]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/gadget/function/f_fs.c
Merge tag 'mvebu-fixes-4.14-3' of git://git.infradead.org/linux-mvebu into fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / gadget / function / f_fs.c
1 /*
2 * f_fs.c -- user mode file system API for USB composite function controllers
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
6 *
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42
43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
50 __attribute__((malloc));
51
52 /* Opened counter handling. */
53 static void ffs_data_opened(struct ffs_data *ffs);
54 static void ffs_data_closed(struct ffs_data *ffs);
55
56 /* Called with ffs->mutex held; take over ownership of data. */
57 static int __must_check
58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
59 static int __must_check
60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
61
62
63 /* The function structure ***************************************************/
64
65 struct ffs_ep;
66
67 struct ffs_function {
68 struct usb_configuration *conf;
69 struct usb_gadget *gadget;
70 struct ffs_data *ffs;
71
72 struct ffs_ep *eps;
73 u8 eps_revmap[16];
74 short *interfaces_nums;
75
76 struct usb_function function;
77 };
78
79
80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
81 {
82 return container_of(f, struct ffs_function, function);
83 }
84
85
86 static inline enum ffs_setup_state
87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
88 {
89 return (enum ffs_setup_state)
90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
91 }
92
93
94 static void ffs_func_eps_disable(struct ffs_function *func);
95 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
96
97 static int ffs_func_bind(struct usb_configuration *,
98 struct usb_function *);
99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
100 static void ffs_func_disable(struct usb_function *);
101 static int ffs_func_setup(struct usb_function *,
102 const struct usb_ctrlrequest *);
103 static bool ffs_func_req_match(struct usb_function *,
104 const struct usb_ctrlrequest *,
105 bool config0);
106 static void ffs_func_suspend(struct usb_function *);
107 static void ffs_func_resume(struct usb_function *);
108
109
110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
112
113
114 /* The endpoints structures *************************************************/
115
116 struct ffs_ep {
117 struct usb_ep *ep; /* P: ffs->eps_lock */
118 struct usb_request *req; /* P: epfile->mutex */
119
120 /* [0]: full speed, [1]: high speed, [2]: super speed */
121 struct usb_endpoint_descriptor *descs[3];
122
123 u8 num;
124
125 int status; /* P: epfile->mutex */
126 };
127
128 struct ffs_epfile {
129 /* Protects ep->ep and ep->req. */
130 struct mutex mutex;
131
132 struct ffs_data *ffs;
133 struct ffs_ep *ep; /* P: ffs->eps_lock */
134
135 struct dentry *dentry;
136
137 /*
138 * Buffer for holding data from partial reads which may happen since
139 * we’re rounding user read requests to a multiple of a max packet size.
140 *
141 * The pointer is initialised with NULL value and may be set by
142 * __ffs_epfile_read_data function to point to a temporary buffer.
143 *
144 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 * data from said buffer and eventually free it. Importantly, while the
146 * function is using the buffer, it sets the pointer to NULL. This is
147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 * can never run concurrently (they are synchronised by epfile->mutex)
149 * so the latter will not assign a new value to the pointer.
150 *
151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
153 * value is crux of the synchronisation between ffs_func_eps_disable and
154 * __ffs_epfile_read_data.
155 *
156 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 * pointer back to its old value (as described above), but seeing as the
158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 * the buffer.
160 *
161 * == State transitions ==
162 *
163 * • ptr == NULL: (initial state)
164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 * ◦ __ffs_epfile_read_buffered: nop
166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 * ◦ reading finishes: n/a, not in ‘and reading’ state
168 * • ptr == DROP:
169 * ◦ __ffs_epfile_read_buffer_free: nop
170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 * ◦ reading finishes: n/a, not in ‘and reading’ state
173 * • ptr == buf:
174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
177 * is always called first
178 * ◦ reading finishes: n/a, not in ‘and reading’ state
179 * • ptr == NULL and reading:
180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
182 * ◦ __ffs_epfile_read_data: n/a, mutex is held
183 * ◦ reading finishes and …
184 * … all data read: free buf, go to ptr == NULL
185 * … otherwise: go to ptr == buf and reading
186 * • ptr == DROP and reading:
187 * ◦ __ffs_epfile_read_buffer_free: nop
188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
189 * ◦ __ffs_epfile_read_data: n/a, mutex is held
190 * ◦ reading finishes: free buf, go to ptr == DROP
191 */
192 struct ffs_buffer *read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194
195 char name[5];
196
197 unsigned char in; /* P: ffs->eps_lock */
198 unsigned char isoc; /* P: ffs->eps_lock */
199
200 unsigned char _pad;
201 };
202
203 struct ffs_buffer {
204 size_t length;
205 char *data;
206 char storage[];
207 };
208
209 /* ffs_io_data structure ***************************************************/
210
211 struct ffs_io_data {
212 bool aio;
213 bool read;
214
215 struct kiocb *kiocb;
216 struct iov_iter data;
217 const void *to_free;
218 char *buf;
219
220 struct mm_struct *mm;
221 struct work_struct work;
222
223 struct usb_ep *ep;
224 struct usb_request *req;
225
226 struct ffs_data *ffs;
227 };
228
229 struct ffs_desc_helper {
230 struct ffs_data *ffs;
231 unsigned interfaces_count;
232 unsigned eps_count;
233 };
234
235 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240 const struct file_operations *fops);
241
242 /* Devices management *******************************************************/
243
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static void _ffs_free_dev(struct ffs_dev *dev);
250 static void *ffs_acquire_dev(const char *dev_name);
251 static void ffs_release_dev(struct ffs_data *ffs_data);
252 static int ffs_ready(struct ffs_data *ffs);
253 static void ffs_closed(struct ffs_data *ffs);
254
255 /* Misc helper functions ****************************************************/
256
257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
258 __attribute__((warn_unused_result, nonnull));
259 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 __attribute__((warn_unused_result, nonnull));
261
262
263 /* Control file aka ep0 *****************************************************/
264
265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
266 {
267 struct ffs_data *ffs = req->context;
268
269 complete(&ffs->ep0req_completion);
270 }
271
272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
273 {
274 struct usb_request *req = ffs->ep0req;
275 int ret;
276
277 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
278
279 spin_unlock_irq(&ffs->ev.waitq.lock);
280
281 req->buf = data;
282 req->length = len;
283
284 /*
285 * UDC layer requires to provide a buffer even for ZLP, but should
286 * not use it at all. Let's provide some poisoned pointer to catch
287 * possible bug in the driver.
288 */
289 if (req->buf == NULL)
290 req->buf = (void *)0xDEADBABE;
291
292 reinit_completion(&ffs->ep0req_completion);
293
294 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
295 if (unlikely(ret < 0))
296 return ret;
297
298 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
299 if (unlikely(ret)) {
300 usb_ep_dequeue(ffs->gadget->ep0, req);
301 return -EINTR;
302 }
303
304 ffs->setup_state = FFS_NO_SETUP;
305 return req->status ? req->status : req->actual;
306 }
307
308 static int __ffs_ep0_stall(struct ffs_data *ffs)
309 {
310 if (ffs->ev.can_stall) {
311 pr_vdebug("ep0 stall\n");
312 usb_ep_set_halt(ffs->gadget->ep0);
313 ffs->setup_state = FFS_NO_SETUP;
314 return -EL2HLT;
315 } else {
316 pr_debug("bogus ep0 stall!\n");
317 return -ESRCH;
318 }
319 }
320
321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
322 size_t len, loff_t *ptr)
323 {
324 struct ffs_data *ffs = file->private_data;
325 ssize_t ret;
326 char *data;
327
328 ENTER();
329
330 /* Fast check if setup was canceled */
331 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 return -EIDRM;
333
334 /* Acquire mutex */
335 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
336 if (unlikely(ret < 0))
337 return ret;
338
339 /* Check state */
340 switch (ffs->state) {
341 case FFS_READ_DESCRIPTORS:
342 case FFS_READ_STRINGS:
343 /* Copy data */
344 if (unlikely(len < 16)) {
345 ret = -EINVAL;
346 break;
347 }
348
349 data = ffs_prepare_buffer(buf, len);
350 if (IS_ERR(data)) {
351 ret = PTR_ERR(data);
352 break;
353 }
354
355 /* Handle data */
356 if (ffs->state == FFS_READ_DESCRIPTORS) {
357 pr_info("read descriptors\n");
358 ret = __ffs_data_got_descs(ffs, data, len);
359 if (unlikely(ret < 0))
360 break;
361
362 ffs->state = FFS_READ_STRINGS;
363 ret = len;
364 } else {
365 pr_info("read strings\n");
366 ret = __ffs_data_got_strings(ffs, data, len);
367 if (unlikely(ret < 0))
368 break;
369
370 ret = ffs_epfiles_create(ffs);
371 if (unlikely(ret)) {
372 ffs->state = FFS_CLOSING;
373 break;
374 }
375
376 ffs->state = FFS_ACTIVE;
377 mutex_unlock(&ffs->mutex);
378
379 ret = ffs_ready(ffs);
380 if (unlikely(ret < 0)) {
381 ffs->state = FFS_CLOSING;
382 return ret;
383 }
384
385 return len;
386 }
387 break;
388
389 case FFS_ACTIVE:
390 data = NULL;
391 /*
392 * We're called from user space, we can use _irq
393 * rather then _irqsave
394 */
395 spin_lock_irq(&ffs->ev.waitq.lock);
396 switch (ffs_setup_state_clear_cancelled(ffs)) {
397 case FFS_SETUP_CANCELLED:
398 ret = -EIDRM;
399 goto done_spin;
400
401 case FFS_NO_SETUP:
402 ret = -ESRCH;
403 goto done_spin;
404
405 case FFS_SETUP_PENDING:
406 break;
407 }
408
409 /* FFS_SETUP_PENDING */
410 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
411 spin_unlock_irq(&ffs->ev.waitq.lock);
412 ret = __ffs_ep0_stall(ffs);
413 break;
414 }
415
416 /* FFS_SETUP_PENDING and not stall */
417 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
418
419 spin_unlock_irq(&ffs->ev.waitq.lock);
420
421 data = ffs_prepare_buffer(buf, len);
422 if (IS_ERR(data)) {
423 ret = PTR_ERR(data);
424 break;
425 }
426
427 spin_lock_irq(&ffs->ev.waitq.lock);
428
429 /*
430 * We are guaranteed to be still in FFS_ACTIVE state
431 * but the state of setup could have changed from
432 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433 * to check for that. If that happened we copied data
434 * from user space in vain but it's unlikely.
435 *
436 * For sure we are not in FFS_NO_SETUP since this is
437 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
438 * transition can be performed and it's protected by
439 * mutex.
440 */
441 if (ffs_setup_state_clear_cancelled(ffs) ==
442 FFS_SETUP_CANCELLED) {
443 ret = -EIDRM;
444 done_spin:
445 spin_unlock_irq(&ffs->ev.waitq.lock);
446 } else {
447 /* unlocks spinlock */
448 ret = __ffs_ep0_queue_wait(ffs, data, len);
449 }
450 kfree(data);
451 break;
452
453 default:
454 ret = -EBADFD;
455 break;
456 }
457
458 mutex_unlock(&ffs->mutex);
459 return ret;
460 }
461
462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
464 size_t n)
465 {
466 /*
467 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
468 * size of ffs->ev.types array (which is four) so that's how much space
469 * we reserve.
