]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/usb/gadget/udc/pch_udc.c
Merge tag 'tegra-for-4.3-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / gadget / udc / pch_udc.c
1 /*
2 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/interrupt.h>
16 #include <linux/usb/ch9.h>
17 #include <linux/usb/gadget.h>
18 #include <linux/gpio.h>
19 #include <linux/irq.h>
20
21 /* GPIO port for VBUS detecting */
22 static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
23
24 #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
25 #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
26
27 /* Address offset of Registers */
28 #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
29
30 #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
31 #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
32 #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
33 #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
34 #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
35 #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
36 #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
37
38 #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
39 #define UDC_DEVCTL_ADDR 0x404 /* Device control */
40 #define UDC_DEVSTS_ADDR 0x408 /* Device status */
41 #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
42 #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
43 #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
44 #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
45 #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
46 #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
47 #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
48 #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
49
50 /* Endpoint control register */
51 /* Bit position */
52 #define UDC_EPCTL_MRXFLUSH (1 << 12)
53 #define UDC_EPCTL_RRDY (1 << 9)
54 #define UDC_EPCTL_CNAK (1 << 8)
55 #define UDC_EPCTL_SNAK (1 << 7)
56 #define UDC_EPCTL_NAK (1 << 6)
57 #define UDC_EPCTL_P (1 << 3)
58 #define UDC_EPCTL_F (1 << 1)
59 #define UDC_EPCTL_S (1 << 0)
60 #define UDC_EPCTL_ET_SHIFT 4
61 /* Mask patern */
62 #define UDC_EPCTL_ET_MASK 0x00000030
63 /* Value for ET field */
64 #define UDC_EPCTL_ET_CONTROL 0
65 #define UDC_EPCTL_ET_ISO 1
66 #define UDC_EPCTL_ET_BULK 2
67 #define UDC_EPCTL_ET_INTERRUPT 3
68
69 /* Endpoint status register */
70 /* Bit position */
71 #define UDC_EPSTS_XFERDONE (1 << 27)
72 #define UDC_EPSTS_RSS (1 << 26)
73 #define UDC_EPSTS_RCS (1 << 25)
74 #define UDC_EPSTS_TXEMPTY (1 << 24)
75 #define UDC_EPSTS_TDC (1 << 10)
76 #define UDC_EPSTS_HE (1 << 9)
77 #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
78 #define UDC_EPSTS_BNA (1 << 7)
79 #define UDC_EPSTS_IN (1 << 6)
80 #define UDC_EPSTS_OUT_SHIFT 4
81 /* Mask patern */
82 #define UDC_EPSTS_OUT_MASK 0x00000030
83 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
84 /* Value for OUT field */
85 #define UDC_EPSTS_OUT_SETUP 2
86 #define UDC_EPSTS_OUT_DATA 1
87
88 /* Device configuration register */
89 /* Bit position */
90 #define UDC_DEVCFG_CSR_PRG (1 << 17)
91 #define UDC_DEVCFG_SP (1 << 3)
92 /* SPD Valee */
93 #define UDC_DEVCFG_SPD_HS 0x0
94 #define UDC_DEVCFG_SPD_FS 0x1
95 #define UDC_DEVCFG_SPD_LS 0x2
96
97 /* Device control register */
98 /* Bit position */
99 #define UDC_DEVCTL_THLEN_SHIFT 24
100 #define UDC_DEVCTL_BRLEN_SHIFT 16
101 #define UDC_DEVCTL_CSR_DONE (1 << 13)
102 #define UDC_DEVCTL_SD (1 << 10)
103 #define UDC_DEVCTL_MODE (1 << 9)
104 #define UDC_DEVCTL_BREN (1 << 8)
105 #define UDC_DEVCTL_THE (1 << 7)
106 #define UDC_DEVCTL_DU (1 << 4)
107 #define UDC_DEVCTL_TDE (1 << 3)
108 #define UDC_DEVCTL_RDE (1 << 2)
109 #define UDC_DEVCTL_RES (1 << 0)
110
111 /* Device status register */
112 /* Bit position */
113 #define UDC_DEVSTS_TS_SHIFT 18
114 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
115 #define UDC_DEVSTS_ALT_SHIFT 8
116 #define UDC_DEVSTS_INTF_SHIFT 4
117 #define UDC_DEVSTS_CFG_SHIFT 0
118 /* Mask patern */
119 #define UDC_DEVSTS_TS_MASK 0xfffc0000
120 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
121 #define UDC_DEVSTS_ALT_MASK 0x00000f00
122 #define UDC_DEVSTS_INTF_MASK 0x000000f0
123 #define UDC_DEVSTS_CFG_MASK 0x0000000f
124 /* value for maximum speed for SPEED field */
125 #define UDC_DEVSTS_ENUM_SPEED_FULL 1
126 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
127 #define UDC_DEVSTS_ENUM_SPEED_LOW 2
128 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
129
130 /* Device irq register */
131 /* Bit position */
132 #define UDC_DEVINT_RWKP (1 << 7)
133 #define UDC_DEVINT_ENUM (1 << 6)
134 #define UDC_DEVINT_SOF (1 << 5)
135 #define UDC_DEVINT_US (1 << 4)
136 #define UDC_DEVINT_UR (1 << 3)
137 #define UDC_DEVINT_ES (1 << 2)
138 #define UDC_DEVINT_SI (1 << 1)
139 #define UDC_DEVINT_SC (1 << 0)
140 /* Mask patern */
141 #define UDC_DEVINT_MSK 0x7f
142
143 /* Endpoint irq register */
144 /* Bit position */
145 #define UDC_EPINT_IN_SHIFT 0
146 #define UDC_EPINT_OUT_SHIFT 16
147 #define UDC_EPINT_IN_EP0 (1 << 0)
148 #define UDC_EPINT_OUT_EP0 (1 << 16)
149 /* Mask patern */
150 #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
151
152 /* UDC_CSR_BUSY Status register */
153 /* Bit position */
154 #define UDC_CSR_BUSY (1 << 0)
155
156 /* SOFT RESET register */
157 /* Bit position */
158 #define UDC_PSRST (1 << 1)
159 #define UDC_SRST (1 << 0)
160
161 /* USB_DEVICE endpoint register */
162 /* Bit position */
163 #define UDC_CSR_NE_NUM_SHIFT 0
164 #define UDC_CSR_NE_DIR_SHIFT 4
165 #define UDC_CSR_NE_TYPE_SHIFT 5
166 #define UDC_CSR_NE_CFG_SHIFT 7
167 #define UDC_CSR_NE_INTF_SHIFT 11
168 #define UDC_CSR_NE_ALT_SHIFT 15
169 #define UDC_CSR_NE_MAX_PKT_SHIFT 19
170 /* Mask patern */
171 #define UDC_CSR_NE_NUM_MASK 0x0000000f
172 #define UDC_CSR_NE_DIR_MASK 0x00000010
173 #define UDC_CSR_NE_TYPE_MASK 0x00000060
174 #define UDC_CSR_NE_CFG_MASK 0x00000780
175 #define UDC_CSR_NE_INTF_MASK 0x00007800
176 #define UDC_CSR_NE_ALT_MASK 0x00078000
177 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
178
179 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
180 #define PCH_UDC_EPINT(in, num)\
181 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
182
183 /* Index of endpoint */
184 #define UDC_EP0IN_IDX 0
185 #define UDC_EP0OUT_IDX 1
186 #define UDC_EPIN_IDX(ep) (ep * 2)
187 #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
188 #define PCH_UDC_EP0 0
189 #define PCH_UDC_EP1 1
