]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/gadget/mv_udc_core.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / gadget / mv_udc_core.c
1 #include <linux/module.h>
2 #include <linux/pci.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/dmapool.h>
5 #include <linux/kernel.h>
6 #include <linux/delay.h>
7 #include <linux/ioport.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/timer.h>
13 #include <linux/list.h>
14 #include <linux/interrupt.h>
15 #include <linux/moduleparam.h>
16 #include <linux/device.h>
17 #include <linux/usb/ch9.h>
18 #include <linux/usb/gadget.h>
19 #include <linux/usb/otg.h>
20 #include <linux/pm.h>
21 #include <linux/io.h>
22 #include <linux/irq.h>
23 #include <linux/platform_device.h>
24 #include <linux/clk.h>
25 #include <asm/system.h>
26 #include <asm/unaligned.h>
27
28 #include "mv_udc.h"
29
30 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
31 #define DRIVER_VERSION "8 Nov 2010"
32
33 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
34 ((ep)->udc->ep0_dir) : ((ep)->direction))
35
36 /* timeout value -- usec */
37 #define RESET_TIMEOUT 10000
38 #define FLUSH_TIMEOUT 10000
39 #define EPSTATUS_TIMEOUT 10000
40 #define PRIME_TIMEOUT 10000
41 #define READSAFE_TIMEOUT 1000
42 #define DTD_TIMEOUT 1000
43
44 #define LOOPS_USEC_SHIFT 4
45 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
46 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
47
48 static const char driver_name[] = "mv_udc";
49 static const char driver_desc[] = DRIVER_DESC;
50
51 /* controller device global variable */
52 static struct mv_udc *the_controller;
53 int mv_usb_otgsc;
54
55 static void nuke(struct mv_ep *ep, int status);
56
57 /* for endpoint 0 operations */
58 static const struct usb_endpoint_descriptor mv_ep0_desc = {
59 .bLength = USB_DT_ENDPOINT_SIZE,
60 .bDescriptorType = USB_DT_ENDPOINT,
61 .bEndpointAddress = 0,
62 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
63 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
64 };
65
66 static void ep0_reset(struct mv_udc *udc)
67 {
68 struct mv_ep *ep;
69 u32 epctrlx;
70 int i = 0;
71
72 /* ep0 in and out */
73 for (i = 0; i < 2; i++) {
74 ep = &udc->eps[i];
75 ep->udc = udc;
76
77 /* ep0 dQH */
78 ep->dqh = &udc->ep_dqh[i];
79
80 /* configure ep0 endpoint capabilities in dQH */
81 ep->dqh->max_packet_length =
82 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
83 | EP_QUEUE_HEAD_IOS;
84
85 epctrlx = readl(&udc->op_regs->epctrlx[0]);
86 if (i) { /* TX */
87 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
88 | (USB_ENDPOINT_XFER_CONTROL
89 << EPCTRL_TX_EP_TYPE_SHIFT);
90
91 } else { /* RX */
92 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
93 | (USB_ENDPOINT_XFER_CONTROL
94 << EPCTRL_RX_EP_TYPE_SHIFT);
95 }
96
97 writel(epctrlx, &udc->op_regs->epctrlx[0]);
98 }
99 }
100
101 /* protocol ep0 stall, will automatically be cleared on new transaction */
102 static void ep0_stall(struct mv_udc *udc)
103 {
104 u32 epctrlx;
105
106 /* set TX and RX to stall */
107 epctrlx = readl(&udc->op_regs->epctrlx[0]);
108 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
109 writel(epctrlx, &udc->op_regs->epctrlx[0]);
110
111 /* update ep0 state */
112 udc->ep0_state = WAIT_FOR_SETUP;
113 udc->ep0_dir = EP_DIR_OUT;
114 }
115
116 static int process_ep_req(struct mv_udc *udc, int index,
117 struct mv_req *curr_req)
118 {
119 struct mv_dtd *curr_dtd;
120 struct mv_dqh *curr_dqh;
121 int td_complete, actual, remaining_length;
122 int i, direction;
123 int retval = 0;
124 u32 errors;
125
126 curr_dqh = &udc->ep_dqh[index];
127 direction = index % 2;
128
129 curr_dtd = curr_req->head;
130 td_complete = 0;
131 actual = curr_req->req.length;
132
133 for (i = 0; i < curr_req->dtd_count; i++) {
134 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
135 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
136 udc->eps[index].name);
137 return 1;
138 }
139
140 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
141 if (!errors) {
142 remaining_length +=
143 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
144 >> DTD_LENGTH_BIT_POS;
145 actual -= remaining_length;
146 } else {
147 dev_info(&udc->dev->dev,
148 "complete_tr error: ep=%d %s: error = 0x%x\n",
149 index >> 1, direction ? "SEND" : "RECV",
150 errors);
151 if (errors & DTD_STATUS_HALTED) {
152 /* Clear the errors and Halt condition */
153 curr_dqh->size_ioc_int_sts &= ~errors;
154 retval = -EPIPE;
155 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
156 retval = -EPROTO;
157 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
158 retval = -EILSEQ;
159 }
160 }
161 if (i != curr_req->dtd_count - 1)
162 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
163 }
164 if (retval)
165 return retval;
166
167 curr_req->req.actual = actual;
168
169 return 0;
170 }
171
172 /*
173 * done() - retire a request; caller blocked irqs
174 * @status : request status to be set, only works when
175 * request is still in progress.
176 */
177 static void done(struct mv_ep *ep, struct mv_req *req, int status)
178 {
179 struct mv_udc *udc = NULL;
180 unsigned char stopped = ep->stopped;
181 struct mv_dtd *curr_td, *next_td;
182 int j;
183
184 udc = (struct mv_udc *)ep->udc;
185 /* Removed the req from fsl_ep->queue */
186 list_del_init(&req->queue);
187
188 /* req.status should be set as -EINPROGRESS in ep_queue() */
189 if (req->req.status == -EINPROGRESS)
190 req->req.status = status;
191 else
192 status = req->req.status;
193
194 /* Free dtd for the request */
195 next_td = req->head;
196 for (j = 0; j < req->dtd_count; j++) {
197 curr_td = next_td;
198 if (j != req->dtd_count - 1)
199 next_td = curr_td->next_dtd_virt;
200 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
201 }
202
203 if (req->mapped) {
204 dma_unmap_single(ep->udc->gadget.dev.parent,
205 req->req.dma, req->req.length,
206 ((ep_dir(ep) == EP_DIR_IN) ?
207 DMA_TO_DEVICE : DMA_FROM_DEVICE));
208 req->req.dma = DMA_ADDR_INVALID;
209 req->mapped = 0;
210 } else
211 dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
212 req->req.dma, req->req.length,
213 ((ep_dir(ep) == EP_DIR_IN) ?
214 DMA_TO_DEVICE : DMA_FROM_DEVICE));
215
216 if (status && (status != -ESHUTDOWN))
217 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
218 ep->ep.name, &req->req, status,
219 req->req.actual, req->req.length);
220
221 ep->stopped = 1;
222
223 spin_unlock(&ep->udc->lock);
224 /*
225 * complete() is from gadget layer,
226 * eg fsg->bulk_in_complete()
227 */
228 if (req->req.complete)
229 req->req.complete(&ep->ep, &req->req);
230
231 spin_lock(&ep->udc->lock);
232 ep->stopped = stopped;
233 }
234
235 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
236 {
237 u32 tmp, epstatus, bit_pos, direction;
238 struct mv_udc *udc;
239 struct mv_dqh *dqh;
240 unsigned int loops;
241 int readsafe, retval = 0;
242
243 udc = ep->udc;
244 direction = ep_dir(ep);
245 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
246 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
247
248 /* check if the pipe is empty */
249 if (!(list_empty(&ep->queue))) {
250 struct mv_req *lastreq;
251 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
252 lastreq->tail->dtd_next =
253 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
254 if (readl(&udc->op_regs->epprime) & bit_pos) {
255 loops = LOOPS(PRIME_TIMEOUT);
256 while (readl(&udc->op_regs->epprime) & bit_pos) {
257 if (loops == 0) {
258 retval = -ETIME;
259 goto done;
260 }
261 udelay(LOOPS_USEC);
262 loops--;
263 }
264 if (readl(&udc->op_regs->epstatus) & bit_pos)
265 goto done;
266 }
267 readsafe = 0;
268 loops = LOOPS(READSAFE_TIMEOUT);
269 while (readsafe == 0) {
270 if (loops == 0) {
271 retval = -ETIME;
272 goto done;
273 }
274 /* start with setting the semaphores */
275 tmp = readl(&udc->op_regs->usbcmd);
276 tmp |= USBCMD_ATDTW_TRIPWIRE_SET;
277 writel(tmp, &udc->op_regs->usbcmd);
278
279 /* read the endpoint status */
280 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
281
282 /*
283 * Reread the ATDTW semaphore bit to check if it is
284 * cleared. When hardware see a hazard, it will clear
285 * the bit or else we remain set to 1 and we can
286 * proceed with priming of endpoint if not already
287 * primed.
