]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/usb/gadget/function/f_fs.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-hirsute-kernel.git] / drivers / usb / gadget / function / f_fs.c
1 /*
2 * f_fs.c -- user mode file system API for USB composite function controllers
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
6 *
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42
43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
50
51 /* Opened counter handling. */
52 static void ffs_data_opened(struct ffs_data *ffs);
53 static void ffs_data_closed(struct ffs_data *ffs);
54
55 /* Called with ffs->mutex held; take over ownership of data. */
56 static int __must_check
57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
58 static int __must_check
59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
60
61
62 /* The function structure ***************************************************/
63
64 struct ffs_ep;
65
66 struct ffs_function {
67 struct usb_configuration *conf;
68 struct usb_gadget *gadget;
69 struct ffs_data *ffs;
70
71 struct ffs_ep *eps;
72 u8 eps_revmap[16];
73 short *interfaces_nums;
74
75 struct usb_function function;
76 };
77
78
79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
80 {
81 return container_of(f, struct ffs_function, function);
82 }
83
84
85 static inline enum ffs_setup_state
86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
87 {
88 return (enum ffs_setup_state)
89 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
90 }
91
92
93 static void ffs_func_eps_disable(struct ffs_function *func);
94 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
95
96 static int ffs_func_bind(struct usb_configuration *,
97 struct usb_function *);
98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
99 static void ffs_func_disable(struct usb_function *);
100 static int ffs_func_setup(struct usb_function *,
101 const struct usb_ctrlrequest *);
102 static bool ffs_func_req_match(struct usb_function *,
103 const struct usb_ctrlrequest *,
104 bool config0);
105 static void ffs_func_suspend(struct usb_function *);
106 static void ffs_func_resume(struct usb_function *);
107
108
109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
111
112
113 /* The endpoints structures *************************************************/
114
115 struct ffs_ep {
116 struct usb_ep *ep; /* P: ffs->eps_lock */
117 struct usb_request *req; /* P: epfile->mutex */
118
119 /* [0]: full speed, [1]: high speed, [2]: super speed */
120 struct usb_endpoint_descriptor *descs[3];
121
122 u8 num;
123
124 int status; /* P: epfile->mutex */
125 };
126
127 struct ffs_epfile {
128 /* Protects ep->ep and ep->req. */
129 struct mutex mutex;
130 wait_queue_head_t wait;
131
132 struct ffs_data *ffs;
133 struct ffs_ep *ep; /* P: ffs->eps_lock */
134
135 struct dentry *dentry;
136
137 /*
138 * Buffer for holding data from partial reads which may happen since
139 * we’re rounding user read requests to a multiple of a max packet size.
140 *
141 * The pointer is initialised with NULL value and may be set by
142 * __ffs_epfile_read_data function to point to a temporary buffer.
143 *
144 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 * data from said buffer and eventually free it. Importantly, while the
146 * function is using the buffer, it sets the pointer to NULL. This is
147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 * can never run concurrently (they are synchronised by epfile->mutex)
149 * so the latter will not assign a new value to the pointer.
150 *
151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
153 * value is crux of the synchronisation between ffs_func_eps_disable and
154 * __ffs_epfile_read_data.
155 *
156 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 * pointer back to its old value (as described above), but seeing as the
158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 * the buffer.
160 *
161 * == State transitions ==
162 *
163 * • ptr == NULL: (initial state)
164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 * ◦ __ffs_epfile_read_buffered: nop
166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 * ◦ reading finishes: n/a, not in ‘and reading’ state
168 * • ptr == DROP:
169 * ◦ __ffs_epfile_read_buffer_free: nop
170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 * ◦ reading finishes: n/a, not in ‘and reading’ state
173 * • ptr == buf:
174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
177 * is always called first
178 * ◦ reading finishes: n/a, not in ‘and reading’ state
179 * • ptr == NULL and reading:
180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
182 * ◦ __ffs_epfile_read_data: n/a, mutex is held
183 * ◦ reading finishes and …
184 * … all data read: free buf, go to ptr == NULL
185 * … otherwise: go to ptr == buf and reading
186 * • ptr == DROP and reading:
187 * ◦ __ffs_epfile_read_buffer_free: nop
188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
189 * ◦ __ffs_epfile_read_data: n/a, mutex is held
190 * ◦ reading finishes: free buf, go to ptr == DROP
191 */
192 struct ffs_buffer *read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194
195 char name[5];
196
197 unsigned char in; /* P: ffs->eps_lock */
198 unsigned char isoc; /* P: ffs->eps_lock */
199
200 unsigned char _pad;
201 };
202
203 struct ffs_buffer {
204 size_t length;
205 char *data;
206 char storage[];
207 };
208
209 /* ffs_io_data structure ***************************************************/
210
211 struct ffs_io_data {
212 bool aio;
213 bool read;
214
215 struct kiocb *kiocb;
216 struct iov_iter data;
217 const void *to_free;
218 char *buf;
219
220 struct mm_struct *mm;
221 struct work_struct work;
222
223 struct usb_ep *ep;
224 struct usb_request *req;
225
226 struct ffs_data *ffs;
227 };
228
229 struct ffs_desc_helper {
230 struct ffs_data *ffs;
231 unsigned interfaces_count;
232 unsigned eps_count;
233 };
234
235 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240 const struct file_operations *fops);
241
242 /* Devices management *******************************************************/
243
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
250 static void _ffs_free_dev(struct ffs_dev *dev);
251 static void *ffs_acquire_dev(const char *dev_name);
252 static void ffs_release_dev(struct ffs_data *ffs_data);
253 static int ffs_ready(struct ffs_data *ffs);
254 static void ffs_closed(struct ffs_data *ffs);
255
256 /* Misc helper functions ****************************************************/
257
258 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
259 __attribute__((warn_unused_result, nonnull));
260 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
261 __attribute__((warn_unused_result, nonnull));
262
263
264 /* Control file aka ep0 *****************************************************/
265
266 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
267 {
268 struct ffs_data *ffs = req->context;
269
270 complete(&ffs->ep0req_completion);
271 }
272
273 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
274 {
275 struct usb_request *req = ffs->ep0req;
276 int ret;
277
278 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
279
280 spin_unlock_irq(&ffs->ev.waitq.lock);
281
282 req->buf = data;
283 req->length = len;
284
285 /*
286 * UDC layer requires to provide a buffer even for ZLP, but should
287 * not use it at all. Let's provide some poisoned pointer to catch
288 * possible bug in the driver.
289 */
290 if (req->buf == NULL)
291 req->buf = (void *)0xDEADBABE;
292
293 reinit_completion(&ffs->ep0req_completion);
294
295 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
296 if (unlikely(ret < 0))
297 return ret;
298
299 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
300 if (unlikely(ret)) {
301 usb_ep_dequeue(ffs->gadget->ep0, req);
302 return -EINTR;
303 }
304
305 ffs->setup_state = FFS_NO_SETUP;
306 return req->status ? req->status : req->actual;
307 }
308
309 static int __ffs_ep0_stall(struct ffs_data *ffs)
310 {
311 if (ffs->ev.can_stall) {
312 pr_vdebug("ep0 stall\n");
313 usb_ep_set_halt(ffs->gadget->ep0);
314 ffs->setup_state = FFS_NO_SETUP;
315 return -EL2HLT;
316 } else {
317 pr_debug("bogus ep0 stall!\n");
318 return -ESRCH;
319 }
320 }
321
322 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
323 size_t len, loff_t *ptr)
324 {
325 struct ffs_data *ffs = file->private_data;
326 ssize_t ret;
327 char *data;
328
329 ENTER();
330
331 /* Fast check if setup was canceled */
332 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
333 return -EIDRM;
334
335 /* Acquire mutex */
336 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
337 if (unlikely(ret < 0))
338 return ret;
339
340 /* Check state */
341 switch (ffs->state) {
342 case FFS_READ_DESCRIPTORS:
343 case FFS_READ_STRINGS:
344 /* Copy data */
345 if (unlikely(len < 16)) {
346 ret = -EINVAL;
347 break;
348 }
349
350 data = ffs_prepare_buffer(buf, len);
351 if (IS_ERR(data)) {
352 ret = PTR_ERR(data);
353 break;
354 }
355
356 /* Handle data */
357 if (ffs->state == FFS_READ_DESCRIPTORS) {
358 pr_info("read descriptors\n");
359 ret = __ffs_data_got_descs(ffs, data, len);
360 if (unlikely(ret < 0))
361 break;
362
363 ffs->state = FFS_READ_STRINGS;
364 ret = len;
365 } else {
366 pr_info("read strings\n");
367 ret = __ffs_data_got_strings(ffs, data, len);
368 if (unlikely(ret < 0))
369 break;
370
371 ret = ffs_epfiles_create(ffs);
372 if (unlikely(ret)) {
373 ffs->state = FFS_CLOSING;
374 break;
375 }
376
377 ffs->state = FFS_ACTIVE;
378 mutex_unlock(&ffs->mutex);
379
380 ret = ffs_ready(ffs);
381 if (unlikely(ret < 0)) {
382 ffs->state = FFS_CLOSING;
383 return ret;
384 }
385
386 return len;
387 }
388 break;
389
390 case FFS_ACTIVE:
391 data = NULL;
392 /*
393 * We're called from user space, we can use _irq
394 * rather then _irqsave
395 */
396 spin_lock_irq(&ffs->ev.waitq.lock);
397 switch (ffs_setup_state_clear_cancelled(ffs)) {
398 case FFS_SETUP_CANCELLED:
399 ret = -EIDRM;
400 goto done_spin;
401
402 case FFS_NO_SETUP:
403 ret = -ESRCH;
404 goto done_spin;
405
406 case FFS_SETUP_PENDING:
407 break;
408 }
409
410 /* FFS_SETUP_PENDING */
411 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
412 spin_unlock_irq(&ffs->ev.waitq.lock);
413 ret = __ffs_ep0_stall(ffs);
414 break;
415 }
416
417 /* FFS_SETUP_PENDING and not stall */
418 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
419
420 spin_unlock_irq(&ffs->ev.waitq.lock);
421
422 data = ffs_prepare_buffer(buf, len);
423 if (IS_ERR(data)) {
424 ret = PTR_ERR(data);
425 break;
426 }
427
428 spin_lock_irq(&ffs->ev.waitq.lock);
429
430 /*
431 * We are guaranteed to be still in FFS_ACTIVE state
432 * but the state of setup could have changed from
433 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
434 * to check for that. If that happened we copied data
435 * from user space in vain but it's unlikely.
436 *
437 * For sure we are not in FFS_NO_SETUP since this is
438 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
439 * transition can be performed and it's protected by
440 * mutex.
441 */
442 if (ffs_setup_state_clear_cancelled(ffs) ==
443 FFS_SETUP_CANCELLED) {
444 ret = -EIDRM;
445 done_spin:
446 spin_unlock_irq(&ffs->ev.waitq.lock);
447 } else {
448 /* unlocks spinlock */
449 ret = __ffs_ep0_queue_wait(ffs, data, len);
450 }
451 kfree(data);
452 break;
453
454 default:
455 ret = -EBADFD;
456 break;
457 }
458
459 mutex_unlock(&ffs->mutex);
460 return ret;
461 }
462
463 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
464 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
465 size_t n)
466 {
467 /*
468 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
469 * size of ffs->ev.types array (which is four) so that's how much space
470 * we reserve.
