]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/usb/gadget/udc/core.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / drivers / usb / gadget / udc / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3 * udc.c - Core UDC Framework
4 *
5 * Copyright (C) 2010 Texas Instruments
6 * Author: Felipe Balbi <balbi@ti.com>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21
22 #include "trace.h"
23
24 /**
25 * struct usb_udc - describes one usb device controller
26 * @driver - the gadget driver pointer. For use by the class code
27 * @dev - the child device to the actual controller
28 * @gadget - the gadget. For use by the class code
29 * @list - for use by the udc class driver
30 * @vbus - for udcs who care about vbus status, this value is real vbus status;
31 * for udcs who do not care about vbus status, this value is always true
32 *
33 * This represents the internal data structure which is used by the UDC-class
34 * to hold information about udc driver and gadget together.
35 */
36 struct usb_udc {
37 struct usb_gadget_driver *driver;
38 struct usb_gadget *gadget;
39 struct device dev;
40 struct list_head list;
41 bool vbus;
42 };
43
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 struct usb_gadget_driver *driver);
51
52 /* ------------------------------------------------------------------------- */
53
54 /**
55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56 * @ep:the endpoint being configured
57 * @maxpacket_limit:value of maximum packet size limit
58 *
59 * This function should be used only in UDC drivers to initialize endpoint
60 * (usually in probe function).
61 */
62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 unsigned maxpacket_limit)
64 {
65 ep->maxpacket_limit = maxpacket_limit;
66 ep->maxpacket = maxpacket_limit;
67
68 trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71
72 /**
73 * usb_ep_enable - configure endpoint, making it usable
74 * @ep:the endpoint being configured. may not be the endpoint named "ep0".
75 * drivers discover endpoints through the ep_list of a usb_gadget.
76 *
77 * When configurations are set, or when interface settings change, the driver
78 * will enable or disable the relevant endpoints. while it is enabled, an
79 * endpoint may be used for i/o until the driver receives a disconnect() from
80 * the host or until the endpoint is disabled.
81 *
82 * the ep0 implementation (which calls this routine) must ensure that the
83 * hardware capabilities of each endpoint match the descriptor provided
84 * for it. for example, an endpoint named "ep2in-bulk" would be usable
85 * for interrupt transfers as well as bulk, but it likely couldn't be used
86 * for iso transfers or for endpoint 14. some endpoints are fully
87 * configurable, with more generic names like "ep-a". (remember that for
88 * USB, "in" means "towards the USB master".)
89 *
90 * returns zero, or a negative error code.
91 */
92 int usb_ep_enable(struct usb_ep *ep)
93 {
94 int ret = 0;
95
96 if (ep->enabled)
97 goto out;
98
99 ret = ep->ops->enable(ep, ep->desc);
100 if (ret)
101 goto out;
102
103 ep->enabled = true;
104
105 out:
106 trace_usb_ep_enable(ep, ret);
107
108 return ret;
109 }
110 EXPORT_SYMBOL_GPL(usb_ep_enable);
111
112 /**
113 * usb_ep_disable - endpoint is no longer usable
114 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
115 *
116 * no other task may be using this endpoint when this is called.
117 * any pending and uncompleted requests will complete with status
118 * indicating disconnect (-ESHUTDOWN) before this call returns.
119 * gadget drivers must call usb_ep_enable() again before queueing
120 * requests to the endpoint.
121 *
122 * returns zero, or a negative error code.
123 */
124 int usb_ep_disable(struct usb_ep *ep)
125 {
126 int ret = 0;
127
128 if (!ep->enabled)
129 goto out;
130
131 ret = ep->ops->disable(ep);
132 if (ret)
133 goto out;
134
135 ep->enabled = false;
136
137 out:
138 trace_usb_ep_disable(ep, ret);
139
140 return ret;
141 }
142 EXPORT_SYMBOL_GPL(usb_ep_disable);
143
144 /**
145 * usb_ep_alloc_request - allocate a request object to use with this endpoint
146 * @ep:the endpoint to be used with with the request
147 * @gfp_flags:GFP_* flags to use
148 *
149 * Request objects must be allocated with this call, since they normally
150 * need controller-specific setup and may even need endpoint-specific
151 * resources such as allocation of DMA descriptors.
152 * Requests may be submitted with usb_ep_queue(), and receive a single
153 * completion callback. Free requests with usb_ep_free_request(), when
154 * they are no longer needed.
155 *
156 * Returns the request, or null if one could not be allocated.
157 */
158 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
159 gfp_t gfp_flags)
160 {
161 struct usb_request *req = NULL;
162
163 req = ep->ops->alloc_request(ep, gfp_flags);
164
165 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
166
167 return req;
168 }
169 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
170
171 /**
172 * usb_ep_free_request - frees a request object
173 * @ep:the endpoint associated with the request
174 * @req:the request being freed
175 *
176 * Reverses the effect of usb_ep_alloc_request().
177 * Caller guarantees the request is not queued, and that it will
178 * no longer be requeued (or otherwise used).
179 */
180 void usb_ep_free_request(struct usb_ep *ep,
181 struct usb_request *req)
182 {
183 ep->ops->free_request(ep, req);
184 trace_usb_ep_free_request(ep, req, 0);
185 }
186 EXPORT_SYMBOL_GPL(usb_ep_free_request);
187
188 /**
189 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
190 * @ep:the endpoint associated with the request
191 * @req:the request being submitted
192 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
193 * pre-allocate all necessary memory with the request.
194 *
195 * This tells the device controller to perform the specified request through
196 * that endpoint (reading or writing a buffer). When the request completes,
197 * including being canceled by usb_ep_dequeue(), the request's completion
198 * routine is called to return the request to the driver. Any endpoint
199 * (except control endpoints like ep0) may have more than one transfer
200 * request queued; they complete in FIFO order. Once a gadget driver
201 * submits a request, that request may not be examined or modified until it
202 * is given back to that driver through the completion callback.
