]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/gadget/pxa27x_udc.c
Merge tag 'renesas-dt-fixes2-for-v3.14' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / gadget / pxa27x_udc.c
1 /*
2 * Handles the Intel 27x USB Device Controller (UDC)
3 *
4 * Inspired by original driver by Frank Becker, David Brownell, and others.
5 * Copyright (C) 2008 Robert Jarzmik
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/err.h>
17 #include <linux/platform_device.h>
18 #include <linux/delay.h>
19 #include <linux/list.h>
20 #include <linux/interrupt.h>
21 #include <linux/proc_fs.h>
22 #include <linux/clk.h>
23 #include <linux/irq.h>
24 #include <linux/gpio.h>
25 #include <linux/slab.h>
26 #include <linux/prefetch.h>
27 #include <linux/byteorder/generic.h>
28 #include <linux/platform_data/pxa2xx_udc.h>
29
30 #include <linux/usb.h>
31 #include <linux/usb/ch9.h>
32 #include <linux/usb/gadget.h>
33
34 #include "pxa27x_udc.h"
35
36 /*
37 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
38 * series processors.
39 *
40 * Such controller drivers work with a gadget driver. The gadget driver
41 * returns descriptors, implements configuration and data protocols used
42 * by the host to interact with this device, and allocates endpoints to
43 * the different protocol interfaces. The controller driver virtualizes
44 * usb hardware so that the gadget drivers will be more portable.
45 *
46 * This UDC hardware wants to implement a bit too much USB protocol. The
47 * biggest issues are: that the endpoints have to be set up before the
48 * controller can be enabled (minor, and not uncommon); and each endpoint
49 * can only have one configuration, interface and alternative interface
50 * number (major, and very unusual). Once set up, these cannot be changed
51 * without a controller reset.
52 *
53 * The workaround is to setup all combinations necessary for the gadgets which
54 * will work with this driver. This is done in pxa_udc structure, statically.
55 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
56 * (You could modify this if needed. Some drivers have a "fifo_mode" module
57 * parameter to facilitate such changes.)
58 *
59 * The combinations have been tested with these gadgets :
60 * - zero gadget
61 * - file storage gadget
62 * - ether gadget
63 *
64 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
65 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
66 *
67 * All the requests are handled the same way :
68 * - the drivers tries to handle the request directly to the IO
69 * - if the IO fifo is not big enough, the remaining is send/received in
70 * interrupt handling.
71 */
72
73 #define DRIVER_VERSION "2008-04-18"
74 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
75
76 static const char driver_name[] = "pxa27x_udc";
77 static struct pxa_udc *the_controller;
78
79 static void handle_ep(struct pxa_ep *ep);
80
81 /*
82 * Debug filesystem
83 */
84 #ifdef CONFIG_USB_GADGET_DEBUG_FS
85
86 #include <linux/debugfs.h>
87 #include <linux/uaccess.h>
88 #include <linux/seq_file.h>
89
90 static int state_dbg_show(struct seq_file *s, void *p)
91 {
92 struct pxa_udc *udc = s->private;
93 int pos = 0, ret;
94 u32 tmp;
95
96 ret = -ENODEV;
97 if (!udc->driver)
98 goto out;
99
100 /* basic device status */
101 pos += seq_printf(s, DRIVER_DESC "\n"
102 "%s version: %s\nGadget driver: %s\n",
103 driver_name, DRIVER_VERSION,
104 udc->driver ? udc->driver->driver.name : "(none)");
105
106 tmp = udc_readl(udc, UDCCR);
107 pos += seq_printf(s,
108 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), "
109 "con=%d,inter=%d,altinter=%d\n", tmp,
110 (tmp & UDCCR_OEN) ? " oen":"",
111 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
112 (tmp & UDCCR_AHNP) ? " rem" : "",
113 (tmp & UDCCR_BHNP) ? " rstir" : "",
114 (tmp & UDCCR_DWRE) ? " dwre" : "",
115 (tmp & UDCCR_SMAC) ? " smac" : "",
116 (tmp & UDCCR_EMCE) ? " emce" : "",
117 (tmp & UDCCR_UDR) ? " udr" : "",
118 (tmp & UDCCR_UDA) ? " uda" : "",
119 (tmp & UDCCR_UDE) ? " ude" : "",
120 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
121 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
122 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
123 /* registers for device and ep0 */
124 pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
125 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
126 pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
127 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
128 pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
129 pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, "
130 "reconfig=%lu\n",
131 udc->stats.irqs_reset, udc->stats.irqs_suspend,
132 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
133
134 ret = 0;
135 out:
136 return ret;
137 }
138
139 static int queues_dbg_show(struct seq_file *s, void *p)
140 {
141 struct pxa_udc *udc = s->private;
142 struct pxa_ep *ep;
143 struct pxa27x_request *req;
144 int pos = 0, i, maxpkt, ret;
145
146 ret = -ENODEV;
147 if (!udc->driver)
148 goto out;
149
150 /* dump endpoint queues */
151 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
152 ep = &udc->pxa_ep[i];
153 maxpkt = ep->fifo_size;
154 pos += seq_printf(s, "%-12s max_pkt=%d %s\n",
155 EPNAME(ep), maxpkt, "pio");
156
157 if (list_empty(&ep->queue)) {
158 pos += seq_printf(s, "\t(nothing queued)\n");
159 continue;
160 }
161
162 list_for_each_entry(req, &ep->queue, queue) {
163 pos += seq_printf(s, "\treq %p len %d/%d buf %p\n",
164 &req->req, req->req.actual,
165 req->req.length, req->req.buf);
166 }
167 }
168
169 ret = 0;
170 out:
171 return ret;
172 }
173
174 static int eps_dbg_show(struct seq_file *s, void *p)
175 {
176 struct pxa_udc *udc = s->private;
177 struct pxa_ep *ep;
178 int pos = 0, i, ret;
179 u32 tmp;
180
181 ret = -ENODEV;
182 if (!udc->driver)
183 goto out;
184
185 ep = &udc->pxa_ep[0];
186 tmp = udc_ep_readl(ep, UDCCSR);
187 pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp,
188 (tmp & UDCCSR0_SA) ? " sa" : "",
189 (tmp & UDCCSR0_RNE) ? " rne" : "",
190 (tmp & UDCCSR0_FST) ? " fst" : "",
191 (tmp & UDCCSR0_SST) ? " sst" : "",
192 (tmp & UDCCSR0_DME) ? " dme" : "",
193 (tmp & UDCCSR0_IPR) ? " ipr" : "",
194 (tmp & UDCCSR0_OPC) ? " opc" : "");
195 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
196 ep = &udc->pxa_ep[i];
197 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
198 pos += seq_printf(s, "%-12s: "
199 "IN %lu(%lu reqs), OUT %lu(%lu reqs), "
200 "irqs=%lu, udccr=0x%08x, udccsr=0x%03x, "
201 "udcbcr=%d\n",
202 EPNAME(ep),
203 ep->stats.in_bytes, ep->stats.in_ops,
204 ep->stats.out_bytes, ep->stats.out_ops,
205 ep->stats.irqs,
206 tmp, udc_ep_readl(ep, UDCCSR),
207 udc_ep_readl(ep, UDCBCR));
208 }
209
210 ret = 0;
211 out:
212 return ret;
213 }
214
215 static int eps_dbg_open(struct inode *inode, struct file *file)
216 {
217 return single_open(file, eps_dbg_show, inode->i_private);
218 }
219
220 static int queues_dbg_open(struct inode *inode, struct file *file)
221 {
222 return single_open(file, queues_dbg_show, inode->i_private);
223 }
224
225 static int state_dbg_open(struct inode *inode, struct file *file)
226 {
227 return single_open(file, state_dbg_show, inode->i_private);
228 }
229
230 static const struct file_operations state_dbg_fops = {
231 .owner = THIS_MODULE,
232 .open = state_dbg_open,
233 .llseek = seq_lseek,
234 .read = seq_read,
235 .release = single_release,
236 };
237
238 static const struct file_operations queues_dbg_fops = {
239 .owner = THIS_MODULE,
240 .open = queues_dbg_open,
241 .llseek = seq_lseek,
242 .read = seq_read,
243 .release = single_release,
244 };
245
246 static const struct file_operations eps_dbg_fops = {
247 .owner = THIS_MODULE,
248 .open = eps_dbg_open,
249 .llseek = seq_lseek,
250 .read = seq_read,
251 .release = single_release,
252 };
253
254 static void pxa_init_debugfs(struct pxa_udc *udc)
255 {
256 struct dentry *root, *state, *queues, *eps;
257
258 root = debugfs_create_dir(udc->gadget.name, NULL);
259 if (IS_ERR(root) || !root)
260 goto err_root;
261
262 state = debugfs_create_file("udcstate", 0400, root, udc,
263 &state_dbg_fops);
264 if (!state)
265 goto err_state;
266 queues = debugfs_create_file("queues", 0400, root, udc,
267 &queues_dbg_fops);
268 if (!queues)
269 goto err_queues;
270 eps = debugfs_create_file("epstate", 0400, root, udc,
271 &eps_dbg_fops);
272 if (!eps)
273 goto err_eps;
274
275 udc->debugfs_root = root;
276 udc->debugfs_state = state;
277 udc->debugfs_queues = queues;
278 udc->debugfs_eps = eps;
279 return;
280 err_eps:
281 debugfs_remove(eps);
282 err_queues:
283 debugfs_remove(queues);
284 err_state:
285 debugfs_remove(root);
286 err_root:
287 dev_err(udc->dev, "debugfs is not available\n");
288 }
289
290 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
291 {
292 debugfs_remove(udc->debugfs_eps);
293 debugfs_remove(udc->debugfs_queues);
294 debugfs_remove(udc->debugfs_state);
295 debugfs_remove(udc->debugfs_root);
296 udc->debugfs_eps = NULL;
297 udc->debugfs_queues = NULL;
298 udc->debugfs_state = NULL;
299 udc->debugfs_root = NULL;
300 }
301
302 #else
303 static inline void pxa_init_debugfs(struct pxa_udc *udc)
304 {
305 }
306
307 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
308 {
309 }
310 #endif
311
312 /**
313 * is_match_usb_pxa - check if usb_ep and pxa_ep match
314 * @udc_usb_ep: usb endpoint
315 * @ep: pxa endpoint
316 * @config: configuration required in pxa_ep
317 * @interface: interface required in pxa_ep
318 * @altsetting: altsetting required in pxa_ep
319 *
320 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
321 */
322 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
323 int config, int interface, int altsetting)
324 {
325 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
326 return 0;
327 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
328 return 0;
329 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
330 return 0;
331 if ((ep->config != config) || (ep->interface != interface)
332 || (ep->alternate != altsetting))
333 return 0;
334 return 1;
335 }
336
337 /**
338 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
339 * @udc: pxa udc
340 * @udc_usb_ep: udc_usb_ep structure
341 *
342 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
343 * This is necessary because of the strong pxa hardware restriction requiring
344 * that once pxa endpoints are initialized, their configuration is freezed, and
345 * no change can be made to their address, direction, or in which configuration,
346 * interface or altsetting they are active ... which differs from more usual
347 * models which have endpoints be roughly just addressable fifos, and leave
348 * configuration events up to gadget drivers (like all control messages).