470 */
471 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
472 const size_t size = n * sizeof *events;
473 unsigned i = 0;
474
475 memset(events, 0, size);
476
477 do {
478 events[i].type = ffs->ev.types[i];
479 if (events[i].type == FUNCTIONFS_SETUP) {
480 events[i].u.setup = ffs->ev.setup;
481 ffs->setup_state = FFS_SETUP_PENDING;
482 }
483 } while (++i < n);
484
485 ffs->ev.count -= n;
486 if (ffs->ev.count)
487 memmove(ffs->ev.types, ffs->ev.types + n,
488 ffs->ev.count * sizeof *ffs->ev.types);
489
490 spin_unlock_irq(&ffs->ev.waitq.lock);
491 mutex_unlock(&ffs->mutex);
492
493 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 }
495
496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
497 size_t len, loff_t *ptr)
498 {
499 struct ffs_data *ffs = file->private_data;
500 char *data = NULL;
501 size_t n;
502 int ret;
503
504 ENTER();
505
506 /* Fast check if setup was canceled */
507 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 return -EIDRM;
509
510 /* Acquire mutex */
511 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
512 if (unlikely(ret < 0))
513 return ret;
514
515 /* Check state */
516 if (ffs->state != FFS_ACTIVE) {
517 ret = -EBADFD;
518 goto done_mutex;
519 }
520
521 /*
522 * We're called from user space, we can use _irq rather then
523 * _irqsave
524 */
525 spin_lock_irq(&ffs->ev.waitq.lock);
526
527 switch (ffs_setup_state_clear_cancelled(ffs)) {
528 case FFS_SETUP_CANCELLED:
529 ret = -EIDRM;
530 break;
531
532 case FFS_NO_SETUP:
533 n = len / sizeof(struct usb_functionfs_event);
534 if (unlikely(!n)) {
535 ret = -EINVAL;
536 break;
537 }
538
539 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
540 ret = -EAGAIN;
541 break;
542 }
543
544 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
545 ffs->ev.count)) {
546 ret = -EINTR;
547 break;
548 }
549
550 return __ffs_ep0_read_events(ffs, buf,
551 min(n, (size_t)ffs->ev.count));
552
553 case FFS_SETUP_PENDING:
554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 spin_unlock_irq(&ffs->ev.waitq.lock);
556 ret = __ffs_ep0_stall(ffs);
557 goto done_mutex;
558 }
559
560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561
562 spin_unlock_irq(&ffs->ev.waitq.lock);
563
564 if (likely(len)) {
565 data = kmalloc(len, GFP_KERNEL);
566 if (unlikely(!data)) {
567 ret = -ENOMEM;
568 goto done_mutex;
569 }
570 }
571
572 spin_lock_irq(&ffs->ev.waitq.lock);
573
574 /* See ffs_ep0_write() */
575 if (ffs_setup_state_clear_cancelled(ffs) ==
576 FFS_SETUP_CANCELLED) {
577 ret = -EIDRM;
578 break;
579 }
580
581 /* unlocks spinlock */
582 ret = __ffs_ep0_queue_wait(ffs, data, len);
583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 ret = -EFAULT;
585 goto done_mutex;
586
587 default:
588 ret = -EBADFD;
589 break;
590 }
591
592 spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 mutex_unlock(&ffs->mutex);
595 kfree(data);
596 return ret;
597 }
598
599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 struct ffs_data *ffs = inode->i_private;
602
603 ENTER();
604
605 if (unlikely(ffs->state == FFS_CLOSING))
606 return -EBUSY;
607
608 file->private_data = ffs;
609 ffs_data_opened(ffs);
610
611 return 0;
612 }
613
614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 struct ffs_data *ffs = file->private_data;
617
618 ENTER();
619
620 ffs_data_closed(ffs);
621
622 return 0;
623 }
624
625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 struct ffs_data *ffs = file->private_data;
628 struct usb_gadget *gadget = ffs->gadget;
629 long ret;
630
631 ENTER();
632
633 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 struct ffs_function *func = ffs->func;
635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 } else if (gadget && gadget->ops->ioctl) {
637 ret = gadget->ops->ioctl(gadget, code, value);
638 } else {
639 ret = -ENOTTY;
640 }
641
642 return ret;
643 }
644
645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 struct ffs_data *ffs = file->private_data;
648 unsigned int mask = POLLWRNORM;
649 int ret;
650
651 poll_wait(file, &ffs->ev.waitq, wait);
652
653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 if (unlikely(ret < 0))
655 return mask;
656
657 switch (ffs->state) {
658 case FFS_READ_DESCRIPTORS:
659 case FFS_READ_STRINGS:
660 mask |= POLLOUT;
661 break;
662
663 case FFS_ACTIVE:
664 switch (ffs->setup_state) {
665 case FFS_NO_SETUP:
666 if (ffs->ev.count)
667 mask |= POLLIN;
668 break;
669
670 case FFS_SETUP_PENDING:
671 case FFS_SETUP_CANCELLED:
672 mask |= (POLLIN | POLLOUT);
673 break;
674 }
675 case FFS_CLOSING:
676 break;
677 case FFS_DEACTIVATED:
678 break;
679 }
680
681 mutex_unlock(&ffs->mutex);
682
683 return mask;
684 }
685
686 static const struct file_operations ffs_ep0_operations = {
687 .llseek = no_llseek,
688
689 .open = ffs_ep0_open,
690 .write = ffs_ep0_write,
691 .read = ffs_ep0_read,
692 .release = ffs_ep0_release,
693 .unlocked_ioctl = ffs_ep0_ioctl,
694 .poll = ffs_ep0_poll,
695 };
696
697
698 /* "Normal" endpoints operations ********************************************/
699
700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 ENTER();
703 if (likely(req->context)) {
704 struct ffs_ep *ep = _ep->driver_data;
705 ep->status = req->status ? req->status : req->actual;
706 complete(req->context);
707 }
708 }
709
710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 ssize_t ret = copy_to_iter(data, data_len, iter);
713 if (likely(ret == data_len))
714 return ret;
715
716 if (unlikely(iov_iter_count(iter)))
717 return -EFAULT;
718
719 /*
720 * Dear user space developer!
721 *
722 * TL;DR: To stop getting below error message in your kernel log, change
723 * user space code using functionfs to align read buffers to a max
724 * packet size.
725 *
726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 * packet size. When unaligned buffer is passed to functionfs, it
728 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 *
730 * Unfortunately, this means that host may send more data than was
731 * requested in read(2) system call. f_fs doesn’t know what to do with
732 * that excess data so it simply drops it.
733 *
734 * Was the buffer aligned in the first place, no such problem would
735 * happen.
736 *
737 * Data may be dropped only in AIO reads. Synchronous reads are handled
738 * by splitting a request into multiple parts. This splitting may still
739 * be a problem though so it’s likely best to align the buffer
740 * regardless of it being AIO or not..
741 *
742 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
744 * affected.
745 */
746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 "Align read buffer size to max packet size to avoid the problem.\n",
748 data_len, ret);
749
750 return ret;
751 }
752
753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 work);
757 int ret = io_data->req->status ? io_data->req->status :
758 io_data->req->actual;
759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760
761 if (io_data->read && ret > 0) {
762 use_mm(io_data->mm);
763 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
764 unuse_mm(io_data->mm);
765 }
766
767 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
768
769 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
770 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
771
772 usb_ep_free_request(io_data->ep, io_data->req);
773
774 if (io_data->read)
775 kfree(io_data->to_free);
776 kfree(io_data->buf);
777 kfree(io_data);
778 }
779
780 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
781 struct usb_request *req)
782 {
783 struct ffs_io_data *io_data = req->context;
784 struct ffs_data *ffs = io_data->ffs;
785
786 ENTER();
787
788 INIT_WORK(&io_data->work, ffs_user_copy_worker);
789 queue_work(ffs->io_completion_wq, &io_data->work);
790 }
791
792 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
793 {
794 /*
795 * See comment in struct ffs_epfile for full read_buffer pointer
796 * synchronisation story.
797 */
798 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
799 if (buf && buf != READ_BUFFER_DROP)
800 kfree(buf);
801 }
802
803 /* Assumes epfile->mutex is held. */
804 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
805 struct iov_iter *iter)
806 {
807 /*
808 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
809 * the buffer while we are using it. See comment in struct ffs_epfile
810 * for full read_buffer pointer synchronisation story.
811 */
812 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
813 ssize_t ret;
814 if (!buf || buf == READ_BUFFER_DROP)
815 return 0;
816
817 ret = copy_to_iter(buf->data, buf->length, iter);
818 if (buf->length == ret) {
819 kfree(buf);
820 return ret;
821 }
822
823 if (unlikely(iov_iter_count(iter))) {
824 ret = -EFAULT;
825 } else {
826 buf->length -= ret;
827 buf->data += ret;
828 }
829
830 if (cmpxchg(&epfile->read_buffer, NULL, buf))
831 kfree(buf);
832
833 return ret;
834 }
835
836 /* Assumes epfile->mutex is held. */
837 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
838 void *data, int data_len,
839 struct iov_iter *iter)
840 {
841 struct ffs_buffer *buf;
842
843 ssize_t ret = copy_to_iter(data, data_len, iter);
844 if (likely(data_len == ret))
845 return ret;
846
847 if (unlikely(iov_iter_count(iter)))
848 return -EFAULT;
849
850 /* See ffs_copy_to_iter for more context. */
851 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
852 data_len, ret);
853
854 data_len -= ret;
855 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
856 if (!buf)
857 return -ENOMEM;
858 buf->length = data_len;
859 buf->data = buf->storage;
860 memcpy(buf->storage, data + ret, data_len);
861
862 /*
863 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
864 * ffs_func_eps_disable has been called in the meanwhile). See comment
865 * in struct ffs_epfile for full read_buffer pointer synchronisation
866 * story.
867 */
868 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
869 kfree(buf);
870
871 return ret;
872 }
873
874 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
875 {
876 struct ffs_epfile *epfile = file->private_data;
877 struct usb_request *req;
878 struct ffs_ep *ep;
879 char *data = NULL;
880 ssize_t ret, data_len = -EINVAL;
881 int halt;
882
883 /* Are we still active? */
884 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
885 return -ENODEV;
886
887 /* Wait for endpoint to be enabled */
888 ep = epfile->ep;
889 if (!ep) {
890 if (file->f_flags & O_NONBLOCK)
891 return -EAGAIN;
892
893 ret = wait_event_interruptible(
894 epfile->ffs->wait, (ep = epfile->ep));
895 if (ret)
896 return -EINTR;
897 }
898
899 /* Do we halt? */
900 halt = (!io_data->read == !epfile->in);
901 if (halt && epfile->isoc)
902 return -EINVAL;
903
904 /* We will be using request and read_buffer */
905 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
906 if (unlikely(ret))
907 goto error;
908
909 /* Allocate & copy */
910 if (!halt) {
911 struct usb_gadget *gadget;
912
913 /*
914 * Do we have buffered data from previous partial read? Check
915 * that for synchronous case only because we do not have
916 * facility to ‘wake up’ a pending asynchronous read and push
917 * buffered data to it which we would need to make things behave
918 * consistently.
919 */
920 if (!io_data->aio && io_data->read) {
921 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
922 if (ret)
923 goto error_mutex;
924 }
925
926 /*
927 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
928 * before the waiting completes, so do not assign to 'gadget'
929 * earlier
930 */
931 gadget = epfile->ffs->gadget;
932
933 spin_lock_irq(&epfile->ffs->eps_lock);
934 /* In the meantime, endpoint got disabled or changed. */
935 if (epfile->ep != ep) {
936 ret = -ESHUTDOWN;
937 goto error_lock;
938 }
939 data_len = iov_iter_count(&io_data->data);
940 /*
941 * Controller may require buffer size to be aligned to
942 * maxpacketsize of an out endpoint.
943 */
944 if (io_data->read)
945 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
946 spin_unlock_irq(&epfile->ffs->eps_lock);
947
948 data = kmalloc(data_len, GFP_KERNEL);
949 if (unlikely(!data)) {
950 ret = -ENOMEM;
951 goto error_mutex;
952 }
953 if (!io_data->read &&
954 !copy_from_iter_full(data, data_len, &io_data->data)) {
955 ret = -EFAULT;
956 goto error_mutex;
957 }
958 }
959
960 spin_lock_irq(&epfile->ffs->eps_lock);
961
962 if (epfile->ep != ep) {
963 /* In the meantime, endpoint got disabled or changed. */
964 ret = -ESHUTDOWN;
965 } else if (halt) {
966 ret = usb_ep_set_halt(ep->ep);
967 if (!ret)
968 ret = -EBADMSG;
969 } else if (unlikely(data_len == -EINVAL)) {
970 /*
971 * Sanity Check: even though data_len can't be used
972 * uninitialized at the time I write this comment, some
973 * compilers complain about this situation.
974 * In order to keep the code clean from warnings, data_len is
975 * being initialized to -EINVAL during its declaration, which
976 * means we can't rely on compiler anymore to warn no future
977 * changes won't result in data_len being used uninitialized.
978 * For such reason, we're adding this redundant sanity check
979 * here.
980 */
981 WARN(1, "%s: data_len == -EINVAL\n", __func__);
982 ret = -EINVAL;
983 } else if (!io_data->aio) {
984 DECLARE_COMPLETION_ONSTACK(done);
985 bool interrupted = false;
986
987 req = ep->req;
988 req->buf = data;
989 req->length = data_len;
990
991 req->context = &done;
992 req->complete = ffs_epfile_io_complete;
993
994 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
995 if (unlikely(ret < 0))
996 goto error_lock;
997
998 spin_unlock_irq(&epfile->ffs->eps_lock);
999
1000 if (unlikely(wait_for_completion_interruptible(&done))) {
1001 /*
1002 * To avoid race condition with ffs_epfile_io_complete,
1003 * dequeue the request first then check
1004 * status. usb_ep_dequeue API should guarantee no race
1005 * condition with req->complete callback.
1006 */
1007 usb_ep_dequeue(ep->ep, req);
1008 interrupted = ep->status < 0;
1009 }
1010
1011 if (interrupted)
1012 ret = -EINTR;
1013 else if (io_data->read && ep->status > 0)
1014 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1015 &io_data->data);
1016 else
1017 ret = ep->status;
1018 goto error_mutex;
1019 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1020 ret = -ENOMEM;
1021 } else {
1022 req->buf = data;
1023 req->length = data_len;
1024
1025 io_data->buf = data;
1026 io_data->ep = ep->ep;
1027 io_data->req = req;
1028 io_data->ffs = epfile->ffs;
1029
1030 req->context = io_data;
1031 req->complete = ffs_epfile_async_io_complete;
1032
1033 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1034 if (unlikely(ret)) {
1035 usb_ep_free_request(ep->ep, req);
1036 goto error_lock;
1037 }
1038
1039 ret = -EIOCBQUEUED;
1040 /*
1041 * Do not kfree the buffer in this function. It will be freed
1042 * by ffs_user_copy_worker.