190 #define PCH_UDC_EP2 2
191 #define PCH_UDC_EP3 3
192
193 /* Number of endpoint */
194 #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
195 #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
196 /* Length Value */
197 #define PCH_UDC_BRLEN 0x0F /* Burst length */
198 #define PCH_UDC_THLEN 0x1F /* Threshold length */
199 /* Value of EP Buffer Size */
200 #define UDC_EP0IN_BUFF_SIZE 16
201 #define UDC_EPIN_BUFF_SIZE 256
202 #define UDC_EP0OUT_BUFF_SIZE 16
203 #define UDC_EPOUT_BUFF_SIZE 256
204 /* Value of EP maximum packet size */
205 #define UDC_EP0IN_MAX_PKT_SIZE 64
206 #define UDC_EP0OUT_MAX_PKT_SIZE 64
207 #define UDC_BULK_MAX_PKT_SIZE 512
208
209 /* DMA */
210 #define DMA_DIR_RX 1 /* DMA for data receive */
211 #define DMA_DIR_TX 2 /* DMA for data transmit */
212 #define DMA_ADDR_INVALID (~(dma_addr_t)0)
213 #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
214
215 /**
216 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
217 * for data
218 * @status: Status quadlet
219 * @reserved: Reserved
220 * @dataptr: Buffer descriptor
221 * @next: Next descriptor
222 */
223 struct pch_udc_data_dma_desc {
224 u32 status;
225 u32 reserved;
226 u32 dataptr;
227 u32 next;
228 };
229
230 /**
231 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
232 * for control data
233 * @status: Status
234 * @reserved: Reserved
235 * @data12: First setup word
236 * @data34: Second setup word
237 */
238 struct pch_udc_stp_dma_desc {
239 u32 status;
240 u32 reserved;
241 struct usb_ctrlrequest request;
242 } __attribute((packed));
243
244 /* DMA status definitions */
245 /* Buffer status */
246 #define PCH_UDC_BUFF_STS 0xC0000000
247 #define PCH_UDC_BS_HST_RDY 0x00000000
248 #define PCH_UDC_BS_DMA_BSY 0x40000000
249 #define PCH_UDC_BS_DMA_DONE 0x80000000
250 #define PCH_UDC_BS_HST_BSY 0xC0000000
251 /* Rx/Tx Status */
252 #define PCH_UDC_RXTX_STS 0x30000000
253 #define PCH_UDC_RTS_SUCC 0x00000000
254 #define PCH_UDC_RTS_DESERR 0x10000000
255 #define PCH_UDC_RTS_BUFERR 0x30000000
256 /* Last Descriptor Indication */
257 #define PCH_UDC_DMA_LAST 0x08000000
258 /* Number of Rx/Tx Bytes Mask */
259 #define PCH_UDC_RXTX_BYTES 0x0000ffff
260
261 /**
262 * struct pch_udc_cfg_data - Structure to hold current configuration
263 * and interface information
264 * @cur_cfg: current configuration in use
265 * @cur_intf: current interface in use
266 * @cur_alt: current alt interface in use
267 */
268 struct pch_udc_cfg_data {
269 u16 cur_cfg;
270 u16 cur_intf;
271 u16 cur_alt;
272 };
273
274 /**
275 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
276 * @ep: embedded ep request
277 * @td_stp_phys: for setup request
278 * @td_data_phys: for data request
279 * @td_stp: for setup request
280 * @td_data: for data request
281 * @dev: reference to device struct
282 * @offset_addr: offset address of ep register
283 * @desc: for this ep
284 * @queue: queue for requests
285 * @num: endpoint number
286 * @in: endpoint is IN
287 * @halted: endpoint halted?
288 * @epsts: Endpoint status
289 */
290 struct pch_udc_ep {
291 struct usb_ep ep;
292 dma_addr_t td_stp_phys;
293 dma_addr_t td_data_phys;
294 struct pch_udc_stp_dma_desc *td_stp;
295 struct pch_udc_data_dma_desc *td_data;
296 struct pch_udc_dev *dev;
297 unsigned long offset_addr;
298 struct list_head queue;
299 unsigned num:5,
300 in:1,
301 halted:1;
302 unsigned long epsts;
303 };
304
305 /**
306 * struct pch_vbus_gpio_data - Structure holding GPIO informaton
307 * for detecting VBUS
308 * @port: gpio port number
309 * @intr: gpio interrupt number
310 * @irq_work_fall Structure for WorkQueue
311 * @irq_work_rise Structure for WorkQueue
312 */
313 struct pch_vbus_gpio_data {
314 int port;
315 int intr;
316 struct work_struct irq_work_fall;
317 struct work_struct irq_work_rise;
318 };
319
320 /**
321 * struct pch_udc_dev - Structure holding complete information
322 * of the PCH USB device
323 * @gadget: gadget driver data
324 * @driver: reference to gadget driver bound
325 * @pdev: reference to the PCI device
326 * @ep: array of endpoints
327 * @lock: protects all state
328 * @active: enabled the PCI device
329 * @stall: stall requested
330 * @prot_stall: protcol stall requested
331 * @irq_registered: irq registered with system
332 * @mem_region: device memory mapped
333 * @registered: driver regsitered with system
334 * @suspended: driver in suspended state
335 * @connected: gadget driver associated
336 * @vbus_session: required vbus_session state
337 * @set_cfg_not_acked: pending acknowledgement 4 setup
338 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
339 * @data_requests: DMA pool for data requests
340 * @stp_requests: DMA pool for setup requests
341 * @dma_addr: DMA pool for received
342 * @ep0out_buf: Buffer for DMA
343 * @setup_data: Received setup data
344 * @phys_addr: of device memory
345 * @base_addr: for mapped device memory
346 * @bar: Indicates which PCI BAR for USB regs
347 * @irq: IRQ line for the device
348 * @cfg_data: current cfg, intf, and alt in use
349 * @vbus_gpio: GPIO informaton for detecting VBUS
350 */
351 struct pch_udc_dev {
352 struct usb_gadget gadget;
353 struct usb_gadget_driver *driver;
354 struct pci_dev *pdev;
355 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
356 spinlock_t lock; /* protects all state */
357 unsigned active:1,
358 stall:1,
359 prot_stall:1,
360 irq_registered:1,
361 mem_region:1,
362 suspended:1,
363 connected:1,
364 vbus_session:1,
365 set_cfg_not_acked:1,
366 waiting_zlp_ack:1;
367 struct pci_pool *data_requests;
368 struct pci_pool *stp_requests;
369 dma_addr_t dma_addr;
370 void *ep0out_buf;
371 struct usb_ctrlrequest setup_data;
372 unsigned long phys_addr;
373 void __iomem *base_addr;
374 unsigned bar;
375 unsigned irq;
376 struct pch_udc_cfg_data cfg_data;
377 struct pch_vbus_gpio_data vbus_gpio;
378 };
379 #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
380
381 #define PCH_UDC_PCI_BAR_QUARK_X1000 0
382 #define PCH_UDC_PCI_BAR 1
383 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
384 #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939
385 #define PCI_VENDOR_ID_ROHM 0x10DB
386 #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
387 #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
388
389 static const char ep0_string[] = "ep0in";
390 static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
391 static bool speed_fs;
392 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
