } else if (len < 4) {
2365 goto error;
2366 } else {
2367 counts[i] = get_unaligned_le32(data);
2368 data += 4;
2369 len -= 4;
2370 }
2371 }
2372 if (flags & (1 << i)) {
2373 if (len < 4) {
2374 goto error;
2375 }
2376 os_descs_count = get_unaligned_le32(data);
2377 data += 4;
2378 len -= 4;
2379 };
2380
2381 /* Read descriptors */
2382 raw_descs = data;
2383 helper.ffs = ffs;
2384 for (i = 0; i < 3; ++i) {
2385 if (!counts[i])
2386 continue;
2387 helper.interfaces_count = 0;
2388 helper.eps_count = 0;
2389 ret = ffs_do_descs(counts[i], data, len,
2390 __ffs_data_do_entity, &helper);
2391 if (ret < 0)
2392 goto error;
2393 if (!ffs->eps_count && !ffs->interfaces_count) {
2394 ffs->eps_count = helper.eps_count;
2395 ffs->interfaces_count = helper.interfaces_count;
2396 } else {
2397 if (ffs->eps_count != helper.eps_count) {
2398 ret = -EINVAL;
2399 goto error;
2400 }
2401 if (ffs->interfaces_count != helper.interfaces_count) {
2402 ret = -EINVAL;
2403 goto error;
2404 }
2405 }
2406 data += ret;
2407 len -= ret;
2408 }
2409 if (os_descs_count) {
2410 ret = ffs_do_os_descs(os_descs_count, data, len,
2411 __ffs_data_do_os_desc, ffs);
2412 if (ret < 0)
2413 goto error;
2414 data += ret;
2415 len -= ret;
2416 }
2417
2418 if (raw_descs == data || len) {
2419 ret = -EINVAL;
2420 goto error;
2421 }
2422
2423 ffs->raw_descs_data = _data;
2424 ffs->raw_descs = raw_descs;
2425 ffs->raw_descs_length = data - raw_descs;
2426 ffs->fs_descs_count = counts[0];
2427 ffs->hs_descs_count = counts[1];
2428 ffs->ss_descs_count = counts[2];
2429 ffs->ms_os_descs_count = os_descs_count;
2430
2431 return 0;
2432
2433 error:
2434 kfree(_data);
2435 return ret;
2436 }
2437
2438 static int __ffs_data_got_strings(struct ffs_data *ffs,
2439 char *const _data, size_t len)
2440 {
2441 u32 str_count, needed_count, lang_count;
2442 struct usb_gadget_strings **stringtabs, *t;
2443 const char *data = _data;
2444 struct usb_string *s;
2445
2446 ENTER();
2447
2448 if (unlikely(len < 16 ||
2449 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2450 get_unaligned_le32(data + 4) != len))
2451 goto error;
2452 str_count = get_unaligned_le32(data + 8);
2453 lang_count = get_unaligned_le32(data + 12);
2454
2455 /* if one is zero the other must be zero */
2456 if (unlikely(!str_count != !lang_count))
2457 goto error;
2458
2459 /* Do we have at least as many strings as descriptors need? */
2460 needed_count = ffs->strings_count;
2461 if (unlikely(str_count < needed_count))
2462 goto error;
2463
2464 /*
2465 * If we don't need any strings just return and free all
2466 * memory.
2467 */
2468 if (!needed_count) {
2469 kfree(_data);
2470 return 0;
2471 }
2472
2473 /* Allocate everything in one chunk so there's less maintenance. */
2474 {
2475 unsigned i = 0;
2476 vla_group(d);
2477 vla_item(d, struct usb_gadget_strings *, stringtabs,
2478 lang_count + 1);
2479 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2480 vla_item(d, struct usb_string, strings,
2481 lang_count*(needed_count+1));
2482
2483 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2484
2485 if (unlikely(!vlabuf)) {
2486 kfree(_data);
2487 return -ENOMEM;
2488 }
2489
2490 /* Initialize the VLA pointers */
2491 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2492 t = vla_ptr(vlabuf, d, stringtab);
2493 i = lang_count;
2494 do {
2495 *stringtabs++ = t++;
2496 } while (--i);
2497 *stringtabs = NULL;
2498
2499 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2500 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2501 t = vla_ptr(vlabuf, d, stringtab);
2502 s = vla_ptr(vlabuf, d, strings);
2503 }
2504
2505 /* For each language */
2506 data += 16;
2507 len -= 16;
2508
2509 do { /* lang_count > 0 so we can use do-while */
2510 unsigned needed = needed_count;
2511
2512 if (unlikely(len < 3))
2513 goto error_free;
2514 t->language = get_unaligned_le16(data);
2515 t->strings = s;
2516 ++t;
2517
2518 data += 2;
2519 len -= 2;
2520
2521 /* For each string */
2522 do { /* str_count > 0 so we can use do-while */
2523 size_t length = strnlen(data, len);
2524
2525 if (unlikely(length == len))
2526 goto error_free;
2527
2528 /*
2529 * User may provide more strings then we need,
2530 * if that's the case we simply ignore the
2531 * rest
2532 */
2533 if (likely(needed)) {
2534 /*
2535 * s->id will be set while adding
2536 * function to configuration so for
2537 * now just leave garbage here.
