]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/gadget/function/f_fs.c
Merge tag 'pci-v4.12-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-artful-kernel.git] / drivers / usb / gadget / function / f_fs.c
1 /*
2 * f_fs.c -- user mode file system API for USB composite function controllers
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
6 *
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42
43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
50
51 /* Opened counter handling. */
52 static void ffs_data_opened(struct ffs_data *ffs);
53 static void ffs_data_closed(struct ffs_data *ffs);
54
55 /* Called with ffs->mutex held; take over ownership of data. */
56 static int __must_check
57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
58 static int __must_check
59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
60
61
62 /* The function structure ***************************************************/
63
64 struct ffs_ep;
65
66 struct ffs_function {
67 struct usb_configuration *conf;
68 struct usb_gadget *gadget;
69 struct ffs_data *ffs;
70
71 struct ffs_ep *eps;
72 u8 eps_revmap[16];
73 short *interfaces_nums;
74
75 struct usb_function function;
76 };
77
78
79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
80 {
81 return container_of(f, struct ffs_function, function);
82 }
83
84
85 static inline enum ffs_setup_state
86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
87 {
88 return (enum ffs_setup_state)
89 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
90 }
91
92
93 static void ffs_func_eps_disable(struct ffs_function *func);
94 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
95
96 static int ffs_func_bind(struct usb_configuration *,
97 struct usb_function *);
98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
99 static void ffs_func_disable(struct usb_function *);
100 static int ffs_func_setup(struct usb_function *,
101 const struct usb_ctrlrequest *);
102 static bool ffs_func_req_match(struct usb_function *,
103 const struct usb_ctrlrequest *,
104 bool config0);
105 static void ffs_func_suspend(struct usb_function *);
106 static void ffs_func_resume(struct usb_function *);
107
108
109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
111
112
113 /* The endpoints structures *************************************************/
114
115 struct ffs_ep {
116 struct usb_ep *ep; /* P: ffs->eps_lock */
117 struct usb_request *req; /* P: epfile->mutex */
118
119 /* [0]: full speed, [1]: high speed, [2]: super speed */
120 struct usb_endpoint_descriptor *descs[3];
121
122 u8 num;
123
124 int status; /* P: epfile->mutex */
125 };
126
127 struct ffs_epfile {
128 /* Protects ep->ep and ep->req. */
129 struct mutex mutex;
130 wait_queue_head_t wait;
131
132 struct ffs_data *ffs;
133 struct ffs_ep *ep; /* P: ffs->eps_lock */
134
135 struct dentry *dentry;
136
137 /*
138 * Buffer for holding data from partial reads which may happen since
139 * we’re rounding user read requests to a multiple of a max packet size.
140 *
141 * The pointer is initialised with NULL value and may be set by
142 * __ffs_epfile_read_data function to point to a temporary buffer.
143 *
144 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 * data from said buffer and eventually free it. Importantly, while the
146 * function is using the buffer, it sets the pointer to NULL. This is
147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 * can never run concurrently (they are synchronised by epfile->mutex)
149 * so the latter will not assign a new value to the pointer.
150 *
151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
153 * value is crux of the synchronisation between ffs_func_eps_disable and
154 * __ffs_epfile_read_data.
155 *
156 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 * pointer back to its old value (as described above), but seeing as the
158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 * the buffer.
160 *
161 * == State transitions ==
162 *
163 * • ptr == NULL: (initial state)
164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 * ◦ __ffs_epfile_read_buffered: nop
166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 * ◦ reading finishes: n/a, not in ‘and reading’ state
168 * • ptr == DROP:
169 * ◦ __ffs_epfile_read_buffer_free: nop
170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 * ◦ reading finishes: n/a, not in ‘and reading’ state
173 * • ptr == buf:
174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
177 * is always called first
178 * ◦ reading finishes: n/a, not in ‘and reading’ state
179 * • ptr == NULL and reading:
180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
182 * ◦ __ffs_epfile_read_data: n/a, mutex is held
183 * ◦ reading finishes and …
184 * … all data read: free buf, go to ptr == NULL
185 * … otherwise: go to ptr == buf and reading
186 * • ptr == DROP and reading:
187 * ◦ __ffs_epfile_read_buffer_free: nop
188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
189 * ◦ __ffs_epfile_read_data: n/a, mutex is held
190 * ◦ reading finishes: free buf, go to ptr == DROP
191 */
192 struct ffs_buffer *read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194
195 char name[5];
196
197 unsigned char in; /* P: ffs->eps_lock */
198 unsigned char isoc; /* P: ffs->eps_lock */
199
200 unsigned char _pad;
201 };
202
203 struct ffs_buffer {
204 size_t length;
205 char *data;
206 char storage[];
207 };
208
209 /* ffs_io_data structure ***************************************************/
210
211 struct ffs_io_data {
212 bool aio;
213 bool read;
214
215 struct kiocb *kiocb;
216 struct iov_iter data;
217 const void *to_free;
218 char *buf;
219
220 struct mm_struct *mm;
221 struct work_struct work;
222
223 struct usb_ep *ep;
224 struct usb_request *req;
225
226 struct ffs_data *ffs;
227 };
228
229 struct ffs_desc_helper {
230 struct ffs_data *ffs;
231 unsigned interfaces_count;
232 unsigned eps_count;
233 };
234
235 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240 const struct file_operations *fops);
241
242 /* Devices management *******************************************************/
243
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static void _ffs_free_dev(struct ffs_dev *dev);
250 static void *ffs_acquire_dev(const char *dev_name);
251 static void ffs_release_dev(struct ffs_data *ffs_data);
252 static int ffs_ready(struct ffs_data *ffs);
253 static void ffs_closed(struct ffs_data *ffs);
254
255 /* Misc helper functions ****************************************************/
256
257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
258 __attribute__((warn_unused_result, nonnull));
259 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 __attribute__((warn_unused_result, nonnull));
261
262
263 /* Control file aka ep0 *****************************************************/
264
265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
266 {
267 struct ffs_data *ffs = req->context;
268
269 complete(&ffs->ep0req_completion);
270 }
271
272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
273 {
274 struct usb_request *req = ffs->ep0req;
275 int ret;
276
277 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
278
279 spin_unlock_irq(&ffs->ev.waitq.lock);
280
281 req->buf = data;
282 req->length = len;
283
284 /*
285 * UDC layer requires to provide a buffer even for ZLP, but should
286 * not use it at all. Let's provide some poisoned pointer to catch
287 * possible bug in the driver.
288 */
289 if (req->buf == NULL)
290 req->buf = (void *)0xDEADBABE;
291
292 reinit_completion(&ffs->ep0req_completion);
293
294 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
295 if (unlikely(ret < 0))
296 return ret;
297
298 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
299 if (unlikely(ret)) {
300 usb_ep_dequeue(ffs->gadget->ep0, req);
301 return -EINTR;
302 }
303
304 ffs->setup_state = FFS_NO_SETUP;
305 return req->status ? req->status : req->actual;
306 }
307
308 static int __ffs_ep0_stall(struct ffs_data *ffs)
309 {
310 if (ffs->ev.can_stall) {
311 pr_vdebug("ep0 stall\n");
312 usb_ep_set_halt(ffs->gadget->ep0);
313 ffs->setup_state = FFS_NO_SETUP;
314 return -EL2HLT;
315 } else {
316 pr_debug("bogus ep0 stall!\n");
317 return -ESRCH;
318 }
319 }
320
321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
322 size_t len, loff_t *ptr)
323 {
324 struct ffs_data *ffs = file->private_data;
325 ssize_t ret;
326 char *data;
327
328 ENTER();
329
330 /* Fast check if setup was canceled */
331 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 return -EIDRM;
333
334 /* Acquire mutex */
335 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
336 if (unlikely(ret < 0))
337 return ret;
338
339 /* Check state */
340 switch (ffs->state) {
341 case FFS_READ_DESCRIPTORS:
342 case FFS_READ_STRINGS:
343 /* Copy data */
344 if (unlikely(len < 16)) {
345 ret = -EINVAL;
346 break;
347 }
348
349 data = ffs_prepare_buffer(buf, len);
350 if (IS_ERR(data)) {
351 ret = PTR_ERR(data);
352 break;
353 }
354
355 /* Handle data */
356 if (ffs->state == FFS_READ_DESCRIPTORS) {
357 pr_info("read descriptors\n");
358 ret = __ffs_data_got_descs(ffs, data, len);
359 if (unlikely(ret < 0))
360 break;
361
362 ffs->state = FFS_READ_STRINGS;
363 ret = len;
364 } else {
365 pr_info("read strings\n");
366 ret = __ffs_data_got_strings(ffs, data, len);
367 if (unlikely(ret < 0))
368 break;
369
370 ret = ffs_epfiles_create(ffs);
371 if (unlikely(ret)) {
372 ffs->state = FFS_CLOSING;
373 break;
374 }
375
376 ffs->state = FFS_ACTIVE;
377 mutex_unlock(&ffs->mutex);
378
379 ret = ffs_ready(ffs);
380 if (unlikely(ret < 0)) {
381 ffs->state = FFS_CLOSING;
382 return ret;
383 }
384
385 return len;
386 }
387 break;
388
389 case FFS_ACTIVE:
390 data = NULL;
391 /*
392 * We're called from user space, we can use _irq
393 * rather then _irqsave
394 */
395 spin_lock_irq(&ffs->ev.waitq.lock);
396 switch (ffs_setup_state_clear_cancelled(ffs)) {
397 case FFS_SETUP_CANCELLED:
398 ret = -EIDRM;
399 goto done_spin;
400
401 case FFS_NO_SETUP:
402 ret = -ESRCH;
403 goto done_spin;
404
405 case FFS_SETUP_PENDING:
406 break;
407 }
408
409 /* FFS_SETUP_PENDING */
410 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
411 spin_unlock_irq(&ffs->ev.waitq.lock);
412 ret = __ffs_ep0_stall(ffs);
413 break;
414 }
415
416 /* FFS_SETUP_PENDING and not stall */
417 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
418
419 spin_unlock_irq(&ffs->ev.waitq.lock);
420
421 data = ffs_prepare_buffer(buf, len);
422 if (IS_ERR(data)) {
423 ret = PTR_ERR(data);
424 break;
425 }
426
427 spin_lock_irq(&ffs->ev.waitq.lock);
428
429 /*
430 * We are guaranteed to be still in FFS_ACTIVE state
431 * but the state of setup could have changed from
432 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433 * to check for that. If that happened we copied data
434 * from user space in vain but it's unlikely.
435 *
436 * For sure we are not in FFS_NO_SETUP since this is
437 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
438 * transition can be performed and it's protected by
439 * mutex.
440 */
441 if (ffs_setup_state_clear_cancelled(ffs) ==
442 FFS_SETUP_CANCELLED) {
443 ret = -EIDRM;
444 done_spin:
445 spin_unlock_irq(&ffs->ev.waitq.lock);
446 } else {
447 /* unlocks spinlock */
448 ret = __ffs_ep0_queue_wait(ffs, data, len);
449 }
450 kfree(data);
451 break;
452
453 default:
454 ret = -EBADFD;
455 break;
456 }
457
458 mutex_unlock(&ffs->mutex);
459 return ret;
460 }
461
462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
464 size_t n)
465 {
466 /*
467 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
468 * size of ffs->ev.types array (which is four) so that's how much space
469 * we reserve.
