]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/gadget/legacy/inode.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / gadget / legacy / inode.c
1 /*
2 * inode.c -- user mode filesystem api for usb gadget controllers
3 *
4 * Copyright (C) 2003-2004 David Brownell
5 * Copyright (C) 2003 Agilent Technologies
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12
13
14 /* #define VERBOSE_DEBUG */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/pagemap.h>
20 #include <linux/uts.h>
21 #include <linux/wait.h>
22 #include <linux/compiler.h>
23 #include <asm/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/poll.h>
27 #include <linux/mmu_context.h>
28 #include <linux/aio.h>
29 #include <linux/uio.h>
30
31 #include <linux/device.h>
32 #include <linux/moduleparam.h>
33
34 #include <linux/usb/gadgetfs.h>
35 #include <linux/usb/gadget.h>
36
37
38 /*
39 * The gadgetfs API maps each endpoint to a file descriptor so that you
40 * can use standard synchronous read/write calls for I/O. There's some
41 * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode
42 * drivers show how this works in practice. You can also use AIO to
43 * eliminate I/O gaps between requests, to help when streaming data.
44 *
45 * Key parts that must be USB-specific are protocols defining how the
46 * read/write operations relate to the hardware state machines. There
47 * are two types of files. One type is for the device, implementing ep0.
48 * The other type is for each IN or OUT endpoint. In both cases, the
49 * user mode driver must configure the hardware before using it.
50 *
51 * - First, dev_config() is called when /dev/gadget/$CHIP is configured
52 * (by writing configuration and device descriptors). Afterwards it
53 * may serve as a source of device events, used to handle all control
54 * requests other than basic enumeration.
55 *
56 * - Then, after a SET_CONFIGURATION control request, ep_config() is
57 * called when each /dev/gadget/ep* file is configured (by writing
58 * endpoint descriptors). Afterwards these files are used to write()
59 * IN data or to read() OUT data. To halt the endpoint, a "wrong
60 * direction" request is issued (like reading an IN endpoint).
61 *
62 * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
63 * not possible on all hardware. For example, precise fault handling with
64 * respect to data left in endpoint fifos after aborted operations; or
65 * selective clearing of endpoint halts, to implement SET_INTERFACE.
66 */
67
68 #define DRIVER_DESC "USB Gadget filesystem"
69 #define DRIVER_VERSION "24 Aug 2004"
70
71 static const char driver_desc [] = DRIVER_DESC;
72 static const char shortname [] = "gadgetfs";
73
74 MODULE_DESCRIPTION (DRIVER_DESC);
75 MODULE_AUTHOR ("David Brownell");
76 MODULE_LICENSE ("GPL");
77
78 static int ep_open(struct inode *, struct file *);
79
80
81 /*----------------------------------------------------------------------*/
82
83 #define GADGETFS_MAGIC 0xaee71ee7
84
85 /* /dev/gadget/$CHIP represents ep0 and the whole device */
86 enum ep0_state {
87 /* DISBLED is the initial state.
88 */
89 STATE_DEV_DISABLED = 0,
90
91 /* Only one open() of /dev/gadget/$CHIP; only one file tracks
92 * ep0/device i/o modes and binding to the controller. Driver
93 * must always write descriptors to initialize the device, then
94 * the device becomes UNCONNECTED until enumeration.
95 */
96 STATE_DEV_OPENED,
97
98 /* From then on, ep0 fd is in either of two basic modes:
99 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
100 * - SETUP: read/write will transfer control data and succeed;
101 * or if "wrong direction", performs protocol stall
102 */
103 STATE_DEV_UNCONNECTED,
104 STATE_DEV_CONNECTED,
105 STATE_DEV_SETUP,
106
107 /* UNBOUND means the driver closed ep0, so the device won't be
108 * accessible again (DEV_DISABLED) until all fds are closed.
109 */
110 STATE_DEV_UNBOUND,
111 };
112
113 /* enough for the whole queue: most events invalidate others */
114 #define N_EVENT 5
115
116 struct dev_data {
117 spinlock_t lock;
118 atomic_t count;
119 enum ep0_state state; /* P: lock */
120 struct usb_gadgetfs_event event [N_EVENT];
121 unsigned ev_next;
122 struct fasync_struct *fasync;
123 u8 current_config;
124
125 /* drivers reading ep0 MUST handle control requests (SETUP)
126 * reported that way; else the host will time out.
127 */
128 unsigned usermode_setup : 1,
129 setup_in : 1,
130 setup_can_stall : 1,
131 setup_out_ready : 1,
132 setup_out_error : 1,
133 setup_abort : 1,
134 gadget_registered : 1;
135 unsigned setup_wLength;
136
137 /* the rest is basically write-once */
138 struct usb_config_descriptor *config, *hs_config;
139 struct usb_device_descriptor *dev;
140 struct usb_request *req;
141 struct usb_gadget *gadget;
142 struct list_head epfiles;
143 void *buf;
144 wait_queue_head_t wait;
145 struct super_block *sb;
146 struct dentry *dentry;
147
148 /* except this scratch i/o buffer for ep0 */
149 u8 rbuf [256];
150 };
151
152 static inline void get_dev (struct dev_data *data)
153 {
154 atomic_inc (&data->count);
155 }
156
157 static void put_dev (struct dev_data *data)
158 {
159 if (likely (!atomic_dec_and_test (&data->count)))
160 return;
161 /* needs no more cleanup */
162 BUG_ON (waitqueue_active (&data->wait));
163 kfree (data);
164 }
165
166 static struct dev_data *dev_new (void)
167 {
168 struct dev_data *dev;
169
170 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
171 if (!dev)
172 return NULL;
173 dev->state = STATE_DEV_DISABLED;
174 atomic_set (&dev->count, 1);
175 spin_lock_init (&dev->lock);
176 INIT_LIST_HEAD (&dev->epfiles);
177 init_waitqueue_head (&dev->wait);
178 return dev;
179 }
180
181 /*----------------------------------------------------------------------*/
182
183 /* other /dev/gadget/$ENDPOINT files represent endpoints */
184 enum ep_state {
185 STATE_EP_DISABLED = 0,
186 STATE_EP_READY,
187 STATE_EP_ENABLED,
188 STATE_EP_UNBOUND,
189 };
190
191 struct ep_data {
192 struct mutex lock;
193 enum ep_state state;
194 atomic_t count;
195 struct dev_data *dev;
196 /* must hold dev->lock before accessing ep or req */
197 struct usb_ep *ep;
198 struct usb_request *req;
199 ssize_t status;
200 char name [16];
201 struct usb_endpoint_descriptor desc, hs_desc;
202 struct list_head epfiles;
203 wait_queue_head_t wait;
204 struct dentry *dentry;
205 };
206
207 static inline void get_ep (struct ep_data *data)
208 {
209 atomic_inc (&data->count);
210 }
211
212 static void put_ep (struct ep_data *data)
213 {
214 if (likely (!atomic_dec_and_test (&data->count)))
215 return;
216 put_dev (data->dev);
217 /* needs no more cleanup */
218 BUG_ON (!list_empty (&data->epfiles));
219 BUG_ON (waitqueue_active (&data->wait));
220 kfree (data);
221 }
222
223 /*----------------------------------------------------------------------*/
224
225 /* most "how to use the hardware" policy choices are in userspace:
226 * mapping endpoint roles (which the driver needs) to the capabilities
227 * which the usb controller has. most of those capabilities are exposed
228 * implicitly, starting with the driver name and then endpoint names.
229 */
230
231 static const char *CHIP;
232
233 /*----------------------------------------------------------------------*/
234
235 /* NOTE: don't use dev_printk calls before binding to the gadget
236 * at the end of ep0 configuration, or after unbind.
237 */
238
239 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
240 #define xprintk(d,level,fmt,args...) \
241 printk(level "%s: " fmt , shortname , ## args)
242
243 #ifdef DEBUG
244 #define DBG(dev,fmt,args...) \
245 xprintk(dev , KERN_DEBUG , fmt , ## args)
246 #else
247 #define DBG(dev,fmt,args...) \
248 do { } while (0)
249 #endif /* DEBUG */
250
251 #ifdef VERBOSE_DEBUG
252 #define VDEBUG DBG
253 #else
254 #define VDEBUG(dev,fmt,args...) \
255 do { } while (0)
256 #endif /* DEBUG */
257
258 #define ERROR(dev,fmt,args...) \
259 xprintk(dev , KERN_ERR , fmt , ## args)
260 #define INFO(dev,fmt,args...) \
261 xprintk(dev , KERN_INFO , fmt , ## args)
262
263
264 /*----------------------------------------------------------------------*/
265
266 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
267 *
268 * After opening, configure non-control endpoints. Then use normal
269 * stream read() and write() requests; and maybe ioctl() to get more
270 * precise FIFO status when recovering from cancellation.