349 *
350 * Note that there is still a blurred point here :
351 * - we rely on UDCCR register "active interface" and "active altsetting".
352 * This is a nonsense in regard of USB spec, where multiple interfaces are
353 * active at the same time.
354 * - if we knew for sure that the pxa can handle multiple interface at the
355 * same time, assuming Intel's Developer Guide is wrong, this function
356 * should be reviewed, and a cache of couples (iface, altsetting) should
357 * be kept in the pxa_udc structure. In this case this function would match
358 * against the cache of couples instead of the "last altsetting" set up.
359 *
360 * Returns the matched pxa_ep structure or NULL if none found
361 */
362 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
363 struct udc_usb_ep *udc_usb_ep)
364 {
365 int i;
366 struct pxa_ep *ep;
367 int cfg = udc->config;
368 int iface = udc->last_interface;
369 int alt = udc->last_alternate;
370
371 if (udc_usb_ep == &udc->udc_usb_ep[0])
372 return &udc->pxa_ep[0];
373
374 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
375 ep = &udc->pxa_ep[i];
376 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
377 return ep;
378 }
379 return NULL;
380 }
381
382 /**
383 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
384 * @udc: pxa udc
385 *
386 * Context: in_interrupt()
387 *
388 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
389 * previously set up (and is not NULL). The update is necessary is a
390 * configuration change or altsetting change was issued by the USB host.
391 */
392 static void update_pxa_ep_matches(struct pxa_udc *udc)
393 {
394 int i;
395 struct udc_usb_ep *udc_usb_ep;
396
397 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
398 udc_usb_ep = &udc->udc_usb_ep[i];
399 if (udc_usb_ep->pxa_ep)
400 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
401 }
402 }
403
404 /**
405 * pio_irq_enable - Enables irq generation for one endpoint
406 * @ep: udc endpoint
407 */
408 static void pio_irq_enable(struct pxa_ep *ep)
409 {
410 struct pxa_udc *udc = ep->dev;
411 int index = EPIDX(ep);
412 u32 udcicr0 = udc_readl(udc, UDCICR0);
413 u32 udcicr1 = udc_readl(udc, UDCICR1);
414
415 if (index < 16)
416 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
417 else
418 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
419 }
420
421 /**
422 * pio_irq_disable - Disables irq generation for one endpoint
423 * @ep: udc endpoint
424 */
425 static void pio_irq_disable(struct pxa_ep *ep)
426 {
427 struct pxa_udc *udc = ep->dev;
428 int index = EPIDX(ep);
429 u32 udcicr0 = udc_readl(udc, UDCICR0);
430 u32 udcicr1 = udc_readl(udc, UDCICR1);
431
432 if (index < 16)
433 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
434 else
435 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
436 }
437
438 /**
439 * udc_set_mask_UDCCR - set bits in UDCCR
440 * @udc: udc device
441 * @mask: bits to set in UDCCR
442 *
443 * Sets bits in UDCCR, leaving DME and FST bits as they were.
444 */
445 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
446 {
447 u32 udccr = udc_readl(udc, UDCCR);
448 udc_writel(udc, UDCCR,
449 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
450 }
451
452 /**
453 * udc_clear_mask_UDCCR - clears bits in UDCCR
454 * @udc: udc device
455 * @mask: bit to clear in UDCCR
456 *
457 * Clears bits in UDCCR, leaving DME and FST bits as they were.
458 */
459 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
460 {
461 u32 udccr = udc_readl(udc, UDCCR);
462 udc_writel(udc, UDCCR,
463 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
464 }
465
466 /**
467 * ep_write_UDCCSR - set bits in UDCCSR
468 * @udc: udc device
469 * @mask: bits to set in UDCCR
470 *
471 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
472 *
473 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
474 * SET_INTERFACE and SET_CONFIGURATION.
475 */
476 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
477 {
478 if (is_ep0(ep))
479 mask |= UDCCSR0_ACM;
480 udc_ep_writel(ep, UDCCSR, mask);
481 }
482
483 /**
484 * ep_count_bytes_remain - get how many bytes in udc endpoint
485 * @ep: udc endpoint
486 *
487 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
488 */
489 static int ep_count_bytes_remain(struct pxa_ep *ep)
490 {
491 if (ep->dir_in)
492 return -EOPNOTSUPP;
493 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
494 }
495
496 /**
497 * ep_is_empty - checks if ep has byte ready for reading
498 * @ep: udc endpoint
499 *
500 * If endpoint is the control endpoint, checks if there are bytes in the
501 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
502 * are ready for reading on OUT endpoint.
503 *
504 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
505 */
506 static int ep_is_empty(struct pxa_ep *ep)
507 {
508 int ret;
509
510 if (!is_ep0(ep) && ep->dir_in)
511 return -EOPNOTSUPP;
512 if (is_ep0(ep))
513 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
514 else
515 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
516 return ret;
517 }
518
519 /**
520 * ep_is_full - checks if ep has place to write bytes
521 * @ep: udc endpoint
522 *
523 * If endpoint is not the control endpoint and is an IN endpoint, checks if
524 * there is place to write bytes into the endpoint.
525 *
526 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
527 */
528 static int ep_is_full(struct pxa_ep *ep)
529 {
530 if (is_ep0(ep))
531 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
532 if (!ep->dir_in)
533 return -EOPNOTSUPP;
534 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
535 }
536
537 /**
538 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
539 * @ep: pxa endpoint
540 *
541 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
542 */
543 static int epout_has_pkt(struct pxa_ep *ep)
544 {
545 if (!is_ep0(ep) && ep->dir_in)
546 return -EOPNOTSUPP;
547 if (is_ep0(ep))
548 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
549 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
550 }
551
552 /**
553 * set_ep0state - Set ep0 automata state
554 * @dev: udc device
555 * @state: state
556 */
557 static void set_ep0state(struct pxa_udc *udc, int state)
558 {
559 struct pxa_ep *ep = &udc->pxa_ep[0];
560 char *old_stname = EP0_STNAME(udc);
561
562 udc->ep0state = state;
563 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
564 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
565 udc_ep_readl(ep, UDCBCR));
566 }
567
568 /**
569 * ep0_idle - Put control endpoint into idle state
570 * @dev: udc device
571 */
572 static void ep0_idle(struct pxa_udc *dev)
573 {
574 set_ep0state(dev, WAIT_FOR_SETUP);
575 }
576
577 /**
578 * inc_ep_stats_reqs - Update ep stats counts
579 * @ep: physical endpoint
580 * @req: usb request
581 * @is_in: ep direction (USB_DIR_IN or 0)
582 *
583 */
584 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
585 {
586 if (is_in)
587 ep->stats.in_ops++;
588 else
589 ep->stats.out_ops++;
590 }
591
592 /**
593 * inc_ep_stats_bytes - Update ep stats counts
594 * @ep: physical endpoint
595 * @count: bytes transferred on endpoint
596 * @is_in: ep direction (USB_DIR_IN or 0)
597 */
598 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
599 {
600 if (is_in)
601 ep->stats.in_bytes += count;
602 else
603 ep->stats.out_bytes += count;
604 }
605
606 /**
607 * pxa_ep_setup - Sets up an usb physical endpoint
608 * @ep: pxa27x physical endpoint
609 *
610 * Find the physical pxa27x ep, and setup its UDCCR
611 */
612 static void pxa_ep_setup(struct pxa_ep *ep)
613 {
614 u32 new_udccr;
615
616 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
617 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
618 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
619 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
620 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
621 | ((ep->dir_in) ? UDCCONR_ED : 0)
622 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
623 | UDCCONR_EE;
624
625 udc_ep_writel(ep, UDCCR, new_udccr);
626 }
627
628 /**
629 * pxa_eps_setup - Sets up all usb physical endpoints
630 * @dev: udc device
631 *
632 * Setup all pxa physical endpoints, except ep0
633 */
634 static void pxa_eps_setup(struct pxa_udc *dev)
635 {
636 unsigned int i;
637
638 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
639
640 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
641 pxa_ep_setup(&dev->pxa_ep[i]);
642 }
643
644 /**
645 * pxa_ep_alloc_request - Allocate usb request
646 * @_ep: usb endpoint
647 * @gfp_flags:
648 *
649 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
650 * must still pass correctly initialized endpoints, since other controller
651 * drivers may care about how it's currently set up (dma issues etc).