203 *
204 * Each request is turned into one or more packets. The controller driver
205 * never merges adjacent requests into the same packet. OUT transfers
206 * will sometimes use data that's already buffered in the hardware.
207 * Drivers can rely on the fact that the first byte of the request's buffer
208 * always corresponds to the first byte of some USB packet, for both
209 * IN and OUT transfers.
210 *
211 * Bulk endpoints can queue any amount of data; the transfer is packetized
212 * automatically. The last packet will be short if the request doesn't fill it
213 * out completely. Zero length packets (ZLPs) should be avoided in portable
214 * protocols since not all usb hardware can successfully handle zero length
215 * packets. (ZLPs may be explicitly written, and may be implicitly written if
216 * the request 'zero' flag is set.) Bulk endpoints may also be used
217 * for interrupt transfers; but the reverse is not true, and some endpoints
218 * won't support every interrupt transfer. (Such as 768 byte packets.)
219 *
220 * Interrupt-only endpoints are less functional than bulk endpoints, for
221 * example by not supporting queueing or not handling buffers that are
222 * larger than the endpoint's maxpacket size. They may also treat data
223 * toggle differently.
224 *
225 * Control endpoints ... after getting a setup() callback, the driver queues
226 * one response (even if it would be zero length). That enables the
227 * status ack, after transferring data as specified in the response. Setup
228 * functions may return negative error codes to generate protocol stalls.
229 * (Note that some USB device controllers disallow protocol stall responses
230 * in some cases.) When control responses are deferred (the response is
231 * written after the setup callback returns), then usb_ep_set_halt() may be
232 * used on ep0 to trigger protocol stalls. Depending on the controller,
233 * it may not be possible to trigger a status-stage protocol stall when the
234 * data stage is over, that is, from within the response's completion
235 * routine.
236 *
237 * For periodic endpoints, like interrupt or isochronous ones, the usb host
238 * arranges to poll once per interval, and the gadget driver usually will
239 * have queued some data to transfer at that time.
240 *
241 * Returns zero, or a negative error code. Endpoints that are not enabled
242 * report errors; errors will also be
243 * reported when the usb peripheral is disconnected.
244 */
245 int usb_ep_queue(struct usb_ep *ep,
246 struct usb_request *req, gfp_t gfp_flags)
247 {
248 int ret = 0;
249
250 if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
251 ret = -ESHUTDOWN;
252 goto out;
253 }
254
255 ret = ep->ops->queue(ep, req, gfp_flags);
256
257 out:
258 trace_usb_ep_queue(ep, req, ret);
259
260 return ret;
261 }
262 EXPORT_SYMBOL_GPL(usb_ep_queue);
263
264 /**
265 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
266 * @ep:the endpoint associated with the request
267 * @req:the request being canceled
268 *
269 * If the request is still active on the endpoint, it is dequeued and its
270 * completion routine is called (with status -ECONNRESET); else a negative
271 * error code is returned. This is guaranteed to happen before the call to
272 * usb_ep_dequeue() returns.
273 *
274 * Note that some hardware can't clear out write fifos (to unlink the request
275 * at the head of the queue) except as part of disconnecting from usb. Such
276 * restrictions prevent drivers from supporting configuration changes,
277 * even to configuration zero (a "chapter 9" requirement).
278 */
279 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
280 {
281 int ret;
282
283 ret = ep->ops->dequeue(ep, req);
284 trace_usb_ep_dequeue(ep, req, ret);
285
286 return ret;
287 }
288 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
289
290 /**
291 * usb_ep_set_halt - sets the endpoint halt feature.
292 * @ep: the non-isochronous endpoint being stalled
293 *
294 * Use this to stall an endpoint, perhaps as an error report.
295 * Except for control endpoints,
296 * the endpoint stays halted (will not stream any data) until the host
297 * clears this feature; drivers may need to empty the endpoint's request
298 * queue first, to make sure no inappropriate transfers happen.
299 *
300 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
301 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
302 * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
303 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
304 *
305 * Returns zero, or a negative error code. On success, this call sets
306 * underlying hardware state that blocks data transfers.
307 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
308 * transfer requests are still queued, or if the controller hardware
309 * (usually a FIFO) still holds bytes that the host hasn't collected.
310 */
311 int usb_ep_set_halt(struct usb_ep *ep)
312 {
313 int ret;
314
315 ret = ep->ops->set_halt(ep, 1);
316 trace_usb_ep_set_halt(ep, ret);
317
318 return ret;
319 }
320 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
321
322 /**
323 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
324 * @ep:the bulk or interrupt endpoint being reset
325 *
326 * Use this when responding to the standard usb "set interface" request,
327 * for endpoints that aren't reconfigured, after clearing any other state
328 * in the endpoint's i/o queue.
329 *
330 * Returns zero, or a negative error code. On success, this call clears
331 * the underlying hardware state reflecting endpoint halt and data toggle.
332 * Note that some hardware can't support this request (like pxa2xx_udc),
333 * and accordingly can't correctly implement interface altsettings.
334 */
335 int usb_ep_clear_halt(struct usb_ep *ep)
336 {
337 int ret;
338
339 ret = ep->ops->set_halt(ep, 0);
340 trace_usb_ep_clear_halt(ep, ret);
341
342 return ret;
343 }
344 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
345
346 /**
347 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
348 * @ep: the endpoint being wedged
349 *
350 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
351 * requests. If the gadget driver clears the halt status, it will
352 * automatically unwedge the endpoint.
353 *
354 * Returns zero on success, else negative errno.