2538 */
2539 s->s = data;
2540 --needed;
2541 ++s;
2542 }
2543
2544 data += length + 1;
2545 len -= length + 1;
2546 } while (--str_count);
2547
2548 s->id = 0; /* terminator */
2549 s->s = NULL;
2550 ++s;
2551
2552 } while (--lang_count);
2553
2554 /* Some garbage left? */
2555 if (unlikely(len))
2556 goto error_free;
2557
2558 /* Done! */
2559 ffs->stringtabs = stringtabs;
2560 ffs->raw_strings = _data;
2561
2562 return 0;
2563
2564 error_free:
2565 kfree(stringtabs);
2566 error:
2567 kfree(_data);
2568 return -EINVAL;
2569 }
2570
2571
2572 /* Events handling and management *******************************************/
2573
2574 static void __ffs_event_add(struct ffs_data *ffs,
2575 enum usb_functionfs_event_type type)
2576 {
2577 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2578 int neg = 0;
2579
2580 /*
2581 * Abort any unhandled setup
2582 *
2583 * We do not need to worry about some cmpxchg() changing value
2584 * of ffs->setup_state without holding the lock because when
2585 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2586 * the source does nothing.
2587 */
2588 if (ffs->setup_state == FFS_SETUP_PENDING)
2589 ffs->setup_state = FFS_SETUP_CANCELLED;
2590
2591 /*
2592 * Logic of this function guarantees that there are at most four pending
2593 * evens on ffs->ev.types queue. This is important because the queue
2594 * has space for four elements only and __ffs_ep0_read_events function
2595 * depends on that limit as well. If more event types are added, those
2596 * limits have to be revisited or guaranteed to still hold.
2597 */
2598 switch (type) {
2599 case FUNCTIONFS_RESUME:
2600 rem_type2 = FUNCTIONFS_SUSPEND;
2601 /* FALL THROUGH */
2602 case FUNCTIONFS_SUSPEND:
2603 case FUNCTIONFS_SETUP:
2604 rem_type1 = type;
2605 /* Discard all similar events */
2606 break;
2607
2608 case FUNCTIONFS_BIND:
2609 case FUNCTIONFS_UNBIND:
2610 case FUNCTIONFS_DISABLE:
2611 case FUNCTIONFS_ENABLE:
2612 /* Discard everything other then power management. */
2613 rem_type1 = FUNCTIONFS_SUSPEND;
2614 rem_type2 = FUNCTIONFS_RESUME;
2615 neg = 1;
2616 break;
2617
2618 default:
2619 WARN(1, "%d: unknown event, this should not happen\n", type);
2620 return;
2621 }
2622
2623 {
2624 u8 *ev = ffs->ev.types, *out = ev;
2625 unsigned n = ffs->ev.count;
2626 for (; n; --n, ++ev)
2627 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2628 *out++ = *ev;
2629 else
2630 pr_vdebug("purging event %d\n", *ev);
2631 ffs->ev.count = out - ffs->ev.types;
2632 }
2633
2634 pr_vdebug("adding event %d\n", type);
2635 ffs->ev.types[ffs->ev.count++] = type;
2636 wake_up_locked(&ffs->ev.waitq);
2637 if (ffs->ffs_eventfd)
2638 eventfd_signal(ffs->ffs_eventfd, 1);
2639 }
2640
2641 static void ffs_event_add(struct ffs_data *ffs,
2642 enum usb_functionfs_event_type type)
2643 {
2644 unsigned long flags;
2645 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2646 __ffs_event_add(ffs, type);
2647 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2648 }
2649
2650 /* Bind/unbind USB function hooks *******************************************/
2651
2652 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2653 {
2654 int i;
2655
2656 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2657 if (ffs->eps_addrmap[i] == endpoint_address)
2658 return i;
2659 return -ENOENT;
2660 }
2661
2662 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2663 struct usb_descriptor_header *desc,
2664 void *priv)
2665 {
2666 struct usb_endpoint_descriptor *ds = (void *)desc;
2667 struct ffs_function *func = priv;
2668 struct ffs_ep *ffs_ep;
2669 unsigned ep_desc_id;
2670 int idx;
2671 static const char *speed_names[] = { "full", "high", "super" };
2672
2673 if (type != FFS_DESCRIPTOR)
2674 return 0;
2675
2676 /*
2677 * If ss_descriptors is not NULL, we are reading super speed
2678 * descriptors; if hs_descriptors is not NULL, we are reading high
2679 * speed descriptors; otherwise, we are reading full speed
2680 * descriptors.
2681 */
2682 if (func->function.ss_descriptors) {
2683 ep_desc_id = 2;
2684 func->function.ss_descriptors[(long)valuep] = desc;
2685 } else if (func->function.hs_descriptors) {
2686 ep_desc_id = 1;
2687 func->function.hs_descriptors[(long)valuep] = desc;
2688 } else {
2689 ep_desc_id = 0;
2690 func->function.fs_descriptors[(long)valuep] = desc;
2691 }
2692
2693 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2694 return 0;
2695
2696 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2697 if (idx < 0)
2698 return idx;
2699
2700 ffs_ep = func->eps + idx;
2701
2702 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2703 pr_err("two %sspeed descriptors for EP %d\n",
2704 speed_names[ep_desc_id],
2705 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2706 return -EINVAL;
2707 }
2708 ffs_ep->descs[ep_desc_id] = ds;
2709
2710 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2711 if (ffs_ep->ep) {
2712 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2713 if (!ds->wMaxPacketSize)
2714 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2715 } else {
2716 struct usb_request *req;
2717 struct usb_ep *ep;
2718 u8 bEndpointAddress;
2719
2720 /*
2721 * We back up bEndpointAddress because autoconfig overwrites
2722 * it with physical endpoint address.