652 */
653 static struct usb_request *
654 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
655 {
656 struct pxa27x_request *req;
657
658 req = kzalloc(sizeof *req, gfp_flags);
659 if (!req)
660 return NULL;
661
662 INIT_LIST_HEAD(&req->queue);
663 req->in_use = 0;
664 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
665
666 return &req->req;
667 }
668
669 /**
670 * pxa_ep_free_request - Free usb request
671 * @_ep: usb endpoint
672 * @_req: usb request
673 *
674 * Wrapper around kfree to free _req
675 */
676 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
677 {
678 struct pxa27x_request *req;
679
680 req = container_of(_req, struct pxa27x_request, req);
681 WARN_ON(!list_empty(&req->queue));
682 kfree(req);
683 }
684
685 /**
686 * ep_add_request - add a request to the endpoint's queue
687 * @ep: usb endpoint
688 * @req: usb request
689 *
690 * Context: ep->lock held
691 *
692 * Queues the request in the endpoint's queue, and enables the interrupts
693 * on the endpoint.
694 */
695 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
696 {
697 if (unlikely(!req))
698 return;
699 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
700 req->req.length, udc_ep_readl(ep, UDCCSR));
701
702 req->in_use = 1;
703 list_add_tail(&req->queue, &ep->queue);
704 pio_irq_enable(ep);
705 }
706
707 /**
708 * ep_del_request - removes a request from the endpoint's queue
709 * @ep: usb endpoint
710 * @req: usb request
711 *
712 * Context: ep->lock held
713 *
714 * Unqueue the request from the endpoint's queue. If there are no more requests
715 * on the endpoint, and if it's not the control endpoint, interrupts are
716 * disabled on the endpoint.
717 */
718 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
719 {
720 if (unlikely(!req))
721 return;
722 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
723 req->req.length, udc_ep_readl(ep, UDCCSR));
724
725 list_del_init(&req->queue);
726 req->in_use = 0;
727 if (!is_ep0(ep) && list_empty(&ep->queue))
728 pio_irq_disable(ep);
729 }
730
731 /**
732 * req_done - Complete an usb request
733 * @ep: pxa physical endpoint
734 * @req: pxa request
735 * @status: usb request status sent to gadget API
736 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
737 *
738 * Context: ep->lock held if flags not NULL, else ep->lock released
739 *
740 * Retire a pxa27x usb request. Endpoint must be locked.
741 */
742 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
743 unsigned long *pflags)
744 {
745 unsigned long flags;
746
747 ep_del_request(ep, req);
748 if (likely(req->req.status == -EINPROGRESS))
749 req->req.status = status;
750 else
751 status = req->req.status;
752
753 if (status && status != -ESHUTDOWN)
754 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
755 &req->req, status,
756 req->req.actual, req->req.length);
757
758 if (pflags)
759 spin_unlock_irqrestore(&ep->lock, *pflags);
760 local_irq_save(flags);
761 req->req.complete(&req->udc_usb_ep->usb_ep, &req->req);
762 local_irq_restore(flags);
763 if (pflags)
764 spin_lock_irqsave(&ep->lock, *pflags);
765 }
766
767 /**
768 * ep_end_out_req - Ends endpoint OUT request
769 * @ep: physical endpoint
770 * @req: pxa request
771 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
772 *
773 * Context: ep->lock held or released (see req_done())
774 *
775 * Ends endpoint OUT request (completes usb request).
776 */
777 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
778 unsigned long *pflags)
779 {
780 inc_ep_stats_reqs(ep, !USB_DIR_IN);
781 req_done(ep, req, 0, pflags);
782 }
783
784 /**
785 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
786 * @ep: physical endpoint
787 * @req: pxa request
788 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
789 *
790 * Context: ep->lock held or released (see req_done())
791 *
792 * Ends control endpoint OUT request (completes usb request), and puts
793 * control endpoint into idle state
794 */
795 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
796 unsigned long *pflags)
797 {
798 set_ep0state(ep->dev, OUT_STATUS_STAGE);
799 ep_end_out_req(ep, req, pflags);
800 ep0_idle(ep->dev);
801 }
802
803 /**
804 * ep_end_in_req - Ends endpoint IN request
805 * @ep: physical endpoint
806 * @req: pxa request
807 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
808 *
809 * Context: ep->lock held or released (see req_done())
810 *
811 * Ends endpoint IN request (completes usb request).
812 */
813 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
814 unsigned long *pflags)
815 {
816 inc_ep_stats_reqs(ep, USB_DIR_IN);
817 req_done(ep, req, 0, pflags);
818 }
819
820 /**
821 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
822 * @ep: physical endpoint
823 * @req: pxa request
824 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
825 *
826 * Context: ep->lock held or released (see req_done())
827 *
828 * Ends control endpoint IN request (completes usb request), and puts
829 * control endpoint into status state
830 */
831 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
832 unsigned long *pflags)
833 {
834 set_ep0state(ep->dev, IN_STATUS_STAGE);
835 ep_end_in_req(ep, req, pflags);
836 }
837
838 /**
839 * nuke - Dequeue all requests
840 * @ep: pxa endpoint
841 * @status: usb request status
842 *
843 * Context: ep->lock released
844 *
845 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
846 * disabled on that endpoint (because no more requests).
847 */
848 static void nuke(struct pxa_ep *ep, int status)
849 {
850 struct pxa27x_request *req;
851 unsigned long flags;
852
853 spin_lock_irqsave(&ep->lock, flags);
854 while (!list_empty(&ep->queue)) {
855 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
856 req_done(ep, req, status, &flags);
857 }
858 spin_unlock_irqrestore(&ep->lock, flags);
859 }
860
861 /**
862 * read_packet - transfer 1 packet from an OUT endpoint into request
863 * @ep: pxa physical endpoint
864 * @req: usb request
865 *
866 * Takes bytes from OUT endpoint and transfers them info the usb request.
867 * If there is less space in request than bytes received in OUT endpoint,
868 * bytes are left in the OUT endpoint.
869 *
870 * Returns how many bytes were actually transferred
871 */
872 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
873 {
874 u32 *buf;
875 int bytes_ep, bufferspace, count, i;
876
877 bytes_ep = ep_count_bytes_remain(ep);
878 bufferspace = req->req.length - req->req.actual;
879
880 buf = (u32 *)(req->req.buf + req->req.actual);
881 prefetchw(buf);
882
883 if (likely(!ep_is_empty(ep)))
884 count = min(bytes_ep, bufferspace);
885 else /* zlp */
886 count = 0;
887
888 for (i = count; i > 0; i -= 4)
889 *buf++ = udc_ep_readl(ep, UDCDR);
890 req->req.actual += count;
891
892 ep_write_UDCCSR(ep, UDCCSR_PC);
893
894 return count;
895 }
896
897 /**
898 * write_packet - transfer 1 packet from request into an IN endpoint
899 * @ep: pxa physical endpoint
900 * @req: usb request
901 * @max: max bytes that fit into endpoint
902 *
903 * Takes bytes from usb request, and transfers them into the physical
904 * endpoint. If there are no bytes to transfer, doesn't write anything
905 * to physical endpoint.
906 *
907 * Returns how many bytes were actually transferred.
908 */
909 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
910 unsigned int max)
911 {
912 int length, count, remain, i;
913 u32 *buf;
914 u8 *buf_8;
915
916 buf = (u32 *)(req->req.buf + req->req.actual);
917 prefetch(buf);
918
919 length = min(req->req.length - req->req.actual, max);
920 req->req.actual += length;
921
922 remain = length & 0x3;
923 count = length & ~(0x3);
924 for (i = count; i > 0 ; i -= 4)
925 udc_ep_writel(ep, UDCDR, *buf++);
926
927 buf_8 = (u8 *)buf;
928 for (i = remain; i > 0; i--)
929 udc_ep_writeb(ep, UDCDR, *buf_8++);
930
931 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
932 udc_ep_readl(ep, UDCCSR));
933
934 return length;
935 }
936
937 /**
938 * read_fifo - Transfer packets from OUT endpoint into usb request
939 * @ep: pxa physical endpoint
940 * @req: usb request
941 *
942 * Context: callable when in_interrupt()
943 *
944 * Unload as many packets as possible from the fifo we use for usb OUT
945 * transfers and put them into the request. Caller should have made sure
946 * there's at least one packet ready.
947 * Doesn't complete the request, that's the caller's job
948 *
949 * Returns 1 if the request completed, 0 otherwise
950 */
951 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
952 {
953 int count, is_short, completed = 0;
954
955 while (epout_has_pkt(ep)) {
956 count = read_packet(ep, req);
957 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
958
959 is_short = (count < ep->fifo_size);
960 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
961 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
962 &req->req, req->req.actual, req->req.length);
963
964 /* completion */
965 if (is_short || req->req.actual == req->req.length) {
966 completed = 1;
967 break;
968 }
969 /* finished that packet. the next one may be waiting... */
970 }
971 return completed;
972 }
973
974 /**
975 * write_fifo - transfer packets from usb request into an IN endpoint
976 * @ep: pxa physical endpoint
977 * @req: pxa usb request
978 *
979 * Write to an IN endpoint fifo, as many packets as possible.
980 * irqs will use this to write the rest later.
981 * caller guarantees at least one packet buffer is ready (or a zlp).