355 */
356 int usb_ep_set_wedge(struct usb_ep *ep)
357 {
358 int ret;
359
360 if (ep->ops->set_wedge)
361 ret = ep->ops->set_wedge(ep);
362 else
363 ret = ep->ops->set_halt(ep, 1);
364
365 trace_usb_ep_set_wedge(ep, ret);
366
367 return ret;
368 }
369 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
370
371 /**
372 * usb_ep_fifo_status - returns number of bytes in fifo, or error
373 * @ep: the endpoint whose fifo status is being checked.
374 *
375 * FIFO endpoints may have "unclaimed data" in them in certain cases,
376 * such as after aborted transfers. Hosts may not have collected all
377 * the IN data written by the gadget driver (and reported by a request
378 * completion). The gadget driver may not have collected all the data
379 * written OUT to it by the host. Drivers that need precise handling for
380 * fault reporting or recovery may need to use this call.
381 *
382 * This returns the number of such bytes in the fifo, or a negative
383 * errno if the endpoint doesn't use a FIFO or doesn't support such
384 * precise handling.
385 */
386 int usb_ep_fifo_status(struct usb_ep *ep)
387 {
388 int ret;
389
390 if (ep->ops->fifo_status)
391 ret = ep->ops->fifo_status(ep);
392 else
393 ret = -EOPNOTSUPP;
394
395 trace_usb_ep_fifo_status(ep, ret);
396
397 return ret;
398 }
399 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
400
401 /**
402 * usb_ep_fifo_flush - flushes contents of a fifo
403 * @ep: the endpoint whose fifo is being flushed.
404 *
405 * This call may be used to flush the "unclaimed data" that may exist in
406 * an endpoint fifo after abnormal transaction terminations. The call
407 * must never be used except when endpoint is not being used for any
408 * protocol translation.
409 */
410 void usb_ep_fifo_flush(struct usb_ep *ep)
411 {
412 if (ep->ops->fifo_flush)
413 ep->ops->fifo_flush(ep);
414
415 trace_usb_ep_fifo_flush(ep, 0);
416 }
417 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
418
419 /* ------------------------------------------------------------------------- */
420
421 /**
422 * usb_gadget_frame_number - returns the current frame number
423 * @gadget: controller that reports the frame number
424 *
425 * Returns the usb frame number, normally eleven bits from a SOF packet,
426 * or negative errno if this device doesn't support this capability.
427 */
428 int usb_gadget_frame_number(struct usb_gadget *gadget)
429 {
430 int ret;
431
432 ret = gadget->ops->get_frame(gadget);
433
434 trace_usb_gadget_frame_number(gadget, ret);
435
436 return ret;
437 }
438 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
439
440 /**
441 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
442 * @gadget: controller used to wake up the host
443 *
444 * Returns zero on success, else negative error code if the hardware
445 * doesn't support such attempts, or its support has not been enabled
446 * by the usb host. Drivers must return device descriptors that report
447 * their ability to support this, or hosts won't enable it.
448 *
449 * This may also try to use SRP to wake the host and start enumeration,
450 * even if OTG isn't otherwise in use. OTG devices may also start
451 * remote wakeup even when hosts don't explicitly enable it.
452 */
453 int usb_gadget_wakeup(struct usb_gadget *gadget)
454 {
455 int ret = 0;
456
457 if (!gadget->ops->wakeup) {
458 ret = -EOPNOTSUPP;
459 goto out;
460 }
461
462 ret = gadget->ops->wakeup(gadget);
463
464 out:
465 trace_usb_gadget_wakeup(gadget, ret);
466
467 return ret;
468 }
469 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
470
471 /**
472 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
473 * @gadget:the device being declared as self-powered
474 *
475 * this affects the device status reported by the hardware driver
476 * to reflect that it now has a local power supply.
477 *
478 * returns zero on success, else negative errno.
479 */
480 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
481 {
482 int ret = 0;
483
484 if (!gadget->ops->set_selfpowered) {
485 ret = -EOPNOTSUPP;
486 goto out;
487 }
488
489 ret = gadget->ops->set_selfpowered(gadget, 1);
490
491 out:
492 trace_usb_gadget_set_selfpowered(gadget, ret);
493
494 return ret;
495 }
496 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
497
498 /**
499 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
500 * @gadget:the device being declared as bus-powered
501 *
502 * this affects the device status reported by the hardware driver.
503 * some hardware may not support bus-powered operation, in which
504 * case this feature's value can never change.
505 *
506 * returns zero on success, else negative errno.
507 */
508 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
509 {
510 int ret = 0;
511
512 if (!gadget->ops->set_selfpowered) {
513 ret = -EOPNOTSUPP;
514 goto out;
515 }
516
517 ret = gadget->ops->set_selfpowered(gadget, 0);
518
519 out:
520 trace_usb_gadget_clear_selfpowered(gadget, ret);
521
522 return ret;
523 }
524 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
525
526 /**
527 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
528 * @gadget:The device which now has VBUS power.
529 * Context: can sleep
530 *
531 * This call is used by a driver for an external transceiver (or GPIO)
532 * that detects a VBUS power session starting. Common responses include
533 * resuming the controller, activating the D+ (or D-) pullup to let the
534 * host detect that a USB device is attached, and starting to draw power
535 * (8mA or possibly more, especially after SET_CONFIGURATION).
536 *
537 * Returns zero on success, else negative errno.
538 */
539 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
540 {
541 int ret = 0;
542
543 if (!gadget->ops->vbus_session) {
544 ret = -EOPNOTSUPP;
545 goto out;
546 }
547
548 ret = gadget->ops->vbus_session(gadget, 1);
549
550 out:
551 trace_usb_gadget_vbus_connect(gadget, ret);
552
553 return ret;
554 }
555 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
556
557 /**
558 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
559 * @gadget:The device whose VBUS usage is being described
560 * @mA:How much current to draw, in milliAmperes. This should be twice
561 * the value listed in the configuration descriptor bMaxPower field.
562 *
563 * This call is used by gadget drivers during SET_CONFIGURATION calls,
564 * reporting how much power the device may consume. For example, this
565 * could affect how quickly batteries are recharged.