288 */
289 if (readl(&udc->op_regs->usbcmd)
290 & USBCMD_ATDTW_TRIPWIRE_SET) {
291 readsafe = 1;
292 }
293 loops--;
294 udelay(LOOPS_USEC);
295 }
296
297 /* Clear the semaphore */
298 tmp = readl(&udc->op_regs->usbcmd);
299 tmp &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
300 writel(tmp, &udc->op_regs->usbcmd);
301
302 /* If endpoint is not active, we activate it now. */
303 if (!epstatus) {
304 if (direction == EP_DIR_IN) {
305 struct mv_dtd *curr_dtd = dma_to_virt(
306 &udc->dev->dev, dqh->curr_dtd_ptr);
307
308 loops = LOOPS(DTD_TIMEOUT);
309 while (curr_dtd->size_ioc_sts
310 & DTD_STATUS_ACTIVE) {
311 if (loops == 0) {
312 retval = -ETIME;
313 goto done;
314 }
315 loops--;
316 udelay(LOOPS_USEC);
317 }
318 }
319 /* No other transfers on the queue */
320
321 /* Write dQH next pointer and terminate bit to 0 */
322 dqh->next_dtd_ptr = req->head->td_dma
323 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
324 dqh->size_ioc_int_sts = 0;
325
326 /*
327 * Ensure that updates to the QH will
328 * occur before priming.
329 */
330 wmb();
331
332 /* Prime the Endpoint */
333 writel(bit_pos, &udc->op_regs->epprime);
334 }
335 } else {
336 /* Write dQH next pointer and terminate bit to 0 */
337 dqh->next_dtd_ptr = req->head->td_dma
338 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;;
339 dqh->size_ioc_int_sts = 0;
340
341 /* Ensure that updates to the QH will occur before priming. */
342 wmb();
343
344 /* Prime the Endpoint */
345 writel(bit_pos, &udc->op_regs->epprime);
346
347 if (direction == EP_DIR_IN) {
348 /* FIXME add status check after prime the IN ep */
349 int prime_again;
350 u32 curr_dtd_ptr = dqh->curr_dtd_ptr;
351
352 loops = LOOPS(DTD_TIMEOUT);
353 prime_again = 0;
354 while ((curr_dtd_ptr != req->head->td_dma)) {
355 curr_dtd_ptr = dqh->curr_dtd_ptr;
356 if (loops == 0) {
357 dev_err(&udc->dev->dev,
358 "failed to prime %s\n",
359 ep->name);
360 retval = -ETIME;
361 goto done;
362 }
363 loops--;
364 udelay(LOOPS_USEC);
365
366 if (loops == (LOOPS(DTD_TIMEOUT) >> 2)) {
367 if (prime_again)
368 goto done;
369 dev_info(&udc->dev->dev,
370 "prime again\n");
371 writel(bit_pos,
372 &udc->op_regs->epprime);
373 prime_again = 1;
374 }
375 }
376 }
377 }
378 done:
379 return retval;;
380 }
381
382 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
383 dma_addr_t *dma, int *is_last)
384 {
385 u32 temp;
386 struct mv_dtd *dtd;
387 struct mv_udc *udc;
388
389 /* how big will this transfer be? */
390 *length = min(req->req.length - req->req.actual,
391 (unsigned)EP_MAX_LENGTH_TRANSFER);
392
393 udc = req->ep->udc;
394
395 /*
396 * Be careful that no _GFP_HIGHMEM is set,
397 * or we can not use dma_to_virt
398 */
399 dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
400 if (dtd == NULL)
401 return dtd;
402
403 dtd->td_dma = *dma;
404 /* initialize buffer page pointers */
405 temp = (u32)(req->req.dma + req->req.actual);
406 dtd->buff_ptr0 = cpu_to_le32(temp);
407 temp &= ~0xFFF;
408 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
409 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
410 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
411 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
412
413 req->req.actual += *length;
414
415 /* zlp is needed if req->req.zero is set */
416 if (req->req.zero) {
417 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
418 *is_last = 1;
419 else
420 *is_last = 0;
421 } else if (req->req.length == req->req.actual)
422 *is_last = 1;
423 else
424 *is_last = 0;
425
426 /* Fill in the transfer size; set active bit */
427 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
428
429 /* Enable interrupt for the last dtd of a request */
430 if (*is_last && !req->req.no_interrupt)
431 temp |= DTD_IOC;
432
433 dtd->size_ioc_sts = temp;
434
435 mb();
436
437 return dtd;
438 }
439
440 /* generate dTD linked list for a request */
441 static int req_to_dtd(struct mv_req *req)
442 {
443 unsigned count;
444 int is_last, is_first = 1;
445 struct mv_dtd *dtd, *last_dtd = NULL;
446 struct mv_udc *udc;
447 dma_addr_t dma;
448
449 udc = req->ep->udc;
450
451 do {
452 dtd = build_dtd(req, &count, &dma, &is_last);
453 if (dtd == NULL)
454 return -ENOMEM;
455
456 if (is_first) {
457 is_first = 0;
458 req->head = dtd;
459 } else {
460 last_dtd->dtd_next = dma;
461 last_dtd->next_dtd_virt = dtd;
462 }
463 last_dtd = dtd;
464 req->dtd_count++;
465 } while (!is_last);
466
467 /* set terminate bit to 1 for the last dTD */
468 dtd->dtd_next = DTD_NEXT_TERMINATE;
469
470 req->tail = dtd;
471
472 return 0;
473 }
474
475 static int mv_ep_enable(struct usb_ep *_ep,
476 const struct usb_endpoint_descriptor *desc)
477 {
478 struct mv_udc *udc;
479 struct mv_ep *ep;
480 struct mv_dqh *dqh;
481 u16 max = 0;
482 u32 bit_pos, epctrlx, direction;
483 unsigned char zlt = 0, ios = 0, mult = 0;
484
485 ep = container_of(_ep, struct mv_ep, ep);
486 udc = ep->udc;
487
488 if (!_ep || !desc || ep->desc
489 || desc->bDescriptorType != USB_DT_ENDPOINT)
490 return -EINVAL;
491
492 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
493 return -ESHUTDOWN;
494
495 direction = ep_dir(ep);
496 max = le16_to_cpu(desc->wMaxPacketSize);
497
498 /*
499 * disable HW zero length termination select
500 * driver handles zero length packet through req->req.zero
501 */
502 zlt = 1;
503
504 /* Get the endpoint queue head address */
505 dqh = (struct mv_dqh *)ep->dqh;
506
507 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
508
509 /* Check if the Endpoint is Primed */
510 if ((readl(&udc->op_regs->epprime) & bit_pos)
511 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
512 dev_info(&udc->dev->dev,
513 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
514 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
515 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
516 (unsigned)readl(&udc->op_regs->epprime),
517 (unsigned)readl(&udc->op_regs->epstatus),
518 (unsigned)bit_pos);
519 goto en_done;
520 }
521 /* Set the max packet length, interrupt on Setup and Mult fields */
522 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
523 case USB_ENDPOINT_XFER_BULK:
524 zlt = 1;
525 mult = 0;
526 break;
527 case USB_ENDPOINT_XFER_CONTROL:
528 ios = 1;
529 case USB_ENDPOINT_XFER_INT:
530 mult = 0;
531 break;
532 case USB_ENDPOINT_XFER_ISOC:
533 /* Calculate transactions needed for high bandwidth iso */
534 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
535 max = max & 0x8ff; /* bit 0~10 */
536 /* 3 transactions at most */
537 if (mult > 3)
538 goto en_done;
539 break;
540 default:
541 goto en_done;
542 }
543 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
544 | (mult << EP_QUEUE_HEAD_MULT_POS)
545 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
546 | (ios ? EP_QUEUE_HEAD_IOS : 0);
547 dqh->next_dtd_ptr = 1;
548 dqh->size_ioc_int_sts = 0;
549
550 ep->ep.maxpacket = max;
551 ep->desc = desc;
552 ep->stopped = 0;
553
554 /* Enable the endpoint for Rx or Tx and set the endpoint type */
555 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
556 if (direction == EP_DIR_IN) {
557 epctrlx &= ~EPCTRL_TX_ALL_MASK;
558 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
559 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
560 << EPCTRL_TX_EP_TYPE_SHIFT);
561 } else {
562 epctrlx &= ~EPCTRL_RX_ALL_MASK;
563 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
564 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
565 << EPCTRL_RX_EP_TYPE_SHIFT);
566 }
567 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
568
569 /*
570 * Implement Guideline (GL# USB-7) The unused endpoint type must
571 * be programmed to bulk.