982 * Doesn't complete the request, that's the caller's job
983 *
984 * Returns 1 if request fully transferred, 0 if partial transfer
985 */
986 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
987 {
988 unsigned max;
989 int count, is_short, is_last = 0, completed = 0, totcount = 0;
990 u32 udccsr;
991
992 max = ep->fifo_size;
993 do {
994 is_short = 0;
995
996 udccsr = udc_ep_readl(ep, UDCCSR);
997 if (udccsr & UDCCSR_PC) {
998 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
999 udccsr);
1000 ep_write_UDCCSR(ep, UDCCSR_PC);
1001 }
1002 if (udccsr & UDCCSR_TRN) {
1003 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
1004 udccsr);
1005 ep_write_UDCCSR(ep, UDCCSR_TRN);
1006 }
1007
1008 count = write_packet(ep, req, max);
1009 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1010 totcount += count;
1011
1012 /* last packet is usually short (or a zlp) */
1013 if (unlikely(count < max)) {
1014 is_last = 1;
1015 is_short = 1;
1016 } else {
1017 if (likely(req->req.length > req->req.actual)
1018 || req->req.zero)
1019 is_last = 0;
1020 else
1021 is_last = 1;
1022 /* interrupt/iso maxpacket may not fill the fifo */
1023 is_short = unlikely(max < ep->fifo_size);
1024 }
1025
1026 if (is_short)
1027 ep_write_UDCCSR(ep, UDCCSR_SP);
1028
1029 /* requests complete when all IN data is in the FIFO */
1030 if (is_last) {
1031 completed = 1;
1032 break;
1033 }
1034 } while (!ep_is_full(ep));
1035
1036 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
1037 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
1038 req->req.length - req->req.actual, &req->req);
1039
1040 return completed;
1041 }
1042
1043 /**
1044 * read_ep0_fifo - Transfer packets from control endpoint into usb request
1045 * @ep: control endpoint
1046 * @req: pxa usb request
1047 *
1048 * Special ep0 version of the above read_fifo. Reads as many bytes from control
1049 * endpoint as can be read, and stores them into usb request (limited by request
1050 * maximum length).
1051 *
1052 * Returns 0 if usb request only partially filled, 1 if fully filled
1053 */
1054 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1055 {
1056 int count, is_short, completed = 0;
1057
1058 while (epout_has_pkt(ep)) {
1059 count = read_packet(ep, req);
1060 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1061 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
1062
1063 is_short = (count < ep->fifo_size);
1064 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
1065 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
1066 &req->req, req->req.actual, req->req.length);
1067
1068 if (is_short || req->req.actual >= req->req.length) {
1069 completed = 1;
1070 break;
1071 }
1072 }
1073
1074 return completed;
1075 }
1076
1077 /**
1078 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
1079 * @ep: control endpoint
1080 * @req: request
1081 *
1082 * Context: callable when in_interrupt()
1083 *
1084 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1085 * If the request doesn't fit, the remaining part will be sent from irq.
1086 * The request is considered fully written only if either :
1087 * - last write transferred all remaining bytes, but fifo was not fully filled
1088 * - last write was a 0 length write
1089 *
1090 * Returns 1 if request fully written, 0 if request only partially sent
1091 */
1092 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1093 {
1094 unsigned count;
1095 int is_last, is_short;
1096
1097 count = write_packet(ep, req, EP0_FIFO_SIZE);
1098 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1099
1100 is_short = (count < EP0_FIFO_SIZE);
1101 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1102
1103 /* Sends either a short packet or a 0 length packet */
1104 if (unlikely(is_short))
1105 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1106
1107 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1108 count, is_short ? "/S" : "", is_last ? "/L" : "",
1109 req->req.length - req->req.actual,
1110 &req->req, udc_ep_readl(ep, UDCCSR));
1111
1112 return is_last;
1113 }
1114
1115 /**
1116 * pxa_ep_queue - Queue a request into an IN endpoint
1117 * @_ep: usb endpoint
1118 * @_req: usb request
1119 * @gfp_flags: flags
1120 *
1121 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1122 * in the special case of ep0 setup :
1123 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1124 *
1125 * Returns 0 if succedeed, error otherwise
1126 */
1127 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1128 gfp_t gfp_flags)
1129 {
1130 struct udc_usb_ep *udc_usb_ep;
1131 struct pxa_ep *ep;
1132 struct pxa27x_request *req;
1133 struct pxa_udc *dev;
1134 unsigned long flags;
1135 int rc = 0;
1136 int is_first_req;
1137 unsigned length;
1138 int recursion_detected;
1139
1140 req = container_of(_req, struct pxa27x_request, req);
1141 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1142
1143 if (unlikely(!_req || !_req->complete || !_req->buf))
1144 return -EINVAL;
1145
1146 if (unlikely(!_ep))
1147 return -EINVAL;
1148
1149 dev = udc_usb_ep->dev;
1150 ep = udc_usb_ep->pxa_ep;
1151 if (unlikely(!ep))
1152 return -EINVAL;
1153
1154 dev = ep->dev;
1155 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1156 ep_dbg(ep, "bogus device state\n");
1157 return -ESHUTDOWN;
1158 }
1159
1160 /* iso is always one packet per request, that's the only way
1161 * we can report per-packet status. that also helps with dma.
1162 */
1163 if (unlikely(EPXFERTYPE_is_ISO(ep)
1164 && req->req.length > ep->fifo_size))
1165 return -EMSGSIZE;
1166
1167 spin_lock_irqsave(&ep->lock, flags);
1168 recursion_detected = ep->in_handle_ep;
1169
1170 is_first_req = list_empty(&ep->queue);
1171 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1172 _req, is_first_req ? "yes" : "no",
1173 _req->length, _req->buf);
1174
1175 if (!ep->enabled) {
1176 _req->status = -ESHUTDOWN;
1177 rc = -ESHUTDOWN;
1178 goto out_locked;
1179 }
1180
1181 if (req->in_use) {
1182 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1183 goto out_locked;
1184 }
1185
1186 length = _req->length;
1187 _req->status = -EINPROGRESS;
1188 _req->actual = 0;
1189
1190 ep_add_request(ep, req);
1191 spin_unlock_irqrestore(&ep->lock, flags);
1192
1193 if (is_ep0(ep)) {
1194 switch (dev->ep0state) {
1195 case WAIT_ACK_SET_CONF_INTERF:
1196 if (length == 0) {
1197 ep_end_in_req(ep, req, NULL);
1198 } else {
1199 ep_err(ep, "got a request of %d bytes while"
1200 "in state WAIT_ACK_SET_CONF_INTERF\n",
1201 length);
1202 ep_del_request(ep, req);
1203 rc = -EL2HLT;
1204 }
1205 ep0_idle(ep->dev);
1206 break;
1207 case IN_DATA_STAGE:
1208 if (!ep_is_full(ep))
1209 if (write_ep0_fifo(ep, req))
1210 ep0_end_in_req(ep, req, NULL);
1211 break;
1212 case OUT_DATA_STAGE:
1213 if ((length == 0) || !epout_has_pkt(ep))
1214 if (read_ep0_fifo(ep, req))
1215 ep0_end_out_req(ep, req, NULL);
1216 break;
1217 default:
1218 ep_err(ep, "odd state %s to send me a request\n",
1219 EP0_STNAME(ep->dev));
1220 ep_del_request(ep, req);
1221 rc = -EL2HLT;
1222 break;
1223 }
1224 } else {
1225 if (!recursion_detected)
1226 handle_ep(ep);
1227 }
1228
1229 out:
1230 return rc;
1231 out_locked:
1232 spin_unlock_irqrestore(&ep->lock, flags);
1233 goto out;
1234 }
1235
1236 /**
1237 * pxa_ep_dequeue - Dequeue one request
1238 * @_ep: usb endpoint
1239 * @_req: usb request
1240 *
1241 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1242 */
1243 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1244 {
1245 struct pxa_ep *ep;
1246 struct udc_usb_ep *udc_usb_ep;
1247 struct pxa27x_request *req;
1248 unsigned long flags;
1249 int rc = -EINVAL;
1250
1251 if (!_ep)
1252 return rc;
1253 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1254 ep = udc_usb_ep->pxa_ep;
1255 if (!ep || is_ep0(ep))
1256 return rc;
1257
1258 spin_lock_irqsave(&ep->lock, flags);
1259
1260 /* make sure it's actually queued on this endpoint */
1261 list_for_each_entry(req, &ep->queue, queue) {
1262 if (&req->req == _req) {
1263 rc = 0;
1264 break;
1265 }
1266 }
1267
1268 spin_unlock_irqrestore(&ep->lock, flags);
1269 if (!rc)
1270 req_done(ep, req, -ECONNRESET, NULL);
1271 return rc;
1272 }
1273
1274 /**
1275 * pxa_ep_set_halt - Halts operations on one endpoint
1276 * @_ep: usb endpoint
1277 * @value:
1278 *
1279 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1280 */
1281 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1282 {
1283 struct pxa_ep *ep;
1284 struct udc_usb_ep *udc_usb_ep;
1285 unsigned long flags;
1286 int rc;
1287
1288
1289 if (!_ep)
1290 return -EINVAL;
1291 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1292 ep = udc_usb_ep->pxa_ep;
1293 if (!ep || is_ep0(ep))
1294 return -EINVAL;
1295
1296 if (value == 0) {
1297 /*
1298 * This path (reset toggle+halt) is needed to implement
1299 * SET_INTERFACE on normal hardware. but it can't be
1300 * done from software on the PXA UDC, and the hardware
1301 * forgets to do it as part of SET_INTERFACE automagic.