471 */
472 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
473 const size_t size = n * sizeof *events;
474 unsigned i = 0;
475
476 memset(events, 0, size);
477
478 do {
479 events[i].type = ffs->ev.types[i];
480 if (events[i].type == FUNCTIONFS_SETUP) {
481 events[i].u.setup = ffs->ev.setup;
482 ffs->setup_state = FFS_SETUP_PENDING;
483 }
484 } while (++i < n);
485
486 ffs->ev.count -= n;
487 if (ffs->ev.count)
488 memmove(ffs->ev.types, ffs->ev.types + n,
489 ffs->ev.count * sizeof *ffs->ev.types);
490
491 spin_unlock_irq(&ffs->ev.waitq.lock);
492 mutex_unlock(&ffs->mutex);
493
494 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
495 }
496
497 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
498 size_t len, loff_t *ptr)
499 {
500 struct ffs_data *ffs = file->private_data;
501 char *data = NULL;
502 size_t n;
503 int ret;
504
505 ENTER();
506
507 /* Fast check if setup was canceled */
508 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
509 return -EIDRM;
510
511 /* Acquire mutex */
512 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
513 if (unlikely(ret < 0))
514 return ret;
515
516 /* Check state */
517 if (ffs->state != FFS_ACTIVE) {
518 ret = -EBADFD;
519 goto done_mutex;
520 }
521
522 /*
523 * We're called from user space, we can use _irq rather then
524 * _irqsave
525 */
526 spin_lock_irq(&ffs->ev.waitq.lock);
527
528 switch (ffs_setup_state_clear_cancelled(ffs)) {
529 case FFS_SETUP_CANCELLED:
530 ret = -EIDRM;
531 break;
532
533 case FFS_NO_SETUP:
534 n = len / sizeof(struct usb_functionfs_event);
535 if (unlikely(!n)) {
536 ret = -EINVAL;
537 break;
538 }
539
540 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
541 ret = -EAGAIN;
542 break;
543 }
544
545 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
546 ffs->ev.count)) {
547 ret = -EINTR;
548 break;
549 }
550
551 return __ffs_ep0_read_events(ffs, buf,
552 min(n, (size_t)ffs->ev.count));
553
554 case FFS_SETUP_PENDING:
555 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
556 spin_unlock_irq(&ffs->ev.waitq.lock);
557 ret = __ffs_ep0_stall(ffs);
558 goto done_mutex;
559 }
560
561 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
562
563 spin_unlock_irq(&ffs->ev.waitq.lock);
564
565 if (likely(len)) {
566 data = kmalloc(len, GFP_KERNEL);
567 if (unlikely(!data)) {
568 ret = -ENOMEM;
569 goto done_mutex;
570 }
571 }
572
573 spin_lock_irq(&ffs->ev.waitq.lock);
574
575 /* See ffs_ep0_write() */
576 if (ffs_setup_state_clear_cancelled(ffs) ==
577 FFS_SETUP_CANCELLED) {
578 ret = -EIDRM;
579 break;
580 }
581
582 /* unlocks spinlock */
583 ret = __ffs_ep0_queue_wait(ffs, data, len);
584 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
585 ret = -EFAULT;
586 goto done_mutex;
587
588 default:
589 ret = -EBADFD;
590 break;
591 }
592
593 spin_unlock_irq(&ffs->ev.waitq.lock);
594 done_mutex:
595 mutex_unlock(&ffs->mutex);
596 kfree(data);
597 return ret;
598 }
599
600 static int ffs_ep0_open(struct inode *inode, struct file *file)
601 {
602 struct ffs_data *ffs = inode->i_private;
603
604 ENTER();
605
606 if (unlikely(ffs->state == FFS_CLOSING))
607 return -EBUSY;
608
609 file->private_data = ffs;
610 ffs_data_opened(ffs);
611
612 return 0;
613 }
614
615 static int ffs_ep0_release(struct inode *inode, struct file *file)
616 {
617 struct ffs_data *ffs = file->private_data;
618
619 ENTER();
620
621 ffs_data_closed(ffs);
622
623 return 0;
624 }
625
626 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
627 {
628 struct ffs_data *ffs = file->private_data;
629 struct usb_gadget *gadget = ffs->gadget;
630 long ret;
631
632 ENTER();
633
634 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
635 struct ffs_function *func = ffs->func;
636 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
637 } else if (gadget && gadget->ops->ioctl) {
638 ret = gadget->ops->ioctl(gadget, code, value);
639 } else {
640 ret = -ENOTTY;
641 }
642
643 return ret;
644 }
645
646 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
647 {
648 struct ffs_data *ffs = file->private_data;
649 unsigned int mask = POLLWRNORM;
650 int ret;
651
652 poll_wait(file, &ffs->ev.waitq, wait);
653
654 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
655 if (unlikely(ret < 0))
656 return mask;
657
658 switch (ffs->state) {
659 case FFS_READ_DESCRIPTORS:
660 case FFS_READ_STRINGS:
661 mask |= POLLOUT;
662 break;
663
664 case FFS_ACTIVE:
665 switch (ffs->setup_state) {
666 case FFS_NO_SETUP:
667 if (ffs->ev.count)
668 mask |= POLLIN;
669 break;
670
671 case FFS_SETUP_PENDING:
672 case FFS_SETUP_CANCELLED:
673 mask |= (POLLIN | POLLOUT);
674 break;
675 }
676 case FFS_CLOSING:
677 break;
678 case FFS_DEACTIVATED:
679 break;
680 }
681
682 mutex_unlock(&ffs->mutex);
683
684 return mask;
685 }
686
687 static const struct file_operations ffs_ep0_operations = {
688 .llseek = no_llseek,
689
690 .open = ffs_ep0_open,
691 .write = ffs_ep0_write,
692 .read = ffs_ep0_read,
693 .release = ffs_ep0_release,
694 .unlocked_ioctl = ffs_ep0_ioctl,
695 .poll = ffs_ep0_poll,
696 };
697
698
699 /* "Normal" endpoints operations ********************************************/
700
701 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
702 {
703 ENTER();
704 if (likely(req->context)) {
705 struct ffs_ep *ep = _ep->driver_data;
706 ep->status = req->status ? req->status : req->actual;
707 complete(req->context);
708 }
709 }
710
711 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
712 {
713 ssize_t ret = copy_to_iter(data, data_len, iter);
714 if (likely(ret == data_len))
715 return ret;
716
717 if (unlikely(iov_iter_count(iter)))
718 return -EFAULT;
719
720 /*
721 * Dear user space developer!
722 *
723 * TL;DR: To stop getting below error message in your kernel log, change
724 * user space code using functionfs to align read buffers to a max
725 * packet size.
726 *
727 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
728 * packet size. When unaligned buffer is passed to functionfs, it
729 * internally uses a larger, aligned buffer so that such UDCs are happy.
730 *
731 * Unfortunately, this means that host may send more data than was
732 * requested in read(2) system call. f_fs doesn’t know what to do with
733 * that excess data so it simply drops it.
734 *
735 * Was the buffer aligned in the first place, no such problem would
736 * happen.
737 *
738 * Data may be dropped only in AIO reads. Synchronous reads are handled
739 * by splitting a request into multiple parts. This splitting may still
740 * be a problem though so it’s likely best to align the buffer
741 * regardless of it being AIO or not..
742 *
743 * This only affects OUT endpoints, i.e. reading data with a read(2),
744 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
745 * affected.
746 */
747 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
748 "Align read buffer size to max packet size to avoid the problem.\n",
749 data_len, ret);
750
751 return ret;
752 }
753
754 static void ffs_user_copy_worker(struct work_struct *work)
755 {
756 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
757 work);
758 int ret = io_data->req->status ? io_data->req->status :
759 io_data->req->actual;
760 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
761
762 if (io_data->read && ret > 0) {
763 use_mm(io_data->mm);
764 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
765 unuse_mm(io_data->mm);
766 }
767
768 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
769
770 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
771 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
772
773 usb_ep_free_request(io_data->ep, io_data->req);
774
775 if (io_data->read)
776 kfree(io_data->to_free);
777 kfree(io_data->buf);
778 kfree(io_data);
779 }
780
781 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
782 struct usb_request *req)
783 {
784 struct ffs_io_data *io_data = req->context;
785
786 ENTER();
787
788 INIT_WORK(&io_data->work, ffs_user_copy_worker);
789 schedule_work(&io_data->work);
790 }
791
792 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
793 {
794 /*
795 * See comment in struct ffs_epfile for full read_buffer pointer
796 * synchronisation story.
797 */
798 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
799 if (buf && buf != READ_BUFFER_DROP)
800 kfree(buf);
801 }
802
803 /* Assumes epfile->mutex is held. */
804 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
805 struct iov_iter *iter)
806 {
807 /*
808 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
809 * the buffer while we are using it. See comment in struct ffs_epfile
810 * for full read_buffer pointer synchronisation story.
811 */
812 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
813 ssize_t ret;
814 if (!buf || buf == READ_BUFFER_DROP)
815 return 0;
816
817 ret = copy_to_iter(buf->data, buf->length, iter);
818 if (buf->length == ret) {
819 kfree(buf);
820 return ret;
821 }
822
823 if (unlikely(iov_iter_count(iter))) {
824 ret = -EFAULT;
825 } else {
826 buf->length -= ret;
827 buf->data += ret;
828 }
829
830 if (cmpxchg(&epfile->read_buffer, NULL, buf))
831 kfree(buf);
832
833 return ret;
834 }
835
836 /* Assumes epfile->mutex is held. */
837 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
838 void *data, int data_len,
839 struct iov_iter *iter)
840 {
841 struct ffs_buffer *buf;
842
843 ssize_t ret = copy_to_iter(data, data_len, iter);
844 if (likely(data_len == ret))
845 return ret;
846
847 if (unlikely(iov_iter_count(iter)))
848 return -EFAULT;
849
850 /* See ffs_copy_to_iter for more context. */
851 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
852 data_len, ret);
853
854 data_len -= ret;
855 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
856 if (!buf)
857 return -ENOMEM;
858 buf->length = data_len;
859 buf->data = buf->storage;
860 memcpy(buf->storage, data + ret, data_len);
861
862 /*
863 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
864 * ffs_func_eps_disable has been called in the meanwhile). See comment
865 * in struct ffs_epfile for full read_buffer pointer synchronisation
866 * story.
867 */
868 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
869 kfree(buf);
870
871 return ret;
872 }
873
874 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
875 {
876 struct ffs_epfile *epfile = file->private_data;
877 struct usb_request *req;
878 struct ffs_ep *ep;
879 char *data = NULL;
880 ssize_t ret, data_len = -EINVAL;
881 int halt;
882
883 /* Are we still active? */
884 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
885 return -ENODEV;
886
887 /* Wait for endpoint to be enabled */
888 ep = epfile->ep;
889 if (!ep) {
890 if (file->f_flags & O_NONBLOCK)
891 return -EAGAIN;
892
893 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
894 if (ret)
895 return -EINTR;
896 }
897
898 /* Do we halt? */
899 halt = (!io_data->read == !epfile->in);
900 if (halt && epfile->isoc)
901 return -EINVAL;
902
903 /* We will be using request and read_buffer */
904 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
905 if (unlikely(ret))
906 goto error;
907
908 /* Allocate & copy */
909 if (!halt) {
910 struct usb_gadget *gadget;
911
912 /*
913 * Do we have buffered data from previous partial read? Check
914 * that for synchronous case only because we do not have
915 * facility to ‘wake up’ a pending asynchronous read and push
916 * buffered data to it which we would need to make things behave
917 * consistently.
918 */
919 if (!io_data->aio && io_data->read) {
920 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
921 if (ret)
922 goto error_mutex;
923 }
924
925 /*
926 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
927 * before the waiting completes, so do not assign to 'gadget'
928 * earlier
929 */
930 gadget = epfile->ffs->gadget;
931
932 spin_lock_irq(&epfile->ffs->eps_lock);
933 /* In the meantime, endpoint got disabled or changed. */
934 if (epfile->ep != ep) {
935 ret = -ESHUTDOWN;
936 goto error_lock;
937 }
938 data_len = iov_iter_count(&io_data->data);
939 /*
940 * Controller may require buffer size to be aligned to
941 * maxpacketsize of an out endpoint.
942 */
943 if (io_data->read)
944 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
945 spin_unlock_irq(&epfile->ffs->eps_lock);
946
947 data = kmalloc(data_len, GFP_KERNEL);
948 if (unlikely(!data)) {
949 ret = -ENOMEM;
950 goto error_mutex;
951 }
952 if (!io_data->read &&
953 !copy_from_iter_full(data, data_len, &io_data->data)) {
954 ret = -EFAULT;
955 goto error_mutex;
956 }
957 }
958
959 spin_lock_irq(&epfile->ffs->eps_lock);
960
961 if (epfile->ep != ep) {
962 /* In the meantime, endpoint got disabled or changed. */
963 ret = -ESHUTDOWN;
964 } else if (halt) {
965 /* Halt */
966 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
967 usb_ep_set_halt(ep->ep);
968 ret = -EBADMSG;
969 } else if (unlikely(data_len == -EINVAL)) {
970 /*
971 * Sanity Check: even though data_len can't be used
972 * uninitialized at the time I write this comment, some
973 * compilers complain about this situation.
974 * In order to keep the code clean from warnings, data_len is
975 * being initialized to -EINVAL during its declaration, which
976 * means we can't rely on compiler anymore to warn no future
977 * changes won't result in data_len being used uninitialized.
978 * For such reason, we're adding this redundant sanity check
979 * here.
980 */
981 WARN(1, "%s: data_len == -EINVAL\n", __func__);
982 ret = -EINVAL;
983 } else if (!io_data->aio) {
984 DECLARE_COMPLETION_ONSTACK(done);
985 bool interrupted = false;
986
987 req = ep->req;
988 req->buf = data;
989 req->length = data_len;
990
991 req->context = &done;
992 req->complete = ffs_epfile_io_complete;
993
994 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
995 if (unlikely(ret < 0))
996 goto error_lock;
997
998 spin_unlock_irq(&epfile->ffs->eps_lock);
999
1000 if (unlikely(wait_for_completion_interruptible(&done))) {
1001 /*
1002 * To avoid race condition with ffs_epfile_io_complete,
1003 * dequeue the request first then check
1004 * status. usb_ep_dequeue API should guarantee no race
1005 * condition with req->complete callback.
1006 */
1007 usb_ep_dequeue(ep->ep, req);
1008 interrupted = ep->status < 0;
1009 }
1010
1011 if (interrupted)
1012 ret = -EINTR;
1013 else if (io_data->read && ep->status > 0)
1014 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1015 &io_data->data);
1016 else
1017 ret = ep->status;
1018 goto error_mutex;
1019 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1020 ret = -ENOMEM;
1021 } else {
1022 req->buf = data;
1023 req->length = data_len;
1024
1025 io_data->buf = data;
1026 io_data->ep = ep->ep;
1027 io_data->req = req;
1028 io_data->ffs = epfile->ffs;
1029
1030 req->context = io_data;
1031 req->complete = ffs_epfile_async_io_complete;
1032
1033 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1034 if (unlikely(ret)) {
1035 usb_ep_free_request(ep->ep, req);
1036 goto error_lock;
1037 }
1038
1039 ret = -EIOCBQUEUED;
1040 /*
1041 * Do not kfree the buffer in this function. It will be freed
1042 * by ffs_user_copy_worker.