2723 */
2724 bEndpointAddress = ds->bEndpointAddress;
2725 pr_vdebug("autoconfig\n");
2726 ep = usb_ep_autoconfig(func->gadget, ds);
2727 if (unlikely(!ep))
2728 return -ENOTSUPP;
2729 ep->driver_data = func->eps + idx;
2730
2731 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2732 if (unlikely(!req))
2733 return -ENOMEM;
2734
2735 ffs_ep->ep = ep;
2736 ffs_ep->req = req;
2737 func->eps_revmap[ds->bEndpointAddress &
2738 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2739 /*
2740 * If we use virtual address mapping, we restore
2741 * original bEndpointAddress value.
2742 */
2743 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2744 ds->bEndpointAddress = bEndpointAddress;
2745 }
2746 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2747
2748 return 0;
2749 }
2750
2751 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2752 struct usb_descriptor_header *desc,
2753 void *priv)
2754 {
2755 struct ffs_function *func = priv;
2756 unsigned idx;
2757 u8 newValue;
2758
2759 switch (type) {
2760 default:
2761 case FFS_DESCRIPTOR:
2762 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2763 return 0;
2764
2765 case FFS_INTERFACE:
2766 idx = *valuep;
2767 if (func->interfaces_nums[idx] < 0) {
2768 int id = usb_interface_id(func->conf, &func->function);
2769 if (unlikely(id < 0))
2770 return id;
2771 func->interfaces_nums[idx] = id;
2772 }
2773 newValue = func->interfaces_nums[idx];
2774 break;
2775
2776 case FFS_STRING:
2777 /* String' IDs are allocated when fsf_data is bound to cdev */
2778 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2779 break;
2780
2781 case FFS_ENDPOINT:
2782 /*
2783 * USB_DT_ENDPOINT are handled in
2784 * __ffs_func_bind_do_descs().
2785 */
2786 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2787 return 0;
2788
2789 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2790 if (unlikely(!func->eps[idx].ep))
2791 return -EINVAL;
2792
2793 {
2794 struct usb_endpoint_descriptor **descs;
2795 descs = func->eps[idx].descs;
2796 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2797 }
2798 break;
2799 }
2800
2801 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2802 *valuep = newValue;
2803 return 0;
2804 }
2805
2806 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2807 struct usb_os_desc_header *h, void *data,
2808 unsigned len, void *priv)
2809 {
2810 struct ffs_function *func = priv;
2811 u8 length = 0;
2812
2813 switch (type) {
2814 case FFS_OS_DESC_EXT_COMPAT: {
2815 struct usb_ext_compat_desc *desc = data;
2816 struct usb_os_desc_table *t;
2817
2818 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2819 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2820 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2821 ARRAY_SIZE(desc->CompatibleID) +
2822 ARRAY_SIZE(desc->SubCompatibleID));
2823 length = sizeof(*desc);
2824 }
2825 break;
2826 case FFS_OS_DESC_EXT_PROP: {
2827 struct usb_ext_prop_desc *desc = data;
2828 struct usb_os_desc_table *t;
2829 struct usb_os_desc_ext_prop *ext_prop;
2830 char *ext_prop_name;
2831 char *ext_prop_data;
2832
2833 t = &func->function.os_desc_table[h->interface];
2834 t->if_id = func->interfaces_nums[h->interface];
2835
2836 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2837 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2838
2839 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2840 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2841 ext_prop->data_len = le32_to_cpu(*(u32 *)
2842 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2843 length = ext_prop->name_len + ext_prop->data_len + 14;
2844
2845 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2846 func->ffs->ms_os_descs_ext_prop_name_avail +=
2847 ext_prop->name_len;
2848
2849 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2850 func->ffs->ms_os_descs_ext_prop_data_avail +=
2851 ext_prop->data_len;
2852 memcpy(ext_prop_data,
2853 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2854 ext_prop->data_len);
2855 /* unicode data reported to the host as "WCHAR"s */
2856 switch (ext_prop->type) {
2857 case USB_EXT_PROP_UNICODE:
2858 case USB_EXT_PROP_UNICODE_ENV:
2859 case USB_EXT_PROP_UNICODE_LINK:
2860 case USB_EXT_PROP_UNICODE_MULTI:
2861 ext_prop->data_len *= 2;
2862 break;
2863 }
2864 ext_prop->data = ext_prop_data;
2865
2866 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2867 ext_prop->name_len);
2868 /* property name reported to the host as "WCHAR"s */
2869 ext_prop->name_len *= 2;
2870 ext_prop->name = ext_prop_name;
2871
2872 t->os_desc->ext_prop_len +=
2873 ext_prop->name_len + ext_prop->data_len + 14;
2874 ++t->os_desc->ext_prop_count;
2875 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2876 }
2877 break;
2878 default:
2879 pr_vdebug("unknown descriptor: %d\n", type);
2880 }
2881
2882 return length;
2883 }
2884
2885 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2886 struct usb_configuration *c)
2887 {
2888 struct ffs_function *func = ffs_func_from_usb(f);
2889 struct f_fs_opts *ffs_opts =
2890 container_of(f->fi, struct f_fs_opts, func_inst);
2891 int ret;
2892
2893 ENTER();
2894
2895 /*
2896 * Legacy gadget triggers binding in functionfs_ready_callback,
2897 * which already uses locking; taking the same lock here would
2898 * cause a deadlock.