271 */
272
273 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
274 {
275 struct ep_data *epdata = ep->driver_data;
276
277 if (!req->context)
278 return;
279 if (req->status)
280 epdata->status = req->status;
281 else
282 epdata->status = req->actual;
283 complete ((struct completion *)req->context);
284 }
285
286 /* tasklock endpoint, returning when it's connected.
287 * still need dev->lock to use epdata->ep.
288 */
289 static int
290 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
291 {
292 int val;
293
294 if (f_flags & O_NONBLOCK) {
295 if (!mutex_trylock(&epdata->lock))
296 goto nonblock;
297 if (epdata->state != STATE_EP_ENABLED &&
298 (!is_write || epdata->state != STATE_EP_READY)) {
299 mutex_unlock(&epdata->lock);
300 nonblock:
301 val = -EAGAIN;
302 } else
303 val = 0;
304 return val;
305 }
306
307 val = mutex_lock_interruptible(&epdata->lock);
308 if (val < 0)
309 return val;
310
311 switch (epdata->state) {
312 case STATE_EP_ENABLED:
313 return 0;
314 case STATE_EP_READY: /* not configured yet */
315 if (is_write)
316 return 0;
317 // FALLTHRU
318 case STATE_EP_UNBOUND: /* clean disconnect */
319 break;
320 // case STATE_EP_DISABLED: /* "can't happen" */
321 default: /* error! */
322 pr_debug ("%s: ep %p not available, state %d\n",
323 shortname, epdata, epdata->state);
324 }
325 mutex_unlock(&epdata->lock);
326 return -ENODEV;
327 }
328
329 static ssize_t
330 ep_io (struct ep_data *epdata, void *buf, unsigned len)
331 {
332 DECLARE_COMPLETION_ONSTACK (done);
333 int value;
334
335 spin_lock_irq (&epdata->dev->lock);
336 if (likely (epdata->ep != NULL)) {
337 struct usb_request *req = epdata->req;
338
339 req->context = &done;
340 req->complete = epio_complete;
341 req->buf = buf;
342 req->length = len;
343 value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
344 } else
345 value = -ENODEV;
346 spin_unlock_irq (&epdata->dev->lock);
347
348 if (likely (value == 0)) {
349 value = wait_event_interruptible (done.wait, done.done);
350 if (value != 0) {
351 spin_lock_irq (&epdata->dev->lock);
352 if (likely (epdata->ep != NULL)) {
353 DBG (epdata->dev, "%s i/o interrupted\n",
354 epdata->name);
355 usb_ep_dequeue (epdata->ep, epdata->req);
356 spin_unlock_irq (&epdata->dev->lock);
357
358 wait_event (done.wait, done.done);
359 if (epdata->status == -ECONNRESET)
360 epdata->status = -EINTR;
361 } else {
362 spin_unlock_irq (&epdata->dev->lock);
363
364 DBG (epdata->dev, "endpoint gone\n");
365 epdata->status = -ENODEV;
366 }
367 }
368 return epdata->status;
369 }
370 return value;
371 }
372
373 static int
374 ep_release (struct inode *inode, struct file *fd)
375 {
376 struct ep_data *data = fd->private_data;
377 int value;
378
379 value = mutex_lock_interruptible(&data->lock);
380 if (value < 0)
381 return value;
382
383 /* clean up if this can be reopened */
384 if (data->state != STATE_EP_UNBOUND) {
385 data->state = STATE_EP_DISABLED;
386 data->desc.bDescriptorType = 0;
387 data->hs_desc.bDescriptorType = 0;
388 usb_ep_disable(data->ep);
389 }
390 mutex_unlock(&data->lock);
391 put_ep (data);
392 return 0;
393 }
394
395 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
396 {
397 struct ep_data *data = fd->private_data;
398 int status;
399
400 if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
401 return status;
402
403 spin_lock_irq (&data->dev->lock);
404 if (likely (data->ep != NULL)) {
405 switch (code) {
406 case GADGETFS_FIFO_STATUS:
407 status = usb_ep_fifo_status (data->ep);
408 break;
409 case GADGETFS_FIFO_FLUSH:
410 usb_ep_fifo_flush (data->ep);
411 break;
412 case GADGETFS_CLEAR_HALT:
413 status = usb_ep_clear_halt (data->ep);
414 break;
415 default:
416 status = -ENOTTY;
417 }
418 } else
419 status = -ENODEV;
420 spin_unlock_irq (&data->dev->lock);
421 mutex_unlock(&data->lock);
422 return status;
423 }
424
425 /*----------------------------------------------------------------------*/
426
427 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
428
429 struct kiocb_priv {
430 struct usb_request *req;
431 struct ep_data *epdata;
432 struct kiocb *iocb;
433 struct mm_struct *mm;
434 struct work_struct work;
435 void *buf;
436 struct iov_iter to;
437 const void *to_free;
438 unsigned actual;
439 };
440
441 static int ep_aio_cancel(struct kiocb *iocb)
442 {
443 struct kiocb_priv *priv = iocb->private;
444 struct ep_data *epdata;
445 int value;
446
447 local_irq_disable();
448 epdata = priv->epdata;
449 // spin_lock(&epdata->dev->lock);
450 if (likely(epdata && epdata->ep && priv->req))
451 value = usb_ep_dequeue (epdata->ep, priv->req);
452 else
453 value = -EINVAL;
454 // spin_unlock(&epdata->dev->lock);
455 local_irq_enable();
456
457 return value;
458 }
459
460 static void ep_user_copy_worker(struct work_struct *work)
461 {
462 struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
463 struct mm_struct *mm = priv->mm;
464 struct kiocb *iocb = priv->iocb;
465 size_t ret;
466
467 use_mm(mm);
468 ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
469 unuse_mm(mm);
470 if (!ret)
471 ret = -EFAULT;
472
473 /* completing the iocb can drop the ctx and mm, don't touch mm after */
474 iocb->ki_complete(iocb, ret, ret);
475
476 kfree(priv->buf);
477 kfree(priv->to_free);
478 kfree(priv);
479 }
480
481 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
482 {
483 struct kiocb *iocb = req->context;
484 struct kiocb_priv *priv = iocb->private;
485 struct ep_data *epdata = priv->epdata;
486
487 /* lock against disconnect (and ideally, cancel) */
488 spin_lock(&epdata->dev->lock);
489 priv->req = NULL;
490 priv->epdata = NULL;
491
492 /* if this was a write or a read returning no data then we
493 * don't need to copy anything to userspace, so we can
494 * complete the aio request immediately.
495 */
496 if (priv->to_free == NULL || unlikely(req->actual == 0)) {
497 kfree(req->buf);
498 kfree(priv->to_free);
499 kfree(priv);
500 iocb->private = NULL;
501 /* aio_complete() reports bytes-transferred _and_ faults */
502
503 iocb->ki_complete(iocb, req->actual ? req->actual : req->status,
504 req->status);
505 } else {
506 /* ep_copy_to_user() won't report both; we hide some faults */
507 if (unlikely(0 != req->status))
508 DBG(epdata->dev, "%s fault %d len %d\n",
509 ep->name, req->status, req->actual);
510
511 priv->buf = req->buf;
512 priv->actual = req->actual;
513 INIT_WORK(&priv->work, ep_user_copy_worker);
514 schedule_work(&priv->work);
515 }
516 spin_unlock(&epdata->dev->lock);
517
518 usb_ep_free_request(ep, req);
519 put_ep(epdata);
520 }
521
522 static ssize_t ep_aio(struct kiocb *iocb,
523 struct kiocb_priv *priv,
524 struct ep_data *epdata,
525 char *buf,
526 size_t len)
527 {
528 struct usb_request *req;
529 ssize_t value;
530
531 iocb->private = priv;
532 priv->iocb = iocb;
533
534 kiocb_set_cancel_fn(iocb, ep_aio_cancel);
535 get_ep(epdata);
536 priv->epdata = epdata;
537 priv->actual = 0;
538 priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
539
540 /* each kiocb is coupled to one usb_request, but we can't
541 * allocate or submit those if the host disconnected.