1043 */
1044 data = NULL;
1045 }
1046
1047 error_lock:
1048 spin_unlock_irq(&epfile->ffs->eps_lock);
1049 error_mutex:
1050 mutex_unlock(&epfile->mutex);
1051 error:
1052 kfree(data);
1053 return ret;
1054 }
1055
1056 static int
1057 ffs_epfile_open(struct inode *inode, struct file *file)
1058 {
1059 struct ffs_epfile *epfile = inode->i_private;
1060
1061 ENTER();
1062
1063 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1064 return -ENODEV;
1065
1066 file->private_data = epfile;
1067 ffs_data_opened(epfile->ffs);
1068
1069 return 0;
1070 }
1071
1072 static int ffs_aio_cancel(struct kiocb *kiocb)
1073 {
1074 struct ffs_io_data *io_data = kiocb->private;
1075 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1076 int value;
1077
1078 ENTER();
1079
1080 spin_lock_irq(&epfile->ffs->eps_lock);
1081
1082 if (likely(io_data && io_data->ep && io_data->req))
1083 value = usb_ep_dequeue(io_data->ep, io_data->req);
1084 else
1085 value = -EINVAL;
1086
1087 spin_unlock_irq(&epfile->ffs->eps_lock);
1088
1089 return value;
1090 }
1091
1092 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1093 {
1094 struct ffs_io_data io_data, *p = &io_data;
1095 ssize_t res;
1096
1097 ENTER();
1098
1099 if (!is_sync_kiocb(kiocb)) {
1100 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1101 if (unlikely(!p))
1102 return -ENOMEM;
1103 p->aio = true;
1104 } else {
1105 p->aio = false;
1106 }
1107
1108 p->read = false;
1109 p->kiocb = kiocb;
1110 p->data = *from;
1111 p->mm = current->mm;
1112
1113 kiocb->private = p;
1114
1115 if (p->aio)
1116 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1117
1118 res = ffs_epfile_io(kiocb->ki_filp, p);
1119 if (res == -EIOCBQUEUED)
1120 return res;
1121 if (p->aio)
1122 kfree(p);
1123 else
1124 *from = p->data;
1125 return res;
1126 }
1127
1128 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1129 {
1130 struct ffs_io_data io_data, *p = &io_data;
1131 ssize_t res;
1132
1133 ENTER();
1134
1135 if (!is_sync_kiocb(kiocb)) {
1136 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1137 if (unlikely(!p))
1138 return -ENOMEM;
1139 p->aio = true;
1140 } else {
1141 p->aio = false;
1142 }
1143
1144 p->read = true;
1145 p->kiocb = kiocb;
1146 if (p->aio) {
1147 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1148 if (!p->to_free) {
1149 kfree(p);
1150 return -ENOMEM;
1151 }
1152 } else {
1153 p->data = *to;
1154 p->to_free = NULL;
1155 }
1156 p->mm = current->mm;
1157
1158 kiocb->private = p;
1159
1160 if (p->aio)
1161 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1162
1163 res = ffs_epfile_io(kiocb->ki_filp, p);
1164 if (res == -EIOCBQUEUED)
1165 return res;
1166
1167 if (p->aio) {
1168 kfree(p->to_free);
1169 kfree(p);
1170 } else {
1171 *to = p->data;
1172 }
1173 return res;
1174 }
1175
1176 static int
1177 ffs_epfile_release(struct inode *inode, struct file *file)
1178 {
1179 struct ffs_epfile *epfile = inode->i_private;
1180
1181 ENTER();
1182
1183 __ffs_epfile_read_buffer_free(epfile);
1184 ffs_data_closed(epfile->ffs);
1185
1186 return 0;
1187 }
1188
1189 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1190 unsigned long value)
1191 {
1192 struct ffs_epfile *epfile = file->private_data;
1193 int ret;
1194
1195 ENTER();
1196
1197 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1198 return -ENODEV;
1199
1200 spin_lock_irq(&epfile->ffs->eps_lock);
1201 if (likely(epfile->ep)) {
1202 switch (code) {
1203 case FUNCTIONFS_FIFO_STATUS:
1204 ret = usb_ep_fifo_status(epfile->ep->ep);
1205 break;
1206 case FUNCTIONFS_FIFO_FLUSH:
1207 usb_ep_fifo_flush(epfile->ep->ep);
1208 ret = 0;
1209 break;
1210 case FUNCTIONFS_CLEAR_HALT:
1211 ret = usb_ep_clear_halt(epfile->ep->ep);
1212 break;
1213 case FUNCTIONFS_ENDPOINT_REVMAP:
1214 ret = epfile->ep->num;
1215 break;
1216 case FUNCTIONFS_ENDPOINT_DESC:
1217 {
1218 int desc_idx;
1219 struct usb_endpoint_descriptor *desc;
1220
1221 switch (epfile->ffs->gadget->speed) {
1222 case USB_SPEED_SUPER:
1223 desc_idx = 2;
1224 break;
1225 case USB_SPEED_HIGH:
1226 desc_idx = 1;
1227 break;
1228 default:
1229 desc_idx = 0;
1230 }
1231 desc = epfile->ep->descs[desc_idx];
1232
1233 spin_unlock_irq(&epfile->ffs->eps_lock);
1234 ret = copy_to_user((void *)value, desc, desc->bLength);
1235 if (ret)
1236 ret = -EFAULT;
1237 return ret;
1238 }
1239 default:
1240 ret = -ENOTTY;
1241 }
1242 } else {
1243 ret = -ENODEV;
1244 }
1245 spin_unlock_irq(&epfile->ffs->eps_lock);
1246
1247 return ret;
1248 }
1249
1250 static const struct file_operations ffs_epfile_operations = {
1251 .llseek = no_llseek,
1252
1253 .open = ffs_epfile_open,
1254 .write_iter = ffs_epfile_write_iter,
1255 .read_iter = ffs_epfile_read_iter,
1256 .release = ffs_epfile_release,
1257 .unlocked_ioctl = ffs_epfile_ioctl,
1258 };
1259
1260
1261 /* File system and super block operations ***********************************/
1262
1263 /*
1264 * Mounting the file system creates a controller file, used first for
1265 * function configuration then later for event monitoring.
1266 */
1267
1268 static struct inode *__must_check
1269 ffs_sb_make_inode(struct super_block *sb, void *data,
1270 const struct file_operations *fops,
1271 const struct inode_operations *iops,
1272 struct ffs_file_perms *perms)
1273 {
1274 struct inode *inode;
1275
1276 ENTER();
1277
1278 inode = new_inode(sb);
1279
1280 if (likely(inode)) {
1281 struct timespec ts = current_time(inode);
1282
1283 inode->i_ino = get_next_ino();
1284 inode->i_mode = perms->mode;
1285 inode->i_uid = perms->uid;
1286 inode->i_gid = perms->gid;
1287 inode->i_atime = ts;
1288 inode->i_mtime = ts;
1289 inode->i_ctime = ts;
1290 inode->i_private = data;
1291 if (fops)
1292 inode->i_fop = fops;
1293 if (iops)
1294 inode->i_op = iops;
1295 }
1296
1297 return inode;
1298 }
1299
1300 /* Create "regular" file */
1301 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1302 const char *name, void *data,
1303 const struct file_operations *fops)
1304 {
1305 struct ffs_data *ffs = sb->s_fs_info;
1306 struct dentry *dentry;
1307 struct inode *inode;
1308
1309 ENTER();
1310
1311 dentry = d_alloc_name(sb->s_root, name);
1312 if (unlikely(!dentry))
1313 return NULL;
1314
1315 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1316 if (unlikely(!inode)) {
1317 dput(dentry);
1318 return NULL;
1319 }
1320
1321 d_add(dentry, inode);
1322 return dentry;
1323 }
1324
1325 /* Super block */
1326 static const struct super_operations ffs_sb_operations = {
1327 .statfs = simple_statfs,
1328 .drop_inode = generic_delete_inode,
1329 };
1330
1331 struct ffs_sb_fill_data {
1332 struct ffs_file_perms perms;
1333 umode_t root_mode;
1334 const char *dev_name;
1335 bool no_disconnect;
1336 struct ffs_data *ffs_data;
1337 };
1338
1339 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1340 {
1341 struct ffs_sb_fill_data *data = _data;
1342 struct inode *inode;
1343 struct ffs_data *ffs = data->ffs_data;
1344
1345 ENTER();
1346
1347 ffs->sb = sb;
1348 data->ffs_data = NULL;
1349 sb->s_fs_info = ffs;
1350 sb->s_blocksize = PAGE_SIZE;
1351 sb->s_blocksize_bits = PAGE_SHIFT;
1352 sb->s_magic = FUNCTIONFS_MAGIC;
1353 sb->s_op = &ffs_sb_operations;
1354 sb->s_time_gran = 1;
1355
1356 /* Root inode */
1357 data->perms.mode = data->root_mode;
1358 inode = ffs_sb_make_inode(sb, NULL,
1359 &simple_dir_operations,
1360 &simple_dir_inode_operations,
1361 &data->perms);
1362 sb->s_root = d_make_root(inode);
1363 if (unlikely(!sb->s_root))
1364 return -ENOMEM;
1365
1366 /* EP0 file */
1367 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1368 &ffs_ep0_operations)))
1369 return -ENOMEM;
1370
1371 return 0;
1372 }
1373
1374 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1375 {
1376 ENTER();
1377
1378 if (!opts || !*opts)
1379 return 0;
1380
1381 for (;;) {
1382 unsigned long value;
1383 char *eq, *comma;
1384
1385 /* Option limit */
1386 comma = strchr(opts, ',');
1387 if (comma)
1388 *comma = 0;
1389
1390 /* Value limit */
1391 eq = strchr(opts, '=');
1392 if (unlikely(!eq)) {
1393 pr_err("'=' missing in %s\n", opts);
1394 return -EINVAL;
1395 }
1396 *eq = 0;
1397
1398 /* Parse value */
1399 if (kstrtoul(eq + 1, 0, &value)) {
1400 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1401 return -EINVAL;
1402 }
1403
1404 /* Interpret option */
1405 switch (eq - opts) {
1406 case 13:
1407 if (!memcmp(opts, "no_disconnect", 13))
1408 data->no_disconnect = !!value;
1409 else
1410 goto invalid;
1411 break;
1412 case 5:
1413 if (!memcmp(opts, "rmode", 5))
1414 data->root_mode = (value & 0555) | S_IFDIR;
1415 else if (!memcmp(opts, "fmode", 5))
1416 data->perms.mode = (value & 0666) | S_IFREG;
1417 else
1418 goto invalid;
1419 break;
1420
1421 case 4:
1422 if (!memcmp(opts, "mode", 4)) {
1423 data->root_mode = (value & 0555) | S_IFDIR;
1424 data->perms.mode = (value & 0666) | S_IFREG;
1425 } else {
1426 goto invalid;
1427 }
1428 break;
1429
1430 case 3:
1431 if (!memcmp(opts, "uid", 3)) {
1432 data->perms.uid = make_kuid(current_user_ns(), value);
1433 if (!uid_valid(data->perms.uid)) {
1434 pr_err("%s: unmapped value: %lu\n", opts, value);
1435 return -EINVAL;
1436 }
1437 } else if (!memcmp(opts, "gid", 3)) {
1438 data->perms.gid = make_kgid(current_user_ns(), value);
1439 if (!gid_valid(data->perms.gid)) {
1440 pr_err("%s: unmapped value: %lu\n", opts, value);
1441 return -EINVAL;
1442 }
1443 } else {
1444 goto invalid;
1445 }
1446 break;
1447
1448 default:
1449 invalid:
1450 pr_err("%s: invalid option\n", opts);
1451 return -EINVAL;
1452 }
1453
1454 /* Next iteration */
1455 if (!comma)
1456 break;
1457 opts = comma + 1;
1458 }
1459
1460 return 0;
1461 }
1462
1463 /* "mount -t functionfs dev_name /dev/function" ends up here */
1464
1465 static struct dentry *
1466 ffs_fs_mount(struct file_system_type *t, int flags,
1467 const char *dev_name, void *opts)
1468 {
1469 struct ffs_sb_fill_data data = {
1470 .perms = {
1471 .mode = S_IFREG | 0600,
1472 .uid = GLOBAL_ROOT_UID,
1473 .gid = GLOBAL_ROOT_GID,
1474 },