2899 *
2900 * Configfs-enabled gadgets however do need ffs_dev_lock.
2901 */
2902 if (!ffs_opts->no_configfs)
2903 ffs_dev_lock();
2904 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2905 func->ffs = ffs_opts->dev->ffs_data;
2906 if (!ffs_opts->no_configfs)
2907 ffs_dev_unlock();
2908 if (ret)
2909 return ERR_PTR(ret);
2910
2911 func->conf = c;
2912 func->gadget = c->cdev->gadget;
2913
2914 /*
2915 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2916 * configurations are bound in sequence with list_for_each_entry,
2917 * in each configuration its functions are bound in sequence
2918 * with list_for_each_entry, so we assume no race condition
2919 * with regard to ffs_opts->bound access
2920 */
2921 if (!ffs_opts->refcnt) {
2922 ret = functionfs_bind(func->ffs, c->cdev);
2923 if (ret)
2924 return ERR_PTR(ret);
2925 }
2926 ffs_opts->refcnt++;
2927 func->function.strings = func->ffs->stringtabs;
2928
2929 return ffs_opts;
2930 }
2931
2932 static int _ffs_func_bind(struct usb_configuration *c,
2933 struct usb_function *f)
2934 {
2935 struct ffs_function *func = ffs_func_from_usb(f);
2936 struct ffs_data *ffs = func->ffs;
2937
2938 const int full = !!func->ffs->fs_descs_count;
2939 const int high = gadget_is_dualspeed(func->gadget) &&
2940 func->ffs->hs_descs_count;
2941 const int super = gadget_is_superspeed(func->gadget) &&
2942 func->ffs->ss_descs_count;
2943
2944 int fs_len, hs_len, ss_len, ret, i;
2945 struct ffs_ep *eps_ptr;
2946
2947 /* Make it a single chunk, less management later on */
2948 vla_group(d);
2949 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2950 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2951 full ? ffs->fs_descs_count + 1 : 0);
2952 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2953 high ? ffs->hs_descs_count + 1 : 0);
2954 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2955 super ? ffs->ss_descs_count + 1 : 0);
2956 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2957 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2958 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2959 vla_item_with_sz(d, char[16], ext_compat,
2960 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2961 vla_item_with_sz(d, struct usb_os_desc, os_desc,
2962 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2963 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2964 ffs->ms_os_descs_ext_prop_count);
2965 vla_item_with_sz(d, char, ext_prop_name,
2966 ffs->ms_os_descs_ext_prop_name_len);
2967 vla_item_with_sz(d, char, ext_prop_data,
2968 ffs->ms_os_descs_ext_prop_data_len);
2969 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2970 char *vlabuf;
2971
2972 ENTER();
2973
2974 /* Has descriptors only for speeds gadget does not support */
2975 if (unlikely(!(full | high | super)))
2976 return -ENOTSUPP;
2977
2978 /* Allocate a single chunk, less management later on */
2979 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2980 if (unlikely(!vlabuf))
2981 return -ENOMEM;
2982
2983 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2984 ffs->ms_os_descs_ext_prop_name_avail =
2985 vla_ptr(vlabuf, d, ext_prop_name);
2986 ffs->ms_os_descs_ext_prop_data_avail =
2987 vla_ptr(vlabuf, d, ext_prop_data);
2988
2989 /* Copy descriptors */
2990 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2991 ffs->raw_descs_length);
2992
2993 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2994 eps_ptr = vla_ptr(vlabuf, d, eps);
2995 for (i = 0; i < ffs->eps_count; i++)
2996 eps_ptr[i].num = -1;
2997
2998 /* Save pointers
2999 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3000 */
3001 func->eps = vla_ptr(vlabuf, d, eps);
3002 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3003
3004 /*
3005 * Go through all the endpoint descriptors and allocate
3006 * endpoints first, so that later we can rewrite the endpoint
3007 * numbers without worrying that it may be described later on.