1043 */
1044 data = NULL;
1045 }
1046
1047 error_lock:
1048 spin_unlock_irq(&epfile->ffs->eps_lock);
1049 error_mutex:
1050 mutex_unlock(&epfile->mutex);
1051 error:
1052 kfree(data);
1053 return ret;
1054 }
1055
1056 static int
1057 ffs_epfile_open(struct inode *inode, struct file *file)
1058 {
1059 struct ffs_epfile *epfile = inode->i_private;
1060
1061 ENTER();
1062
1063 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1064 return -ENODEV;
1065
1066 file->private_data = epfile;
1067 ffs_data_opened(epfile->ffs);
1068
1069 return 0;
1070 }
1071
1072 static int ffs_aio_cancel(struct kiocb *kiocb)
1073 {
1074 struct ffs_io_data *io_data = kiocb->private;
1075 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1076 int value;
1077
1078 ENTER();
1079
1080 spin_lock_irq(&epfile->ffs->eps_lock);
1081
1082 if (likely(io_data && io_data->ep && io_data->req))
1083 value = usb_ep_dequeue(io_data->ep, io_data->req);
1084 else
1085 value = -EINVAL;
1086
1087 spin_unlock_irq(&epfile->ffs->eps_lock);
1088
1089 return value;
1090 }
1091
1092 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1093 {
1094 struct ffs_io_data io_data, *p = &io_data;
1095 ssize_t res;
1096
1097 ENTER();
1098
1099 if (!is_sync_kiocb(kiocb)) {
1100 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1101 if (unlikely(!p))
1102 return -ENOMEM;
1103 p->aio = true;
1104 } else {
1105 p->aio = false;
1106 }
1107
1108 p->read = false;
1109 p->kiocb = kiocb;
1110 p->data = *from;
1111 p->mm = current->mm;
1112
1113 kiocb->private = p;
1114
1115 if (p->aio)
1116 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1117
1118 res = ffs_epfile_io(kiocb->ki_filp, p);
1119 if (res == -EIOCBQUEUED)
1120 return res;
1121 if (p->aio)
1122 kfree(p);
1123 else
1124 *from = p->data;
1125 return res;
1126 }
1127
1128 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1129 {
1130 struct ffs_io_data io_data, *p = &io_data;
1131 ssize_t res;
1132
1133 ENTER();
1134
1135 if (!is_sync_kiocb(kiocb)) {
1136 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1137 if (unlikely(!p))
1138 return -ENOMEM;
1139 p->aio = true;
1140 } else {
1141 p->aio = false;
1142 }
1143
1144 p->read = true;
1145 p->kiocb = kiocb;
1146 if (p->aio) {
1147 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1148 if (!p->to_free) {
1149 kfree(p);
1150 return -ENOMEM;
1151 }
1152 } else {
1153 p->data = *to;
1154 p->to_free = NULL;
1155 }
1156 p->mm = current->mm;
1157
1158 kiocb->private = p;
1159
1160 if (p->aio)
1161 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1162
1163 res = ffs_epfile_io(kiocb->ki_filp, p);
1164 if (res == -EIOCBQUEUED)
1165 return res;
1166
1167 if (p->aio) {
1168 kfree(p->to_free);
1169 kfree(p);
1170 } else {
1171 *to = p->data;
1172 }
1173 return res;
1174 }
1175
1176 static int
1177 ffs_epfile_release(struct inode *inode, struct file *file)
1178 {
1179 struct ffs_epfile *epfile = inode->i_private;
1180
1181 ENTER();
1182
1183 __ffs_epfile_read_buffer_free(epfile);
1184 ffs_data_closed(epfile->ffs);
1185
1186 return 0;
1187 }
1188
1189 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1190 unsigned long value)
1191 {
1192 struct ffs_epfile *epfile = file->private_data;
1193 struct ffs_ep *ep;
1194 int ret;
1195
1196 ENTER();
1197
1198 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1199 return -ENODEV;
1200
1201 /* Wait for endpoint to be enabled */
1202 ep = epfile->ep;
1203 if (!ep) {
1204 if (file->f_flags & O_NONBLOCK)
1205 return -EAGAIN;
1206
1207 ret = wait_event_interruptible(
1208 epfile->ffs->wait, (ep = epfile->ep));
1209 if (ret)
1210 return -EINTR;
1211 }
1212
1213 spin_lock_irq(&epfile->ffs->eps_lock);
1214
1215 /* In the meantime, endpoint got disabled or changed. */
1216 if (epfile->ep != ep) {
1217 spin_unlock_irq(&epfile->ffs->eps_lock);
1218 return -ESHUTDOWN;
1219 }
1220
1221 switch (code) {
1222 case FUNCTIONFS_FIFO_STATUS:
1223 ret = usb_ep_fifo_status(epfile->ep->ep);
1224 break;
1225 case FUNCTIONFS_FIFO_FLUSH:
1226 usb_ep_fifo_flush(epfile->ep->ep);
1227 ret = 0;
1228 break;
1229 case FUNCTIONFS_CLEAR_HALT:
1230 ret = usb_ep_clear_halt(epfile->ep->ep);
1231 break;
1232 case FUNCTIONFS_ENDPOINT_REVMAP:
1233 ret = epfile->ep->num;
1234 break;
1235 case FUNCTIONFS_ENDPOINT_DESC:
1236 {
1237 int desc_idx;
1238 struct usb_endpoint_descriptor *desc;
1239
1240 switch (epfile->ffs->gadget->speed) {
1241 case USB_SPEED_SUPER:
1242 desc_idx = 2;
1243 break;
1244 case USB_SPEED_HIGH:
1245 desc_idx = 1;
1246 break;
1247 default:
1248 desc_idx = 0;
1249 }
1250 desc = epfile->ep->descs[desc_idx];
1251
1252 spin_unlock_irq(&epfile->ffs->eps_lock);
1253 ret = copy_to_user((void *)value, desc, desc->bLength);
1254 if (ret)
1255 ret = -EFAULT;
1256 return ret;
1257 }
1258 default:
1259 ret = -ENOTTY;
1260 }
1261 spin_unlock_irq(&epfile->ffs->eps_lock);
1262
1263 return ret;
1264 }
1265
1266 static const struct file_operations ffs_epfile_operations = {
1267 .llseek = no_llseek,
1268
1269 .open = ffs_epfile_open,
1270 .write_iter = ffs_epfile_write_iter,
1271 .read_iter = ffs_epfile_read_iter,
1272 .release = ffs_epfile_release,
1273 .unlocked_ioctl = ffs_epfile_ioctl,
1274 };
1275
1276
1277 /* File system and super block operations ***********************************/
1278
1279 /*
1280 * Mounting the file system creates a controller file, used first for
1281 * function configuration then later for event monitoring.
1282 */
1283
1284 static struct inode *__must_check
1285 ffs_sb_make_inode(struct super_block *sb, void *data,
1286 const struct file_operations *fops,
1287 const struct inode_operations *iops,
1288 struct ffs_file_perms *perms)
1289 {
1290 struct inode *inode;
1291
1292 ENTER();
1293
1294 inode = new_inode(sb);
1295
1296 if (likely(inode)) {
1297 struct timespec ts = current_time(inode);
1298
1299 inode->i_ino = get_next_ino();
1300 inode->i_mode = perms->mode;
1301 inode->i_uid = perms->uid;
1302 inode->i_gid = perms->gid;
1303 inode->i_atime = ts;
1304 inode->i_mtime = ts;
1305 inode->i_ctime = ts;
1306 inode->i_private = data;
1307 if (fops)
1308 inode->i_fop = fops;
1309 if (iops)
1310 inode->i_op = iops;
1311 }
1312
1313 return inode;
1314 }
1315
1316 /* Create "regular" file */
1317 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1318 const char *name, void *data,
1319 const struct file_operations *fops)
1320 {
1321 struct ffs_data *ffs = sb->s_fs_info;
1322 struct dentry *dentry;
1323 struct inode *inode;
1324
1325 ENTER();
1326
1327 dentry = d_alloc_name(sb->s_root, name);
1328 if (unlikely(!dentry))
1329 return NULL;
1330
1331 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1332 if (unlikely(!inode)) {
1333 dput(dentry);
1334 return NULL;
1335 }
1336
1337 d_add(dentry, inode);
1338 return dentry;
1339 }
1340
1341 /* Super block */
1342 static const struct super_operations ffs_sb_operations = {
1343 .statfs = simple_statfs,
1344 .drop_inode = generic_delete_inode,
1345 };
1346
1347 struct ffs_sb_fill_data {
1348 struct ffs_file_perms perms;
1349 umode_t root_mode;
1350 const char *dev_name;
1351 bool no_disconnect;
1352 struct ffs_data *ffs_data;
1353 };
1354
1355 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1356 {
1357 struct ffs_sb_fill_data *data = _data;
1358 struct inode *inode;
1359 struct ffs_data *ffs = data->ffs_data;
1360
1361 ENTER();
1362
1363 ffs->sb = sb;
1364 data->ffs_data = NULL;
1365 sb->s_fs_info = ffs;
1366 sb->s_blocksize = PAGE_SIZE;
1367 sb->s_blocksize_bits = PAGE_SHIFT;
1368 sb->s_magic = FUNCTIONFS_MAGIC;
1369 sb->s_op = &ffs_sb_operations;
1370 sb->s_time_gran = 1;
1371
1372 /* Root inode */
1373 data->perms.mode = data->root_mode;
1374 inode = ffs_sb_make_inode(sb, NULL,
1375 &simple_dir_operations,
1376 &simple_dir_inode_operations,
1377 &data->perms);
1378 sb->s_root = d_make_root(inode);
1379 if (unlikely(!sb->s_root))
1380 return -ENOMEM;
1381
1382 /* EP0 file */
1383 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1384 &ffs_ep0_operations)))
1385 return -ENOMEM;
1386
1387 return 0;
1388 }
1389
1390 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1391 {
1392 ENTER();
1393
1394 if (!opts || !*opts)
1395 return 0;
1396
1397 for (;;) {
1398 unsigned long value;
1399 char *eq, *comma;
1400
1401 /* Option limit */
1402 comma = strchr(opts, ',');
1403 if (comma)
1404 *comma = 0;
1405
1406 /* Value limit */
1407 eq = strchr(opts, '=');
1408 if (unlikely(!eq)) {
1409 pr_err("'=' missing in %s\n", opts);
1410 return -EINVAL;
1411 }
1412 *eq = 0;
1413
1414 /* Parse value */
1415 if (kstrtoul(eq + 1, 0, &value)) {
1416 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1417 return -EINVAL;
1418 }
1419
1420 /* Interpret option */
1421 switch (eq - opts) {
1422 case 13:
1423 if (!memcmp(opts, "no_disconnect", 13))
1424 data->no_disconnect = !!value;
1425 else
1426 goto invalid;
1427 break;
1428 case 5:
1429 if (!memcmp(opts, "rmode", 5))
1430 data->root_mode = (value & 0555) | S_IFDIR;
1431 else if (!memcmp(opts, "fmode", 5))
1432 data->perms.mode = (value & 0666) | S_IFREG;
1433 else
1434 goto invalid;
1435 break;
1436
1437 case 4:
1438 if (!memcmp(opts, "mode", 4)) {
1439 data->root_mode = (value & 0555) | S_IFDIR;
1440 data->perms.mode = (value & 0666) | S_IFREG;
1441 } else {
1442 goto invalid;
1443 }
1444 break;
1445
1446 case 3:
1447 if (!memcmp(opts, "uid", 3)) {
1448 data->perms.uid = make_kuid(current_user_ns(), value);
1449 if (!uid_valid(data->perms.uid)) {
1450 pr_err("%s: unmapped value: %lu\n", opts, value);
1451 return -EINVAL;
1452 }
1453 } else if (!memcmp(opts, "gid", 3)) {
1454 data->perms.gid = make_kgid(current_user_ns(), value);
1455 if (!gid_valid(data->perms.gid)) {
1456 pr_err("%s: unmapped value: %lu\n", opts, value);
1457 return -EINVAL;
1458 }
1459 } else {
1460 goto invalid;
1461 }
1462 break;
1463
1464 default:
1465 invalid:
1466 pr_err("%s: invalid option\n", opts);
1467 return -EINVAL;
1468 }
1469
1470 /* Next iteration */
1471 if (!comma)
1472 break;
1473 opts = comma + 1;
1474 }
1475
1476 return 0;
1477 }
1478
1479 /* "mount -t functionfs dev_name /dev/function" ends up here */
1480
1481 static struct dentry *
1482 ffs_fs_mount(struct file_system_type *t, int flags,
1483 const char *dev_name, void *opts)
1484 {
1485 struct ffs_sb_fill_data data = {
1486 .perms = {
1487 .mode = S_IFREG | 0600,
1488 .uid = GLOBAL_ROOT_UID,
1489 .gid = GLOBAL_ROOT_GID,
1490 },
1491 .root_mode = S_IFDIR | 0500,
1492 .no_disconnect = false,
1493 };
1494 struct dentry *rv;
1495 int ret;