393 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
394
395 /**
396 * struct pch_udc_request - Structure holding a PCH USB device request packet
397 * @req: embedded ep request
398 * @td_data_phys: phys. address
399 * @td_data: first dma desc. of chain
400 * @td_data_last: last dma desc. of chain
401 * @queue: associated queue
402 * @dma_going: DMA in progress for request
403 * @dma_mapped: DMA memory mapped for request
404 * @dma_done: DMA completed for request
405 * @chain_len: chain length
406 * @buf: Buffer memory for align adjustment
407 * @dma: DMA memory for align adjustment
408 */
409 struct pch_udc_request {
410 struct usb_request req;
411 dma_addr_t td_data_phys;
412 struct pch_udc_data_dma_desc *td_data;
413 struct pch_udc_data_dma_desc *td_data_last;
414 struct list_head queue;
415 unsigned dma_going:1,
416 dma_mapped:1,
417 dma_done:1;
418 unsigned chain_len;
419 void *buf;
420 dma_addr_t dma;
421 };
422
423 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
424 {
425 return ioread32(dev->base_addr + reg);
426 }
427
428 static inline void pch_udc_writel(struct pch_udc_dev *dev,
429 unsigned long val, unsigned long reg)
430 {
431 iowrite32(val, dev->base_addr + reg);
432 }
433
434 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
435 unsigned long reg,
436 unsigned long bitmask)
437 {
438 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
439 }
440
441 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
442 unsigned long reg,
443 unsigned long bitmask)
444 {
445 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
446 }
447
448 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
449 {
450 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
451 }
452
453 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
454 unsigned long val, unsigned long reg)
455 {
456 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
457 }
458
459 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
460 unsigned long reg,
461 unsigned long bitmask)
462 {
463 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
464 }
465
466 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
467 unsigned long reg,
468 unsigned long bitmask)
469 {
470 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
471 }
472
473 /**
474 * pch_udc_csr_busy() - Wait till idle.
475 * @dev: Reference to pch_udc_dev structure
476 */
477 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
478 {
479 unsigned int count = 200;
480
481 /* Wait till idle */
482 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
483 && --count)
484 cpu_relax();
485 if (!count)
486 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
487 }
488
489 /**
490 * pch_udc_write_csr() - Write the command and status registers.
491 * @dev: Reference to pch_udc_dev structure
492 * @val: value to be written to CSR register
493 * @addr: address of CSR register
494 */
495 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
496 unsigned int ep)
497 {
498 unsigned long reg = PCH_UDC_CSR(ep);
499
500 pch_udc_csr_busy(dev); /* Wait till idle */
501 pch_udc_writel(dev, val, reg);
502 pch_udc_csr_busy(dev); /* Wait till idle */
503 }
504
505 /**
506 * pch_udc_read_csr() - Read the command and status registers.
507 * @dev: Reference to pch_udc_dev structure
508 * @addr: address of CSR register
509 *
510 * Return codes: content of CSR register
511 */
512 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
513 {
514 unsigned long reg = PCH_UDC_CSR(ep);
515
516 pch_udc_csr_busy(dev); /* Wait till idle */
517 pch_udc_readl(dev, reg); /* Dummy read */
518 pch_udc_csr_busy(dev); /* Wait till idle */
519 return pch_udc_readl(dev, reg);
520 }
521
522 /**
523 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
524 * @dev: Reference to pch_udc_dev structure
525 */
526 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
527 {
528 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
529 mdelay(1);
530 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
531 }
532
533 /**
534 * pch_udc_get_frame() - Get the current frame from device status register
535 * @dev: Reference to pch_udc_dev structure
536 * Retern current frame
537 */
538 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
539 {
540 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
541 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
542 }
543
544 /**
545 * pch_udc_clear_selfpowered() - Clear the self power control
546 * @dev: Reference to pch_udc_regs structure
547 */
548 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
549 {
550 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
551 }
552
553 /**
554 * pch_udc_set_selfpowered() - Set the self power control
555 * @dev: Reference to pch_udc_regs structure
556 */
557 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
558 {
559 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
560 }
561
562 /**
563 * pch_udc_set_disconnect() - Set the disconnect status.
564 * @dev: Reference to pch_udc_regs structure
565 */
566 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
567 {
568 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
569 }
570
571 /**
572 * pch_udc_clear_disconnect() - Clear the disconnect status.
573 * @dev: Reference to pch_udc_regs structure
574 */
575 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
576 {
577 /* Clear the disconnect */
578 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
579 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
580 mdelay(1);
581 /* Resume USB signalling */
582 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
583 }
584
585 /**
586 * pch_udc_reconnect() - This API initializes usb device controller,
587 * and clear the disconnect status.
588 * @dev: Reference to pch_udc_regs structure
589 */
590 static void pch_udc_init(struct pch_udc_dev *dev);
591 static void pch_udc_reconnect(struct pch_udc_dev *dev)
592 {
593 pch_udc_init(dev);
594
595 /* enable device interrupts */
596 /* pch_udc_enable_interrupts() */
597 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
598 UDC_DEVINT_UR | UDC_DEVINT_ENUM);
599
600 /* Clear the disconnect */
601 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
602 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
603 mdelay(1);
604 /* Resume USB signalling */
605 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
606 }
607
608 /**
609 * pch_udc_vbus_session() - set or clearr the disconnect status.