3008 */
3009 if (likely(full)) {
3010 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3011 fs_len = ffs_do_descs(ffs->fs_descs_count,
3012 vla_ptr(vlabuf, d, raw_descs),
3013 d_raw_descs__sz,
3014 __ffs_func_bind_do_descs, func);
3015 if (unlikely(fs_len < 0)) {
3016 ret = fs_len;
3017 goto error;
3018 }
3019 } else {
3020 fs_len = 0;
3021 }
3022
3023 if (likely(high)) {
3024 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3025 hs_len = ffs_do_descs(ffs->hs_descs_count,
3026 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3027 d_raw_descs__sz - fs_len,
3028 __ffs_func_bind_do_descs, func);
3029 if (unlikely(hs_len < 0)) {
3030 ret = hs_len;
3031 goto error;
3032 }
3033 } else {
3034 hs_len = 0;
3035 }
3036
3037 if (likely(super)) {
3038 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3039 ss_len = ffs_do_descs(ffs->ss_descs_count,
3040 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3041 d_raw_descs__sz - fs_len - hs_len,
3042 __ffs_func_bind_do_descs, func);
3043 if (unlikely(ss_len < 0)) {
3044 ret = ss_len;
3045 goto error;
3046 }
3047 } else {
3048 ss_len = 0;
3049 }
3050
3051 /*
3052 * Now handle interface numbers allocation and interface and
3053 * endpoint numbers rewriting. We can do that in one go
3054 * now.
3055 */
3056 ret = ffs_do_descs(ffs->fs_descs_count +
3057 (high ? ffs->hs_descs_count : 0) +
3058 (super ? ffs->ss_descs_count : 0),
3059 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3060 __ffs_func_bind_do_nums, func);
3061 if (unlikely(ret < 0))
3062 goto error;
3063
3064 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3065 if (c->cdev->use_os_string) {
3066 for (i = 0; i < ffs->interfaces_count; ++i) {
3067 struct usb_os_desc *desc;
3068
3069 desc = func->function.os_desc_table[i].os_desc =
3070 vla_ptr(vlabuf, d, os_desc) +
3071 i * sizeof(struct usb_os_desc);
3072 desc->ext_compat_id =
3073 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3074 INIT_LIST_HEAD(&desc->ext_prop);
3075 }
3076 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3077 vla_ptr(vlabuf, d, raw_descs) +
3078 fs_len + hs_len + ss_len,
3079 d_raw_descs__sz - fs_len - hs_len -
3080 ss_len,
3081 __ffs_func_bind_do_os_desc, func);
3082 if (unlikely(ret < 0))
3083 goto error;
3084 }
3085 func->function.os_desc_n =
3086 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3087
3088 /* And we're done */
3089 ffs_event_add(ffs, FUNCTIONFS_BIND);
3090 return 0;
3091
3092 error:
3093 /* XXX Do we need to release all claimed endpoints here? */
3094 return ret;
3095 }
3096
3097 static int ffs_func_bind(struct usb_configuration *c,
3098 struct usb_function *f)
3099 {
3100 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3101 struct ffs_function *func = ffs_func_from_usb(f);
3102 int ret;
3103
3104 if (IS_ERR(ffs_opts))
3105 return PTR_ERR(ffs_opts);
3106
3107 ret = _ffs_func_bind(c, f);
3108 if (ret && !--ffs_opts->refcnt)
3109 functionfs_unbind(func->ffs);
3110
3111 return ret;
3112 }
3113
3114
3115 /* Other USB function hooks *************************************************/
3116
3117 static void ffs_reset_work(struct work_struct *work)
3118 {
3119 struct ffs_data *ffs = container_of(work,
3120 struct ffs_data, reset_work);
3121 ffs_data_reset(ffs);
3122 }
3123
3124 static int ffs_func_set_alt(struct usb_function *f,
3125 unsigned interface, unsigned alt)
3126 {
3127 struct ffs_function *func = ffs_func_from_usb(f);
3128 struct ffs_data *ffs = func->ffs;
3129 int ret = 0, intf;
3130
3131 if (alt != (unsigned)-1) {
3132 intf = ffs_func_revmap_intf(func, interface);
3133 if (unlikely(intf < 0))
3134 return intf;
3135 }
3136
3137 if (ffs->func)
3138 ffs_func_eps_disable(ffs->func);
3139
3140 if (ffs->state == FFS_DEACTIVATED) {
3141 ffs->state = FFS_CLOSING;
3142 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3143 schedule_work(&ffs->reset_work);
3144 return -ENODEV;
3145 }
3146
3147 if (ffs->state != FFS_ACTIVE)
3148 return -ENODEV;
3149
3150 if (alt == (unsigned)-1) {
3151 ffs->func = NULL;
3152 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3153 return 0;
3154 }
3155
3156 ffs->func = func;
3157 ret = ffs_func_eps_enable(func);
3158 if (likely(ret >= 0))
3159 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3160 return ret;
3161 }
3162
3163 static void ffs_func_disable(struct usb_function *f)
3164 {
3165 ffs_func_set_alt(f, 0, (unsigned)-1);
3166 }
3167
3168 static int ffs_func_setup(struct usb_function *f,
3169 const struct usb_ctrlrequest *creq)
3170 {
3171 struct ffs_function *func = ffs_func_from_usb(f);
3172 struct ffs_data *ffs = func->ffs;
3173 unsigned long flags;
3174 int ret;
3175
3176 ENTER();
3177
3178 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3179 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3180 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3181 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3182 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3183
3184 /*
3185 * Most requests directed to interface go through here
3186 * (notable exceptions are set/get interface) so we need to
3187 * handle them. All other either handled by composite or
3188 * passed to usb_configuration->setup() (if one is set). No
3189 * matter, we will handle requests directed to endpoint here
3190 * as well (as it's straightforward). Other request recipient
3191 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3192 * is being used.
