]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/gadget/function/f_fs.c
Merge tag 'usb-for-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[mirror_ubuntu-artful-kernel.git] / drivers / usb / gadget / function / f_fs.c
1 /*
2 * f_fs.c -- user mode file system API for USB composite function controllers
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
6 *
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42
43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
50
51 /* Opened counter handling. */
52 static void ffs_data_opened(struct ffs_data *ffs);
53 static void ffs_data_closed(struct ffs_data *ffs);
54
55 /* Called with ffs->mutex held; take over ownership of data. */
56 static int __must_check
57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
58 static int __must_check
59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
60
61
62 /* The function structure ***************************************************/
63
64 struct ffs_ep;
65
66 struct ffs_function {
67 struct usb_configuration *conf;
68 struct usb_gadget *gadget;
69 struct ffs_data *ffs;
70
71 struct ffs_ep *eps;
72 u8 eps_revmap[16];
73 short *interfaces_nums;
74
75 struct usb_function function;
76 };
77
78
79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
80 {
81 return container_of(f, struct ffs_function, function);
82 }
83
84
85 static inline enum ffs_setup_state
86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
87 {
88 return (enum ffs_setup_state)
89 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
90 }
91
92
93 static void ffs_func_eps_disable(struct ffs_function *func);
94 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
95
96 static int ffs_func_bind(struct usb_configuration *,
97 struct usb_function *);
98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
99 static void ffs_func_disable(struct usb_function *);
100 static int ffs_func_setup(struct usb_function *,
101 const struct usb_ctrlrequest *);
102 static bool ffs_func_req_match(struct usb_function *,
103 const struct usb_ctrlrequest *,
104 bool config0);
105 static void ffs_func_suspend(struct usb_function *);
106 static void ffs_func_resume(struct usb_function *);
107
108
109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
111
112
113 /* The endpoints structures *************************************************/
114
115 struct ffs_ep {
116 struct usb_ep *ep; /* P: ffs->eps_lock */
117 struct usb_request *req; /* P: epfile->mutex */
118
119 /* [0]: full speed, [1]: high speed, [2]: super speed */
120 struct usb_endpoint_descriptor *descs[3];
121
122 u8 num;
123
124 int status; /* P: epfile->mutex */
125 };
126
127 struct ffs_epfile {
128 /* Protects ep->ep and ep->req. */
129 struct mutex mutex;
130
131 struct ffs_data *ffs;
132 struct ffs_ep *ep; /* P: ffs->eps_lock */
133
134 struct dentry *dentry;
135
136 /*
137 * Buffer for holding data from partial reads which may happen since
138 * we’re rounding user read requests to a multiple of a max packet size.
139 *
140 * The pointer is initialised with NULL value and may be set by
141 * __ffs_epfile_read_data function to point to a temporary buffer.
142 *
143 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 * data from said buffer and eventually free it. Importantly, while the
145 * function is using the buffer, it sets the pointer to NULL. This is
146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 * can never run concurrently (they are synchronised by epfile->mutex)
148 * so the latter will not assign a new value to the pointer.
149 *
150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
152 * value is crux of the synchronisation between ffs_func_eps_disable and
153 * __ffs_epfile_read_data.
154 *
155 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 * pointer back to its old value (as described above), but seeing as the
157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 * the buffer.
159 *
160 * == State transitions ==
161 *
162 * • ptr == NULL: (initial state)
163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 * ◦ __ffs_epfile_read_buffered: nop
165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 * ◦ reading finishes: n/a, not in ‘and reading’ state
167 * • ptr == DROP:
168 * ◦ __ffs_epfile_read_buffer_free: nop
169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 * ◦ reading finishes: n/a, not in ‘and reading’ state
172 * • ptr == buf:
173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
176 * is always called first
177 * ◦ reading finishes: n/a, not in ‘and reading’ state
178 * • ptr == NULL and reading:
179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
181 * ◦ __ffs_epfile_read_data: n/a, mutex is held
182 * ◦ reading finishes and …
183 * … all data read: free buf, go to ptr == NULL
184 * … otherwise: go to ptr == buf and reading
185 * • ptr == DROP and reading:
186 * ◦ __ffs_epfile_read_buffer_free: nop
187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
188 * ◦ __ffs_epfile_read_data: n/a, mutex is held
189 * ◦ reading finishes: free buf, go to ptr == DROP
190 */
191 struct ffs_buffer *read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193
194 char name[5];
195
196 unsigned char in; /* P: ffs->eps_lock */
197 unsigned char isoc; /* P: ffs->eps_lock */
198
199 unsigned char _pad;
200 };
201
202 struct ffs_buffer {
203 size_t length;
204 char *data;
205 char storage[];
206 };
207
208 /* ffs_io_data structure ***************************************************/
209
210 struct ffs_io_data {
211 bool aio;
212 bool read;
213
214 struct kiocb *kiocb;
215 struct iov_iter data;
216 const void *to_free;
217 char *buf;
218
219 struct mm_struct *mm;
220 struct work_struct work;
221
222 struct usb_ep *ep;
223 struct usb_request *req;
224
225 struct ffs_data *ffs;
226 };
227
228 struct ffs_desc_helper {
229 struct ffs_data *ffs;
230 unsigned interfaces_count;
231 unsigned eps_count;
232 };
233
234 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
235 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
236
237 static struct dentry *
238 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
239 const struct file_operations *fops);
240
241 /* Devices management *******************************************************/
242
243 DEFINE_MUTEX(ffs_lock);
244 EXPORT_SYMBOL_GPL(ffs_lock);
245
246 static struct ffs_dev *_ffs_find_dev(const char *name);
247 static struct ffs_dev *_ffs_alloc_dev(void);
248 static void _ffs_free_dev(struct ffs_dev *dev);
249 static void *ffs_acquire_dev(const char *dev_name);
250 static void ffs_release_dev(struct ffs_data *ffs_data);
251 static int ffs_ready(struct ffs_data *ffs);
252 static void ffs_closed(struct ffs_data *ffs);
253
254 /* Misc helper functions ****************************************************/
255
256 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
257 __attribute__((warn_unused_result, nonnull));
258 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
259 __attribute__((warn_unused_result, nonnull));
260
261
262 /* Control file aka ep0 *****************************************************/
263
264 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
265 {
266 struct ffs_data *ffs = req->context;
267
268 complete(&ffs->ep0req_completion);
269 }
270
271 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
272 {
273 struct usb_request *req = ffs->ep0req;
274 int ret;
275
276 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
277
278 spin_unlock_irq(&ffs->ev.waitq.lock);
279
280 req->buf = data;
281 req->length = len;
282
283 /*
284 * UDC layer requires to provide a buffer even for ZLP, but should
285 * not use it at all. Let's provide some poisoned pointer to catch
286 * possible bug in the driver.
287 */
288 if (req->buf == NULL)
289 req->buf = (void *)0xDEADBABE;
290
291 reinit_completion(&ffs->ep0req_completion);
292
293 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
294 if (unlikely(ret < 0))
295 return ret;
296
297 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
298 if (unlikely(ret)) {
299 usb_ep_dequeue(ffs->gadget->ep0, req);
300 return -EINTR;
301 }
302
303 ffs->setup_state = FFS_NO_SETUP;
304 return req->status ? req->status : req->actual;
305 }
306
307 static int __ffs_ep0_stall(struct ffs_data *ffs)
308 {
309 if (ffs->ev.can_stall) {
310 pr_vdebug("ep0 stall\n");
311 usb_ep_set_halt(ffs->gadget->ep0);
312 ffs->setup_state = FFS_NO_SETUP;
313 return -EL2HLT;
314 } else {
315 pr_debug("bogus ep0 stall!\n");
316 return -ESRCH;
317 }
318 }
319
320 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
321 size_t len, loff_t *ptr)
322 {
323 struct ffs_data *ffs = file->private_data;
324 ssize_t ret;
325 char *data;
326
327 ENTER();
328
329 /* Fast check if setup was canceled */
330 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
331 return -EIDRM;
332
333 /* Acquire mutex */
334 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
335 if (unlikely(ret < 0))
336 return ret;
337
338 /* Check state */
339 switch (ffs->state) {
340 case FFS_READ_DESCRIPTORS:
341 case FFS_READ_STRINGS:
342 /* Copy data */
343 if (unlikely(len < 16)) {
344 ret = -EINVAL;
345 break;
346 }
347
348 data = ffs_prepare_buffer(buf, len);
349 if (IS_ERR(data)) {
350 ret = PTR_ERR(data);
351 break;
352 }
353
354 /* Handle data */
355 if (ffs->state == FFS_READ_DESCRIPTORS) {
356 pr_info("read descriptors\n");
357 ret = __ffs_data_got_descs(ffs, data, len);
358 if (unlikely(ret < 0))
359 break;
360
361 ffs->state = FFS_READ_STRINGS;
362 ret = len;
363 } else {
364 pr_info("read strings\n");
365 ret = __ffs_data_got_strings(ffs, data, len);
366 if (unlikely(ret < 0))
367 break;
368
369 ret = ffs_epfiles_create(ffs);
370 if (unlikely(ret)) {
371 ffs->state = FFS_CLOSING;
372 break;
373 }
374
375 ffs->state = FFS_ACTIVE;
376 mutex_unlock(&ffs->mutex);
377
378 ret = ffs_ready(ffs);
379 if (unlikely(ret < 0)) {
380 ffs->state = FFS_CLOSING;
381 return ret;
382 }
383
384 return len;
385 }
386 break;
387
388 case FFS_ACTIVE:
389 data = NULL;
390 /*
391 * We're called from user space, we can use _irq
392 * rather then _irqsave
393 */
394 spin_lock_irq(&ffs->ev.waitq.lock);
395 switch (ffs_setup_state_clear_cancelled(ffs)) {
396 case FFS_SETUP_CANCELLED:
397 ret = -EIDRM;
398 goto done_spin;
399
400 case FFS_NO_SETUP:
401 ret = -ESRCH;
402 goto done_spin;
403
404 case FFS_SETUP_PENDING:
405 break;
406 }
407
408 /* FFS_SETUP_PENDING */
409 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
410 spin_unlock_irq(&ffs->ev.waitq.lock);
411 ret = __ffs_ep0_stall(ffs);
412 break;
413 }
414
415 /* FFS_SETUP_PENDING and not stall */
416 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
417
418 spin_unlock_irq(&ffs->ev.waitq.lock);
419
420 data = ffs_prepare_buffer(buf, len);
421 if (IS_ERR(data)) {
422 ret = PTR_ERR(data);
423 break;
424 }
425
426 spin_lock_irq(&ffs->ev.waitq.lock);
427
428 /*
429 * We are guaranteed to be still in FFS_ACTIVE state
430 * but the state of setup could have changed from
431 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
432 * to check for that. If that happened we copied data
433 * from user space in vain but it's unlikely.
434 *
435 * For sure we are not in FFS_NO_SETUP since this is
436 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
437 * transition can be performed and it's protected by
438 * mutex.
439 */
440 if (ffs_setup_state_clear_cancelled(ffs) ==
441 FFS_SETUP_CANCELLED) {
442 ret = -EIDRM;
443 done_spin:
444 spin_unlock_irq(&ffs->ev.waitq.lock);
445 } else {
446 /* unlocks spinlock */
447 ret = __ffs_ep0_queue_wait(ffs, data, len);
448 }
449 kfree(data);
450 break;
451
452 default:
453 ret = -EBADFD;
454 break;
455 }
456
457 mutex_unlock(&ffs->mutex);
458 return ret;
459 }
460
461 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
462 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
463 size_t n)
464 {
465 /*
466 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
467 * size of ffs->ev.types array (which is four) so that's how much space
468 * we reserve.