610 * @dev: Reference to pch_udc_regs structure
611 * @is_active: Parameter specifying the action
612 * 0: indicating VBUS power is ending
613 * !0: indicating VBUS power is starting
614 */
615 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
616 int is_active)
617 {
618 if (is_active) {
619 pch_udc_reconnect(dev);
620 dev->vbus_session = 1;
621 } else {
622 if (dev->driver && dev->driver->disconnect) {
623 spin_unlock(&dev->lock);
624 dev->driver->disconnect(&dev->gadget);
625 spin_lock(&dev->lock);
626 }
627 pch_udc_set_disconnect(dev);
628 dev->vbus_session = 0;
629 }
630 }
631
632 /**
633 * pch_udc_ep_set_stall() - Set the stall of endpoint
634 * @ep: Reference to structure of type pch_udc_ep_regs
635 */
636 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
637 {
638 if (ep->in) {
639 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
640 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
641 } else {
642 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
643 }
644 }
645
646 /**
647 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
648 * @ep: Reference to structure of type pch_udc_ep_regs
649 */
650 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
651 {
652 /* Clear the stall */
653 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
654 /* Clear NAK by writing CNAK */
655 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
656 }
657
658 /**
659 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
660 * @ep: Reference to structure of type pch_udc_ep_regs
661 * @type: Type of endpoint
662 */
663 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
664 u8 type)
665 {
666 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
667 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
668 }
669
670 /**
671 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
672 * @ep: Reference to structure of type pch_udc_ep_regs
673 * @buf_size: The buffer word size
674 */
675 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
676 u32 buf_size, u32 ep_in)
677 {
678 u32 data;
679 if (ep_in) {
680 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
681 data = (data & 0xffff0000) | (buf_size & 0xffff);
682 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
683 } else {
684 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
685 data = (buf_size << 16) | (data & 0xffff);
686 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
687 }
688 }
689
690 /**
691 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
692 * @ep: Reference to structure of type pch_udc_ep_regs
693 * @pkt_size: The packet byte size
694 */
695 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
696 {
697 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
698 data = (data & 0xffff0000) | (pkt_size & 0xffff);
699 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
700 }
701
702 /**
703 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
704 * @ep: Reference to structure of type pch_udc_ep_regs
705 * @addr: Address of the register
706 */
707 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
708 {
709 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
710 }
711
712 /**
713 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
714 * @ep: Reference to structure of type pch_udc_ep_regs
715 * @addr: Address of the register
716 */
717 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
718 {
719 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
720 }
721
722 /**
723 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
724 * @ep: Reference to structure of type pch_udc_ep_regs
725 */
726 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
727 {
728 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
729 }
730
731 /**
732 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
733 * @ep: Reference to structure of type pch_udc_ep_regs
734 */
735 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
736 {
737 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
738 }
739
740 /**
741 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
742 * @ep: Reference to structure of type pch_udc_ep_regs
743 */
744 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
745 {
746 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
747 }
748
749 /**
750 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
751 * register depending on the direction specified
752 * @dev: Reference to structure of type pch_udc_regs
753 * @dir: whether Tx or Rx
754 * DMA_DIR_RX: Receive
755 * DMA_DIR_TX: Transmit
756 */
757 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
758 {
759 if (dir == DMA_DIR_RX)
760 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
761 else if (dir == DMA_DIR_TX)
762 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
763 }
764
765 /**
766 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
767 * register depending on the direction specified
768 * @dev: Reference to structure of type pch_udc_regs
769 * @dir: Whether Tx or Rx
770 * DMA_DIR_RX: Receive
771 * DMA_DIR_TX: Transmit
772 */
773 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
774 {
775 if (dir == DMA_DIR_RX)
776 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
777 else if (dir == DMA_DIR_TX)
778 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
779 }
780
781 /**
782 * pch_udc_set_csr_done() - Set the device control register
783 * CSR done field (bit 13)
784 * @dev: reference to structure of type pch_udc_regs
785 */
786 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
787 {
788 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
789 }
790
791 /**
792 * pch_udc_disable_interrupts() - Disables the specified interrupts
793 * @dev: Reference to structure of type pch_udc_regs
794 * @mask: Mask to disable interrupts
795 */
796 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
797 u32 mask)
798 {
799 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
800 }
801
802 /**
803 * pch_udc_enable_interrupts() - Enable the specified interrupts
804 * @dev: Reference to structure of type pch_udc_regs
805 * @mask: Mask to enable interrupts
806 */
807 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
808 u32 mask)
809 {
810 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
811 }
812
813 /**
814 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
815 * @dev: Reference to structure of type pch_udc_regs
816 * @mask: Mask to disable interrupts
817 */
818 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
819 u32 mask)
820 {
821 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
822 }
823
824 /**
825 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
826 * @dev: Reference to structure of type pch_udc_regs
827 * @mask: Mask to enable interrupts
828 */
829 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
830 u32 mask)
831 {
832 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
833 }
834
835 /**
836 * pch_udc_read_device_interrupts() - Read the device interrupts
837 * @dev: Reference to structure of type pch_udc_regs
838 * Retern The device interrupts
839 */
840 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
841 {
842 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
843 }
844
845 /**
846 * pch_udc_write_device_interrupts() - Write device interrupts
847 * @dev: Reference to structure of type pch_udc_regs
848 * @val: The value to be written to interrupt register
849 */
850 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
851 u32 val)
852 {
853 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
854 }
855
856 /**
857 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
858 * @dev: Reference to structure of type pch_udc_regs
859 * Retern The endpoint interrupt
860 */
861 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
862 {
863 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
864 }
865
866 /**
867 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
868 * @dev: Reference to structure of type pch_udc_regs
869 * @val: The value to be written to interrupt register
870 */
871 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
872 u32 val)
873 {
874 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
875 }
876
877 /**
878 * pch_udc_read_device_status() - Read the device status
879 * @dev: Reference to structure of type pch_udc_regs
880 * Retern The device status
881 */
882 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
883 {
884 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
885 }
886
887 /**
888 * pch_udc_read_ep_control() - Read the endpoint control
889 * @ep: Reference to structure of type pch_udc_ep_regs
890 * Retern The endpoint control register value
891 */
892 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
893 {
894 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
895 }
896
897 /**
898 * pch_udc_clear_ep_control() - Clear the endpoint control register
899 * @ep: Reference to structure of type pch_udc_ep_regs
900 * Retern The endpoint control register value
901 */
902 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
903 {
904 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
905 }
906
907 /**
908 * pch_udc_read_ep_status() - Read the endpoint status
909 * @ep: Reference to structure of type pch_udc_ep_regs
910 * Retern The endpoint status
911 */
912 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
913 {
914 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
915 }
916
917 /**
918 * pch_udc_clear_ep_status() - Clear the endpoint status
919 * @ep: Reference to structure of type pch_udc_ep_regs
920 * @stat: Endpoint status
921 */
922 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
923 u32 stat)
924 {
925 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
926 }
927
928 /**
929 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
930 * of the endpoint control register
931 * @ep: Reference to structure of type pch_udc_ep_regs
932 */
933 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
934 {
935 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
936 }
937
938 /**
939 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
940 * of the endpoint control register
941 * @ep: reference to structure of type pch_udc_ep_regs
942 */
943 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
944 {
945 unsigned int loopcnt = 0;
946 struct pch_udc_dev *dev = ep->dev;
947
948 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
949 return;
950 if (!ep->in) {
951 loopcnt = 10000;
952 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
953 --loopcnt)
954 udelay(5);
955 if (!loopcnt)
956 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
957 __func__);
958 }
959 loopcnt = 10000;
960 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
961 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
962 udelay(5);
963 }
964 if (!loopcnt)
965 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
966 __func__, ep->num, (ep->in ? "in" : "out"));
967 }
968
969 /**
970 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
971 * @ep: reference to structure of type pch_udc_ep_regs
972 * @dir: direction of endpoint
973 * 0: endpoint is OUT
974 * !0: endpoint is IN
975 */
976 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
977 {
978 if (dir) { /* IN ep */
979 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
980 return;
981 }
982 }
983
984 /**
985 * pch_udc_ep_enable() - This api enables endpoint
986 * @regs: Reference to structure pch_udc_ep_regs
987 * @desc: endpoint descriptor
988 */
989 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
990 struct pch_udc_cfg_data *cfg,
991 const struct usb_endpoint_descriptor *desc)
992 {
993 u32 val = 0;
994 u32 buff_size = 0;
995
996 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
997 if (ep->in)
998 buff_size = UDC_EPIN_BUFF_SIZE;
999 else
1000 buff_size = UDC_EPOUT_BUFF_SIZE;
1001 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
1002 pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
1003 pch_udc_ep_set_nak(ep);
1004 pch_udc_ep_fifo_flush(ep, ep->in);
1005 /* Configure the endpoint */
1006 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
1007 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
1008 UDC_CSR_NE_TYPE_SHIFT) |
1009 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
1010 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
1011 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
1012 usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
1013
1014 if (ep->in)
1015 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
1016 else
1017 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
1018 }
1019
1020 /**
1021 * pch_udc_ep_disable() - This api disables endpoint
1022 * @regs: Reference to structure pch_udc_ep_regs
1023 */
1024 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
1025 {
1026 if (ep->in) {
1027 /* flush the fifo */
1028 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1029 /* set NAK */
1030 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1031 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1032 } else {
1033 /* set NAK */
1034 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1035 }
1036 /* reset desc pointer */
1037 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1038 }
1039
1040 /**
1041 * pch_udc_wait_ep_stall() - Wait EP stall.