542 */
543 spin_lock_irq(&epdata->dev->lock);
544 value = -ENODEV;
545 if (unlikely(epdata->ep == NULL))
546 goto fail;
547
548 req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
549 value = -ENOMEM;
550 if (unlikely(!req))
551 goto fail;
552
553 priv->req = req;
554 req->buf = buf;
555 req->length = len;
556 req->complete = ep_aio_complete;
557 req->context = iocb;
558 value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
559 if (unlikely(0 != value)) {
560 usb_ep_free_request(epdata->ep, req);
561 goto fail;
562 }
563 spin_unlock_irq(&epdata->dev->lock);
564 return -EIOCBQUEUED;
565
566 fail:
567 spin_unlock_irq(&epdata->dev->lock);
568 kfree(priv->to_free);
569 kfree(priv);
570 put_ep(epdata);
571 return value;
572 }
573
574 static ssize_t
575 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
576 {
577 struct file *file = iocb->ki_filp;
578 struct ep_data *epdata = file->private_data;
579 size_t len = iov_iter_count(to);
580 ssize_t value;
581 char *buf;
582
583 if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
584 return value;
585
586 /* halt any endpoint by doing a "wrong direction" i/o call */
587 if (usb_endpoint_dir_in(&epdata->desc)) {
588 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
589 !is_sync_kiocb(iocb)) {
590 mutex_unlock(&epdata->lock);
591 return -EINVAL;
592 }
593 DBG (epdata->dev, "%s halt\n", epdata->name);
594 spin_lock_irq(&epdata->dev->lock);
595 if (likely(epdata->ep != NULL))
596 usb_ep_set_halt(epdata->ep);
597 spin_unlock_irq(&epdata->dev->lock);
598 mutex_unlock(&epdata->lock);
599 return -EBADMSG;
600 }
601
602 buf = kmalloc(len, GFP_KERNEL);
603 if (unlikely(!buf)) {
604 mutex_unlock(&epdata->lock);
605 return -ENOMEM;
606 }
607 if (is_sync_kiocb(iocb)) {
608 value = ep_io(epdata, buf, len);
609 if (value >= 0 && (copy_to_iter(buf, value, to) != value))
610 value = -EFAULT;
611 } else {
612 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
613 value = -ENOMEM;
614 if (!priv)
615 goto fail;
616 priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
617 if (!priv->to_free) {
618 kfree(priv);
619 goto fail;
620 }
621 value = ep_aio(iocb, priv, epdata, buf, len);
622 if (value == -EIOCBQUEUED)
623 buf = NULL;
624 }
625 fail:
626 kfree(buf);
627 mutex_unlock(&epdata->lock);
628 return value;
629 }
630
631 static ssize_t ep_config(struct ep_data *, const char *, size_t);
632
633 static ssize_t
634 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
635 {
636 struct file *file = iocb->ki_filp;
637 struct ep_data *epdata = file->private_data;
638 size_t len = iov_iter_count(from);
639 bool configured;
640 ssize_t value;
641 char *buf;
642
643 if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
644 return value;
645
646 configured = epdata->state == STATE_EP_ENABLED;
647
648 /* halt any endpoint by doing a "wrong direction" i/o call */
649 if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
650 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
651 !is_sync_kiocb(iocb)) {
652 mutex_unlock(&epdata->lock);
653 return -EINVAL;
654 }
655 DBG (epdata->dev, "%s halt\n", epdata->name);
656 spin_lock_irq(&epdata->dev->lock);
657 if (likely(epdata->ep != NULL))
658 usb_ep_set_halt(epdata->ep);
659 spin_unlock_irq(&epdata->dev->lock);
660 mutex_unlock(&epdata->lock);
661 return -EBADMSG;
662 }
663
664 buf = kmalloc(len, GFP_KERNEL);
665 if (unlikely(!buf)) {
666 mutex_unlock(&epdata->lock);
667 return -ENOMEM;
668 }
669
670 if (unlikely(copy_from_iter(buf, len, from) != len)) {
671 value = -EFAULT;
672 goto out;
673 }
674
675 if (unlikely(!configured)) {
676 value = ep_config(epdata, buf, len);
677 } else if (is_sync_kiocb(iocb)) {
678 value = ep_io(epdata, buf, len);
679 } else {
680 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
681 value = -ENOMEM;
682 if (priv) {
683 value = ep_aio(iocb, priv, epdata, buf, len);
684 if (value == -EIOCBQUEUED)
685 buf = NULL;
686 }
687 }
688 out:
689 kfree(buf);
690 mutex_unlock(&epdata->lock);
691 return value;
692 }
693
694 /*----------------------------------------------------------------------*/
695
696 /* used after endpoint configuration */
697 static const struct file_operations ep_io_operations = {
698 .owner = THIS_MODULE,
699
700 .open = ep_open,
701 .release = ep_release,
702 .llseek = no_llseek,
703 .unlocked_ioctl = ep_ioctl,
704 .read_iter = ep_read_iter,
705 .write_iter = ep_write_iter,
706 };
707
708 /* ENDPOINT INITIALIZATION
709 *
710 * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
711 * status = write (fd, descriptors, sizeof descriptors)
712 *
713 * That write establishes the endpoint configuration, configuring
714 * the controller to process bulk, interrupt, or isochronous transfers
715 * at the right maxpacket size, and so on.
716 *
717 * The descriptors are message type 1, identified by a host order u32
718 * at the beginning of what's written. Descriptor order is: full/low
719 * speed descriptor, then optional high speed descriptor.
720 */
721 static ssize_t
722 ep_config (struct ep_data *data, const char *buf, size_t len)
723 {
724 struct usb_ep *ep;
725 u32 tag;
726 int value, length = len;
727
728 if (data->state != STATE_EP_READY) {
729 value = -EL2HLT;
730 goto fail;
731 }
732
733 value = len;
734 if (len < USB_DT_ENDPOINT_SIZE + 4)
735 goto fail0;
736
737 /* we might need to change message format someday */
738 memcpy(&tag, buf, 4);
739 if (tag != 1) {
740 DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
741 goto fail0;
742 }
743 buf += 4;
744 len -= 4;
745
746 /* NOTE: audio endpoint extensions not accepted here;
747 * just don't include the extra bytes.
748 */
749
750 /* full/low speed descriptor, then high speed */
751 memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
752 if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
753 || data->desc.bDescriptorType != USB_DT_ENDPOINT)
754 goto fail0;
755 if (len != USB_DT_ENDPOINT_SIZE) {
756 if (len != 2 * USB_DT_ENDPOINT_SIZE)
757 goto fail0;
758 memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
759 USB_DT_ENDPOINT_SIZE);
760 if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
761 || data->hs_desc.bDescriptorType
762 != USB_DT_ENDPOINT) {
763 DBG(data->dev, "config %s, bad hs length or type\n",
764 data->name);
765 goto fail0;
766 }
767 }
768
769 spin_lock_irq (&data->dev->lock);
770 if (data->dev->state == STATE_DEV_UNBOUND) {
771 value = -ENOENT;
772 goto gone;
773 } else {
774 ep = data->ep;
775 if (ep == NULL) {
776 value = -ENODEV;
777 goto gone;
778 }
779 }
780 switch (data->dev->gadget->speed) {
781 case USB_SPEED_LOW:
782 case USB_SPEED_FULL:
783 ep->desc = &data->desc;
784 break;
785 case USB_SPEED_HIGH:
786 /* fails if caller didn't provide that descriptor... */
787 ep->desc = &data->hs_desc;
788 break;
789 default:
790 DBG(data->dev, "unconnected, %s init abandoned\n",
791 data->name);
792 value = -EINVAL;
793 goto gone;
794 }
795 value = usb_ep_enable(ep);
796 if (value == 0) {
797 data->state = STATE_EP_ENABLED;
798 value = length;
799 }
800 gone:
801 spin_unlock_irq (&data->dev->lock);
802 if (value < 0) {
803 fail:
804 data->desc.bDescriptorType = 0;
805 data->hs_desc.bDescriptorType = 0;
806 }
807 return value;
808 fail0:
809 value = -EINVAL;
810 goto fail;
811 }
812
813 static int
814 ep_open (struct inode *inode, struct file *fd)
815 {
816 struct ep_data *data = inode->i_private;
817 int value = -EBUSY;
818
819 if (mutex_lock_interruptible(&data->lock) != 0)
820 return -EINTR;
821 spin_lock_irq (&data->dev->lock);
822 if (data->dev->state == STATE_DEV_UNBOUND)
823 value = -ENOENT;
824 else if (data->state == STATE_EP_DISABLED) {
825 value = 0;
826 data->state = STATE_EP_READY;
827 get_ep (data);
828 fd->private_data = data;
829 VDEBUG (data->dev, "%s ready\n", data->name);
830 } else
831 DBG (data->dev, "%s state %d\n",
832 data->name, data->state);
833 spin_unlock_irq (&data->dev->lock);
834 mutex_unlock(&data->lock);
835 return value;
836 }
837
838 /*----------------------------------------------------------------------*/
839
840 /* EP0 IMPLEMENTATION can be partly in userspace.