1496 void *ffs_dev;
1497 struct ffs_data *ffs;
1498
1499 ENTER();
1500
1501 ret = ffs_fs_parse_opts(&data, opts);
1502 if (unlikely(ret < 0))
1503 return ERR_PTR(ret);
1504
1505 ffs = ffs_data_new(dev_name);
1506 if (unlikely(!ffs))
1507 return ERR_PTR(-ENOMEM);
1508 ffs->file_perms = data.perms;
1509 ffs->no_disconnect = data.no_disconnect;
1510
1511 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1512 if (unlikely(!ffs->dev_name)) {
1513 ffs_data_put(ffs);
1514 return ERR_PTR(-ENOMEM);
1515 }
1516
1517 ffs_dev = ffs_acquire_dev(dev_name);
1518 if (IS_ERR(ffs_dev)) {
1519 ffs_data_put(ffs);
1520 return ERR_CAST(ffs_dev);
1521 }
1522 ffs->private_data = ffs_dev;
1523 data.ffs_data = ffs;
1524
1525 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1526 if (IS_ERR(rv) && data.ffs_data) {
1527 ffs_release_dev(data.ffs_data);
1528 ffs_data_put(data.ffs_data);
1529 }
1530 return rv;
1531 }
1532
1533 static void
1534 ffs_fs_kill_sb(struct super_block *sb)
1535 {
1536 ENTER();
1537
1538 kill_litter_super(sb);
1539 if (sb->s_fs_info) {
1540 ffs_release_dev(sb->s_fs_info);
1541 ffs_data_closed(sb->s_fs_info);
1542 ffs_data_put(sb->s_fs_info);
1543 }
1544 }
1545
1546 static struct file_system_type ffs_fs_type = {
1547 .owner = THIS_MODULE,
1548 .name = "functionfs",
1549 .mount = ffs_fs_mount,
1550 .kill_sb = ffs_fs_kill_sb,
1551 };
1552 MODULE_ALIAS_FS("functionfs");
1553
1554
1555 /* Driver's main init/cleanup functions *************************************/
1556
1557 static int functionfs_init(void)
1558 {
1559 int ret;
1560
1561 ENTER();
1562
1563 ret = register_filesystem(&ffs_fs_type);
1564 if (likely(!ret))
1565 pr_info("file system registered\n");
1566 else
1567 pr_err("failed registering file system (%d)\n", ret);
1568
1569 return ret;
1570 }
1571
1572 static void functionfs_cleanup(void)
1573 {
1574 ENTER();
1575
1576 pr_info("unloading\n");
1577 unregister_filesystem(&ffs_fs_type);
1578 }
1579
1580
1581 /* ffs_data and ffs_function construction and destruction code **************/
1582
1583 static void ffs_data_clear(struct ffs_data *ffs);
1584 static void ffs_data_reset(struct ffs_data *ffs);
1585
1586 static void ffs_data_get(struct ffs_data *ffs)
1587 {
1588 ENTER();
1589
1590 refcount_inc(&ffs->ref);
1591 }
1592
1593 static void ffs_data_opened(struct ffs_data *ffs)
1594 {
1595 ENTER();
1596
1597 refcount_inc(&ffs->ref);
1598 if (atomic_add_return(1, &ffs->opened) == 1 &&
1599 ffs->state == FFS_DEACTIVATED) {
1600 ffs->state = FFS_CLOSING;
1601 ffs_data_reset(ffs);
1602 }
1603 }
1604
1605 static void ffs_data_put(struct ffs_data *ffs)
1606 {
1607 ENTER();
1608
1609 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1610 pr_info("%s(): freeing\n", __func__);
1611 ffs_data_clear(ffs);
1612 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1613 waitqueue_active(&ffs->ep0req_completion.wait) ||
1614 waitqueue_active(&ffs->wait));
1615 destroy_workqueue(ffs->io_completion_wq);
1616 kfree(ffs->dev_name);
1617 kfree(ffs);
1618 }
1619 }
1620
1621 static void ffs_data_closed(struct ffs_data *ffs)
1622 {
1623 ENTER();
1624
1625 if (atomic_dec_and_test(&ffs->opened)) {
1626 if (ffs->no_disconnect) {
1627 ffs->state = FFS_DEACTIVATED;
1628 if (ffs->epfiles) {
1629 ffs_epfiles_destroy(ffs->epfiles,
1630 ffs->eps_count);
1631 ffs->epfiles = NULL;
1632 }
1633 if (ffs->setup_state == FFS_SETUP_PENDING)
1634 __ffs_ep0_stall(ffs);
1635 } else {
1636 ffs->state = FFS_CLOSING;
1637 ffs_data_reset(ffs);
1638 }
1639 }
1640 if (atomic_read(&ffs->opened) < 0) {
1641 ffs->state = FFS_CLOSING;
1642 ffs_data_reset(ffs);
1643 }
1644
1645 ffs_data_put(ffs);
1646 }
1647
1648 static struct ffs_data *ffs_data_new(const char *dev_name)
1649 {
1650 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1651 if (unlikely(!ffs))
1652 return NULL;
1653
1654 ENTER();
1655
1656 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1657 if (!ffs->io_completion_wq) {
1658 kfree(ffs);
1659 return NULL;
1660 }
1661
1662 refcount_set(&ffs->ref, 1);
1663 atomic_set(&ffs->opened, 0);
1664 ffs->state = FFS_READ_DESCRIPTORS;
1665 mutex_init(&ffs->mutex);
1666 spin_lock_init(&ffs->eps_lock);
1667 init_waitqueue_head(&ffs->ev.waitq);
1668 init_waitqueue_head(&ffs->wait);
1669 init_completion(&ffs->ep0req_completion);
1670
1671 /* XXX REVISIT need to update it in some places, or do we? */
1672 ffs->ev.can_stall = 1;
1673
1674 return ffs;
1675 }
1676
1677 static void ffs_data_clear(struct ffs_data *ffs)
1678 {
1679 ENTER();
1680
1681 ffs_closed(ffs);
1682
1683 BUG_ON(ffs->gadget);
1684
1685 if (ffs->epfiles)
1686 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1687
1688 if (ffs->ffs_eventfd)
1689 eventfd_ctx_put(ffs->ffs_eventfd);
1690
1691 kfree(ffs->raw_descs_data);
1692 kfree(ffs->raw_strings);
1693 kfree(ffs->stringtabs);
1694 }
1695
1696 static void ffs_data_reset(struct ffs_data *ffs)
1697 {
1698 ENTER();
1699
1700 ffs_data_clear(ffs);
1701
1702 ffs->epfiles = NULL;
1703 ffs->raw_descs_data = NULL;
1704 ffs->raw_descs = NULL;
1705 ffs->raw_strings = NULL;
1706 ffs->stringtabs = NULL;
1707
1708 ffs->raw_descs_length = 0;
1709 ffs->fs_descs_count = 0;
1710 ffs->hs_descs_count = 0;
1711 ffs->ss_descs_count = 0;
1712
1713 ffs->strings_count = 0;
1714 ffs->interfaces_count = 0;
1715 ffs->eps_count = 0;
1716
1717 ffs->ev.count = 0;
1718
1719 ffs->state = FFS_READ_DESCRIPTORS;
1720 ffs->setup_state = FFS_NO_SETUP;
1721 ffs->flags = 0;
1722 }
1723
1724
1725 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1726 {
1727 struct usb_gadget_strings **lang;
1728 int first_id;
1729
1730 ENTER();
1731
1732 if (WARN_ON(ffs->state != FFS_ACTIVE
1733 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1734 return -EBADFD;
1735
1736 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1737 if (unlikely(first_id < 0))
1738 return first_id;
1739
1740 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1741 if (unlikely(!ffs->ep0req))
1742 return -ENOMEM;
1743 ffs->ep0req->complete = ffs_ep0_complete;
1744 ffs->ep0req->context = ffs;
1745
1746 lang = ffs->stringtabs;
1747 if (lang) {
1748 for (; *lang; ++lang) {
1749 struct usb_string *str = (*lang)->strings;
1750 int id = first_id;
1751 for (; str->s; ++id, ++str)
1752 str->id = id;
1753 }
1754 }
1755
1756 ffs->gadget = cdev->gadget;
1757 ffs_data_get(ffs);
1758 return 0;
1759 }
1760
1761 static void functionfs_unbind(struct ffs_data *ffs)
1762 {
1763 ENTER();
1764
1765 if (!WARN_ON(!ffs->gadget)) {
1766 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1767 ffs->ep0req = NULL;
1768 ffs->gadget = NULL;
1769 clear_bit(FFS_FL_BOUND, &ffs->flags);
1770 ffs_data_put(ffs);
1771 }
1772 }
1773
1774 static int ffs_epfiles_create(struct ffs_data *ffs)
1775 {
1776 struct ffs_epfile *epfile, *epfiles;
1777 unsigned i, count;
1778
1779 ENTER();
1780
1781 count = ffs->eps_count;
1782 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1783 if (!epfiles)
1784 return -ENOMEM;
1785
1786 epfile = epfiles;
1787 for (i = 1; i <= count; ++i, ++epfile) {
1788 epfile->ffs = ffs;
1789 mutex_init(&epfile->mutex);
1790 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1791 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1792 else
1793 sprintf(epfile->name, "ep%u", i);
1794 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1795 epfile,
1796 &ffs_epfile_operations);
1797 if (unlikely(!epfile->dentry)) {
1798 ffs_epfiles_destroy(epfiles, i - 1);
1799 return -ENOMEM;
1800 }
1801 }
1802
1803 ffs->epfiles = epfiles;
1804 return 0;
1805 }
1806
1807 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1808 {
1809 struct ffs_epfile *epfile = epfiles;
1810
1811 ENTER();
1812
1813 for (; count; --count, ++epfile) {
1814 BUG_ON(mutex_is_locked(&epfile->mutex));
1815 if (epfile->dentry) {
1816 d_delete(epfile->dentry);
1817 dput(epfile->dentry);
1818 epfile->dentry = NULL;
1819 }
1820 }
1821
1822 kfree(epfiles);
1823 }
1824
1825 static void ffs_func_eps_disable(struct ffs_function *func)
1826 {
1827 struct ffs_ep *ep = func->eps;
1828 struct ffs_epfile *epfile = func->ffs->epfiles;
1829 unsigned count = func->ffs->eps_count;
1830 unsigned long flags;
1831
1832 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1833 while (count--) {
1834 /* pending requests get nuked */
1835 if (likely(ep->ep))
1836 usb_ep_disable(ep->ep);
1837 ++ep;
1838
1839 if (epfile) {
1840 epfile->ep = NULL;
1841 __ffs_epfile_read_buffer_free(epfile);
1842 ++epfile;
1843 }
1844 }
1845 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1846 }
1847
1848 static int ffs_func_eps_enable(struct ffs_function *func)
1849 {
1850 struct ffs_data *ffs = func->ffs;
1851 struct ffs_ep *ep = func->eps;
1852 struct ffs_epfile *epfile = ffs->epfiles;
1853 unsigned count = ffs->eps_count;
1854 unsigned long flags;
1855 int ret = 0;
1856
1857 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1858 while(count--) {
1859 struct usb_endpoint_descriptor *ds;
1860 struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1861 int needs_comp_desc = false;
1862 int desc_idx;
1863
1864 if (ffs->gadget->speed == USB_SPEED_SUPER) {
1865 desc_idx = 2;
1866 needs_comp_desc = true;
1867 } else if (ffs->gadget->speed == USB_SPEED_HIGH)
1868 desc_idx = 1;
1869 else
1870 desc_idx = 0;
1871
1872 /* fall-back to lower speed if desc missing for current speed */
1873 do {
1874 ds = ep->descs[desc_idx];
1875 } while (!ds && --desc_idx >= 0);
1876
1877 if (!ds) {
1878 ret = -EINVAL;
1879 break;
1880 }
1881
1882 ep->ep->driver_data = ep;
1883 ep->ep->desc = ds;
1884
1885 if (needs_comp_desc) {
1886 comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1887 USB_DT_ENDPOINT_SIZE);
1888 ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1889 ep->ep->comp_desc = comp_desc;
1890 }
1891
1892 ret = usb_ep_enable(ep->ep);
1893 if (likely(!ret)) {
1894 epfile->ep = ep;
1895 epfile->in = usb_endpoint_dir_in(ds);
1896 epfile->isoc = usb_endpoint_xfer_isoc(ds);
1897 } else {
1898 break;
1899 }
1900
1901 ++ep;
1902 ++epfile;
1903 }
1904
1905 wake_up_interruptible(&ffs->wait);
1906 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1907
1908 return ret;
1909 }
1910
1911
1912 /* Parsing and building descriptors and strings *****************************/
1913
1914 /*
1915 * This validates if data pointed by data is a valid USB descriptor as
1916 * well as record how many interfaces, endpoints and strings are
1917 * required by given configuration. Returns address after the
1918 * descriptor or NULL if data is invalid.