1475 .root_mode = S_IFDIR | 0500,
1476 .no_disconnect = false,
1477 };
1478 struct dentry *rv;
1479 int ret;
1480 void *ffs_dev;
1481 struct ffs_data *ffs;
1482
1483 ENTER();
1484
1485 ret = ffs_fs_parse_opts(&data, opts);
1486 if (unlikely(ret < 0))
1487 return ERR_PTR(ret);
1488
1489 ffs = ffs_data_new();
1490 if (unlikely(!ffs))
1491 return ERR_PTR(-ENOMEM);
1492 ffs->file_perms = data.perms;
1493 ffs->no_disconnect = data.no_disconnect;
1494
1495 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1496 if (unlikely(!ffs->dev_name)) {
1497 ffs_data_put(ffs);
1498 return ERR_PTR(-ENOMEM);
1499 }
1500
1501 ffs_dev = ffs_acquire_dev(dev_name);
1502 if (IS_ERR(ffs_dev)) {
1503 ffs_data_put(ffs);
1504 return ERR_CAST(ffs_dev);
1505 }
1506 ffs->private_data = ffs_dev;
1507 data.ffs_data = ffs;
1508
1509 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1510 if (IS_ERR(rv) && data.ffs_data) {
1511 ffs_release_dev(data.ffs_data);
1512 ffs_data_put(data.ffs_data);
1513 }
1514 return rv;
1515 }
1516
1517 static void
1518 ffs_fs_kill_sb(struct super_block *sb)
1519 {
1520 ENTER();
1521
1522 kill_litter_super(sb);
1523 if (sb->s_fs_info) {
1524 ffs_release_dev(sb->s_fs_info);
1525 ffs_data_closed(sb->s_fs_info);
1526 ffs_data_put(sb->s_fs_info);
1527 }
1528 }
1529
1530 static struct file_system_type ffs_fs_type = {
1531 .owner = THIS_MODULE,
1532 .name = "functionfs",
1533 .mount = ffs_fs_mount,
1534 .kill_sb = ffs_fs_kill_sb,
1535 };
1536 MODULE_ALIAS_FS("functionfs");
1537
1538
1539 /* Driver's main init/cleanup functions *************************************/
1540
1541 static int functionfs_init(void)
1542 {
1543 int ret;
1544
1545 ENTER();
1546
1547 ret = register_filesystem(&ffs_fs_type);
1548 if (likely(!ret))
1549 pr_info("file system registered\n");
1550 else
1551 pr_err("failed registering file system (%d)\n", ret);
1552
1553 return ret;
1554 }
1555
1556 static void functionfs_cleanup(void)
1557 {
1558 ENTER();
1559
1560 pr_info("unloading\n");
1561 unregister_filesystem(&ffs_fs_type);
1562 }
1563
1564
1565 /* ffs_data and ffs_function construction and destruction code **************/
1566
1567 static void ffs_data_clear(struct ffs_data *ffs);
1568 static void ffs_data_reset(struct ffs_data *ffs);
1569
1570 static void ffs_data_get(struct ffs_data *ffs)
1571 {
1572 ENTER();
1573
1574 atomic_inc(&ffs->ref);
1575 }
1576
1577 static void ffs_data_opened(struct ffs_data *ffs)
1578 {
1579 ENTER();
1580
1581 atomic_inc(&ffs->ref);
1582 if (atomic_add_return(1, &ffs->opened) == 1 &&
1583 ffs->state == FFS_DEACTIVATED) {
1584 ffs->state = FFS_CLOSING;
1585 ffs_data_reset(ffs);
1586 }
1587 }
1588
1589 static void ffs_data_put(struct ffs_data *ffs)
1590 {
1591 ENTER();
1592
1593 if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1594 pr_info("%s(): freeing\n", __func__);
1595 ffs_data_clear(ffs);
1596 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1597 waitqueue_active(&ffs->ep0req_completion.wait));
1598 kfree(ffs->dev_name);
1599 kfree(ffs);
1600 }
1601 }
1602
1603 static void ffs_data_closed(struct ffs_data *ffs)
1604 {
1605 ENTER();
1606
1607 if (atomic_dec_and_test(&ffs->opened)) {
1608 if (ffs->no_disconnect) {
1609 ffs->state = FFS_DEACTIVATED;
1610 if (ffs->epfiles) {
1611 ffs_epfiles_destroy(ffs->epfiles,
1612 ffs->eps_count);
1613 ffs->epfiles = NULL;
1614 }
1615 if (ffs->setup_state == FFS_SETUP_PENDING)
1616 __ffs_ep0_stall(ffs);
1617 } else {
1618 ffs->state = FFS_CLOSING;
1619 ffs_data_reset(ffs);
1620 }
1621 }
1622 if (atomic_read(&ffs->opened) < 0) {
1623 ffs->state = FFS_CLOSING;
1624 ffs_data_reset(ffs);
1625 }
1626
1627 ffs_data_put(ffs);
1628 }
1629
1630 static struct ffs_data *ffs_data_new(void)
1631 {
1632 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1633 if (unlikely(!ffs))
1634 return NULL;
1635
1636 ENTER();
1637
1638 atomic_set(&ffs->ref, 1);
1639 atomic_set(&ffs->opened, 0);
1640 ffs->state = FFS_READ_DESCRIPTORS;
1641 mutex_init(&ffs->mutex);
1642 spin_lock_init(&ffs->eps_lock);
1643 init_waitqueue_head(&ffs->ev.waitq);
1644 init_completion(&ffs->ep0req_completion);
1645
1646 /* XXX REVISIT need to update it in some places, or do we? */
1647 ffs->ev.can_stall = 1;
1648
1649 return ffs;
1650 }
1651
1652 static void ffs_data_clear(struct ffs_data *ffs)
1653 {
1654 ENTER();
1655
1656 ffs_closed(ffs);
1657
1658 BUG_ON(ffs->gadget);
1659
1660 if (ffs->epfiles)
1661 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1662
1663 if (ffs->ffs_eventfd)
1664 eventfd_ctx_put(ffs->ffs_eventfd);
1665
1666 kfree(ffs->raw_descs_data);
1667 kfree(ffs->raw_strings);
1668 kfree(ffs->stringtabs);
1669 }
1670
1671 static void ffs_data_reset(struct ffs_data *ffs)
1672 {
1673 ENTER();
1674
1675 ffs_data_clear(ffs);
1676
1677 ffs->epfiles = NULL;
1678 ffs->raw_descs_data = NULL;
1679 ffs->raw_descs = NULL;
1680 ffs->raw_strings = NULL;
1681 ffs->stringtabs = NULL;
1682
1683 ffs->raw_descs_length = 0;
1684 ffs->fs_descs_count = 0;
1685 ffs->hs_descs_count = 0;
1686 ffs->ss_descs_count = 0;
1687
1688 ffs->strings_count = 0;
1689 ffs->interfaces_count = 0;
1690 ffs->eps_count = 0;
1691
1692 ffs->ev.count = 0;
1693
1694 ffs->state = FFS_READ_DESCRIPTORS;
1695 ffs->setup_state = FFS_NO_SETUP;
1696 ffs->flags = 0;
1697 }
1698
1699
1700 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1701 {
1702 struct usb_gadget_strings **lang;
1703 int first_id;
1704
1705 ENTER();
1706
1707 if (WARN_ON(ffs->state != FFS_ACTIVE
1708 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1709 return -EBADFD;
1710
1711 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1712 if (unlikely(first_id < 0))
1713 return first_id;
1714
1715 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1716 if (unlikely(!ffs->ep0req))
1717 return -ENOMEM;
1718 ffs->ep0req->complete = ffs_ep0_complete;
1719 ffs->ep0req->context = ffs;
1720
1721 lang = ffs->stringtabs;
1722 if (lang) {
1723 for (; *lang; ++lang) {
1724 struct usb_string *str = (*lang)->strings;
1725 int id = first_id;
1726 for (; str->s; ++id, ++str)
1727 str->id = id;
1728 }
1729 }
1730
1731 ffs->gadget = cdev->gadget;
1732 ffs_data_get(ffs);
1733 return 0;
1734 }
1735
1736 static void functionfs_unbind(struct ffs_data *ffs)
1737 {
1738 ENTER();
1739
1740 if (!WARN_ON(!ffs->gadget)) {
1741 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1742 ffs->ep0req = NULL;
1743 ffs->gadget = NULL;
1744 clear_bit(FFS_FL_BOUND, &ffs->flags);
1745 ffs_data_put(ffs);
1746 }
1747 }
1748
1749 static int ffs_epfiles_create(struct ffs_data *ffs)
1750 {
1751 struct ffs_epfile *epfile, *epfiles;
1752 unsigned i, count;
1753
1754 ENTER();
1755
1756 count = ffs->eps_count;
1757 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1758 if (!epfiles)
1759 return -ENOMEM;
1760
1761 epfile = epfiles;
1762 for (i = 1; i <= count; ++i, ++epfile) {
1763 epfile->ffs = ffs;
1764 mutex_init(&epfile->mutex);
1765 init_waitqueue_head(&epfile->wait);
1766 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1767 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1768 else
1769 sprintf(epfile->name, "ep%u", i);
1770 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1771 epfile,
1772 &ffs_epfile_operations);
1773 if (unlikely(!epfile->dentry)) {
1774 ffs_epfiles_destroy(epfiles, i - 1);
1775 return -ENOMEM;
1776 }
1777 }
1778
1779 ffs->epfiles = epfiles;
1780 return 0;
1781 }
1782
1783 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1784 {
1785 struct ffs_epfile *epfile = epfiles;
1786
1787 ENTER();
1788
1789 for (; count; --count, ++epfile) {
1790 BUG_ON(mutex_is_locked(&epfile->mutex) ||
1791 waitqueue_active(&epfile->wait));
1792 if (epfile->dentry) {
1793 d_delete(epfile->dentry);
1794 dput(epfile->dentry);
1795 epfile->dentry = NULL;
1796 }
1797 }
1798
1799 kfree(epfiles);
1800 }
1801
1802 static void ffs_func_eps_disable(struct ffs_function *func)
1803 {
1804 struct ffs_ep *ep = func->eps;
1805 struct ffs_epfile *epfile = func->ffs->epfiles;
1806 unsigned count = func->ffs->eps_count;
1807 unsigned long flags;
1808
1809 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1810 while (count--) {
1811 /* pending requests get nuked */
1812 if (likely(ep->ep))
1813 usb_ep_disable(ep->ep);
1814 ++ep;
1815
1816 if (epfile) {
1817 epfile->ep = NULL;
1818 __ffs_epfile_read_buffer_free(epfile);
1819 ++epfile;
1820 }
1821 }
1822 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1823 }
1824
1825 static int ffs_func_eps_enable(struct ffs_function *func)
1826 {
1827 struct ffs_data *ffs = func->ffs;
1828 struct ffs_ep *ep = func->eps;
1829 struct ffs_epfile *epfile = ffs->epfiles;
1830 unsigned count = ffs->eps_count;
1831 unsigned long flags;
1832 int ret = 0;
1833
1834 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1835 while(count--) {
1836 struct usb_endpoint_descriptor *ds;
1837 int desc_idx;
1838
1839 if (ffs->gadget->speed == USB_SPEED_SUPER)
1840 desc_idx = 2;
1841 else if (ffs->gadget->speed == USB_SPEED_HIGH)
1842 desc_idx = 1;
1843 else
1844 desc_idx = 0;
1845
1846 /* fall-back to lower speed if desc missing for current speed */
1847 do {
1848 ds = ep->descs[desc_idx];
1849 } while (!ds && --desc_idx >= 0);
1850
1851 if (!ds) {
1852 ret = -EINVAL;
1853 break;
1854 }
1855
1856 ep->ep->driver_data = ep;
1857 ep->ep->desc = ds;
1858 ret = usb_ep_enable(ep->ep);
1859 if (likely(!ret)) {
1860 epfile->ep = ep;
1861 epfile->in = usb_endpoint_dir_in(ds);
1862 epfile->isoc = usb_endpoint_xfer_isoc(ds);
1863 } else {
1864 break;
1865 }
1866
1867 wake_up(&epfile->wait);
1868
1869 ++ep;
1870 ++epfile;
1871 }
1872 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1873
1874 return ret;
1875 }
1876
1877
1878 /* Parsing and building descriptors and strings *****************************/
1879
1880 /*
1881 * This validates if data pointed by data is a valid USB descriptor as
1882 * well as record how many interfaces, endpoints and strings are
1883 * required by given configuration. Returns address after the
1884 * descriptor or NULL if data is invalid.