3193 */
3194 if (ffs->state != FFS_ACTIVE)
3195 return -ENODEV;
3196
3197 switch (creq->bRequestType & USB_RECIP_MASK) {
3198 case USB_RECIP_INTERFACE:
3199 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3200 if (unlikely(ret < 0))
3201 return ret;
3202 break;
3203
3204 case USB_RECIP_ENDPOINT:
3205 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3206 if (unlikely(ret < 0))
3207 return ret;
3208 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3209 ret = func->ffs->eps_addrmap[ret];
3210 break;
3211
3212 default:
3213 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3214 ret = le16_to_cpu(creq->wIndex);
3215 else
3216 return -EOPNOTSUPP;
3217 }
3218
3219 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3220 ffs->ev.setup = *creq;
3221 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3222 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3223 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3224
3225 return 0;
3226 }
3227
3228 static bool ffs_func_req_match(struct usb_function *f,
3229 const struct usb_ctrlrequest *creq,
3230 bool config0)
3231 {
3232 struct ffs_function *func = ffs_func_from_usb(f);
3233
3234 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3235 return false;
3236
3237 switch (creq->bRequestType & USB_RECIP_MASK) {
3238 case USB_RECIP_INTERFACE:
3239 return (ffs_func_revmap_intf(func,
3240 le16_to_cpu(creq->wIndex)) >= 0);
3241 case USB_RECIP_ENDPOINT:
3242 return (ffs_func_revmap_ep(func,
3243 le16_to_cpu(creq->wIndex)) >= 0);
3244 default:
3245 return (bool) (func->ffs->user_flags &
3246 FUNCTIONFS_ALL_CTRL_RECIP);
3247 }
3248 }
3249
3250 static void ffs_func_suspend(struct usb_function *f)
3251 {
3252 ENTER();
3253 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3254 }
3255
3256 static void ffs_func_resume(struct usb_function *f)
3257 {
3258 ENTER();
3259 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3260 }
3261
3262
3263 /* Endpoint and interface numbers reverse mapping ***************************/
3264
3265 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3266 {
3267 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3268 return num ? num : -EDOM;
3269 }
3270
3271 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3272 {
3273 short *nums = func->interfaces_nums;
3274 unsigned count = func->ffs->interfaces_count;
3275
3276 for (; count; --count, ++nums) {
3277 if (*nums >= 0 && *nums == intf)
3278 return nums - func->interfaces_nums;
3279 }
3280
3281 return -EDOM;
3282 }
3283
3284
3285 /* Devices management *******************************************************/
3286
3287 static LIST_HEAD(ffs_devices);
3288
3289 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3290 {
3291 struct ffs_dev *dev;
3292
3293 list_for_each_entry(dev, &ffs_devices, entry) {
3294 if (!dev->name || !name)
3295 continue;
3296 if (strcmp(dev->name, name) == 0)
3297 return dev;
3298 }
3299
3300 return NULL;
3301 }
3302
3303 /*
3304 * ffs_lock must be taken by the caller of this function
3305 */
3306 static struct ffs_dev *_ffs_get_single_dev(void)
3307 {
3308 struct ffs_dev *dev;
3309
3310 if (list_is_singular(&ffs_devices)) {
3311 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3312 if (dev->single)
3313 return dev;
3314 }
3315
3316 return NULL;
3317 }
3318
3319 /*
3320 * ffs_lock must be taken by the caller of this function
3321 */
3322 static struct ffs_dev *_ffs_find_dev(const char *name)
3323 {
3324 struct ffs_dev *dev;
3325
3326 dev = _ffs_get_single_dev();
3327 if (dev)
3328 return dev;
3329
3330 return _ffs_do_find_dev(name);
3331 }
3332
3333 /* Configfs support *********************************************************/
3334
3335 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3336 {
3337 return container_of(to_config_group(item), struct f_fs_opts,
3338 func_inst.group);
3339 }
3340
3341 static void ffs_attr_release(struct config_item *item)
3342 {
3343 struct f_fs_opts *opts = to_ffs_opts(item);
3344
3345 usb_put_function_instance(&opts->func_inst);
3346 }
3347
3348 static struct configfs_item_operations ffs_item_ops = {
3349 .release = ffs_attr_release,
3350 };
3351
3352 static struct config_item_type ffs_func_type = {
3353 .ct_item_ops = &ffs_item_ops,
3354 .ct_owner = THIS_MODULE,
3355 };
3356
3357
3358 /* Function registration interface ******************************************/
3359
3360 static void ffs_free_inst(struct usb_function_instance *f)
3361 {
3362 struct f_fs_opts *opts;
3363
3364 opts = to_f_fs_opts(f);
3365 ffs_dev_lock();