1919 */
1920
1921 enum ffs_entity_type {
1922 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1923 };
1924
1925 enum ffs_os_desc_type {
1926 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1927 };
1928
1929 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1930 u8 *valuep,
1931 struct usb_descriptor_header *desc,
1932 void *priv);
1933
1934 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1935 struct usb_os_desc_header *h, void *data,
1936 unsigned len, void *priv);
1937
1938 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1939 ffs_entity_callback entity,
1940 void *priv)
1941 {
1942 struct usb_descriptor_header *_ds = (void *)data;
1943 u8 length;
1944 int ret;
1945
1946 ENTER();
1947
1948 /* At least two bytes are required: length and type */
1949 if (len < 2) {
1950 pr_vdebug("descriptor too short\n");
1951 return -EINVAL;
1952 }
1953
1954 /* If we have at least as many bytes as the descriptor takes? */
1955 length = _ds->bLength;
1956 if (len < length) {
1957 pr_vdebug("descriptor longer then available data\n");
1958 return -EINVAL;
1959 }
1960
1961 #define __entity_check_INTERFACE(val) 1
1962 #define __entity_check_STRING(val) (val)
1963 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1964 #define __entity(type, val) do { \
1965 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1966 if (unlikely(!__entity_check_ ##type(val))) { \
1967 pr_vdebug("invalid entity's value\n"); \
1968 return -EINVAL; \
1969 } \
1970 ret = entity(FFS_ ##type, &val, _ds, priv); \
1971 if (unlikely(ret < 0)) { \
1972 pr_debug("entity " #type "(%02x); ret = %d\n", \
1973 (val), ret); \
1974 return ret; \
1975 } \
1976 } while (0)
1977
1978 /* Parse descriptor depending on type. */
1979 switch (_ds->bDescriptorType) {
1980 case USB_DT_DEVICE:
1981 case USB_DT_CONFIG:
1982 case USB_DT_STRING:
1983 case USB_DT_DEVICE_QUALIFIER:
1984 /* function can't have any of those */
1985 pr_vdebug("descriptor reserved for gadget: %d\n",
1986 _ds->bDescriptorType);
1987 return -EINVAL;
1988
1989 case USB_DT_INTERFACE: {
1990 struct usb_interface_descriptor *ds = (void *)_ds;
1991 pr_vdebug("interface descriptor\n");
1992 if (length != sizeof *ds)
1993 goto inv_length;
1994
1995 __entity(INTERFACE, ds->bInterfaceNumber);
1996 if (ds->iInterface)
1997 __entity(STRING, ds->iInterface);
1998 }
1999 break;
2000
2001 case USB_DT_ENDPOINT: {
2002 struct usb_endpoint_descriptor *ds = (void *)_ds;
2003 pr_vdebug("endpoint descriptor\n");
2004 if (length != USB_DT_ENDPOINT_SIZE &&
2005 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2006 goto inv_length;
2007 __entity(ENDPOINT, ds->bEndpointAddress);
2008 }
2009 break;
2010
2011 case HID_DT_HID:
2012 pr_vdebug("hid descriptor\n");
2013 if (length != sizeof(struct hid_descriptor))
2014 goto inv_length;
2015 break;
2016
2017 case USB_DT_OTG:
2018 if (length != sizeof(struct usb_otg_descriptor))
2019 goto inv_length;
2020 break;
2021
2022 case USB_DT_INTERFACE_ASSOCIATION: {
2023 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2024 pr_vdebug("interface association descriptor\n");
2025 if (length != sizeof *ds)
2026 goto inv_length;
2027 if (ds->iFunction)
2028 __entity(STRING, ds->iFunction);
2029 }
2030 break;
2031
2032 case USB_DT_SS_ENDPOINT_COMP:
2033 pr_vdebug("EP SS companion descriptor\n");
2034 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2035 goto inv_length;
2036 break;
2037
2038 case USB_DT_OTHER_SPEED_CONFIG:
2039 case USB_DT_INTERFACE_POWER:
2040 case USB_DT_DEBUG:
2041 case USB_DT_SECURITY:
2042 case USB_DT_CS_RADIO_CONTROL:
2043 /* TODO */
2044 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2045 return -EINVAL;
2046
2047 default:
2048 /* We should never be here */
2049 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2050 return -EINVAL;
2051
2052 inv_length:
2053 pr_vdebug("invalid length: %d (descriptor %d)\n",
2054 _ds->bLength, _ds->bDescriptorType);
2055 return -EINVAL;
2056 }
2057
2058 #undef __entity
2059 #undef __entity_check_DESCRIPTOR
2060 #undef __entity_check_INTERFACE
2061 #undef __entity_check_STRING
2062 #undef __entity_check_ENDPOINT
2063
2064 return length;
2065 }
2066
2067 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2068 ffs_entity_callback entity, void *priv)
2069 {
2070 const unsigned _len = len;
2071 unsigned long num = 0;
2072
2073 ENTER();
2074
2075 for (;;) {
2076 int ret;
2077
2078 if (num == count)
2079 data = NULL;
2080
2081 /* Record "descriptor" entity */
2082 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2083 if (unlikely(ret < 0)) {
2084 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2085 num, ret);
2086 return ret;
2087 }
2088
2089 if (!data)
2090 return _len - len;
2091
2092 ret = ffs_do_single_desc(data, len, entity, priv);
2093 if (unlikely(ret < 0)) {
2094 pr_debug("%s returns %d\n", __func__, ret);
2095 return ret;
2096 }
2097
2098 len -= ret;
2099 data += ret;
2100 ++num;
2101 }
2102 }
2103
2104 static int __ffs_data_do_entity(enum ffs_entity_type type,
2105 u8 *valuep, struct usb_descriptor_header *desc,
2106 void *priv)
2107 {
2108 struct ffs_desc_helper *helper = priv;
2109 struct usb_endpoint_descriptor *d;
2110
2111 ENTER();
2112
2113 switch (type) {
2114 case FFS_DESCRIPTOR:
2115 break;
2116
2117 case FFS_INTERFACE:
2118 /*
2119 * Interfaces are indexed from zero so if we
2120 * encountered interface "n" then there are at least
2121 * "n+1" interfaces.
2122 */
2123 if (*valuep >= helper->interfaces_count)
2124 helper->interfaces_count = *valuep + 1;
2125 break;
2126
2127 case FFS_STRING:
2128 /*
2129 * Strings are indexed from 1 (0 is reserved
2130 * for languages list)
2131 */
2132 if (*valuep > helper->ffs->strings_count)
2133 helper->ffs->strings_count = *valuep;
2134 break;
2135
2136 case FFS_ENDPOINT:
2137 d = (void *)desc;
2138 helper->eps_count++;
2139 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2140 return -EINVAL;
2141 /* Check if descriptors for any speed were already parsed */
2142 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2143 helper->ffs->eps_addrmap[helper->eps_count] =
2144 d->bEndpointAddress;
2145 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2146 d->bEndpointAddress)
2147 return -EINVAL;
2148 break;
2149 }
2150
2151 return 0;
2152 }
2153
2154 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2155 struct usb_os_desc_header *desc)
2156 {
2157 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2158 u16 w_index = le16_to_cpu(desc->wIndex);
2159
2160 if (bcd_version != 1) {
2161 pr_vdebug("unsupported os descriptors version: %d",
2162 bcd_version);
2163 return -EINVAL;
2164 }
2165 switch (w_index) {
2166 case 0x4:
2167 *next_type = FFS_OS_DESC_EXT_COMPAT;
2168 break;
2169 case 0x5:
2170 *next_type = FFS_OS_DESC_EXT_PROP;
2171 break;
2172 default:
2173 pr_vdebug("unsupported os descriptor type: %d", w_index);
2174 return -EINVAL;
2175 }
2176
2177 return sizeof(*desc);
2178 }
2179
2180 /*
2181 * Process all extended compatibility/extended property descriptors
2182 * of a feature descriptor
2183 */
2184 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2185 enum ffs_os_desc_type type,
2186 u16 feature_count,
2187 ffs_os_desc_callback entity,
2188 void *priv,
2189 struct usb_os_desc_header *h)
2190 {
2191 int ret;
2192 const unsigned _len = len;
2193
2194 ENTER();
2195
2196 /* loop over all ext compat/ext prop descriptors */
2197 while (feature_count--) {
2198 ret = entity(type, h, data, len, priv);
2199 if (unlikely(ret < 0)) {
2200 pr_debug("bad OS descriptor, type: %d\n", type);
2201 return ret;
2202 }
2203 data += ret;
2204 len -= ret;
2205 }
2206 return _len - len;
2207 }
2208
2209 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2210 static int __must_check ffs_do_os_descs(unsigned count,
2211 char *data, unsigned len,
2212 ffs_os_desc_callback entity, void *priv)
2213 {
2214 const unsigned _len = len;
2215 unsigned long num = 0;
2216
2217 ENTER();
2218
2219 for (num = 0; num < count; ++num) {
2220 int ret;
2221 enum ffs_os_desc_type type;
2222 u16 feature_count;
2223 struct usb_os_desc_header *desc = (void *)data;
2224
2225 if (len < sizeof(*desc))
2226 return -EINVAL;
2227
2228 /*
2229 * Record "descriptor" entity.
2230 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2231 * Move the data pointer to the beginning of extended
2232 * compatibilities proper or extended properties proper
2233 * portions of the data
2234 */
2235 if (le32_to_cpu(desc->dwLength) > len)
2236 return -EINVAL;
2237
2238 ret = __ffs_do_os_desc_header(&type, desc);
2239 if (unlikely(ret < 0)) {
2240 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2241 num, ret);
2242 return ret;
2243 }
2244 /*
2245 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2246 */
2247 feature_count = le16_to_cpu(desc->wCount);
2248 if (type == FFS_OS_DESC_EXT_COMPAT &&
2249 (feature_count > 255 || desc->Reserved))
2250 return -EINVAL;
2251 len -= ret;
2252 data += ret;
2253
2254 /*
2255 * Process all function/property descriptors
2256 * of this Feature Descriptor
2257 */
2258 ret = ffs_do_single_os_desc(data, len, type,
2259 feature_count, entity, priv, desc);
2260 if (unlikely(ret < 0)) {
2261 pr_debug("%s returns %d\n", __func__, ret);
2262 return ret;
2263 }
2264
2265 len -= ret;
2266 data += ret;
2267 }
2268 return _len - len;
2269 }
2270
2271 /**
2272 * Validate contents of the buffer from userspace related to OS descriptors.
2273 */
2274 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2275 struct usb_os_desc_header *h, void *data,
2276 unsigned len, void *priv)
2277 {
2278 struct ffs_data *ffs = priv;
2279 u8 length;
2280
2281 ENTER();
2282
2283 switch (type) {
2284 case FFS_OS_DESC_EXT_COMPAT: {
2285 struct usb_ext_compat_desc *d = data;
2286 int i;
2287
2288 if (len < sizeof(*d) ||
2289 d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2290 !d->Reserved1)
2291 return -EINVAL;
2292 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2293 if (d->Reserved2[i])
2294 return -EINVAL;
2295
2296 length = sizeof(struct usb_ext_compat_desc);
2297 }
2298 break;
2299 case FFS_OS_DESC_EXT_PROP: {
2300 struct usb_ext_prop_desc *d = data;
2301 u32 type, pdl;
2302 u16 pnl;
2303
2304 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2305 return -EINVAL;
2306 length = le32_to_cpu(d->dwSize);
2307 if (len < length)
2308 return -EINVAL;
2309 type = le32_to_cpu(d->dwPropertyDataType);
2310 if (type < USB_EXT_PROP_UNICODE ||
2311 type > USB_EXT_PROP_UNICODE_MULTI) {
2312 pr_vdebug("unsupported os descriptor property type: %d",
2313 type);
2314 return -EINVAL;
2315 }
2316 pnl = le16_to_cpu(d->wPropertyNameLength);
2317 if (length < 14 + pnl) {
2318 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2319 length, pnl, type);
2320 return -EINVAL;
2321 }
2322 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2323 if (length != 14 + pnl + pdl) {
2324 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2325 length, pnl, pdl, type);
2326 return -EINVAL;
2327 }
2328 ++ffs->ms_os_descs_ext_prop_count;
2329 /* property name reported to the host as "WCHAR"s */
2330 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2331 ffs->ms_os_descs_ext_prop_data_len += pdl;
2332 }
2333 break;
2334 default:
2335 pr_vdebug("unknown descriptor: %d\n", type);
2336 return -EINVAL;
2337 }
2338 return length;
2339 }
2340
2341 static int __ffs_data_got_descs(struct ffs_data *ffs,
2342 char *const _data, size_t len)
2343 {
2344 char *data = _data, *raw_descs;
2345 unsigned os_descs_count = 0, counts[3], flags;
2346 int ret = -EINVAL, i;
2347 struct ffs_desc_helper helper;
2348
2349 ENTER();
2350
2351 if (get_unaligned_le32(data + 4) != len)
2352 goto error;
2353
2354 switch (get_unaligned_le32(data)) {
2355 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2356 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2357 data += 8;
2358 len -= 8;
2359 break;
2360 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2361 flags = get_unaligned_le32(data + 8);
2362 ffs->user_flags = flags;
2363 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2364 FUNCTIONFS_HAS_HS_DESC |
2365 FUNCTIONFS_HAS_SS_DESC |
2366 FUNCTIONFS_HAS_MS_OS_DESC |
2367 FUNCTIONFS_VIRTUAL_ADDR |
2368 FUNCTIONFS_EVENTFD |
2369 FUNCTIONFS_ALL_CTRL_RECIP |
2370 FUNCTIONFS_CONFIG0_SETUP)) {
2371 ret = -ENOSYS;
2372 goto error;
2373 }
2374 data += 12;
2375 len -= 12;
2376 break;
2377 default:
2378 goto error;
2379 }
2380
2381 if (flags & FUNCTIONFS_EVENTFD) {
2382 if (len < 4)
2383 goto error;
2384 ffs->ffs_eventfd =
2385 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2386 if (IS_ERR(ffs->ffs_eventfd)) {
2387 ret = PTR_ERR(ffs->ffs_eventfd);
2388 ffs->ffs_eventfd = NULL;
2389 goto error;
2390 }
2391 data += 4;
2392 len -= 4;
2393 }
2394
2395 /* Read fs_count, hs_count and ss_count (if present) */
2396 for (i = 0; i < 3; ++i) {
2397 if (!(flags & (1 << i))) {
2398 counts[i] = 0;
2399 } else if (len < 4) {
2400 goto error;
2401 } else {
2402 counts[i] = get_unaligned_le32(data);
2403 data += 4;
2404 len -= 4;
2405 }
2406 }
2407 if (flags & (1 << i)) {
2408 if (len < 4) {
2409 goto error;
2410 }
2411 os_descs_count = get_unaligned_le32(data);
2412 data += 4;
2413 len -= 4;
2414 };
2415
2416 /* Read descriptors */
2417 raw_descs = data;
2418 helper.ffs = ffs;
2419 for (i = 0; i < 3; ++i) {
2420 if (!counts[i])
2421 continue;
2422 helper.interfaces_count = 0;
2423 helper.eps_count = 0;
2424 ret = ffs_do_descs(counts[i], data, len,
2425 __ffs_data_do_entity, &helper);
2426 if (ret < 0)
2427 goto error;
2428 if (!ffs->eps_count && !ffs->interfaces_count) {
2429 ffs->eps_count = helper.eps_count;
2430 ffs->interfaces_count = helper.interfaces_count;
2431 } else {
2432 if (ffs->eps_count != helper.eps_count) {
2433 ret = -EINVAL;
2434 goto error;
2435 }
2436 if (ffs->interfaces_count != helper.interfaces_count) {
2437 ret = -EINVAL;
2438 goto error;
2439 }
2440 }
2441 data += ret;
2442 len -= ret;
2443 }
2444 if (os_descs_count) {
2445 ret = ffs_do_os_descs(os_descs_count, data, len,
2446 __ffs_data_do_os_desc, ffs);
2447 if (ret < 0)
2448 goto error;
2449 data += ret;
2450 len -= ret;
2451 }
2452
2453 if (raw_descs == data || len) {
2454 ret = -EINVAL;
2455 goto error;
2456 }
2457
2458 ffs->raw_descs_data = _data;
2459 ffs->raw_descs = raw_descs;
2460 ffs->raw_descs_length = data - raw_descs;
2461 ffs->fs_descs_count = counts[0];
2462 ffs->hs_descs_count = counts[1];
2463 ffs->ss_descs_count = counts[2];
2464 ffs->ms_os_descs_count = os_descs_count;
2465
2466 return 0;
2467
2468 error:
2469 kfree(_data);
2470 return ret;
2471 }
2472
2473 static int __ffs_data_got_strings(struct ffs_data *ffs,
2474 char *const _data, size_t len)
2475 {
2476 u32 str_count, needed_count, lang_count;
2477 struct usb_gadget_strings **stringtabs, *t;
2478 const char *data = _data;
2479 struct usb_string *s;
2480
2481 ENTER();
2482
2483 if (unlikely(len < 16 ||
2484 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2485 get_unaligned_le32(data + 4) != len))
2486 goto error;
2487 str_count = get_unaligned_le32(data + 8);
2488 lang_count = get_unaligned_le32(data + 12);
2489
2490 /* if one is zero the other must be zero */
2491 if (unlikely(!str_count != !lang_count))
2492 goto error;
2493
2494 /* Do we have at least as many strings as descriptors need? */
2495 needed_count = ffs->strings_count;
2496 if (unlikely(str_count < needed_count))
2497 goto error;
2498
2499 /*
2500 * If we don't need any strings just return and free all
2501 * memory.