1885 */
1886
1887 enum ffs_entity_type {
1888 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1889 };
1890
1891 enum ffs_os_desc_type {
1892 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1893 };
1894
1895 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1896 u8 *valuep,
1897 struct usb_descriptor_header *desc,
1898 void *priv);
1899
1900 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1901 struct usb_os_desc_header *h, void *data,
1902 unsigned len, void *priv);
1903
1904 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1905 ffs_entity_callback entity,
1906 void *priv)
1907 {
1908 struct usb_descriptor_header *_ds = (void *)data;
1909 u8 length;
1910 int ret;
1911
1912 ENTER();
1913
1914 /* At least two bytes are required: length and type */
1915 if (len < 2) {
1916 pr_vdebug("descriptor too short\n");
1917 return -EINVAL;
1918 }
1919
1920 /* If we have at least as many bytes as the descriptor takes? */
1921 length = _ds->bLength;
1922 if (len < length) {
1923 pr_vdebug("descriptor longer then available data\n");
1924 return -EINVAL;
1925 }
1926
1927 #define __entity_check_INTERFACE(val) 1
1928 #define __entity_check_STRING(val) (val)
1929 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1930 #define __entity(type, val) do { \
1931 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1932 if (unlikely(!__entity_check_ ##type(val))) { \
1933 pr_vdebug("invalid entity's value\n"); \
1934 return -EINVAL; \
1935 } \
1936 ret = entity(FFS_ ##type, &val, _ds, priv); \
1937 if (unlikely(ret < 0)) { \
1938 pr_debug("entity " #type "(%02x); ret = %d\n", \
1939 (val), ret); \
1940 return ret; \
1941 } \
1942 } while (0)
1943
1944 /* Parse descriptor depending on type. */
1945 switch (_ds->bDescriptorType) {
1946 case USB_DT_DEVICE:
1947 case USB_DT_CONFIG:
1948 case USB_DT_STRING:
1949 case USB_DT_DEVICE_QUALIFIER:
1950 /* function can't have any of those */
1951 pr_vdebug("descriptor reserved for gadget: %d\n",
1952 _ds->bDescriptorType);
1953 return -EINVAL;
1954
1955 case USB_DT_INTERFACE: {
1956 struct usb_interface_descriptor *ds = (void *)_ds;
1957 pr_vdebug("interface descriptor\n");
1958 if (length != sizeof *ds)
1959 goto inv_length;
1960
1961 __entity(INTERFACE, ds->bInterfaceNumber);
1962 if (ds->iInterface)
1963 __entity(STRING, ds->iInterface);
1964 }
1965 break;
1966
1967 case USB_DT_ENDPOINT: {
1968 struct usb_endpoint_descriptor *ds = (void *)_ds;
1969 pr_vdebug("endpoint descriptor\n");
1970 if (length != USB_DT_ENDPOINT_SIZE &&
1971 length != USB_DT_ENDPOINT_AUDIO_SIZE)
1972 goto inv_length;
1973 __entity(ENDPOINT, ds->bEndpointAddress);
1974 }
1975 break;
1976
1977 case HID_DT_HID:
1978 pr_vdebug("hid descriptor\n");
1979 if (length != sizeof(struct hid_descriptor))
1980 goto inv_length;
1981 break;
1982
1983 case USB_DT_OTG:
1984 if (length != sizeof(struct usb_otg_descriptor))
1985 goto inv_length;
1986 break;
1987
1988 case USB_DT_INTERFACE_ASSOCIATION: {
1989 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1990 pr_vdebug("interface association descriptor\n");
1991 if (length != sizeof *ds)
1992 goto inv_length;
1993 if (ds->iFunction)
1994 __entity(STRING, ds->iFunction);
1995 }
1996 break;
1997
1998 case USB_DT_SS_ENDPOINT_COMP:
1999 pr_vdebug("EP SS companion descriptor\n");
2000 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2001 goto inv_length;
2002 break;
2003
2004 case USB_DT_OTHER_SPEED_CONFIG:
2005 case USB_DT_INTERFACE_POWER:
2006 case USB_DT_DEBUG:
2007 case USB_DT_SECURITY:
2008 case USB_DT_CS_RADIO_CONTROL:
2009 /* TODO */
2010 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2011 return -EINVAL;
2012
2013 default:
2014 /* We should never be here */
2015 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2016 return -EINVAL;
2017
2018 inv_length:
2019 pr_vdebug("invalid length: %d (descriptor %d)\n",
2020 _ds->bLength, _ds->bDescriptorType);
2021 return -EINVAL;
2022 }
2023
2024 #undef __entity
2025 #undef __entity_check_DESCRIPTOR
2026 #undef __entity_check_INTERFACE
2027 #undef __entity_check_STRING
2028 #undef __entity_check_ENDPOINT
2029
2030 return length;
2031 }
2032
2033 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2034 ffs_entity_callback entity, void *priv)
2035 {
2036 const unsigned _len = len;
2037 unsigned long num = 0;
2038
2039 ENTER();
2040
2041 for (;;) {
2042 int ret;
2043
2044 if (num == count)
2045 data = NULL;
2046
2047 /* Record "descriptor" entity */
2048 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2049 if (unlikely(ret < 0)) {
2050 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2051 num, ret);
2052 return ret;
2053 }
2054
2055 if (!data)
2056 return _len - len;
2057
2058 ret = ffs_do_single_desc(data, len, entity, priv);
2059 if (unlikely(ret < 0)) {
2060 pr_debug("%s returns %d\n", __func__, ret);
2061 return ret;
2062 }
2063
2064 len -= ret;
2065 data += ret;
2066 ++num;
2067 }
2068 }
2069
2070 static int __ffs_data_do_entity(enum ffs_entity_type type,
2071 u8 *valuep, struct usb_descriptor_header *desc,
2072 void *priv)
2073 {
2074 struct ffs_desc_helper *helper = priv;
2075 struct usb_endpoint_descriptor *d;
2076
2077 ENTER();
2078
2079 switch (type) {
2080 case FFS_DESCRIPTOR:
2081 break;
2082
2083 case FFS_INTERFACE:
2084 /*
2085 * Interfaces are indexed from zero so if we
2086 * encountered interface "n" then there are at least
2087 * "n+1" interfaces.
2088 */
2089 if (*valuep >= helper->interfaces_count)
2090 helper->interfaces_count = *valuep + 1;
2091 break;
2092
2093 case FFS_STRING:
2094 /*
2095 * Strings are indexed from 1 (0 is reserved
2096 * for languages list)
2097 */
2098 if (*valuep > helper->ffs->strings_count)
2099 helper->ffs->strings_count = *valuep;
2100 break;
2101
2102 case FFS_ENDPOINT:
2103 d = (void *)desc;
2104 helper->eps_count++;
2105 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2106 return -EINVAL;
2107 /* Check if descriptors for any speed were already parsed */
2108 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2109 helper->ffs->eps_addrmap[helper->eps_count] =
2110 d->bEndpointAddress;
2111 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2112 d->bEndpointAddress)
2113 return -EINVAL;
2114 break;
2115 }
2116
2117 return 0;
2118 }
2119
2120 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2121 struct usb_os_desc_header *desc)
2122 {
2123 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2124 u16 w_index = le16_to_cpu(desc->wIndex);
2125
2126 if (bcd_version != 1) {
2127 pr_vdebug("unsupported os descriptors version: %d",
2128 bcd_version);
2129 return -EINVAL;
2130 }
2131 switch (w_index) {
2132 case 0x4:
2133 *next_type = FFS_OS_DESC_EXT_COMPAT;
2134 break;
2135 case 0x5:
2136 *next_type = FFS_OS_DESC_EXT_PROP;
2137 break;
2138 default:
2139 pr_vdebug("unsupported os descriptor type: %d", w_index);
2140 return -EINVAL;
2141 }
2142
2143 return sizeof(*desc);
2144 }
2145
2146 /*
2147 * Process all extended compatibility/extended property descriptors
2148 * of a feature descriptor
2149 */
2150 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2151 enum ffs_os_desc_type type,
2152 u16 feature_count,
2153 ffs_os_desc_callback entity,
2154 void *priv,
2155 struct usb_os_desc_header *h)
2156 {
2157 int ret;
2158 const unsigned _len = len;
2159
2160 ENTER();
2161
2162 /* loop over all ext compat/ext prop descriptors */
2163 while (feature_count--) {
2164 ret = entity(type, h, data, len, priv);
2165 if (unlikely(ret < 0)) {
2166 pr_debug("bad OS descriptor, type: %d\n", type);
2167 return ret;
2168 }
2169 data += ret;
2170 len -= ret;
2171 }
2172 return _len - len;
2173 }
2174
2175 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2176 static int __must_check ffs_do_os_descs(unsigned count,
2177 char *data, unsigned len,
2178 ffs_os_desc_callback entity, void *priv)
2179 {
2180 const unsigned _len = len;
2181 unsigned long num = 0;
2182
2183 ENTER();
2184
2185 for (num = 0; num < count; ++num) {
2186 int ret;
2187 enum ffs_os_desc_type type;
2188 u16 feature_count;
2189 struct usb_os_desc_header *desc = (void *)data;
2190
2191 if (len < sizeof(*desc))
2192 return -EINVAL;
2193
2194 /*
2195 * Record "descriptor" entity.
2196 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2197 * Move the data pointer to the beginning of extended
2198 * compatibilities proper or extended properties proper
2199 * portions of the data
2200 */
2201 if (le32_to_cpu(desc->dwLength) > len)
2202 return -EINVAL;
2203
2204 ret = __ffs_do_os_desc_header(&type, desc);
2205 if (unlikely(ret < 0)) {
2206 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2207 num, ret);
2208 return ret;
2209 }
2210 /*
2211 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2212 */
2213 feature_count = le16_to_cpu(desc->wCount);
2214 if (type == FFS_OS_DESC_EXT_COMPAT &&
2215 (feature_count > 255 || desc->Reserved))
2216 return -EINVAL;
2217 len -= ret;
2218 data += ret;
2219
2220 /*
2221 * Process all function/property descriptors
2222 * of this Feature Descriptor
2223 */
2224 ret = ffs_do_single_os_desc(data, len, type,
2225 feature_count, entity, priv, desc);
2226 if (unlikely(ret < 0)) {
2227 pr_debug("%s returns %d\n", __func__, ret);
2228 return ret;
2229 }
2230
2231 len -= ret;
2232 data += ret;
2233 }
2234 return _len - len;
2235 }
2236
2237 /**
2238 * Validate contents of the buffer from userspace related to OS descriptors.
2239 */
2240 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2241 struct usb_os_desc_header *h, void *data,
2242 unsigned len, void *priv)
2243 {
2244 struct ffs_data *ffs = priv;
2245 u8 length;
2246
2247 ENTER();
2248
2249 switch (type) {
2250 case FFS_OS_DESC_EXT_COMPAT: {
2251 struct usb_ext_compat_desc *d = data;
2252 int i;
2253
2254 if (len < sizeof(*d) ||
2255 d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2256 d->Reserved1)
2257 return -EINVAL;
2258 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2259 if (d->Reserved2[i])
2260 return -EINVAL;
2261
2262 length = sizeof(struct usb_ext_compat_desc);
2263 }
2264 break;
2265 case FFS_OS_DESC_EXT_PROP: {
2266 struct usb_ext_prop_desc *d = data;
2267 u32 type, pdl;
2268 u16 pnl;
2269
2270 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2271 return -EINVAL;
2272 length = le32_to_cpu(d->dwSize);
2273 if (len < length)
2274 return -EINVAL;
2275 type = le32_to_cpu(d->dwPropertyDataType);
2276 if (type < USB_EXT_PROP_UNICODE ||
2277 type > USB_EXT_PROP_UNICODE_MULTI) {
2278 pr_vdebug("unsupported os descriptor property type: %d",
2279 type);
2280 return -EINVAL;
2281 }
2282 pnl = le16_to_cpu(d->wPropertyNameLength);
2283 if (length < 14 + pnl) {
2284 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2285 length, pnl, type);
2286 return -EINVAL;
2287 }
2288 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2289 if (length != 14 + pnl + pdl) {
2290 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2291 length, pnl, pdl, type);
2292 return -EINVAL;
2293 }
2294 ++ffs->ms_os_descs_ext_prop_count;
2295 /* property name reported to the host as "WCHAR"s */
2296 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2297 ffs->ms_os_descs_ext_prop_data_len += pdl;
2298 }
2299 break;
2300 default:
2301 pr_vdebug("unknown descriptor: %d\n", type);
2302 return -EINVAL;
2303 }
2304 return length;
2305 }
2306
2307 static int __ffs_data_got_descs(struct ffs_data *ffs,
2308 char *const _data, size_t len)
2309 {
2310 char *data = _data, *raw_descs;
2311 unsigned os_descs_count = 0, counts[3], flags;
2312 int ret = -EINVAL, i;
2313 struct ffs_desc_helper helper;
2314
2315 ENTER();
2316
2317 if (get_unaligned_le32(data + 4) != len)
2318 goto error;
2319
2320 switch (get_unaligned_le32(data)) {
2321 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2322 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2323 data += 8;
2324 len -= 8;
2325 break;
2326 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2327 flags = get_unaligned_le32(data + 8);
2328 ffs->user_flags = flags;
2329 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2330 FUNCTIONFS_HAS_HS_DESC |
2331 FUNCTIONFS_HAS_SS_DESC |
2332 FUNCTIONFS_HAS_MS_OS_DESC |
2333 FUNCTIONFS_VIRTUAL_ADDR |
2334 FUNCTIONFS_EVENTFD |
2335 FUNCTIONFS_ALL_CTRL_RECIP |
2336 FUNCTIONFS_CONFIG0_SETUP)) {
2337 ret = -ENOSYS;
2338 goto error;
2339 }
2340 data += 12;
2341 len -= 12;
2342 break;
2343 default:
2344 goto error;
2345 }
2346
2347 if (flags & FUNCTIONFS_EVENTFD) {
2348 if (len < 4)
2349 goto error;
2350 ffs->ffs_eventfd =
2351 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2352 if (IS_ERR(ffs->ffs_eventfd)) {
2353 ret = PTR_ERR(ffs->ffs_eventfd);
2354 ffs->ffs_eventfd = NULL;
2355 goto error;
2356 }
2357 data += 4;
2358 len -= 4;
2359 }
2360
2361 /* Read fs_count, hs_count and ss_count (if present) */
2362 for (i = 0; i < 3; ++i) {
2363 if (!(flags & (1 << i))) {
2364 counts[i] = 0;
2365 } else if (len < 4) {
2366 goto error;
2367 } else {
2368 counts[i] = get_unaligned_le32(data);
2369 data += 4;
2370 len -= 4;
2371 }
2372 }
2373 if (flags & (1 << i)) {
2374 if (len < 4) {
2375 goto error;
2376 }
2377 os_descs_count = get_unaligned_le32(data);
2378 data += 4;
2379 len -= 4;
2380 };
2381
2382 /* Read descriptors */
2383 raw_descs = data;
2384 helper.ffs = ffs;
2385 for (i = 0; i < 3; ++i) {
2386 if (!counts[i])
2387 continue;
2388 helper.interfaces_count = 0;
2389 helper.eps_count = 0;
2390 ret = ffs_do_descs(counts[i], data, len,
2391 __ffs_data_do_entity, &helper);
2392 if (ret < 0)
2393 goto error;
2394 if (!ffs->eps_count && !ffs->interfaces_count) {
2395 ffs->eps_count = helper.eps_count;
2396 ffs->interfaces_count = helper.interfaces_count;
2397 } else {
2398 if (ffs->eps_count != helper.eps_count) {
2399 ret = -EINVAL;
2400 goto error;
2401 }
2402 if (ffs->interfaces_count != helper.interfaces_count) {
2403 ret = -EINVAL;
2404 goto error;
2405 }
2406 }
2407 data += ret;
2408 len -= ret;
2409 }
2410 if (os_descs_count) {
2411 ret = ffs_do_os_descs(os_descs_count, data, len,
2412 __ffs_data_do_os_desc, ffs);
2413 if (ret < 0)
2414 goto error;
2415 data += ret;
2416 len -= ret;
2417 }
2418
2419 if (raw_descs == data || len) {
2420 ret = -EINVAL;
2421 goto error;
2422 }
2423
2424 ffs->raw_descs_data = _data;
2425 ffs->raw_descs = raw_descs;
2426 ffs->raw_descs_length = data - raw_descs;
2427 ffs->fs_descs_count = counts[0];
2428 ffs->hs_descs_count = counts[1];
2429 ffs->ss_descs_count = counts[2];
2430 ffs->ms_os_descs_count = os_descs_count;
2431
2432 return 0;
2433
2434 error:
2435 kfree(_data);
2436 return ret;
2437 }
2438
2439 static int __ffs_data_got_strings(struct ffs_data *ffs,
2440 char *const _data, size_t len)
2441 {
2442 u32 str_count, needed_count, lang_count;
2443 struct usb_gadget_strings **stringtabs, *t;
2444 const char *data = _data;
2445 struct usb_string *s;
2446
2447 ENTER();
2448
2449 if (unlikely(len < 16 ||
2450 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2451 get_unaligned_le32(data + 4) != len))
2452 goto error;
2453 str_count = get_unaligned_le32(data + 8);
2454 lang_count = get_unaligned_le32(data + 12);
2455
2456 /* if one is zero the other must be zero */
2457 if (unlikely(!str_count != !lang_count))
2458 goto error;
2459
2460 /* Do we have at least as many strings as descriptors need? */
2461 needed_count = ffs->strings_count;
2462 if (unlikely(str_count < needed_count))
2463 goto error;
2464
2465 /*
2466 * If we don't need any strings just return and free all
2467 * memory.