1042 * @dev: Reference to pch_udc_dev structure
1043 */
1044 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1045 {
1046 unsigned int count = 10000;
1047
1048 /* Wait till idle */
1049 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1050 udelay(5);
1051 if (!count)
1052 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1053 }
1054
1055 /**
1056 * pch_udc_init() - This API initializes usb device controller
1057 * @dev: Rreference to pch_udc_regs structure
1058 */
1059 static void pch_udc_init(struct pch_udc_dev *dev)
1060 {
1061 if (NULL == dev) {
1062 pr_err("%s: Invalid address\n", __func__);
1063 return;
1064 }
1065 /* Soft Reset and Reset PHY */
1066 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1067 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1068 mdelay(1);
1069 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1070 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1071 mdelay(1);
1072 /* mask and clear all device interrupts */
1073 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1074 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1075
1076 /* mask and clear all ep interrupts */
1077 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1078 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1079
1080 /* enable dynamic CSR programmingi, self powered and device speed */
1081 if (speed_fs)
1082 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1083 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1084 else /* defaul high speed */
1085 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1086 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1087 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1088 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1089 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1090 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1091 UDC_DEVCTL_THE);
1092 }
1093
1094 /**
1095 * pch_udc_exit() - This API exit usb device controller
1096 * @dev: Reference to pch_udc_regs structure
1097 */
1098 static void pch_udc_exit(struct pch_udc_dev *dev)
1099 {
1100 /* mask all device interrupts */
1101 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1102 /* mask all ep interrupts */
1103 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1104 /* put device in disconnected state */
1105 pch_udc_set_disconnect(dev);
1106 }
1107
1108 /**
1109 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1110 * @gadget: Reference to the gadget driver
1111 *
1112 * Return codes:
1113 * 0: Success
1114 * -EINVAL: If the gadget passed is NULL
1115 */
1116 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1117 {
1118 struct pch_udc_dev *dev;
1119
1120 if (!gadget)
1121 return -EINVAL;
1122 dev = container_of(gadget, struct pch_udc_dev, gadget);
1123 return pch_udc_get_frame(dev);
1124 }
1125
1126 /**
1127 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1128 * @gadget: Reference to the gadget driver
1129 *
1130 * Return codes:
1131 * 0: Success
1132 * -EINVAL: If the gadget passed is NULL
1133 */
1134 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1135 {
1136 struct pch_udc_dev *dev;
1137 unsigned long flags;
1138
1139 if (!gadget)
1140 return -EINVAL;
1141 dev = container_of(gadget, struct pch_udc_dev, gadget);
1142 spin_lock_irqsave(&dev->lock, flags);
1143 pch_udc_rmt_wakeup(dev);
1144 spin_unlock_irqrestore(&dev->lock, flags);
1145 return 0;
1146 }
1147
1148 /**
1149 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1150 * is self powered or not
1151 * @gadget: Reference to the gadget driver
1152 * @value: Specifies self powered or not
1153 *
1154 * Return codes:
1155 * 0: Success
1156 * -EINVAL: If the gadget passed is NULL
1157 */
1158 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1159 {
1160 struct pch_udc_dev *dev;
1161
1162 if (!gadget)
1163 return -EINVAL;
1164 gadget->is_selfpowered = (value != 0);
1165 dev = container_of(gadget, struct pch_udc_dev, gadget);
1166 if (value)
1167 pch_udc_set_selfpowered(dev);
1168 else
1169 pch_udc_clear_selfpowered(dev);
1170 return 0;
1171 }
1172
1173 /**
1174 * pch_udc_pcd_pullup() - This API is invoked to make the device
1175 * visible/invisible to the host
1176 * @gadget: Reference to the gadget driver
1177 * @is_on: Specifies whether the pull up is made active or inactive
1178 *
1179 * Return codes:
1180 * 0: Success
1181 * -EINVAL: If the gadget passed is NULL
1182 */
1183 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1184 {
1185 struct pch_udc_dev *dev;
1186
1187 if (!gadget)
1188 return -EINVAL;
1189 dev = container_of(gadget, struct pch_udc_dev, gadget);
1190 if (is_on) {
1191 pch_udc_reconnect(dev);
1192 } else {
1193 if (dev->driver && dev->driver->disconnect) {
1194 spin_unlock(&dev->lock);
1195 dev->driver->disconnect(&dev->gadget);
1196 spin_lock(&dev->lock);
1197 }
1198 pch_udc_set_disconnect(dev);
1199 }
1200
1201 return 0;
1202 }
1203
1204 /**
1205 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1206 * transceiver (or GPIO) that
1207 * detects a VBUS power session starting/ending
1208 * @gadget: Reference to the gadget driver
1209 * @is_active: specifies whether the session is starting or ending
1210 *
1211 * Return codes:
1212 * 0: Success
1213 * -EINVAL: If the gadget passed is NULL
1214 */
1215 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1216 {
1217 struct pch_udc_dev *dev;
1218
1219 if (!gadget)
1220 return -EINVAL;
1221 dev = container_of(gadget, struct pch_udc_dev, gadget);
1222 pch_udc_vbus_session(dev, is_active);
1223 return 0;
1224 }
1225
1226 /**
1227 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1228 * SET_CONFIGURATION calls to
1229 * specify how much power the device can consume
1230 * @gadget: Reference to the gadget driver
1231 * @mA: specifies the current limit in 2mA unit
1232 *
1233 * Return codes:
1234 * -EINVAL: If the gadget passed is NULL
1235 * -EOPNOTSUPP:
1236 */
1237 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1238 {
1239 return -EOPNOTSUPP;
1240 }
1241
1242 static int pch_udc_start(struct usb_gadget *g,
1243 struct usb_gadget_driver *driver);
1244 static int pch_udc_stop(struct usb_gadget *g);
1245
1246 static const struct usb_gadget_ops pch_udc_ops = {