470 */
471 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
472 const size_t size = n * sizeof *events;
473 unsigned i = 0;
474
475 memset(events, 0, size);
476
477 do {
478 events[i].type = ffs->ev.types[i];
479 if (events[i].type == FUNCTIONFS_SETUP) {
480 events[i].u.setup = ffs->ev.setup;
481 ffs->setup_state = FFS_SETUP_PENDING;
482 }
483 } while (++i < n);
484
485 ffs->ev.count -= n;
486 if (ffs->ev.count)
487 memmove(ffs->ev.types, ffs->ev.types + n,
488 ffs->ev.count * sizeof *ffs->ev.types);
489
490 spin_unlock_irq(&ffs->ev.waitq.lock);
491 mutex_unlock(&ffs->mutex);
492
493 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 }
495
496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
497 size_t len, loff_t *ptr)
498 {
499 struct ffs_data *ffs = file->private_data;
500 char *data = NULL;
501 size_t n;
502 int ret;
503
504 ENTER();
505
506 /* Fast check if setup was canceled */
507 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 return -EIDRM;
509
510 /* Acquire mutex */
511 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
512 if (unlikely(ret < 0))
513 return ret;
514
515 /* Check state */
516 if (ffs->state != FFS_ACTIVE) {
517 ret = -EBADFD;
518 goto done_mutex;
519 }
520
521 /*
522 * We're called from user space, we can use _irq rather then
523 * _irqsave
524 */
525 spin_lock_irq(&ffs->ev.waitq.lock);
526
527 switch (ffs_setup_state_clear_cancelled(ffs)) {
528 case FFS_SETUP_CANCELLED:
529 ret = -EIDRM;
530 break;
531
532 case FFS_NO_SETUP:
533 n = len / sizeof(struct usb_functionfs_event);
534 if (unlikely(!n)) {
535 ret = -EINVAL;
536 break;
537 }
538
539 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
540 ret = -EAGAIN;
541 break;
542 }
543
544 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
545 ffs->ev.count)) {
546 ret = -EINTR;
547 break;
548 }
549
550 return __ffs_ep0_read_events(ffs, buf,
551 min(n, (size_t)ffs->ev.count));
552
553 case FFS_SETUP_PENDING:
554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 spin_unlock_irq(&ffs->ev.waitq.lock);
556 ret = __ffs_ep0_stall(ffs);
557 goto done_mutex;
558 }
559
560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561
562 spin_unlock_irq(&ffs->ev.waitq.lock);
563
564 if (likely(len)) {
565 data = kmalloc(len, GFP_KERNEL);
566 if (unlikely(!data)) {
567 ret = -ENOMEM;
568 goto done_mutex;
569 }
570 }
571
572 spin_lock_irq(&ffs->ev.waitq.lock);
573
574 /* See ffs_ep0_write() */
575 if (ffs_setup_state_clear_cancelled(ffs) ==
576 FFS_SETUP_CANCELLED) {
577 ret = -EIDRM;
578 break;
579 }
580
581 /* unlocks spinlock */
582 ret = __ffs_ep0_queue_wait(ffs, data, len);
583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 ret = -EFAULT;
585 goto done_mutex;
586
587 default:
588 ret = -EBADFD;
589 break;
590 }
591
592 spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 mutex_unlock(&ffs->mutex);
595 kfree(data);
596 return ret;
597 }
598
599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 struct ffs_data *ffs = inode->i_private;
602
603 ENTER();
604
605 if (unlikely(ffs->state == FFS_CLOSING))
606 return -EBUSY;
607
608 file->private_data = ffs;
609 ffs_data_opened(ffs);
610
611 return 0;
612 }
613
614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 struct ffs_data *ffs = file->private_data;
617
618 ENTER();
619
620 ffs_data_closed(ffs);
621
622 return 0;
623 }
624
625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 struct ffs_data *ffs = file->private_data;
628 struct usb_gadget *gadget = ffs->gadget;
629 long ret;
630
631 ENTER();
632
633 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 struct ffs_function *func = ffs->func;
635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 } else if (gadget && gadget->ops->ioctl) {
637 ret = gadget->ops->ioctl(gadget, code, value);
638 } else {
639 ret = -ENOTTY;
640 }
641
642 return ret;
643 }
644
645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 struct ffs_data *ffs = file->private_data;
648 unsigned int mask = POLLWRNORM;
649 int ret;
650
651 poll_wait(file, &ffs->ev.waitq, wait);
652
653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 if (unlikely(ret < 0))
655 return mask;
656
657 switch (ffs->state) {
658 case FFS_READ_DESCRIPTORS:
659 case FFS_READ_STRINGS:
660 mask |= POLLOUT;
661 break;
662
663 case FFS_ACTIVE:
664 switch (ffs->setup_state) {
665 case FFS_NO_SETUP:
666 if (ffs->ev.count)
667 mask |= POLLIN;
668 break;
669
670 case FFS_SETUP_PENDING:
671 case FFS_SETUP_CANCELLED:
672 mask |= (POLLIN | POLLOUT);
673 break;
674 }
675 case FFS_CLOSING:
676 break;
677 case FFS_DEACTIVATED:
678 break;
679 }
680
681 mutex_unlock(&ffs->mutex);
682
683 return mask;
684 }
685
686 static const struct file_operations ffs_ep0_operations = {
687 .llseek = no_llseek,
688
689 .open = ffs_ep0_open,
690 .write = ffs_ep0_write,
691 .read = ffs_ep0_read,
692 .release = ffs_ep0_release,
693 .unlocked_ioctl = ffs_ep0_ioctl,
694 .poll = ffs_ep0_poll,
695 };
696
697
698 /* "Normal" endpoints operations ********************************************/
699
700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 ENTER();
703 if (likely(req->context)) {
704 struct ffs_ep *ep = _ep->driver_data;
705 ep->status = req->status ? req->status : req->actual;
706 complete(req->context);
707 }
708 }
709
710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 ssize_t ret = copy_to_iter(data, data_len, iter);
713 if (likely(ret == data_len))
714 return ret;
715
716 if (unlikely(iov_iter_count(iter)))
717 return -EFAULT;
718
719 /*
720 * Dear user space developer!
721 *
722 * TL;DR: To stop getting below error message in your kernel log, change
723 * user space code using functionfs to align read buffers to a max
724 * packet size.
725 *
726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 * packet size. When unaligned buffer is passed to functionfs, it
728 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 *
730 * Unfortunately, this means that host may send more data than was
731 * requested in read(2) system call. f_fs doesn’t know what to do with
732 * that excess data so it simply drops it.
733 *
734 * Was the buffer aligned in the first place, no such problem would
735 * happen.
736 *
737 * Data may be dropped only in AIO reads. Synchronous reads are handled
738 * by splitting a request into multiple parts. This splitting may still
739 * be a problem though so it’s likely best to align the buffer
740 * regardless of it being AIO or not..
741 *
742 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
744 * affected.
745 */
746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 "Align read buffer size to max packet size to avoid the problem.\n",
748 data_len, ret);
749
750 return ret;
751 }
752
753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 work);
757 int ret = io_data->req->status ? io_data->req->status :
758 io_data->req->actual;
759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760
761 if (io_data->read && ret > 0) {
762 use_mm(io_data->mm);
763 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
764 unuse_mm(io_data->mm);
765 }
766
767 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
768
769 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
770 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
771
772 usb_ep_free_request(io_data->ep, io_data->req);
773
774 if (io_data->read)
775 kfree(io_data->to_free);
776 kfree(io_data->buf);
777 kfree(io_data);
778 }
779
780 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
781 struct usb_request *req)
782 {
783 struct ffs_io_data *io_data = req->context;
784
785 ENTER();
786
787 INIT_WORK(&io_data->work, ffs_user_copy_worker);
788 schedule_work(&io_data->work);
789 }
790
791 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
792 {
793 /*
794 * See comment in struct ffs_epfile for full read_buffer pointer
795 * synchronisation story.
796 */
797 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
798 if (buf && buf != READ_BUFFER_DROP)
799 kfree(buf);
800 }
801
802 /* Assumes epfile->mutex is held. */
803 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
804 struct iov_iter *iter)
805 {
806 /*
807 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
808 * the buffer while we are using it. See comment in struct ffs_epfile
809 * for full read_buffer pointer synchronisation story.
810 */
811 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
812 ssize_t ret;
813 if (!buf || buf == READ_BUFFER_DROP)
814 return 0;
815
816 ret = copy_to_iter(buf->data, buf->length, iter);
817 if (buf->length == ret) {
818 kfree(buf);
819 return ret;
820 }
821
822 if (unlikely(iov_iter_count(iter))) {
823 ret = -EFAULT;
824 } else {
825 buf->length -= ret;
826 buf->data += ret;
827 }
828
829 if (cmpxchg(&epfile->read_buffer, NULL, buf))
830 kfree(buf);
831
832 return ret;
833 }
834
835 /* Assumes epfile->mutex is held. */
836 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
837 void *data, int data_len,
838 struct iov_iter *iter)
839 {
840 struct ffs_buffer *buf;
841
842 ssize_t ret = copy_to_iter(data, data_len, iter);
843 if (likely(data_len == ret))
844 return ret;
845
846 if (unlikely(iov_iter_count(iter)))
847 return -EFAULT;
848
849 /* See ffs_copy_to_iter for more context. */
850 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
851 data_len, ret);
852
853 data_len -= ret;
854 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
855 if (!buf)
856 return -ENOMEM;
857 buf->length = data_len;
858 buf->data = buf->storage;
859 memcpy(buf->storage, data + ret, data_len);
860
861 /*
862 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
863 * ffs_func_eps_disable has been called in the meanwhile). See comment
864 * in struct ffs_epfile for full read_buffer pointer synchronisation
865 * story.
866 */
867 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
868 kfree(buf);
869
870 return ret;
871 }
872
873 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
874 {
875 struct ffs_epfile *epfile = file->private_data;
876 struct usb_request *req;
877 struct ffs_ep *ep;
878 char *data = NULL;
879 ssize_t ret, data_len = -EINVAL;
880 int halt;
881
882 /* Are we still active? */
883 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
884 return -ENODEV;
885
886 /* Wait for endpoint to be enabled */
887 ep = epfile->ep;
888 if (!ep) {
889 if (file->f_flags & O_NONBLOCK)
890 return -EAGAIN;
891
892 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
893 if (ret)
894 return -EINTR;
895 }
896
897 /* Do we halt? */
898 halt = (!io_data->read == !epfile->in);
899 if (halt && epfile->isoc)
900 return -EINVAL;
901
902 /* We will be using request and read_buffer */
903 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
904 if (unlikely(ret))
905 goto error;
906
907 /* Allocate & copy */
908 if (!halt) {
909 struct usb_gadget *gadget;
910
911 /*
912 * Do we have buffered data from previous partial read? Check
913 * that for synchronous case only because we do not have
914 * facility to ‘wake up’ a pending asynchronous read and push
915 * buffered data to it which we would need to make things behave
916 * consistently.
917 */
918 if (!io_data->aio && io_data->read) {
919 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
920 if (ret)
921 goto error_mutex;
922 }
923
924 /*
925 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
926 * before the waiting completes, so do not assign to 'gadget'
927 * earlier
928 */
929 gadget = epfile->ffs->gadget;
930
931 spin_lock_irq(&epfile->ffs->eps_lock);
932 /* In the meantime, endpoint got disabled or changed. */
933 if (epfile->ep != ep) {
934 ret = -ESHUTDOWN;
935 goto error_lock;
936 }
937 data_len = iov_iter_count(&io_data->data);
938 /*
939 * Controller may require buffer size to be aligned to
940 * maxpacketsize of an out endpoint.
941 */
942 if (io_data->read)
943 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
944 spin_unlock_irq(&epfile->ffs->eps_lock);
945
946 data = kmalloc(data_len, GFP_KERNEL);
947 if (unlikely(!data)) {
948 ret = -ENOMEM;
949 goto error_mutex;
950 }
951 if (!io_data->read &&
952 !copy_from_iter_full(data, data_len, &io_data->data)) {
953 ret = -EFAULT;
954 goto error_mutex;
955 }
956 }
957
958 spin_lock_irq(&epfile->ffs->eps_lock);
959
960 if (epfile->ep != ep) {
961 /* In the meantime, endpoint got disabled or changed. */
962 ret = -ESHUTDOWN;
963 } else if (halt) {
964 /* Halt */
965 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
966 usb_ep_set_halt(ep->ep);
967 ret = -EBADMSG;
968 } else if (unlikely(data_len == -EINVAL)) {
969 /*
970 * Sanity Check: even though data_len can't be used
971 * uninitialized at the time I write this comment, some
972 * compilers complain about this situation.
973 * In order to keep the code clean from warnings, data_len is
974 * being initialized to -EINVAL during its declaration, which
975 * means we can't rely on compiler anymore to warn no future
976 * changes won't result in data_len being used uninitialized.
977 * For such reason, we're adding this redundant sanity check
978 * here.
979 */
980 WARN(1, "%s: data_len == -EINVAL\n", __func__);
981 ret = -EINVAL;
982 } else if (!io_data->aio) {
983 DECLARE_COMPLETION_ONSTACK(done);
984 bool interrupted = false;
985
986 req = ep->req;
987 req->buf = data;
988 req->length = data_len;
989
990 req->context = &done;
991 req->complete = ffs_epfile_io_complete;
992
993 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
994 if (unlikely(ret < 0))
995 goto error_lock;
996
997 spin_unlock_irq(&epfile->ffs->eps_lock);
998
999 if (unlikely(wait_for_completion_interruptible(&done))) {
1000 /*
1001 * To avoid race condition with ffs_epfile_io_complete,
1002 * dequeue the request first then check
1003 * status. usb_ep_dequeue API should guarantee no race
1004 * condition with req->complete callback.
1005 */
1006 usb_ep_dequeue(ep->ep, req);
1007 interrupted = ep->status < 0;
1008 }
1009
1010 if (interrupted)
1011 ret = -EINTR;
1012 else if (io_data->read && ep->status > 0)
1013 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014 &io_data->data);
1015 else
1016 ret = ep->status;
1017 goto error_mutex;
1018 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1019 ret = -ENOMEM;
1020 } else {
1021 req->buf = data;
1022 req->length = data_len;
1023
1024 io_data->buf = data;
1025 io_data->ep = ep->ep;
1026 io_data->req = req;
1027 io_data->ffs = epfile->ffs;
1028
1029 req->context = io_data;
1030 req->complete = ffs_epfile_async_io_complete;
1031
1032 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033 if (unlikely(ret)) {
1034 usb_ep_free_request(ep->ep, req);
1035 goto error_lock;
1036 }
1037
1038 ret = -EIOCBQUEUED;
1039 /*
1040 * Do not kfree the buffer in this function. It will be freed
1041 * by ffs_user_copy_worker.