469 */
470 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
471 const size_t size = n * sizeof *events;
472 unsigned i = 0;
473
474 memset(events, 0, size);
475
476 do {
477 events[i].type = ffs->ev.types[i];
478 if (events[i].type == FUNCTIONFS_SETUP) {
479 events[i].u.setup = ffs->ev.setup;
480 ffs->setup_state = FFS_SETUP_PENDING;
481 }
482 } while (++i < n);
483
484 ffs->ev.count -= n;
485 if (ffs->ev.count)
486 memmove(ffs->ev.types, ffs->ev.types + n,
487 ffs->ev.count * sizeof *ffs->ev.types);
488
489 spin_unlock_irq(&ffs->ev.waitq.lock);
490 mutex_unlock(&ffs->mutex);
491
492 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
493 }
494
495 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
496 size_t len, loff_t *ptr)
497 {
498 struct ffs_data *ffs = file->private_data;
499 char *data = NULL;
500 size_t n;
501 int ret;
502
503 ENTER();
504
505 /* Fast check if setup was canceled */
506 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
507 return -EIDRM;
508
509 /* Acquire mutex */
510 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
511 if (unlikely(ret < 0))
512 return ret;
513
514 /* Check state */
515 if (ffs->state != FFS_ACTIVE) {
516 ret = -EBADFD;
517 goto done_mutex;
518 }
519
520 /*
521 * We're called from user space, we can use _irq rather then
522 * _irqsave
523 */
524 spin_lock_irq(&ffs->ev.waitq.lock);
525
526 switch (ffs_setup_state_clear_cancelled(ffs)) {
527 case FFS_SETUP_CANCELLED:
528 ret = -EIDRM;
529 break;
530
531 case FFS_NO_SETUP:
532 n = len / sizeof(struct usb_functionfs_event);
533 if (unlikely(!n)) {
534 ret = -EINVAL;
535 break;
536 }
537
538 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
539 ret = -EAGAIN;
540 break;
541 }
542
543 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
544 ffs->ev.count)) {
545 ret = -EINTR;
546 break;
547 }
548
549 return __ffs_ep0_read_events(ffs, buf,
550 min(n, (size_t)ffs->ev.count));
551
552 case FFS_SETUP_PENDING:
553 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
554 spin_unlock_irq(&ffs->ev.waitq.lock);
555 ret = __ffs_ep0_stall(ffs);
556 goto done_mutex;
557 }
558
559 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
560
561 spin_unlock_irq(&ffs->ev.waitq.lock);
562
563 if (likely(len)) {
564 data = kmalloc(len, GFP_KERNEL);
565 if (unlikely(!data)) {
566 ret = -ENOMEM;
567 goto done_mutex;
568 }
569 }
570
571 spin_lock_irq(&ffs->ev.waitq.lock);
572
573 /* See ffs_ep0_write() */
574 if (ffs_setup_state_clear_cancelled(ffs) ==
575 FFS_SETUP_CANCELLED) {
576 ret = -EIDRM;
577 break;
578 }
579
580 /* unlocks spinlock */
581 ret = __ffs_ep0_queue_wait(ffs, data, len);
582 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
583 ret = -EFAULT;
584 goto done_mutex;
585
586 default:
587 ret = -EBADFD;
588 break;
589 }
590
591 spin_unlock_irq(&ffs->ev.waitq.lock);
592 done_mutex:
593 mutex_unlock(&ffs->mutex);
594 kfree(data);
595 return ret;
596 }
597
598 static int ffs_ep0_open(struct inode *inode, struct file *file)
599 {
600 struct ffs_data *ffs = inode->i_private;
601
602 ENTER();
603
604 if (unlikely(ffs->state == FFS_CLOSING))
605 return -EBUSY;
606
607 file->private_data = ffs;
608 ffs_data_opened(ffs);
609
610 return 0;
611 }
612
613 static int ffs_ep0_release(struct inode *inode, struct file *file)
614 {
615 struct ffs_data *ffs = file->private_data;
616
617 ENTER();
618
619 ffs_data_closed(ffs);
620
621 return 0;
622 }
623
624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
625 {
626 struct ffs_data *ffs = file->private_data;
627 struct usb_gadget *gadget = ffs->gadget;
628 long ret;
629
630 ENTER();
631
632 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
633 struct ffs_function *func = ffs->func;
634 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
635 } else if (gadget && gadget->ops->ioctl) {
636 ret = gadget->ops->ioctl(gadget, code, value);
637 } else {
638 ret = -ENOTTY;
639 }
640
641 return ret;
642 }
643
644 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
645 {
646 struct ffs_data *ffs = file->private_data;
647 unsigned int mask = POLLWRNORM;
648 int ret;
649
650 poll_wait(file, &ffs->ev.waitq, wait);
651
652 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
653 if (unlikely(ret < 0))
654 return mask;
655
656 switch (ffs->state) {
657 case FFS_READ_DESCRIPTORS:
658 case FFS_READ_STRINGS:
659 mask |= POLLOUT;
660 break;
661
662 case FFS_ACTIVE:
663 switch (ffs->setup_state) {
664 case FFS_NO_SETUP:
665 if (ffs->ev.count)
666 mask |= POLLIN;
667 break;
668
669 case FFS_SETUP_PENDING:
670 case FFS_SETUP_CANCELLED:
671 mask |= (POLLIN | POLLOUT);
672 break;
673 }
674 case FFS_CLOSING:
675 break;
676 case FFS_DEACTIVATED:
677 break;
678 }
679
680 mutex_unlock(&ffs->mutex);
681
682 return mask;
683 }
684
685 static const struct file_operations ffs_ep0_operations = {
686 .llseek = no_llseek,
687
688 .open = ffs_ep0_open,
689 .write = ffs_ep0_write,
690 .read = ffs_ep0_read,
691 .release = ffs_ep0_release,
692 .unlocked_ioctl = ffs_ep0_ioctl,
693 .poll = ffs_ep0_poll,
694 };
695
696
697 /* "Normal" endpoints operations ********************************************/
698
699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
700 {
701 ENTER();
702 if (likely(req->context)) {
703 struct ffs_ep *ep = _ep->driver_data;
704 ep->status = req->status ? req->status : req->actual;
705 complete(req->context);
706 }
707 }
708
709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
710 {
711 ssize_t ret = copy_to_iter(data, data_len, iter);
712 if (likely(ret == data_len))
713 return ret;
714
715 if (unlikely(iov_iter_count(iter)))
716 return -EFAULT;
717
718 /*
719 * Dear user space developer!
720 *
721 * TL;DR: To stop getting below error message in your kernel log, change
722 * user space code using functionfs to align read buffers to a max
723 * packet size.
724 *
725 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
726 * packet size. When unaligned buffer is passed to functionfs, it
727 * internally uses a larger, aligned buffer so that such UDCs are happy.
728 *
729 * Unfortunately, this means that host may send more data than was
730 * requested in read(2) system call. f_fs doesn’t know what to do with
731 * that excess data so it simply drops it.
732 *
733 * Was the buffer aligned in the first place, no such problem would
734 * happen.
735 *
736 * Data may be dropped only in AIO reads. Synchronous reads are handled
737 * by splitting a request into multiple parts. This splitting may still
738 * be a problem though so it’s likely best to align the buffer
739 * regardless of it being AIO or not..
740 *
741 * This only affects OUT endpoints, i.e. reading data with a read(2),
742 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
743 * affected.
744 */
745 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
746 "Align read buffer size to max packet size to avoid the problem.\n",
747 data_len, ret);
748
749 return ret;
750 }
751
752 static void ffs_user_copy_worker(struct work_struct *work)
753 {
754 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
755 work);
756 int ret = io_data->req->status ? io_data->req->status :
757 io_data->req->actual;
758 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
759
760 if (io_data->read && ret > 0) {
761 use_mm(io_data->mm);
762 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
763 unuse_mm(io_data->mm);
764 }
765
766 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
767
768 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
769 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
770
771 usb_ep_free_request(io_data->ep, io_data->req);
772
773 if (io_data->read)
774 kfree(io_data->to_free);
775 kfree(io_data->buf);
776 kfree(io_data);
777 }
778
779 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
780 struct usb_request *req)
781 {
782 struct ffs_io_data *io_data = req->context;
783
784 ENTER();
785
786 INIT_WORK(&io_data->work, ffs_user_copy_worker);
787 schedule_work(&io_data->work);
788 }
789
790 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
791 {
792 /*
793 * See comment in struct ffs_epfile for full read_buffer pointer
794 * synchronisation story.
795 */
796 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
797 if (buf && buf != READ_BUFFER_DROP)
798 kfree(buf);
799 }
800
801 /* Assumes epfile->mutex is held. */
802 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
803 struct iov_iter *iter)
804 {
805 /*
806 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
807 * the buffer while we are using it. See comment in struct ffs_epfile
808 * for full read_buffer pointer synchronisation story.
809 */
810 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
811 ssize_t ret;
812 if (!buf || buf == READ_BUFFER_DROP)
813 return 0;
814
815 ret = copy_to_iter(buf->data, buf->length, iter);
816 if (buf->length == ret) {
817 kfree(buf);
818 return ret;
819 }
820
821 if (unlikely(iov_iter_count(iter))) {
822 ret = -EFAULT;
823 } else {
824 buf->length -= ret;
825 buf->data += ret;
826 }
827
828 if (cmpxchg(&epfile->read_buffer, NULL, buf))
829 kfree(buf);
830
831 return ret;
832 }
833
834 /* Assumes epfile->mutex is held. */
835 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
836 void *data, int data_len,
837 struct iov_iter *iter)
838 {
839 struct ffs_buffer *buf;
840
841 ssize_t ret = copy_to_iter(data, data_len, iter);
842 if (likely(data_len == ret))
843 return ret;
844
845 if (unlikely(iov_iter_count(iter)))
846 return -EFAULT;
847
848 /* See ffs_copy_to_iter for more context. */
849 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
850 data_len, ret);
851
852 data_len -= ret;
853 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
854 if (!buf)
855 return -ENOMEM;
856 buf->length = data_len;
857 buf->data = buf->storage;
858 memcpy(buf->storage, data + ret, data_len);
859
860 /*
861 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
862 * ffs_func_eps_disable has been called in the meanwhile). See comment
863 * in struct ffs_epfile for full read_buffer pointer synchronisation
864 * story.
865 */
866 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
867 kfree(buf);
868
869 return ret;
870 }
871
872 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
873 {
874 struct ffs_epfile *epfile = file->private_data;
875 struct usb_request *req;
876 struct ffs_ep *ep;
877 char *data = NULL;
878 ssize_t ret, data_len = -EINVAL;
879 int halt;
880
881 /* Are we still active? */
882 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
883 return -ENODEV;
884
885 /* Wait for endpoint to be enabled */
886 ep = epfile->ep;
887 if (!ep) {
888 if (file->f_flags & O_NONBLOCK)
889 return -EAGAIN;
890
891 ret = wait_event_interruptible(
892 epfile->ffs->wait, (ep = epfile->ep));
893 if (ret)
894 return -EINTR;
895 }
896
897 /* Do we halt? */
898 halt = (!io_data->read == !epfile->in);
899 if (halt && epfile->isoc)
900 return -EINVAL;
901
902 /* We will be using request and read_buffer */
903 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
904 if (unlikely(ret))
905 goto error;
906
907 /* Allocate & copy */
908 if (!halt) {
909 struct usb_gadget *gadget;
910
911 /*
912 * Do we have buffered data from previous partial read? Check
913 * that for synchronous case only because we do not have
914 * facility to ‘wake up’ a pending asynchronous read and push
915 * buffered data to it which we would need to make things behave
916 * consistently.
917 */
918 if (!io_data->aio && io_data->read) {
919 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
920 if (ret)
921 goto error_mutex;
922 }
923
924 /*
925 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
926 * before the waiting completes, so do not assign to 'gadget'
927 * earlier
928 */
929 gadget = epfile->ffs->gadget;
930
931 spin_lock_irq(&epfile->ffs->eps_lock);
932 /* In the meantime, endpoint got disabled or changed. */
933 if (epfile->ep != ep) {
934 ret = -ESHUTDOWN;
935 goto error_lock;
936 }
937 data_len = iov_iter_count(&io_data->data);
938 /*
939 * Controller may require buffer size to be aligned to
940 * maxpacketsize of an out endpoint.
941 */
942 if (io_data->read)
943 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
944 spin_unlock_irq(&epfile->ffs->eps_lock);
945
946 data = kmalloc(data_len, GFP_KERNEL);
947 if (unlikely(!data)) {
948 ret = -ENOMEM;
949 goto error_mutex;
950 }
951 if (!io_data->read &&
952 !copy_from_iter_full(data, data_len, &io_data->data)) {
953 ret = -EFAULT;
954 goto error_mutex;
955 }
956 }
957
958 spin_lock_irq(&epfile->ffs->eps_lock);
959
960 if (epfile->ep != ep) {
961 /* In the meantime, endpoint got disabled or changed. */
962 ret = -ESHUTDOWN;
963 } else if (halt) {
964 /* Halt */
965 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
966 usb_ep_set_halt(ep->ep);
967 ret = -EBADMSG;
968 } else if (unlikely(data_len == -EINVAL)) {
969 /*
970 * Sanity Check: even though data_len can't be used
971 * uninitialized at the time I write this comment, some
972 * compilers complain about this situation.
973 * In order to keep the code clean from warnings, data_len is
974 * being initialized to -EINVAL during its declaration, which
975 * means we can't rely on compiler anymore to warn no future
976 * changes won't result in data_len being used uninitialized.
977 * For such reason, we're adding this redundant sanity check
978 * here.
979 */
980 WARN(1, "%s: data_len == -EINVAL\n", __func__);
981 ret = -EINVAL;
982 } else if (!io_data->aio) {
983 DECLARE_COMPLETION_ONSTACK(done);
984 bool interrupted = false;
985
986 req = ep->req;
987 req->buf = data;
988 req->length = data_len;
989
990 req->context = &done;
991 req->complete = ffs_epfile_io_complete;
992
993 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
994 if (unlikely(ret < 0))
995 goto error_lock;
996
997 spin_unlock_irq(&epfile->ffs->eps_lock);
998
999 if (unlikely(wait_for_completion_interruptible(&done))) {
1000 /*
1001 * To avoid race condition with ffs_epfile_io_complete,
1002 * dequeue the request first then check
1003 * status. usb_ep_dequeue API should guarantee no race
1004 * condition with req->complete callback.
1005 */
1006 usb_ep_dequeue(ep->ep, req);
1007 interrupted = ep->status < 0;
1008 }
1009
1010 if (interrupted)
1011 ret = -EINTR;
1012 else if (io_data->read && ep->status > 0)
1013 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014 &io_data->data);
1015 else
1016 ret = ep->status;
1017 goto error_mutex;
1018 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1019 ret = -ENOMEM;
1020 } else {
1021 req->buf = data;
1022 req->length = data_len;
1023
1024 io_data->buf = data;
1025 io_data->ep = ep->ep;
1026 io_data->req = req;
1027 io_data->ffs = epfile->ffs;
1028
1029 req->context = io_data;
1030 req->complete = ffs_epfile_async_io_complete;
1031
1032 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033 if (unlikely(ret)) {
1034 usb_ep_free_request(ep->ep, req);
1035 goto error_lock;
1036 }
1037
1038 ret = -EIOCBQUEUED;
1039 /*
1040 * Do not kfree the buffer in this function. It will be freed
1041 * by ffs_user_copy_worker.