1247 .get_frame = pch_udc_pcd_get_frame,
1248 .wakeup = pch_udc_pcd_wakeup,
1249 .set_selfpowered = pch_udc_pcd_selfpowered,
1250 .pullup = pch_udc_pcd_pullup,
1251 .vbus_session = pch_udc_pcd_vbus_session,
1252 .vbus_draw = pch_udc_pcd_vbus_draw,
1253 .udc_start = pch_udc_start,
1254 .udc_stop = pch_udc_stop,
1255 };
1256
1257 /**
1258 * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
1259 * @dev: Reference to the driver structure
1260 *
1261 * Return value:
1262 * 1: VBUS is high
1263 * 0: VBUS is low
1264 * -1: It is not enable to detect VBUS using GPIO
1265 */
1266 static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
1267 {
1268 int vbus = 0;
1269
1270 if (dev->vbus_gpio.port)
1271 vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
1272 else
1273 vbus = -1;
1274
1275 return vbus;
1276 }
1277
1278 /**
1279 * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
1280 * If VBUS is Low, disconnect is processed
1281 * @irq_work: Structure for WorkQueue
1282 *
1283 */
1284 static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
1285 {
1286 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1287 struct pch_vbus_gpio_data, irq_work_fall);
1288 struct pch_udc_dev *dev =
1289 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1290 int vbus_saved = -1;
1291 int vbus;
1292 int count;
1293
1294 if (!dev->vbus_gpio.port)
1295 return;
1296
1297 for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
1298 count++) {
1299 vbus = pch_vbus_gpio_get_value(dev);
1300
1301 if ((vbus_saved == vbus) && (vbus == 0)) {
1302 dev_dbg(&dev->pdev->dev, "VBUS fell");
1303 if (dev->driver
1304 && dev->driver->disconnect) {
1305 dev->driver->disconnect(
1306 &dev->gadget);
1307 }
1308 if (dev->vbus_gpio.intr)
1309 pch_udc_init(dev);
1310 else
1311 pch_udc_reconnect(dev);
1312 return;
1313 }
1314 vbus_saved = vbus;
1315 mdelay(PCH_VBUS_INTERVAL);
1316 }
1317 }
1318
1319 /**
1320 * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
1321 * If VBUS is High, connect is processed
1322 * @irq_work: Structure for WorkQueue
1323 *
1324 */
1325 static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
1326 {
1327 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1328 struct pch_vbus_gpio_data, irq_work_rise);
1329 struct pch_udc_dev *dev =
1330 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1331 int vbus;
1332
1333 if (!dev->vbus_gpio.port)
1334 return;
1335
1336 mdelay(PCH_VBUS_INTERVAL);
1337 vbus = pch_vbus_gpio_get_value(dev);
1338
1339 if (vbus == 1) {
1340 dev_dbg(&dev->pdev->dev, "VBUS rose");
1341 pch_udc_reconnect(dev);
1342 return;
1343 }
1344 }
1345
1346 /**
1347 * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
1348 * @irq: Interrupt request number
1349 * @dev: Reference to the device structure
1350 *
1351 * Return codes:
1352 * 0: Success
1353 * -EINVAL: GPIO port is invalid or can't be initialized.
1354 */
1355 static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
1356 {
1357 struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
1358
1359 if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
1360 return IRQ_NONE;
1361
1362 if (pch_vbus_gpio_get_value(dev))
1363 schedule_work(&dev->vbus_gpio.irq_work_rise);
1364 else
1365 schedule_work(&dev->vbus_gpio.irq_work_fall);
1366
1367 return IRQ_HANDLED;
1368 }
1369
1370 /**
1371 * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
1372 * @dev: Reference to the driver structure
1373 * @vbus_gpio Number of GPIO port to detect gpio
1374 *
1375 * Return codes:
1376 * 0: Success
1377 * -EINVAL: GPIO port is invalid or can't be initialized.
1378 */
1379 static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
1380 {
1381 int err;
1382 int irq_num = 0;
1383
1384 dev->vbus_gpio.port = 0;
1385 dev->vbus_gpio.intr = 0;
1386
1387 if (vbus_gpio_port <= -1)
1388 return -EINVAL;
1389
1390 err = gpio_is_valid(vbus_gpio_port);
1391 if (!err) {
1392 pr_err("%s: gpio port %d is invalid\n",
1393 __func__, vbus_gpio_port);
1394 return -EINVAL;
1395 }
1396
1397 err = gpio_request(vbus_gpio_port, "pch_vbus");
1398 if (err) {
1399 pr_err("%s: can't request gpio port %d, err: %d\n",
1400 __func__, vbus_gpio_port, err);
1401 return -EINVAL;
1402 }
1403
1404 dev->vbus_gpio.port = vbus_gpio_port;
1405 gpio_direction_input(vbus_gpio_port);
1406 INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
1407
1408 irq_num = gpio_to_irq(vbus_gpio_port);
1409 if (irq_num > 0) {
1410 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
1411 err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
1412 "vbus_detect", dev);
1413 if (!err) {
1414 dev->vbus_gpio.intr = irq_num;
1415 INIT_WORK(&dev->vbus_gpio.irq_work_rise,
1416 pch_vbus_gpio_work_rise);
1417 } else {
1418 pr_err("%s: can't request irq %d, err: %d\n",
1419 __func__, irq_num, err);
1420 }
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * pch_vbus_gpio_free() - This API frees resources of GPIO port
1428 * @dev: Reference to the driver structure
1429 */
1430 static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
1431 {
1432 if (dev->vbus_gpio.intr)
1433 free_irq(dev->vbus_gpio.intr, dev);
1434
1435 if (dev->vbus_gpio.port)
1436 gpio_free(dev->vbus_gpio.port);
1437 }
1438
1439 /**
1440 * complete_req() - This API is invoked from the driver when processing
1441 * of a request is complete
1442 * @ep: Reference to the endpoint structure
1443 * @req: Reference to the request structure
1444 * @status: Indicates the success/failure of completion
1445 */
1446 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1447 int status)
1448 __releases(&dev->lock)
1449 __acquires(&dev->lock)
1450 {
1451 struct pch_udc_dev *dev;
1452 unsigned halted = ep->halted;
1453
1454 list_del_init(&req->queue);
1455
1456 /* set new status if pending */
1457 if (req->req.status == -EINPROGRESS)
1458 req->req.status = status;
1459 else
1460 status = req->req.status;
1461
1462 dev = ep->dev;
1463 if (req->dma_mapped) {
1464 if (req->dma == DMA_ADDR_INVALID) {
1465 if (ep->in)
1466 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1467 req->req.length,
1468 DMA_TO_DEVICE);
1469 else
1470 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1471 req->req.length,
1472 DMA_FROM_DEVICE);
1473 req->req.dma = DMA_ADDR_INVALID;