1042 */
1043 data = NULL;
1044 }
1045
1046 error_lock:
1047 spin_unlock_irq(&epfile->ffs->eps_lock);
1048 error_mutex:
1049 mutex_unlock(&epfile->mutex);
1050 error:
1051 kfree(data);
1052 return ret;
1053 }
1054
1055 static int
1056 ffs_epfile_open(struct inode *inode, struct file *file)
1057 {
1058 struct ffs_epfile *epfile = inode->i_private;
1059
1060 ENTER();
1061
1062 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063 return -ENODEV;
1064
1065 file->private_data = epfile;
1066 ffs_data_opened(epfile->ffs);
1067
1068 return 0;
1069 }
1070
1071 static int ffs_aio_cancel(struct kiocb *kiocb)
1072 {
1073 struct ffs_io_data *io_data = kiocb->private;
1074 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075 int value;
1076
1077 ENTER();
1078
1079 spin_lock_irq(&epfile->ffs->eps_lock);
1080
1081 if (likely(io_data && io_data->ep && io_data->req))
1082 value = usb_ep_dequeue(io_data->ep, io_data->req);
1083 else
1084 value = -EINVAL;
1085
1086 spin_unlock_irq(&epfile->ffs->eps_lock);
1087
1088 return value;
1089 }
1090
1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092 {
1093 struct ffs_io_data io_data, *p = &io_data;
1094 ssize_t res;
1095
1096 ENTER();
1097
1098 if (!is_sync_kiocb(kiocb)) {
1099 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100 if (unlikely(!p))
1101 return -ENOMEM;
1102 p->aio = true;
1103 } else {
1104 p->aio = false;
1105 }
1106
1107 p->read = false;
1108 p->kiocb = kiocb;
1109 p->data = *from;
1110 p->mm = current->mm;
1111
1112 kiocb->private = p;
1113
1114 if (p->aio)
1115 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116
1117 res = ffs_epfile_io(kiocb->ki_filp, p);
1118 if (res == -EIOCBQUEUED)
1119 return res;
1120 if (p->aio)
1121 kfree(p);
1122 else
1123 *from = p->data;
1124 return res;
1125 }
1126
1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128 {
1129 struct ffs_io_data io_data, *p = &io_data;
1130 ssize_t res;
1131
1132 ENTER();
1133
1134 if (!is_sync_kiocb(kiocb)) {
1135 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136 if (unlikely(!p))
1137 return -ENOMEM;
1138 p->aio = true;
1139 } else {
1140 p->aio = false;
1141 }
1142
1143 p->read = true;
1144 p->kiocb = kiocb;
1145 if (p->aio) {
1146 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147 if (!p->to_free) {
1148 kfree(p);
1149 return -ENOMEM;
1150 }
1151 } else {
1152 p->data = *to;
1153 p->to_free = NULL;
1154 }
1155 p->mm = current->mm;
1156
1157 kiocb->private = p;
1158
1159 if (p->aio)
1160 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161
1162 res = ffs_epfile_io(kiocb->ki_filp, p);
1163 if (res == -EIOCBQUEUED)
1164 return res;
1165
1166 if (p->aio) {
1167 kfree(p->to_free);
1168 kfree(p);
1169 } else {
1170 *to = p->data;
1171 }
1172 return res;
1173 }
1174
1175 static int
1176 ffs_epfile_release(struct inode *inode, struct file *file)
1177 {
1178 struct ffs_epfile *epfile = inode->i_private;
1179
1180 ENTER();
1181
1182 __ffs_epfile_read_buffer_free(epfile);
1183 ffs_data_closed(epfile->ffs);
1184
1185 return 0;
1186 }
1187
1188 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189 unsigned long value)
1190 {
1191 struct ffs_epfile *epfile = file->private_data;
1192 int ret;
1193
1194 ENTER();
1195
1196 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1197 return -ENODEV;
1198
1199 spin_lock_irq(&epfile->ffs->eps_lock);
1200 if (likely(epfile->ep)) {
1201 switch (code) {
1202 case FUNCTIONFS_FIFO_STATUS:
1203 ret = usb_ep_fifo_status(epfile->ep->ep);
1204 break;
1205 case FUNCTIONFS_FIFO_FLUSH:
1206 usb_ep_fifo_flush(epfile->ep->ep);
1207 ret = 0;
1208 break;
1209 case FUNCTIONFS_CLEAR_HALT:
1210 ret = usb_ep_clear_halt(epfile->ep->ep);
1211 break;
1212 case FUNCTIONFS_ENDPOINT_REVMAP:
1213 ret = epfile->ep->num;
1214 break;
1215 case FUNCTIONFS_ENDPOINT_DESC:
1216 {
1217 int desc_idx;
1218 struct usb_endpoint_descriptor *desc;
1219
1220 switch (epfile->ffs->gadget->speed) {
1221 case USB_SPEED_SUPER:
1222 desc_idx = 2;
1223 break;
1224 case USB_SPEED_HIGH:
1225 desc_idx = 1;
1226 break;
1227 default:
1228 desc_idx = 0;
1229 }
1230 desc = epfile->ep->descs[desc_idx];
1231
1232 spin_unlock_irq(&epfile->ffs->eps_lock);
1233 ret = copy_to_user((void *)value, desc, desc->bLength);
1234 if (ret)
1235 ret = -EFAULT;
1236 return ret;
1237 }
1238 default:
1239 ret = -ENOTTY;
1240 }
1241 } else {
1242 ret = -ENODEV;
1243 }
1244 spin_unlock_irq(&epfile->ffs->eps_lock);
1245
1246 return ret;
1247 }
1248
1249 static const struct file_operations ffs_epfile_operations = {
1250 .llseek = no_llseek,
1251
1252 .open = ffs_epfile_open,
1253 .write_iter = ffs_epfile_write_iter,
1254 .read_iter = ffs_epfile_read_iter,
1255 .release = ffs_epfile_release,
1256 .unlocked_ioctl = ffs_epfile_ioctl,
1257 };
1258
1259
1260 /* File system and super block operations ***********************************/
1261
1262 /*
1263 * Mounting the file system creates a controller file, used first for
1264 * function configuration then later for event monitoring.
1265 */
1266
1267 static struct inode *__must_check
1268 ffs_sb_make_inode(struct super_block *sb, void *data,
1269 const struct file_operations *fops,
1270 const struct inode_operations *iops,
1271 struct ffs_file_perms *perms)
1272 {
1273 struct inode *inode;
1274
1275 ENTER();
1276
1277 inode = new_inode(sb);
1278
1279 if (likely(inode)) {
1280 struct timespec ts = current_time(inode);
1281
1282 inode->i_ino = get_next_ino();
1283 inode->i_mode = perms->mode;
1284 inode->i_uid = perms->uid;
1285 inode->i_gid = perms->gid;
1286 inode->i_atime = ts;
1287 inode->i_mtime = ts;
1288 inode->i_ctime = ts;
1289 inode->i_private = data;
1290 if (fops)
1291 inode->i_fop = fops;
1292 if (iops)
1293 inode->i_op = iops;
1294 }
1295
1296 return inode;
1297 }
1298
1299 /* Create "regular" file */
1300 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1301 const char *name, void *data,
1302 const struct file_operations *fops)
1303 {
1304 struct ffs_data *ffs = sb->s_fs_info;
1305 struct dentry *dentry;
1306 struct inode *inode;
1307
1308 ENTER();
1309
1310 dentry = d_alloc_name(sb->s_root, name);
1311 if (unlikely(!dentry))
1312 return NULL;
1313
1314 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1315 if (unlikely(!inode)) {
1316 dput(dentry);
1317 return NULL;
1318 }
1319
1320 d_add(dentry, inode);
1321 return dentry;
1322 }
1323
1324 /* Super block */
1325 static const struct super_operations ffs_sb_operations = {
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 };
1329
1330 struct ffs_sb_fill_data {
1331 struct ffs_file_perms perms;
1332 umode_t root_mode;
1333 const char *dev_name;
1334 bool no_disconnect;
1335 struct ffs_data *ffs_data;
1336 };
1337
1338 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1339 {
1340 struct ffs_sb_fill_data *data = _data;
1341 struct inode *inode;
1342 struct ffs_data *ffs = data->ffs_data;
1343
1344 ENTER();
1345
1346 ffs->sb = sb;
1347 data->ffs_data = NULL;
1348 sb->s_fs_info = ffs;
1349 sb->s_blocksize = PAGE_SIZE;
1350 sb->s_blocksize_bits = PAGE_SHIFT;
1351 sb->s_magic = FUNCTIONFS_MAGIC;
1352 sb->s_op = &ffs_sb_operations;
1353 sb->s_time_gran = 1;
1354
1355 /* Root inode */
1356 data->perms.mode = data->root_mode;
1357 inode = ffs_sb_make_inode(sb, NULL,
1358 &simple_dir_operations,
1359 &simple_dir_inode_operations,
1360 &data->perms);
1361 sb->s_root = d_make_root(inode);
1362 if (unlikely(!sb->s_root))
1363 return -ENOMEM;
1364
1365 /* EP0 file */
1366 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1367 &ffs_ep0_operations)))
1368 return -ENOMEM;
1369
1370 return 0;
1371 }
1372
1373 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1374 {
1375 ENTER();
1376
1377 if (!opts || !*opts)
1378 return 0;
1379
1380 for (;;) {
1381 unsigned long value;
1382 char *eq, *comma;
1383
1384 /* Option limit */
1385 comma = strchr(opts, ',');
1386 if (comma)
1387 *comma = 0;
1388
1389 /* Value limit */
1390 eq = strchr(opts, '=');
1391 if (unlikely(!eq)) {
1392 pr_err("'=' missing in %s\n", opts);
1393 return -EINVAL;
1394 }
1395 *eq = 0;
1396
1397 /* Parse value */
1398 if (kstrtoul(eq + 1, 0, &value)) {
1399 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1400 return -EINVAL;
1401 }
1402
1403 /* Interpret option */
1404 switch (eq - opts) {
1405 case 13:
1406 if (!memcmp(opts, "no_disconnect", 13))
1407 data->no_disconnect = !!value;
1408 else
1409 goto invalid;
1410 break;
1411 case 5:
1412 if (!memcmp(opts, "rmode", 5))
1413 data->root_mode = (value & 0555) | S_IFDIR;
1414 else if (!memcmp(opts, "fmode", 5))
1415 data->perms.mode = (value & 0666) | S_IFREG;
1416 else
1417 goto invalid;
1418 break;
1419
1420 case 4:
1421 if (!memcmp(opts, "mode", 4)) {
1422 data->root_mode = (value & 0555) | S_IFDIR;
1423 data->perms.mode = (value & 0666) | S_IFREG;
1424 } else {
1425 goto invalid;
1426 }
1427 break;
1428
1429 case 3:
1430 if (!memcmp(opts, "uid", 3)) {
1431 data->perms.uid = make_kuid(current_user_ns(), value);
1432 if (!uid_valid(data->perms.uid)) {
1433 pr_err("%s: unmapped value: %lu\n", opts, value);
1434 return -EINVAL;
1435 }
1436 } else if (!memcmp(opts, "gid", 3)) {
1437 data->perms.gid = make_kgid(current_user_ns(), value);
1438 if (!gid_valid(data->perms.gid)) {
1439 pr_err("%s: unmapped value: %lu\n", opts, value);
1440 return -EINVAL;
1441 }
1442 } else {
1443 goto invalid;
1444 }
1445 break;
1446
1447 default:
1448 invalid:
1449 pr_err("%s: invalid option\n", opts);
1450 return -EINVAL;
1451 }
1452
1453 /* Next iteration */
1454 if (!comma)
1455 break;
1456 opts = comma + 1;
1457 }
1458
1459 return 0;
1460 }
1461
1462 /* "mount -t functionfs dev_name /dev/function" ends up here */
1463
1464 static struct dentry *
1465 ffs_fs_mount(struct file_system_type *t, int flags,
1466 const char *dev_name, void *opts)
1467 {
1468 struct ffs_sb_fill_data data = {
1469 .perms = {
1470 .mode = S_IFREG | 0600,
1471 .uid = GLOBAL_ROOT_UID,
1472 .gid = GLOBAL_ROOT_GID,
1473 },
1474 .root_mode = S_IFDIR | 0500,
1475 .no_disconnect = false,
1476 };
1477 struct dentry *rv;
1478 int ret;
1479 void *ffs_dev;
1480 struct ffs_data *ffs;
1481
1482 ENTER();
1483
1484 ret = ffs_fs_parse_opts(&data, opts);