1042 */
1043 data = NULL;
1044 }
1045
1046 error_lock:
1047 spin_unlock_irq(&epfile->ffs->eps_lock);
1048 error_mutex:
1049 mutex_unlock(&epfile->mutex);
1050 error:
1051 kfree(data);
1052 return ret;
1053 }
1054
1055 static int
1056 ffs_epfile_open(struct inode *inode, struct file *file)
1057 {
1058 struct ffs_epfile *epfile = inode->i_private;
1059
1060 ENTER();
1061
1062 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063 return -ENODEV;
1064
1065 file->private_data = epfile;
1066 ffs_data_opened(epfile->ffs);
1067
1068 return 0;
1069 }
1070
1071 static int ffs_aio_cancel(struct kiocb *kiocb)
1072 {
1073 struct ffs_io_data *io_data = kiocb->private;
1074 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075 int value;
1076
1077 ENTER();
1078
1079 spin_lock_irq(&epfile->ffs->eps_lock);
1080
1081 if (likely(io_data && io_data->ep && io_data->req))
1082 value = usb_ep_dequeue(io_data->ep, io_data->req);
1083 else
1084 value = -EINVAL;
1085
1086 spin_unlock_irq(&epfile->ffs->eps_lock);
1087
1088 return value;
1089 }
1090
1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092 {
1093 struct ffs_io_data io_data, *p = &io_data;
1094 ssize_t res;
1095
1096 ENTER();
1097
1098 if (!is_sync_kiocb(kiocb)) {
1099 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100 if (unlikely(!p))
1101 return -ENOMEM;
1102 p->aio = true;
1103 } else {
1104 p->aio = false;
1105 }
1106
1107 p->read = false;
1108 p->kiocb = kiocb;
1109 p->data = *from;
1110 p->mm = current->mm;
1111
1112 kiocb->private = p;
1113
1114 if (p->aio)
1115 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116
1117 res = ffs_epfile_io(kiocb->ki_filp, p);
1118 if (res == -EIOCBQUEUED)
1119 return res;
1120 if (p->aio)
1121 kfree(p);
1122 else
1123 *from = p->data;
1124 return res;
1125 }
1126
1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128 {
1129 struct ffs_io_data io_data, *p = &io_data;
1130 ssize_t res;
1131
1132 ENTER();
1133
1134 if (!is_sync_kiocb(kiocb)) {
1135 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136 if (unlikely(!p))
1137 return -ENOMEM;
1138 p->aio = true;
1139 } else {
1140 p->aio = false;
1141 }
1142
1143 p->read = true;
1144 p->kiocb = kiocb;
1145 if (p->aio) {
1146 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147 if (!p->to_free) {
1148 kfree(p);
1149 return -ENOMEM;
1150 }
1151 } else {
1152 p->data = *to;
1153 p->to_free = NULL;
1154 }
1155 p->mm = current->mm;
1156
1157 kiocb->private = p;
1158
1159 if (p->aio)
1160 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161
1162 res = ffs_epfile_io(kiocb->ki_filp, p);
1163 if (res == -EIOCBQUEUED)
1164 return res;
1165
1166 if (p->aio) {
1167 kfree(p->to_free);
1168 kfree(p);
1169 } else {
1170 *to = p->data;
1171 }
1172 return res;
1173 }
1174
1175 static int
1176 ffs_epfile_release(struct inode *inode, struct file *file)
1177 {
1178 struct ffs_epfile *epfile = inode->i_private;
1179
1180 ENTER();
1181
1182 __ffs_epfile_read_buffer_free(epfile);
1183 ffs_data_closed(epfile->ffs);
1184
1185 return 0;
1186 }
1187
1188 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189 unsigned long value)
1190 {
1191 struct ffs_epfile *epfile = file->private_data;
1192 struct ffs_ep *ep;
1193 int ret;
1194
1195 ENTER();
1196
1197 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1198 return -ENODEV;
1199
1200 /* Wait for endpoint to be enabled */
1201 ep = epfile->ep;
1202 if (!ep) {
1203 if (file->f_flags & O_NONBLOCK)
1204 return -EAGAIN;
1205
1206 ret = wait_event_interruptible(
1207 epfile->ffs->wait, (ep = epfile->ep));
1208 if (ret)
1209 return -EINTR;
1210 }
1211
1212 spin_lock_irq(&epfile->ffs->eps_lock);
1213
1214 /* In the meantime, endpoint got disabled or changed. */
1215 if (epfile->ep != ep) {
1216 spin_unlock_irq(&epfile->ffs->eps_lock);
1217 return -ESHUTDOWN;
1218 }
1219
1220 switch (code) {
1221 case FUNCTIONFS_FIFO_STATUS:
1222 ret = usb_ep_fifo_status(epfile->ep->ep);
1223 break;
1224 case FUNCTIONFS_FIFO_FLUSH:
1225 usb_ep_fifo_flush(epfile->ep->ep);
1226 ret = 0;
1227 break;
1228 case FUNCTIONFS_CLEAR_HALT:
1229 ret = usb_ep_clear_halt(epfile->ep->ep);
1230 break;
1231 case FUNCTIONFS_ENDPOINT_REVMAP:
1232 ret = epfile->ep->num;
1233 break;
1234 case FUNCTIONFS_ENDPOINT_DESC:
1235 {
1236 int desc_idx;
1237 struct usb_endpoint_descriptor *desc;
1238
1239 switch (epfile->ffs->gadget->speed) {
1240 case USB_SPEED_SUPER:
1241 desc_idx = 2;
1242 break;
1243 case USB_SPEED_HIGH:
1244 desc_idx = 1;
1245 break;
1246 default:
1247 desc_idx = 0;
1248 }
1249 desc = epfile->ep->descs[desc_idx];
1250
1251 spin_unlock_irq(&epfile->ffs->eps_lock);
1252 ret = copy_to_user((void *)value, desc, desc->bLength);
1253 if (ret)
1254 ret = -EFAULT;
1255 return ret;
1256 }
1257 default:
1258 ret = -ENOTTY;
1259 }
1260 spin_unlock_irq(&epfile->ffs->eps_lock);
1261
1262 return ret;
1263 }
1264
1265 static const struct file_operations ffs_epfile_operations = {
1266 .llseek = no_llseek,
1267
1268 .open = ffs_epfile_open,
1269 .write_iter = ffs_epfile_write_iter,
1270 .read_iter = ffs_epfile_read_iter,
1271 .release = ffs_epfile_release,
1272 .unlocked_ioctl = ffs_epfile_ioctl,
1273 };
1274
1275
1276 /* File system and super block operations ***********************************/
1277
1278 /*
1279 * Mounting the file system creates a controller file, used first for
1280 * function configuration then later for event monitoring.
1281 */
1282
1283 static struct inode *__must_check
1284 ffs_sb_make_inode(struct super_block *sb, void *data,
1285 const struct file_operations *fops,
1286 const struct inode_operations *iops,
1287 struct ffs_file_perms *perms)
1288 {
1289 struct inode *inode;
1290
1291 ENTER();
1292
1293 inode = new_inode(sb);
1294
1295 if (likely(inode)) {
1296 struct timespec ts = current_time(inode);
1297
1298 inode->i_ino = get_next_ino();
1299 inode->i_mode = perms->mode;
1300 inode->i_uid = perms->uid;
1301 inode->i_gid = perms->gid;
1302 inode->i_atime = ts;
1303 inode->i_mtime = ts;
1304 inode->i_ctime = ts;
1305 inode->i_private = data;
1306 if (fops)
1307 inode->i_fop = fops;
1308 if (iops)
1309 inode->i_op = iops;
1310 }
1311
1312 return inode;
1313 }
1314
1315 /* Create "regular" file */
1316 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1317 const char *name, void *data,
1318 const struct file_operations *fops)
1319 {
1320 struct ffs_data *ffs = sb->s_fs_info;
1321 struct dentry *dentry;
1322 struct inode *inode;
1323
1324 ENTER();
1325
1326 dentry = d_alloc_name(sb->s_root, name);
1327 if (unlikely(!dentry))
1328 return NULL;
1329
1330 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1331 if (unlikely(!inode)) {
1332 dput(dentry);
1333 return NULL;
1334 }
1335
1336 d_add(dentry, inode);
1337 return dentry;
1338 }
1339
1340 /* Super block */
1341 static const struct super_operations ffs_sb_operations = {
1342 .statfs = simple_statfs,
1343 .drop_inode = generic_delete_inode,
1344 };
1345
1346 struct ffs_sb_fill_data {
1347 struct ffs_file_perms perms;
1348 umode_t root_mode;
1349 const char *dev_name;
1350 bool no_disconnect;
1351 struct ffs_data *ffs_data;
1352 };
1353
1354 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1355 {
1356 struct ffs_sb_fill_data *data = _data;
1357 struct inode *inode;
1358 struct ffs_data *ffs = data->ffs_data;
1359
1360 ENTER();
1361
1362 ffs->sb = sb;
1363 data->ffs_data = NULL;
1364 sb->s_fs_info = ffs;
1365 sb->s_blocksize = PAGE_SIZE;
1366 sb->s_blocksize_bits = PAGE_SHIFT;
1367 sb->s_magic = FUNCTIONFS_MAGIC;
1368 sb->s_op = &ffs_sb_operations;
1369 sb->s_time_gran = 1;
1370
1371 /* Root inode */
1372 data->perms.mode = data->root_mode;
1373 inode = ffs_sb_make_inode(sb, NULL,
1374 &simple_dir_operations,
1375 &simple_dir_inode_operations,
1376 &data->perms);
1377 sb->s_root = d_make_root(inode);
1378 if (unlikely(!sb->s_root))
1379 return -ENOMEM;
1380
1381 /* EP0 file */
1382 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1383 &ffs_ep0_operations)))
1384 return -ENOMEM;
1385
1386 return 0;
1387 }
1388
1389 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1390 {
1391 ENTER();
1392
1393 if (!opts || !*opts)
1394 return 0;
1395
1396 for (;;) {
1397 unsigned long value;
1398 char *eq, *comma;
1399
1400 /* Option limit */
1401 comma = strchr(opts, ',');
1402 if (comma)
1403 *comma = 0;
1404
1405 /* Value limit */
1406 eq = strchr(opts, '=');
1407 if (unlikely(!eq)) {
1408 pr_err("'=' missing in %s\n", opts);
1409 return -EINVAL;
1410 }
1411 *eq = 0;
1412
1413 /* Parse value */
1414 if (kstrtoul(eq + 1, 0, &value)) {
1415 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1416 return -EINVAL;
1417 }
1418
1419 /* Interpret option */
1420 switch (eq - opts) {
1421 case 13:
1422 if (!memcmp(opts, "no_disconnect", 13))
1423 data->no_disconnect = !!value;
1424 else
1425 goto invalid;
1426 break;
1427 case 5:
1428 if (!memcmp(opts, "rmode", 5))
1429 data->root_mode = (value & 0555) | S_IFDIR;
1430 else if (!memcmp(opts, "fmode", 5))
1431 data->perms.mode = (value & 0666) | S_IFREG;
1432 else
1433 goto invalid;
1434 break;
1435
1436 case 4:
1437 if (!memcmp(opts, "mode", 4)) {
1438 data->root_mode = (value & 0555) | S_IFDIR;
1439 data->perms.mode = (value & 0666) | S_IFREG;
1440 } else {
1441 goto invalid;
1442 }
1443 break;
1444
1445 case 3:
1446 if (!memcmp(opts, "uid", 3)) {
1447 data->perms.uid = make_kuid(current_user_ns(), value);
1448 if (!uid_valid(data->perms.uid)) {
1449 pr_err("%s: unmapped value: %lu\n", opts, value);
1450 return -EINVAL;
1451 }
1452 } else if (!memcmp(opts, "gid", 3)) {
1453 data->perms.gid = make_kgid(current_user_ns(), value);
1454 if (!gid_valid(data->perms.gid)) {
1455 pr_err("%s: unmapped value: %lu\n", opts, value);
1456 return -EINVAL;
1457 }
1458 } else {
1459 goto invalid;
1460 }
1461 break;
1462
1463 default:
1464 invalid:
1465 pr_err("%s: invalid option\n", opts);
1466 return -EINVAL;
1467 }
1468
1469 /* Next iteration */
1470 if (!comma)
1471 break;
1472 opts = comma + 1;
1473 }
1474
1475 return 0;
1476 }
1477
1478 /* "mount -t functionfs dev_name /dev/function" ends up here */
1479
1480 static struct dentry *
1481 ffs_fs_mount(struct file_system_type *t, int flags,
1482 const char *dev_name, void *opts)
1483 {
1484 struct ffs_sb_fill_data data = {
1485 .perms = {
1486 .mode = S_IFREG | 0600,
1487 .uid = GLOBAL_ROOT_UID,
1488 .gid = GLOBAL_ROOT_GID,
1489 },