572 */
573 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
574 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
575 epctrlx |= ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
576 << EPCTRL_RX_EP_TYPE_SHIFT);
577 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
578 }
579
580 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
581 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
582 epctrlx |= ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
583 << EPCTRL_TX_EP_TYPE_SHIFT);
584 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
585 }
586
587 return 0;
588 en_done:
589 return -EINVAL;
590 }
591
592 static int mv_ep_disable(struct usb_ep *_ep)
593 {
594 struct mv_udc *udc;
595 struct mv_ep *ep;
596 struct mv_dqh *dqh;
597 u32 bit_pos, epctrlx, direction;
598
599 ep = container_of(_ep, struct mv_ep, ep);
600 if ((_ep == NULL) || !ep->desc)
601 return -EINVAL;
602
603 udc = ep->udc;
604
605 /* Get the endpoint queue head address */
606 dqh = ep->dqh;
607
608 direction = ep_dir(ep);
609 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
610
611 /* Reset the max packet length and the interrupt on Setup */
612 dqh->max_packet_length = 0;
613
614 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
615 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
616 epctrlx &= ~((direction == EP_DIR_IN)
617 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
618 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
619 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
620
621 /* nuke all pending requests (does flush) */
622 nuke(ep, -ESHUTDOWN);
623
624 ep->desc = NULL;
625 ep->stopped = 1;
626 return 0;
627 }
628
629 static struct usb_request *
630 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
631 {
632 struct mv_req *req = NULL;
633
634 req = kzalloc(sizeof *req, gfp_flags);
635 if (!req)
636 return NULL;
637
638 req->req.dma = DMA_ADDR_INVALID;
639 INIT_LIST_HEAD(&req->queue);
640
641 return &req->req;
642 }
643
644 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
645 {
646 struct mv_req *req = NULL;
647
648 req = container_of(_req, struct mv_req, req);
649
650 if (_req)
651 kfree(req);
652 }
653
654 static void mv_ep_fifo_flush(struct usb_ep *_ep)
655 {
656 struct mv_udc *udc;
657 u32 bit_pos, direction;
658 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
659 unsigned int loops;
660
661 udc = ep->udc;
662 direction = ep_dir(ep);
663 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
664 /*
665 * Flushing will halt the pipe
666 * Write 1 to the Flush register
667 */
668 writel(bit_pos, &udc->op_regs->epflush);
669
670 /* Wait until flushing completed */
671 loops = LOOPS(FLUSH_TIMEOUT);
672 while (readl(&udc->op_regs->epflush) & bit_pos) {
673 /*
674 * ENDPTFLUSH bit should be cleared to indicate this
675 * operation is complete
676 */
677 if (loops == 0) {
678 dev_err(&udc->dev->dev,
679 "TIMEOUT for ENDPTFLUSH=0x%x, bit_pos=0x%x\n",
680 (unsigned)readl(&udc->op_regs->epflush),
681 (unsigned)bit_pos);
682 return;
683 }
684 loops--;
685 udelay(LOOPS_USEC);
686 }
687 loops = LOOPS(EPSTATUS_TIMEOUT);
688 while (readl(&udc->op_regs->epstatus) & bit_pos) {
689 unsigned int inter_loops;
690
691 if (loops == 0) {
692 dev_err(&udc->dev->dev,
693 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
694 (unsigned)readl(&udc->op_regs->epstatus),
695 (unsigned)bit_pos);
696 return;
697 }
698 /* Write 1 to the Flush register */
699 writel(bit_pos, &udc->op_regs->epflush);
700
701 /* Wait until flushing completed */
702 inter_loops = LOOPS(FLUSH_TIMEOUT);
703 while (readl(&udc->op_regs->epflush) & bit_pos) {
704 /*
705 * ENDPTFLUSH bit should be cleared to indicate this
706 * operation is complete
707 */
708 if (inter_loops == 0) {
709 dev_err(&udc->dev->dev,
710 "TIMEOUT for ENDPTFLUSH=0x%x,"
711 "bit_pos=0x%x\n",
712 (unsigned)readl(&udc->op_regs->epflush),
713 (unsigned)bit_pos);
714 return;
715 }
716 inter_loops--;
717 udelay(LOOPS_USEC);
718 }
719 loops--;
720 }
721 }
722
723 /* queues (submits) an I/O request to an endpoint */
724 static int
725 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
726 {
727 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
728 struct mv_req *req = container_of(_req, struct mv_req, req);
729 struct mv_udc *udc = ep->udc;
730 unsigned long flags;
731
732 /* catch various bogus parameters */
733 if (!_req || !req->req.complete || !req->req.buf
734 || !list_empty(&req->queue)) {
735 dev_err(&udc->dev->dev, "%s, bad params", __func__);
736 return -EINVAL;
737 }
738 if (unlikely(!_ep || !ep->desc)) {
739 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
740 return -EINVAL;
741 }
742 if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
743 if (req->req.length > ep->ep.maxpacket)
744 return -EMSGSIZE;
745 }
746
747 udc = ep->udc;
748 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
749 return -ESHUTDOWN;
750
751 req->ep = ep;
752
753 /* map virtual address to hardware */
754 if (req->req.dma == DMA_ADDR_INVALID) {
755 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
756 req->req.buf,
757 req->req.length, ep_dir(ep)
758 ? DMA_TO_DEVICE
759 : DMA_FROM_DEVICE);
760 req->mapped = 1;
761 } else {
762 dma_sync_single_for_device(ep->udc->gadget.dev.parent,
763 req->req.dma, req->req.length,
764 ep_dir(ep)
765 ? DMA_TO_DEVICE
766 : DMA_FROM_DEVICE);
767 req->mapped = 0;
768 }
769
770 req->req.status = -EINPROGRESS;
771 req->req.actual = 0;
772 req->dtd_count = 0;
773
774 spin_lock_irqsave(&udc->lock, flags);
775
776 /* build dtds and push them to device queue */
777 if (!req_to_dtd(req)) {
778 int retval;
779 retval = queue_dtd(ep, req);
780 if (retval) {
781 spin_unlock_irqrestore(&udc->lock, flags);
782 return retval;
783 }
784 } else {
785 spin_unlock_irqrestore(&udc->lock, flags);
786 return -ENOMEM;
787 }
788
789 /* Update ep0 state */
790 if (ep->ep_num == 0)
791 udc->ep0_state = DATA_STATE_XMIT;
792
793 /* irq handler advances the queue */
794 if (req != NULL)
795 list_add_tail(&req->queue, &ep->queue);
796 spin_unlock_irqrestore(&udc->lock, flags);
797
798 return 0;
799 }
800
801 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
802 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
803 {
804 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
805 struct mv_req *req;
806 struct mv_udc *udc = ep->udc;
807 unsigned long flags;
808 int stopped, ret = 0;
809 u32 epctrlx;
810
811 if (!_ep || !_req)
812 return -EINVAL;
813
814 spin_lock_irqsave(&ep->udc->lock, flags);
815 stopped = ep->stopped;
816
817 /* Stop the ep before we deal with the queue */
818 ep->stopped = 1;
819 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
820 if (ep_dir(ep) == EP_DIR_IN)
821 epctrlx &= ~EPCTRL_TX_ENABLE;
822 else
823 epctrlx &= ~EPCTRL_RX_ENABLE;
824 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
825
826 /* make sure it's actually queued on this endpoint */
827 list_for_each_entry(req, &ep->queue, queue) {
828 if (&req->req == _req)
829 break;
830 }
831 if (&req->req != _req) {
832 ret = -EINVAL;
833 goto out;
834 }
835
836 /* The request is in progress, or completed but not dequeued */
837 if (ep->queue.next == &req->queue) {
838 _req->status = -ECONNRESET;