566 *
567 * Returns zero on success, else negative errno.
568 */
569 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
570 {
571 int ret = 0;
572
573 if (!gadget->ops->vbus_draw) {
574 ret = -EOPNOTSUPP;
575 goto out;
576 }
577
578 ret = gadget->ops->vbus_draw(gadget, mA);
579 if (!ret)
580 gadget->mA = mA;
581
582 out:
583 trace_usb_gadget_vbus_draw(gadget, ret);
584
585 return ret;
586 }
587 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
588
589 /**
590 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
591 * @gadget:the device whose VBUS supply is being described
592 * Context: can sleep
593 *
594 * This call is used by a driver for an external transceiver (or GPIO)
595 * that detects a VBUS power session ending. Common responses include
596 * reversing everything done in usb_gadget_vbus_connect().
597 *
598 * Returns zero on success, else negative errno.
599 */
600 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
601 {
602 int ret = 0;
603
604 if (!gadget->ops->vbus_session) {
605 ret = -EOPNOTSUPP;
606 goto out;
607 }
608
609 ret = gadget->ops->vbus_session(gadget, 0);
610
611 out:
612 trace_usb_gadget_vbus_disconnect(gadget, ret);
613
614 return ret;
615 }
616 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
617
618 /**
619 * usb_gadget_connect - software-controlled connect to USB host
620 * @gadget:the peripheral being connected
621 *
622 * Enables the D+ (or potentially D-) pullup. The host will start
623 * enumerating this gadget when the pullup is active and a VBUS session
624 * is active (the link is powered). This pullup is always enabled unless
625 * usb_gadget_disconnect() has been used to disable it.
626 *
627 * Returns zero on success, else negative errno.
628 */
629 int usb_gadget_connect(struct usb_gadget *gadget)
630 {
631 int ret = 0;
632
633 if (!gadget->ops->pullup) {
634 ret = -EOPNOTSUPP;
635 goto out;
636 }
637
638 if (gadget->deactivated) {
639 /*
640 * If gadget is deactivated we only save new state.
641 * Gadget will be connected automatically after activation.
642 */
643 gadget->connected = true;
644 goto out;
645 }
646
647 ret = gadget->ops->pullup(gadget, 1);
648 if (!ret)
649 gadget->connected = 1;
650
651 out:
652 trace_usb_gadget_connect(gadget, ret);
653
654 return ret;
655 }
656 EXPORT_SYMBOL_GPL(usb_gadget_connect);
657
658 /**
659 * usb_gadget_disconnect - software-controlled disconnect from USB host
660 * @gadget:the peripheral being disconnected
661 *
662 * Disables the D+ (or potentially D-) pullup, which the host may see
663 * as a disconnect (when a VBUS session is active). Not all systems
664 * support software pullup controls.
665 *
666 * Returns zero on success, else negative errno.
667 */
668 int usb_gadget_disconnect(struct usb_gadget *gadget)
669 {
670 int ret = 0;
671
672 if (!gadget->ops->pullup) {
673 ret = -EOPNOTSUPP;
674 goto out;
675 }
676
677 if (gadget->deactivated) {
678 /*
679 * If gadget is deactivated we only save new state.
680 * Gadget will stay disconnected after activation.
681 */
682 gadget->connected = false;
683 goto out;
684 }
685
686 ret = gadget->ops->pullup(gadget, 0);
687 if (!ret)
688 gadget->connected = 0;
689
690 out:
691 trace_usb_gadget_disconnect(gadget, ret);
692
693 return ret;
694 }
695 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
696
697 /**
698 * usb_gadget_deactivate - deactivate function which is not ready to work
699 * @gadget: the peripheral being deactivated
700 *
701 * This routine may be used during the gadget driver bind() call to prevent
702 * the peripheral from ever being visible to the USB host, unless later
703 * usb_gadget_activate() is called. For example, user mode components may
704 * need to be activated before the system can talk to hosts.
705 *
706 * Returns zero on success, else negative errno.
707 */
708 int usb_gadget_deactivate(struct usb_gadget *gadget)
709 {
710 int ret = 0;
711
712 if (gadget->deactivated)
713 goto out;
714
715 if (gadget->connected) {
716 ret = usb_gadget_disconnect(gadget);
717 if (ret)
718 goto out;
719
720 /*
721 * If gadget was being connected before deactivation, we want
722 * to reconnect it in usb_gadget_activate().
723 */
724 gadget->connected = true;
725 }
726 gadget->deactivated = true;
727
728 out:
729 trace_usb_gadget_deactivate(gadget, ret);
730
731 return ret;
732 }
733 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
734
735 /**
736 * usb_gadget_activate - activate function which is not ready to work
737 * @gadget: the peripheral being activated
738 *
739 * This routine activates gadget which was previously deactivated with
740 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
741 *
742 * Returns zero on success, else negative errno.
743 */
744 int usb_gadget_activate(struct usb_gadget *gadget)
745 {
746 int ret = 0;
747
748 if (!gadget->deactivated)
749 goto out;
750
751 gadget->deactivated = false;
752
753 /*
754 * If gadget has been connected before deactivation, or became connected
755 * while it was being deactivated, we call usb_gadget_connect().