1490 .root_mode = S_IFDIR | 0500,
1491 .no_disconnect = false,
1492 };
1493 struct dentry *rv;
1494 int ret;
1495 void *ffs_dev;
1496 struct ffs_data *ffs;
1497
1498 ENTER();
1499
1500 ret = ffs_fs_parse_opts(&data, opts);
1501 if (unlikely(ret < 0))
1502 return ERR_PTR(ret);
1503
1504 ffs = ffs_data_new();
1505 if (unlikely(!ffs))
1506 return ERR_PTR(-ENOMEM);
1507 ffs->file_perms = data.perms;
1508 ffs->no_disconnect = data.no_disconnect;
1509
1510 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1511 if (unlikely(!ffs->dev_name)) {
1512 ffs_data_put(ffs);
1513 return ERR_PTR(-ENOMEM);
1514 }
1515
1516 ffs_dev = ffs_acquire_dev(dev_name);
1517 if (IS_ERR(ffs_dev)) {
1518 ffs_data_put(ffs);
1519 return ERR_CAST(ffs_dev);
1520 }
1521 ffs->private_data = ffs_dev;
1522 data.ffs_data = ffs;
1523
1524 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1525 if (IS_ERR(rv) && data.ffs_data) {
1526 ffs_release_dev(data.ffs_data);
1527 ffs_data_put(data.ffs_data);
1528 }
1529 return rv;
1530 }
1531
1532 static void
1533 ffs_fs_kill_sb(struct super_block *sb)
1534 {
1535 ENTER();
1536
1537 kill_litter_super(sb);
1538 if (sb->s_fs_info) {
1539 ffs_release_dev(sb->s_fs_info);
1540 ffs_data_closed(sb->s_fs_info);
1541 ffs_data_put(sb->s_fs_info);
1542 }
1543 }
1544
1545 static struct file_system_type ffs_fs_type = {
1546 .owner = THIS_MODULE,
1547 .name = "functionfs",
1548 .mount = ffs_fs_mount,
1549 .kill_sb = ffs_fs_kill_sb,
1550 };
1551 MODULE_ALIAS_FS("functionfs");
1552
1553
1554 /* Driver's main init/cleanup functions *************************************/
1555
1556 static int functionfs_init(void)
1557 {
1558 int ret;
1559
1560 ENTER();
1561
1562 ret = register_filesystem(&ffs_fs_type);
1563 if (likely(!ret))
1564 pr_info("file system registered\n");
1565 else
1566 pr_err("failed registering file system (%d)\n", ret);
1567
1568 return ret;
1569 }
1570
1571 static void functionfs_cleanup(void)
1572 {
1573 ENTER();
1574
1575 pr_info("unloading\n");
1576 unregister_filesystem(&ffs_fs_type);
1577 }
1578
1579
1580 /* ffs_data and ffs_function construction and destruction code **************/
1581
1582 static void ffs_data_clear(struct ffs_data *ffs);
1583 static void ffs_data_reset(struct ffs_data *ffs);
1584
1585 static void ffs_data_get(struct ffs_data *ffs)
1586 {
1587 ENTER();
1588
1589 refcount_inc(&ffs->ref);
1590 }
1591
1592 static void ffs_data_opened(struct ffs_data *ffs)
1593 {
1594 ENTER();
1595
1596 refcount_inc(&ffs->ref);
1597 if (atomic_add_return(1, &ffs->opened) == 1 &&
1598 ffs->state == FFS_DEACTIVATED) {
1599 ffs->state = FFS_CLOSING;
1600 ffs_data_reset(ffs);
1601 }
1602 }
1603
1604 static void ffs_data_put(struct ffs_data *ffs)
1605 {
1606 ENTER();
1607
1608 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1609 pr_info("%s(): freeing\n", __func__);
1610 ffs_data_clear(ffs);
1611 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1612 waitqueue_active(&ffs->ep0req_completion.wait) ||
1613 waitqueue_active(&ffs->wait));
1614 kfree(ffs->dev_name);
1615 kfree(ffs);
1616 }
1617 }
1618
1619 static void ffs_data_closed(struct ffs_data *ffs)
1620 {
1621 ENTER();
1622
1623 if (atomic_dec_and_test(&ffs->opened)) {
1624 if (ffs->no_disconnect) {
1625 ffs->state = FFS_DEACTIVATED;
1626 if (ffs->epfiles) {
1627 ffs_epfiles_destroy(ffs->epfiles,
1628 ffs->eps_count);
1629 ffs->epfiles = NULL;
1630 }
1631 if (ffs->setup_state == FFS_SETUP_PENDING)
1632 __ffs_ep0_stall(ffs);
1633 } else {
1634 ffs->state = FFS_CLOSING;
1635 ffs_data_reset(ffs);
1636 }
1637 }
1638 if (atomic_read(&ffs->opened) < 0) {
1639 ffs->state = FFS_CLOSING;
1640 ffs_data_reset(ffs);
1641 }
1642
1643 ffs_data_put(ffs);
1644 }
1645
1646 static struct ffs_data *ffs_data_new(void)
1647 {
1648 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1649 if (unlikely(!ffs))
1650 return NULL;
1651
1652 ENTER();
1653
1654 refcount_set(&ffs->ref, 1);
1655 atomic_set(&ffs->opened, 0);
1656 ffs->state = FFS_READ_DESCRIPTORS;
1657 mutex_init(&ffs->mutex);
1658 spin_lock_init(&ffs->eps_lock);
1659 init_waitqueue_head(&ffs->ev.waitq);
1660 init_waitqueue_head(&ffs->wait);
1661 init_completion(&ffs->ep0req_completion);
1662
1663 /* XXX REVISIT need to update it in some places, or do we? */
1664 ffs->ev.can_stall = 1;
1665
1666 return ffs;
1667 }
1668
1669 static void ffs_data_clear(struct ffs_data *ffs)
1670 {
1671 ENTER();
1672
1673 ffs_closed(ffs);
1674
1675 BUG_ON(ffs->gadget);
1676
1677 if (ffs->epfiles)
1678 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1679
1680 if (ffs->ffs_eventfd)
1681 eventfd_ctx_put(ffs->ffs_eventfd);
1682
1683 kfree(ffs->raw_descs_data);
1684 kfree(ffs->raw_strings);
1685 kfree(ffs->stringtabs);
1686 }
1687
1688 static void ffs_data_reset(struct ffs_data *ffs)
1689 {
1690 ENTER();
1691
1692 ffs_data_clear(ffs);
1693
1694 ffs->epfiles = NULL;
1695 ffs->raw_descs_data = NULL;
1696 ffs->raw_descs = NULL;
1697 ffs->raw_strings = NULL;
1698 ffs->stringtabs = NULL;
1699
1700 ffs->raw_descs_length = 0;
1701 ffs->fs_descs_count = 0;
1702 ffs->hs_descs_count = 0;
1703 ffs->ss_descs_count = 0;
1704
1705 ffs->strings_count = 0;
1706 ffs->interfaces_count = 0;
1707 ffs->eps_count = 0;
1708
1709 ffs->ev.count = 0;
1710
1711 ffs->state = FFS_READ_DESCRIPTORS;
1712 ffs->setup_state = FFS_NO_SETUP;
1713 ffs->flags = 0;
1714 }
1715
1716
1717 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1718 {
1719 struct usb_gadget_strings **lang;
1720 int first_id;
1721
1722 ENTER();
1723
1724 if (WARN_ON(ffs->state != FFS_ACTIVE
1725 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1726 return -EBADFD;
1727
1728 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1729 if (unlikely(first_id < 0))
1730 return first_id;
1731
1732 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1733 if (unlikely(!ffs->ep0req))
1734 return -ENOMEM;
1735 ffs->ep0req->complete = ffs_ep0_complete;
1736 ffs->ep0req->context = ffs;
1737
1738 lang = ffs->stringtabs;
1739 if (lang) {
1740 for (; *lang; ++lang) {
1741 struct usb_string *str = (*lang)->strings;
1742 int id = first_id;
1743 for (; str->s; ++id, ++str)
1744 str->id = id;
1745 }
1746 }
1747
1748 ffs->gadget = cdev->gadget;
1749 ffs_data_get(ffs);
1750 return 0;
1751 }
1752
1753 static void functionfs_unbind(struct ffs_data *ffs)
1754 {
1755 ENTER();
1756
1757 if (!WARN_ON(!ffs->gadget)) {
1758 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1759 ffs->ep0req = NULL;
1760 ffs->gadget = NULL;
1761 clear_bit(FFS_FL_BOUND, &ffs->flags);
1762 ffs_data_put(ffs);
1763 }
1764 }
1765
1766 static int ffs_epfiles_create(struct ffs_data *ffs)
1767 {
1768 struct ffs_epfile *epfile, *epfiles;
1769 unsigned i, count;
1770
1771 ENTER();
1772
1773 count = ffs->eps_count;
1774 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1775 if (!epfiles)
1776 return -ENOMEM;
1777
1778 epfile = epfiles;
1779 for (i = 1; i <= count; ++i, ++epfile) {
1780 epfile->ffs = ffs;
1781 mutex_init(&epfile->mutex);
1782 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1783 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1784 else
1785 sprintf(epfile->name, "ep%u", i);
1786 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1787 epfile,
1788 &ffs_epfile_operations);
1789 if (unlikely(!epfile->dentry)) {
1790 ffs_epfiles_destroy(epfiles, i - 1);
1791 return -ENOMEM;
1792 }
1793 }
1794
1795 ffs->epfiles = epfiles;
1796 return 0;
1797 }
1798
1799 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1800 {
1801 struct ffs_epfile *epfile = epfiles;
1802
1803 ENTER();
1804
1805 for (; count; --count, ++epfile) {
1806 BUG_ON(mutex_is_locked(&epfile->mutex));
1807 if (epfile->dentry) {
1808 d_delete(epfile->dentry);
1809 dput(epfile->dentry);
1810 epfile->dentry = NULL;
1811 }
1812 }
1813
1814 kfree(epfiles);
1815 }
1816
1817 static void ffs_func_eps_disable(struct ffs_function *func)
1818 {
1819 struct ffs_ep *ep = func->eps;
1820 struct ffs_epfile *epfile = func->ffs->epfiles;
1821 unsigned count = func->ffs->eps_count;
1822 unsigned long flags;
1823
1824 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1825 while (count--) {
1826 /* pending requests get nuked */
1827 if (likely(ep->ep))
1828 usb_ep_disable(ep->ep);
1829 ++ep;
1830
1831 if (epfile) {
1832 epfile->ep = NULL;
1833 __ffs_epfile_read_buffer_free(epfile);
1834 ++epfile;
1835 }
1836 }
1837 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1838 }
1839
1840 static int ffs_func_eps_enable(struct ffs_function *func)
1841 {
1842 struct ffs_data *ffs = func->ffs;
1843 struct ffs_ep *ep = func->eps;
1844 struct ffs_epfile *epfile = ffs->epfiles;
1845 unsigned count = ffs->eps_count;
1846 unsigned long flags;
1847 int ret = 0;
1848
1849 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1850 while(count--) {
1851 struct usb_endpoint_descriptor *ds;
1852 struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1853 int needs_comp_desc = false;
1854 int desc_idx;
1855
1856 if (ffs->gadget->speed == USB_SPEED_SUPER) {
1857 desc_idx = 2;
1858 needs_comp_desc = true;
1859 } else if (ffs->gadget->speed == USB_SPEED_HIGH)
1860 desc_idx = 1;
1861 else
1862 desc_idx = 0;
1863
1864 /* fall-back to lower speed if desc missing for current speed */
1865 do {
1866 ds = ep->descs[desc_idx];
1867 } while (!ds && --desc_idx >= 0);
1868
1869 if (!ds) {
1870 ret = -EINVAL;
1871 break;
1872 }
1873
1874 ep->ep->driver_data = ep;
1875 ep->ep->desc = ds;
1876
1877 if (needs_comp_desc) {
1878 comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1879 USB_DT_ENDPOINT_SIZE);
1880 ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1881 ep->ep->comp_desc = comp_desc;
1882 }
1883
1884 ret = usb_ep_enable(ep->ep);
1885 if (likely(!ret)) {
1886 epfile->ep = ep;
1887 epfile->in = usb_endpoint_dir_in(ds);
1888 epfile->isoc = usb_endpoint_xfer_isoc(ds);
1889 } else {
1890 break;
1891 }
1892
1893 ++ep;
1894 ++epfile;
1895 }
1896
1897 wake_up_interruptible(&ffs->wait);
1898 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1899
1900 return ret;
1901 }
1902
1903
1904 /* Parsing and building descriptors and strings *****************************/
1905
1906 /*
1907 * This validates if data pointed by data is a valid USB descriptor as
1908 * well as record how many interfaces, endpoints and strings are
1909 * required by given configuration. Returns address after the
1910 * descriptor or NULL if data is invalid.