3366 _ffs_free_dev(opts->dev);
3367 ffs_dev_unlock();
3368 kfree(opts);
3369 }
3370
3371 #define MAX_INST_NAME_LEN 40
3372
3373 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3374 {
3375 struct f_fs_opts *opts;
3376 char *ptr;
3377 const char *tmp;
3378 int name_len, ret;
3379
3380 name_len = strlen(name) + 1;
3381 if (name_len > MAX_INST_NAME_LEN)
3382 return -ENAMETOOLONG;
3383
3384 ptr = kstrndup(name, name_len, GFP_KERNEL);
3385 if (!ptr)
3386 return -ENOMEM;
3387
3388 opts = to_f_fs_opts(fi);
3389 tmp = NULL;
3390
3391 ffs_dev_lock();
3392
3393 tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3394 ret = _ffs_name_dev(opts->dev, ptr);
3395 if (ret) {
3396 kfree(ptr);
3397 ffs_dev_unlock();
3398 return ret;
3399 }
3400 opts->dev->name_allocated = true;
3401
3402 ffs_dev_unlock();
3403
3404 kfree(tmp);
3405
3406 return 0;
3407 }
3408
3409 static struct usb_function_instance *ffs_alloc_inst(void)
3410 {
3411 struct f_fs_opts *opts;
3412 struct ffs_dev *dev;
3413
3414 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3415 if (!opts)
3416 return ERR_PTR(-ENOMEM);
3417
3418 opts->func_inst.set_inst_name = ffs_set_inst_name;
3419 opts->func_inst.free_func_inst = ffs_free_inst;
3420 ffs_dev_lock();
3421 dev = _ffs_alloc_dev();
3422 ffs_dev_unlock();
3423 if (IS_ERR(dev)) {
3424 kfree(opts);
3425 return ERR_CAST(dev);
3426 }
3427 opts->dev = dev;
3428 dev->opts = opts;
3429
3430 config_group_init_type_name(&opts->func_inst.group, "",
3431 &ffs_func_type);
3432 return &opts->func_inst;
3433 }
3434
3435 static void ffs_free(struct usb_function *f)
3436 {
3437 kfree(ffs_func_from_usb(f));
3438 }
3439
3440 static void ffs_func_unbind(struct usb_configuration *c,
3441 struct usb_function *f)
3442 {
3443 struct ffs_function *func = ffs_func_from_usb(f);
3444 struct ffs_data *ffs = func->ffs;
3445 struct f_fs_opts *opts =
3446 container_of(f->fi, struct f_fs_opts, func_inst);
3447 struct ffs_ep *ep = func->eps;
3448 unsigned count = ffs->eps_count;
3449 unsigned long flags;
3450
3451 ENTER();
3452 if (ffs->func == func) {
3453 ffs_func_eps_disable(func);
3454 ffs->func = NULL;
3455 }
3456
3457 if (!--opts->refcnt)
3458 functionfs_unbind(ffs);
3459
3460 /* cleanup after autoconfig */
3461 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3462 while (count--) {
3463 if (ep->ep && ep->req)
3464 usb_ep_free_request(ep->ep, ep->req);
3465 ep->req = NULL;
3466 ++ep;
3467 }
3468 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3469 kfree(func->eps);
3470 func->eps = NULL;
3471 /*
3472 * eps, descriptors and interfaces_nums are allocated in the
3473 * same chunk so only one free is required.
3474 */
3475 func->function.fs_descriptors = NULL;
3476 func->function.hs_descriptors = NULL;
3477 func->function.ss_descriptors = NULL;
3478 func->interfaces_nums = NULL;
3479
3480 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3481 }
3482
3483 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3484 {
3485 struct ffs_function *func;
3486
3487 ENTER();
3488
3489 func = kzalloc(sizeof(*func), GFP_KERNEL);
3490 if (unlikely(!func))
3491 return ERR_PTR(-ENOMEM);
3492
3493 func->function.name = "Function FS Gadget";
3494
3495 func->function.bind = ffs_func_bind;
3496 func->function.unbind = ffs_func_unbind;
3497 func->function.set_alt = ffs_func_set_alt;
3498 func->function.disable = ffs_func_disable;
3499 func->function.setup = ffs_func_setup;
3500 func->function.req_match = ffs_func_req_match;
3501 func->function.suspend = ffs_func_suspend;
3502 func->function.resume = ffs_func_resume;
3503 func->function.free_func = ffs_free;
3504
3505 return &func->function;
3506 }
3507
3508 /*
3509 * ffs_lock must be taken by the caller of this function
3510 */
3511 static struct ffs_dev *_ffs_alloc_dev(void)
3512 {
3513 struct ffs_dev *dev;
3514 int ret;
3515
3516 if (_ffs_get_single_dev())
3517 return ERR_PTR(-EBUSY);
3518
3519 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3520 if (!dev)
3521 return ERR_PTR(-ENOMEM);
3522
3523 if (list_empty(&ffs_devices)) {
3524 ret = functionfs_init();
3525 if (ret) {
3526 kfree(dev);
3527 return ERR_PTR(ret);
3528 }
3529 }
3530
3531 list_add(&dev->entry, &ffs_devices);
3532
3533 return dev;
3534 }
3535
3536 /*
3537 * ffs_lock must be taken by the caller of this function
3538 * The caller is responsible for "name" being available whenever f_fs needs it
3539 */
3540 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3541 {
3542 struct ffs_dev *existing;
3543