2468 */
2469 if (!needed_count) {
2470 kfree(_data);
2471 return 0;
2472 }
2473
2474 /* Allocate everything in one chunk so there's less maintenance. */
2475 {
2476 unsigned i = 0;
2477 vla_group(d);
2478 vla_item(d, struct usb_gadget_strings *, stringtabs,
2479 lang_count + 1);
2480 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2481 vla_item(d, struct usb_string, strings,
2482 lang_count*(needed_count+1));
2483
2484 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2485
2486 if (unlikely(!vlabuf)) {
2487 kfree(_data);
2488 return -ENOMEM;
2489 }
2490
2491 /* Initialize the VLA pointers */
2492 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2493 t = vla_ptr(vlabuf, d, stringtab);
2494 i = lang_count;
2495 do {
2496 *stringtabs++ = t++;
2497 } while (--i);
2498 *stringtabs = NULL;
2499
2500 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2501 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2502 t = vla_ptr(vlabuf, d, stringtab);
2503 s = vla_ptr(vlabuf, d, strings);
2504 }
2505
2506 /* For each language */
2507 data += 16;
2508 len -= 16;
2509
2510 do { /* lang_count > 0 so we can use do-while */
2511 unsigned needed = needed_count;
2512
2513 if (unlikely(len < 3))
2514 goto error_free;
2515 t->language = get_unaligned_le16(data);
2516 t->strings = s;
2517 ++t;
2518
2519 data += 2;
2520 len -= 2;
2521
2522 /* For each string */
2523 do { /* str_count > 0 so we can use do-while */
2524 size_t length = strnlen(data, len);
2525
2526 if (unlikely(length == len))
2527 goto error_free;
2528
2529 /*
2530 * User may provide more strings then we need,
2531 * if that's the case we simply ignore the
2532 * rest
2533 */
2534 if (likely(needed)) {
2535 /*
2536 * s->id will be set while adding
2537 * function to configuration so for
2538 * now just leave garbage here.
2539 */
2540 s->s = data;
2541 --needed;
2542 ++s;
2543 }
2544
2545 data += length + 1;
2546 len -= length + 1;
2547 } while (--str_count);
2548
2549 s->id = 0; /* terminator */
2550 s->s = NULL;
2551 ++s;
2552
2553 } while (--lang_count);
2554
2555 /* Some garbage left? */
2556 if (unlikely(len))
2557 goto error_free;
2558
2559 /* Done! */
2560 ffs->stringtabs = stringtabs;
2561 ffs->raw_strings = _data;
2562
2563 return 0;
2564
2565 error_free:
2566 kfree(stringtabs);
2567 error:
2568 kfree(_data);
2569 return -EINVAL;
2570 }
2571
2572
2573 /* Events handling and management *******************************************/
2574
2575 static void __ffs_event_add(struct ffs_data *ffs,
2576 enum usb_functionfs_event_type type)
2577 {
2578 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2579 int neg = 0;
2580
2581 /*
2582 * Abort any unhandled setup
2583 *
2584 * We do not need to worry about some cmpxchg() changing value
2585 * of ffs->setup_state without holding the lock because when
2586 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2587 * the source does nothing.
2588 */
2589 if (ffs->setup_state == FFS_SETUP_PENDING)
2590 ffs->setup_state = FFS_SETUP_CANCELLED;
2591
2592 /*
2593 * Logic of this function guarantees that there are at most four pending
2594 * evens on ffs->ev.types queue. This is important because the queue
2595 * has space for four elements only and __ffs_ep0_read_events function
2596 * depends on that limit as well. If more event types are added, those
2597 * limits have to be revisited or guaranteed to still hold.
2598 */
2599 switch (type) {
2600 case FUNCTIONFS_RESUME:
2601 rem_type2 = FUNCTIONFS_SUSPEND;
2602 /* FALL THROUGH */
2603 case FUNCTIONFS_SUSPEND:
2604 case FUNCTIONFS_SETUP:
2605 rem_type1 = type;
2606 /* Discard all similar events */
2607 break;
2608
2609 case FUNCTIONFS_BIND:
2610 case FUNCTIONFS_UNBIND:
2611 case FUNCTIONFS_DISABLE:
2612 case FUNCTIONFS_ENABLE:
2613 /* Discard everything other then power management. */
2614 rem_type1 = FUNCTIONFS_SUSPEND;
2615 rem_type2 = FUNCTIONFS_RESUME;
2616 neg = 1;
2617 break;
2618
2619 default:
2620 WARN(1, "%d: unknown event, this should not happen\n", type);
2621 return;
2622 }
2623
2624 {
2625 u8 *ev = ffs->ev.types, *out = ev;
2626 unsigned n = ffs->ev.count;
2627 for (; n; --n, ++ev)
2628 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2629 *out++ = *ev;
2630 else
2631 pr_vdebug("purging event %d\n", *ev);
2632 ffs->ev.count = out - ffs->ev.types;
2633 }
2634
2635 pr_vdebug("adding event %d\n", type);
2636 ffs->ev.types[ffs->ev.count++] = type;
2637 wake_up_locked(&ffs->ev.waitq);
2638 if (ffs->ffs_eventfd)
2639 eventfd_signal(ffs->ffs_eventfd, 1);
2640 }
2641
2642 static void ffs_event_add(struct ffs_data *ffs,
2643 enum usb_functionfs_event_type type)
2644 {
2645 unsigned long flags;
2646 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2647 __ffs_event_add(ffs, type);
2648 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2649 }
2650
2651 /* Bind/unbind USB function hooks *******************************************/
2652
2653 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2654 {
2655 int i;
2656
2657 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2658 if (ffs->eps_addrmap[i] == endpoint_address)
2659 return i;
2660 return -ENOENT;
2661 }
2662
2663 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2664 struct usb_descriptor_header *desc,
2665 void *priv)
2666 {
2667 struct usb_endpoint_descriptor *ds = (void *)desc;
2668 struct ffs_function *func = priv;
2669 struct ffs_ep *ffs_ep;
2670 unsigned ep_desc_id;
2671 int idx;
2672 static const char *speed_names[] = { "full", "high", "super" };
2673
2674 if (type != FFS_DESCRIPTOR)
2675 return 0;
2676
2677 /*
2678 * If ss_descriptors is not NULL, we are reading super speed
2679 * descriptors; if hs_descriptors is not NULL, we are reading high
2680 * speed descriptors; otherwise, we are reading full speed
2681 * descriptors.
2682 */
2683 if (func->function.ss_descriptors) {
2684 ep_desc_id = 2;
2685 func->function.ss_descriptors[(long)valuep] = desc;
2686 } else if (func->function.hs_descriptors) {
2687 ep_desc_id = 1;
2688 func->function.hs_descriptors[(long)valuep] = desc;
2689 } else {
2690 ep_desc_id = 0;
2691 func->function.fs_descriptors[(long)valuep] = desc;
2692 }
2693
2694 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2695 return 0;
2696
2697 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2698 if (idx < 0)
2699 return idx;
2700
2701 ffs_ep = func->eps + idx;
2702
2703 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2704 pr_err("two %sspeed descriptors for EP %d\n",
2705 speed_names[ep_desc_id],
2706 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2707 return -EINVAL;
2708 }
2709 ffs_ep->descs[ep_desc_id] = ds;
2710
2711 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2712 if (ffs_ep->ep) {
2713 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2714 if (!ds->wMaxPacketSize)
2715 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2716 } else {
2717 struct usb_request *req;
2718 struct usb_ep *ep;
2719 u8 bEndpointAddress;
2720
2721 /*
2722 * We back up bEndpointAddress because autoconfig overwrites
2723 * it with physical endpoint address.
2724 */
2725 bEndpointAddress = ds->bEndpointAddress;
2726 pr_vdebug("autoconfig\n");
2727 ep = usb_ep_autoconfig(func->gadget, ds);
2728 if (unlikely(!ep))
2729 return -ENOTSUPP;
2730 ep->driver_data = func->eps + idx;
2731
2732 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2733 if (unlikely(!req))
2734 return -ENOMEM;
2735
2736 ffs_ep->ep = ep;
2737 ffs_ep->req = req;
2738 func->eps_revmap[ds->bEndpointAddress &
2739 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2740 /*
2741 * If we use virtual address mapping, we restore
2742 * original bEndpointAddress value.
2743 */
2744 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2745 ds->bEndpointAddress = bEndpointAddress;
2746 }
2747 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2748
2749 return 0;
2750 }
2751
2752 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2753 struct usb_descriptor_header *desc,
2754 void *priv)
2755 {
2756 struct ffs_function *func = priv;
2757 unsigned idx;
2758 u8 newValue;
2759
2760 switch (type) {
2761 default:
2762 case FFS_DESCRIPTOR:
2763 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2764 return 0;
2765
2766 case FFS_INTERFACE:
2767 idx = *valuep;
2768 if (func->interfaces_nums[idx] < 0) {
2769 int id = usb_interface_id(func->conf, &func->function);
2770 if (unlikely(id < 0))
2771 return id;
2772 func->interfaces_nums[idx] = id;
2773 }
2774 newValue = func->interfaces_nums[idx];
2775 break;
2776
2777 case FFS_STRING:
2778 /* String' IDs are allocated when fsf_data is bound to cdev */
2779 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2780 break;
2781
2782 case FFS_ENDPOINT:
2783 /*
2784 * USB_DT_ENDPOINT are handled in
2785 * __ffs_func_bind_do_descs().