839 mv_ep_fifo_flush(_ep); /* flush current transfer */
840
841 /* The request isn't the last request in this ep queue */
842 if (req->queue.next != &ep->queue) {
843 struct mv_dqh *qh;
844 struct mv_req *next_req;
845
846 qh = ep->dqh;
847 next_req = list_entry(req->queue.next, struct mv_req,
848 queue);
849
850 /* Point the QH to the first TD of next request */
851 writel((u32) next_req->head, &qh->curr_dtd_ptr);
852 } else {
853 struct mv_dqh *qh;
854
855 qh = ep->dqh;
856 qh->next_dtd_ptr = 1;
857 qh->size_ioc_int_sts = 0;
858 }
859
860 /* The request hasn't been processed, patch up the TD chain */
861 } else {
862 struct mv_req *prev_req;
863
864 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
865 writel(readl(&req->tail->dtd_next),
866 &prev_req->tail->dtd_next);
867
868 }
869
870 done(ep, req, -ECONNRESET);
871
872 /* Enable EP */
873 out:
874 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
875 if (ep_dir(ep) == EP_DIR_IN)
876 epctrlx |= EPCTRL_TX_ENABLE;
877 else
878 epctrlx |= EPCTRL_RX_ENABLE;
879 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
880 ep->stopped = stopped;
881
882 spin_unlock_irqrestore(&ep->udc->lock, flags);
883 return ret;
884 }
885
886 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
887 {
888 u32 epctrlx;
889
890 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
891
892 if (stall) {
893 if (direction == EP_DIR_IN)
894 epctrlx |= EPCTRL_TX_EP_STALL;
895 else
896 epctrlx |= EPCTRL_RX_EP_STALL;
897 } else {
898 if (direction == EP_DIR_IN) {
899 epctrlx &= ~EPCTRL_TX_EP_STALL;
900 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
901 } else {
902 epctrlx &= ~EPCTRL_RX_EP_STALL;
903 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
904 }
905 }
906 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
907 }
908
909 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
910 {
911 u32 epctrlx;
912
913 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
914
915 if (direction == EP_DIR_OUT)
916 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
917 else
918 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
919 }
920
921 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
922 {
923 struct mv_ep *ep;
924 unsigned long flags = 0;
925 int status = 0;
926 struct mv_udc *udc;
927
928 ep = container_of(_ep, struct mv_ep, ep);
929 udc = ep->udc;
930 if (!_ep || !ep->desc) {
931 status = -EINVAL;
932 goto out;
933 }
934
935 if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
936 status = -EOPNOTSUPP;
937 goto out;
938 }
939
940 /*
941 * Attempt to halt IN ep will fail if any transfer requests
942 * are still queue
943 */
944 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
945 status = -EAGAIN;
946 goto out;
947 }
948
949 spin_lock_irqsave(&ep->udc->lock, flags);
950 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
951 if (halt && wedge)
952 ep->wedge = 1;
953 else if (!halt)
954 ep->wedge = 0;
955 spin_unlock_irqrestore(&ep->udc->lock, flags);
956
957 if (ep->ep_num == 0) {
958 udc->ep0_state = WAIT_FOR_SETUP;
959 udc->ep0_dir = EP_DIR_OUT;
960 }
961 out:
962 return status;
963 }
964
965 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
966 {
967 return mv_ep_set_halt_wedge(_ep, halt, 0);
968 }
969
970 static int mv_ep_set_wedge(struct usb_ep *_ep)
971 {
972 return mv_ep_set_halt_wedge(_ep, 1, 1);
973 }
974
975 static struct usb_ep_ops mv_ep_ops = {
976 .enable = mv_ep_enable,
977 .disable = mv_ep_disable,
978
979 .alloc_request = mv_alloc_request,
980 .free_request = mv_free_request,
981
982 .queue = mv_ep_queue,
983 .dequeue = mv_ep_dequeue,
984
985 .set_wedge = mv_ep_set_wedge,
986 .set_halt = mv_ep_set_halt,
987 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
988 };
989
990 static void udc_stop(struct mv_udc *udc)
991 {
992 u32 tmp;
993
994 /* Disable interrupts */
995 tmp = readl(&udc->op_regs->usbintr);
996 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
997 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
998 writel(tmp, &udc->op_regs->usbintr);
999
1000 /* Reset the Run the bit in the command register to stop VUSB */
1001 tmp = readl(&udc->op_regs->usbcmd);
1002 tmp &= ~USBCMD_RUN_STOP;
1003 writel(tmp, &udc->op_regs->usbcmd);
1004 }
1005
1006 static void udc_start(struct mv_udc *udc)
1007 {
1008 u32 usbintr;
1009
1010 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1011 | USBINTR_PORT_CHANGE_DETECT_EN
1012 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1013 /* Enable interrupts */
1014 writel(usbintr, &udc->op_regs->usbintr);
1015
1016 /* Set the Run bit in the command register */
1017 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1018 }
1019
1020 static int udc_reset(struct mv_udc *udc)
1021 {
1022 unsigned int loops;
1023 u32 tmp, portsc;
1024
1025 /* Stop the controller */
1026 tmp = readl(&udc->op_regs->usbcmd);
1027 tmp &= ~USBCMD_RUN_STOP;
1028 writel(tmp, &udc->op_regs->usbcmd);
1029
1030 /* Reset the controller to get default values */
1031 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1032
1033 /* wait for reset to complete */
1034 loops = LOOPS(RESET_TIMEOUT);
1035 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1036 if (loops == 0) {
1037 dev_err(&udc->dev->dev,
1038 "Wait for RESET completed TIMEOUT\n");
1039 return -ETIMEDOUT;
1040 }
1041 loops--;
1042 udelay(LOOPS_USEC);
1043 }
1044
1045 /* set controller to device mode */
1046 tmp = readl(&udc->op_regs->usbmode);
1047 tmp |= USBMODE_CTRL_MODE_DEVICE;
1048
1049 /* turn setup lockout off, require setup tripwire in usbcmd */
1050 tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
1051
1052 writel(tmp, &udc->op_regs->usbmode);
1053
1054 writel(0x0, &udc->op_regs->epsetupstat);
1055
1056 /* Configure the Endpoint List Address */
1057 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1058 &udc->op_regs->eplistaddr);
1059
1060 portsc = readl(&udc->op_regs->portsc[0]);
1061 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1062 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1063
1064 if (udc->force_fs)
1065 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1066 else
1067 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1068
1069 writel(portsc, &udc->op_regs->portsc[0]);
1070
1071 tmp = readl(&udc->op_regs->epctrlx[0]);
1072 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1073 writel(tmp, &udc->op_regs->epctrlx[0]);
1074
1075 return 0;
1076 }
1077
1078 static int mv_udc_get_frame(struct usb_gadget *gadget)
1079 {
1080 struct mv_udc *udc;
1081 u16 retval;
1082
1083 if (!gadget)
1084 return -ENODEV;
1085
1086 udc = container_of(gadget, struct mv_udc, gadget);
1087
1088 retval = readl(udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1089
1090 return retval;
1091 }
1092
1093 /* Tries to wake up the host connected to this gadget */
1094 static int mv_udc_wakeup(struct usb_gadget *gadget)
1095 {
1096 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1097 u32 portsc;
1098
1099 /* Remote wakeup feature not enabled by host */
1100 if (!udc->remote_wakeup)
1101 return -ENOTSUPP;
1102
1103 portsc = readl(&udc->op_regs->portsc);
1104 /* not suspended? */
1105 if (!(portsc & PORTSCX_PORT_SUSPEND))
1106 return 0;
1107 /* trigger force resume */