756 */
757 if (gadget->connected)
758 ret = usb_gadget_connect(gadget);
759
760 out:
761 trace_usb_gadget_activate(gadget, ret);
762
763 return ret;
764 }
765 EXPORT_SYMBOL_GPL(usb_gadget_activate);
766
767 /* ------------------------------------------------------------------------- */
768
769 #ifdef CONFIG_HAS_DMA
770
771 int usb_gadget_map_request_by_dev(struct device *dev,
772 struct usb_request *req, int is_in)
773 {
774 if (req->length == 0)
775 return 0;
776
777 if (req->num_sgs) {
778 int mapped;
779
780 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
781 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
782 if (mapped == 0) {
783 dev_err(dev, "failed to map SGs\n");
784 return -EFAULT;
785 }
786
787 req->num_mapped_sgs = mapped;
788 } else {
789 if (is_vmalloc_addr(req->buf)) {
790 dev_err(dev, "buffer is not dma capable\n");
791 return -EFAULT;
792 } else if (object_is_on_stack(req->buf)) {
793 dev_err(dev, "buffer is on stack\n");
794 return -EFAULT;
795 }
796
797 req->dma = dma_map_single(dev, req->buf, req->length,
798 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
799
800 if (dma_mapping_error(dev, req->dma)) {
801 dev_err(dev, "failed to map buffer\n");
802 return -EFAULT;
803 }
804
805 req->dma_mapped = 1;
806 }
807
808 return 0;
809 }
810 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
811
812 int usb_gadget_map_request(struct usb_gadget *gadget,
813 struct usb_request *req, int is_in)
814 {
815 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
816 }
817 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
818
819 void usb_gadget_unmap_request_by_dev(struct device *dev,
820 struct usb_request *req, int is_in)
821 {
822 if (req->length == 0)
823 return;
824
825 if (req->num_mapped_sgs) {
826 dma_unmap_sg(dev, req->sg, req->num_sgs,
827 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
828
829 req->num_mapped_sgs = 0;
830 } else if (req->dma_mapped) {
831 dma_unmap_single(dev, req->dma, req->length,
832 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
833 req->dma_mapped = 0;
834 }
835 }
836 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
837
838 void usb_gadget_unmap_request(struct usb_gadget *gadget,
839 struct usb_request *req, int is_in)
840 {
841 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
842 }
843 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
844
845 #endif /* CONFIG_HAS_DMA */
846
847 /* ------------------------------------------------------------------------- */
848
849 /**
850 * usb_gadget_giveback_request - give the request back to the gadget layer
851 * Context: in_interrupt()
852 *
853 * This is called by device controller drivers in order to return the
854 * completed request back to the gadget layer.
855 */
856 void usb_gadget_giveback_request(struct usb_ep *ep,
857 struct usb_request *req)
858 {
859 if (likely(req->status == 0))
860 usb_led_activity(USB_LED_EVENT_GADGET);
861
862 trace_usb_gadget_giveback_request(ep, req, 0);
863
864 req->complete(ep, req);
865 }
866 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
867
868 /* ------------------------------------------------------------------------- */
869
870 /**
871 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
872 * in second parameter or NULL if searched endpoint not found
873 * @g: controller to check for quirk
874 * @name: name of searched endpoint
875 */
876 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
877 {
878 struct usb_ep *ep;
879
880 gadget_for_each_ep(ep, g) {
881 if (!strcmp(ep->name, name))
882 return ep;
883 }
884
885 return NULL;
886 }
887 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
888
889 /* ------------------------------------------------------------------------- */
890
891 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
892 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
893 struct usb_ss_ep_comp_descriptor *ep_comp)
894 {
895 u8 type;
896 u16 max;
897 int num_req_streams = 0;
898
899 /* endpoint already claimed? */
900 if (ep->claimed)
901 return 0;
902
903 type = usb_endpoint_type(desc);
904 max = usb_endpoint_maxp(desc);
905
906 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
907 return 0;
908 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
909 return 0;
910
911 if (max > ep->maxpacket_limit)
912 return 0;
913
914 /* "high bandwidth" works only at high speed */
915 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp(desc) & (3<<11))
916 return 0;
917
918 switch (type) {
919 case USB_ENDPOINT_XFER_CONTROL:
920 /* only support ep0 for portable CONTROL traffic */
921 return 0;
922 case USB_ENDPOINT_XFER_ISOC:
923 if (!ep->caps.type_iso)
924 return 0;
925 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */
926 if (!gadget_is_dualspeed(gadget) && max > 1023)
927 return 0;
928 break;
929 case USB_ENDPOINT_XFER_BULK:
930 if (!ep->caps.type_bulk)
931 return 0;
932 if (ep_comp && gadget_is_superspeed(gadget)) {
933 /* Get the number of required streams from the
934 * EP companion descriptor and see if the EP
935 * matches it
936 */
937 num_req_streams = ep_comp->bmAttributes & 0x1f;
938 if (num_req_streams > ep->max_streams)
939 return 0;
940 }
941 break;
942 case USB_ENDPOINT_XFER_INT:
943 /* Bulk endpoints handle interrupt transfers,
944 * except the toggle-quirky iso-synch kind
945 */
946 if (!ep->caps.type_int && !ep->caps.type_bulk)
947 return 0;
948 /* INT: limit 64 bytes full speed, 1024 high/super speed */
949 if (!gadget_is_dualspeed(gadget) && max > 64)
950 return 0;
951 break;
952 }
953
954 return 1;
955 }
956 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
957
958 /* ------------------------------------------------------------------------- */
959
960 static void usb_gadget_state_work(struct work_struct *work)
961 {
962 struct usb_gadget *gadget = work_to_gadget(work);
963 struct usb_udc *udc = gadget->udc;
964
965 if (udc)
966 sysfs_notify(&udc->dev.kobj, NULL, "state");
967 }
968
969 void usb_gadget_set_state(struct usb_gadget *gadget,
970 enum usb_device_state state)
971 {
972 gadget->state = state;
973 schedule_work(&gadget->work);
974 }
975 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
976
977 /* ------------------------------------------------------------------------- */
978
979 static void usb_udc_connect_control(struct usb_udc *udc)
980 {
981 if (udc->vbus)
982 usb_gadget_connect(udc->gadget);
983 else
984 usb_gadget_disconnect(udc->gadget);
985 }
986
987 /**
988 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
989 * connect or disconnect gadget
990 * @gadget: The gadget which vbus change occurs
991 * @status: The vbus status
992 *
993 * The udc driver calls it when it wants to connect or disconnect gadget
994 * according to vbus status.