1302 */
1303 ep_dbg(ep, "only host can clear halt\n");
1304 return -EROFS;
1305 }
1306
1307 spin_lock_irqsave(&ep->lock, flags);
1308
1309 rc = -EAGAIN;
1310 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1311 goto out;
1312
1313 /* FST, FEF bits are the same for control and non control endpoints */
1314 rc = 0;
1315 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1316 if (is_ep0(ep))
1317 set_ep0state(ep->dev, STALL);
1318
1319 out:
1320 spin_unlock_irqrestore(&ep->lock, flags);
1321 return rc;
1322 }
1323
1324 /**
1325 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1326 * @_ep: usb endpoint
1327 *
1328 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1329 */
1330 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1331 {
1332 struct pxa_ep *ep;
1333 struct udc_usb_ep *udc_usb_ep;
1334
1335 if (!_ep)
1336 return -ENODEV;
1337 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1338 ep = udc_usb_ep->pxa_ep;
1339 if (!ep || is_ep0(ep))
1340 return -ENODEV;
1341
1342 if (ep->dir_in)
1343 return -EOPNOTSUPP;
1344 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1345 return 0;
1346 else
1347 return ep_count_bytes_remain(ep) + 1;
1348 }
1349
1350 /**
1351 * pxa_ep_fifo_flush - Flushes one endpoint
1352 * @_ep: usb endpoint
1353 *
1354 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1355 */
1356 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1357 {
1358 struct pxa_ep *ep;
1359 struct udc_usb_ep *udc_usb_ep;
1360 unsigned long flags;
1361
1362 if (!_ep)
1363 return;
1364 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1365 ep = udc_usb_ep->pxa_ep;
1366 if (!ep || is_ep0(ep))
1367 return;
1368
1369 spin_lock_irqsave(&ep->lock, flags);
1370
1371 if (unlikely(!list_empty(&ep->queue)))
1372 ep_dbg(ep, "called while queue list not empty\n");
1373 ep_dbg(ep, "called\n");
1374
1375 /* for OUT, just read and discard the FIFO contents. */
1376 if (!ep->dir_in) {
1377 while (!ep_is_empty(ep))
1378 udc_ep_readl(ep, UDCDR);
1379 } else {
1380 /* most IN status is the same, but ISO can't stall */
1381 ep_write_UDCCSR(ep,
1382 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1383 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1384 }
1385
1386 spin_unlock_irqrestore(&ep->lock, flags);
1387 }
1388
1389 /**
1390 * pxa_ep_enable - Enables usb endpoint
1391 * @_ep: usb endpoint
1392 * @desc: usb endpoint descriptor
1393 *
1394 * Nothing much to do here, as ep configuration is done once and for all
1395 * before udc is enabled. After udc enable, no physical endpoint configuration
1396 * can be changed.
1397 * Function makes sanity checks and flushes the endpoint.
1398 */
1399 static int pxa_ep_enable(struct usb_ep *_ep,
1400 const struct usb_endpoint_descriptor *desc)
1401 {
1402 struct pxa_ep *ep;
1403 struct udc_usb_ep *udc_usb_ep;
1404 struct pxa_udc *udc;
1405
1406 if (!_ep || !desc)
1407 return -EINVAL;
1408
1409 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1410 if (udc_usb_ep->pxa_ep) {
1411 ep = udc_usb_ep->pxa_ep;
1412 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1413 _ep->name);
1414 } else {
1415 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1416 }
1417
1418 if (!ep || is_ep0(ep)) {
1419 dev_err(udc_usb_ep->dev->dev,
1420 "unable to match pxa_ep for ep %s\n",
1421 _ep->name);
1422 return -EINVAL;
1423 }
1424
1425 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1426 || (ep->type != usb_endpoint_type(desc))) {
1427 ep_err(ep, "type mismatch\n");
1428 return -EINVAL;
1429 }
1430
1431 if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1432 ep_err(ep, "bad maxpacket\n");
1433 return -ERANGE;
1434 }
1435
1436 udc_usb_ep->pxa_ep = ep;
1437 udc = ep->dev;
1438
1439 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1440 ep_err(ep, "bogus device state\n");
1441 return -ESHUTDOWN;
1442 }
1443
1444 ep->enabled = 1;
1445
1446 /* flush fifo (mostly for OUT buffers) */
1447 pxa_ep_fifo_flush(_ep);
1448
1449 ep_dbg(ep, "enabled\n");
1450 return 0;
1451 }
1452
1453 /**
1454 * pxa_ep_disable - Disable usb endpoint
1455 * @_ep: usb endpoint
1456 *
1457 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1458 * changed.
1459 * Function flushes the endpoint and related requests.
1460 */
1461 static int pxa_ep_disable(struct usb_ep *_ep)
1462 {
1463 struct pxa_ep *ep;
1464 struct udc_usb_ep *udc_usb_ep;
1465
1466 if (!_ep)
1467 return -EINVAL;
1468
1469 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1470 ep = udc_usb_ep->pxa_ep;
1471 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1472 return -EINVAL;
1473
1474 ep->enabled = 0;
1475 nuke(ep, -ESHUTDOWN);
1476
1477 pxa_ep_fifo_flush(_ep);
1478 udc_usb_ep->pxa_ep = NULL;
1479
1480 ep_dbg(ep, "disabled\n");
1481 return 0;
1482 }
1483
1484 static struct usb_ep_ops pxa_ep_ops = {
1485 .enable = pxa_ep_enable,
1486 .disable = pxa_ep_disable,
1487
1488 .alloc_request = pxa_ep_alloc_request,
1489 .free_request = pxa_ep_free_request,
1490
1491 .queue = pxa_ep_queue,
1492 .dequeue = pxa_ep_dequeue,
1493
1494 .set_halt = pxa_ep_set_halt,
1495 .fifo_status = pxa_ep_fifo_status,
1496 .fifo_flush = pxa_ep_fifo_flush,
1497 };
1498
1499 /**
1500 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1501 * @udc: udc device
1502 * @on: 0 if disconnect pullup resistor, 1 otherwise
1503 * Context: any
1504 *
1505 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1506 * declare it as a full speed usb device
1507 */
1508 static void dplus_pullup(struct pxa_udc *udc, int on)
1509 {
1510 if (on) {
1511 if (gpio_is_valid(udc->mach->gpio_pullup))
1512 gpio_set_value(udc->mach->gpio_pullup,
1513 !udc->mach->gpio_pullup_inverted);
1514 if (udc->mach->udc_command)
1515 udc->mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
1516 } else {
1517 if (gpio_is_valid(udc->mach->gpio_pullup))
1518 gpio_set_value(udc->mach->gpio_pullup,
1519 udc->mach->gpio_pullup_inverted);
1520 if (udc->mach->udc_command)
1521 udc->mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1522 }
1523 udc->pullup_on = on;
1524 }
1525
1526 /**
1527 * pxa_udc_get_frame - Returns usb frame number
1528 * @_gadget: usb gadget
1529 */
1530 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1531 {
1532 struct pxa_udc *udc = to_gadget_udc(_gadget);
1533
1534 return (udc_readl(udc, UDCFNR) & 0x7ff);
1535 }
1536
1537 /**
1538 * pxa_udc_wakeup - Force udc device out of suspend
1539 * @_gadget: usb gadget
1540 *
1541 * Returns 0 if successful, error code otherwise
1542 */
1543 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1544 {
1545 struct pxa_udc *udc = to_gadget_udc(_gadget);
1546
1547 /* host may not have enabled remote wakeup */
1548 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1549 return -EHOSTUNREACH;
1550 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1551 return 0;
1552 }
1553
1554 static void udc_enable(struct pxa_udc *udc);
1555 static void udc_disable(struct pxa_udc *udc);
1556
1557 /**
1558 * should_enable_udc - Tells if UDC should be enabled
1559 * @udc: udc device
1560 * Context: any
1561 *
1562 * The UDC should be enabled if :
1563
1564 * - the pullup resistor is connected
1565 * - and a gadget driver is bound
1566 * - and vbus is sensed (or no vbus sense is available)
1567 *
1568 * Returns 1 if UDC should be enabled, 0 otherwise
1569 */
1570 static int should_enable_udc(struct pxa_udc *udc)
1571 {
1572 int put_on;
1573
1574 put_on = ((udc->pullup_on) && (udc->driver));
1575 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1576 return put_on;
1577 }
1578
1579 /**
1580 * should_disable_udc - Tells if UDC should be disabled
1581 * @udc: udc device
1582 * Context: any
1583 *
1584 * The UDC should be disabled if :
1585 * - the pullup resistor is not connected
1586 * - or no gadget driver is bound
1587 * - or no vbus is sensed (when vbus sesing is available)
1588 *
1589 * Returns 1 if UDC should be disabled
1590 */
1591 static int should_disable_udc(struct pxa_udc *udc)
1592 {
1593 int put_off;
1594
1595 put_off = ((!udc->pullup_on) || (!udc->driver));
1596 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1597 return put_off;
1598 }
1599
1600 /**
1601 * pxa_udc_pullup - Offer manual D+ pullup control
1602 * @_gadget: usb gadget using the control
1603 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1604 * Context: !in_interrupt()
1605 *
1606 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1607 */
1608 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1609 {
1610 struct pxa_udc *udc = to_gadget_udc(_gadget);
1611
1612 if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command)
1613 return -EOPNOTSUPP;
1614
1615 dplus_pullup(udc, is_active);
1616
1617 if (should_enable_udc(udc))
1618 udc_enable(udc);
1619 if (should_disable_udc(udc))
1620 udc_disable(udc);
1621 return 0;
1622 }
1623
1624 static void udc_enable(struct pxa_udc *udc);
1625 static void udc_disable(struct pxa_udc *udc);
1626
1627 /**
1628 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1629 * @_gadget: usb gadget
1630 * @is_active: 0 if should disable the udc, 1 if should enable
1631 *
1632 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1633 * udc, and deactivates D+ pullup resistor.
1634 *
1635 * Returns 0
1636 */
1637 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1638 {
1639 struct pxa_udc *udc = to_gadget_udc(_gadget);
1640
1641 udc->vbus_sensed = is_active;
1642 if (should_enable_udc(udc))
1643 udc_enable(udc);
1644 if (should_disable_udc(udc))
1645 udc_disable(udc);
1646
1647 return 0;
1648 }
1649
1650 /**
1651 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1652 * @_gadget: usb gadget
1653 * @mA: current drawn
1654 *
1655 * Context: !in_interrupt()
1656 *
1657 * Called after a configuration was chosen by a USB host, to inform how much
1658 * current can be drawn by the device from VBus line.