1108 portsc |= PORTSCX_PORT_FORCE_RESUME;
1109 writel(portsc, &udc->op_regs->portsc[0]);
1110 return 0;
1111 }
1112
1113 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1114 {
1115 struct mv_udc *udc;
1116 unsigned long flags;
1117
1118 udc = container_of(gadget, struct mv_udc, gadget);
1119 spin_lock_irqsave(&udc->lock, flags);
1120
1121 udc->softconnect = (is_on != 0);
1122 if (udc->driver && udc->softconnect)
1123 udc_start(udc);
1124 else
1125 udc_stop(udc);
1126
1127 spin_unlock_irqrestore(&udc->lock, flags);
1128 return 0;
1129 }
1130
1131 /* device controller usb_gadget_ops structure */
1132 static const struct usb_gadget_ops mv_ops = {
1133
1134 /* returns the current frame number */
1135 .get_frame = mv_udc_get_frame,
1136
1137 /* tries to wake up the host connected to this gadget */
1138 .wakeup = mv_udc_wakeup,
1139
1140 /* D+ pullup, software-controlled connect/disconnect to USB host */
1141 .pullup = mv_udc_pullup,
1142 };
1143
1144 static void mv_udc_testmode(struct mv_udc *udc, u16 index, bool enter)
1145 {
1146 dev_info(&udc->dev->dev, "Test Mode is not support yet\n");
1147 }
1148
1149 static int eps_init(struct mv_udc *udc)
1150 {
1151 struct mv_ep *ep;
1152 char name[14];
1153 int i;
1154
1155 /* initialize ep0 */
1156 ep = &udc->eps[0];
1157 ep->udc = udc;
1158 strncpy(ep->name, "ep0", sizeof(ep->name));
1159 ep->ep.name = ep->name;
1160 ep->ep.ops = &mv_ep_ops;
1161 ep->wedge = 0;
1162 ep->stopped = 0;
1163 ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
1164 ep->ep_num = 0;
1165 ep->desc = &mv_ep0_desc;
1166 INIT_LIST_HEAD(&ep->queue);
1167
1168 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1169
1170 /* initialize other endpoints */
1171 for (i = 2; i < udc->max_eps * 2; i++) {
1172 ep = &udc->eps[i];
1173 if (i % 2) {
1174 snprintf(name, sizeof(name), "ep%din", i / 2);
1175 ep->direction = EP_DIR_IN;
1176 } else {
1177 snprintf(name, sizeof(name), "ep%dout", i / 2);
1178 ep->direction = EP_DIR_OUT;
1179 }
1180 ep->udc = udc;
1181 strncpy(ep->name, name, sizeof(ep->name));
1182 ep->ep.name = ep->name;
1183
1184 ep->ep.ops = &mv_ep_ops;
1185 ep->stopped = 0;
1186 ep->ep.maxpacket = (unsigned short) ~0;
1187 ep->ep_num = i / 2;
1188
1189 INIT_LIST_HEAD(&ep->queue);
1190 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1191
1192 ep->dqh = &udc->ep_dqh[i];
1193 }
1194
1195 return 0;
1196 }
1197
1198 /* delete all endpoint requests, called with spinlock held */
1199 static void nuke(struct mv_ep *ep, int status)
1200 {
1201 /* called with spinlock held */
1202 ep->stopped = 1;
1203
1204 /* endpoint fifo flush */
1205 mv_ep_fifo_flush(&ep->ep);
1206
1207 while (!list_empty(&ep->queue)) {
1208 struct mv_req *req = NULL;
1209 req = list_entry(ep->queue.next, struct mv_req, queue);
1210 done(ep, req, status);
1211 }
1212 }
1213
1214 /* stop all USB activities */
1215 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1216 {
1217 struct mv_ep *ep;
1218
1219 nuke(&udc->eps[0], -ESHUTDOWN);
1220
1221 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1222 nuke(ep, -ESHUTDOWN);
1223 }
1224
1225 /* report disconnect; the driver is already quiesced */
1226 if (driver) {
1227 spin_unlock(&udc->lock);
1228 driver->disconnect(&udc->gadget);
1229 spin_lock(&udc->lock);
1230 }
1231 }
1232
1233 int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
1234 int (*bind)(struct usb_gadget *))
1235 {
1236 struct mv_udc *udc = the_controller;
1237 int retval = 0;
1238 unsigned long flags;
1239
1240 if (!udc)
1241 return -ENODEV;
1242
1243 if (udc->driver)
1244 return -EBUSY;
1245
1246 spin_lock_irqsave(&udc->lock, flags);
1247
1248 /* hook up the driver ... */
1249 driver->driver.bus = NULL;
1250 udc->driver = driver;
1251 udc->gadget.dev.driver = &driver->driver;
1252
1253 udc->usb_state = USB_STATE_ATTACHED;
1254 udc->ep0_state = WAIT_FOR_SETUP;
1255 udc->ep0_dir = USB_DIR_OUT;
1256
1257 spin_unlock_irqrestore(&udc->lock, flags);
1258
1259 retval = bind(&udc->gadget);
1260 if (retval) {
1261 dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
1262 driver->driver.name, retval);
1263 udc->driver = NULL;
1264 udc->gadget.dev.driver = NULL;
1265 return retval;
1266 }
1267 udc_reset(udc);
1268 ep0_reset(udc);
1269 udc_start(udc);
1270
1271 return 0;
1272 }
1273 EXPORT_SYMBOL(usb_gadget_probe_driver);
1274
1275 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1276 {
1277 struct mv_udc *udc = the_controller;
1278 unsigned long flags;
1279
1280 if (!udc)
1281 return -ENODEV;
1282
1283 udc_stop(udc);
1284
1285 spin_lock_irqsave(&udc->lock, flags);
1286
1287 /* stop all usb activities */
1288 udc->gadget.speed = USB_SPEED_UNKNOWN;
1289 stop_activity(udc, driver);
1290 spin_unlock_irqrestore(&udc->lock, flags);
1291
1292 /* unbind gadget driver */
1293 driver->unbind(&udc->gadget);
1294 udc->gadget.dev.driver = NULL;
1295 udc->driver = NULL;
1296
1297 return 0;
1298 }
1299 EXPORT_SYMBOL(usb_gadget_unregister_driver);
1300
1301 static int
1302 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1303 {
1304 int retval = 0;
1305 struct mv_req *req;
1306 struct mv_ep *ep;
1307
1308 ep = &udc->eps[0];
1309 udc->ep0_dir = direction;
1310
1311 req = udc->status_req;
1312
1313 /* fill in the reqest structure */
1314 if (empty == false) {
1315 *((u16 *) req->req.buf) = cpu_to_le16(status);
1316 req->req.length = 2;
1317 } else
1318 req->req.length = 0;
1319
1320 req->ep = ep;
1321 req->req.status = -EINPROGRESS;
1322 req->req.actual = 0;
1323 req->req.complete = NULL;
1324 req->dtd_count = 0;
1325
1326 /* prime the data phase */
1327 if (!req_to_dtd(req))
1328 retval = queue_dtd(ep, req);
1329 else{ /* no mem */
1330 retval = -ENOMEM;
1331 goto out;
1332 }
1333
1334 if (retval) {
1335 dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
1336 goto out;
1337 }
1338
1339 list_add_tail(&req->queue, &ep->queue);
1340
1341 return 0;
1342 out:
1343 return retval;
1344 }
1345
1346 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1347 {
1348 udc->dev_addr = (u8)setup->wValue;
1349
1350 /* update usb state */
1351 udc->usb_state = USB_STATE_ADDRESS;
1352
1353 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1354 ep0_stall(udc);
1355 }
1356
1357 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1358 struct usb_ctrlrequest *setup)
1359 {
1360 u16 status;
1361 int retval;
1362
1363 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1364 != (USB_DIR_IN | USB_TYPE_STANDARD))
1365 return;
1366
1367 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1368 status = 1 << USB_DEVICE_SELF_POWERED;
1369 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1370 } else if ((setup->bRequestType & USB_RECIP_MASK)
1371 == USB_RECIP_INTERFACE) {
1372 /* get interface status */
1373 status = 0;
1374 } else if ((setup->bRequestType & USB_RECIP_MASK)
1375 == USB_RECIP_ENDPOINT) {
1376 u8 ep_num, direction;
1377
1378 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1379 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1380 ? EP_DIR_IN : EP_DIR_OUT;
1381 status = ep_is_stall(udc, ep_num, direction)
1382 << USB_ENDPOINT_HALT;
1383 }
1384
1385 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1386 if (retval)
1387 ep0_stall(udc);
1388 }
1389