995 */
996 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
997 {
998 struct usb_udc *udc = gadget->udc;
999
1000 if (udc) {
1001 udc->vbus = status;
1002 usb_udc_connect_control(udc);
1003 }
1004 }
1005 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1006
1007 /**
1008 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1009 * @gadget: The gadget which bus reset occurs
1010 * @driver: The gadget driver we want to notify
1011 *
1012 * If the udc driver has bus reset handler, it needs to call this when the bus
1013 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1014 * well as updates gadget state.
1015 */
1016 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1017 struct usb_gadget_driver *driver)
1018 {
1019 driver->reset(gadget);
1020 usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1021 }
1022 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1023
1024 /**
1025 * usb_gadget_udc_start - tells usb device controller to start up
1026 * @udc: The UDC to be started
1027 *
1028 * This call is issued by the UDC Class driver when it's about
1029 * to register a gadget driver to the device controller, before
1030 * calling gadget driver's bind() method.
1031 *
1032 * It allows the controller to be powered off until strictly
1033 * necessary to have it powered on.
1034 *
1035 * Returns zero on success, else negative errno.
1036 */
1037 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1038 {
1039 return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1040 }
1041
1042 /**
1043 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1044 * @gadget: The device we want to stop activity
1045 * @driver: The driver to unbind from @gadget
1046 *
1047 * This call is issued by the UDC Class driver after calling
1048 * gadget driver's unbind() method.
1049 *
1050 * The details are implementation specific, but it can go as
1051 * far as powering off UDC completely and disable its data
1052 * line pullups.
1053 */
1054 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1055 {
1056 udc->gadget->ops->udc_stop(udc->gadget);
1057 }
1058
1059 /**
1060 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1061 * current driver
1062 * @udc: The device we want to set maximum speed
1063 * @speed: The maximum speed to allowed to run
1064 *
1065 * This call is issued by the UDC Class driver before calling
1066 * usb_gadget_udc_start() in order to make sure that we don't try to
1067 * connect on speeds the gadget driver doesn't support.
1068 */
1069 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1070 enum usb_device_speed speed)
1071 {
1072 if (udc->gadget->ops->udc_set_speed)
1073 udc->gadget->ops->udc_set_speed(udc->gadget, speed);
1074 }
1075
1076 /**
1077 * usb_udc_release - release the usb_udc struct
1078 * @dev: the dev member within usb_udc
1079 *
1080 * This is called by driver's core in order to free memory once the last
1081 * reference is released.
1082 */
1083 static void usb_udc_release(struct device *dev)
1084 {
1085 struct usb_udc *udc;
1086
1087 udc = container_of(dev, struct usb_udc, dev);
1088 dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1089 kfree(udc);
1090 }
1091
1092 static const struct attribute_group *usb_udc_attr_groups[];
1093
1094 static void usb_udc_nop_release(struct device *dev)
1095 {
1096 dev_vdbg(dev, "%s\n", __func__);
1097 }
1098
1099 /* should be called with udc_lock held */
1100 static int check_pending_gadget_drivers(struct usb_udc *udc)
1101 {
1102 struct usb_gadget_driver *driver;
1103 int ret = 0;
1104
1105 list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1106 if (!driver->udc_name || strcmp(driver->udc_name,
1107 dev_name(&udc->dev)) == 0) {
1108 ret = udc_bind_to_driver(udc, driver);
1109 if (ret != -EPROBE_DEFER)
1110 list_del(&driver->pending);
1111 break;
1112 }
1113
1114 return ret;
1115 }
1116
1117 /**
1118 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1119 * @parent: the parent device to this udc. Usually the controller driver's
1120 * device.
1121 * @gadget: the gadget to be added to the list.
1122 * @release: a gadget release function.
1123 *
1124 * Returns zero on success, negative errno otherwise.
1125 * Calls the gadget release function in the latter case.
1126 */
1127 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1128 void (*release)(struct device *dev))
1129 {
1130 struct usb_udc *udc;
1131 int ret = -ENOMEM;
1132
1133 dev_set_name(&gadget->dev, "gadget");
1134 INIT_WORK(&gadget->work, usb_gadget_state_work);
1135 gadget->dev.parent = parent;
1136
1137 if (release)
1138 gadget->dev.release = release;
1139 else
1140 gadget->dev.release = usb_udc_nop_release;
1141
1142 device_initialize(&gadget->dev);
1143
1144 udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1145 if (!udc)
1146 goto err1;
1147
1148 ret = device_add(&gadget->dev);
1149 if (ret)
1150 goto err2;
1151
1152 device_initialize(&udc->dev);
1153 udc->dev.release = usb_udc_release;
1154 udc->dev.class = udc_class;
1155 udc->dev.groups = usb_udc_attr_groups;
1156 udc->dev.parent = parent;
1157 ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1158 if (ret)
1159 goto err3;
1160
1161 udc->gadget = gadget;
1162 gadget->udc = udc;
1163
1164 mutex_lock(&udc_lock);
1165 list_add_tail(&udc->list, &udc_list);
1166
1167 ret = device_add(&udc->dev);
1168 if (ret)
1169 goto err4;
1170
1171 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1172 udc->vbus = true;
1173
1174 /* pick up one of pending gadget drivers */
1175 ret = check_pending_gadget_drivers(udc);
1176 if (ret)
1177 goto err5;
1178
1179 mutex_unlock(&udc_lock);
1180
1181 return 0;
1182
1183 err5:
1184 device_del(&udc->dev);
1185
1186 err4:
1187 list_del(&udc->list);
1188 mutex_unlock(&udc_lock);
1189
1190 err3:
1191 put_device(&udc->dev);
1192 device_del(&gadget->dev);
1193
1194 err2:
1195 kfree(udc);
1196
1197 err1:
1198 put_device(&gadget->dev);
1199 return ret;
1200 }
1201 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1202
1203 /**
1204 * usb_get_gadget_udc_name - get the name of the first UDC controller
1205 * This functions returns the name of the first UDC controller in the system.