841 *
842 * Drivers that use this facility receive various events, including
843 * control requests the kernel doesn't handle. Drivers that don't
844 * use this facility may be too simple-minded for real applications.
845 */
846
847 static inline void ep0_readable (struct dev_data *dev)
848 {
849 wake_up (&dev->wait);
850 kill_fasync (&dev->fasync, SIGIO, POLL_IN);
851 }
852
853 static void clean_req (struct usb_ep *ep, struct usb_request *req)
854 {
855 struct dev_data *dev = ep->driver_data;
856
857 if (req->buf != dev->rbuf) {
858 kfree(req->buf);
859 req->buf = dev->rbuf;
860 }
861 req->complete = epio_complete;
862 dev->setup_out_ready = 0;
863 }
864
865 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
866 {
867 struct dev_data *dev = ep->driver_data;
868 unsigned long flags;
869 int free = 1;
870
871 /* for control OUT, data must still get to userspace */
872 spin_lock_irqsave(&dev->lock, flags);
873 if (!dev->setup_in) {
874 dev->setup_out_error = (req->status != 0);
875 if (!dev->setup_out_error)
876 free = 0;
877 dev->setup_out_ready = 1;
878 ep0_readable (dev);
879 }
880
881 /* clean up as appropriate */
882 if (free && req->buf != &dev->rbuf)
883 clean_req (ep, req);
884 req->complete = epio_complete;
885 spin_unlock_irqrestore(&dev->lock, flags);
886 }
887
888 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
889 {
890 struct dev_data *dev = ep->driver_data;
891
892 if (dev->setup_out_ready) {
893 DBG (dev, "ep0 request busy!\n");
894 return -EBUSY;
895 }
896 if (len > sizeof (dev->rbuf))
897 req->buf = kmalloc(len, GFP_ATOMIC);
898 if (req->buf == NULL) {
899 req->buf = dev->rbuf;
900 return -ENOMEM;
901 }
902 req->complete = ep0_complete;
903 req->length = len;
904 req->zero = 0;
905 return 0;
906 }
907
908 static ssize_t
909 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
910 {
911 struct dev_data *dev = fd->private_data;
912 ssize_t retval;
913 enum ep0_state state;
914
915 spin_lock_irq (&dev->lock);
916 if (dev->state <= STATE_DEV_OPENED) {
917 retval = -EINVAL;
918 goto done;
919 }
920
921 /* report fd mode change before acting on it */
922 if (dev->setup_abort) {
923 dev->setup_abort = 0;
924 retval = -EIDRM;
925 goto done;
926 }
927
928 /* control DATA stage */
929 if ((state = dev->state) == STATE_DEV_SETUP) {
930
931 if (dev->setup_in) { /* stall IN */
932 VDEBUG(dev, "ep0in stall\n");
933 (void) usb_ep_set_halt (dev->gadget->ep0);
934 retval = -EL2HLT;
935 dev->state = STATE_DEV_CONNECTED;
936
937 } else if (len == 0) { /* ack SET_CONFIGURATION etc */
938 struct usb_ep *ep = dev->gadget->ep0;
939 struct usb_request *req = dev->req;
940
941 if ((retval = setup_req (ep, req, 0)) == 0) {
942 spin_unlock_irq (&dev->lock);
943 retval = usb_ep_queue (ep, req, GFP_KERNEL);
944 spin_lock_irq (&dev->lock);
945 }
946 dev->state = STATE_DEV_CONNECTED;
947
948 /* assume that was SET_CONFIGURATION */
949 if (dev->current_config) {
950 unsigned power;
951
952 if (gadget_is_dualspeed(dev->gadget)
953 && (dev->gadget->speed
954 == USB_SPEED_HIGH))
955 power = dev->hs_config->bMaxPower;
956 else
957 power = dev->config->bMaxPower;
958 usb_gadget_vbus_draw(dev->gadget, 2 * power);
959 }
960
961 } else { /* collect OUT data */
962 if ((fd->f_flags & O_NONBLOCK) != 0
963 && !dev->setup_out_ready) {
964 retval = -EAGAIN;
965 goto done;
966 }
967 spin_unlock_irq (&dev->lock);
968 retval = wait_event_interruptible (dev->wait,
969 dev->setup_out_ready != 0);
970
971 /* FIXME state could change from under us */
972 spin_lock_irq (&dev->lock);
973 if (retval)
974 goto done;
975
976 if (dev->state != STATE_DEV_SETUP) {
977 retval = -ECANCELED;
978 goto done;
979 }
980 dev->state = STATE_DEV_CONNECTED;
981
982 if (dev->setup_out_error)
983 retval = -EIO;
984 else {
985 len = min (len, (size_t)dev->req->actual);
986 // FIXME don't call this with the spinlock held ...
987 if (copy_to_user (buf, dev->req->buf, len))
988 retval = -EFAULT;
989 else
990 retval = len;
991 clean_req (dev->gadget->ep0, dev->req);
992 /* NOTE userspace can't yet choose to stall */
993 }
994 }
995 goto done;
996 }
997
998 /* else normal: return event data */
999 if (len < sizeof dev->event [0]) {
1000 retval = -EINVAL;
1001 goto done;
1002 }
1003 len -= len % sizeof (struct usb_gadgetfs_event);
1004 dev->usermode_setup = 1;
1005
1006 scan:
1007 /* return queued events right away */
1008 if (dev->ev_next != 0) {
1009 unsigned i, n;
1010
1011 n = len / sizeof (struct usb_gadgetfs_event);
1012 if (dev->ev_next < n)
1013 n = dev->ev_next;
1014
1015 /* ep0 i/o has special semantics during STATE_DEV_SETUP */
1016 for (i = 0; i < n; i++) {
1017 if (dev->event [i].type == GADGETFS_SETUP) {
1018 dev->state = STATE_DEV_SETUP;
1019 n = i + 1;
1020 break;
1021 }
1022 }
1023 spin_unlock_irq (&dev->lock);
1024 len = n * sizeof (struct usb_gadgetfs_event);
1025 if (copy_to_user (buf, &dev->event, len))
1026 retval = -EFAULT;
1027 else
1028 retval = len;
1029 if (len > 0) {
1030 /* NOTE this doesn't guard against broken drivers;
1031 * concurrent ep0 readers may lose events.