1390 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1391 {
1392 u8 ep_num;
1393 u8 direction;
1394 struct mv_ep *ep;
1395
1396 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1397 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1398 switch (setup->wValue) {
1399 case USB_DEVICE_REMOTE_WAKEUP:
1400 udc->remote_wakeup = 0;
1401 break;
1402 case USB_DEVICE_TEST_MODE:
1403 mv_udc_testmode(udc, 0, false);
1404 break;
1405 default:
1406 goto out;
1407 }
1408 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1409 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1410 switch (setup->wValue) {
1411 case USB_ENDPOINT_HALT:
1412 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1413 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1414 ? EP_DIR_IN : EP_DIR_OUT;
1415 if (setup->wValue != 0 || setup->wLength != 0
1416 || ep_num > udc->max_eps)
1417 goto out;
1418 ep = &udc->eps[ep_num * 2 + direction];
1419 if (ep->wedge == 1)
1420 break;
1421 spin_unlock(&udc->lock);
1422 ep_set_stall(udc, ep_num, direction, 0);
1423 spin_lock(&udc->lock);
1424 break;
1425 default:
1426 goto out;
1427 }
1428 } else
1429 goto out;
1430
1431 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1432 ep0_stall(udc);
1433 else
1434 udc->ep0_state = DATA_STATE_XMIT;
1435 out:
1436 return;
1437 }
1438
1439 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1440 {
1441 u8 ep_num;
1442 u8 direction;
1443
1444 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1445 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1446 switch (setup->wValue) {
1447 case USB_DEVICE_REMOTE_WAKEUP:
1448 udc->remote_wakeup = 1;
1449 break;
1450 case USB_DEVICE_TEST_MODE:
1451 if (setup->wIndex & 0xFF
1452 && udc->gadget.speed != USB_SPEED_HIGH)
1453 goto out;
1454 if (udc->usb_state == USB_STATE_CONFIGURED
1455 || udc->usb_state == USB_STATE_ADDRESS
1456 || udc->usb_state == USB_STATE_DEFAULT)
1457 mv_udc_testmode(udc,
1458 setup->wIndex & 0xFF00, true);
1459 else
1460 goto out;
1461 break;
1462 default:
1463 goto out;
1464 }
1465 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1466 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1467 switch (setup->wValue) {
1468 case USB_ENDPOINT_HALT:
1469 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1470 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1471 ? EP_DIR_IN : EP_DIR_OUT;
1472 if (setup->wValue != 0 || setup->wLength != 0
1473 || ep_num > udc->max_eps)
1474 goto out;
1475 spin_unlock(&udc->lock);
1476 ep_set_stall(udc, ep_num, direction, 1);
1477 spin_lock(&udc->lock);
1478 break;
1479 default:
1480 goto out;
1481 }
1482 } else
1483 goto out;
1484
1485 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1486 ep0_stall(udc);
1487 out:
1488 return;
1489 }
1490
1491 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1492 struct usb_ctrlrequest *setup)
1493 {
1494 bool delegate = false;
1495
1496 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1497
1498 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1499 setup->bRequestType, setup->bRequest,
1500 setup->wValue, setup->wIndex, setup->wLength);
1501 /* We process some stardard setup requests here */
1502 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1503 switch (setup->bRequest) {
1504 case USB_REQ_GET_STATUS:
1505 ch9getstatus(udc, ep_num, setup);
1506 break;
1507
1508 case USB_REQ_SET_ADDRESS:
1509 ch9setaddress(udc, setup);
1510 break;
1511
1512 case USB_REQ_CLEAR_FEATURE:
1513 ch9clearfeature(udc, setup);
1514 break;
1515
1516 case USB_REQ_SET_FEATURE:
1517 ch9setfeature(udc, setup);
1518 break;
1519
1520 default:
1521 delegate = true;
1522 }
1523 } else
1524 delegate = true;
1525
1526 /* delegate USB standard requests to the gadget driver */
1527 if (delegate == true) {
1528 /* USB requests handled by gadget */
1529 if (setup->wLength) {
1530 /* DATA phase from gadget, STATUS phase from udc */
1531 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1532 ? EP_DIR_IN : EP_DIR_OUT;
1533 spin_unlock(&udc->lock);
1534 if (udc->driver->setup(&udc->gadget,
1535 &udc->local_setup_buff) < 0)
1536 ep0_stall(udc);
1537 spin_lock(&udc->lock);
1538 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1539 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1540 } else {
1541 /* no DATA phase, IN STATUS phase from gadget */
1542 udc->ep0_dir = EP_DIR_IN;
1543 spin_unlock(&udc->lock);
1544 if (udc->driver->setup(&udc->gadget,
1545 &udc->local_setup_buff) < 0)
1546 ep0_stall(udc);
1547 spin_lock(&udc->lock);
1548 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1549 }
1550 }
1551 }
1552
1553 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1554 static void ep0_req_complete(struct mv_udc *udc,
1555 struct mv_ep *ep0, struct mv_req *req)
1556 {
1557 u32 new_addr;
1558
1559 if (udc->usb_state == USB_STATE_ADDRESS) {
1560 /* set the new address */
1561 new_addr = (u32)udc->dev_addr;
1562 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1563 &udc->op_regs->deviceaddr);
1564 }
1565
1566 done(ep0, req, 0);
1567
1568 switch (udc->ep0_state) {
1569 case DATA_STATE_XMIT:
1570 /* receive status phase */
1571 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1572 ep0_stall(udc);
1573 break;
1574 case DATA_STATE_RECV:
1575 /* send status phase */
1576 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1577 ep0_stall(udc);
1578 break;
1579 case WAIT_FOR_OUT_STATUS:
1580 udc->ep0_state = WAIT_FOR_SETUP;
1581 break;
1582 case WAIT_FOR_SETUP:
1583 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1584 break;
1585 default:
1586 ep0_stall(udc);
1587 break;
1588 }
1589 }
1590
1591 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1592 {
1593 u32 temp;
1594 struct mv_dqh *dqh;
1595
1596 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1597
1598 /* Clear bit in ENDPTSETUPSTAT */
1599 temp = readl(&udc->op_regs->epsetupstat);
1600 writel(temp | (1 << ep_num), &udc->op_regs->epsetupstat);
1601
1602 /* while a hazard exists when setup package arrives */
1603 do {
1604 /* Set Setup Tripwire */
1605 temp = readl(&udc->op_regs->usbcmd);
1606 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1607
1608 /* Copy the setup packet to local buffer */
1609 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1610 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1611
1612 /* Clear Setup Tripwire */
1613 temp = readl(&udc->op_regs->usbcmd);
1614 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1615 }
1616
1617 static void irq_process_tr_complete(struct mv_udc *udc)
1618 {
1619 u32 tmp, bit_pos;
1620 int i, ep_num = 0, direction = 0;
1621 struct mv_ep *curr_ep;
1622 struct mv_req *curr_req, *temp_req;
1623 int status;
1624
1625 /*
1626 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1627 * because the setup packets are to be read ASAP
1628 */
1629
1630 /* Process all Setup packet received interrupts */
1631 tmp = readl(&udc->op_regs->epsetupstat);
1632
1633 if (tmp) {
1634 for (i = 0; i < udc->max_eps; i++) {
1635 if (tmp & (1 << i)) {
1636 get_setup_data(udc, i,
1637 (u8 *)(&udc->local_setup_buff));
1638 handle_setup_packet(udc, i,
1639 &udc->local_setup_buff);
1640 }
1641 }
1642 }
1643
1644 /* Don't clear the endpoint setup status register here.