3544 existing = _ffs_do_find_dev(name);
3545 if (existing)
3546 return -EBUSY;
3547
3548 dev->name = name;
3549
3550 return 0;
3551 }
3552
3553 /*
3554 * The caller is responsible for "name" being available whenever f_fs needs it
3555 */
3556 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3557 {
3558 int ret;
3559
3560 ffs_dev_lock();
3561 ret = _ffs_name_dev(dev, name);
3562 ffs_dev_unlock();
3563
3564 return ret;
3565 }
3566 EXPORT_SYMBOL_GPL(ffs_name_dev);
3567
3568 int ffs_single_dev(struct ffs_dev *dev)
3569 {
3570 int ret;
3571
3572 ret = 0;
3573 ffs_dev_lock();
3574
3575 if (!list_is_singular(&ffs_devices))
3576 ret = -EBUSY;
3577 else
3578 dev->single = true;
3579
3580 ffs_dev_unlock();
3581 return ret;
3582 }
3583 EXPORT_SYMBOL_GPL(ffs_single_dev);
3584
3585 /*
3586 * ffs_lock must be taken by the caller of this function
3587 */
3588 static void _ffs_free_dev(struct ffs_dev *dev)
3589 {
3590 list_del(&dev->entry);
3591 if (dev->name_allocated)
3592 kfree(dev->name);
3593
3594 /* Clear the private_data pointer to stop incorrect dev access */
3595 if (dev->ffs_data)
3596 dev->ffs_data->private_data = NULL;
3597
3598 kfree(dev);
3599 if (list_empty(&ffs_devices))
3600 functionfs_cleanup();
3601 }
3602
3603 static void *ffs_acquire_dev(const char *dev_name)
3604 {
3605 struct ffs_dev *ffs_dev;
3606
3607 ENTER();
3608 ffs_dev_lock();
3609
3610 ffs_dev = _ffs_find_dev(dev_name);
3611 if (!ffs_dev)
3612 ffs_dev = ERR_PTR(-ENOENT);
3613 else if (ffs_dev->mounted)
3614 ffs_dev = ERR_PTR(-EBUSY);
3615 else if (ffs_dev->ffs_acquire_dev_callback &&
3616 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3617 ffs_dev = ERR_PTR(-ENOENT);
3618 else
3619 ffs_dev->mounted = true;
3620
3621 ffs_dev_unlock();
3622 return ffs_dev;
3623 }
3624
3625 static void ffs_release_dev(struct ffs_data *ffs_data)
3626 {
3627 struct ffs_dev *ffs_dev;
3628
3629 ENTER();
3630 ffs_dev_lock();
3631
3632 ffs_dev = ffs_data->private_data;
3633 if (ffs_dev) {
3634 ffs_dev->mounted = false;
3635
3636 if (ffs_dev->ffs_release_dev_callback)
3637 ffs_dev->ffs_release_dev_callback(ffs_dev);
3638 }
3639
3640 ffs_dev_unlock();
3641 }
3642
3643 static int ffs_ready(struct ffs_data *ffs)
3644 {
3645 struct ffs_dev *ffs_obj;
3646 int ret = 0;
3647
3648 ENTER();
3649 ffs_dev_lock();
3650
3651 ffs_obj = ffs->private_data;
3652 if (!ffs_obj) {
3653 ret = -EINVAL;
3654 goto done;
3655 }
3656 if (WARN_ON(ffs_obj->desc_ready)) {
3657 ret = -EBUSY;
3658 goto done;
3659 }
3660
3661 ffs_obj->desc_ready = true;
3662 ffs_obj->ffs_data = ffs;
3663
3664 if (ffs_obj->ffs_ready_callback) {
3665 ret = ffs_obj->ffs_ready_callback(ffs);
3666 if (ret)
3667 goto done;
3668 }
3669
3670 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3671 done:
3672 ffs_dev_unlock();
3673 return ret;
3674 }
3675
3676 static void ffs_closed(struct ffs_data *ffs)
3677 {
3678 struct ffs_dev *ffs_obj;
3679 struct f_fs_opts *opts;
3680 struct config_item *ci;
3681
3682 ENTER();
3683 ffs_dev_lock();
3684
3685 ffs_obj = ffs->private_data;
3686 if (!ffs_obj)
3687 goto done;
3688
3689 ffs_obj->desc_ready = false;
3690
3691 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3692 ffs_obj->ffs_closed_callback)
3693 ffs_obj->ffs_closed_callback(ffs);
3694
3695 if (ffs_obj->opts)
3696 opts = ffs_obj->opts;
3697 else
3698 goto done;
3699
3700 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3701 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3702 goto done;
3703
3704 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3705 ffs_dev_unlock();
3706
3707 unregister_gadget_item(ci);
3708 return;
3709 done:
3710 ffs_dev_unlock();
3711 }
3712
3713 /* Misc helper functions ****************************************************/
3714
3715 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3716 {
3717 return nonblock
3718 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3719 : mutex_lock_interruptible(mutex);
3720 }
3721
3722 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3723 {
3724 char *data;
3725
3726 if (unlikely(!len))
3727 return NULL;
3728
3729 data = kmalloc(len, GFP_KERNEL);
3730 if (unlikely(!data))
3731 return ERR_PTR(-ENOMEM);
3732
3733 if (unlikely(copy_from_user(data, buf, len))) {
3734 kfree(data);
3735 return ERR_PTR(-EFAULT);
3736 }
3737
3738 pr_vdebug("Buffer from user space:\n");
3739 ffs_dump_mem("", data, len);
3740
3741 return data;
3742 }
3743
3744 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3745 MODULE_LICENSE("GPL");
3746 MODULE_AUTHOR("Michal Nazarewicz");