2502 */
2503 if (!needed_count) {
2504 kfree(_data);
2505 return 0;
2506 }
2507
2508 /* Allocate everything in one chunk so there's less maintenance. */
2509 {
2510 unsigned i = 0;
2511 vla_group(d);
2512 vla_item(d, struct usb_gadget_strings *, stringtabs,
2513 lang_count + 1);
2514 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2515 vla_item(d, struct usb_string, strings,
2516 lang_count*(needed_count+1));
2517
2518 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2519
2520 if (unlikely(!vlabuf)) {
2521 kfree(_data);
2522 return -ENOMEM;
2523 }
2524
2525 /* Initialize the VLA pointers */
2526 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2527 t = vla_ptr(vlabuf, d, stringtab);
2528 i = lang_count;
2529 do {
2530 *stringtabs++ = t++;
2531 } while (--i);
2532 *stringtabs = NULL;
2533
2534 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2535 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2536 t = vla_ptr(vlabuf, d, stringtab);
2537 s = vla_ptr(vlabuf, d, strings);
2538 }
2539
2540 /* For each language */
2541 data += 16;
2542 len -= 16;
2543
2544 do { /* lang_count > 0 so we can use do-while */
2545 unsigned needed = needed_count;
2546
2547 if (unlikely(len < 3))
2548 goto error_free;
2549 t->language = get_unaligned_le16(data);
2550 t->strings = s;
2551 ++t;
2552
2553 data += 2;
2554 len -= 2;
2555
2556 /* For each string */
2557 do { /* str_count > 0 so we can use do-while */
2558 size_t length = strnlen(data, len);
2559
2560 if (unlikely(length == len))
2561 goto error_free;
2562
2563 /*
2564 * User may provide more strings then we need,
2565 * if that's the case we simply ignore the
2566 * rest
2567 */
2568 if (likely(needed)) {
2569 /*
2570 * s->id will be set while adding
2571 * function to configuration so for
2572 * now just leave garbage here.
2573 */
2574 s->s = data;
2575 --needed;
2576 ++s;
2577 }
2578
2579 data += length + 1;
2580 len -= length + 1;
2581 } while (--str_count);
2582
2583 s->id = 0; /* terminator */
2584 s->s = NULL;
2585 ++s;
2586
2587 } while (--lang_count);
2588
2589 /* Some garbage left? */
2590 if (unlikely(len))
2591 goto error_free;
2592
2593 /* Done! */
2594 ffs->stringtabs = stringtabs;
2595 ffs->raw_strings = _data;
2596
2597 return 0;
2598
2599 error_free:
2600 kfree(stringtabs);
2601 error:
2602 kfree(_data);
2603 return -EINVAL;
2604 }
2605
2606
2607 /* Events handling and management *******************************************/
2608
2609 static void __ffs_event_add(struct ffs_data *ffs,
2610 enum usb_functionfs_event_type type)
2611 {
2612 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2613 int neg = 0;
2614
2615 /*
2616 * Abort any unhandled setup
2617 *
2618 * We do not need to worry about some cmpxchg() changing value
2619 * of ffs->setup_state without holding the lock because when
2620 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2621 * the source does nothing.
2622 */
2623 if (ffs->setup_state == FFS_SETUP_PENDING)
2624 ffs->setup_state = FFS_SETUP_CANCELLED;
2625
2626 /*
2627 * Logic of this function guarantees that there are at most four pending
2628 * evens on ffs->ev.types queue. This is important because the queue
2629 * has space for four elements only and __ffs_ep0_read_events function
2630 * depends on that limit as well. If more event types are added, those
2631 * limits have to be revisited or guaranteed to still hold.
2632 */
2633 switch (type) {
2634 case FUNCTIONFS_RESUME:
2635 rem_type2 = FUNCTIONFS_SUSPEND;
2636 /* FALL THROUGH */
2637 case FUNCTIONFS_SUSPEND:
2638 case FUNCTIONFS_SETUP:
2639 rem_type1 = type;
2640 /* Discard all similar events */
2641 break;
2642
2643 case FUNCTIONFS_BIND:
2644 case FUNCTIONFS_UNBIND:
2645 case FUNCTIONFS_DISABLE:
2646 case FUNCTIONFS_ENABLE:
2647 /* Discard everything other then power management. */
2648 rem_type1 = FUNCTIONFS_SUSPEND;
2649 rem_type2 = FUNCTIONFS_RESUME;
2650 neg = 1;
2651 break;
2652
2653 default:
2654 WARN(1, "%d: unknown event, this should not happen\n", type);
2655 return;
2656 }
2657
2658 {
2659 u8 *ev = ffs->ev.types, *out = ev;
2660 unsigned n = ffs->ev.count;
2661 for (; n; --n, ++ev)
2662 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2663 *out++ = *ev;
2664 else
2665 pr_vdebug("purging event %d\n", *ev);
2666 ffs->ev.count = out - ffs->ev.types;
2667 }
2668
2669 pr_vdebug("adding event %d\n", type);
2670 ffs->ev.types[ffs->ev.count++] = type;
2671 wake_up_locked(&ffs->ev.waitq);
2672 if (ffs->ffs_eventfd)
2673 eventfd_signal(ffs->ffs_eventfd, 1);
2674 }
2675
2676 static void ffs_event_add(struct ffs_data *ffs,
2677 enum usb_functionfs_event_type type)
2678 {
2679 unsigned long flags;
2680 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2681 __ffs_event_add(ffs, type);
2682 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2683 }
2684
2685 /* Bind/unbind USB function hooks *******************************************/
2686
2687 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2688 {
2689 int i;
2690
2691 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2692 if (ffs->eps_addrmap[i] == endpoint_address)
2693 return i;
2694 return -ENOENT;
2695 }
2696
2697 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2698 struct usb_descriptor_header *desc,
2699 void *priv)
2700 {
2701 struct usb_endpoint_descriptor *ds = (void *)desc;
2702 struct ffs_function *func = priv;
2703 struct ffs_ep *ffs_ep;
2704 unsigned ep_desc_id;
2705 int idx;
2706 static const char *speed_names[] = { "full", "high", "super" };
2707
2708 if (type != FFS_DESCRIPTOR)
2709 return 0;
2710
2711 /*
2712 * If ss_descriptors is not NULL, we are reading super speed
2713 * descriptors; if hs_descriptors is not NULL, we are reading high
2714 * speed descriptors; otherwise, we are reading full speed
2715 * descriptors.
2716 */
2717 if (func->function.ss_descriptors) {
2718 ep_desc_id = 2;
2719 func->function.ss_descriptors[(long)valuep] = desc;
2720 } else if (func->function.hs_descriptors) {
2721 ep_desc_id = 1;
2722 func->function.hs_descriptors[(long)valuep] = desc;
2723 } else {
2724 ep_desc_id = 0;
2725 func->function.fs_descriptors[(long)valuep] = desc;
2726 }
2727
2728 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2729 return 0;
2730
2731 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2732 if (idx < 0)
2733 return idx;
2734
2735 ffs_ep = func->eps + idx;
2736
2737 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2738 pr_err("two %sspeed descriptors for EP %d\n",
2739 speed_names[ep_desc_id],
2740 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2741 return -EINVAL;
2742 }
2743 ffs_ep->descs[ep_desc_id] = ds;
2744
2745 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2746 if (ffs_ep->ep) {
2747 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2748 if (!ds->wMaxPacketSize)
2749 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2750 } else {
2751 struct usb_request *req;
2752 struct usb_ep *ep;
2753 u8 bEndpointAddress;
2754
2755 /*
2756 * We back up bEndpointAddress because autoconfig overwrites
2757 * it with physical endpoint address.
2758 */
2759 bEndpointAddress = ds->bEndpointAddress;
2760 pr_vdebug("autoconfig\n");
2761 ep = usb_ep_autoconfig(func->gadget, ds);
2762 if (unlikely(!ep))
2763 return -ENOTSUPP;
2764 ep->driver_data = func->eps + idx;
2765
2766 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2767 if (unlikely(!req))
2768 return -ENOMEM;
2769
2770 ffs_ep->ep = ep;
2771 ffs_ep->req = req;
2772 func->eps_revmap[ds->bEndpointAddress &
2773 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2774 /*
2775 * If we use virtual address mapping, we restore
2776 * original bEndpointAddress value.
2777 */
2778 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2779 ds->bEndpointAddress = bEndpointAddress;
2780 }
2781 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2782
2783 return 0;
2784 }
2785
2786 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2787 struct usb_descriptor_header *desc,
2788 void *priv)
2789 {
2790 struct ffs_function *func = priv;
2791 unsigned idx;
2792 u8 newValue;
2793
2794 switch (type) {
2795 default:
2796 case FFS_DESCRIPTOR:
2797 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2798 return 0;
2799
2800 case FFS_INTERFACE:
2801 idx = *valuep;
2802 if (func->interfaces_nums[idx] < 0) {
2803 int id = usb_interface_id(func->conf, &func->function);
2804 if (unlikely(id < 0))
2805 return id;
2806 func->interfaces_nums[idx] = id;
2807 }
2808 newValue = func->interfaces_nums[idx];
2809 break;
2810
2811 case FFS_STRING:
2812 /* String' IDs are allocated when fsf_data is bound to cdev */
2813 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2814 break;
2815
2816 case FFS_ENDPOINT:
2817 /*
2818 * USB_DT_ENDPOINT are handled in
2819 * __ffs_func_bind_do_descs().