1911 */
1912
1913 enum ffs_entity_type {
1914 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1915 };
1916
1917 enum ffs_os_desc_type {
1918 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1919 };
1920
1921 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1922 u8 *valuep,
1923 struct usb_descriptor_header *desc,
1924 void *priv);
1925
1926 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1927 struct usb_os_desc_header *h, void *data,
1928 unsigned len, void *priv);
1929
1930 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1931 ffs_entity_callback entity,
1932 void *priv)
1933 {
1934 struct usb_descriptor_header *_ds = (void *)data;
1935 u8 length;
1936 int ret;
1937
1938 ENTER();
1939
1940 /* At least two bytes are required: length and type */
1941 if (len < 2) {
1942 pr_vdebug("descriptor too short\n");
1943 return -EINVAL;
1944 }
1945
1946 /* If we have at least as many bytes as the descriptor takes? */
1947 length = _ds->bLength;
1948 if (len < length) {
1949 pr_vdebug("descriptor longer then available data\n");
1950 return -EINVAL;
1951 }
1952
1953 #define __entity_check_INTERFACE(val) 1
1954 #define __entity_check_STRING(val) (val)
1955 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1956 #define __entity(type, val) do { \
1957 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1958 if (unlikely(!__entity_check_ ##type(val))) { \
1959 pr_vdebug("invalid entity's value\n"); \
1960 return -EINVAL; \
1961 } \
1962 ret = entity(FFS_ ##type, &val, _ds, priv); \
1963 if (unlikely(ret < 0)) { \
1964 pr_debug("entity " #type "(%02x); ret = %d\n", \
1965 (val), ret); \
1966 return ret; \
1967 } \
1968 } while (0)
1969
1970 /* Parse descriptor depending on type. */
1971 switch (_ds->bDescriptorType) {
1972 case USB_DT_DEVICE:
1973 case USB_DT_CONFIG:
1974 case USB_DT_STRING:
1975 case USB_DT_DEVICE_QUALIFIER:
1976 /* function can't have any of those */
1977 pr_vdebug("descriptor reserved for gadget: %d\n",
1978 _ds->bDescriptorType);
1979 return -EINVAL;
1980
1981 case USB_DT_INTERFACE: {
1982 struct usb_interface_descriptor *ds = (void *)_ds;
1983 pr_vdebug("interface descriptor\n");
1984 if (length != sizeof *ds)
1985 goto inv_length;
1986
1987 __entity(INTERFACE, ds->bInterfaceNumber);
1988 if (ds->iInterface)
1989 __entity(STRING, ds->iInterface);
1990 }
1991 break;
1992
1993 case USB_DT_ENDPOINT: {
1994 struct usb_endpoint_descriptor *ds = (void *)_ds;
1995 pr_vdebug("endpoint descriptor\n");
1996 if (length != USB_DT_ENDPOINT_SIZE &&
1997 length != USB_DT_ENDPOINT_AUDIO_SIZE)
1998 goto inv_length;
1999 __entity(ENDPOINT, ds->bEndpointAddress);
2000 }
2001 break;
2002
2003 case HID_DT_HID:
2004 pr_vdebug("hid descriptor\n");
2005 if (length != sizeof(struct hid_descriptor))
2006 goto inv_length;
2007 break;
2008
2009 case USB_DT_OTG:
2010 if (length != sizeof(struct usb_otg_descriptor))
2011 goto inv_length;
2012 break;
2013
2014 case USB_DT_INTERFACE_ASSOCIATION: {
2015 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2016 pr_vdebug("interface association descriptor\n");
2017 if (length != sizeof *ds)
2018 goto inv_length;
2019 if (ds->iFunction)
2020 __entity(STRING, ds->iFunction);
2021 }
2022 break;
2023
2024 case USB_DT_SS_ENDPOINT_COMP:
2025 pr_vdebug("EP SS companion descriptor\n");
2026 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2027 goto inv_length;
2028 break;
2029
2030 case USB_DT_OTHER_SPEED_CONFIG:
2031 case USB_DT_INTERFACE_POWER:
2032 case USB_DT_DEBUG:
2033 case USB_DT_SECURITY:
2034 case USB_DT_CS_RADIO_CONTROL:
2035 /* TODO */
2036 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2037 return -EINVAL;
2038
2039 default:
2040 /* We should never be here */
2041 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2042 return -EINVAL;
2043
2044 inv_length:
2045 pr_vdebug("invalid length: %d (descriptor %d)\n",
2046 _ds->bLength, _ds->bDescriptorType);
2047 return -EINVAL;
2048 }
2049
2050 #undef __entity
2051 #undef __entity_check_DESCRIPTOR
2052 #undef __entity_check_INTERFACE
2053 #undef __entity_check_STRING
2054 #undef __entity_check_ENDPOINT
2055
2056 return length;
2057 }
2058
2059 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2060 ffs_entity_callback entity, void *priv)
2061 {
2062 const unsigned _len = len;
2063 unsigned long num = 0;
2064
2065 ENTER();
2066
2067 for (;;) {
2068 int ret;
2069
2070 if (num == count)
2071 data = NULL;
2072
2073 /* Record "descriptor" entity */
2074 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2075 if (unlikely(ret < 0)) {
2076 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2077 num, ret);
2078 return ret;
2079 }
2080
2081 if (!data)
2082 return _len - len;
2083
2084 ret = ffs_do_single_desc(data, len, entity, priv);
2085 if (unlikely(ret < 0)) {
2086 pr_debug("%s returns %d\n", __func__, ret);
2087 return ret;
2088 }
2089
2090 len -= ret;
2091 data += ret;
2092 ++num;
2093 }
2094 }
2095
2096 static int __ffs_data_do_entity(enum ffs_entity_type type,
2097 u8 *valuep, struct usb_descriptor_header *desc,
2098 void *priv)
2099 {
2100 struct ffs_desc_helper *helper = priv;
2101 struct usb_endpoint_descriptor *d;
2102
2103 ENTER();
2104
2105 switch (type) {
2106 case FFS_DESCRIPTOR:
2107 break;
2108
2109 case FFS_INTERFACE:
2110 /*
2111 * Interfaces are indexed from zero so if we
2112 * encountered interface "n" then there are at least
2113 * "n+1" interfaces.
2114 */
2115 if (*valuep >= helper->interfaces_count)
2116 helper->interfaces_count = *valuep + 1;
2117 break;
2118
2119 case FFS_STRING:
2120 /*
2121 * Strings are indexed from 1 (0 is reserved
2122 * for languages list)
2123 */
2124 if (*valuep > helper->ffs->strings_count)
2125 helper->ffs->strings_count = *valuep;
2126 break;
2127
2128 case FFS_ENDPOINT:
2129 d = (void *)desc;
2130 helper->eps_count++;
2131 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2132 return -EINVAL;
2133 /* Check if descriptors for any speed were already parsed */
2134 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2135 helper->ffs->eps_addrmap[helper->eps_count] =
2136 d->bEndpointAddress;
2137 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2138 d->bEndpointAddress)
2139 return -EINVAL;
2140 break;
2141 }
2142
2143 return 0;
2144 }
2145
2146 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2147 struct usb_os_desc_header *desc)
2148 {
2149 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2150 u16 w_index = le16_to_cpu(desc->wIndex);
2151
2152 if (bcd_version != 1) {
2153 pr_vdebug("unsupported os descriptors version: %d",
2154 bcd_version);
2155 return -EINVAL;
2156 }
2157 switch (w_index) {
2158 case 0x4:
2159 *next_type = FFS_OS_DESC_EXT_COMPAT;
2160 break;
2161 case 0x5:
2162 *next_type = FFS_OS_DESC_EXT_PROP;
2163 break;
2164 default:
2165 pr_vdebug("unsupported os descriptor type: %d", w_index);
2166 return -EINVAL;
2167 }
2168
2169 return sizeof(*desc);
2170 }
2171
2172 /*
2173 * Process all extended compatibility/extended property descriptors
2174 * of a feature descriptor
2175 */
2176 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2177 enum ffs_os_desc_type type,
2178 u16 feature_count,
2179 ffs_os_desc_callback entity,
2180 void *priv,
2181 struct usb_os_desc_header *h)
2182 {
2183 int ret;
2184 const unsigned _len = len;
2185
2186 ENTER();
2187
2188 /* loop over all ext compat/ext prop descriptors */
2189 while (feature_count--) {
2190 ret = entity(type, h, data, len, priv);
2191 if (unlikely(ret < 0)) {
2192 pr_debug("bad OS descriptor, type: %d\n", type);
2193 return ret;
2194 }
2195 data += ret;
2196 len -= ret;
2197 }
2198 return _len - len;
2199 }
2200
2201 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2202 static int __must_check ffs_do_os_descs(unsigned count,
2203 char *data, unsigned len,
2204 ffs_os_desc_callback entity, void *priv)
2205 {
2206 const unsigned _len = len;
2207 unsigned long num = 0;
2208
2209 ENTER();
2210
2211 for (num = 0; num < count; ++num) {
2212 int ret;
2213 enum ffs_os_desc_type type;
2214 u16 feature_count;
2215 struct usb_os_desc_header *desc = (void *)data;
2216
2217 if (len < sizeof(*desc))
2218 return -EINVAL;
2219
2220 /*
2221 * Record "descriptor" entity.
2222 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2223 * Move the data pointer to the beginning of extended
2224 * compatibilities proper or extended properties proper
2225 * portions of the data
2226 */
2227 if (le32_to_cpu(desc->dwLength) > len)
2228 return -EINVAL;
2229
2230 ret = __ffs_do_os_desc_header(&type, desc);
2231 if (unlikely(ret < 0)) {
2232 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2233 num, ret);
2234 return ret;
2235 }
2236 /*
2237 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2238 */
2239 feature_count = le16_to_cpu(desc->wCount);
2240 if (type == FFS_OS_DESC_EXT_COMPAT &&
2241 (feature_count > 255 || desc->Reserved))
2242 return -EINVAL;
2243 len -= ret;
2244 data += ret;
2245
2246 /*
2247 * Process all function/property descriptors
2248 * of this Feature Descriptor
2249 */
2250 ret = ffs_do_single_os_desc(data, len, type,
2251 feature_count, entity, priv, desc);
2252 if (unlikely(ret < 0)) {
2253 pr_debug("%s returns %d\n", __func__, ret);
2254 return ret;
2255 }
2256
2257 len -= ret;
2258 data += ret;
2259 }
2260 return _len - len;
2261 }
2262
2263 /**
2264 * Validate contents of the buffer from userspace related to OS descriptors.
2265 */
2266 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2267 struct usb_os_desc_header *h, void *data,
2268 unsigned len, void *priv)
2269 {
2270 struct ffs_data *ffs = priv;
2271 u8 length;
2272
2273 ENTER();
2274
2275 switch (type) {
2276 case FFS_OS_DESC_EXT_COMPAT: {
2277 struct usb_ext_compat_desc *d = data;
2278 int i;
2279
2280 if (len < sizeof(*d) ||
2281 d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2282 !d->Reserved1)
2283 return -EINVAL;
2284 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2285 if (d->Reserved2[i])
2286 return -EINVAL;
2287
2288 length = sizeof(struct usb_ext_compat_desc);
2289 }
2290 break;
2291 case FFS_OS_DESC_EXT_PROP: {
2292 struct usb_ext_prop_desc *d = data;
2293 u32 type, pdl;
2294 u16 pnl;
2295
2296 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2297 return -EINVAL;
2298 length = le32_to_cpu(d->dwSize);
2299 if (len < length)
2300 return -EINVAL;
2301 type = le32_to_cpu(d->dwPropertyDataType);
2302 if (type < USB_EXT_PROP_UNICODE ||
2303 type > USB_EXT_PROP_UNICODE_MULTI) {
2304 pr_vdebug("unsupported os descriptor property type: %d",
2305 type);
2306 return -EINVAL;
2307 }
2308 pnl = le16_to_cpu(d->wPropertyNameLength);
2309 if (length < 14 + pnl) {
2310 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2311 length, pnl, type);
2312 return -EINVAL;
2313 }
2314 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2315 if (length != 14 + pnl + pdl) {
2316 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2317 length, pnl, pdl, type);
2318 return -EINVAL;
2319 }
2320 ++ffs->ms_os_descs_ext_prop_count;
2321 /* property name reported to the host as "WCHAR"s */
2322 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2323 ffs->ms_os_descs_ext_prop_data_len += pdl;
2324 }
2325 break;
2326 default:
2327 pr_vdebug("unknown descriptor: %d\n", type);
2328 return -EINVAL;
2329 }
2330 return length;
2331 }
2332
2333 static int __ffs_data_got_descs(struct ffs_data *ffs,
2334 char *const _data, size_t len)
2335 {
2336 char *data = _data, *raw_descs;
2337 unsigned os_descs_count = 0, counts[3], flags;
2338 int ret = -EINVAL, i;
2339 struct ffs_desc_helper helper;
2340
2341 ENTER();
2342
2343 if (get_unaligned_le32(data + 4) != len)
2344 goto error;
2345
2346 switch (get_unaligned_le32(data)) {
2347 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2348 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2349 data += 8;
2350 len -= 8;
2351 break;
2352 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2353 flags = get_unaligned_le32(data + 8);
2354 ffs->user_flags = flags;
2355 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2356 FUNCTIONFS_HAS_HS_DESC |
2357 FUNCTIONFS_HAS_SS_DESC |
2358 FUNCTIONFS_HAS_MS_OS_DESC |
2359 FUNCTIONFS_VIRTUAL_ADDR |
2360 FUNCTIONFS_EVENTFD |
2361 FUNCTIONFS_ALL_CTRL_RECIP |
2362 FUNCTIONFS_CONFIG0_SETUP)) {
2363 ret = -ENOSYS;
2364 goto error;
2365 }
2366 data += 12;
2367 len -= 12;
2368 break;
2369 default:
2370 goto error;
2371 }
2372
2373 if (flags & FUNCTIONFS_EVENTFD) {
2374 if (len < 4)
2375 goto error;
2376 ffs->ffs_eventfd =
2377 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2378 if (IS_ERR(ffs->ffs_eventfd)) {
2379 ret = PTR_ERR(ffs->ffs_eventfd);
2380 ffs->ffs_eventfd = NULL;
2381 goto error;
2382 }
2383 data += 4;
2384 len -= 4;
2385 }
2386
2387 /* Read fs_count, hs_count and ss_count (if present) */
2388 for (i = 0; i < 3; ++i) {
2389 if (!(flags & (1 << i))) {
2390 counts[i] = 0;
2391 } else if (len < 4) {
2392 goto error;
2393 } else {
2394 counts[i] = get_unaligned_le32(data);
2395 data += 4;
2396 len -= 4;
2397 }
2398 }
2399 if (flags & (1 << i)) {
2400 if (len < 4) {
2401 goto error;
2402 }
2403 os_descs_count = get_unaligned_le32(data);
2404 data += 4;
2405 len -= 4;
2406 };
2407
2408 /* Read descriptors */
2409 raw_descs = data;
2410 helper.ffs = ffs;
2411 for (i = 0; i < 3; ++i) {
2412 if (!counts[i])
2413 continue;
2414 helper.interfaces_count = 0;
2415 helper.eps_count = 0;
2416 ret = ffs_do_descs(counts[i], data, len,
2417 __ffs_data_do_entity, &helper);
2418 if (ret < 0)
2419 goto error;
2420 if (!ffs->eps_count && !ffs->interfaces_count) {
2421 ffs->eps_count = helper.eps_count;
2422 ffs->interfaces_count = helper.interfaces_count;
2423 } else {
2424 if (ffs->eps_count != helper.eps_count) {
2425 ret = -EINVAL;
2426 goto error;
2427 }
2428 if (ffs->interfaces_count != helper.interfaces_count) {
2429 ret = -EINVAL;
2430 goto error;
2431 }
2432 }
2433 data += ret;
2434 len -= ret;
2435 }
2436 if (os_descs_count) {
2437 ret = ffs_do_os_descs(os_descs_count, data, len,
2438 __ffs_data_do_os_desc, ffs);
2439 if (ret < 0)
2440 goto error;
2441 data += ret;
2442 len -= ret;
2443 }
2444
2445 if (raw_descs == data || len) {
2446 ret = -EINVAL;
2447 goto error;
2448 }
2449
2450 ffs->raw_descs_data = _data;
2451 ffs->raw_descs = raw_descs;
2452 ffs->raw_descs_length = data - raw_descs;
2453 ffs->fs_descs_count = counts[0];
2454 ffs->hs_descs_count = counts[1];
2455 ffs->ss_descs_count = counts[2];
2456 ffs->ms_os_descs_count = os_descs_count;
2457
2458 return 0;
2459
2460 error:
2461 kfree(_data);
2462 return ret;
2463 }
2464
2465 static int __ffs_data_got_strings(struct ffs_data *ffs,
2466 char *const _data, size_t len)
2467 {
2468 u32 str_count, needed_count, lang_count;
2469 struct usb_gadget_strings **stringtabs, *t;
2470 const char *data = _data;
2471 struct usb_string *s;
2472
2473 ENTER();
2474
2475 if (unlikely(len < 16 ||
2476 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2477 get_unaligned_le32(data + 4) != len))
2478 goto error;
2479 str_count = get_unaligned_le32(data + 8);
2480 lang_count = get_unaligned_le32(data + 12);
2481
2482 /* if one is zero the other must be zero */
2483 if (unlikely(!str_count != !lang_count))
2484 goto error;
2485
2486 /* Do we have at least as many strings as descriptors need? */
2487 needed_count = ffs->strings_count;
2488 if (unlikely(str_count < needed_count))
2489 goto error;
2490
2491 /*
2492 * If we don't need any strings just return and free all
2493 * memory.