1032 */
1033 spin_lock_irq (&dev->lock);
1034 if (dev->ev_next > n) {
1035 memmove(&dev->event[0], &dev->event[n],
1036 sizeof (struct usb_gadgetfs_event)
1037 * (dev->ev_next - n));
1038 }
1039 dev->ev_next -= n;
1040 spin_unlock_irq (&dev->lock);
1041 }
1042 return retval;
1043 }
1044 if (fd->f_flags & O_NONBLOCK) {
1045 retval = -EAGAIN;
1046 goto done;
1047 }
1048
1049 switch (state) {
1050 default:
1051 DBG (dev, "fail %s, state %d\n", __func__, state);
1052 retval = -ESRCH;
1053 break;
1054 case STATE_DEV_UNCONNECTED:
1055 case STATE_DEV_CONNECTED:
1056 spin_unlock_irq (&dev->lock);
1057 DBG (dev, "%s wait\n", __func__);
1058
1059 /* wait for events */
1060 retval = wait_event_interruptible (dev->wait,
1061 dev->ev_next != 0);
1062 if (retval < 0)
1063 return retval;
1064 spin_lock_irq (&dev->lock);
1065 goto scan;
1066 }
1067
1068 done:
1069 spin_unlock_irq (&dev->lock);
1070 return retval;
1071 }
1072
1073 static struct usb_gadgetfs_event *
1074 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1075 {
1076 struct usb_gadgetfs_event *event;
1077 unsigned i;
1078
1079 switch (type) {
1080 /* these events purge the queue */
1081 case GADGETFS_DISCONNECT:
1082 if (dev->state == STATE_DEV_SETUP)
1083 dev->setup_abort = 1;
1084 // FALL THROUGH
1085 case GADGETFS_CONNECT:
1086 dev->ev_next = 0;
1087 break;
1088 case GADGETFS_SETUP: /* previous request timed out */
1089 case GADGETFS_SUSPEND: /* same effect */
1090 /* these events can't be repeated */
1091 for (i = 0; i != dev->ev_next; i++) {
1092 if (dev->event [i].type != type)
1093 continue;
1094 DBG(dev, "discard old event[%d] %d\n", i, type);
1095 dev->ev_next--;
1096 if (i == dev->ev_next)
1097 break;
1098 /* indices start at zero, for simplicity */
1099 memmove (&dev->event [i], &dev->event [i + 1],
1100 sizeof (struct usb_gadgetfs_event)
1101 * (dev->ev_next - i));
1102 }
1103 break;
1104 default:
1105 BUG ();
1106 }
1107 VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1108 event = &dev->event [dev->ev_next++];
1109 BUG_ON (dev->ev_next > N_EVENT);
1110 memset (event, 0, sizeof *event);
1111 event->type = type;
1112 return event;
1113 }
1114
1115 static ssize_t
1116 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1117 {
1118 struct dev_data *dev = fd->private_data;
1119 ssize_t retval = -ESRCH;
1120
1121 /* report fd mode change before acting on it */
1122 if (dev->setup_abort) {
1123 dev->setup_abort = 0;
1124 retval = -EIDRM;
1125
1126 /* data and/or status stage for control request */
1127 } else if (dev->state == STATE_DEV_SETUP) {
1128
1129 /* IN DATA+STATUS caller makes len <= wLength */
1130 if (dev->setup_in) {
1131 retval = setup_req (dev->gadget->ep0, dev->req, len);
1132 if (retval == 0) {
1133 dev->state = STATE_DEV_CONNECTED;
1134 spin_unlock_irq (&dev->lock);
1135 if (copy_from_user (dev->req->buf, buf, len))
1136 retval = -EFAULT;
1137 else {
1138 if (len < dev->setup_wLength)
1139 dev->req->zero = 1;
1140 retval = usb_ep_queue (
1141 dev->gadget->ep0, dev->req,
1142 GFP_KERNEL);
1143 }
1144 spin_lock_irq(&dev->lock);
1145 if (retval < 0) {
1146 clean_req (dev->gadget->ep0, dev->req);
1147 } else
1148 retval = len;
1149
1150 return retval;
1151 }
1152
1153 /* can stall some OUT transfers */
1154 } else if (dev->setup_can_stall) {
1155 VDEBUG(dev, "ep0out stall\n");
1156 (void) usb_ep_set_halt (dev->gadget->ep0);
1157 retval = -EL2HLT;
1158 dev->state = STATE_DEV_CONNECTED;
1159 } else {
1160 DBG(dev, "bogus ep0out stall!\n");
1161 }
1162 } else
1163 DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1164
1165 return retval;
1166 }
1167
1168 static int
1169 ep0_fasync (int f, struct file *fd, int on)
1170 {
1171 struct dev_data *dev = fd->private_data;
1172 // caller must F_SETOWN before signal delivery happens
1173 VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1174 return fasync_helper (f, fd, on, &dev->fasync);
1175 }
1176
1177 static struct usb_gadget_driver gadgetfs_driver;
1178
1179 static int
1180 dev_release (struct inode *inode, struct file *fd)
1181 {
1182 struct dev_data *dev = fd->private_data;
1183
1184 /* closing ep0 === shutdown all */
1185
1186 if (dev->gadget_registered)
1187 usb_gadget_unregister_driver (&gadgetfs_driver);
1188
1189 /* at this point "good" hardware has disconnected the
1190 * device from USB; the host won't see it any more.
1191 * alternatively, all host requests will time out.
1192 */
1193
1194 kfree (dev->buf);
1195 dev->buf = NULL;
1196
1197 /* other endpoints were all decoupled from this device */
1198 spin_lock_irq(&dev->lock);
1199 dev->state = STATE_DEV_DISABLED;
1200 spin_unlock_irq(&dev->lock);
1201
1202 put_dev (dev);
1203 return 0;
1204 }
1205
1206 static unsigned int
1207 ep0_poll (struct file *fd, poll_table *wait)
1208 {
1209 struct dev_data *dev = fd->private_data;
1210 int mask = 0;
1211
1212 if (dev->state <= STATE_DEV_OPENED)
1213 return DEFAULT_POLLMASK;
1214
1215 poll_wait(fd, &dev->wait, wait);
1216
1217 spin_lock_irq (&dev->lock);
1218
1219 /* report fd mode change before acting on it */
1220 if (dev->setup_abort) {
1221 dev->setup_abort = 0;
1222 mask = POLLHUP;
1223 goto out;
1224 }
1225
1226 if (dev->state == STATE_DEV_SETUP) {
1227 if (dev->setup_in || dev->setup_can_stall)
1228 mask = POLLOUT;
1229 } else {
1230 if (dev->ev_next != 0)
1231 mask = POLLIN;
1232 }
1233 out:
1234 spin_unlock_irq(&dev->lock);
1235 return mask;
1236 }
1237
1238 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1239 {
1240 struct dev_data *dev = fd->private_data;
1241 struct usb_gadget *gadget = dev->gadget;
1242 long ret = -ENOTTY;
1243
1244 if (gadget->ops->ioctl)
1245 ret = gadget->ops->ioctl (gadget, code, value);
1246
1247 return ret;
1248 }
1249
1250 /*----------------------------------------------------------------------*/
1251
1252 /* The in-kernel gadget driver handles most ep0 issues, in particular
1253 * enumerating the single configuration (as provided from user space).
1254 *
1255 * Unrecognized ep0 requests may be handled in user space.
1256 */
1257
1258 static void make_qualifier (struct dev_data *dev)
1259 {
1260 struct usb_qualifier_descriptor qual;
1261 struct usb_device_descriptor *desc;
1262
1263 qual.bLength = sizeof qual;
1264 qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1265 qual.bcdUSB = cpu_to_le16 (0x0200);
1266
1267 desc = dev->dev;
1268 qual.bDeviceClass = desc->bDeviceClass;
1269 qual.bDeviceSubClass = desc->bDeviceSubClass;
1270 qual.bDeviceProtocol = desc->bDeviceProtocol;
1271
1272 /* assumes ep0 uses the same value for both speeds ... */
1273 qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1274
1275 qual.bNumConfigurations = 1;
1276 qual.bRESERVED = 0;
1277
1278 memcpy (dev->rbuf, &qual, sizeof qual);
1279 }
1280
1281 static int
1282 config_buf (struct dev_data *dev, u8 type, unsigned index)
1283 {
1284 int len;
1285 int hs = 0;
1286
1287 /* only one configuration */
1288 if (index > 0)
1289 return -EINVAL;
1290
1291 if (gadget_is_dualspeed(dev->gadget)) {
1292 hs = (dev->gadget->speed == USB_SPEED_HIGH);
1293 if (type == USB_DT_OTHER_SPEED_CONFIG)
1294 hs = !hs;
1295 }
1296 if (hs) {
1297 dev->req->buf = dev->hs_config;
1298 len = le16_to_cpu(dev->hs_config->wTotalLength);
1299 } else {
1300 dev->req->buf = dev->config;
1301 len = le16_to_cpu(dev->config->wTotalLength);
1302 }
1303 ((u8 *)dev->req->buf) [1] = type;
1304 return len;
1305 }
1306
1307 static int
1308 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1309 {
1310 struct dev_data *dev = get_gadget_data (gadget);
1311 struct usb_request *req = dev->req;
1312 int value = -EOPNOTSUPP;
1313 struct usb_gadgetfs_event *event;
1314 u16 w_value = le16_to_cpu(ctrl->wValue);
1315 u16 w_length = le16_to_cpu(ctrl->wLength);
1316
1317 spin_lock (&dev->lock);
1318 dev->setup_abort = 0;
1319 if (dev->state == STATE_DEV_UNCONNECTED) {
1320 if (gadget_is_dualspeed(gadget)
1321 && gadget->speed == USB_SPEED_HIGH
1322 && dev->hs_config == NULL) {
1323 spin_unlock(&dev->lock);
1324 ERROR (dev, "no high speed config??\n");
1325 return -EINVAL;
1326 }
1327
1328 dev->state = STATE_DEV_CONNECTED;
1329
1330 INFO (dev, "connected\n");
1331 event = next_event (dev, GADGETFS_CONNECT);
1332 event->u.speed = gadget->speed;
1333 ep0_readable (dev);
1334
1335 /* host may have given up waiting for response. we can miss control
1336 * requests handled lower down (device/endpoint status and features);
1337 * then ep0_{read,write} will report the wrong status. controller
1338 * driver will have aborted pending i/o.