1474 } else {
1475 if (ep->in)
1476 dma_unmap_single(&dev->pdev->dev, req->dma,
1477 req->req.length,
1478 DMA_TO_DEVICE);
1479 else {
1480 dma_unmap_single(&dev->pdev->dev, req->dma,
1481 req->req.length,
1482 DMA_FROM_DEVICE);
1483 memcpy(req->req.buf, req->buf, req->req.length);
1484 }
1485 kfree(req->buf);
1486 req->dma = DMA_ADDR_INVALID;
1487 }
1488 req->dma_mapped = 0;
1489 }
1490 ep->halted = 1;
1491 spin_unlock(&dev->lock);
1492 if (!ep->in)
1493 pch_udc_ep_clear_rrdy(ep);
1494 usb_gadget_giveback_request(&ep->ep, &req->req);
1495 spin_lock(&dev->lock);
1496 ep->halted = halted;
1497 }
1498
1499 /**
1500 * empty_req_queue() - This API empties the request queue of an endpoint
1501 * @ep: Reference to the endpoint structure
1502 */
1503 static void empty_req_queue(struct pch_udc_ep *ep)
1504 {
1505 struct pch_udc_request *req;
1506
1507 ep->halted = 1;
1508 while (!list_empty(&ep->queue)) {
1509 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1510 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1511 }
1512 }
1513
1514 /**
1515 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1516 * for the request
1517 * @dev Reference to the driver structure
1518 * @req Reference to the request to be freed
1519 *
1520 * Return codes:
1521 * 0: Success
1522 */
1523 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1524 struct pch_udc_request *req)
1525 {
1526 struct pch_udc_data_dma_desc *td = req->td_data;
1527 unsigned i = req->chain_len;
1528
1529 dma_addr_t addr2;
1530 dma_addr_t addr = (dma_addr_t)td->next;
1531 td->next = 0x00;
1532 for (; i > 1; --i) {
1533 /* do not free first desc., will be done by free for request */
1534 td = phys_to_virt(addr);
1535 addr2 = (dma_addr_t)td->next;
1536 pci_pool_free(dev->data_requests, td, addr);
1537 td->next = 0x00;
1538 addr = addr2;
1539 }
1540 req->chain_len = 1;
1541 }
1542
1543 /**
1544 * pch_udc_create_dma_chain() - This function creates or reinitializes
1545 * a DMA chain
1546 * @ep: Reference to the endpoint structure
1547 * @req: Reference to the request
1548 * @buf_len: The buffer length
1549 * @gfp_flags: Flags to be used while mapping the data buffer
1550 *
1551 * Return codes:
1552 * 0: success,
1553 * -ENOMEM: pci_pool_alloc invocation fails
1554 */
1555 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1556 struct pch_udc_request *req,
1557 unsigned long buf_len,
1558 gfp_t gfp_flags)
1559 {
1560 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1561 unsigned long bytes = req->req.length, i = 0;
1562 dma_addr_t dma_addr;
1563 unsigned len = 1;
1564
1565 if (req->chain_len > 1)
1566 pch_udc_free_dma_chain(ep->dev, req);
1567
1568 if (req->dma == DMA_ADDR_INVALID)
1569 td->dataptr = req->req.dma;
1570 else
1571 td->dataptr = req->dma;
1572
1573 td->status = PCH_UDC_BS_HST_BSY;
1574 for (; ; bytes -= buf_len, ++len) {
1575 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1576 if (bytes <= buf_len)
1577 break;
1578 last = td;
1579 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1580 &dma_addr);
1581 if (!td)
1582 goto nomem;
1583 i += buf_len;
1584 td->dataptr = req->td_data->dataptr + i;
1585 last->next = dma_addr;
1586 }
1587
1588 req->td_data_last = td;
1589 td->status |= PCH_UDC_DMA_LAST;
1590 td->next = req->td_data_phys;
1591 req->chain_len = len;
1592 return 0;
1593
1594 nomem:
1595 if (len > 1) {
1596 req->chain_len = len;
1597 pch_udc_free_dma_chain(ep->dev, req);
1598 }
1599 req->chain_len = 1;
1600 return -ENOMEM;
1601 }
1602
1603 /**
1604 * prepare_dma() - This function creates and initializes the DMA chain
1605 * for the request
1606 * @ep: Reference to the endpoint structure
1607 * @req: Reference to the request
1608 * @gfp: Flag to be used while mapping the data buffer
1609 *
1610 * Return codes:
1611 * 0: Success
1612 * Other 0: linux error number on failure
1613 */
1614 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1615 gfp_t gfp)
1616 {
1617 int retval;
1618
1619 /* Allocate and create a DMA chain */
1620 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1621 if (retval) {
1622 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1623 return retval;
1624 }
1625 if (ep->in)
1626 req->td_data->status = (req->td_data->status &
1627 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1628 return 0;
1629 }
1630
1631 /**
1632 * process_zlp() - This function process zero length packets
1633 * from the gadget driver
1634 * @ep: Reference to the endpoint structure
1635 * @req: Reference to the request
1636 */
1637 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1638 {
1639 struct pch_udc_dev *dev = ep->dev;
1640
1641 /* IN zlp's are handled by hardware */
1642 complete_req(ep, req, 0);
1643
1644 /* if set_config or set_intf is waiting for ack by zlp
1645 * then set CSR_DONE
1646 */
1647 if (dev->set_cfg_not_acked) {
1648 pch_udc_set_csr_done(dev);
1649 dev->set_cfg_not_acked = 0;
1650 }
1651 /* setup command is ACK'ed now by zlp */
1652 if (!dev->stall && dev->waiting_zlp_ack) {
1653 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1654 dev->waiting_zlp_ack = 0;
1655 }
1656 }
1657
1658 /**
1659 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1660 * @ep: Reference to the endpoint structure
1661 * @req: Reference to the request structure
1662 */
1663 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1664 struct pch_udc_request *req)
1665 {
1666 struct pch_udc_data_dma_desc *td_data;
1667
1668 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1669 td_data = req->td_data;
1670 /* Set the status bits for all descriptors */
1671 while (1) {
1672 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1673 PCH_UDC_BS_HST_RDY;
1674 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1675 break;
1676 td_data = phys_to_virt(td_data->next);
1677 }
1678 /* Write the descriptor pointer */
1679 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1680 req->dma_going = 1;
1681 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1682 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1683 pch_udc_ep_clear_nak(ep);
1684 pch_udc_ep_set_rrdy(ep);
1685 }
1686
1687 /**
1688 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1689 * from gadget driver