2494 */
2495 if (!needed_count) {
2496 kfree(_data);
2497 return 0;
2498 }
2499
2500 /* Allocate everything in one chunk so there's less maintenance. */
2501 {
2502 unsigned i = 0;
2503 vla_group(d);
2504 vla_item(d, struct usb_gadget_strings *, stringtabs,
2505 lang_count + 1);
2506 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2507 vla_item(d, struct usb_string, strings,
2508 lang_count*(needed_count+1));
2509
2510 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2511
2512 if (unlikely(!vlabuf)) {
2513 kfree(_data);
2514 return -ENOMEM;
2515 }
2516
2517 /* Initialize the VLA pointers */
2518 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2519 t = vla_ptr(vlabuf, d, stringtab);
2520 i = lang_count;
2521 do {
2522 *stringtabs++ = t++;
2523 } while (--i);
2524 *stringtabs = NULL;
2525
2526 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2527 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2528 t = vla_ptr(vlabuf, d, stringtab);
2529 s = vla_ptr(vlabuf, d, strings);
2530 }
2531
2532 /* For each language */
2533 data += 16;
2534 len -= 16;
2535
2536 do { /* lang_count > 0 so we can use do-while */
2537 unsigned needed = needed_count;
2538
2539 if (unlikely(len < 3))
2540 goto error_free;
2541 t->language = get_unaligned_le16(data);
2542 t->strings = s;
2543 ++t;
2544
2545 data += 2;
2546 len -= 2;
2547
2548 /* For each string */
2549 do { /* str_count > 0 so we can use do-while */
2550 size_t length = strnlen(data, len);
2551
2552 if (unlikely(length == len))
2553 goto error_free;
2554
2555 /*
2556 * User may provide more strings then we need,
2557 * if that's the case we simply ignore the
2558 * rest
2559 */
2560 if (likely(needed)) {
2561 /*
2562 * s->id will be set while adding
2563 * function to configuration so for
2564 * now just leave garbage here.
2565 */
2566 s->s = data;
2567 --needed;
2568 ++s;
2569 }
2570
2571 data += length + 1;
2572 len -= length + 1;
2573 } while (--str_count);
2574
2575 s->id = 0; /* terminator */
2576 s->s = NULL;
2577 ++s;
2578
2579 } while (--lang_count);
2580
2581 /* Some garbage left? */
2582 if (unlikely(len))
2583 goto error_free;
2584
2585 /* Done! */
2586 ffs->stringtabs = stringtabs;
2587 ffs->raw_strings = _data;
2588
2589 return 0;
2590
2591 error_free:
2592 kfree(stringtabs);
2593 error:
2594 kfree(_data);
2595 return -EINVAL;
2596 }
2597
2598
2599 /* Events handling and management *******************************************/
2600
2601 static void __ffs_event_add(struct ffs_data *ffs,
2602 enum usb_functionfs_event_type type)
2603 {
2604 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2605 int neg = 0;
2606
2607 /*
2608 * Abort any unhandled setup
2609 *
2610 * We do not need to worry about some cmpxchg() changing value
2611 * of ffs->setup_state without holding the lock because when
2612 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2613 * the source does nothing.
2614 */
2615 if (ffs->setup_state == FFS_SETUP_PENDING)
2616 ffs->setup_state = FFS_SETUP_CANCELLED;
2617
2618 /*
2619 * Logic of this function guarantees that there are at most four pending
2620 * evens on ffs->ev.types queue. This is important because the queue
2621 * has space for four elements only and __ffs_ep0_read_events function
2622 * depends on that limit as well. If more event types are added, those
2623 * limits have to be revisited or guaranteed to still hold.
2624 */
2625 switch (type) {
2626 case FUNCTIONFS_RESUME:
2627 rem_type2 = FUNCTIONFS_SUSPEND;
2628 /* FALL THROUGH */
2629 case FUNCTIONFS_SUSPEND:
2630 case FUNCTIONFS_SETUP:
2631 rem_type1 = type;
2632 /* Discard all similar events */
2633 break;
2634
2635 case FUNCTIONFS_BIND:
2636 case FUNCTIONFS_UNBIND:
2637 case FUNCTIONFS_DISABLE:
2638 case FUNCTIONFS_ENABLE:
2639 /* Discard everything other then power management. */
2640 rem_type1 = FUNCTIONFS_SUSPEND;
2641 rem_type2 = FUNCTIONFS_RESUME;
2642 neg = 1;
2643 break;
2644
2645 default:
2646 WARN(1, "%d: unknown event, this should not happen\n", type);
2647 return;
2648 }
2649
2650 {
2651 u8 *ev = ffs->ev.types, *out = ev;
2652 unsigned n = ffs->ev.count;
2653 for (; n; --n, ++ev)
2654 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2655 *out++ = *ev;
2656 else
2657 pr_vdebug("purging event %d\n", *ev);
2658 ffs->ev.count = out - ffs->ev.types;
2659 }
2660
2661 pr_vdebug("adding event %d\n", type);
2662 ffs->ev.types[ffs->ev.count++] = type;
2663 wake_up_locked(&ffs->ev.waitq);
2664 if (ffs->ffs_eventfd)
2665 eventfd_signal(ffs->ffs_eventfd, 1);
2666 }
2667
2668 static void ffs_event_add(struct ffs_data *ffs,
2669 enum usb_functionfs_event_type type)
2670 {
2671 unsigned long flags;
2672 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2673 __ffs_event_add(ffs, type);
2674 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2675 }
2676
2677 /* Bind/unbind USB function hooks *******************************************/
2678
2679 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2680 {
2681 int i;
2682
2683 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2684 if (ffs->eps_addrmap[i] == endpoint_address)
2685 return i;
2686 return -ENOENT;
2687 }
2688
2689 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2690 struct usb_descriptor_header *desc,
2691 void *priv)
2692 {
2693 struct usb_endpoint_descriptor *ds = (void *)desc;
2694 struct ffs_function *func = priv;
2695 struct ffs_ep *ffs_ep;
2696 unsigned ep_desc_id;
2697 int idx;
2698 static const char *speed_names[] = { "full", "high", "super" };
2699
2700 if (type != FFS_DESCRIPTOR)
2701 return 0;
2702
2703 /*
2704 * If ss_descriptors is not NULL, we are reading super speed
2705 * descriptors; if hs_descriptors is not NULL, we are reading high
2706 * speed descriptors; otherwise, we are reading full speed
2707 * descriptors.
2708 */
2709 if (func->function.ss_descriptors) {
2710 ep_desc_id = 2;
2711 func->function.ss_descriptors[(long)valuep] = desc;
2712 } else if (func->function.hs_descriptors) {
2713 ep_desc_id = 1;
2714 func->function.hs_descriptors[(long)valuep] = desc;
2715 } else {
2716 ep_desc_id = 0;
2717 func->function.fs_descriptors[(long)valuep] = desc;
2718 }
2719
2720 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2721 return 0;
2722
2723 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2724 if (idx < 0)
2725 return idx;
2726
2727 ffs_ep = func->eps + idx;
2728
2729 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2730 pr_err("two %sspeed descriptors for EP %d\n",
2731 speed_names[ep_desc_id],
2732 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2733 return -EINVAL;
2734 }
2735 ffs_ep->descs[ep_desc_id] = ds;
2736
2737 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2738 if (ffs_ep->ep) {
2739 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2740 if (!ds->wMaxPacketSize)
2741 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2742 } else {
2743 struct usb_request *req;
2744 struct usb_ep *ep;
2745 u8 bEndpointAddress;
2746
2747 /*
2748 * We back up bEndpointAddress because autoconfig overwrites
2749 * it with physical endpoint address.
2750 */
2751 bEndpointAddress = ds->bEndpointAddress;
2752 pr_vdebug("autoconfig\n");
2753 ep = usb_ep_autoconfig(func->gadget, ds);
2754 if (unlikely(!ep))
2755 return -ENOTSUPP;
2756 ep->driver_data = func->eps + idx;
2757
2758 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2759 if (unlikely(!req))
2760 return -ENOMEM;
2761
2762 ffs_ep->ep = ep;
2763 ffs_ep->req = req;
2764 func->eps_revmap[ds->bEndpointAddress &
2765 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2766 /*
2767 * If we use virtual address mapping, we restore
2768 * original bEndpointAddress value.
2769 */
2770 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2771 ds->bEndpointAddress = bEndpointAddress;
2772 }
2773 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2774
2775 return 0;
2776 }
2777
2778 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2779 struct usb_descriptor_header *desc,
2780 void *priv)
2781 {
2782 struct ffs_function *func = priv;
2783 unsigned idx;
2784 u8 newValue;
2785
2786 switch (type) {
2787 default:
2788 case FFS_DESCRIPTOR:
2789 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2790 return 0;
2791
2792 case FFS_INTERFACE:
2793 idx = *valuep;
2794 if (func->interfaces_nums[idx] < 0) {
2795 int id = usb_interface_id(func->conf, &func->function);
2796 if (unlikely(id < 0))
2797 return id;
2798 func->interfaces_nums[idx] = id;
2799 }
2800 newValue = func->interfaces_nums[idx];
2801 break;
2802
2803 case FFS_STRING:
2804 /* String' IDs are allocated when fsf_data is bound to cdev */
2805 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2806 break;
2807
2808 case FFS_ENDPOINT:
2809 /*
2810 * USB_DT_ENDPOINT are handled in
2811 * __ffs_func_bind_do_descs().