1659 *
1660 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1661 */
1662 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1663 {
1664 struct pxa_udc *udc;
1665
1666 udc = to_gadget_udc(_gadget);
1667 if (!IS_ERR_OR_NULL(udc->transceiver))
1668 return usb_phy_set_power(udc->transceiver, mA);
1669 return -EOPNOTSUPP;
1670 }
1671
1672 static int pxa27x_udc_start(struct usb_gadget *g,
1673 struct usb_gadget_driver *driver);
1674 static int pxa27x_udc_stop(struct usb_gadget *g,
1675 struct usb_gadget_driver *driver);
1676
1677 static const struct usb_gadget_ops pxa_udc_ops = {
1678 .get_frame = pxa_udc_get_frame,
1679 .wakeup = pxa_udc_wakeup,
1680 .pullup = pxa_udc_pullup,
1681 .vbus_session = pxa_udc_vbus_session,
1682 .vbus_draw = pxa_udc_vbus_draw,
1683 .udc_start = pxa27x_udc_start,
1684 .udc_stop = pxa27x_udc_stop,
1685 };
1686
1687 /**
1688 * udc_disable - disable udc device controller
1689 * @udc: udc device
1690 * Context: any
1691 *
1692 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1693 * interrupts.
1694 */
1695 static void udc_disable(struct pxa_udc *udc)
1696 {
1697 if (!udc->enabled)
1698 return;
1699
1700 udc_writel(udc, UDCICR0, 0);
1701 udc_writel(udc, UDCICR1, 0);
1702
1703 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1704 clk_disable(udc->clk);
1705
1706 ep0_idle(udc);
1707 udc->gadget.speed = USB_SPEED_UNKNOWN;
1708
1709 udc->enabled = 0;
1710 }
1711
1712 /**
1713 * udc_init_data - Initialize udc device data structures
1714 * @dev: udc device
1715 *
1716 * Initializes gadget endpoint list, endpoints locks. No action is taken
1717 * on the hardware.
1718 */
1719 static void udc_init_data(struct pxa_udc *dev)
1720 {
1721 int i;
1722 struct pxa_ep *ep;
1723
1724 /* device/ep0 records init */
1725 INIT_LIST_HEAD(&dev->gadget.ep_list);
1726 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1727 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1728 ep0_idle(dev);
1729
1730 /* PXA endpoints init */
1731 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1732 ep = &dev->pxa_ep[i];
1733
1734 ep->enabled = is_ep0(ep);
1735 INIT_LIST_HEAD(&ep->queue);
1736 spin_lock_init(&ep->lock);
1737 }
1738
1739 /* USB endpoints init */
1740 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1741 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1742 &dev->gadget.ep_list);
1743 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1744 dev->udc_usb_ep[i].usb_ep.maxpacket);
1745 }
1746 }
1747
1748 /**
1749 * udc_enable - Enables the udc device
1750 * @dev: udc device
1751 *
1752 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1753 * interrupts, sets usb as UDC client and setups endpoints.
1754 */
1755 static void udc_enable(struct pxa_udc *udc)
1756 {
1757 if (udc->enabled)
1758 return;
1759
1760 udc_writel(udc, UDCICR0, 0);
1761 udc_writel(udc, UDCICR1, 0);
1762 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1763
1764 clk_enable(udc->clk);
1765
1766 ep0_idle(udc);
1767 udc->gadget.speed = USB_SPEED_FULL;
1768 memset(&udc->stats, 0, sizeof(udc->stats));
1769
1770 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1771 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1772 udelay(2);
1773 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1774 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1775
1776 /*
1777 * Caller must be able to sleep in order to cope with startup transients
1778 */
1779 msleep(100);
1780
1781 /* enable suspend/resume and reset irqs */
1782 udc_writel(udc, UDCICR1,
1783 UDCICR1_IECC | UDCICR1_IERU
1784 | UDCICR1_IESU | UDCICR1_IERS);
1785
1786 /* enable ep0 irqs */
1787 pio_irq_enable(&udc->pxa_ep[0]);
1788
1789 udc->enabled = 1;
1790 }
1791
1792 /**
1793 * pxa27x_start - Register gadget driver
1794 * @driver: gadget driver
1795 * @bind: bind function
1796 *
1797 * When a driver is successfully registered, it will receive control requests
1798 * including set_configuration(), which enables non-control requests. Then
1799 * usb traffic follows until a disconnect is reported. Then a host may connect
1800 * again, or the driver might get unbound.
1801 *
1802 * Note that the udc is not automatically enabled. Check function
1803 * should_enable_udc().
1804 *
1805 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1806 */
1807 static int pxa27x_udc_start(struct usb_gadget *g,
1808 struct usb_gadget_driver *driver)
1809 {
1810 struct pxa_udc *udc = to_pxa(g);
1811 int retval;
1812
1813 /* first hook up the driver ... */
1814 udc->driver = driver;
1815 dplus_pullup(udc, 1);
1816
1817 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1818 retval = otg_set_peripheral(udc->transceiver->otg,
1819 &udc->gadget);
1820 if (retval) {
1821 dev_err(udc->dev, "can't bind to transceiver\n");
1822 goto fail;
1823 }
1824 }
1825
1826 if (should_enable_udc(udc))
1827 udc_enable(udc);
1828 return 0;
1829
1830 fail:
1831 udc->driver = NULL;
1832 return retval;
1833 }
1834
1835 /**
1836 * stop_activity - Stops udc endpoints
1837 * @udc: udc device
1838 * @driver: gadget driver
1839 *
1840 * Disables all udc endpoints (even control endpoint), report disconnect to
1841 * the gadget user.
1842 */
1843 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver)
1844 {
1845 int i;
1846
1847 /* don't disconnect drivers more than once */
1848 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1849 driver = NULL;
1850 udc->gadget.speed = USB_SPEED_UNKNOWN;
1851
1852 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1853 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1854 }
1855
1856 /**
1857 * pxa27x_udc_stop - Unregister the gadget driver
1858 * @driver: gadget driver
1859 *
1860 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1861 */
1862 static int pxa27x_udc_stop(struct usb_gadget *g,
1863 struct usb_gadget_driver *driver)
1864 {
1865 struct pxa_udc *udc = to_pxa(g);
1866
1867 stop_activity(udc, driver);
1868 udc_disable(udc);
1869 dplus_pullup(udc, 0);
1870
1871 udc->driver = NULL;
1872
1873 if (!IS_ERR_OR_NULL(udc->transceiver))
1874 return otg_set_peripheral(udc->transceiver->otg, NULL);
1875 return 0;
1876 }
1877
1878 /**
1879 * handle_ep0_ctrl_req - handle control endpoint control request
1880 * @udc: udc device
1881 * @req: control request
1882 */
1883 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1884 struct pxa27x_request *req)
1885 {
1886 struct pxa_ep *ep = &udc->pxa_ep[0];
1887 union {
1888 struct usb_ctrlrequest r;
1889 u32 word[2];
1890 } u;
1891 int i;
1892 int have_extrabytes = 0;
1893 unsigned long flags;
1894
1895 nuke(ep, -EPROTO);
1896 spin_lock_irqsave(&ep->lock, flags);
1897
1898 /*
1899 * In the PXA320 manual, in the section about Back-to-Back setup
1900 * packets, it describes this situation. The solution is to set OPC to
1901 * get rid of the status packet, and then continue with the setup
1902 * packet. Generalize to pxa27x CPUs.
1903 */
1904 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1905 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1906
1907 /* read SETUP packet */
1908 for (i = 0; i < 2; i++) {
1909 if (unlikely(ep_is_empty(ep)))
1910 goto stall;
1911 u.word[i] = udc_ep_readl(ep, UDCDR);
1912 }
1913
1914 have_extrabytes = !ep_is_empty(ep);
1915 while (!ep_is_empty(ep)) {
1916 i = udc_ep_readl(ep, UDCDR);
1917 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1918 }
1919
1920 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1921 u.r.bRequestType, u.r.bRequest,
1922 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1923 le16_to_cpu(u.r.wLength));
1924 if (unlikely(have_extrabytes))
1925 goto stall;
1926
1927 if (u.r.bRequestType & USB_DIR_IN)
1928 set_ep0state(udc, IN_DATA_STAGE);
1929 else
1930 set_ep0state(udc, OUT_DATA_STAGE);
1931
1932 /* Tell UDC to enter Data Stage */
1933 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1934
1935 spin_unlock_irqrestore(&ep->lock, flags);
1936 i = udc->driver->setup(&udc->gadget, &u.r);
1937 spin_lock_irqsave(&ep->lock, flags);
1938 if (i < 0)
1939 goto stall;
1940 out:
1941 spin_unlock_irqrestore(&ep->lock, flags);
1942 return;
1943 stall:
1944 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1945 udc_ep_readl(ep, UDCCSR), i);
1946 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1947 set_ep0state(udc, STALL);
1948 goto out;
1949 }
1950
1951 /**
1952 * handle_ep0 - Handle control endpoint data transfers
1953 * @udc: udc device
1954 * @fifo_irq: 1 if triggered by fifo service type irq
1955 * @opc_irq: 1 if triggered by output packet complete type irq
1956 *
1957 * Context : when in_interrupt() or with ep->lock held
1958 *
1959 * Tries to transfer all pending request data into the endpoint and/or
1960 * transfer all pending data in the endpoint into usb requests.
1961 * Handles states of ep0 automata.
1962 *
1963 * PXA27x hardware handles several standard usb control requests without
1964 * driver notification. The requests fully handled by hardware are :
1965 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1966 * GET_STATUS
1967 * The requests handled by hardware, but with irq notification are :
1968 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1969 * The remaining standard requests really handled by handle_ep0 are :
1970 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1971 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1972 * uniformly, by gadget drivers.
1973 *
1974 * The control endpoint state machine is _not_ USB spec compliant, it's even
1975 * hardly compliant with Intel PXA270 developers guide.
1976 * The key points which inferred this state machine are :
1977 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1978 * software.
1979 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1980 * cleared by software.