2820 */
2821 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2822 return 0;
2823
2824 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2825 if (unlikely(!func->eps[idx].ep))
2826 return -EINVAL;
2827
2828 {
2829 struct usb_endpoint_descriptor **descs;
2830 descs = func->eps[idx].descs;
2831 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2832 }
2833 break;
2834 }
2835
2836 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2837 *valuep = newValue;
2838 return 0;
2839 }
2840
2841 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2842 struct usb_os_desc_header *h, void *data,
2843 unsigned len, void *priv)
2844 {
2845 struct ffs_function *func = priv;
2846 u8 length = 0;
2847
2848 switch (type) {
2849 case FFS_OS_DESC_EXT_COMPAT: {
2850 struct usb_ext_compat_desc *desc = data;
2851 struct usb_os_desc_table *t;
2852
2853 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2854 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2855 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2856 ARRAY_SIZE(desc->CompatibleID) +
2857 ARRAY_SIZE(desc->SubCompatibleID));
2858 length = sizeof(*desc);
2859 }
2860 break;
2861 case FFS_OS_DESC_EXT_PROP: {
2862 struct usb_ext_prop_desc *desc = data;
2863 struct usb_os_desc_table *t;
2864 struct usb_os_desc_ext_prop *ext_prop;
2865 char *ext_prop_name;
2866 char *ext_prop_data;
2867
2868 t = &func->function.os_desc_table[h->interface];
2869 t->if_id = func->interfaces_nums[h->interface];
2870
2871 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2872 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2873
2874 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2875 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2876 ext_prop->data_len = le32_to_cpu(*(u32 *)
2877 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2878 length = ext_prop->name_len + ext_prop->data_len + 14;
2879
2880 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2881 func->ffs->ms_os_descs_ext_prop_name_avail +=
2882 ext_prop->name_len;
2883
2884 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2885 func->ffs->ms_os_descs_ext_prop_data_avail +=
2886 ext_prop->data_len;
2887 memcpy(ext_prop_data,
2888 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2889 ext_prop->data_len);
2890 /* unicode data reported to the host as "WCHAR"s */
2891 switch (ext_prop->type) {
2892 case USB_EXT_PROP_UNICODE:
2893 case USB_EXT_PROP_UNICODE_ENV:
2894 case USB_EXT_PROP_UNICODE_LINK:
2895 case USB_EXT_PROP_UNICODE_MULTI:
2896 ext_prop->data_len *= 2;
2897 break;
2898 }
2899 ext_prop->data = ext_prop_data;
2900
2901 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2902 ext_prop->name_len);
2903 /* property name reported to the host as "WCHAR"s */
2904 ext_prop->name_len *= 2;
2905 ext_prop->name = ext_prop_name;
2906
2907 t->os_desc->ext_prop_len +=
2908 ext_prop->name_len + ext_prop->data_len + 14;
2909 ++t->os_desc->ext_prop_count;
2910 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2911 }
2912 break;
2913 default:
2914 pr_vdebug("unknown descriptor: %d\n", type);
2915 }
2916
2917 return length;
2918 }
2919
2920 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2921 struct usb_configuration *c)
2922 {
2923 struct ffs_function *func = ffs_func_from_usb(f);
2924 struct f_fs_opts *ffs_opts =
2925 container_of(f->fi, struct f_fs_opts, func_inst);
2926 int ret;
2927
2928 ENTER();
2929
2930 /*
2931 * Legacy gadget triggers binding in functionfs_ready_callback,
2932 * which already uses locking; taking the same lock here would
2933 * cause a deadlock.
2934 *
2935 * Configfs-enabled gadgets however do need ffs_dev_lock.
2936 */
2937 if (!ffs_opts->no_configfs)
2938 ffs_dev_lock();
2939 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2940 func->ffs = ffs_opts->dev->ffs_data;
2941 if (!ffs_opts->no_configfs)
2942 ffs_dev_unlock();
2943 if (ret)
2944 return ERR_PTR(ret);
2945
2946 func->conf = c;
2947 func->gadget = c->cdev->gadget;
2948
2949 /*
2950 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2951 * configurations are bound in sequence with list_for_each_entry,
2952 * in each configuration its functions are bound in sequence
2953 * with list_for_each_entry, so we assume no race condition
2954 * with regard to ffs_opts->bound access
2955 */
2956 if (!ffs_opts->refcnt) {
2957 ret = functionfs_bind(func->ffs, c->cdev);
2958 if (ret)
2959 return ERR_PTR(ret);
2960 }
2961 ffs_opts->refcnt++;
2962 func->function.strings = func->ffs->stringtabs;
2963
2964 return ffs_opts;
2965 }
2966
2967 static int _ffs_func_bind(struct usb_configuration *c,
2968 struct usb_function *f)
2969 {
2970 struct ffs_function *func = ffs_func_from_usb(f);
2971 struct ffs_data *ffs = func->ffs;
2972
2973 const int full = !!func->ffs->fs_descs_count;
2974 const int high = gadget_is_dualspeed(func->gadget) &&
2975 func->ffs->hs_descs_count;
2976 const int super = gadget_is_superspeed(func->gadget) &&
2977 func->ffs->ss_descs_count;
2978
2979 int fs_len, hs_len, ss_len, ret, i;
2980 struct ffs_ep *eps_ptr;
2981
2982 /* Make it a single chunk, less management later on */
2983 vla_group(d);
2984 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2985 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2986 full ? ffs->fs_descs_count + 1 : 0);
2987 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2988 high ? ffs->hs_descs_count + 1 : 0);
2989 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2990 super ? ffs->ss_descs_count + 1 : 0);
2991 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2992 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2993 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2994 vla_item_with_sz(d, char[16], ext_compat,
2995 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2996 vla_item_with_sz(d, struct usb_os_desc, os_desc,
2997 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2998 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2999 ffs->ms_os_descs_ext_prop_count);
3000 vla_item_with_sz(d, char, ext_prop_name,
3001 ffs->ms_os_descs_ext_prop_name_len);
3002 vla_item_with_sz(d, char, ext_prop_data,
3003 ffs->ms_os_descs_ext_prop_data_len);
3004 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3005 char *vlabuf;
3006
3007 ENTER();
3008
3009 /* Has descriptors only for speeds gadget does not support */
3010 if (unlikely(!(full | high | super)))
3011 return -ENOTSUPP;
3012
3013 /* Allocate a single chunk, less management later on */
3014 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3015 if (unlikely(!vlabuf))
3016 return -ENOMEM;
3017
3018 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3019 ffs->ms_os_descs_ext_prop_name_avail =
3020 vla_ptr(vlabuf, d, ext_prop_name);
3021 ffs->ms_os_descs_ext_prop_data_avail =
3022 vla_ptr(vlabuf, d, ext_prop_data);
3023
3024 /* Copy descriptors */
3025 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3026 ffs->raw_descs_length);
3027
3028 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3029 eps_ptr = vla_ptr(vlabuf, d, eps);
3030 for (i = 0; i < ffs->eps_count; i++)
3031 eps_ptr[i].num = -1;
3032
3033 /* Save pointers
3034 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3035 */
3036 func->eps = vla_ptr(vlabuf, d, eps);
3037 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3038
3039 /*
3040 * Go through all the endpoint descriptors and allocate
3041 * endpoints first, so that later we can rewrite the endpoint
3042 * numbers without worrying that it may be described later on.
3043 */
3044 if (likely(full)) {
3045 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3046 fs_len = ffs_do_descs(ffs->fs_descs_count,
3047 vla_ptr(vlabuf, d, raw_descs),
3048 d_raw_descs__sz,
3049 __ffs_func_bind_do_descs, func);
3050 if (unlikely(fs_len < 0)) {
3051 ret = fs_len;
3052 goto error;
3053 }
3054 } else {
3055 fs_len = 0;
3056 }
3057
3058 if (likely(high)) {
3059 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3060 hs_len = ffs_do_descs(ffs->hs_descs_count,
3061 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3062 d_raw_descs__sz - fs_len,
3063 __ffs_func_bind_do_descs, func);
3064 if (unlikely(hs_len < 0)) {
3065 ret = hs_len;
3066 goto error;
3067 }
3068 } else {
3069 hs_len = 0;
3070 }
3071
3072 if (likely(super)) {
3073 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3074 ss_len = ffs_do_descs(ffs->ss_descs_count,
3075 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3076 d_raw_descs__sz - fs_len - hs_len,
3077 __ffs_func_bind_do_descs, func);
3078 if (unlikely(ss_len < 0)) {
3079 ret = ss_len;
3080 goto error;
3081 }
3082 } else {
3083 ss_len = 0;
3084 }
3085
3086 /*
3087 * Now handle interface numbers allocation and interface and
3088 * endpoint numbers rewriting. We can do that in one go
3089 * now.
3090 */
3091 ret = ffs_do_descs(ffs->fs_descs_count +
3092 (high ? ffs->hs_descs_count : 0) +
3093 (super ? ffs->ss_descs_count : 0),
3094 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3095 __ffs_func_bind_do_nums, func);
3096 if (unlikely(ret < 0))
3097 goto error;
3098
3099 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3100 if (c->cdev->use_os_string) {
3101 for (i = 0; i < ffs->interfaces_count; ++i) {
3102 struct usb_os_desc *desc;
3103
3104 desc = func->function.os_desc_table[i].os_desc =
3105 vla_ptr(vlabuf, d, os_desc) +
3106 i * sizeof(struct usb_os_desc);
3107 desc->ext_compat_id =
3108 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3109 INIT_LIST_HEAD(&desc->ext_prop);
3110 }
3111 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3112 vla_ptr(vlabuf, d, raw_descs) +
3113 fs_len + hs_len + ss_len,
3114 d_raw_descs__sz - fs_len - hs_len -
3115 ss_len,
3116 __ffs_func_bind_do_os_desc, func);
3117 if (unlikely(ret < 0))
3118 goto error;
3119 }
3120 func->function.os_desc_n =
3121 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3122
3123 /* And we're done */
3124 ffs_event_add(ffs, FUNCTIONFS_BIND);
3125 return 0;
3126
3127 error:
3128 /* XXX Do we need to release all claimed endpoints here? */
3129 return ret;
3130 }
3131
3132 static int ffs_func_bind(struct usb_configuration *c,
3133 struct usb_function *f)
3134 {
3135 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3136 struct ffs_function *func = ffs_func_from_usb(f);
3137 int ret;
3138
3139 if (IS_ERR(ffs_opts))
3140 return PTR_ERR(ffs_opts);
3141
3142 ret = _ffs_func_bind(c, f);
3143 if (ret && !--ffs_opts->refcnt)
3144 functionfs_unbind(func->ffs);
3145
3146 return ret;
3147 }
3148
3149
3150 /* Other USB function hooks *************************************************/
3151
3152 static void ffs_reset_work(struct work_struct *work)
3153 {
3154 struct ffs_data *ffs = container_of(work,
3155 struct ffs_data, reset_work);
3156 ffs_data_reset(ffs);
3157 }
3158
3159 static int ffs_func_set_alt(struct usb_function *f,
3160 unsigned interface, unsigned alt)
3161 {
3162 struct ffs_function *func = ffs_func_from_usb(f);
3163 struct ffs_data *ffs = func->ffs;
3164 int ret = 0, intf;
3165
3166 if (alt != (unsigned)-1) {
3167 intf = ffs_func_revmap_intf(func, interface);
3168 if (unlikely(intf < 0))
3169 return intf;
3170 }
3171
3172 if (ffs->func)
3173 ffs_func_eps_disable(ffs->func);
3174
3175 if (ffs->state == FFS_DEACTIVATED) {
3176 ffs->state = FFS_CLOSING;
3177 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3178 schedule_work(&ffs->reset_work);
3179 return -ENODEV;
3180 }
3181
3182 if (ffs->state != FFS_ACTIVE)
3183 return -ENODEV;
3184
3185 if (alt == (unsigned)-1) {
3186 ffs->func = NULL;
3187 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3188 return 0;
3189 }
3190
3191 ffs->func = func;
3192 ret = ffs_func_eps_enable(func);
3193 if (likely(ret >= 0))
3194 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3195 return ret;
3196 }
3197
3198 static void ffs_func_disable(struct usb_function *f)
3199 {
3200 ffs_func_set_alt(f, 0, (unsigned)-1);
3201 }
3202
3203 static int ffs_func_setup(struct usb_function *f,
3204 const struct usb_ctrlrequest *creq)
3205 {
3206 struct ffs_function *func = ffs_func_from_usb(f);
3207 struct ffs_data *ffs = func->ffs;
3208 unsigned long flags;
3209 int ret;
3210
3211 ENTER();
3212
3213 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3214 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3215 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3216 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3217 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3218
3219 /*
3220 * Most requests directed to interface go through here
3221 * (notable exceptions are set/get interface) so we need to
3222 * handle them. All other either handled by composite or
3223 * passed to usb_configuration->setup() (if one is set). No
3224 * matter, we will handle requests directed to endpoint here
3225 * as well (as it's straightforward). Other request recipient
3226 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3227 * is being used.