1645 * It is cleared as a setup packet is read out of the buffer
1646 */
1647
1648 /* Process non-setup transaction complete interrupts */
1649 tmp = readl(&udc->op_regs->epcomplete);
1650
1651 if (!tmp)
1652 return;
1653
1654 writel(tmp, &udc->op_regs->epcomplete);
1655
1656 for (i = 0; i < udc->max_eps * 2; i++) {
1657 ep_num = i >> 1;
1658 direction = i % 2;
1659
1660 bit_pos = 1 << (ep_num + 16 * direction);
1661
1662 if (!(bit_pos & tmp))
1663 continue;
1664
1665 if (i == 1)
1666 curr_ep = &udc->eps[0];
1667 else
1668 curr_ep = &udc->eps[i];
1669 /* process the req queue until an uncomplete request */
1670 list_for_each_entry_safe(curr_req, temp_req,
1671 &curr_ep->queue, queue) {
1672 status = process_ep_req(udc, i, curr_req);
1673 if (status)
1674 break;
1675
1676 /* write back status to req */
1677 curr_req->req.status = status;
1678
1679 /* ep0 request completion */
1680 if (ep_num == 0) {
1681 ep0_req_complete(udc, curr_ep, curr_req);
1682 break;
1683 } else {
1684 done(curr_ep, curr_req, status);
1685 }
1686 }
1687 }
1688 }
1689
1690 void irq_process_reset(struct mv_udc *udc)
1691 {
1692 u32 tmp;
1693 unsigned int loops;
1694
1695 udc->ep0_dir = EP_DIR_OUT;
1696 udc->ep0_state = WAIT_FOR_SETUP;
1697 udc->remote_wakeup = 0; /* default to 0 on reset */
1698
1699 /* The address bits are past bit 25-31. Set the address */
1700 tmp = readl(&udc->op_regs->deviceaddr);
1701 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1702 writel(tmp, &udc->op_regs->deviceaddr);
1703
1704 /* Clear all the setup token semaphores */
1705 tmp = readl(&udc->op_regs->epsetupstat);
1706 writel(tmp, &udc->op_regs->epsetupstat);
1707
1708 /* Clear all the endpoint complete status bits */
1709 tmp = readl(&udc->op_regs->epcomplete);
1710 writel(tmp, &udc->op_regs->epcomplete);
1711
1712 /* wait until all endptprime bits cleared */
1713 loops = LOOPS(PRIME_TIMEOUT);
1714 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1715 if (loops == 0) {
1716 dev_err(&udc->dev->dev,
1717 "Timeout for ENDPTPRIME = 0x%x\n",
1718 readl(&udc->op_regs->epprime));
1719 break;
1720 }
1721 loops--;
1722 udelay(LOOPS_USEC);
1723 }
1724
1725 /* Write 1s to the Flush register */
1726 writel((u32)~0, &udc->op_regs->epflush);
1727
1728 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1729 dev_info(&udc->dev->dev, "usb bus reset\n");
1730 udc->usb_state = USB_STATE_DEFAULT;
1731 /* reset all the queues, stop all USB activities */
1732 stop_activity(udc, udc->driver);
1733 } else {
1734 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1735 readl(&udc->op_regs->portsc));
1736
1737 /*
1738 * re-initialize
1739 * controller reset
1740 */
1741 udc_reset(udc);
1742
1743 /* reset all the queues, stop all USB activities */
1744 stop_activity(udc, udc->driver);
1745
1746 /* reset ep0 dQH and endptctrl */
1747 ep0_reset(udc);
1748
1749 /* enable interrupt and set controller to run state */
1750 udc_start(udc);
1751
1752 udc->usb_state = USB_STATE_ATTACHED;
1753 }
1754 }
1755
1756 static void handle_bus_resume(struct mv_udc *udc)
1757 {
1758 udc->usb_state = udc->resume_state;
1759 udc->resume_state = 0;
1760
1761 /* report resume to the driver */
1762 if (udc->driver) {
1763 if (udc->driver->resume) {
1764 spin_unlock(&udc->lock);
1765 udc->driver->resume(&udc->gadget);
1766 spin_lock(&udc->lock);
1767 }
1768 }
1769 }
1770
1771 static void irq_process_suspend(struct mv_udc *udc)
1772 {
1773 udc->resume_state = udc->usb_state;
1774 udc->usb_state = USB_STATE_SUSPENDED;
1775
1776 if (udc->driver->suspend) {
1777 spin_unlock(&udc->lock);
1778 udc->driver->suspend(&udc->gadget);
1779 spin_lock(&udc->lock);
1780 }
1781 }
1782
1783 static void irq_process_port_change(struct mv_udc *udc)
1784 {
1785 u32 portsc;
1786
1787 portsc = readl(&udc->op_regs->portsc[0]);
1788 if (!(portsc & PORTSCX_PORT_RESET)) {
1789 /* Get the speed */
1790 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1791 switch (speed) {
1792 case PORTSCX_PORT_SPEED_HIGH:
1793 udc->gadget.speed = USB_SPEED_HIGH;
1794 break;
1795 case PORTSCX_PORT_SPEED_FULL:
1796 udc->gadget.speed = USB_SPEED_FULL;
1797 break;
1798 case PORTSCX_PORT_SPEED_LOW:
1799 udc->gadget.speed = USB_SPEED_LOW;
1800 break;
1801 default:
1802 udc->gadget.speed = USB_SPEED_UNKNOWN;
1803 break;
1804 }
1805 }
1806
1807 if (portsc & PORTSCX_PORT_SUSPEND) {
1808 udc->resume_state = udc->usb_state;
1809 udc->usb_state = USB_STATE_SUSPENDED;
1810 if (udc->driver->suspend) {
1811 spin_unlock(&udc->lock);
1812 udc->driver->suspend(&udc->gadget);
1813 spin_lock(&udc->lock);
1814 }
1815 }
1816
1817 if (!(portsc & PORTSCX_PORT_SUSPEND)
1818 && udc->usb_state == USB_STATE_SUSPENDED) {
1819 handle_bus_resume(udc);
1820 }
1821
1822 if (!udc->resume_state)
1823 udc->usb_state = USB_STATE_DEFAULT;
1824 }
1825
1826 static void irq_process_error(struct mv_udc *udc)
1827 {
1828 /* Increment the error count */
1829 udc->errors++;
1830 }
1831
1832 static irqreturn_t mv_udc_irq(int irq, void *dev)
1833 {
1834 struct mv_udc *udc = (struct mv_udc *)dev;
1835 u32 status, intr;
1836
1837 spin_lock(&udc->lock);
1838
1839 status = readl(&udc->op_regs->usbsts);
1840 intr = readl(&udc->op_regs->usbintr);
1841 status &= intr;
1842
1843 if (status == 0) {
1844 spin_unlock(&udc->lock);
1845 return IRQ_NONE;
1846 }
1847
1848 /* Clear all the interrupts occurred */
1849 writel(status, &udc->op_regs->usbsts);
1850
1851 if (status & USBSTS_ERR)
1852 irq_process_error(udc);
1853
1854 if (status & USBSTS_RESET)
1855 irq_process_reset(udc);
1856
1857 if (status & USBSTS_PORT_CHANGE)
1858 irq_process_port_change(udc);
1859
1860 if (status & USBSTS_INT)
1861 irq_process_tr_complete(udc);
1862
1863 if (status & USBSTS_SUSPEND)
1864 irq_process_suspend(udc);
1865
1866 spin_unlock(&udc->lock);
1867
1868 return IRQ_HANDLED;
1869 }
1870
1871 /* release device structure */
1872 static void gadget_release(struct device *_dev)
1873 {
1874 struct mv_udc *udc = the_controller;
1875
1876 complete(udc->done);
1877 kfree(udc);
1878 }
1879
1880 static int mv_udc_remove(struct platform_device *dev)
1881 {
1882 struct mv_udc *udc = the_controller;
1883
1884 DECLARE_COMPLETION(done);
1885
1886 udc->done = &done;
1887
1888 /* free memory allocated in probe */
1889 if (udc->dtd_pool)
1890 dma_pool_destroy(udc->dtd_pool);
1891
1892 if (udc->ep_dqh)
1893 dma_free_coherent(&dev->dev, udc->ep_dqh_size,
1894 udc->ep_dqh, udc->ep_dqh_dma);
1895
1896 kfree(udc->eps);
1897
1898 if (udc->irq)
1899 free_irq(udc->irq, &dev->dev);
1900
1901 if (udc->cap_regs)
1902 iounmap(udc->cap_regs);
1903 udc->cap_regs = NULL;