1485 if (unlikely(ret < 0))
1486 return ERR_PTR(ret);
1487
1488 ffs = ffs_data_new();
1489 if (unlikely(!ffs))
1490 return ERR_PTR(-ENOMEM);
1491 ffs->file_perms = data.perms;
1492 ffs->no_disconnect = data.no_disconnect;
1493
1494 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1495 if (unlikely(!ffs->dev_name)) {
1496 ffs_data_put(ffs);
1497 return ERR_PTR(-ENOMEM);
1498 }
1499
1500 ffs_dev = ffs_acquire_dev(dev_name);
1501 if (IS_ERR(ffs_dev)) {
1502 ffs_data_put(ffs);
1503 return ERR_CAST(ffs_dev);
1504 }
1505 ffs->private_data = ffs_dev;
1506 data.ffs_data = ffs;
1507
1508 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1509 if (IS_ERR(rv) && data.ffs_data) {
1510 ffs_release_dev(data.ffs_data);
1511 ffs_data_put(data.ffs_data);
1512 }
1513 return rv;
1514 }
1515
1516 static void
1517 ffs_fs_kill_sb(struct super_block *sb)
1518 {
1519 ENTER();
1520
1521 kill_litter_super(sb);
1522 if (sb->s_fs_info) {
1523 ffs_release_dev(sb->s_fs_info);
1524 ffs_data_closed(sb->s_fs_info);
1525 ffs_data_put(sb->s_fs_info);
1526 }
1527 }
1528
1529 static struct file_system_type ffs_fs_type = {
1530 .owner = THIS_MODULE,
1531 .name = "functionfs",
1532 .mount = ffs_fs_mount,
1533 .kill_sb = ffs_fs_kill_sb,
1534 };
1535 MODULE_ALIAS_FS("functionfs");
1536
1537
1538 /* Driver's main init/cleanup functions *************************************/
1539
1540 static int functionfs_init(void)
1541 {
1542 int ret;
1543
1544 ENTER();
1545
1546 ret = register_filesystem(&ffs_fs_type);
1547 if (likely(!ret))
1548 pr_info("file system registered\n");
1549 else
1550 pr_err("failed registering file system (%d)\n", ret);
1551
1552 return ret;
1553 }
1554
1555 static void functionfs_cleanup(void)
1556 {
1557 ENTER();
1558
1559 pr_info("unloading\n");
1560 unregister_filesystem(&ffs_fs_type);
1561 }
1562
1563
1564 /* ffs_data and ffs_function construction and destruction code **************/
1565
1566 static void ffs_data_clear(struct ffs_data *ffs);
1567 static void ffs_data_reset(struct ffs_data *ffs);
1568
1569 static void ffs_data_get(struct ffs_data *ffs)
1570 {
1571 ENTER();
1572
1573 refcount_inc(&ffs->ref);
1574 }
1575
1576 static void ffs_data_opened(struct ffs_data *ffs)
1577 {
1578 ENTER();
1579
1580 refcount_inc(&ffs->ref);
1581 if (atomic_add_return(1, &ffs->opened) == 1 &&
1582 ffs->state == FFS_DEACTIVATED) {
1583 ffs->state = FFS_CLOSING;
1584 ffs_data_reset(ffs);
1585 }
1586 }
1587
1588 static void ffs_data_put(struct ffs_data *ffs)
1589 {
1590 ENTER();
1591
1592 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1593 pr_info("%s(): freeing\n", __func__);
1594 ffs_data_clear(ffs);
1595 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1596 waitqueue_active(&ffs->ep0req_completion.wait));
1597 kfree(ffs->dev_name);
1598 kfree(ffs);
1599 }
1600 }
1601
1602 static void ffs_data_closed(struct ffs_data *ffs)
1603 {
1604 ENTER();
1605
1606 if (atomic_dec_and_test(&ffs->opened)) {
1607 if (ffs->no_disconnect) {
1608 ffs->state = FFS_DEACTIVATED;
1609 if (ffs->epfiles) {
1610 ffs_epfiles_destroy(ffs->epfiles,
1611 ffs->eps_count);
1612 ffs->epfiles = NULL;
1613 }
1614 if (ffs->setup_state == FFS_SETUP_PENDING)
1615 __ffs_ep0_stall(ffs);
1616 } else {
1617 ffs->state = FFS_CLOSING;
1618 ffs_data_reset(ffs);
1619 }
1620 }
1621 if (atomic_read(&ffs->opened) < 0) {
1622 ffs->state = FFS_CLOSING;
1623 ffs_data_reset(ffs);
1624 }
1625
1626 ffs_data_put(ffs);
1627 }
1628
1629 static struct ffs_data *ffs_data_new(void)
1630 {
1631 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1632 if (unlikely(!ffs))
1633 return NULL;
1634
1635 ENTER();
1636
1637 refcount_set(&ffs->ref, 1);
1638 atomic_set(&ffs->opened, 0);
1639 ffs->state = FFS_READ_DESCRIPTORS;
1640 mutex_init(&ffs->mutex);
1641 spin_lock_init(&ffs->eps_lock);
1642 init_waitqueue_head(&ffs->ev.waitq);
1643 init_completion(&ffs->ep0req_completion);
1644
1645 /* XXX REVISIT need to update it in some places, or do we? */
1646 ffs->ev.can_stall = 1;
1647
1648 return ffs;
1649 }
1650
1651 static void ffs_data_clear(struct ffs_data *ffs)
1652 {
1653 ENTER();
1654
1655 ffs_closed(ffs);
1656
1657 BUG_ON(ffs->gadget);
1658
1659 if (ffs->epfiles)
1660 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1661
1662 if (ffs->ffs_eventfd)
1663 eventfd_ctx_put(ffs->ffs_eventfd);
1664
1665 kfree(ffs->raw_descs_data);
1666 kfree(ffs->raw_strings);
1667 kfree(ffs->stringtabs);
1668 }
1669
1670 static void ffs_data_reset(struct ffs_data *ffs)
1671 {
1672 ENTER();
1673
1674 ffs_data_clear(ffs);
1675
1676 ffs->epfiles = NULL;
1677 ffs->raw_descs_data = NULL;
1678 ffs->raw_descs = NULL;
1679 ffs->raw_strings = NULL;
1680 ffs->stringtabs = NULL;
1681
1682 ffs->raw_descs_length = 0;
1683 ffs->fs_descs_count = 0;
1684 ffs->hs_descs_count = 0;
1685 ffs->ss_descs_count = 0;
1686
1687 ffs->strings_count = 0;
1688 ffs->interfaces_count = 0;
1689 ffs->eps_count = 0;
1690
1691 ffs->ev.count = 0;
1692
1693 ffs->state = FFS_READ_DESCRIPTORS;
1694 ffs->setup_state = FFS_NO_SETUP;
1695 ffs->flags = 0;
1696 }
1697
1698
1699 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1700 {
1701 struct usb_gadget_strings **lang;
1702 int first_id;
1703
1704 ENTER();
1705
1706 if (WARN_ON(ffs->state != FFS_ACTIVE
1707 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1708 return -EBADFD;
1709
1710 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1711 if (unlikely(first_id < 0))
1712 return first_id;
1713
1714 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1715 if (unlikely(!ffs->ep0req))
1716 return -ENOMEM;
1717 ffs->ep0req->complete = ffs_ep0_complete;
1718 ffs->ep0req->context = ffs;
1719
1720 lang = ffs->stringtabs;
1721 if (lang) {
1722 for (; *lang; ++lang) {
1723 struct usb_string *str = (*lang)->strings;
1724 int id = first_id;
1725 for (; str->s; ++id, ++str)
1726 str->id = id;
1727 }
1728 }
1729
1730 ffs->gadget = cdev->gadget;
1731 ffs_data_get(ffs);
1732 return 0;
1733 }
1734
1735 static void functionfs_unbind(struct ffs_data *ffs)
1736 {
1737 ENTER();
1738
1739 if (!WARN_ON(!ffs->gadget)) {
1740 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1741 ffs->ep0req = NULL;
1742 ffs->gadget = NULL;
1743 clear_bit(FFS_FL_BOUND, &ffs->flags);
1744 ffs_data_put(ffs);
1745 }
1746 }
1747
1748 static int ffs_epfiles_create(struct ffs_data *ffs)
1749 {
1750 struct ffs_epfile *epfile, *epfiles;
1751 unsigned i, count;
1752
1753 ENTER();
1754
1755 count = ffs->eps_count;
1756 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1757 if (!epfiles)
1758 return -ENOMEM;
1759
1760 epfile = epfiles;
1761 for (i = 1; i <= count; ++i, ++epfile) {
1762 epfile->ffs = ffs;
1763 mutex_init(&epfile->mutex);
1764 init_waitqueue_head(&epfile->wait);
1765 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1766 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1767 else
1768 sprintf(epfile->name, "ep%u", i);
1769 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1770 epfile,
1771 &ffs_epfile_operations);
1772 if (unlikely(!epfile->dentry)) {
1773 ffs_epfiles_destroy(epfiles, i - 1);
1774 return -ENOMEM;
1775 }
1776 }
1777
1778 ffs->epfiles = epfiles;
1779 return 0;
1780 }
1781
1782 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1783 {
1784 struct ffs_epfile *epfile = epfiles;
1785
1786 ENTER();
1787
1788 for (; count; --count, ++epfile) {
1789 BUG_ON(mutex_is_locked(&epfile->mutex) ||
1790 waitqueue_active(&epfile->wait));
1791 if (epfile->dentry) {
1792 d_delete(epfile->dentry);
1793 dput(epfile->dentry);
1794 epfile->dentry = NULL;
1795 }
1796 }
1797
1798 kfree(epfiles);
1799 }
1800
1801 static void ffs_func_eps_disable(struct ffs_function *func)
1802 {
1803 struct ffs_ep *ep = func->eps;
1804 struct ffs_epfile *epfile = func->ffs->epfiles;
1805 unsigned count = func->ffs->eps_count;
1806 unsigned long flags;
1807
1808 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1809 while (count--) {
1810 /* pending requests get nuked */
1811 if (likely(ep->ep))
1812 usb_ep_disable(ep->ep);
1813 ++ep;
1814
1815 if (epfile) {
1816 epfile->ep = NULL;
1817 __ffs_epfile_read_buffer_free(epfile);
1818 ++epfile;
1819 }
1820 }
1821 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1822 }
1823
1824 static int ffs_func_eps_enable(struct ffs_function *func)
1825 {
1826 struct ffs_data *ffs = func->ffs;
1827 struct ffs_ep *ep = func->eps;
1828 struct ffs_epfile *epfile = ffs->epfiles;
1829 unsigned count = ffs->eps_count;
1830 unsigned long flags;
1831 int ret = 0;
1832
1833 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1834 while(count--) {
1835 struct usb_endpoint_descriptor *ds;
1836 struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1837 int needs_comp_desc = false;
1838 int desc_idx;
1839
1840 if (ffs->gadget->speed == USB_SPEED_SUPER) {
1841 desc_idx = 2;
1842 needs_comp_desc = true;
1843 } else if (ffs->gadget->speed == USB_SPEED_HIGH)
1844 desc_idx = 1;
1845 else
1846 desc_idx = 0;
1847
1848 /* fall-back to lower speed if desc missing for current speed */
1849 do {
1850 ds = ep->descs[desc_idx];
1851 } while (!ds && --desc_idx >= 0);
1852
1853 if (!ds) {
1854 ret = -EINVAL;
1855 break;
1856 }
1857
1858 ep->ep->driver_data = ep;
1859 ep->ep->desc = ds;
1860
1861 if (needs_comp_desc) {
1862 comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1863 USB_DT_ENDPOINT_SIZE);
1864 ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1865 ep->ep->comp_desc = comp_desc;
1866 }
1867
1868 ret = usb_ep_enable(ep->ep);
1869 if (likely(!ret)) {
1870 epfile->ep = ep;
1871 epfile->in = usb_endpoint_dir_in(ds);
1872 epfile->isoc = usb_endpoint_xfer_isoc(ds);
1873 } else {
1874 break;
1875 }
1876
1877 wake_up(&epfile->wait);
1878
1879 ++ep;
1880 ++epfile;
1881 }
1882 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1883
1884 return ret;
1885 }
1886
1887
1888 /* Parsing and building descriptors and strings *****************************/
1889
1890 /*
1891 * This validates if data pointed by data is a valid USB descriptor as
1892 * well as record how many interfaces, endpoints and strings are
1893 * required by given configuration. Returns address after the
1894 * descriptor or NULL if data is invalid.