2786 */
2787 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2788 return 0;
2789
2790 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2791 if (unlikely(!func->eps[idx].ep))
2792 return -EINVAL;
2793
2794 {
2795 struct usb_endpoint_descriptor **descs;
2796 descs = func->eps[idx].descs;
2797 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2798 }
2799 break;
2800 }
2801
2802 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2803 *valuep = newValue;
2804 return 0;
2805 }
2806
2807 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2808 struct usb_os_desc_header *h, void *data,
2809 unsigned len, void *priv)
2810 {
2811 struct ffs_function *func = priv;
2812 u8 length = 0;
2813
2814 switch (type) {
2815 case FFS_OS_DESC_EXT_COMPAT: {
2816 struct usb_ext_compat_desc *desc = data;
2817 struct usb_os_desc_table *t;
2818
2819 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2820 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2821 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2822 ARRAY_SIZE(desc->CompatibleID) +
2823 ARRAY_SIZE(desc->SubCompatibleID));
2824 length = sizeof(*desc);
2825 }
2826 break;
2827 case FFS_OS_DESC_EXT_PROP: {
2828 struct usb_ext_prop_desc *desc = data;
2829 struct usb_os_desc_table *t;
2830 struct usb_os_desc_ext_prop *ext_prop;
2831 char *ext_prop_name;
2832 char *ext_prop_data;
2833
2834 t = &func->function.os_desc_table[h->interface];
2835 t->if_id = func->interfaces_nums[h->interface];
2836
2837 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2838 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2839
2840 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2841 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2842 ext_prop->data_len = le32_to_cpu(*(u32 *)
2843 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2844 length = ext_prop->name_len + ext_prop->data_len + 14;
2845
2846 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2847 func->ffs->ms_os_descs_ext_prop_name_avail +=
2848 ext_prop->name_len;
2849
2850 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2851 func->ffs->ms_os_descs_ext_prop_data_avail +=
2852 ext_prop->data_len;
2853 memcpy(ext_prop_data,
2854 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2855 ext_prop->data_len);
2856 /* unicode data reported to the host as "WCHAR"s */
2857 switch (ext_prop->type) {
2858 case USB_EXT_PROP_UNICODE:
2859 case USB_EXT_PROP_UNICODE_ENV:
2860 case USB_EXT_PROP_UNICODE_LINK:
2861 case USB_EXT_PROP_UNICODE_MULTI:
2862 ext_prop->data_len *= 2;
2863 break;
2864 }
2865 ext_prop->data = ext_prop_data;
2866
2867 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2868 ext_prop->name_len);
2869 /* property name reported to the host as "WCHAR"s */
2870 ext_prop->name_len *= 2;
2871 ext_prop->name = ext_prop_name;
2872
2873 t->os_desc->ext_prop_len +=
2874 ext_prop->name_len + ext_prop->data_len + 14;
2875 ++t->os_desc->ext_prop_count;
2876 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2877 }
2878 break;
2879 default:
2880 pr_vdebug("unknown descriptor: %d\n", type);
2881 }
2882
2883 return length;
2884 }
2885
2886 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2887 struct usb_configuration *c)
2888 {
2889 struct ffs_function *func = ffs_func_from_usb(f);
2890 struct f_fs_opts *ffs_opts =
2891 container_of(f->fi, struct f_fs_opts, func_inst);
2892 int ret;
2893
2894 ENTER();
2895
2896 /*
2897 * Legacy gadget triggers binding in functionfs_ready_callback,
2898 * which already uses locking; taking the same lock here would
2899 * cause a deadlock.
2900 *
2901 * Configfs-enabled gadgets however do need ffs_dev_lock.
2902 */
2903 if (!ffs_opts->no_configfs)
2904 ffs_dev_lock();
2905 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2906 func->ffs = ffs_opts->dev->ffs_data;
2907 if (!ffs_opts->no_configfs)
2908 ffs_dev_unlock();
2909 if (ret)
2910 return ERR_PTR(ret);
2911
2912 func->conf = c;
2913 func->gadget = c->cdev->gadget;
2914
2915 /*
2916 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2917 * configurations are bound in sequence with list_for_each_entry,
2918 * in each configuration its functions are bound in sequence
2919 * with list_for_each_entry, so we assume no race condition
2920 * with regard to ffs_opts->bound access
2921 */
2922 if (!ffs_opts->refcnt) {
2923 ret = functionfs_bind(func->ffs, c->cdev);
2924 if (ret)
2925 return ERR_PTR(ret);
2926 }
2927 ffs_opts->refcnt++;
2928 func->function.strings = func->ffs->stringtabs;
2929
2930 return ffs_opts;
2931 }
2932
2933 static int _ffs_func_bind(struct usb_configuration *c,
2934 struct usb_function *f)
2935 {
2936 struct ffs_function *func = ffs_func_from_usb(f);
2937 struct ffs_data *ffs = func->ffs;
2938
2939 const int full = !!func->ffs->fs_descs_count;
2940 const int high = gadget_is_dualspeed(func->gadget) &&
2941 func->ffs->hs_descs_count;
2942 const int super = gadget_is_superspeed(func->gadget) &&
2943 func->ffs->ss_descs_count;
2944
2945 int fs_len, hs_len, ss_len, ret, i;
2946 struct ffs_ep *eps_ptr;
2947
2948 /* Make it a single chunk, less management later on */
2949 vla_group(d);
2950 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2951 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2952 full ? ffs->fs_descs_count + 1 : 0);
2953 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2954 high ? ffs->hs_descs_count + 1 : 0);
2955 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2956 super ? ffs->ss_descs_count + 1 : 0);
2957 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2958 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2959 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2960 vla_item_with_sz(d, char[16], ext_compat,
2961 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2962 vla_item_with_sz(d, struct usb_os_desc, os_desc,
2963 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2964 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2965 ffs->ms_os_descs_ext_prop_count);
2966 vla_item_with_sz(d, char, ext_prop_name,
2967 ffs->ms_os_descs_ext_prop_name_len);
2968 vla_item_with_sz(d, char, ext_prop_data,
2969 ffs->ms_os_descs_ext_prop_data_len);
2970 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2971 char *vlabuf;
2972
2973 ENTER();
2974
2975 /* Has descriptors only for speeds gadget does not support */
2976 if (unlikely(!(full | high | super)))
2977 return -ENOTSUPP;
2978
2979 /* Allocate a single chunk, less management later on */
2980 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2981 if (unlikely(!vlabuf))
2982 return -ENOMEM;
2983
2984 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2985 ffs->ms_os_descs_ext_prop_name_avail =
2986 vla_ptr(vlabuf, d, ext_prop_name);
2987 ffs->ms_os_descs_ext_prop_data_avail =
2988 vla_ptr(vlabuf, d, ext_prop_data);
2989
2990 /* Copy descriptors */
2991 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2992 ffs->raw_descs_length);
2993
2994 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2995 eps_ptr = vla_ptr(vlabuf, d, eps);
2996 for (i = 0; i < ffs->eps_count; i++)
2997 eps_ptr[i].num = -1;
2998
2999 /* Save pointers
3000 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3001 */
3002 func->eps = vla_ptr(vlabuf, d, eps);
3003 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3004
3005 /*
3006 * Go through all the endpoint descriptors and allocate
3007 * endpoints first, so that later we can rewrite the endpoint
3008 * numbers without worrying that it may be described later on.
3009 */
3010 if (likely(full)) {
3011 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3012 fs_len = ffs_do_descs(ffs->fs_descs_count,
3013 vla_ptr(vlabuf, d, raw_descs),
3014 d_raw_descs__sz,
3015 __ffs_func_bind_do_descs, func);
3016 if (unlikely(fs_len < 0)) {
3017 ret = fs_len;
3018 goto error;
3019 }
3020 } else {
3021 fs_len = 0;
3022 }
3023
3024 if (likely(high)) {
3025 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3026 hs_len = ffs_do_descs(ffs->hs_descs_count,
3027 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3028 d_raw_descs__sz - fs_len,
3029 __ffs_func_bind_do_descs, func);
3030 if (unlikely(hs_len < 0)) {
3031 ret = hs_len;
3032 goto error;
3033 }
3034 } else {
3035 hs_len = 0;
3036 }
3037
3038 if (likely(super)) {
3039 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3040 ss_len = ffs_do_descs(ffs->ss_descs_count,
3041 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3042 d_raw_descs__sz - fs_len - hs_len,
3043 __ffs_func_bind_do_descs, func);
3044 if (unlikely(ss_len < 0)) {
3045 ret = ss_len;
3046 goto error;
3047 }
3048 } else {
3049 ss_len = 0;
3050 }
3051
3052 /*
3053 * Now handle interface numbers allocation and interface and
3054 * endpoint numbers rewriting. We can do that in one go
3055 * now.
3056 */
3057 ret = ffs_do_descs(ffs->fs_descs_count +
3058 (high ? ffs->hs_descs_count : 0) +
3059 (super ? ffs->ss_descs_count : 0),
3060 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3061 __ffs_func_bind_do_nums, func);
3062 if (unlikely(ret < 0))
3063 goto error;
3064
3065 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3066 if (c->cdev->use_os_string) {
3067 for (i = 0; i < ffs->interfaces_count; ++i) {
3068 struct usb_os_desc *desc;
3069
3070 desc = func->function.os_desc_table[i].os_desc =
3071 vla_ptr(vlabuf, d, os_desc) +
3072 i * sizeof(struct usb_os_desc);
3073 desc->ext_compat_id =
3074 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3075 INIT_LIST_HEAD(&desc->ext_prop);
3076 }
3077 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3078 vla_ptr(vlabuf, d, raw_descs) +
3079 fs_len + hs_len + ss_len,
3080 d_raw_descs__sz - fs_len - hs_len -
3081 ss_len,
3082 __ffs_func_bind_do_os_desc, func);
3083 if (unlikely(ret < 0))
3084 goto error;
3085 }
3086 func->function.os_desc_n =
3087 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3088
3089 /* And we're done */
3090 ffs_event_add(ffs, FUNCTIONFS_BIND);
3091 return 0;
3092
3093 error:
3094 /* XXX Do we need to release all claimed endpoints here? */
3095 return ret;
3096 }
3097
3098 static int ffs_func_bind(struct usb_configuration *c,
3099 struct usb_function *f)
3100 {
3101 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3102 struct ffs_function *func = ffs_func_from_usb(f);
3103 int ret;
3104
3105 if (IS_ERR(ffs_opts))
3106 return PTR_ERR(ffs_opts);
3107
3108 ret = _ffs_func_bind(c, f);
3109 if (ret && !--ffs_opts->refcnt)
3110 functionfs_unbind(func->ffs);
3111
3112 return ret;
3113 }
3114
3115
3116 /* Other USB function hooks *************************************************/
3117
3118 static void ffs_reset_work(struct work_struct *work)
3119 {
3120 struct ffs_data *ffs = container_of(work,
3121 struct ffs_data, reset_work);
3122 ffs_data_reset(ffs);
3123 }
3124
3125 static int ffs_func_set_alt(struct usb_function *f,
3126 unsigned interface, unsigned alt)
3127 {
3128 struct ffs_function *func = ffs_func_from_usb(f);
3129 struct ffs_data *ffs = func->ffs;
3130 int ret = 0, intf;
3131
3132 if (alt != (unsigned)-1) {
3133 intf = ffs_func_revmap_intf(func, interface);
3134 if (unlikely(intf < 0))
3135 return intf;
3136 }
3137
3138 if (ffs->func)
3139 ffs_func_eps_disable(ffs->func);
3140
3141 if (ffs->state == FFS_DEACTIVATED) {
3142 ffs->state = FFS_CLOSING;
3143 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3144 schedule_work(&ffs->reset_work);
3145 return -ENODEV;
3146 }
3147
3148 if (ffs->state != FFS_ACTIVE)
3149 return -ENODEV;
3150
3151 if (alt == (unsigned)-1) {
3152 ffs->func = NULL;
3153 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3154 return 0;
3155 }
3156
3157 ffs->func = func;
3158 ret = ffs_func_eps_enable(func);
3159 if (likely(ret >= 0))
3160 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3161 return ret;
3162 }
3163
3164 static void ffs_func_disable(struct usb_function *f)
3165 {
3166 ffs_func_set_alt(f, 0, (unsigned)-1);
3167 }
3168
3169 static int ffs_func_setup(struct usb_function *f,
3170 const struct usb_ctrlrequest *creq)
3171 {
3172 struct ffs_function *func = ffs_func_from_usb(f);
3173 struct ffs_data *ffs = func->ffs;
3174 unsigned long flags;
3175 int ret;
3176
3177 ENTER();
3178
3179 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3180 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3181 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3182 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3183 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3184
3185 /*
3186 * Most requests directed to interface go through here
3187 * (notable exceptions are set/get interface) so we need to
3188 * handle them. All other either handled by composite or
3189 * passed to usb_configuration->setup() (if one is set). No
3190 * matter, we will handle requests directed to endpoint here
3191 * as well (as it's straightforward). Other request recipient
3192 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3193 * is being used.