1339 */
1340 } else if (dev->state == STATE_DEV_SETUP)
1341 dev->setup_abort = 1;
1342
1343 req->buf = dev->rbuf;
1344 req->context = NULL;
1345 value = -EOPNOTSUPP;
1346 switch (ctrl->bRequest) {
1347
1348 case USB_REQ_GET_DESCRIPTOR:
1349 if (ctrl->bRequestType != USB_DIR_IN)
1350 goto unrecognized;
1351 switch (w_value >> 8) {
1352
1353 case USB_DT_DEVICE:
1354 value = min (w_length, (u16) sizeof *dev->dev);
1355 dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1356 req->buf = dev->dev;
1357 break;
1358 case USB_DT_DEVICE_QUALIFIER:
1359 if (!dev->hs_config)
1360 break;
1361 value = min (w_length, (u16)
1362 sizeof (struct usb_qualifier_descriptor));
1363 make_qualifier (dev);
1364 break;
1365 case USB_DT_OTHER_SPEED_CONFIG:
1366 // FALLTHROUGH
1367 case USB_DT_CONFIG:
1368 value = config_buf (dev,
1369 w_value >> 8,
1370 w_value & 0xff);
1371 if (value >= 0)
1372 value = min (w_length, (u16) value);
1373 break;
1374 case USB_DT_STRING:
1375 goto unrecognized;
1376
1377 default: // all others are errors
1378 break;
1379 }
1380 break;
1381
1382 /* currently one config, two speeds */
1383 case USB_REQ_SET_CONFIGURATION:
1384 if (ctrl->bRequestType != 0)
1385 goto unrecognized;
1386 if (0 == (u8) w_value) {
1387 value = 0;
1388 dev->current_config = 0;
1389 usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1390 // user mode expected to disable endpoints
1391 } else {
1392 u8 config, power;
1393
1394 if (gadget_is_dualspeed(gadget)
1395 && gadget->speed == USB_SPEED_HIGH) {
1396 config = dev->hs_config->bConfigurationValue;
1397 power = dev->hs_config->bMaxPower;
1398 } else {
1399 config = dev->config->bConfigurationValue;
1400 power = dev->config->bMaxPower;
1401 }
1402
1403 if (config == (u8) w_value) {
1404 value = 0;
1405 dev->current_config = config;
1406 usb_gadget_vbus_draw(gadget, 2 * power);
1407 }
1408 }
1409
1410 /* report SET_CONFIGURATION like any other control request,
1411 * except that usermode may not stall this. the next
1412 * request mustn't be allowed start until this finishes:
1413 * endpoints and threads set up, etc.
1414 *
1415 * NOTE: older PXA hardware (before PXA 255: without UDCCFR)
1416 * has bad/racey automagic that prevents synchronizing here.
1417 * even kernel mode drivers often miss them.
1418 */
1419 if (value == 0) {
1420 INFO (dev, "configuration #%d\n", dev->current_config);
1421 usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1422 if (dev->usermode_setup) {
1423 dev->setup_can_stall = 0;
1424 goto delegate;
1425 }
1426 }
1427 break;
1428
1429 #ifndef CONFIG_USB_PXA25X
1430 /* PXA automagically handles this request too */
1431 case USB_REQ_GET_CONFIGURATION:
1432 if (ctrl->bRequestType != 0x80)
1433 goto unrecognized;
1434 *(u8 *)req->buf = dev->current_config;
1435 value = min (w_length, (u16) 1);
1436 break;
1437 #endif
1438
1439 default:
1440 unrecognized:
1441 VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1442 dev->usermode_setup ? "delegate" : "fail",
1443 ctrl->bRequestType, ctrl->bRequest,
1444 w_value, le16_to_cpu(ctrl->wIndex), w_length);
1445
1446 /* if there's an ep0 reader, don't stall */
1447 if (dev->usermode_setup) {
1448 dev->setup_can_stall = 1;
1449 delegate:
1450 dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1451 ? 1 : 0;
1452 dev->setup_wLength = w_length;
1453 dev->setup_out_ready = 0;
1454 dev->setup_out_error = 0;
1455 value = 0;
1456
1457 /* read DATA stage for OUT right away */
1458 if (unlikely (!dev->setup_in && w_length)) {
1459 value = setup_req (gadget->ep0, dev->req,
1460 w_length);
1461 if (value < 0)
1462 break;
1463
1464 spin_unlock (&dev->lock);
1465 value = usb_ep_queue (gadget->ep0, dev->req,
1466 GFP_KERNEL);
1467 spin_lock (&dev->lock);
1468 if (value < 0) {
1469 clean_req (gadget->ep0, dev->req);
1470 break;
1471 }
1472
1473 /* we can't currently stall these */
1474 dev->setup_can_stall = 0;
1475 }
1476
1477 /* state changes when reader collects event */
1478 event = next_event (dev, GADGETFS_SETUP);
1479 event->u.setup = *ctrl;
1480 ep0_readable (dev);
1481 spin_unlock (&dev->lock);
1482 return 0;
1483 }
1484 }
1485
1486 /* proceed with data transfer and status phases? */
1487 if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1488 req->length = value;
1489 req->zero = value < w_length;
1490
1491 spin_unlock (&dev->lock);
1492 value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1493 if (value < 0) {
1494 DBG (dev, "ep_queue --> %d\n", value);
1495 req->status = 0;
1496 }
1497 return value;
1498 }
1499
1500 /* device stalls when value < 0 */
1501 spin_unlock (&dev->lock);
1502 return value;
1503 }
1504
1505 static void destroy_ep_files (struct dev_data *dev)
1506 {
1507 DBG (dev, "%s %d\n", __func__, dev->state);
1508
1509 /* dev->state must prevent interference */
1510 spin_lock_irq (&dev->lock);
1511 while (!list_empty(&dev->epfiles)) {
1512 struct ep_data *ep;
1513 struct inode *parent;
1514 struct dentry *dentry;
1515
1516 /* break link to FS */
1517 ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1518 list_del_init (&ep->epfiles);
1519 dentry = ep->dentry;
1520 ep->dentry = NULL;
1521 parent = d_inode(dentry->d_parent);
1522
1523 /* break link to controller */
1524 if (ep->state == STATE_EP_ENABLED)
1525 (void) usb_ep_disable (ep->ep);
1526 ep->state = STATE_EP_UNBOUND;
1527 usb_ep_free_request (ep->ep, ep->req);
1528 ep->ep = NULL;
1529 wake_up (&ep->wait);
1530 put_ep (ep);
1531
1532 spin_unlock_irq (&dev->lock);
1533
1534 /* break link to dcache */
1535 inode_lock(parent);
1536 d_delete (dentry);
1537 dput (dentry);
1538 inode_unlock(parent);
1539
1540 spin_lock_irq (&dev->lock);
1541 }
1542 spin_unlock_irq (&dev->lock);
1543 }
1544
1545
1546 static struct dentry *
1547 gadgetfs_create_file (struct super_block *sb, char const *name,
1548 void *data, const struct file_operations *fops);
1549
1550 static int activate_ep_files (struct dev_data *dev)
1551 {
1552 struct usb_ep *ep;
1553 struct ep_data *data;
1554
1555 gadget_for_each_ep (ep, dev->gadget) {
1556
1557 data = kzalloc(sizeof(*data), GFP_KERNEL);
1558 if (!data)
1559 goto enomem0;
1560 data->state = STATE_EP_DISABLED;
1561 mutex_init(&data->lock);
1562 init_waitqueue_head (&data->wait);
1563
1564 strncpy (data->name, ep->name, sizeof (data->name) - 1);
1565 atomic_set (&data->count, 1);
1566 data->dev = dev;
1567 get_dev (dev);
1568
1569 data->ep = ep;
1570 ep->driver_data = data;
1571
1572 data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1573 if (!data->req)
1574 goto enomem1;
1575
1576 data->dentry = gadgetfs_create_file (dev->sb, data->name,
1577 data, &ep_io_operations);
1578 if (!data->dentry)
1579 goto enomem2;
1580 list_add_tail (&data->epfiles, &dev->epfiles);
1581 }
1582 return 0;
1583
1584 enomem2:
1585 usb_ep_free_request (ep, data->req);
1586 enomem1:
1587 put_dev (dev);
1588 kfree (data);
1589 enomem0:
1590 DBG (dev, "%s enomem\n", __func__);
1591 destroy_ep_files (dev);
1592 return -ENOMEM;
1593 }
1594
1595 static void
1596 gadgetfs_unbind (struct usb_gadget *gadget)
1597 {
1598 struct dev_data *dev = get_gadget_data (gadget);
1599
1600 DBG (dev, "%s\n", __func__);
1601