1981 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1982 * before reading ep0.
1983 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1984 * (check Back-to-Back setup packet in developers guide).
1985 * - irq can be called on a "packet complete" event (opc_irq=1), while
1986 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1987 * from experimentation).
1988 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
1989 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1990 * => we never actually read the "status stage" packet of an IN data stage
1991 * => this is not documented in Intel documentation
1992 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1993 * STAGE. The driver add STATUS STAGE to send last zero length packet in
1994 * OUT_STATUS_STAGE.
1995 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
1996 * event is detected, we terminate the status stage without ackowledging the
1997 * packet (not to risk to loose a potential SETUP packet)
1998 */
1999 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
2000 {
2001 u32 udccsr0;
2002 struct pxa_ep *ep = &udc->pxa_ep[0];
2003 struct pxa27x_request *req = NULL;
2004 int completed = 0;
2005
2006 if (!list_empty(&ep->queue))
2007 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
2008
2009 udccsr0 = udc_ep_readl(ep, UDCCSR);
2010 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
2011 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
2012 (fifo_irq << 1 | opc_irq));
2013
2014 if (udccsr0 & UDCCSR0_SST) {
2015 ep_dbg(ep, "clearing stall status\n");
2016 nuke(ep, -EPIPE);
2017 ep_write_UDCCSR(ep, UDCCSR0_SST);
2018 ep0_idle(udc);
2019 }
2020
2021 if (udccsr0 & UDCCSR0_SA) {
2022 nuke(ep, 0);
2023 set_ep0state(udc, SETUP_STAGE);
2024 }
2025
2026 switch (udc->ep0state) {
2027 case WAIT_FOR_SETUP:
2028 /*
2029 * Hardware bug : beware, we cannot clear OPC, since we would
2030 * miss a potential OPC irq for a setup packet.
2031 * So, we only do ... nothing, and hope for a next irq with
2032 * UDCCSR0_SA set.
2033 */
2034 break;
2035 case SETUP_STAGE:
2036 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
2037 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
2038 handle_ep0_ctrl_req(udc, req);
2039 break;
2040 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
2041 if (epout_has_pkt(ep))
2042 ep_write_UDCCSR(ep, UDCCSR0_OPC);
2043 if (req && !ep_is_full(ep))
2044 completed = write_ep0_fifo(ep, req);
2045 if (completed)
2046 ep0_end_in_req(ep, req, NULL);
2047 break;
2048 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
2049 if (epout_has_pkt(ep) && req)
2050 completed = read_ep0_fifo(ep, req);
2051 if (completed)
2052 ep0_end_out_req(ep, req, NULL);
2053 break;
2054 case STALL:
2055 ep_write_UDCCSR(ep, UDCCSR0_FST);
2056 break;
2057 case IN_STATUS_STAGE:
2058 /*
2059 * Hardware bug : beware, we cannot clear OPC, since we would
2060 * miss a potential PC irq for a setup packet.
2061 * So, we only put the ep0 into WAIT_FOR_SETUP state.
2062 */
2063 if (opc_irq)
2064 ep0_idle(udc);
2065 break;
2066 case OUT_STATUS_STAGE:
2067 case WAIT_ACK_SET_CONF_INTERF:
2068 ep_warn(ep, "should never get in %s state here!!!\n",
2069 EP0_STNAME(ep->dev));
2070 ep0_idle(udc);
2071 break;
2072 }
2073 }
2074
2075 /**
2076 * handle_ep - Handle endpoint data tranfers
2077 * @ep: pxa physical endpoint
2078 *
2079 * Tries to transfer all pending request data into the endpoint and/or
2080 * transfer all pending data in the endpoint into usb requests.
2081 *
2082 * Is always called when in_interrupt() and with ep->lock released.
2083 */
2084 static void handle_ep(struct pxa_ep *ep)
2085 {
2086 struct pxa27x_request *req;
2087 int completed;
2088 u32 udccsr;
2089 int is_in = ep->dir_in;
2090 int loop = 0;
2091 unsigned long flags;
2092
2093 spin_lock_irqsave(&ep->lock, flags);
2094 if (ep->in_handle_ep)
2095 goto recursion_detected;
2096 ep->in_handle_ep = 1;
2097
2098 do {
2099 completed = 0;
2100 udccsr = udc_ep_readl(ep, UDCCSR);
2101
2102 if (likely(!list_empty(&ep->queue)))
2103 req = list_entry(ep->queue.next,
2104 struct pxa27x_request, queue);
2105 else
2106 req = NULL;
2107
2108 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2109 req, udccsr, loop++);
2110
2111 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2112 udc_ep_writel(ep, UDCCSR,
2113 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2114 if (!req)
2115 break;
2116
2117 if (unlikely(is_in)) {
2118 if (likely(!ep_is_full(ep)))
2119 completed = write_fifo(ep, req);
2120 } else {
2121 if (likely(epout_has_pkt(ep)))
2122 completed = read_fifo(ep, req);
2123 }
2124
2125 if (completed) {
2126 if (is_in)
2127 ep_end_in_req(ep, req, &flags);
2128 else
2129 ep_end_out_req(ep, req, &flags);
2130 }
2131 } while (completed);
2132
2133 ep->in_handle_ep = 0;
2134 recursion_detected:
2135 spin_unlock_irqrestore(&ep->lock, flags);
2136 }
2137
2138 /**
2139 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2140 * @udc: udc device
2141 * @config: usb configuration
2142 *
2143 * Post the request to upper level.
2144 * Don't use any pxa specific harware configuration capabilities
2145 */
2146 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2147 {
2148 struct usb_ctrlrequest req ;
2149
2150 dev_dbg(udc->dev, "config=%d\n", config);
2151
2152 udc->config = config;
2153 udc->last_interface = 0;
2154 udc->last_alternate = 0;
2155
2156 req.bRequestType = 0;
2157 req.bRequest = USB_REQ_SET_CONFIGURATION;
2158 req.wValue = config;
2159 req.wIndex = 0;
2160 req.wLength = 0;
2161
2162 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2163 udc->driver->setup(&udc->gadget, &req);
2164 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2165 }
2166
2167 /**
2168 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2169 * @udc: udc device
2170 * @iface: interface number
2171 * @alt: alternate setting number
2172 *
2173 * Post the request to upper level.
2174 * Don't use any pxa specific harware configuration capabilities
2175 */
2176 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2177 {
2178 struct usb_ctrlrequest req;
2179
2180 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2181
2182 udc->last_interface = iface;
2183 udc->last_alternate = alt;
2184
2185 req.bRequestType = USB_RECIP_INTERFACE;
2186 req.bRequest = USB_REQ_SET_INTERFACE;
2187 req.wValue = alt;
2188 req.wIndex = iface;
2189 req.wLength = 0;
2190
2191 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2192 udc->driver->setup(&udc->gadget, &req);
2193 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2194 }
2195
2196 /*
2197 * irq_handle_data - Handle data transfer
2198 * @irq: irq IRQ number
2199 * @udc: dev pxa_udc device structure
2200 *
2201 * Called from irq handler, transferts data to or from endpoint to queue
2202 */
2203 static void irq_handle_data(int irq, struct pxa_udc *udc)
2204 {
2205 int i;
2206 struct pxa_ep *ep;
2207 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2208 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2209
2210 if (udcisr0 & UDCISR_INT_MASK) {
2211 udc->pxa_ep[0].stats.irqs++;
2212 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2213 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2214 !!(udcisr0 & UDCICR_PKTCOMPL));
2215 }
2216
2217 udcisr0 >>= 2;
2218 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2219 if (!(udcisr0 & UDCISR_INT_MASK))
2220 continue;
2221
2222 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2223
2224 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2225 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2226 ep = &udc->pxa_ep[i];
2227 ep->stats.irqs++;
2228 handle_ep(ep);
2229 }
2230 }
2231
2232 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2233 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2234 if (!(udcisr1 & UDCISR_INT_MASK))
2235 continue;
2236
2237 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2238 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2239 ep = &udc->pxa_ep[i];
2240 ep->stats.irqs++;
2241 handle_ep(ep);
2242 }
2243 }
2244
2245 }
2246
2247 /**
2248 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2249 * @udc: udc device
2250 */
2251 static void irq_udc_suspend(struct pxa_udc *udc)
2252 {
2253 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2254 udc->stats.irqs_suspend++;
2255
2256 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2257 && udc->driver && udc->driver->suspend)
2258 udc->driver->suspend(&udc->gadget);
2259 ep0_idle(udc);
2260 }
2261
2262 /**
2263 * irq_udc_resume - Handle IRQ "UDC Resume"
2264 * @udc: udc device
2265 */
2266 static void irq_udc_resume(struct pxa_udc *udc)
2267 {
2268 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2269 udc->stats.irqs_resume++;
2270
2271 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2272 && udc->driver && udc->driver->resume)
2273 udc->driver->resume(&udc->gadget);
2274 }
2275
2276 /**
2277 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2278 * @udc: udc device
2279 */
2280 static void irq_udc_reconfig(struct pxa_udc *udc)
2281 {
2282 unsigned config, interface, alternate, config_change;
2283 u32 udccr = udc_readl(udc, UDCCR);
2284
2285 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2286 udc->stats.irqs_reconfig++;
2287
2288 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2289 config_change = (config != udc->config);
2290 pxa27x_change_configuration(udc, config);
2291
2292 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2293 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2294 pxa27x_change_interface(udc, interface, alternate);
2295
2296 if (config_change)
2297 update_pxa_ep_matches(udc);
2298 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2299 }
2300
2301 /**
2302 * irq_udc_reset - Handle IRQ "UDC Reset"
2303 * @udc: udc device
2304 */
2305 static void irq_udc_reset(struct pxa_udc *udc)
2306 {
2307 u32 udccr = udc_readl(udc, UDCCR);
2308 struct pxa_ep *ep = &udc->pxa_ep[0];
2309
2310 dev_info(udc->dev, "USB reset\n");
2311 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2312 udc->stats.irqs_reset++;
2313
2314 if ((udccr & UDCCR_UDA) == 0) {
2315 dev_dbg(udc->dev, "USB reset start\n");
2316 stop_activity(udc, udc->driver);
2317 }
2318 udc->gadget.speed = USB_SPEED_FULL;
2319 memset(&udc->stats, 0, sizeof udc->stats);
2320
2321 nuke(ep, -EPROTO);
2322 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2323 ep0_idle(udc);
2324 }
2325
2326 /**
2327 * pxa_udc_irq - Main irq handler
2328 * @irq: irq number
2329 * @_dev: udc device
2330 *
2331 * Handles all udc interrupts
2332 */
2333 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2334 {
2335 struct pxa_udc *udc = _dev;
2336 u32 udcisr0 = udc_readl(udc, UDCISR0);
2337 u32 udcisr1 = udc_readl(udc, UDCISR1);
2338 u32 udccr = udc_readl(udc, UDCCR);
2339 u32 udcisr1_spec;
2340
2341 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2342 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2343
2344 udcisr1_spec = udcisr1 & 0xf8000000;
2345 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2346 irq_udc_suspend(udc);
2347 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2348 irq_udc_resume(udc);
2349 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2350 irq_udc_reconfig(udc);
2351 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2352 irq_udc_reset(udc);
2353
2354 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2355 irq_handle_data(irq, udc);
2356
2357 return IRQ_HANDLED;
2358 }
2359
2360 static struct pxa_udc memory = {
2361 .gadget = {
2362 .ops = &pxa_udc_ops,
2363 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2364 .name = driver_name,
2365 .dev = {
2366 .init_name = "gadget",
2367 },
2368 },
2369
2370 .udc_usb_ep = {
2371 USB_EP_CTRL,
2372 USB_EP_OUT_BULK(1),
2373 USB_EP_IN_BULK(2),
2374 USB_EP_IN_ISO(3),
2375 USB_EP_OUT_ISO(4),
2376 USB_EP_IN_INT(5),
2377 },
2378
2379 .pxa_ep = {
2380 PXA_EP_CTRL,
2381 /* Endpoints for gadget zero */
2382 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2383 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2384 /* Endpoints for ether gadget, file storage gadget */
2385 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2386 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2387 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2388 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2389 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2390 /* Endpoints for RNDIS, serial */
2391 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2392 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2393 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2394 /*
2395 * All the following endpoints are only for completion. They
2396 * won't never work, as multiple interfaces are really broken on
2397 * the pxa.