1895 */
1896
1897 enum ffs_entity_type {
1898 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1899 };
1900
1901 enum ffs_os_desc_type {
1902 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1903 };
1904
1905 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1906 u8 *valuep,
1907 struct usb_descriptor_header *desc,
1908 void *priv);
1909
1910 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1911 struct usb_os_desc_header *h, void *data,
1912 unsigned len, void *priv);
1913
1914 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1915 ffs_entity_callback entity,
1916 void *priv)
1917 {
1918 struct usb_descriptor_header *_ds = (void *)data;
1919 u8 length;
1920 int ret;
1921
1922 ENTER();
1923
1924 /* At least two bytes are required: length and type */
1925 if (len < 2) {
1926 pr_vdebug("descriptor too short\n");
1927 return -EINVAL;
1928 }
1929
1930 /* If we have at least as many bytes as the descriptor takes? */
1931 length = _ds->bLength;
1932 if (len < length) {
1933 pr_vdebug("descriptor longer then available data\n");
1934 return -EINVAL;
1935 }
1936
1937 #define __entity_check_INTERFACE(val) 1
1938 #define __entity_check_STRING(val) (val)
1939 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1940 #define __entity(type, val) do { \
1941 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1942 if (unlikely(!__entity_check_ ##type(val))) { \
1943 pr_vdebug("invalid entity's value\n"); \
1944 return -EINVAL; \
1945 } \
1946 ret = entity(FFS_ ##type, &val, _ds, priv); \
1947 if (unlikely(ret < 0)) { \
1948 pr_debug("entity " #type "(%02x); ret = %d\n", \
1949 (val), ret); \
1950 return ret; \
1951 } \
1952 } while (0)
1953
1954 /* Parse descriptor depending on type. */
1955 switch (_ds->bDescriptorType) {
1956 case USB_DT_DEVICE:
1957 case USB_DT_CONFIG:
1958 case USB_DT_STRING:
1959 case USB_DT_DEVICE_QUALIFIER:
1960 /* function can't have any of those */
1961 pr_vdebug("descriptor reserved for gadget: %d\n",
1962 _ds->bDescriptorType);
1963 return -EINVAL;
1964
1965 case USB_DT_INTERFACE: {
1966 struct usb_interface_descriptor *ds = (void *)_ds;
1967 pr_vdebug("interface descriptor\n");
1968 if (length != sizeof *ds)
1969 goto inv_length;
1970
1971 __entity(INTERFACE, ds->bInterfaceNumber);
1972 if (ds->iInterface)
1973 __entity(STRING, ds->iInterface);
1974 }
1975 break;
1976
1977 case USB_DT_ENDPOINT: {
1978 struct usb_endpoint_descriptor *ds = (void *)_ds;
1979 pr_vdebug("endpoint descriptor\n");
1980 if (length != USB_DT_ENDPOINT_SIZE &&
1981 length != USB_DT_ENDPOINT_AUDIO_SIZE)
1982 goto inv_length;
1983 __entity(ENDPOINT, ds->bEndpointAddress);
1984 }
1985 break;
1986
1987 case HID_DT_HID:
1988 pr_vdebug("hid descriptor\n");
1989 if (length != sizeof(struct hid_descriptor))
1990 goto inv_length;
1991 break;
1992
1993 case USB_DT_OTG:
1994 if (length != sizeof(struct usb_otg_descriptor))
1995 goto inv_length;
1996 break;
1997
1998 case USB_DT_INTERFACE_ASSOCIATION: {
1999 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2000 pr_vdebug("interface association descriptor\n");
2001 if (length != sizeof *ds)
2002 goto inv_length;
2003 if (ds->iFunction)
2004 __entity(STRING, ds->iFunction);
2005 }
2006 break;
2007
2008 case USB_DT_SS_ENDPOINT_COMP:
2009 pr_vdebug("EP SS companion descriptor\n");
2010 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2011 goto inv_length;
2012 break;
2013
2014 case USB_DT_OTHER_SPEED_CONFIG:
2015 case USB_DT_INTERFACE_POWER:
2016 case USB_DT_DEBUG:
2017 case USB_DT_SECURITY:
2018 case USB_DT_CS_RADIO_CONTROL:
2019 /* TODO */
2020 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2021 return -EINVAL;
2022
2023 default:
2024 /* We should never be here */
2025 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2026 return -EINVAL;
2027
2028 inv_length:
2029 pr_vdebug("invalid length: %d (descriptor %d)\n",
2030 _ds->bLength, _ds->bDescriptorType);
2031 return -EINVAL;
2032 }
2033
2034 #undef __entity
2035 #undef __entity_check_DESCRIPTOR
2036 #undef __entity_check_INTERFACE
2037 #undef __entity_check_STRING
2038 #undef __entity_check_ENDPOINT
2039
2040 return length;
2041 }
2042
2043 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2044 ffs_entity_callback entity, void *priv)
2045 {
2046 const unsigned _len = len;
2047 unsigned long num = 0;
2048
2049 ENTER();
2050
2051 for (;;) {
2052 int ret;
2053
2054 if (num == count)
2055 data = NULL;
2056
2057 /* Record "descriptor" entity */
2058 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2059 if (unlikely(ret < 0)) {
2060 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2061 num, ret);
2062 return ret;
2063 }
2064
2065 if (!data)
2066 return _len - len;
2067
2068 ret = ffs_do_single_desc(data, len, entity, priv);
2069 if (unlikely(ret < 0)) {
2070 pr_debug("%s returns %d\n", __func__, ret);
2071 return ret;
2072 }
2073
2074 len -= ret;
2075 data += ret;
2076 ++num;
2077 }
2078 }
2079
2080 static int __ffs_data_do_entity(enum ffs_entity_type type,
2081 u8 *valuep, struct usb_descriptor_header *desc,
2082 void *priv)
2083 {
2084 struct ffs_desc_helper *helper = priv;
2085 struct usb_endpoint_descriptor *d;
2086
2087 ENTER();
2088
2089 switch (type) {
2090 case FFS_DESCRIPTOR:
2091 break;
2092
2093 case FFS_INTERFACE:
2094 /*
2095 * Interfaces are indexed from zero so if we
2096 * encountered interface "n" then there are at least
2097 * "n+1" interfaces.
2098 */
2099 if (*valuep >= helper->interfaces_count)
2100 helper->interfaces_count = *valuep + 1;
2101 break;
2102
2103 case FFS_STRING:
2104 /*
2105 * Strings are indexed from 1 (0 is reserved
2106 * for languages list)
2107 */
2108 if (*valuep > helper->ffs->strings_count)
2109 helper->ffs->strings_count = *valuep;
2110 break;
2111
2112 case FFS_ENDPOINT:
2113 d = (void *)desc;
2114 helper->eps_count++;
2115 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2116 return -EINVAL;
2117 /* Check if descriptors for any speed were already parsed */
2118 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2119 helper->ffs->eps_addrmap[helper->eps_count] =
2120 d->bEndpointAddress;
2121 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2122 d->bEndpointAddress)
2123 return -EINVAL;
2124 break;
2125 }
2126
2127 return 0;
2128 }
2129
2130 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2131 struct usb_os_desc_header *desc)
2132 {
2133 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2134 u16 w_index = le16_to_cpu(desc->wIndex);
2135
2136 if (bcd_version != 1) {
2137 pr_vdebug("unsupported os descriptors version: %d",
2138 bcd_version);
2139 return -EINVAL;
2140 }
2141 switch (w_index) {
2142 case 0x4:
2143 *next_type = FFS_OS_DESC_EXT_COMPAT;
2144 break;
2145 case 0x5:
2146 *next_type = FFS_OS_DESC_EXT_PROP;
2147 break;
2148 default:
2149 pr_vdebug("unsupported os descriptor type: %d", w_index);
2150 return -EINVAL;
2151 }
2152
2153 return sizeof(*desc);
2154 }
2155
2156 /*
2157 * Process all extended compatibility/extended property descriptors
2158 * of a feature descriptor
2159 */
2160 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2161 enum ffs_os_desc_type type,
2162 u16 feature_count,
2163 ffs_os_desc_callback entity,
2164 void *priv,
2165 struct usb_os_desc_header *h)
2166 {
2167 int ret;
2168 const unsigned _len = len;
2169
2170 ENTER();
2171
2172 /* loop over all ext compat/ext prop descriptors */
2173 while (feature_count--) {
2174 ret = entity(type, h, data, len, priv);
2175 if (unlikely(ret < 0)) {
2176 pr_debug("bad OS descriptor, type: %d\n", type);
2177 return ret;
2178 }
2179 data += ret;
2180 len -= ret;
2181 }
2182 return _len - len;
2183 }
2184
2185 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2186 static int __must_check ffs_do_os_descs(unsigned count,
2187 char *data, unsigned len,
2188 ffs_os_desc_callback entity, void *priv)
2189 {
2190 const unsigned _len = len;
2191 unsigned long num = 0;
2192
2193 ENTER();
2194
2195 for (num = 0; num < count; ++num) {
2196 int ret;
2197 enum ffs_os_desc_type type;
2198 u16 feature_count;
2199 struct usb_os_desc_header *desc = (void *)data;
2200
2201 if (len < sizeof(*desc))
2202 return -EINVAL;
2203
2204 /*
2205 * Record "descriptor" entity.
2206 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2207 * Move the data pointer to the beginning of extended
2208 * compatibilities proper or extended properties proper
2209 * portions of the data
2210 */
2211 if (le32_to_cpu(desc->dwLength) > len)
2212 return -EINVAL;
2213
2214 ret = __ffs_do_os_desc_header(&type, desc);
2215 if (unlikely(ret < 0)) {
2216 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2217 num, ret);
2218 return ret;
2219 }
2220 /*
2221 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2222 */
2223 feature_count = le16_to_cpu(desc->wCount);
2224 if (type == FFS_OS_DESC_EXT_COMPAT &&
2225 (feature_count > 255 || desc->Reserved))
2226 return -EINVAL;
2227 len -= ret;
2228 data += ret;
2229
2230 /*
2231 * Process all function/property descriptors
2232 * of this Feature Descriptor
2233 */
2234 ret = ffs_do_single_os_desc(data, len, type,
2235 feature_count, entity, priv, desc);
2236 if (unlikely(ret < 0)) {
2237 pr_debug("%s returns %d\n", __func__, ret);
2238 return ret;
2239 }
2240
2241 len -= ret;
2242 data += ret;
2243 }
2244 return _len - len;
2245 }
2246
2247 /**
2248 * Validate contents of the buffer from userspace related to OS descriptors.
2249 */
2250 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2251 struct usb_os_desc_header *h, void *data,
2252 unsigned len, void *priv)
2253 {
2254 struct ffs_data *ffs = priv;
2255 u8 length;
2256
2257 ENTER();
2258
2259 switch (type) {
2260 case FFS_OS_DESC_EXT_COMPAT: {
2261 struct usb_ext_compat_desc *d = data;
2262 int i;
2263
2264 if (len < sizeof(*d) ||
2265 d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2266 !d->Reserved1)
2267 return -EINVAL;
2268 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2269 if (d->Reserved2[i])
2270 return -EINVAL;
2271
2272 length = sizeof(struct usb_ext_compat_desc);
2273 }
2274 break;
2275 case FFS_OS_DESC_EXT_PROP: {
2276 struct usb_ext_prop_desc *d = data;
2277 u32 type, pdl;
2278 u16 pnl;
2279
2280 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2281 return -EINVAL;
2282 length = le32_to_cpu(d->dwSize);
2283 if (len < length)
2284 return -EINVAL;
2285 type = le32_to_cpu(d->dwPropertyDataType);
2286 if (type < USB_EXT_PROP_UNICODE ||
2287 type > USB_EXT_PROP_UNICODE_MULTI) {
2288 pr_vdebug("unsupported os descriptor property type: %d",
2289 type);
2290 return -EINVAL;
2291 }
2292 pnl = le16_to_cpu(d->wPropertyNameLength);
2293 if (length < 14 + pnl) {
2294 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2295 length, pnl, type);
2296 return -EINVAL;
2297 }
2298 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2299 if (length != 14 + pnl + pdl) {
2300 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2301 length, pnl, pdl, type);
2302 return -EINVAL;
2303 }
2304 ++ffs->ms_os_descs_ext_prop_count;
2305 /* property name reported to the host as "WCHAR"s */
2306 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2307 ffs->ms_os_descs_ext_prop_data_len += pdl;
2308 }
2309 break;
2310 default:
2311 pr_vdebug("unknown descriptor: %d\n", type);
2312 return -EINVAL;
2313 }
2314 return length;
2315 }
2316
2317 static int __ffs_data_got_descs(struct ffs_data *ffs,
2318 char *const _data, size_t len)
2319 {
2320 char *data = _data, *raw_descs;
2321 unsigned os_descs_count = 0, counts[3], flags;
2322 int ret = -EINVAL, i;
2323 struct ffs_desc_helper helper;
2324
2325 ENTER();
2326
2327 if (get_unaligned_le32(data + 4) != len)
2328 goto error;
2329
2330 switch (get_unaligned_le32(data)) {
2331 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2332 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2333 data += 8;
2334 len -= 8;
2335 break;
2336 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2337 flags = get_unaligned_le32(data + 8);
2338 ffs->user_flags = flags;
2339 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2340 FUNCTIONFS_HAS_HS_DESC |
2341 FUNCTIONFS_HAS_SS_DESC |
2342 FUNCTIONFS_HAS_MS_OS_DESC |
2343 FUNCTIONFS_VIRTUAL_ADDR |
2344 FUNCTIONFS_EVENTFD |
2345 FUNCTIONFS_ALL_CTRL_RECIP |
2346 FUNCTIONFS_CONFIG0_SETUP)) {
2347 ret = -ENOSYS;
2348 goto error;
2349 }
2350 data += 12;
2351 len -= 12;
2352 break;
2353 default:
2354 goto error;
2355 }
2356
2357 if (flags & FUNCTIONFS_EVENTFD) {
2358 if (len < 4)
2359 goto error;
2360 ffs->ffs_eventfd =
2361 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2362 if (IS_ERR(ffs->ffs_eventfd)) {
2363 ret = PTR_ERR(ffs->ffs_eventfd);
2364 ffs->ffs_eventfd = NULL;
2365 goto error;
2366 }
2367 data += 4;
2368 len -= 4;
2369 }
2370
2371 /* Read fs_count, hs_count and ss_count (if present) */
2372 for (i = 0; i < 3; ++i) {
2373 if (!(flags & (1 << i))) {
2374 counts[i] = 0;
2375 } else if (len < 4) {
2376 goto error;
2377 } else {
2378 counts[i] = get_unaligned_le32(data);
2379 data += 4;
2380 len -= 4;
2381 }
2382 }
2383 if (flags & (1 << i)) {
2384 if (len < 4) {
2385 goto error;
2386 }
2387 os_descs_count = get_unaligned_le32(data);
2388 data += 4;
2389 len -= 4;
2390 };
2391
2392 /* Read descriptors */
2393 raw_descs = data;
2394 helper.ffs = ffs;
2395 for (i = 0; i < 3; ++i) {
2396 if (!counts[i])
2397 continue;
2398 helper.interfaces_count = 0;
2399 helper.eps_count = 0;
2400 ret = ffs_do_descs(counts[i], data, len,
2401 __ffs_data_do_entity, &helper);
2402 if (ret < 0)
2403 goto error;
2404 if (!ffs->eps_count && !ffs->interfaces_count) {
2405 ffs->eps_count = helper.eps_count;
2406 ffs->interfaces_count = helper.interfaces_count;
2407 } else {
2408 if (ffs->eps_count != helper.eps_count) {
2409 ret = -EINVAL;
2410 goto error;
2411 }
2412 if (ffs->interfaces_count != helper.interfaces_count) {
2413 ret = -EINVAL;
2414 goto error;
2415 }
2416 }
2417 data += ret;
2418 len -= ret;
2419 }
2420 if (os_descs_count) {
2421 ret = ffs_do_os_descs(os_descs_count, data, len,
2422 __ffs_data_do_os_desc, ffs);
2423 if (ret < 0)
2424 goto error;
2425 data += ret;
2426 len -= ret;
2427 }
2428
2429 if (raw_descs == data || len) {
2430 ret = -EINVAL;
2431 goto error;
2432 }
2433
2434 ffs->raw_descs_data = _data;
2435 ffs->raw_descs = raw_descs;
2436 ffs->raw_descs_length = data - raw_descs;
2437 ffs->fs_descs_count = counts[0];
2438 ffs->hs_descs_count = counts[1];
2439 ffs->ss_descs_count = counts[2];
2440 ffs->ms_os_descs_count = os_descs_count;
2441
2442 return 0;
2443
2444 error:
2445 kfree(_data);
2446 return ret;
2447 }
2448
2449 static int __ffs_data_got_strings(struct ffs_data *ffs,
2450 char *const _data, size_t len)
2451 {
2452 u32 str_count, needed_count, lang_count;
2453 struct usb_gadget_strings **stringtabs, *t;
2454 const char *data = _data;
2455 struct usb_string *s;
2456
2457 ENTER();
2458
2459 if (unlikely(len < 16 ||
2460 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2461 get_unaligned_le32(data + 4) != len))
2462 goto error;
2463 str_count = get_unaligned_le32(data + 8);
2464 lang_count = get_unaligned_le32(data + 12);
2465
2466 /* if one is zero the other must be zero */
2467 if (unlikely(!str_count != !lang_count))
2468 goto error;
2469
2470 /* Do we have at least as many strings as descriptors need? */
2471 needed_count = ffs->strings_count;
2472 if (unlikely(str_count < needed_count))
2473 goto error;
2474
2475 /*
2476 * If we don't need any strings just return and free all
2477 * memory.