1602 spin_lock_irq (&dev->lock);
1603 dev->state = STATE_DEV_UNBOUND;
1604 spin_unlock_irq (&dev->lock);
1605
1606 destroy_ep_files (dev);
1607 gadget->ep0->driver_data = NULL;
1608 set_gadget_data (gadget, NULL);
1609
1610 /* we've already been disconnected ... no i/o is active */
1611 if (dev->req)
1612 usb_ep_free_request (gadget->ep0, dev->req);
1613 DBG (dev, "%s done\n", __func__);
1614 put_dev (dev);
1615 }
1616
1617 static struct dev_data *the_device;
1618
1619 static int gadgetfs_bind(struct usb_gadget *gadget,
1620 struct usb_gadget_driver *driver)
1621 {
1622 struct dev_data *dev = the_device;
1623
1624 if (!dev)
1625 return -ESRCH;
1626 if (0 != strcmp (CHIP, gadget->name)) {
1627 pr_err("%s expected %s controller not %s\n",
1628 shortname, CHIP, gadget->name);
1629 return -ENODEV;
1630 }
1631
1632 set_gadget_data (gadget, dev);
1633 dev->gadget = gadget;
1634 gadget->ep0->driver_data = dev;
1635
1636 /* preallocate control response and buffer */
1637 dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1638 if (!dev->req)
1639 goto enomem;
1640 dev->req->context = NULL;
1641 dev->req->complete = epio_complete;
1642
1643 if (activate_ep_files (dev) < 0)
1644 goto enomem;
1645
1646 INFO (dev, "bound to %s driver\n", gadget->name);
1647 spin_lock_irq(&dev->lock);
1648 dev->state = STATE_DEV_UNCONNECTED;
1649 spin_unlock_irq(&dev->lock);
1650 get_dev (dev);
1651 return 0;
1652
1653 enomem:
1654 gadgetfs_unbind (gadget);
1655 return -ENOMEM;
1656 }
1657
1658 static void
1659 gadgetfs_disconnect (struct usb_gadget *gadget)
1660 {
1661 struct dev_data *dev = get_gadget_data (gadget);
1662 unsigned long flags;
1663
1664 spin_lock_irqsave (&dev->lock, flags);
1665 if (dev->state == STATE_DEV_UNCONNECTED)
1666 goto exit;
1667 dev->state = STATE_DEV_UNCONNECTED;
1668
1669 INFO (dev, "disconnected\n");
1670 next_event (dev, GADGETFS_DISCONNECT);
1671 ep0_readable (dev);
1672 exit:
1673 spin_unlock_irqrestore (&dev->lock, flags);
1674 }
1675
1676 static void
1677 gadgetfs_suspend (struct usb_gadget *gadget)
1678 {
1679 struct dev_data *dev = get_gadget_data (gadget);
1680
1681 INFO (dev, "suspended from state %d\n", dev->state);
1682 spin_lock (&dev->lock);
1683 switch (dev->state) {
1684 case STATE_DEV_SETUP: // VERY odd... host died??
1685 case STATE_DEV_CONNECTED:
1686 case STATE_DEV_UNCONNECTED:
1687 next_event (dev, GADGETFS_SUSPEND);
1688 ep0_readable (dev);
1689 /* FALLTHROUGH */
1690 default:
1691 break;
1692 }
1693 spin_unlock (&dev->lock);
1694 }
1695
1696 static struct usb_gadget_driver gadgetfs_driver = {
1697 .function = (char *) driver_desc,
1698 .bind = gadgetfs_bind,
1699 .unbind = gadgetfs_unbind,
1700 .setup = gadgetfs_setup,
1701 .reset = gadgetfs_disconnect,
1702 .disconnect = gadgetfs_disconnect,
1703 .suspend = gadgetfs_suspend,
1704
1705 .driver = {
1706 .name = (char *) shortname,
1707 },
1708 };
1709
1710 /*----------------------------------------------------------------------*/
1711 /* DEVICE INITIALIZATION
1712 *
1713 * fd = open ("/dev/gadget/$CHIP", O_RDWR)
1714 * status = write (fd, descriptors, sizeof descriptors)
1715 *
1716 * That write establishes the device configuration, so the kernel can
1717 * bind to the controller ... guaranteeing it can handle enumeration
1718 * at all necessary speeds. Descriptor order is:
1719 *
1720 * . message tag (u32, host order) ... for now, must be zero; it
1721 * would change to support features like multi-config devices
1722 * . full/low speed config ... all wTotalLength bytes (with interface,
1723 * class, altsetting, endpoint, and other descriptors)
1724 * . high speed config ... all descriptors, for high speed operation;
1725 * this one's optional except for high-speed hardware
1726 * . device descriptor
1727 *
1728 * Endpoints are not yet enabled. Drivers must wait until device
1729 * configuration and interface altsetting changes create
1730 * the need to configure (or unconfigure) them.
1731 *
1732 * After initialization, the device stays active for as long as that
1733 * $CHIP file is open. Events must then be read from that descriptor,
1734 * such as configuration notifications.
1735 */
1736
1737 static int is_valid_config (struct usb_config_descriptor *config)
1738 {
1739 return config->bDescriptorType == USB_DT_CONFIG
1740 && config->bLength == USB_DT_CONFIG_SIZE
1741 && config->bConfigurationValue != 0
1742 && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1743 && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1744 /* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1745 /* FIXME check lengths: walk to end */
1746 }
1747
1748 static ssize_t
1749 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1750 {
1751 struct dev_data *dev = fd->private_data;
1752 ssize_t value = len, length = len;
1753 unsigned total;
1754 u32 tag;
1755 char *kbuf;
1756
1757 spin_lock_irq(&dev->lock);
1758 if (dev->state > STATE_DEV_OPENED) {
1759 value = ep0_write(fd, buf, len, ptr);
1760 spin_unlock_irq(&dev->lock);
1761 return value;
1762 }
1763 spin_unlock_irq(&dev->lock);
1764
1765 if (len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4))
1766 return -EINVAL;
1767
1768 /* we might need to change message format someday */
1769 if (copy_from_user (&tag, buf, 4))
1770 return -EFAULT;
1771 if (tag != 0)
1772 return -EINVAL;
1773 buf += 4;
1774 length -= 4;
1775
1776 kbuf = memdup_user(buf, length);
1777 if (IS_ERR(kbuf))
1778 return PTR_ERR(kbuf);
1779
1780 spin_lock_irq (&dev->lock);
1781 value = -EINVAL;
1782 if (dev->buf)
1783 goto fail;
1784 dev->buf = kbuf;
1785
1786 /* full or low speed config */
1787 dev->config = (void *) kbuf;
1788 total = le16_to_cpu(dev->config->wTotalLength);
1789 if (!is_valid_config (dev->config) || total >= length)
1790 goto fail;
1791 kbuf += total;
1792 length -= total;
1793
1794 /* optional high speed config */
1795 if (kbuf [1] == USB_DT_CONFIG) {
1796 dev->hs_config = (void *) kbuf;
1797 total = le16_to_cpu(dev->hs_config->wTotalLength);
1798 if (!is_valid_config (dev->hs_config) || total >= length)
1799 goto fail;
1800 kbuf += total;
1801 length -= total;
1802 }
1803
1804 /* could support multiple configs, using another encoding! */
1805
1806 /* device descriptor (tweaked for paranoia) */
1807 if (length != USB_DT_DEVICE_SIZE)
1808 goto fail;
1809 dev->dev = (void *)kbuf;
1810 if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1811 || dev->dev->bDescriptorType != USB_DT_DEVICE
1812 || dev->dev->bNumConfigurations != 1)
1813 goto fail;
1814 dev->dev->bNumConfigurations = 1;
1815 dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1816
1817 /* triggers gadgetfs_bind(); then we can enumerate. */
1818 spin_unlock_irq (&dev->lock);
1819 if (dev->hs_config)
1820 gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1821 else
1822 gadgetfs_driver.max_speed = USB_SPEED_FULL;
1823
1824 value = usb_gadget_probe_driver(&gadgetfs_driver);
1825 if (value != 0) {
1826 kfree (dev->buf);
1827 dev->buf = NULL;
1828 } else {
1829 /* at this point "good" hardware has for the first time
1830 * let the USB the host see us. alternatively, if users
1831 * unplug/replug that will clear all the error state.