1206 * Please note that this interface is usefull only for legacy drivers which
1207 * assume that there is only one UDC controller in the system and they need to
1208 * get its name before initialization. There is no guarantee that the UDC
1209 * of the returned name will be still available, when gadget driver registers
1210 * itself.
1211 *
1212 * Returns pointer to string with UDC controller name on success, NULL
1213 * otherwise. Caller should kfree() returned string.
1214 */
1215 char *usb_get_gadget_udc_name(void)
1216 {
1217 struct usb_udc *udc;
1218 char *name = NULL;
1219
1220 /* For now we take the first available UDC */
1221 mutex_lock(&udc_lock);
1222 list_for_each_entry(udc, &udc_list, list) {
1223 if (!udc->driver) {
1224 name = kstrdup(udc->gadget->name, GFP_KERNEL);
1225 break;
1226 }
1227 }
1228 mutex_unlock(&udc_lock);
1229 return name;
1230 }
1231 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1232
1233 /**
1234 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1235 * @parent: the parent device to this udc. Usually the controller
1236 * driver's device.
1237 * @gadget: the gadget to be added to the list
1238 *
1239 * Returns zero on success, negative errno otherwise.
1240 */
1241 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1242 {
1243 return usb_add_gadget_udc_release(parent, gadget, NULL);
1244 }
1245 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1246
1247 static void usb_gadget_remove_driver(struct usb_udc *udc)
1248 {
1249 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1250 udc->driver->function);
1251
1252 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1253
1254 usb_gadget_disconnect(udc->gadget);
1255 udc->driver->disconnect(udc->gadget);
1256 udc->driver->unbind(udc->gadget);
1257 usb_gadget_udc_stop(udc);
1258
1259 udc->driver = NULL;
1260 udc->dev.driver = NULL;
1261 udc->gadget->dev.driver = NULL;
1262 }
1263
1264 /**
1265 * usb_del_gadget_udc - deletes @udc from udc_list
1266 * @gadget: the gadget to be removed.
1267 *
1268 * This, will call usb_gadget_unregister_driver() if
1269 * the @udc is still busy.
1270 */
1271 void usb_del_gadget_udc(struct usb_gadget *gadget)
1272 {
1273 struct usb_udc *udc = gadget->udc;
1274
1275 if (!udc)
1276 return;
1277
1278 dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1279
1280 mutex_lock(&udc_lock);
1281 list_del(&udc->list);
1282
1283 if (udc->driver) {
1284 struct usb_gadget_driver *driver = udc->driver;
1285
1286 usb_gadget_remove_driver(udc);
1287 list_add(&driver->pending, &gadget_driver_pending_list);
1288 }
1289 mutex_unlock(&udc_lock);
1290
1291 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1292 flush_work(&gadget->work);
1293 device_unregister(&udc->dev);
1294 device_unregister(&gadget->dev);
1295 memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1296 }
1297 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1298
1299 /* ------------------------------------------------------------------------- */
1300
1301 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1302 {
1303 int ret;
1304
1305 dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1306 driver->function);
1307
1308 udc->driver = driver;
1309 udc->dev.driver = &driver->driver;
1310 udc->gadget->dev.driver = &driver->driver;
1311
1312 usb_gadget_udc_set_speed(udc, driver->max_speed);
1313
1314 ret = driver->bind(udc->gadget, driver);
1315 if (ret)
1316 goto err1;
1317 ret = usb_gadget_udc_start(udc);
1318 if (ret) {
1319 driver->unbind(udc->gadget);
1320 goto err1;
1321 }
1322 usb_udc_connect_control(udc);
1323
1324 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1325 return 0;
1326 err1:
1327 if (ret != -EISNAM)
1328 dev_err(&udc->dev, "failed to start %s: %d\n",
1329 udc->driver->function, ret);
1330 udc->driver = NULL;
1331 udc->dev.driver = NULL;
1332 udc->gadget->dev.driver = NULL;
1333 return ret;
1334 }
1335
1336 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1337 {
1338 struct usb_udc *udc = NULL;
1339 int ret = -ENODEV;
1340
1341 if (!driver || !driver->bind || !driver->setup)
1342 return -EINVAL;
1343
1344 mutex_lock(&udc_lock);
1345 if (driver->udc_name) {
1346 list_for_each_entry(udc, &udc_list, list) {
1347 ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1348 if (!ret)
1349 break;
1350 }
1351 if (ret)
1352 ret = -ENODEV;
1353 else if (udc->driver)
1354 ret = -EBUSY;
1355 else
1356 goto found;
1357 } else {
1358 list_for_each_entry(udc, &udc_list, list) {
1359 /* For now we take the first one */
1360 if (!udc->driver)
1361 goto found;
1362 }
1363 }
1364
1365 if (!driver->match_existing_only) {
1366 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1367 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1368 driver->function);
1369 ret = 0;
1370 }
1371
1372 mutex_unlock(&udc_lock);
1373 return ret;
1374 found:
1375 ret = udc_bind_to_driver(udc, driver);
1376 mutex_unlock(&udc_lock);
1377 return ret;
1378 }
1379 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1380
1381 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1382 {
1383 struct usb_udc *udc = NULL;
1384 int ret = -ENODEV;
1385
1386 if (!driver || !driver->unbind)
1387 return -EINVAL;
1388
1389 mutex_lock(&udc_lock);
1390 list_for_each_entry(udc, &udc_list, list) {
1391 if (udc->driver == driver) {
1392 usb_gadget_remove_driver(udc);
1393 usb_gadget_set_state(udc->gadget,