2478 */
2479 if (!needed_count) {
2480 kfree(_data);
2481 return 0;
2482 }
2483
2484 /* Allocate everything in one chunk so there's less maintenance. */
2485 {
2486 unsigned i = 0;
2487 vla_group(d);
2488 vla_item(d, struct usb_gadget_strings *, stringtabs,
2489 lang_count + 1);
2490 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2491 vla_item(d, struct usb_string, strings,
2492 lang_count*(needed_count+1));
2493
2494 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2495
2496 if (unlikely(!vlabuf)) {
2497 kfree(_data);
2498 return -ENOMEM;
2499 }
2500
2501 /* Initialize the VLA pointers */
2502 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2503 t = vla_ptr(vlabuf, d, stringtab);
2504 i = lang_count;
2505 do {
2506 *stringtabs++ = t++;
2507 } while (--i);
2508 *stringtabs = NULL;
2509
2510 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2511 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2512 t = vla_ptr(vlabuf, d, stringtab);
2513 s = vla_ptr(vlabuf, d, strings);
2514 }
2515
2516 /* For each language */
2517 data += 16;
2518 len -= 16;
2519
2520 do { /* lang_count > 0 so we can use do-while */
2521 unsigned needed = needed_count;
2522
2523 if (unlikely(len < 3))
2524 goto error_free;
2525 t->language = get_unaligned_le16(data);
2526 t->strings = s;
2527 ++t;
2528
2529 data += 2;
2530 len -= 2;
2531
2532 /* For each string */
2533 do { /* str_count > 0 so we can use do-while */
2534 size_t length = strnlen(data, len);
2535
2536 if (unlikely(length == len))
2537 goto error_free;
2538
2539 /*
2540 * User may provide more strings then we need,
2541 * if that's the case we simply ignore the
2542 * rest
2543 */
2544 if (likely(needed)) {
2545 /*
2546 * s->id will be set while adding
2547 * function to configuration so for
2548 * now just leave garbage here.
2549 */
2550 s->s = data;
2551 --needed;
2552 ++s;
2553 }
2554
2555 data += length + 1;
2556 len -= length + 1;
2557 } while (--str_count);
2558
2559 s->id = 0; /* terminator */
2560 s->s = NULL;
2561 ++s;
2562
2563 } while (--lang_count);
2564
2565 /* Some garbage left? */
2566 if (unlikely(len))
2567 goto error_free;
2568
2569 /* Done! */
2570 ffs->stringtabs = stringtabs;
2571 ffs->raw_strings = _data;
2572
2573 return 0;
2574
2575 error_free:
2576 kfree(stringtabs);
2577 error:
2578 kfree(_data);
2579 return -EINVAL;
2580 }
2581
2582
2583 /* Events handling and management *******************************************/
2584
2585 static void __ffs_event_add(struct ffs_data *ffs,
2586 enum usb_functionfs_event_type type)
2587 {
2588 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2589 int neg = 0;
2590
2591 /*
2592 * Abort any unhandled setup
2593 *
2594 * We do not need to worry about some cmpxchg() changing value
2595 * of ffs->setup_state without holding the lock because when
2596 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2597 * the source does nothing.
2598 */
2599 if (ffs->setup_state == FFS_SETUP_PENDING)
2600 ffs->setup_state = FFS_SETUP_CANCELLED;
2601
2602 /*
2603 * Logic of this function guarantees that there are at most four pending
2604 * evens on ffs->ev.types queue. This is important because the queue
2605 * has space for four elements only and __ffs_ep0_read_events function
2606 * depends on that limit as well. If more event types are added, those
2607 * limits have to be revisited or guaranteed to still hold.
2608 */
2609 switch (type) {
2610 case FUNCTIONFS_RESUME:
2611 rem_type2 = FUNCTIONFS_SUSPEND;
2612 /* FALL THROUGH */
2613 case FUNCTIONFS_SUSPEND:
2614 case FUNCTIONFS_SETUP:
2615 rem_type1 = type;
2616 /* Discard all similar events */
2617 break;
2618
2619 case FUNCTIONFS_BIND:
2620 case FUNCTIONFS_UNBIND:
2621 case FUNCTIONFS_DISABLE:
2622 case FUNCTIONFS_ENABLE:
2623 /* Discard everything other then power management. */
2624 rem_type1 = FUNCTIONFS_SUSPEND;
2625 rem_type2 = FUNCTIONFS_RESUME;
2626 neg = 1;
2627 break;
2628
2629 default:
2630 WARN(1, "%d: unknown event, this should not happen\n", type);
2631 return;
2632 }
2633
2634 {
2635 u8 *ev = ffs->ev.types, *out = ev;
2636 unsigned n = ffs->ev.count;
2637 for (; n; --n, ++ev)
2638 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2639 *out++ = *ev;
2640 else
2641 pr_vdebug("purging event %d\n", *ev);
2642 ffs->ev.count = out - ffs->ev.types;
2643 }
2644
2645 pr_vdebug("adding event %d\n", type);
2646 ffs->ev.types[ffs->ev.count++] = type;
2647 wake_up_locked(&ffs->ev.waitq);
2648 if (ffs->ffs_eventfd)
2649 eventfd_signal(ffs->ffs_eventfd, 1);
2650 }
2651
2652 static void ffs_event_add(struct ffs_data *ffs,
2653 enum usb_functionfs_event_type type)
2654 {
2655 unsigned long flags;
2656 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2657 __ffs_event_add(ffs, type);
2658 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2659 }
2660
2661 /* Bind/unbind USB function hooks *******************************************/
2662
2663 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2664 {
2665 int i;
2666
2667 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2668 if (ffs->eps_addrmap[i] == endpoint_address)
2669 return i;
2670 return -ENOENT;
2671 }
2672
2673 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2674 struct usb_descriptor_header *desc,
2675 void *priv)
2676 {
2677 struct usb_endpoint_descriptor *ds = (void *)desc;
2678 struct ffs_function *func = priv;
2679 struct ffs_ep *ffs_ep;
2680 unsigned ep_desc_id;
2681 int idx;
2682 static const char *speed_names[] = { "full", "high", "super" };
2683
2684 if (type != FFS_DESCRIPTOR)
2685 return 0;
2686
2687 /*
2688 * If ss_descriptors is not NULL, we are reading super speed
2689 * descriptors; if hs_descriptors is not NULL, we are reading high
2690 * speed descriptors; otherwise, we are reading full speed
2691 * descriptors.
2692 */
2693 if (func->function.ss_descriptors) {
2694 ep_desc_id = 2;
2695 func->function.ss_descriptors[(long)valuep] = desc;
2696 } else if (func->function.hs_descriptors) {
2697 ep_desc_id = 1;
2698 func->function.hs_descriptors[(long)valuep] = desc;
2699 } else {
2700 ep_desc_id = 0;
2701 func->function.fs_descriptors[(long)valuep] = desc;
2702 }
2703
2704 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2705 return 0;
2706
2707 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2708 if (idx < 0)
2709 return idx;
2710
2711 ffs_ep = func->eps + idx;
2712
2713 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2714 pr_err("two %sspeed descriptors for EP %d\n",
2715 speed_names[ep_desc_id],
2716 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2717 return -EINVAL;
2718 }
2719 ffs_ep->descs[ep_desc_id] = ds;
2720
2721 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2722 if (ffs_ep->ep) {
2723 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2724 if (!ds->wMaxPacketSize)
2725 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2726 } else {
2727 struct usb_request *req;
2728 struct usb_ep *ep;
2729 u8 bEndpointAddress;
2730
2731 /*
2732 * We back up bEndpointAddress because autoconfig overwrites
2733 * it with physical endpoint address.
2734 */
2735 bEndpointAddress = ds->bEndpointAddress;
2736 pr_vdebug("autoconfig\n");
2737 ep = usb_ep_autoconfig(func->gadget, ds);
2738 if (unlikely(!ep))
2739 return -ENOTSUPP;
2740 ep->driver_data = func->eps + idx;
2741
2742 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2743 if (unlikely(!req))
2744 return -ENOMEM;
2745
2746 ffs_ep->ep = ep;
2747 ffs_ep->req = req;
2748 func->eps_revmap[ds->bEndpointAddress &
2749 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2750 /*
2751 * If we use virtual address mapping, we restore
2752 * original bEndpointAddress value.
2753 */
2754 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2755 ds->bEndpointAddress = bEndpointAddress;
2756 }
2757 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2758
2759 return 0;
2760 }
2761
2762 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2763 struct usb_descriptor_header *desc,
2764 void *priv)
2765 {
2766 struct ffs_function *func = priv;
2767 unsigned idx;
2768 u8 newValue;
2769
2770 switch (type) {
2771 default:
2772 case FFS_DESCRIPTOR:
2773 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2774 return 0;
2775
2776 case FFS_INTERFACE:
2777 idx = *valuep;
2778 if (func->interfaces_nums[idx] < 0) {
2779 int id = usb_interface_id(func->conf, &func->function);
2780 if (unlikely(id < 0))
2781 return id;
2782 func->interfaces_nums[idx] = id;
2783 }
2784 newValue = func->interfaces_nums[idx];
2785 break;
2786
2787 case FFS_STRING:
2788 /* String' IDs are allocated when fsf_data is bound to cdev */
2789 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2790 break;
2791
2792 case FFS_ENDPOINT:
2793 /*
2794 * USB_DT_ENDPOINT are handled in
2795 * __ffs_func_bind_do_descs().