2812 */
2813 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2814 return 0;
2815
2816 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2817 if (unlikely(!func->eps[idx].ep))
2818 return -EINVAL;
2819
2820 {
2821 struct usb_endpoint_descriptor **descs;
2822 descs = func->eps[idx].descs;
2823 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2824 }
2825 break;
2826 }
2827
2828 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2829 *valuep = newValue;
2830 return 0;
2831 }
2832
2833 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2834 struct usb_os_desc_header *h, void *data,
2835 unsigned len, void *priv)
2836 {
2837 struct ffs_function *func = priv;
2838 u8 length = 0;
2839
2840 switch (type) {
2841 case FFS_OS_DESC_EXT_COMPAT: {
2842 struct usb_ext_compat_desc *desc = data;
2843 struct usb_os_desc_table *t;
2844
2845 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2846 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2847 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2848 ARRAY_SIZE(desc->CompatibleID) +
2849 ARRAY_SIZE(desc->SubCompatibleID));
2850 length = sizeof(*desc);
2851 }
2852 break;
2853 case FFS_OS_DESC_EXT_PROP: {
2854 struct usb_ext_prop_desc *desc = data;
2855 struct usb_os_desc_table *t;
2856 struct usb_os_desc_ext_prop *ext_prop;
2857 char *ext_prop_name;
2858 char *ext_prop_data;
2859
2860 t = &func->function.os_desc_table[h->interface];
2861 t->if_id = func->interfaces_nums[h->interface];
2862
2863 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2864 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2865
2866 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2867 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2868 ext_prop->data_len = le32_to_cpu(*(u32 *)
2869 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2870 length = ext_prop->name_len + ext_prop->data_len + 14;
2871
2872 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2873 func->ffs->ms_os_descs_ext_prop_name_avail +=
2874 ext_prop->name_len;
2875
2876 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2877 func->ffs->ms_os_descs_ext_prop_data_avail +=
2878 ext_prop->data_len;
2879 memcpy(ext_prop_data,
2880 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2881 ext_prop->data_len);
2882 /* unicode data reported to the host as "WCHAR"s */
2883 switch (ext_prop->type) {
2884 case USB_EXT_PROP_UNICODE:
2885 case USB_EXT_PROP_UNICODE_ENV:
2886 case USB_EXT_PROP_UNICODE_LINK:
2887 case USB_EXT_PROP_UNICODE_MULTI:
2888 ext_prop->data_len *= 2;
2889 break;
2890 }
2891 ext_prop->data = ext_prop_data;
2892
2893 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2894 ext_prop->name_len);
2895 /* property name reported to the host as "WCHAR"s */
2896 ext_prop->name_len *= 2;
2897 ext_prop->name = ext_prop_name;
2898
2899 t->os_desc->ext_prop_len +=
2900 ext_prop->name_len + ext_prop->data_len + 14;
2901 ++t->os_desc->ext_prop_count;
2902 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2903 }
2904 break;
2905 default:
2906 pr_vdebug("unknown descriptor: %d\n", type);
2907 }
2908
2909 return length;
2910 }
2911
2912 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2913 struct usb_configuration *c)
2914 {
2915 struct ffs_function *func = ffs_func_from_usb(f);
2916 struct f_fs_opts *ffs_opts =
2917 container_of(f->fi, struct f_fs_opts, func_inst);
2918 int ret;
2919
2920 ENTER();
2921
2922 /*
2923 * Legacy gadget triggers binding in functionfs_ready_callback,
2924 * which already uses locking; taking the same lock here would
2925 * cause a deadlock.
2926 *
2927 * Configfs-enabled gadgets however do need ffs_dev_lock.
2928 */
2929 if (!ffs_opts->no_configfs)
2930 ffs_dev_lock();
2931 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2932 func->ffs = ffs_opts->dev->ffs_data;
2933 if (!ffs_opts->no_configfs)
2934 ffs_dev_unlock();
2935 if (ret)
2936 return ERR_PTR(ret);
2937
2938 func->conf = c;
2939 func->gadget = c->cdev->gadget;
2940
2941 /*
2942 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2943 * configurations are bound in sequence with list_for_each_entry,
2944 * in each configuration its functions are bound in sequence
2945 * with list_for_each_entry, so we assume no race condition
2946 * with regard to ffs_opts->bound access
2947 */
2948 if (!ffs_opts->refcnt) {
2949 ret = functionfs_bind(func->ffs, c->cdev);
2950 if (ret)
2951 return ERR_PTR(ret);
2952 }
2953 ffs_opts->refcnt++;
2954 func->function.strings = func->ffs->stringtabs;
2955
2956 return ffs_opts;
2957 }
2958
2959 static int _ffs_func_bind(struct usb_configuration *c,
2960 struct usb_function *f)
2961 {
2962 struct ffs_function *func = ffs_func_from_usb(f);
2963 struct ffs_data *ffs = func->ffs;
2964
2965 const int full = !!func->ffs->fs_descs_count;
2966 const int high = gadget_is_dualspeed(func->gadget) &&
2967 func->ffs->hs_descs_count;
2968 const int super = gadget_is_superspeed(func->gadget) &&
2969 func->ffs->ss_descs_count;
2970
2971 int fs_len, hs_len, ss_len, ret, i;
2972 struct ffs_ep *eps_ptr;
2973
2974 /* Make it a single chunk, less management later on */
2975 vla_group(d);
2976 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2977 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2978 full ? ffs->fs_descs_count + 1 : 0);
2979 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2980 high ? ffs->hs_descs_count + 1 : 0);
2981 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2982 super ? ffs->ss_descs_count + 1 : 0);
2983 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2984 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2985 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2986 vla_item_with_sz(d, char[16], ext_compat,
2987 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2988 vla_item_with_sz(d, struct usb_os_desc, os_desc,
2989 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2990 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2991 ffs->ms_os_descs_ext_prop_count);
2992 vla_item_with_sz(d, char, ext_prop_name,
2993 ffs->ms_os_descs_ext_prop_name_len);
2994 vla_item_with_sz(d, char, ext_prop_data,
2995 ffs->ms_os_descs_ext_prop_data_len);
2996 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2997 char *vlabuf;
2998
2999 ENTER();
3000
3001 /* Has descriptors only for speeds gadget does not support */
3002 if (unlikely(!(full | high | super)))
3003 return -ENOTSUPP;
3004
3005 /* Allocate a single chunk, less management later on */
3006 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3007 if (unlikely(!vlabuf))
3008 return -ENOMEM;
3009
3010 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3011 ffs->ms_os_descs_ext_prop_name_avail =
3012 vla_ptr(vlabuf, d, ext_prop_name);
3013 ffs->ms_os_descs_ext_prop_data_avail =
3014 vla_ptr(vlabuf, d, ext_prop_data);
3015
3016 /* Copy descriptors */
3017 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3018 ffs->raw_descs_length);
3019
3020 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3021 eps_ptr = vla_ptr(vlabuf, d, eps);
3022 for (i = 0; i < ffs->eps_count; i++)
3023 eps_ptr[i].num = -1;
3024
3025 /* Save pointers
3026 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3027 */
3028 func->eps = vla_ptr(vlabuf, d, eps);
3029 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3030
3031 /*
3032 * Go through all the endpoint descriptors and allocate
3033 * endpoints first, so that later we can rewrite the endpoint
3034 * numbers without worrying that it may be described later on.
3035 */
3036 if (likely(full)) {
3037 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3038 fs_len = ffs_do_descs(ffs->fs_descs_count,
3039 vla_ptr(vlabuf, d, raw_descs),
3040 d_raw_descs__sz,
3041 __ffs_func_bind_do_descs, func);
3042 if (unlikely(fs_len < 0)) {
3043 ret = fs_len;
3044 goto error;
3045 }
3046 } else {
3047 fs_len = 0;
3048 }
3049
3050 if (likely(high)) {
3051 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3052 hs_len = ffs_do_descs(ffs->hs_descs_count,
3053 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3054 d_raw_descs__sz - fs_len,
3055 __ffs_func_bind_do_descs, func);
3056 if (unlikely(hs_len < 0)) {
3057 ret = hs_len;
3058 goto error;
3059 }
3060 } else {
3061 hs_len = 0;
3062 }
3063
3064 if (likely(super)) {
3065 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3066 ss_len = ffs_do_descs(ffs->ss_descs_count,
3067 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3068 d_raw_descs__sz - fs_len - hs_len,
3069 __ffs_func_bind_do_descs, func);
3070 if (unlikely(ss_len < 0)) {
3071 ret = ss_len;
3072 goto error;
3073 }
3074 } else {
3075 ss_len = 0;
3076 }
3077
3078 /*
3079 * Now handle interface numbers allocation and interface and
3080 * endpoint numbers rewriting. We can do that in one go
3081 * now.
3082 */
3083 ret = ffs_do_descs(ffs->fs_descs_count +
3084 (high ? ffs->hs_descs_count : 0) +
3085 (super ? ffs->ss_descs_count : 0),
3086 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3087 __ffs_func_bind_do_nums, func);
3088 if (unlikely(ret < 0))
3089 goto error;
3090
3091 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3092 if (c->cdev->use_os_string) {
3093 for (i = 0; i < ffs->interfaces_count; ++i) {
3094 struct usb_os_desc *desc;
3095
3096 desc = func->function.os_desc_table[i].os_desc =
3097 vla_ptr(vlabuf, d, os_desc) +
3098 i * sizeof(struct usb_os_desc);
3099 desc->ext_compat_id =
3100 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3101 INIT_LIST_HEAD(&desc->ext_prop);
3102 }
3103 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3104 vla_ptr(vlabuf, d, raw_descs) +
3105 fs_len + hs_len + ss_len,
3106 d_raw_descs__sz - fs_len - hs_len -
3107 ss_len,
3108 __ffs_func_bind_do_os_desc, func);
3109 if (unlikely(ret < 0))
3110 goto error;
3111 }
3112 func->function.os_desc_n =
3113 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3114
3115 /* And we're done */
3116 ffs_event_add(ffs, FUNCTIONFS_BIND);
3117 return 0;
3118
3119 error:
3120 /* XXX Do we need to release all claimed endpoints here? */
3121 return ret;
3122 }
3123
3124 static int ffs_func_bind(struct usb_configuration *c,
3125 struct usb_function *f)
3126 {
3127 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3128 struct ffs_function *func = ffs_func_from_usb(f);
3129 int ret;
3130
3131 if (IS_ERR(ffs_opts))
3132 return PTR_ERR(ffs_opts);
3133
3134 ret = _ffs_func_bind(c, f);
3135 if (ret && !--ffs_opts->refcnt)
3136 functionfs_unbind(func->ffs);
3137
3138 return ret;
3139 }
3140
3141
3142 /* Other USB function hooks *************************************************/
3143
3144 static void ffs_reset_work(struct work_struct *work)
3145 {
3146 struct ffs_data *ffs = container_of(work,
3147 struct ffs_data, reset_work);
3148 ffs_data_reset(ffs);
3149 }
3150
3151 static int ffs_func_set_alt(struct usb_function *f,
3152 unsigned interface, unsigned alt)
3153 {
3154 struct ffs_function *func = ffs_func_from_usb(f);
3155 struct ffs_data *ffs = func->ffs;
3156 int ret = 0, intf;
3157
3158 if (alt != (unsigned)-1) {
3159 intf = ffs_func_revmap_intf(func, interface);
3160 if (unlikely(intf < 0))
3161 return intf;
3162 }
3163
3164 if (ffs->func)
3165 ffs_func_eps_disable(ffs->func);
3166
3167 if (ffs->state == FFS_DEACTIVATED) {
3168 ffs->state = FFS_CLOSING;
3169 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3170 schedule_work(&ffs->reset_work);
3171 return -ENODEV;
3172 }
3173
3174 if (ffs->state != FFS_ACTIVE)
3175 return -ENODEV;
3176
3177 if (alt == (unsigned)-1) {
3178 ffs->func = NULL;
3179 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3180 return 0;
3181 }
3182
3183 ffs->func = func;
3184 ret = ffs_func_eps_enable(func);
3185 if (likely(ret >= 0))
3186 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3187 return ret;
3188 }
3189
3190 static void ffs_func_disable(struct usb_function *f)
3191 {
3192 ffs_func_set_alt(f, 0, (unsigned)-1);
3193 }
3194
3195 static int ffs_func_setup(struct usb_function *f,
3196 const struct usb_ctrlrequest *creq)
3197 {
3198 struct ffs_function *func = ffs_func_from_usb(f);
3199 struct ffs_data *ffs = func->ffs;
3200 unsigned long flags;
3201 int ret;
3202
3203 ENTER();
3204
3205 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3206 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3207 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3208 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3209 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3210
3211 /*
3212 * Most requests directed to interface go through here
3213 * (notable exceptions are set/get interface) so we need to
3214 * handle them. All other either handled by composite or
3215 * passed to usb_configuration->setup() (if one is set). No
3216 * matter, we will handle requests directed to endpoint here
3217 * as well (as it's straightforward). Other request recipient
3218 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3219 * is being used.