1394 USB_STATE_NOTATTACHED);
1395
1396 /* Maybe there is someone waiting for this UDC? */
1397 check_pending_gadget_drivers(udc);
1398 /*
1399 * For now we ignore bind errors as probably it's
1400 * not a valid reason to fail other's gadget unbind
1401 */
1402 ret = 0;
1403 break;
1404 }
1405 }
1406
1407 if (ret) {
1408 list_del(&driver->pending);
1409 ret = 0;
1410 }
1411 mutex_unlock(&udc_lock);
1412 return ret;
1413 }
1414 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1415
1416 /* ------------------------------------------------------------------------- */
1417
1418 static ssize_t usb_udc_srp_store(struct device *dev,
1419 struct device_attribute *attr, const char *buf, size_t n)
1420 {
1421 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1422
1423 if (sysfs_streq(buf, "1"))
1424 usb_gadget_wakeup(udc->gadget);
1425
1426 return n;
1427 }
1428 static DEVICE_ATTR(srp, S_IWUSR, NULL, usb_udc_srp_store);
1429
1430 static ssize_t usb_udc_softconn_store(struct device *dev,
1431 struct device_attribute *attr, const char *buf, size_t n)
1432 {
1433 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1434
1435 if (!udc->driver) {
1436 dev_err(dev, "soft-connect without a gadget driver\n");
1437 return -EOPNOTSUPP;
1438 }
1439
1440 if (sysfs_streq(buf, "connect")) {
1441 usb_gadget_udc_start(udc);
1442 usb_gadget_connect(udc->gadget);
1443 } else if (sysfs_streq(buf, "disconnect")) {
1444 usb_gadget_disconnect(udc->gadget);
1445 udc->driver->disconnect(udc->gadget);
1446 usb_gadget_udc_stop(udc);
1447 } else {
1448 dev_err(dev, "unsupported command '%s'\n", buf);
1449 return -EINVAL;
1450 }
1451
1452 return n;
1453 }
1454 static DEVICE_ATTR(soft_connect, S_IWUSR, NULL, usb_udc_softconn_store);
1455
1456 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1457 char *buf)
1458 {
1459 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1460 struct usb_gadget *gadget = udc->gadget;
1461
1462 return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1463 }
1464 static DEVICE_ATTR_RO(state);
1465
1466 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1467 char *buf)
1468 {
1469 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1470 struct usb_gadget_driver *drv = udc->driver;
1471
1472 if (!drv || !drv->function)
1473 return 0;
1474 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1475 }
1476 static DEVICE_ATTR_RO(function);
1477
1478 #define USB_UDC_SPEED_ATTR(name, param) \
1479 ssize_t name##_show(struct device *dev, \
1480 struct device_attribute *attr, char *buf) \
1481 { \
1482 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1483 return snprintf(buf, PAGE_SIZE, "%s\n", \
1484 usb_speed_string(udc->gadget->param)); \
1485 } \
1486 static DEVICE_ATTR_RO(name)
1487
1488 static USB_UDC_SPEED_ATTR(current_speed, speed);
1489 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1490
1491 #define USB_UDC_ATTR(name) \
1492 ssize_t name##_show(struct device *dev, \
1493 struct device_attribute *attr, char *buf) \
1494 { \
1495 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1496 struct usb_gadget *gadget = udc->gadget; \
1497 \
1498 return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1499 } \
1500 static DEVICE_ATTR_RO(name)
1501
1502 static USB_UDC_ATTR(is_otg);
1503 static USB_UDC_ATTR(is_a_peripheral);
1504 static USB_UDC_ATTR(b_hnp_enable);
1505 static USB_UDC_ATTR(a_hnp_support);
1506 static USB_UDC_ATTR(a_alt_hnp_support);
1507 static USB_UDC_ATTR(is_selfpowered);
1508
1509 static struct attribute *usb_udc_attrs[] = {
1510 &dev_attr_srp.attr,
1511 &dev_attr_soft_connect.attr,
1512 &dev_attr_state.attr,
1513 &dev_attr_function.attr,
1514 &dev_attr_current_speed.attr,
1515 &dev_attr_maximum_speed.attr,
1516
1517 &dev_attr_is_otg.attr,
1518 &dev_attr_is_a_peripheral.attr,
1519 &dev_attr_b_hnp_enable.attr,
1520 &dev_attr_a_hnp_support.attr,
1521 &dev_attr_a_alt_hnp_support.attr,
1522 &dev_attr_is_selfpowered.attr,
1523 NULL,
1524 };
1525
1526 static const struct attribute_group usb_udc_attr_group = {
1527 .attrs = usb_udc_attrs,
1528 };
1529
1530 static const struct attribute_group *usb_udc_attr_groups[] = {
1531 &usb_udc_attr_group,
1532 NULL,
1533 };
1534
1535 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1536 {
1537 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1538 int ret;
1539
1540 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1541 if (ret) {
1542 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1543 return ret;
1544 }
1545
1546 if (udc->driver) {
1547 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1548 udc->driver->function);
1549 if (ret) {
1550 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1551 return ret;
1552 }
1553 }
1554
1555 return 0;
1556 }
1557
1558 static int __init usb_udc_init(void)
1559 {
1560 udc_class = class_create(THIS_MODULE, "udc");
1561 if (IS_ERR(udc_class)) {
1562 pr_err("failed to create udc class --> %ld\n",
1563 PTR_ERR(udc_class));
1564 return PTR_ERR(udc_class);
1565 }
1566
1567 udc_class->dev_uevent = usb_udc_uevent;
1568 return 0;
1569 }
1570 subsys_initcall(usb_udc_init);
1571
1572 static void __exit usb_udc_exit(void)
1573 {
1574 class_destroy(udc_class);
1575 }
1576 module_exit(usb_udc_exit);
1577
1578 MODULE_DESCRIPTION("UDC Framework");
1579 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1580 MODULE_LICENSE("GPL v2");