3228 */
3229 if (ffs->state != FFS_ACTIVE)
3230 return -ENODEV;
3231
3232 switch (creq->bRequestType & USB_RECIP_MASK) {
3233 case USB_RECIP_INTERFACE:
3234 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3235 if (unlikely(ret < 0))
3236 return ret;
3237 break;
3238
3239 case USB_RECIP_ENDPOINT:
3240 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3241 if (unlikely(ret < 0))
3242 return ret;
3243 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3244 ret = func->ffs->eps_addrmap[ret];
3245 break;
3246
3247 default:
3248 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3249 ret = le16_to_cpu(creq->wIndex);
3250 else
3251 return -EOPNOTSUPP;
3252 }
3253
3254 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3255 ffs->ev.setup = *creq;
3256 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3257 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3258 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3259
3260 return 0;
3261 }
3262
3263 static bool ffs_func_req_match(struct usb_function *f,
3264 const struct usb_ctrlrequest *creq,
3265 bool config0)
3266 {
3267 struct ffs_function *func = ffs_func_from_usb(f);
3268
3269 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3270 return false;
3271
3272 switch (creq->bRequestType & USB_RECIP_MASK) {
3273 case USB_RECIP_INTERFACE:
3274 return (ffs_func_revmap_intf(func,
3275 le16_to_cpu(creq->wIndex)) >= 0);
3276 case USB_RECIP_ENDPOINT:
3277 return (ffs_func_revmap_ep(func,
3278 le16_to_cpu(creq->wIndex)) >= 0);
3279 default:
3280 return (bool) (func->ffs->user_flags &
3281 FUNCTIONFS_ALL_CTRL_RECIP);
3282 }
3283 }
3284
3285 static void ffs_func_suspend(struct usb_function *f)
3286 {
3287 ENTER();
3288 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3289 }
3290
3291 static void ffs_func_resume(struct usb_function *f)
3292 {
3293 ENTER();
3294 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3295 }
3296
3297
3298 /* Endpoint and interface numbers reverse mapping ***************************/
3299
3300 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3301 {
3302 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3303 return num ? num : -EDOM;
3304 }
3305
3306 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3307 {
3308 short *nums = func->interfaces_nums;
3309 unsigned count = func->ffs->interfaces_count;
3310
3311 for (; count; --count, ++nums) {
3312 if (*nums >= 0 && *nums == intf)
3313 return nums - func->interfaces_nums;
3314 }
3315
3316 return -EDOM;
3317 }
3318
3319
3320 /* Devices management *******************************************************/
3321
3322 static LIST_HEAD(ffs_devices);
3323
3324 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3325 {
3326 struct ffs_dev *dev;
3327
3328 if (!name)
3329 return NULL;
3330
3331 list_for_each_entry(dev, &ffs_devices, entry) {
3332 if (strcmp(dev->name, name) == 0)
3333 return dev;
3334 }
3335
3336 return NULL;
3337 }
3338
3339 /*
3340 * ffs_lock must be taken by the caller of this function
3341 */
3342 static struct ffs_dev *_ffs_get_single_dev(void)
3343 {
3344 struct ffs_dev *dev;
3345
3346 if (list_is_singular(&ffs_devices)) {
3347 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3348 if (dev->single)
3349 return dev;
3350 }
3351
3352 return NULL;
3353 }
3354
3355 /*
3356 * ffs_lock must be taken by the caller of this function
3357 */
3358 static struct ffs_dev *_ffs_find_dev(const char *name)
3359 {
3360 struct ffs_dev *dev;
3361
3362 dev = _ffs_get_single_dev();
3363 if (dev)
3364 return dev;
3365
3366 return _ffs_do_find_dev(name);
3367 }
3368
3369 /* Configfs support *********************************************************/
3370
3371 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3372 {
3373 return container_of(to_config_group(item), struct f_fs_opts,
3374 func_inst.group);
3375 }
3376
3377 static void ffs_attr_release(struct config_item *item)
3378 {
3379 struct f_fs_opts *opts = to_ffs_opts(item);
3380
3381 usb_put_function_instance(&opts->func_inst);
3382 }
3383
3384 static struct configfs_item_operations ffs_item_ops = {
3385 .release = ffs_attr_release,
3386 };
3387
3388 static struct config_item_type ffs_func_type = {
3389 .ct_item_ops = &ffs_item_ops,
3390 .ct_owner = THIS_MODULE,
3391 };
3392
3393
3394 /* Function registration interface ******************************************/
3395
3396 static void ffs_free_inst(struct usb_function_instance *f)
3397 {
3398 struct f_fs_opts *opts;
3399
3400 opts = to_f_fs_opts(f);
3401 ffs_dev_lock();
3402 _ffs_free_dev(opts->dev);
3403 ffs_dev_unlock();
3404 kfree(opts);
3405 }
3406
3407 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3408 {
3409 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3410 return -ENAMETOOLONG;
3411 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3412 }
3413
3414 static struct usb_function_instance *ffs_alloc_inst(void)
3415 {
3416 struct f_fs_opts *opts;
3417 struct ffs_dev *dev;
3418
3419 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3420 if (!opts)
3421 return ERR_PTR(-ENOMEM);
3422
3423 opts->func_inst.set_inst_name = ffs_set_inst_name;
3424 opts->func_inst.free_func_inst = ffs_free_inst;
3425 ffs_dev_lock();
3426 dev = _ffs_alloc_dev();
3427 ffs_dev_unlock();
3428 if (IS_ERR(dev)) {
3429 kfree(opts);
3430 return ERR_CAST(dev);
3431 }
3432 opts->dev = dev;
3433 dev->opts = opts;
3434
3435 config_group_init_type_name(&opts->func_inst.group, "",
3436 &ffs_func_type);
3437 return &opts->func_inst;
3438 }
3439
3440 static void ffs_free(struct usb_function *f)
3441 {
3442 kfree(ffs_func_from_usb(f));
3443 }
3444
3445 static void ffs_func_unbind(struct usb_configuration *c,
3446 struct usb_function *f)
3447 {
3448 struct ffs_function *func = ffs_func_from_usb(f);
3449 struct ffs_data *ffs = func->ffs;
3450 struct f_fs_opts *opts =
3451 container_of(f->fi, struct f_fs_opts, func_inst);
3452 struct ffs_ep *ep = func->eps;
3453 unsigned count = ffs->eps_count;
3454 unsigned long flags;
3455
3456 ENTER();
3457 if (ffs->func == func) {
3458 ffs_func_eps_disable(func);
3459 ffs->func = NULL;
3460 }
3461
3462 if (!--opts->refcnt)
3463 functionfs_unbind(ffs);
3464
3465 /* cleanup after autoconfig */
3466 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3467 while (count--) {
3468 if (ep->ep && ep->req)
3469 usb_ep_free_request(ep->ep, ep->req);
3470 ep->req = NULL;
3471 ++ep;
3472 }
3473 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3474 kfree(func->eps);
3475 func->eps = NULL;
3476 /*
3477 * eps, descriptors and interfaces_nums are allocated in the
3478 * same chunk so only one free is required.
3479 */
3480 func->function.fs_descriptors = NULL;
3481 func->function.hs_descriptors = NULL;
3482 func->function.ss_descriptors = NULL;
3483 func->interfaces_nums = NULL;
3484
3485 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3486 }
3487
3488 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3489 {
3490 struct ffs_function *func;
3491
3492 ENTER();
3493
3494 func = kzalloc(sizeof(*func), GFP_KERNEL);
3495 if (unlikely(!func))
3496 return ERR_PTR(-ENOMEM);
3497
3498 func->function.name = "Function FS Gadget";
3499
3500 func->function.bind = ffs_func_bind;
3501 func->function.unbind = ffs_func_unbind;
3502 func->function.set_alt = ffs_func_set_alt;
3503 func->function.disable = ffs_func_disable;
3504 func->function.setup = ffs_func_setup;
3505 func->function.req_match = ffs_func_req_match;
3506 func->function.suspend = ffs_func_suspend;
3507 func->function.resume = ffs_func_resume;
3508 func->function.free_func = ffs_free;
3509
3510 return &func->function;
3511 }
3512
3513 /*
3514 * ffs_lock must be taken by the caller of this function
3515 */
3516 static struct ffs_dev *_ffs_alloc_dev(void)
3517 {
3518 struct ffs_dev *dev;
3519 int ret;
3520
3521 if (_ffs_get_single_dev())
3522 return ERR_PTR(-EBUSY);
3523
3524 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3525 if (!dev)
3526 return ERR_PTR(-ENOMEM);
3527
3528 if (list_empty(&ffs_devices)) {
3529 ret = functionfs_init();
3530 if (ret) {
3531 kfree(dev);
3532 return ERR_PTR(ret);
3533 }
3534 }
3535
3536 list_add(&dev->entry, &ffs_devices);
3537
3538 return dev;
3539 }
3540
3541 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3542 {
3543 struct ffs_dev *existing;
3544 int ret = 0;
3545
3546 ffs_dev_lock();
3547
3548 existing = _ffs_do_find_dev(name);
3549 if (!existing)
3550 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3551 else if (existing != dev)
3552 ret = -EBUSY;
3553
3554 ffs_dev_unlock();
3555
3556 return ret;
3557 }
3558 EXPORT_SYMBOL_GPL(ffs_name_dev);
3559
3560 int ffs_single_dev(struct ffs_dev *dev)
3561 {
3562 int ret;
3563
3564 ret = 0;
3565 ffs_dev_lock();
3566
3567 if (!list_is_singular(&ffs_devices))
3568 ret = -EBUSY;
3569 else
3570 dev->single = true;
3571
3572 ffs_dev_unlock();
3573 return ret;
3574 }
3575 EXPORT_SYMBOL_GPL(ffs_single_dev);
3576
3577 /*
3578 * ffs_lock must be taken by the caller of this function
3579 */
3580 static void _ffs_free_dev(struct ffs_dev *dev)
3581 {
3582 list_del(&dev->entry);
3583
3584 /* Clear the private_data pointer to stop incorrect dev access */
3585 if (dev->ffs_data)
3586 dev->ffs_data->private_data = NULL;
3587
3588 kfree(dev);
3589 if (list_empty(&ffs_devices))
3590 functionfs_cleanup();
3591 }
3592
3593 static void *ffs_acquire_dev(const char *dev_name)
3594 {
3595 struct ffs_dev *ffs_dev;
3596
3597 ENTER();
3598 ffs_dev_lock();
3599
3600 ffs_dev = _ffs_find_dev(dev_name);
3601 if (!ffs_dev)
3602 ffs_dev = ERR_PTR(-ENOENT);
3603 else if (ffs_dev->mounted)
3604 ffs_dev = ERR_PTR(-EBUSY);
3605 else if (ffs_dev->ffs_acquire_dev_callback &&
3606 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3607 ffs_dev = ERR_PTR(-ENOENT);
3608 else
3609 ffs_dev->mounted = true;
3610
3611 ffs_dev_unlock();
3612 return ffs_dev;
3613 }
3614
3615 static void ffs_release_dev(struct ffs_data *ffs_data)
3616 {
3617 struct ffs_dev *ffs_dev;
3618
3619 ENTER();
3620 ffs_dev_lock();
3621
3622 ffs_dev = ffs_data->private_data;
3623 if (ffs_dev) {
3624 ffs_dev->mounted = false;
3625
3626 if (ffs_dev->ffs_release_dev_callback)
3627 ffs_dev->ffs_release_dev_callback(ffs_dev);
3628 }
3629
3630 ffs_dev_unlock();
3631 }
3632
3633 static int ffs_ready(struct ffs_data *ffs)
3634 {
3635 struct ffs_dev *ffs_obj;
3636 int ret = 0;
3637
3638 ENTER();
3639 ffs_dev_lock();
3640
3641 ffs_obj = ffs->private_data;
3642 if (!ffs_obj) {
3643 ret = -EINVAL;
3644 goto done;
3645 }
3646 if (WARN_ON(ffs_obj->desc_ready)) {
3647 ret = -EBUSY;
3648 goto done;
3649 }
3650
3651 ffs_obj->desc_ready = true;
3652 ffs_obj->ffs_data = ffs;
3653
3654 if (ffs_obj->ffs_ready_callback) {
3655 ret = ffs_obj->ffs_ready_callback(ffs);
3656 if (ret)
3657 goto done;
3658 }
3659
3660 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3661 done:
3662 ffs_dev_unlock();
3663 return ret;
3664 }
3665
3666 static void ffs_closed(struct ffs_data *ffs)
3667 {
3668 struct ffs_dev *ffs_obj;
3669 struct f_fs_opts *opts;
3670 struct config_item *ci;
3671
3672 ENTER();
3673 ffs_dev_lock();
3674
3675 ffs_obj = ffs->private_data;
3676 if (!ffs_obj)
3677 goto done;
3678
3679 ffs_obj->desc_ready = false;
3680
3681 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3682 ffs_obj->ffs_closed_callback)
3683 ffs_obj->ffs_closed_callback(ffs);
3684
3685 if (ffs_obj->opts)
3686 opts = ffs_obj->opts;
3687 else
3688 goto done;
3689
3690 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3691 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3692 goto done;
3693
3694 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3695 ffs_dev_unlock();
3696
3697 unregister_gadget_item(ci);
3698 return;
3699 done:
3700 ffs_dev_unlock();
3701 }
3702
3703 /* Misc helper functions ****************************************************/
3704
3705 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3706 {
3707 return nonblock
3708 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3709 : mutex_lock_interruptible(mutex);
3710 }
3711
3712 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3713 {
3714 char *data;
3715
3716 if (unlikely(!len))
3717 return NULL;
3718
3719 data = kmalloc(len, GFP_KERNEL);
3720 if (unlikely(!data))
3721 return ERR_PTR(-ENOMEM);
3722
3723 if (unlikely(copy_from_user(data, buf, len))) {
3724 kfree(data);
3725 return ERR_PTR(-EFAULT);
3726 }
3727
3728 pr_vdebug("Buffer from user space:\n");
3729 ffs_dump_mem("", data, len);
3730
3731 return data;
3732 }
3733
3734 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3735 MODULE_LICENSE("GPL");
3736 MODULE_AUTHOR("Michal Nazarewicz");