3220 */
3221 if (ffs->state != FFS_ACTIVE)
3222 return -ENODEV;
3223
3224 switch (creq->bRequestType & USB_RECIP_MASK) {
3225 case USB_RECIP_INTERFACE:
3226 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3227 if (unlikely(ret < 0))
3228 return ret;
3229 break;
3230
3231 case USB_RECIP_ENDPOINT:
3232 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3233 if (unlikely(ret < 0))
3234 return ret;
3235 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3236 ret = func->ffs->eps_addrmap[ret];
3237 break;
3238
3239 default:
3240 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3241 ret = le16_to_cpu(creq->wIndex);
3242 else
3243 return -EOPNOTSUPP;
3244 }
3245
3246 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3247 ffs->ev.setup = *creq;
3248 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3249 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3250 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3251
3252 return 0;
3253 }
3254
3255 static bool ffs_func_req_match(struct usb_function *f,
3256 const struct usb_ctrlrequest *creq,
3257 bool config0)
3258 {
3259 struct ffs_function *func = ffs_func_from_usb(f);
3260
3261 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3262 return false;
3263
3264 switch (creq->bRequestType & USB_RECIP_MASK) {
3265 case USB_RECIP_INTERFACE:
3266 return (ffs_func_revmap_intf(func,
3267 le16_to_cpu(creq->wIndex)) >= 0);
3268 case USB_RECIP_ENDPOINT:
3269 return (ffs_func_revmap_ep(func,
3270 le16_to_cpu(creq->wIndex)) >= 0);
3271 default:
3272 return (bool) (func->ffs->user_flags &
3273 FUNCTIONFS_ALL_CTRL_RECIP);
3274 }
3275 }
3276
3277 static void ffs_func_suspend(struct usb_function *f)
3278 {
3279 ENTER();
3280 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3281 }
3282
3283 static void ffs_func_resume(struct usb_function *f)
3284 {
3285 ENTER();
3286 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3287 }
3288
3289
3290 /* Endpoint and interface numbers reverse mapping ***************************/
3291
3292 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3293 {
3294 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3295 return num ? num : -EDOM;
3296 }
3297
3298 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3299 {
3300 short *nums = func->interfaces_nums;
3301 unsigned count = func->ffs->interfaces_count;
3302
3303 for (; count; --count, ++nums) {
3304 if (*nums >= 0 && *nums == intf)
3305 return nums - func->interfaces_nums;
3306 }
3307
3308 return -EDOM;
3309 }
3310
3311
3312 /* Devices management *******************************************************/
3313
3314 static LIST_HEAD(ffs_devices);
3315
3316 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3317 {
3318 struct ffs_dev *dev;
3319
3320 if (!name)
3321 return NULL;
3322
3323 list_for_each_entry(dev, &ffs_devices, entry) {
3324 if (strcmp(dev->name, name) == 0)
3325 return dev;
3326 }
3327
3328 return NULL;
3329 }
3330
3331 /*
3332 * ffs_lock must be taken by the caller of this function
3333 */
3334 static struct ffs_dev *_ffs_get_single_dev(void)
3335 {
3336 struct ffs_dev *dev;
3337
3338 if (list_is_singular(&ffs_devices)) {
3339 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3340 if (dev->single)
3341 return dev;
3342 }
3343
3344 return NULL;
3345 }
3346
3347 /*
3348 * ffs_lock must be taken by the caller of this function
3349 */
3350 static struct ffs_dev *_ffs_find_dev(const char *name)
3351 {
3352 struct ffs_dev *dev;
3353
3354 dev = _ffs_get_single_dev();
3355 if (dev)
3356 return dev;
3357
3358 return _ffs_do_find_dev(name);
3359 }
3360
3361 /* Configfs support *********************************************************/
3362
3363 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3364 {
3365 return container_of(to_config_group(item), struct f_fs_opts,
3366 func_inst.group);
3367 }
3368
3369 static void ffs_attr_release(struct config_item *item)
3370 {
3371 struct f_fs_opts *opts = to_ffs_opts(item);
3372
3373 usb_put_function_instance(&opts->func_inst);
3374 }
3375
3376 static struct configfs_item_operations ffs_item_ops = {
3377 .release = ffs_attr_release,
3378 };
3379
3380 static struct config_item_type ffs_func_type = {
3381 .ct_item_ops = &ffs_item_ops,
3382 .ct_owner = THIS_MODULE,
3383 };
3384
3385
3386 /* Function registration interface ******************************************/
3387
3388 static void ffs_free_inst(struct usb_function_instance *f)
3389 {
3390 struct f_fs_opts *opts;
3391
3392 opts = to_f_fs_opts(f);
3393 ffs_dev_lock();
3394 _ffs_free_dev(opts->dev);
3395 ffs_dev_unlock();
3396 kfree(opts);
3397 }
3398
3399 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3400 {
3401 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3402 return -ENAMETOOLONG;
3403 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3404 }
3405
3406 static struct usb_function_instance *ffs_alloc_inst(void)
3407 {
3408 struct f_fs_opts *opts;
3409 struct ffs_dev *dev;
3410
3411 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3412 if (!opts)
3413 return ERR_PTR(-ENOMEM);
3414
3415 opts->func_inst.set_inst_name = ffs_set_inst_name;
3416 opts->func_inst.free_func_inst = ffs_free_inst;
3417 ffs_dev_lock();
3418 dev = _ffs_alloc_dev();
3419 ffs_dev_unlock();
3420 if (IS_ERR(dev)) {
3421 kfree(opts);
3422 return ERR_CAST(dev);
3423 }
3424 opts->dev = dev;
3425 dev->opts = opts;
3426
3427 config_group_init_type_name(&opts->func_inst.group, "",
3428 &ffs_func_type);
3429 return &opts->func_inst;
3430 }
3431
3432 static void ffs_free(struct usb_function *f)
3433 {
3434 kfree(ffs_func_from_usb(f));
3435 }
3436
3437 static void ffs_func_unbind(struct usb_configuration *c,
3438 struct usb_function *f)
3439 {
3440 struct ffs_function *func = ffs_func_from_usb(f);
3441 struct ffs_data *ffs = func->ffs;
3442 struct f_fs_opts *opts =
3443 container_of(f->fi, struct f_fs_opts, func_inst);
3444 struct ffs_ep *ep = func->eps;
3445 unsigned count = ffs->eps_count;
3446 unsigned long flags;
3447
3448 ENTER();
3449 if (ffs->func == func) {
3450 ffs_func_eps_disable(func);
3451 ffs->func = NULL;
3452 }
3453
3454 if (!--opts->refcnt)
3455 functionfs_unbind(ffs);
3456
3457 /* cleanup after autoconfig */
3458 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3459 while (count--) {
3460 if (ep->ep && ep->req)
3461 usb_ep_free_request(ep->ep, ep->req);
3462 ep->req = NULL;
3463 ++ep;
3464 }
3465 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3466 kfree(func->eps);
3467 func->eps = NULL;
3468 /*
3469 * eps, descriptors and interfaces_nums are allocated in the
3470 * same chunk so only one free is required.
3471 */
3472 func->function.fs_descriptors = NULL;
3473 func->function.hs_descriptors = NULL;
3474 func->function.ss_descriptors = NULL;
3475 func->interfaces_nums = NULL;
3476
3477 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3478 }
3479
3480 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3481 {
3482 struct ffs_function *func;
3483
3484 ENTER();
3485
3486 func = kzalloc(sizeof(*func), GFP_KERNEL);
3487 if (unlikely(!func))
3488 return ERR_PTR(-ENOMEM);
3489
3490 func->function.name = "Function FS Gadget";
3491
3492 func->function.bind = ffs_func_bind;
3493 func->function.unbind = ffs_func_unbind;
3494 func->function.set_alt = ffs_func_set_alt;
3495 func->function.disable = ffs_func_disable;
3496 func->function.setup = ffs_func_setup;
3497 func->function.req_match = ffs_func_req_match;
3498 func->function.suspend = ffs_func_suspend;
3499 func->function.resume = ffs_func_resume;
3500 func->function.free_func = ffs_free;
3501
3502 return &func->function;
3503 }
3504
3505 /*
3506 * ffs_lock must be taken by the caller of this function
3507 */
3508 static struct ffs_dev *_ffs_alloc_dev(void)
3509 {
3510 struct ffs_dev *dev;
3511 int ret;
3512
3513 if (_ffs_get_single_dev())
3514 return ERR_PTR(-EBUSY);
3515
3516 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3517 if (!dev)
3518 return ERR_PTR(-ENOMEM);
3519
3520 if (list_empty(&ffs_devices)) {
3521 ret = functionfs_init();
3522 if (ret) {
3523 kfree(dev);
3524 return ERR_PTR(ret);
3525 }
3526 }
3527
3528 list_add(&dev->entry, &ffs_devices);
3529
3530 return dev;
3531 }
3532
3533 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3534 {
3535 struct ffs_dev *existing;
3536 int ret = 0;
3537
3538 ffs_dev_lock();
3539
3540 existing = _ffs_do_find_dev(name);
3541 if (!existing)
3542 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3543 else if (existing != dev)
3544 ret = -EBUSY;
3545
3546 ffs_dev_unlock();
3547
3548 return ret;
3549 }
3550 EXPORT_SYMBOL_GPL(ffs_name_dev);
3551
3552 int ffs_single_dev(struct ffs_dev *dev)
3553 {
3554 int ret;
3555
3556 ret = 0;
3557 ffs_dev_lock();
3558
3559 if (!list_is_singular(&ffs_devices))
3560 ret = -EBUSY;
3561 else
3562 dev->single = true;
3563
3564 ffs_dev_unlock();
3565 return ret;
3566 }
3567 EXPORT_SYMBOL_GPL(ffs_single_dev);
3568
3569 /*
3570 * ffs_lock must be taken by the caller of this function
3571 */
3572 static void _ffs_free_dev(struct ffs_dev *dev)
3573 {
3574 list_del(&dev->entry);
3575
3576 /* Clear the private_data pointer to stop incorrect dev access */
3577 if (dev->ffs_data)
3578 dev->ffs_data->private_data = NULL;
3579
3580 kfree(dev);
3581 if (list_empty(&ffs_devices))
3582 functionfs_cleanup();
3583 }
3584
3585 static void *ffs_acquire_dev(const char *dev_name)
3586 {
3587 struct ffs_dev *ffs_dev;
3588
3589 ENTER();
3590 ffs_dev_lock();
3591
3592 ffs_dev = _ffs_find_dev(dev_name);
3593 if (!ffs_dev)
3594 ffs_dev = ERR_PTR(-ENOENT);
3595 else if (ffs_dev->mounted)
3596 ffs_dev = ERR_PTR(-EBUSY);
3597 else if (ffs_dev->ffs_acquire_dev_callback &&
3598 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3599 ffs_dev = ERR_PTR(-ENOENT);
3600 else
3601 ffs_dev->mounted = true;
3602
3603 ffs_dev_unlock();
3604 return ffs_dev;
3605 }
3606
3607 static void ffs_release_dev(struct ffs_data *ffs_data)
3608 {
3609 struct ffs_dev *ffs_dev;
3610
3611 ENTER();
3612 ffs_dev_lock();
3613
3614 ffs_dev = ffs_data->private_data;
3615 if (ffs_dev) {
3616 ffs_dev->mounted = false;
3617
3618 if (ffs_dev->ffs_release_dev_callback)
3619 ffs_dev->ffs_release_dev_callback(ffs_dev);
3620 }
3621
3622 ffs_dev_unlock();
3623 }
3624
3625 static int ffs_ready(struct ffs_data *ffs)
3626 {
3627 struct ffs_dev *ffs_obj;
3628 int ret = 0;
3629
3630 ENTER();
3631 ffs_dev_lock();
3632
3633 ffs_obj = ffs->private_data;
3634 if (!ffs_obj) {
3635 ret = -EINVAL;
3636 goto done;
3637 }
3638 if (WARN_ON(ffs_obj->desc_ready)) {
3639 ret = -EBUSY;
3640 goto done;
3641 }
3642
3643 ffs_obj->desc_ready = true;
3644 ffs_obj->ffs_data = ffs;
3645
3646 if (ffs_obj->ffs_ready_callback) {
3647 ret = ffs_obj->ffs_ready_callback(ffs);
3648 if (ret)
3649 goto done;
3650 }
3651
3652 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3653 done:
3654 ffs_dev_unlock();
3655 return ret;
3656 }
3657
3658 static void ffs_closed(struct ffs_data *ffs)
3659 {
3660 struct ffs_dev *ffs_obj;
3661 struct f_fs_opts *opts;
3662 struct config_item *ci;
3663
3664 ENTER();
3665 ffs_dev_lock();
3666
3667 ffs_obj = ffs->private_data;
3668 if (!ffs_obj)
3669 goto done;
3670
3671 ffs_obj->desc_ready = false;
3672
3673 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3674 ffs_obj->ffs_closed_callback)
3675 ffs_obj->ffs_closed_callback(ffs);
3676
3677 if (ffs_obj->opts)
3678 opts = ffs_obj->opts;
3679 else
3680 goto done;
3681
3682 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3683 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3684 goto done;
3685
3686 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3687 ffs_dev_unlock();
3688
3689 unregister_gadget_item(ci);
3690 return;
3691 done:
3692 ffs_dev_unlock();
3693 }
3694
3695 /* Misc helper functions ****************************************************/
3696
3697 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3698 {
3699 return nonblock
3700 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3701 : mutex_lock_interruptible(mutex);
3702 }
3703
3704 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3705 {
3706 char *data;
3707
3708 if (unlikely(!len))
3709 return NULL;
3710
3711 data = kmalloc(len, GFP_KERNEL);
3712 if (unlikely(!data))
3713 return ERR_PTR(-ENOMEM);
3714
3715 if (unlikely(copy_from_user(data, buf, len))) {
3716 kfree(data);
3717 return ERR_PTR(-EFAULT);
3718 }
3719
3720 pr_vdebug("Buffer from user space:\n");
3721 ffs_dump_mem("", data, len);
3722
3723 return data;
3724 }
3725
3726 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3727 MODULE_LICENSE("GPL");
3728 MODULE_AUTHOR("Michal Nazarewicz");