3194 */
3195 if (ffs->state != FFS_ACTIVE)
3196 return -ENODEV;
3197
3198 switch (creq->bRequestType & USB_RECIP_MASK) {
3199 case USB_RECIP_INTERFACE:
3200 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3201 if (unlikely(ret < 0))
3202 return ret;
3203 break;
3204
3205 case USB_RECIP_ENDPOINT:
3206 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3207 if (unlikely(ret < 0))
3208 return ret;
3209 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3210 ret = func->ffs->eps_addrmap[ret];
3211 break;
3212
3213 default:
3214 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3215 ret = le16_to_cpu(creq->wIndex);
3216 else
3217 return -EOPNOTSUPP;
3218 }
3219
3220 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3221 ffs->ev.setup = *creq;
3222 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3223 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3224 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3225
3226 return 0;
3227 }
3228
3229 static bool ffs_func_req_match(struct usb_function *f,
3230 const struct usb_ctrlrequest *creq,
3231 bool config0)
3232 {
3233 struct ffs_function *func = ffs_func_from_usb(f);
3234
3235 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3236 return false;
3237
3238 switch (creq->bRequestType & USB_RECIP_MASK) {
3239 case USB_RECIP_INTERFACE:
3240 return (ffs_func_revmap_intf(func,
3241 le16_to_cpu(creq->wIndex)) >= 0);
3242 case USB_RECIP_ENDPOINT:
3243 return (ffs_func_revmap_ep(func,
3244 le16_to_cpu(creq->wIndex)) >= 0);
3245 default:
3246 return (bool) (func->ffs->user_flags &
3247 FUNCTIONFS_ALL_CTRL_RECIP);
3248 }
3249 }
3250
3251 static void ffs_func_suspend(struct usb_function *f)
3252 {
3253 ENTER();
3254 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3255 }
3256
3257 static void ffs_func_resume(struct usb_function *f)
3258 {
3259 ENTER();
3260 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3261 }
3262
3263
3264 /* Endpoint and interface numbers reverse mapping ***************************/
3265
3266 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3267 {
3268 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3269 return num ? num : -EDOM;
3270 }
3271
3272 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3273 {
3274 short *nums = func->interfaces_nums;
3275 unsigned count = func->ffs->interfaces_count;
3276
3277 for (; count; --count, ++nums) {
3278 if (*nums >= 0 && *nums == intf)
3279 return nums - func->interfaces_nums;
3280 }
3281
3282 return -EDOM;
3283 }
3284
3285
3286 /* Devices management *******************************************************/
3287
3288 static LIST_HEAD(ffs_devices);
3289
3290 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3291 {
3292 struct ffs_dev *dev;
3293
3294 list_for_each_entry(dev, &ffs_devices, entry) {
3295 if (!dev->name || !name)
3296 continue;
3297 if (strcmp(dev->name, name) == 0)
3298 return dev;
3299 }
3300
3301 return NULL;
3302 }
3303
3304 /*
3305 * ffs_lock must be taken by the caller of this function
3306 */
3307 static struct ffs_dev *_ffs_get_single_dev(void)
3308 {
3309 struct ffs_dev *dev;
3310
3311 if (list_is_singular(&ffs_devices)) {
3312 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3313 if (dev->single)
3314 return dev;
3315 }
3316
3317 return NULL;
3318 }
3319
3320 /*
3321 * ffs_lock must be taken by the caller of this function
3322 */
3323 static struct ffs_dev *_ffs_find_dev(const char *name)
3324 {
3325 struct ffs_dev *dev;
3326
3327 dev = _ffs_get_single_dev();
3328 if (dev)
3329 return dev;
3330
3331 return _ffs_do_find_dev(name);
3332 }
3333
3334 /* Configfs support *********************************************************/
3335
3336 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3337 {
3338 return container_of(to_config_group(item), struct f_fs_opts,
3339 func_inst.group);
3340 }
3341
3342 static void ffs_attr_release(struct config_item *item)
3343 {
3344 struct f_fs_opts *opts = to_ffs_opts(item);
3345
3346 usb_put_function_instance(&opts->func_inst);
3347 }
3348
3349 static struct configfs_item_operations ffs_item_ops = {
3350 .release = ffs_attr_release,
3351 };
3352
3353 static struct config_item_type ffs_func_type = {
3354 .ct_item_ops = &ffs_item_ops,
3355 .ct_owner = THIS_MODULE,
3356 };
3357
3358
3359 /* Function registration interface ******************************************/
3360
3361 static void ffs_free_inst(struct usb_function_instance *f)
3362 {
3363 struct f_fs_opts *opts;
3364
3365 opts = to_f_fs_opts(f);
3366 ffs_dev_lock();
3367 _ffs_free_dev(opts->dev);
3368 ffs_dev_unlock();
3369 kfree(opts);
3370 }
3371
3372 #define MAX_INST_NAME_LEN 40
3373
3374 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3375 {
3376 struct f_fs_opts *opts;
3377 char *ptr;
3378 const char *tmp;
3379 int name_len, ret;
3380
3381 name_len = strlen(name) + 1;
3382 if (name_len > MAX_INST_NAME_LEN)
3383 return -ENAMETOOLONG;
3384
3385 ptr = kstrndup(name, name_len, GFP_KERNEL);
3386 if (!ptr)
3387 return -ENOMEM;
3388
3389 opts = to_f_fs_opts(fi);
3390 tmp = NULL;
3391
3392 ffs_dev_lock();
3393
3394 tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3395 ret = _ffs_name_dev(opts->dev, ptr);
3396 if (ret) {
3397 kfree(ptr);
3398 ffs_dev_unlock();
3399 return ret;
3400 }
3401 opts->dev->name_allocated = true;
3402
3403 ffs_dev_unlock();
3404
3405 kfree(tmp);
3406
3407 return 0;
3408 }
3409
3410 static struct usb_function_instance *ffs_alloc_inst(void)
3411 {
3412 struct f_fs_opts *opts;
3413 struct ffs_dev *dev;
3414
3415 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3416 if (!opts)
3417 return ERR_PTR(-ENOMEM);
3418
3419 opts->func_inst.set_inst_name = ffs_set_inst_name;
3420 opts->func_inst.free_func_inst = ffs_free_inst;
3421 ffs_dev_lock();
3422 dev = _ffs_alloc_dev();
3423 ffs_dev_unlock();
3424 if (IS_ERR(dev)) {
3425 kfree(opts);
3426 return ERR_CAST(dev);
3427 }
3428 opts->dev = dev;
3429 dev->opts = opts;
3430
3431 config_group_init_type_name(&opts->func_inst.group, "",
3432 &ffs_func_type);
3433 return &opts->func_inst;
3434 }
3435
3436 static void ffs_free(struct usb_function *f)
3437 {
3438 kfree(ffs_func_from_usb(f));
3439 }
3440
3441 static void ffs_func_unbind(struct usb_configuration *c,
3442 struct usb_function *f)
3443 {
3444 struct ffs_function *func = ffs_func_from_usb(f);
3445 struct ffs_data *ffs = func->ffs;
3446 struct f_fs_opts *opts =
3447 container_of(f->fi, struct f_fs_opts, func_inst);
3448 struct ffs_ep *ep = func->eps;
3449 unsigned count = ffs->eps_count;
3450 unsigned long flags;
3451
3452 ENTER();
3453 if (ffs->func == func) {
3454 ffs_func_eps_disable(func);
3455 ffs->func = NULL;
3456 }
3457
3458 if (!--opts->refcnt)
3459 functionfs_unbind(ffs);
3460
3461 /* cleanup after autoconfig */
3462 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3463 while (count--) {
3464 if (ep->ep && ep->req)
3465 usb_ep_free_request(ep->ep, ep->req);
3466 ep->req = NULL;
3467 ++ep;
3468 }
3469 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3470 kfree(func->eps);
3471 func->eps = NULL;
3472 /*
3473 * eps, descriptors and interfaces_nums are allocated in the
3474 * same chunk so only one free is required.
3475 */
3476 func->function.fs_descriptors = NULL;
3477 func->function.hs_descriptors = NULL;
3478 func->function.ss_descriptors = NULL;
3479 func->interfaces_nums = NULL;
3480
3481 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3482 }
3483
3484 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3485 {
3486 struct ffs_function *func;
3487
3488 ENTER();
3489
3490 func = kzalloc(sizeof(*func), GFP_KERNEL);
3491 if (unlikely(!func))
3492 return ERR_PTR(-ENOMEM);
3493
3494 func->function.name = "Function FS Gadget";
3495
3496 func->function.bind = ffs_func_bind;
3497 func->function.unbind = ffs_func_unbind;
3498 func->function.set_alt = ffs_func_set_alt;
3499 func->function.disable = ffs_func_disable;
3500 func->function.setup = ffs_func_setup;
3501 func->function.req_match = ffs_func_req_match;
3502 func->function.suspend = ffs_func_suspend;
3503 func->function.resume = ffs_func_resume;
3504 func->function.free_func = ffs_free;
3505
3506 return &func->function;
3507 }
3508
3509 /*
3510 * ffs_lock must be taken by the caller of this function
3511 */
3512 static struct ffs_dev *_ffs_alloc_dev(void)
3513 {
3514 struct ffs_dev *dev;
3515 int ret;
3516
3517 if (_ffs_get_single_dev())
3518 return ERR_PTR(-EBUSY);
3519
3520 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3521 if (!dev)
3522 return ERR_PTR(-ENOMEM);
3523
3524 if (list_empty(&ffs_devices)) {
3525 ret = functionfs_init();
3526 if (ret) {
3527 kfree(dev);
3528 return ERR_PTR(ret);
3529 }
3530 }
3531
3532 list_add(&dev->entry, &ffs_devices);
3533
3534 return dev;
3535 }
3536
3537 /*
3538 * ffs_lock must be taken by the caller of this function
3539 * The caller is responsible for "name" being available whenever f_fs needs it
3540 */
3541 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3542 {
3543 struct ffs_dev *existing;
3544
3545 existing = _ffs_do_find_dev(name);
3546 if (existing)
3547 return -EBUSY;
3548
3549 dev->name = name;
3550
3551 return 0;
3552 }
3553
3554 /*
3555 * The caller is responsible for "name" being available whenever f_fs needs it
3556 */
3557 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3558 {
3559 int ret;
3560
3561 ffs_dev_lock();
3562 ret = _ffs_name_dev(dev, name);
3563 ffs_dev_unlock();
3564
3565 return ret;
3566 }
3567 EXPORT_SYMBOL_GPL(ffs_name_dev);
3568
3569 int ffs_single_dev(struct ffs_dev *dev)
3570 {
3571 int ret;
3572
3573 ret = 0;
3574 ffs_dev_lock();
3575
3576 if (!list_is_singular(&ffs_devices))
3577 ret = -EBUSY;
3578 else
3579 dev->single = true;
3580
3581 ffs_dev_unlock();
3582 return ret;
3583 }
3584 EXPORT_SYMBOL_GPL(ffs_single_dev);
3585
3586 /*
3587 * ffs_lock must be taken by the caller of this function
3588 */
3589 static void _ffs_free_dev(struct ffs_dev *dev)
3590 {
3591 list_del(&dev->entry);
3592 if (dev->name_allocated)
3593 kfree(dev->name);
3594
3595 /* Clear the private_data pointer to stop incorrect dev access */
3596 if (dev->ffs_data)
3597 dev->ffs_data->private_data = NULL;
3598
3599 kfree(dev);
3600 if (list_empty(&ffs_devices))
3601 functionfs_cleanup();
3602 }
3603
3604 static void *ffs_acquire_dev(const char *dev_name)
3605 {
3606 struct ffs_dev *ffs_dev;
3607
3608 ENTER();
3609 ffs_dev_lock();
3610
3611 ffs_dev = _ffs_find_dev(dev_name);
3612 if (!ffs_dev)
3613 ffs_dev = ERR_PTR(-ENOENT);
3614 else if (ffs_dev->mounted)
3615 ffs_dev = ERR_PTR(-EBUSY);
3616 else if (ffs_dev->ffs_acquire_dev_callback &&
3617 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3618 ffs_dev = ERR_PTR(-ENOENT);
3619 else
3620 ffs_dev->mounted = true;
3621
3622 ffs_dev_unlock();
3623 return ffs_dev;
3624 }
3625
3626 static void ffs_release_dev(struct ffs_data *ffs_data)
3627 {
3628 struct ffs_dev *ffs_dev;
3629
3630 ENTER();
3631 ffs_dev_lock();
3632
3633 ffs_dev = ffs_data->private_data;
3634 if (ffs_dev) {
3635 ffs_dev->mounted = false;
3636
3637 if (ffs_dev->ffs_release_dev_callback)
3638 ffs_dev->ffs_release_dev_callback(ffs_dev);
3639 }
3640
3641 ffs_dev_unlock();
3642 }
3643
3644 static int ffs_ready(struct ffs_data *ffs)
3645 {
3646 struct ffs_dev *ffs_obj;
3647 int ret = 0;
3648
3649 ENTER();
3650 ffs_dev_lock();
3651
3652 ffs_obj = ffs->private_data;
3653 if (!ffs_obj) {
3654 ret = -EINVAL;
3655 goto done;
3656 }
3657 if (WARN_ON(ffs_obj->desc_ready)) {
3658 ret = -EBUSY;
3659 goto done;
3660 }
3661
3662 ffs_obj->desc_ready = true;
3663 ffs_obj->ffs_data = ffs;
3664
3665 if (ffs_obj->ffs_ready_callback) {
3666 ret = ffs_obj->ffs_ready_callback(ffs);
3667 if (ret)
3668 goto done;
3669 }
3670
3671 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3672 done:
3673 ffs_dev_unlock();
3674 return ret;
3675 }
3676
3677 static void ffs_closed(struct ffs_data *ffs)
3678 {
3679 struct ffs_dev *ffs_obj;
3680 struct f_fs_opts *opts;
3681 struct config_item *ci;
3682
3683 ENTER();
3684 ffs_dev_lock();
3685
3686 ffs_obj = ffs->private_data;
3687 if (!ffs_obj)
3688 goto done;
3689
3690 ffs_obj->desc_ready = false;
3691
3692 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3693 ffs_obj->ffs_closed_callback)
3694 ffs_obj->ffs_closed_callback(ffs);
3695
3696 if (ffs_obj->opts)
3697 opts = ffs_obj->opts;
3698 else
3699 goto done;
3700
3701 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3702 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3703 goto done;
3704
3705 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3706 ffs_dev_unlock();
3707
3708 unregister_gadget_item(ci);
3709 return;
3710 done:
3711 ffs_dev_unlock();
3712 }
3713
3714 /* Misc helper functions ****************************************************/
3715
3716 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3717 {
3718 return nonblock
3719 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3720 : mutex_lock_interruptible(mutex);
3721 }
3722
3723 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3724 {
3725 char *data;
3726
3727 if (unlikely(!len))
3728 return NULL;
3729
3730 data = kmalloc(len, GFP_KERNEL);
3731 if (unlikely(!data))
3732 return ERR_PTR(-ENOMEM);
3733
3734 if (unlikely(copy_from_user(data, buf, len))) {
3735 kfree(data);
3736 return ERR_PTR(-EFAULT);
3737 }
3738
3739 pr_vdebug("Buffer from user space:\n");
3740 ffs_dump_mem("", data, len);
3741
3742 return data;
3743 }
3744
3745 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3746 MODULE_LICENSE("GPL");
3747 MODULE_AUTHOR("Michal Nazarewicz");