1904
1905 if (udc->phy_regs)
1906 iounmap((void *)udc->phy_regs);
1907 udc->phy_regs = 0;
1908
1909 if (udc->status_req) {
1910 kfree(udc->status_req->req.buf);
1911 kfree(udc->status_req);
1912 }
1913
1914 device_unregister(&udc->gadget.dev);
1915
1916 /* free dev, wait for the release() finished */
1917 wait_for_completion(&done);
1918
1919 the_controller = NULL;
1920
1921 return 0;
1922 }
1923
1924 int mv_udc_probe(struct platform_device *dev)
1925 {
1926 struct mv_udc *udc;
1927 int retval = 0;
1928 struct resource *r;
1929 size_t size;
1930
1931 udc = kzalloc(sizeof *udc, GFP_KERNEL);
1932 if (udc == NULL) {
1933 dev_err(&dev->dev, "failed to allocate memory for udc\n");
1934 retval = -ENOMEM;
1935 goto error;
1936 }
1937
1938 spin_lock_init(&udc->lock);
1939
1940 udc->dev = dev;
1941
1942 udc->clk = clk_get(&dev->dev, "U2OCLK");
1943 if (IS_ERR(udc->clk)) {
1944 retval = PTR_ERR(udc->clk);
1945 goto error;
1946 }
1947
1948 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "u2o");
1949 if (r == NULL) {
1950 dev_err(&dev->dev, "no I/O memory resource defined\n");
1951 retval = -ENODEV;
1952 goto error;
1953 }
1954
1955 udc->cap_regs = (struct mv_cap_regs __iomem *)
1956 ioremap(r->start, resource_size(r));
1957 if (udc->cap_regs == NULL) {
1958 dev_err(&dev->dev, "failed to map I/O memory\n");
1959 retval = -EBUSY;
1960 goto error;
1961 }
1962
1963 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "u2ophy");
1964 if (r == NULL) {
1965 dev_err(&dev->dev, "no phy I/O memory resource defined\n");
1966 retval = -ENODEV;
1967 goto error;
1968 }
1969
1970 udc->phy_regs = (unsigned int)ioremap(r->start, resource_size(r));
1971 if (udc->phy_regs == 0) {
1972 dev_err(&dev->dev, "failed to map phy I/O memory\n");
1973 retval = -EBUSY;
1974 goto error;
1975 }
1976
1977 /* we will acces controller register, so enable the clk */
1978 clk_enable(udc->clk);
1979 retval = mv_udc_phy_init(udc->phy_regs);
1980 if (retval) {
1981 dev_err(&dev->dev, "phy initialization error %d\n", retval);
1982 goto error;
1983 }
1984
1985 udc->op_regs = (struct mv_op_regs __iomem *)((u32)udc->cap_regs
1986 + (readl(&udc->cap_regs->caplength_hciversion)
1987 & CAPLENGTH_MASK));
1988 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
1989
1990 size = udc->max_eps * sizeof(struct mv_dqh) *2;
1991 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
1992 udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
1993 &udc->ep_dqh_dma, GFP_KERNEL);
1994
1995 if (udc->ep_dqh == NULL) {
1996 dev_err(&dev->dev, "allocate dQH memory failed\n");
1997 retval = -ENOMEM;
1998 goto error;
1999 }
2000 udc->ep_dqh_size = size;
2001
2002 /* create dTD dma_pool resource */
2003 udc->dtd_pool = dma_pool_create("mv_dtd",
2004 &dev->dev,
2005 sizeof(struct mv_dtd),
2006 DTD_ALIGNMENT,
2007 DMA_BOUNDARY);
2008
2009 if (!udc->dtd_pool) {
2010 retval = -ENOMEM;
2011 goto error;
2012 }
2013
2014 size = udc->max_eps * sizeof(struct mv_ep) *2;
2015 udc->eps = kzalloc(size, GFP_KERNEL);
2016 if (udc->eps == NULL) {
2017 dev_err(&dev->dev, "allocate ep memory failed\n");
2018 retval = -ENOMEM;
2019 goto error;
2020 }
2021
2022 /* initialize ep0 status request structure */
2023 udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
2024 if (!udc->status_req) {
2025 dev_err(&dev->dev, "allocate status_req memory failed\n");
2026 retval = -ENOMEM;
2027 goto error;
2028 }
2029 INIT_LIST_HEAD(&udc->status_req->queue);
2030
2031 /* allocate a small amount of memory to get valid address */
2032 udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2033 udc->status_req->req.dma = virt_to_phys(udc->status_req->req.buf);
2034
2035 udc->resume_state = USB_STATE_NOTATTACHED;
2036 udc->usb_state = USB_STATE_POWERED;
2037 udc->ep0_dir = EP_DIR_OUT;
2038 udc->remote_wakeup = 0;
2039
2040 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2041 if (r == NULL) {
2042 dev_err(&dev->dev, "no IRQ resource defined\n");
2043 retval = -ENODEV;
2044 goto error;
2045 }
2046 udc->irq = r->start;
2047 if (request_irq(udc->irq, mv_udc_irq,
2048 IRQF_DISABLED | IRQF_SHARED, driver_name, udc)) {
2049 dev_err(&dev->dev, "Request irq %d for UDC failed\n",
2050 udc->irq);
2051 retval = -ENODEV;
2052 goto error;
2053 }
2054
2055 /* initialize gadget structure */
2056 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2057 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2058 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2059 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2060 udc->gadget.is_dualspeed = 1; /* support dual speed */
2061
2062 /* the "gadget" abstracts/virtualizes the controller */
2063 dev_set_name(&udc->gadget.dev, "gadget");
2064 udc->gadget.dev.parent = &dev->dev;
2065 udc->gadget.dev.dma_mask = dev->dev.dma_mask;
2066 udc->gadget.dev.release = gadget_release;
2067 udc->gadget.name = driver_name; /* gadget name */
2068
2069 retval = device_register(&udc->gadget.dev);
2070 if (retval)
2071 goto error;
2072
2073 eps_init(udc);
2074
2075 the_controller = udc;
2076
2077 goto out;
2078 error:
2079 if (udc)
2080 mv_udc_remove(udc->dev);
2081 out:
2082 return retval;
2083 }
2084
2085 #ifdef CONFIG_PM
2086 static int mv_udc_suspend(struct platform_device *_dev, pm_message_t state)
2087 {
2088 struct mv_udc *udc = the_controller;
2089
2090 udc_stop(udc);
2091
2092 return 0;
2093 }
2094
2095 static int mv_udc_resume(struct platform_device *_dev)
2096 {
2097 struct mv_udc *udc = the_controller;
2098 int retval;
2099
2100 retval = mv_udc_phy_init(udc->phy_regs);
2101 if (retval) {
2102 dev_err(_dev, "phy initialization error %d\n", retval);
2103 goto error;
2104 }
2105 udc_reset(udc);
2106 ep0_reset(udc);
2107 udc_start(udc);
2108
2109 return 0;
2110 }
2111
2112 static const struct dev_pm_ops mv_udc_pm_ops = {
2113 .suspend = mv_udc_suspend,
2114 .resume = mv_udc_resume,
2115 };
2116 #endif
2117
2118 static struct platform_driver udc_driver = {
2119 .probe = mv_udc_probe,
2120 .remove = __exit_p(mv_udc_remove),
2121 .driver = {
2122 .owner = THIS_MODULE,
2123 .name = "pxa-u2o",
2124 #ifdef CONFIG_PM
2125 .pm = mv_udc_pm_ops,
2126 #endif
2127 },
2128 };
2129
2130
2131 MODULE_DESCRIPTION(DRIVER_DESC);
2132 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2133 MODULE_VERSION(DRIVER_VERSION);
2134 MODULE_LICENSE("GPL");
2135
2136
2137 static int __init init(void)
2138 {
2139 return platform_driver_register(&udc_driver);
2140 }
2141 module_init(init);
2142
2143
2144 static void __exit cleanup(void)
2145 {
2146 platform_driver_unregister(&udc_driver);
2147 }
2148 module_exit(cleanup);
2149