1832 *
1833 * note: everything running before here was guaranteed
1834 * to choke driver model style diagnostics. from here
1835 * on, they can work ... except in cleanup paths that
1836 * kick in after the ep0 descriptor is closed.
1837 */
1838 value = len;
1839 dev->gadget_registered = true;
1840 }
1841 return value;
1842
1843 fail:
1844 spin_unlock_irq (&dev->lock);
1845 pr_debug ("%s: %s fail %Zd, %p\n", shortname, __func__, value, dev);
1846 kfree (dev->buf);
1847 dev->buf = NULL;
1848 return value;
1849 }
1850
1851 static int
1852 dev_open (struct inode *inode, struct file *fd)
1853 {
1854 struct dev_data *dev = inode->i_private;
1855 int value = -EBUSY;
1856
1857 spin_lock_irq(&dev->lock);
1858 if (dev->state == STATE_DEV_DISABLED) {
1859 dev->ev_next = 0;
1860 dev->state = STATE_DEV_OPENED;
1861 fd->private_data = dev;
1862 get_dev (dev);
1863 value = 0;
1864 }
1865 spin_unlock_irq(&dev->lock);
1866 return value;
1867 }
1868
1869 static const struct file_operations ep0_operations = {
1870 .llseek = no_llseek,
1871
1872 .open = dev_open,
1873 .read = ep0_read,
1874 .write = dev_config,
1875 .fasync = ep0_fasync,
1876 .poll = ep0_poll,
1877 .unlocked_ioctl = dev_ioctl,
1878 .release = dev_release,
1879 };
1880
1881 /*----------------------------------------------------------------------*/
1882
1883 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1884 *
1885 * Mounting the filesystem creates a controller file, used first for
1886 * device configuration then later for event monitoring.
1887 */
1888
1889
1890 /* FIXME PAM etc could set this security policy without mount options
1891 * if epfiles inherited ownership and permissons from ep0 ...
1892 */
1893
1894 static unsigned default_uid;
1895 static unsigned default_gid;
1896 static unsigned default_perm = S_IRUSR | S_IWUSR;
1897
1898 module_param (default_uid, uint, 0644);
1899 module_param (default_gid, uint, 0644);
1900 module_param (default_perm, uint, 0644);
1901
1902
1903 static struct inode *
1904 gadgetfs_make_inode (struct super_block *sb,
1905 void *data, const struct file_operations *fops,
1906 int mode)
1907 {
1908 struct inode *inode = new_inode (sb);
1909
1910 if (inode) {
1911 inode->i_ino = get_next_ino();
1912 inode->i_mode = mode;
1913 inode->i_uid = make_kuid(&init_user_ns, default_uid);
1914 inode->i_gid = make_kgid(&init_user_ns, default_gid);
1915 inode->i_atime = inode->i_mtime = inode->i_ctime
1916 = CURRENT_TIME;
1917 inode->i_private = data;
1918 inode->i_fop = fops;
1919 }
1920 return inode;
1921 }
1922
1923 /* creates in fs root directory, so non-renamable and non-linkable.
1924 * so inode and dentry are paired, until device reconfig.
1925 */
1926 static struct dentry *
1927 gadgetfs_create_file (struct super_block *sb, char const *name,
1928 void *data, const struct file_operations *fops)
1929 {
1930 struct dentry *dentry;
1931 struct inode *inode;
1932
1933 dentry = d_alloc_name(sb->s_root, name);
1934 if (!dentry)
1935 return NULL;
1936
1937 inode = gadgetfs_make_inode (sb, data, fops,
1938 S_IFREG | (default_perm & S_IRWXUGO));
1939 if (!inode) {
1940 dput(dentry);
1941 return NULL;
1942 }
1943 d_add (dentry, inode);
1944 return dentry;
1945 }
1946
1947 static const struct super_operations gadget_fs_operations = {
1948 .statfs = simple_statfs,
1949 .drop_inode = generic_delete_inode,
1950 };
1951
1952 static int
1953 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
1954 {
1955 struct inode *inode;
1956 struct dev_data *dev;
1957
1958 if (the_device)
1959 return -ESRCH;
1960
1961 CHIP = usb_get_gadget_udc_name();
1962 if (!CHIP)
1963 return -ENODEV;
1964
1965 /* superblock */
1966 sb->s_blocksize = PAGE_SIZE;
1967 sb->s_blocksize_bits = PAGE_SHIFT;
1968 sb->s_magic = GADGETFS_MAGIC;
1969 sb->s_op = &gadget_fs_operations;
1970 sb->s_time_gran = 1;
1971
1972 /* root inode */
1973 inode = gadgetfs_make_inode (sb,
1974 NULL, &simple_dir_operations,
1975 S_IFDIR | S_IRUGO | S_IXUGO);
1976 if (!inode)
1977 goto Enomem;
1978 inode->i_op = &simple_dir_inode_operations;
1979 if (!(sb->s_root = d_make_root (inode)))
1980 goto Enomem;
1981
1982 /* the ep0 file is named after the controller we expect;
1983 * user mode code can use it for sanity checks, like we do.
1984 */
1985 dev = dev_new ();
1986 if (!dev)
1987 goto Enomem;
1988
1989 dev->sb = sb;
1990 dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
1991 if (!dev->dentry) {
1992 put_dev(dev);
1993 goto Enomem;
1994 }
1995
1996 /* other endpoint files are available after hardware setup,
1997 * from binding to a controller.
1998 */
1999 the_device = dev;
2000 return 0;
2001
2002 Enomem:
2003 return -ENOMEM;
2004 }
2005
2006 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2007 static struct dentry *
2008 gadgetfs_mount (struct file_system_type *t, int flags,
2009 const char *path, void *opts)
2010 {
2011 return mount_single (t, flags, opts, gadgetfs_fill_super);
2012 }
2013
2014 static void
2015 gadgetfs_kill_sb (struct super_block *sb)
2016 {
2017 kill_litter_super (sb);
2018 if (the_device) {
2019 put_dev (the_device);
2020 the_device = NULL;
2021 }
2022 kfree(CHIP);
2023 CHIP = NULL;
2024 }
2025
2026 /*----------------------------------------------------------------------*/
2027
2028 static struct file_system_type gadgetfs_type = {
2029 .owner = THIS_MODULE,
2030 .name = shortname,
2031 .mount = gadgetfs_mount,
2032 .kill_sb = gadgetfs_kill_sb,
2033 };
2034 MODULE_ALIAS_FS("gadgetfs");
2035
2036 /*----------------------------------------------------------------------*/
2037
2038 static int __init init (void)
2039 {
2040 int status;
2041
2042 status = register_filesystem (&gadgetfs_type);
2043 if (status == 0)
2044 pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2045 shortname, driver_desc);
2046 return status;
2047 }
2048 module_init (init);
2049
2050 static void __exit cleanup (void)
2051 {
2052 pr_debug ("unregister %s\n", shortname);
2053 unregister_filesystem (&gadgetfs_type);
2054 }
2055 module_exit (cleanup);
2056