2796 */
2797 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2798 return 0;
2799
2800 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2801 if (unlikely(!func->eps[idx].ep))
2802 return -EINVAL;
2803
2804 {
2805 struct usb_endpoint_descriptor **descs;
2806 descs = func->eps[idx].descs;
2807 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2808 }
2809 break;
2810 }
2811
2812 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2813 *valuep = newValue;
2814 return 0;
2815 }
2816
2817 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2818 struct usb_os_desc_header *h, void *data,
2819 unsigned len, void *priv)
2820 {
2821 struct ffs_function *func = priv;
2822 u8 length = 0;
2823
2824 switch (type) {
2825 case FFS_OS_DESC_EXT_COMPAT: {
2826 struct usb_ext_compat_desc *desc = data;
2827 struct usb_os_desc_table *t;
2828
2829 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2830 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2831 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2832 ARRAY_SIZE(desc->CompatibleID) +
2833 ARRAY_SIZE(desc->SubCompatibleID));
2834 length = sizeof(*desc);
2835 }
2836 break;
2837 case FFS_OS_DESC_EXT_PROP: {
2838 struct usb_ext_prop_desc *desc = data;
2839 struct usb_os_desc_table *t;
2840 struct usb_os_desc_ext_prop *ext_prop;
2841 char *ext_prop_name;
2842 char *ext_prop_data;
2843
2844 t = &func->function.os_desc_table[h->interface];
2845 t->if_id = func->interfaces_nums[h->interface];
2846
2847 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2848 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2849
2850 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2851 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2852 ext_prop->data_len = le32_to_cpu(*(u32 *)
2853 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2854 length = ext_prop->name_len + ext_prop->data_len + 14;
2855
2856 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2857 func->ffs->ms_os_descs_ext_prop_name_avail +=
2858 ext_prop->name_len;
2859
2860 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2861 func->ffs->ms_os_descs_ext_prop_data_avail +=
2862 ext_prop->data_len;
2863 memcpy(ext_prop_data,
2864 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2865 ext_prop->data_len);
2866 /* unicode data reported to the host as "WCHAR"s */
2867 switch (ext_prop->type) {
2868 case USB_EXT_PROP_UNICODE:
2869 case USB_EXT_PROP_UNICODE_ENV:
2870 case USB_EXT_PROP_UNICODE_LINK:
2871 case USB_EXT_PROP_UNICODE_MULTI:
2872 ext_prop->data_len *= 2;
2873 break;
2874 }
2875 ext_prop->data = ext_prop_data;
2876
2877 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2878 ext_prop->name_len);
2879 /* property name reported to the host as "WCHAR"s */
2880 ext_prop->name_len *= 2;
2881 ext_prop->name = ext_prop_name;
2882
2883 t->os_desc->ext_prop_len +=
2884 ext_prop->name_len + ext_prop->data_len + 14;
2885 ++t->os_desc->ext_prop_count;
2886 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2887 }
2888 break;
2889 default:
2890 pr_vdebug("unknown descriptor: %d\n", type);
2891 }
2892
2893 return length;
2894 }
2895
2896 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2897 struct usb_configuration *c)
2898 {
2899 struct ffs_function *func = ffs_func_from_usb(f);
2900 struct f_fs_opts *ffs_opts =
2901 container_of(f->fi, struct f_fs_opts, func_inst);
2902 int ret;
2903
2904 ENTER();
2905
2906 /*
2907 * Legacy gadget triggers binding in functionfs_ready_callback,
2908 * which already uses locking; taking the same lock here would
2909 * cause a deadlock.
2910 *
2911 * Configfs-enabled gadgets however do need ffs_dev_lock.
2912 */
2913 if (!ffs_opts->no_configfs)
2914 ffs_dev_lock();
2915 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2916 func->ffs = ffs_opts->dev->ffs_data;
2917 if (!ffs_opts->no_configfs)
2918 ffs_dev_unlock();
2919 if (ret)
2920 return ERR_PTR(ret);
2921
2922 func->conf = c;
2923 func->gadget = c->cdev->gadget;
2924
2925 /*
2926 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2927 * configurations are bound in sequence with list_for_each_entry,
2928 * in each configuration its functions are bound in sequence
2929 * with list_for_each_entry, so we assume no race condition
2930 * with regard to ffs_opts->bound access
2931 */
2932 if (!ffs_opts->refcnt) {
2933 ret = functionfs_bind(func->ffs, c->cdev);
2934 if (ret)
2935 return ERR_PTR(ret);
2936 }
2937 ffs_opts->refcnt++;
2938 func->function.strings = func->ffs->stringtabs;
2939
2940 return ffs_opts;
2941 }
2942
2943 static int _ffs_func_bind(struct usb_configuration *c,
2944 struct usb_function *f)
2945 {
2946 struct ffs_function *func = ffs_func_from_usb(f);
2947 struct ffs_data *ffs = func->ffs;
2948
2949 const int full = !!func->ffs->fs_descs_count;
2950 const int high = gadget_is_dualspeed(func->gadget) &&
2951 func->ffs->hs_descs_count;
2952 const int super = gadget_is_superspeed(func->gadget) &&
2953 func->ffs->ss_descs_count;
2954
2955 int fs_len, hs_len, ss_len, ret, i;
2956 struct ffs_ep *eps_ptr;
2957
2958 /* Make it a single chunk, less management later on */
2959 vla_group(d);
2960 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2961 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2962 full ? ffs->fs_descs_count + 1 : 0);
2963 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2964 high ? ffs->hs_descs_count + 1 : 0);
2965 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2966 super ? ffs->ss_descs_count + 1 : 0);
2967 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2968 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2969 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2970 vla_item_with_sz(d, char[16], ext_compat,
2971 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2972 vla_item_with_sz(d, struct usb_os_desc, os_desc,
2973 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2974 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2975 ffs->ms_os_descs_ext_prop_count);
2976 vla_item_with_sz(d, char, ext_prop_name,
2977 ffs->ms_os_descs_ext_prop_name_len);
2978 vla_item_with_sz(d, char, ext_prop_data,
2979 ffs->ms_os_descs_ext_prop_data_len);
2980 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2981 char *vlabuf;
2982
2983 ENTER();
2984
2985 /* Has descriptors only for speeds gadget does not support */
2986 if (unlikely(!(full | high | super)))
2987 return -ENOTSUPP;
2988
2989 /* Allocate a single chunk, less management later on */
2990 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2991 if (unlikely(!vlabuf))
2992 return -ENOMEM;
2993
2994 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2995 ffs->ms_os_descs_ext_prop_name_avail =
2996 vla_ptr(vlabuf, d, ext_prop_name);
2997 ffs->ms_os_descs_ext_prop_data_avail =
2998 vla_ptr(vlabuf, d, ext_prop_data);
2999
3000 /* Copy descriptors */
3001 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3002 ffs->raw_descs_length);
3003
3004 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3005 eps_ptr = vla_ptr(vlabuf, d, eps);
3006 for (i = 0; i < ffs->eps_count; i++)
3007 eps_ptr[i].num = -1;
3008
3009 /* Save pointers
3010 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3011 */
3012 func->eps = vla_ptr(vlabuf, d, eps);
3013 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3014
3015 /*
3016 * Go through all the endpoint descriptors and allocate
3017 * endpoints first, so that later we can rewrite the endpoint
3018 * numbers without worrying that it may be described later on.
3019 */
3020 if (likely(full)) {
3021 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3022 fs_len = ffs_do_descs(ffs->fs_descs_count,
3023 vla_ptr(vlabuf, d, raw_descs),
3024 d_raw_descs__sz,
3025 __ffs_func_bind_do_descs, func);
3026 if (unlikely(fs_len < 0)) {
3027 ret = fs_len;
3028 goto error;
3029 }
3030 } else {
3031 fs_len = 0;
3032 }
3033
3034 if (likely(high)) {
3035 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3036 hs_len = ffs_do_descs(ffs->hs_descs_count,
3037 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3038 d_raw_descs__sz - fs_len,
3039 __ffs_func_bind_do_descs, func);
3040 if (unlikely(hs_len < 0)) {
3041 ret = hs_len;
3042 goto error;
3043 }
3044 } else {
3045 hs_len = 0;
3046 }
3047
3048 if (likely(super)) {
3049 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3050 ss_len = ffs_do_descs(ffs->ss_descs_count,
3051 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3052 d_raw_descs__sz - fs_len - hs_len,
3053 __ffs_func_bind_do_descs, func);
3054 if (unlikely(ss_len < 0)) {
3055 ret = ss_len;
3056 goto error;
3057 }
3058 } else {
3059 ss_len = 0;
3060 }
3061
3062 /*
3063 * Now handle interface numbers allocation and interface and
3064 * endpoint numbers rewriting. We can do that in one go
3065 * now.
3066 */
3067 ret = ffs_do_descs(ffs->fs_descs_count +
3068 (high ? ffs->hs_descs_count : 0) +
3069 (super ? ffs->ss_descs_count : 0),
3070 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3071 __ffs_func_bind_do_nums, func);
3072 if (unlikely(ret < 0))
3073 goto error;
3074
3075 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3076 if (c->cdev->use_os_string) {
3077 for (i = 0; i < ffs->interfaces_count; ++i) {
3078 struct usb_os_desc *desc;
3079
3080 desc = func->function.os_desc_table[i].os_desc =
3081 vla_ptr(vlabuf, d, os_desc) +
3082 i * sizeof(struct usb_os_desc);
3083 desc->ext_compat_id =
3084 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3085 INIT_LIST_HEAD(&desc->ext_prop);
3086 }
3087 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3088 vla_ptr(vlabuf, d, raw_descs) +
3089 fs_len + hs_len + ss_len,
3090 d_raw_descs__sz - fs_len - hs_len -
3091 ss_len,
3092 __ffs_func_bind_do_os_desc, func);
3093 if (unlikely(ret < 0))
3094 goto error;
3095 }
3096 func->function.os_desc_n =
3097 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3098
3099 /* And we're done */
3100 ffs_event_add(ffs, FUNCTIONFS_BIND);
3101 return 0;
3102
3103 error:
3104 /* XXX Do we need to release all claimed endpoints here? */
3105 return ret;
3106 }
3107
3108 static int ffs_func_bind(struct usb_configuration *c,
3109 struct usb_function *f)
3110 {
3111 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3112 struct ffs_function *func = ffs_func_from_usb(f);
3113 int ret;
3114
3115 if (IS_ERR(ffs_opts))
3116 return PTR_ERR(ffs_opts);
3117
3118 ret = _ffs_func_bind(c, f);
3119 if (ret && !--ffs_opts->refcnt)
3120 functionfs_unbind(func->ffs);
3121
3122 return ret;
3123 }
3124
3125
3126 /* Other USB function hooks *************************************************/
3127
3128 static void ffs_reset_work(struct work_struct *work)
3129 {
3130 struct ffs_data *ffs = container_of(work,
3131 struct ffs_data, reset_work);
3132 ffs_data_reset(ffs);
3133 }
3134
3135 static int ffs_func_set_alt(struct usb_function *f,
3136 unsigned interface, unsigned alt)
3137 {
3138 struct ffs_function *func = ffs_func_from_usb(f);
3139 struct ffs_data *ffs = func->ffs;
3140 int ret = 0, intf;
3141
3142 if (alt != (unsigned)-1) {
3143 intf = ffs_func_revmap_intf(func, interface);
3144 if (unlikely(intf < 0))
3145 return intf;
3146 }
3147
3148 if (ffs->func)
3149 ffs_func_eps_disable(ffs->func);
3150
3151 if (ffs->state == FFS_DEACTIVATED) {
3152 ffs->state = FFS_CLOSING;
3153 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3154 schedule_work(&ffs->reset_work);
3155 return -ENODEV;
3156 }
3157
3158 if (ffs->state != FFS_ACTIVE)
3159 return -ENODEV;
3160
3161 if (alt == (unsigned)-1) {
3162 ffs->func = NULL;
3163 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3164 return 0;
3165 }
3166
3167 ffs->func = func;
3168 ret = ffs_func_eps_enable(func);
3169 if (likely(ret >= 0))
3170 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3171 return ret;
3172 }
3173
3174 static void ffs_func_disable(struct usb_function *f)
3175 {
3176 ffs_func_set_alt(f, 0, (unsigned)-1);
3177 }
3178
3179 static int ffs_func_setup(struct usb_function *f,
3180 const struct usb_ctrlrequest *creq)
3181 {
3182 struct ffs_function *func = ffs_func_from_usb(f);
3183 struct ffs_data *ffs = func->ffs;
3184 unsigned long flags;
3185 int ret;
3186
3187 ENTER();
3188
3189 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3190 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3191 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3192 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3193 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3194
3195 /*
3196 * Most requests directed to interface go through here
3197 * (notable exceptions are set/get interface) so we need to
3198 * handle them. All other either handled by composite or
3199 * passed to usb_configuration->setup() (if one is set). No
3200 * matter, we will handle requests directed to endpoint here
3201 * as well (as it's straightforward). Other request recipient
3202 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3203 * is being used.