2398 */
2399 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2400 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2401 /* Endpoint for CDC Ether */
2402 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2403 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2404 }
2405 };
2406
2407 /**
2408 * pxa_udc_probe - probes the udc device
2409 * @_dev: platform device
2410 *
2411 * Perform basic init : allocates udc clock, creates sysfs files, requests
2412 * irq.
2413 */
2414 static int pxa_udc_probe(struct platform_device *pdev)
2415 {
2416 struct resource *regs;
2417 struct pxa_udc *udc = &memory;
2418 int retval = 0, gpio;
2419
2420 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2421 if (!regs)
2422 return -ENXIO;
2423 udc->irq = platform_get_irq(pdev, 0);
2424 if (udc->irq < 0)
2425 return udc->irq;
2426
2427 udc->dev = &pdev->dev;
2428 udc->mach = dev_get_platdata(&pdev->dev);
2429 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2430
2431 gpio = udc->mach->gpio_pullup;
2432 if (gpio_is_valid(gpio)) {
2433 retval = gpio_request(gpio, "USB D+ pullup");
2434 if (retval == 0)
2435 gpio_direction_output(gpio,
2436 udc->mach->gpio_pullup_inverted);
2437 }
2438 if (retval) {
2439 dev_err(&pdev->dev, "Couldn't request gpio %d : %d\n",
2440 gpio, retval);
2441 return retval;
2442 }
2443
2444 udc->clk = clk_get(&pdev->dev, NULL);
2445 if (IS_ERR(udc->clk)) {
2446 retval = PTR_ERR(udc->clk);
2447 goto err_clk;
2448 }
2449
2450 retval = -ENOMEM;
2451 udc->regs = ioremap(regs->start, resource_size(regs));
2452 if (!udc->regs) {
2453 dev_err(&pdev->dev, "Unable to map UDC I/O memory\n");
2454 goto err_map;
2455 }
2456
2457 udc->vbus_sensed = 0;
2458
2459 the_controller = udc;
2460 platform_set_drvdata(pdev, udc);
2461 udc_init_data(udc);
2462 pxa_eps_setup(udc);
2463
2464 /* irq setup after old hardware state is cleaned up */
2465 retval = request_irq(udc->irq, pxa_udc_irq,
2466 IRQF_SHARED, driver_name, udc);
2467 if (retval != 0) {
2468 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2469 driver_name, udc->irq, retval);
2470 goto err_irq;
2471 }
2472
2473 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2474 if (retval)
2475 goto err_add_udc;
2476
2477 pxa_init_debugfs(udc);
2478
2479 return 0;
2480
2481 err_add_udc:
2482 free_irq(udc->irq, udc);
2483 err_irq:
2484 iounmap(udc->regs);
2485 err_map:
2486 clk_put(udc->clk);
2487 udc->clk = NULL;
2488 err_clk:
2489 return retval;
2490 }
2491
2492 /**
2493 * pxa_udc_remove - removes the udc device driver
2494 * @_dev: platform device
2495 */
2496 static int pxa_udc_remove(struct platform_device *_dev)
2497 {
2498 struct pxa_udc *udc = platform_get_drvdata(_dev);
2499 int gpio = udc->mach->gpio_pullup;
2500
2501 usb_del_gadget_udc(&udc->gadget);
2502 usb_gadget_unregister_driver(udc->driver);
2503 free_irq(udc->irq, udc);
2504 pxa_cleanup_debugfs(udc);
2505 if (gpio_is_valid(gpio))
2506 gpio_free(gpio);
2507
2508 usb_put_phy(udc->transceiver);
2509
2510 udc->transceiver = NULL;
2511 the_controller = NULL;
2512 clk_put(udc->clk);
2513 iounmap(udc->regs);
2514
2515 return 0;
2516 }
2517
2518 static void pxa_udc_shutdown(struct platform_device *_dev)
2519 {
2520 struct pxa_udc *udc = platform_get_drvdata(_dev);
2521
2522 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2523 udc_disable(udc);
2524 }
2525
2526 #ifdef CONFIG_PXA27x
2527 extern void pxa27x_clear_otgph(void);
2528 #else
2529 #define pxa27x_clear_otgph() do {} while (0)
2530 #endif
2531
2532 #ifdef CONFIG_PM
2533 /**
2534 * pxa_udc_suspend - Suspend udc device
2535 * @_dev: platform device
2536 * @state: suspend state
2537 *
2538 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2539 * device.
2540 */
2541 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2542 {
2543 int i;
2544 struct pxa_udc *udc = platform_get_drvdata(_dev);
2545 struct pxa_ep *ep;
2546
2547 ep = &udc->pxa_ep[0];
2548 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2549 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
2550 ep = &udc->pxa_ep[i];
2551 ep->udccsr_value = udc_ep_readl(ep, UDCCSR);
2552 ep->udccr_value = udc_ep_readl(ep, UDCCR);
2553 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
2554 ep->udccsr_value, ep->udccr_value);
2555 }
2556
2557 udc_disable(udc);
2558 udc->pullup_resume = udc->pullup_on;
2559 dplus_pullup(udc, 0);
2560
2561 return 0;
2562 }
2563
2564 /**
2565 * pxa_udc_resume - Resume udc device
2566 * @_dev: platform device
2567 *
2568 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2569 * device.
2570 */
2571 static int pxa_udc_resume(struct platform_device *_dev)
2572 {
2573 int i;
2574 struct pxa_udc *udc = platform_get_drvdata(_dev);
2575 struct pxa_ep *ep;
2576
2577 ep = &udc->pxa_ep[0];
2578 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2579 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
2580 ep = &udc->pxa_ep[i];
2581 udc_ep_writel(ep, UDCCSR, ep->udccsr_value);
2582 udc_ep_writel(ep, UDCCR, ep->udccr_value);
2583 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
2584 ep->udccsr_value, ep->udccr_value);
2585 }
2586
2587 dplus_pullup(udc, udc->pullup_resume);
2588 if (should_enable_udc(udc))
2589 udc_enable(udc);
2590 /*
2591 * We do not handle OTG yet.
2592 *
2593 * OTGPH bit is set when sleep mode is entered.
2594 * it indicates that OTG pad is retaining its state.
2595 * Upon exit from sleep mode and before clearing OTGPH,
2596 * Software must configure the USB OTG pad, UDC, and UHC
2597 * to the state they were in before entering sleep mode.
2598 */
2599 pxa27x_clear_otgph();
2600
2601 return 0;
2602 }
2603 #endif
2604
2605 /* work with hotplug and coldplug */
2606 MODULE_ALIAS("platform:pxa27x-udc");
2607
2608 static struct platform_driver udc_driver = {
2609 .driver = {
2610 .name = "pxa27x-udc",
2611 .owner = THIS_MODULE,
2612 },
2613 .probe = pxa_udc_probe,
2614 .remove = pxa_udc_remove,
2615 .shutdown = pxa_udc_shutdown,
2616 #ifdef CONFIG_PM
2617 .suspend = pxa_udc_suspend,
2618 .resume = pxa_udc_resume
2619 #endif
2620 };
2621
2622 module_platform_driver(udc_driver);
2623
2624 MODULE_DESCRIPTION(DRIVER_DESC);
2625 MODULE_AUTHOR("Robert Jarzmik");
2626 MODULE_LICENSE("GPL");