3204 */
3205 if (ffs->state != FFS_ACTIVE)
3206 return -ENODEV;
3207
3208 switch (creq->bRequestType & USB_RECIP_MASK) {
3209 case USB_RECIP_INTERFACE:
3210 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3211 if (unlikely(ret < 0))
3212 return ret;
3213 break;
3214
3215 case USB_RECIP_ENDPOINT:
3216 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3217 if (unlikely(ret < 0))
3218 return ret;
3219 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3220 ret = func->ffs->eps_addrmap[ret];
3221 break;
3222
3223 default:
3224 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3225 ret = le16_to_cpu(creq->wIndex);
3226 else
3227 return -EOPNOTSUPP;
3228 }
3229
3230 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3231 ffs->ev.setup = *creq;
3232 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3233 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3234 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3235
3236 return 0;
3237 }
3238
3239 static bool ffs_func_req_match(struct usb_function *f,
3240 const struct usb_ctrlrequest *creq,
3241 bool config0)
3242 {
3243 struct ffs_function *func = ffs_func_from_usb(f);
3244
3245 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3246 return false;
3247
3248 switch (creq->bRequestType & USB_RECIP_MASK) {
3249 case USB_RECIP_INTERFACE:
3250 return (ffs_func_revmap_intf(func,
3251 le16_to_cpu(creq->wIndex)) >= 0);
3252 case USB_RECIP_ENDPOINT:
3253 return (ffs_func_revmap_ep(func,
3254 le16_to_cpu(creq->wIndex)) >= 0);
3255 default:
3256 return (bool) (func->ffs->user_flags &
3257 FUNCTIONFS_ALL_CTRL_RECIP);
3258 }
3259 }
3260
3261 static void ffs_func_suspend(struct usb_function *f)
3262 {
3263 ENTER();
3264 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3265 }
3266
3267 static void ffs_func_resume(struct usb_function *f)
3268 {
3269 ENTER();
3270 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3271 }
3272
3273
3274 /* Endpoint and interface numbers reverse mapping ***************************/
3275
3276 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3277 {
3278 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3279 return num ? num : -EDOM;
3280 }
3281
3282 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3283 {
3284 short *nums = func->interfaces_nums;
3285 unsigned count = func->ffs->interfaces_count;
3286
3287 for (; count; --count, ++nums) {
3288 if (*nums >= 0 && *nums == intf)
3289 return nums - func->interfaces_nums;
3290 }
3291
3292 return -EDOM;
3293 }
3294
3295
3296 /* Devices management *******************************************************/
3297
3298 static LIST_HEAD(ffs_devices);
3299
3300 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3301 {
3302 struct ffs_dev *dev;
3303
3304 if (!name)
3305 return NULL;
3306
3307 list_for_each_entry(dev, &ffs_devices, entry) {
3308 if (strcmp(dev->name, name) == 0)
3309 return dev;
3310 }
3311
3312 return NULL;
3313 }
3314
3315 /*
3316 * ffs_lock must be taken by the caller of this function
3317 */
3318 static struct ffs_dev *_ffs_get_single_dev(void)
3319 {
3320 struct ffs_dev *dev;
3321
3322 if (list_is_singular(&ffs_devices)) {
3323 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3324 if (dev->single)
3325 return dev;
3326 }
3327
3328 return NULL;
3329 }
3330
3331 /*
3332 * ffs_lock must be taken by the caller of this function
3333 */
3334 static struct ffs_dev *_ffs_find_dev(const char *name)
3335 {
3336 struct ffs_dev *dev;
3337
3338 dev = _ffs_get_single_dev();
3339 if (dev)
3340 return dev;
3341
3342 return _ffs_do_find_dev(name);
3343 }
3344
3345 /* Configfs support *********************************************************/
3346
3347 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3348 {
3349 return container_of(to_config_group(item), struct f_fs_opts,
3350 func_inst.group);
3351 }
3352
3353 static void ffs_attr_release(struct config_item *item)
3354 {
3355 struct f_fs_opts *opts = to_ffs_opts(item);
3356
3357 usb_put_function_instance(&opts->func_inst);
3358 }
3359
3360 static struct configfs_item_operations ffs_item_ops = {
3361 .release = ffs_attr_release,
3362 };
3363
3364 static struct config_item_type ffs_func_type = {
3365 .ct_item_ops = &ffs_item_ops,
3366 .ct_owner = THIS_MODULE,
3367 };
3368
3369
3370 /* Function registration interface ******************************************/
3371
3372 static void ffs_free_inst(struct usb_function_instance *f)
3373 {
3374 struct f_fs_opts *opts;
3375
3376 opts = to_f_fs_opts(f);
3377 ffs_dev_lock();
3378 _ffs_free_dev(opts->dev);
3379 ffs_dev_unlock();
3380 kfree(opts);
3381 }
3382
3383 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3384 {
3385 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3386 return -ENAMETOOLONG;
3387 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3388 }
3389
3390 static struct usb_function_instance *ffs_alloc_inst(void)
3391 {
3392 struct f_fs_opts *opts;
3393 struct ffs_dev *dev;
3394
3395 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3396 if (!opts)
3397 return ERR_PTR(-ENOMEM);
3398
3399 opts->func_inst.set_inst_name = ffs_set_inst_name;
3400 opts->func_inst.free_func_inst = ffs_free_inst;
3401 ffs_dev_lock();
3402 dev = _ffs_alloc_dev();
3403 ffs_dev_unlock();
3404 if (IS_ERR(dev)) {
3405 kfree(opts);
3406 return ERR_CAST(dev);
3407 }
3408 opts->dev = dev;
3409 dev->opts = opts;
3410
3411 config_group_init_type_name(&opts->func_inst.group, "",
3412 &ffs_func_type);
3413 return &opts->func_inst;
3414 }
3415
3416 static void ffs_free(struct usb_function *f)
3417 {
3418 kfree(ffs_func_from_usb(f));
3419 }
3420
3421 static void ffs_func_unbind(struct usb_configuration *c,
3422 struct usb_function *f)
3423 {
3424 struct ffs_function *func = ffs_func_from_usb(f);
3425 struct ffs_data *ffs = func->ffs;
3426 struct f_fs_opts *opts =
3427 container_of(f->fi, struct f_fs_opts, func_inst);
3428 struct ffs_ep *ep = func->eps;
3429 unsigned count = ffs->eps_count;
3430 unsigned long flags;
3431
3432 ENTER();
3433 if (ffs->func == func) {
3434 ffs_func_eps_disable(func);
3435 ffs->func = NULL;
3436 }
3437
3438 if (!--opts->refcnt)
3439 functionfs_unbind(ffs);
3440
3441 /* cleanup after autoconfig */
3442 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3443 while (count--) {
3444 if (ep->ep && ep->req)
3445 usb_ep_free_request(ep->ep, ep->req);
3446 ep->req = NULL;
3447 ++ep;
3448 }
3449 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3450 kfree(func->eps);
3451 func->eps = NULL;
3452 /*
3453 * eps, descriptors and interfaces_nums are allocated in the
3454 * same chunk so only one free is required.
3455 */
3456 func->function.fs_descriptors = NULL;
3457 func->function.hs_descriptors = NULL;
3458 func->function.ss_descriptors = NULL;
3459 func->interfaces_nums = NULL;
3460
3461 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3462 }
3463
3464 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3465 {
3466 struct ffs_function *func;
3467
3468 ENTER();
3469
3470 func = kzalloc(sizeof(*func), GFP_KERNEL);
3471 if (unlikely(!func))
3472 return ERR_PTR(-ENOMEM);
3473
3474 func->function.name = "Function FS Gadget";
3475
3476 func->function.bind = ffs_func_bind;
3477 func->function.unbind = ffs_func_unbind;
3478 func->function.set_alt = ffs_func_set_alt;
3479 func->function.disable = ffs_func_disable;
3480 func->function.setup = ffs_func_setup;
3481 func->function.req_match = ffs_func_req_match;
3482 func->function.suspend = ffs_func_suspend;
3483 func->function.resume = ffs_func_resume;
3484 func->function.free_func = ffs_free;
3485
3486 return &func->function;
3487 }
3488
3489 /*
3490 * ffs_lock must be taken by the caller of this function
3491 */
3492 static struct ffs_dev *_ffs_alloc_dev(void)
3493 {
3494 struct ffs_dev *dev;
3495 int ret;
3496
3497 if (_ffs_get_single_dev())
3498 return ERR_PTR(-EBUSY);
3499
3500 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3501 if (!dev)
3502 return ERR_PTR(-ENOMEM);
3503
3504 if (list_empty(&ffs_devices)) {
3505 ret = functionfs_init();
3506 if (ret) {
3507 kfree(dev);
3508 return ERR_PTR(ret);
3509 }
3510 }
3511
3512 list_add(&dev->entry, &ffs_devices);
3513
3514 return dev;
3515 }
3516
3517 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3518 {
3519 struct ffs_dev *existing;
3520 int ret = 0;
3521
3522 ffs_dev_lock();
3523
3524 existing = _ffs_do_find_dev(name);
3525 if (!existing)
3526 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3527 else if (existing != dev)
3528 ret = -EBUSY;
3529
3530 ffs_dev_unlock();
3531
3532 return ret;
3533 }
3534 EXPORT_SYMBOL_GPL(ffs_name_dev);
3535
3536 int ffs_single_dev(struct ffs_dev *dev)
3537 {
3538 int ret;
3539
3540 ret = 0;
3541 ffs_dev_lock();
3542
3543 if (!list_is_singular(&ffs_devices))
3544 ret = -EBUSY;
3545 else
3546 dev->single = true;
3547
3548 ffs_dev_unlock();
3549 return ret;
3550 }
3551 EXPORT_SYMBOL_GPL(ffs_single_dev);
3552
3553 /*
3554 * ffs_lock must be taken by the caller of this function
3555 */
3556 static void _ffs_free_dev(struct ffs_dev *dev)
3557 {
3558 list_del(&dev->entry);
3559
3560 /* Clear the private_data pointer to stop incorrect dev access */
3561 if (dev->ffs_data)
3562 dev->ffs_data->private_data = NULL;
3563
3564 kfree(dev);
3565 if (list_empty(&ffs_devices))
3566 functionfs_cleanup();
3567 }
3568
3569 static void *ffs_acquire_dev(const char *dev_name)
3570 {
3571 struct ffs_dev *ffs_dev;
3572
3573 ENTER();
3574 ffs_dev_lock();
3575
3576 ffs_dev = _ffs_find_dev(dev_name);
3577 if (!ffs_dev)
3578 ffs_dev = ERR_PTR(-ENOENT);
3579 else if (ffs_dev->mounted)
3580 ffs_dev = ERR_PTR(-EBUSY);
3581 else if (ffs_dev->ffs_acquire_dev_callback &&
3582 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3583 ffs_dev = ERR_PTR(-ENOENT);
3584 else
3585 ffs_dev->mounted = true;
3586
3587 ffs_dev_unlock();
3588 return ffs_dev;
3589 }
3590
3591 static void ffs_release_dev(struct ffs_data *ffs_data)
3592 {
3593 struct ffs_dev *ffs_dev;
3594
3595 ENTER();
3596 ffs_dev_lock();
3597
3598 ffs_dev = ffs_data->private_data;
3599 if (ffs_dev) {
3600 ffs_dev->mounted = false;
3601
3602 if (ffs_dev->ffs_release_dev_callback)
3603 ffs_dev->ffs_release_dev_callback(ffs_dev);
3604 }
3605
3606 ffs_dev_unlock();
3607 }
3608
3609 static int ffs_ready(struct ffs_data *ffs)
3610 {
3611 struct ffs_dev *ffs_obj;
3612 int ret = 0;
3613
3614 ENTER();
3615 ffs_dev_lock();
3616
3617 ffs_obj = ffs->private_data;
3618 if (!ffs_obj) {
3619 ret = -EINVAL;
3620 goto done;
3621 }
3622 if (WARN_ON(ffs_obj->desc_ready)) {
3623 ret = -EBUSY;
3624 goto done;
3625 }
3626
3627 ffs_obj->desc_ready = true;
3628 ffs_obj->ffs_data = ffs;
3629
3630 if (ffs_obj->ffs_ready_callback) {
3631 ret = ffs_obj->ffs_ready_callback(ffs);
3632 if (ret)
3633 goto done;
3634 }
3635
3636 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3637 done:
3638 ffs_dev_unlock();
3639 return ret;
3640 }
3641
3642 static void ffs_closed(struct ffs_data *ffs)
3643 {
3644 struct ffs_dev *ffs_obj;
3645 struct f_fs_opts *opts;
3646 struct config_item *ci;
3647
3648 ENTER();
3649 ffs_dev_lock();
3650
3651 ffs_obj = ffs->private_data;
3652 if (!ffs_obj)
3653 goto done;
3654
3655 ffs_obj->desc_ready = false;
3656
3657 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3658 ffs_obj->ffs_closed_callback)
3659 ffs_obj->ffs_closed_callback(ffs);
3660
3661 if (ffs_obj->opts)
3662 opts = ffs_obj->opts;
3663 else
3664 goto done;
3665
3666 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3667 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3668 goto done;
3669
3670 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3671 ffs_dev_unlock();
3672
3673 unregister_gadget_item(ci);
3674 return;
3675 done:
3676 ffs_dev_unlock();
3677 }
3678
3679 /* Misc helper functions ****************************************************/
3680
3681 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3682 {
3683 return nonblock
3684 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3685 : mutex_lock_interruptible(mutex);
3686 }
3687
3688 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3689 {
3690 char *data;
3691
3692 if (unlikely(!len))
3693 return NULL;
3694
3695 data = kmalloc(len, GFP_KERNEL);
3696 if (unlikely(!data))
3697 return ERR_PTR(-ENOMEM);
3698
3699 if (unlikely(copy_from_user(data, buf, len))) {
3700 kfree(data);
3701 return ERR_PTR(-EFAULT);
3702 }
3703
3704 pr_vdebug("Buffer from user space:\n");
3705 ffs_dump_mem("", data, len);
3706
3707 return data;
3708 }
3709
3710 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3711 MODULE_LICENSE("GPL");
3712 MODULE_AUTHOR("Michal Nazarewicz");