1690 * @usbep: Reference to the USB endpoint structure
1691 * @desc: Reference to the USB endpoint descriptor structure
1692 *
1693 * Return codes:
1694 * 0: Success
1695 * -EINVAL:
1696 * -ESHUTDOWN:
1697 */
1698 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1699 const struct usb_endpoint_descriptor *desc)
1700 {
1701 struct pch_udc_ep *ep;
1702 struct pch_udc_dev *dev;
1703 unsigned long iflags;
1704
1705 if (!usbep || (usbep->name == ep0_string) || !desc ||
1706 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1707 return -EINVAL;
1708
1709 ep = container_of(usbep, struct pch_udc_ep, ep);
1710 dev = ep->dev;
1711 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1712 return -ESHUTDOWN;
1713 spin_lock_irqsave(&dev->lock, iflags);
1714 ep->ep.desc = desc;
1715 ep->halted = 0;
1716 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1717 ep->ep.maxpacket = usb_endpoint_maxp(desc);
1718 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1719 spin_unlock_irqrestore(&dev->lock, iflags);
1720 return 0;
1721 }
1722
1723 /**
1724 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1725 * from gadget driver
1726 * @usbep Reference to the USB endpoint structure
1727 *
1728 * Return codes:
1729 * 0: Success
1730 * -EINVAL:
1731 */
1732 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1733 {
1734 struct pch_udc_ep *ep;
1735 struct pch_udc_dev *dev;
1736 unsigned long iflags;
1737
1738 if (!usbep)
1739 return -EINVAL;
1740
1741 ep = container_of(usbep, struct pch_udc_ep, ep);
1742 dev = ep->dev;
1743 if ((usbep->name == ep0_string) || !ep->ep.desc)
1744 return -EINVAL;
1745
1746 spin_lock_irqsave(&ep->dev->lock, iflags);
1747 empty_req_queue(ep);
1748 ep->halted = 1;
1749 pch_udc_ep_disable(ep);
1750 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1751 ep->ep.desc = NULL;
1752 INIT_LIST_HEAD(&ep->queue);
1753 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1754 return 0;
1755 }
1756
1757 /**
1758 * pch_udc_alloc_request() - This function allocates request structure.
1759 * It is called by gadget driver
1760 * @usbep: Reference to the USB endpoint structure
1761 * @gfp: Flag to be used while allocating memory
1762 *
1763 * Return codes:
1764 * NULL: Failure
1765 * Allocated address: Success
1766 */
1767 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1768 gfp_t gfp)
1769 {
1770 struct pch_udc_request *req;
1771 struct pch_udc_ep *ep;
1772 struct pch_udc_data_dma_desc *dma_desc;
1773 struct pch_udc_dev *dev;
1774
1775 if (!usbep)
1776 return NULL;
1777 ep = container_of(usbep, struct pch_udc_ep, ep);
1778 dev = ep->dev;
1779 req = kzalloc(sizeof *req, gfp);
1780 if (!req)
1781 return NULL;
1782 req->req.dma = DMA_ADDR_INVALID;
1783 req->dma = DMA_ADDR_INVALID;
1784 INIT_LIST_HEAD(&req->queue);
1785 if (!ep->dev->dma_addr)
1786 return &req->req;
1787 /* ep0 in requests are allocated from data pool here */
1788 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1789 &req->td_data_phys);
1790 if (NULL == dma_desc) {
1791 kfree(req);
1792 return NULL;
1793 }
1794 /* prevent from using desc. - set HOST BUSY */
1795 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1796 dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1797 req->td_data = dma_desc;
1798 req->td_data_last = dma_desc;
1799 req->chain_len = 1;
1800 return &req->req;
1801 }
1802
1803 /**
1804 * pch_udc_free_request() - This function frees request structure.
1805 * It is called by gadget driver
1806 * @usbep: Reference to the USB endpoint structure
1807 * @usbreq: Reference to the USB request
1808 */
1809 static void pch_udc_free_request(struct usb_ep *usbep,
1810 struct usb_request *usbreq)
1811 {
1812 struct pch_udc_ep *ep;
1813 struct pch_udc_request *req;
1814 struct pch_udc_dev *dev;
1815
1816 if (!usbep || !usbreq)
1817 return;
1818 ep = container_of(usbep, struct pch_udc_ep, ep);
1819 req = container_of(usbreq, struct pch_udc_request, req);
1820 dev = ep->dev;
1821 if (!list_empty(&req->queue))
1822 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1823 __func__, usbep->name, req);
1824 if (req->td_data != NULL) {
1825 if (req->chain_len > 1)
1826 pch_udc_free_dma_chain(ep->dev, req);
1827 pci_pool_free(ep->dev->data_requests, req->td_data,
1828 req->td_data_phys);
1829 }
1830 kfree(req);
1831 }
1832
1833 /**
1834 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1835 * by gadget driver
1836 * @usbep: Reference to the USB endpoint structure
1837 * @usbreq: Reference to the USB request
1838 * @gfp: Flag to be used while mapping the data buffer
1839 *
1840 * Return codes:
1841 * 0: Success
1842 * linux error number: Failure
1843 */
1844 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1845 gfp_t gfp)
1846 {
1847 int retval = 0;
1848 struct pch_udc_ep *ep;
1849 struct pch_udc_dev *dev;
1850 struct pch_udc_request *req;
1851 unsigned long iflags;
1852
1853 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1854 return -EINVAL;
1855 ep = container_of(usbep, struct pch_udc_ep, ep);
1856 dev = ep->dev;
1857 if (!ep->ep.desc && ep->num)
1858 return -EINVAL;
1859 req = container_of(usbreq, struct pch_udc_request, req);
1860 if (!list_empty(&req->queue))
1861 return -EINVAL;
1862 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1863 return -ESHUTDOWN;
1864 spin_lock_irqsave(&dev->lock, iflags);
1865 /* map the buffer for dma */
1866 if (usbreq->length &&
1867 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1868 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1869 if (ep->in)
1870 usbreq->dma = dma_map_single(&dev->pdev->dev,
1871 usbreq->buf,
1872 usbreq->length,
1873 DMA_TO_DEVICE);
1874 else
1875 usbreq->dma = dma_map_single(&dev->pdev->dev,
1876 usbreq->buf,
1877 usbreq->length,
1878 DMA_FROM_DEVICE);
1879 } else {
1880 req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1881 if (!req->buf) {
1882 retval = -ENOMEM;
1883 goto probe_end;
1884 }
1885 if (ep->in) {
1886 memcpy(req->buf, usbreq->buf, usbreq->length);
1887 req->dma = dma_map_single(&dev->pdev->dev,
1888 req->buf,
1889 usbreq->length,
1890 DMA_TO_DEVICE);
1891 } else
1892 req->dma = dma_map_single(&dev->pdev->dev,
1893 req->buf,
1894 usbreq->length,
1895 DMA_FROM_DEVICE);
1896 }
1897 req->dma_mapped = 1;
1898 }
1899 if (usbreq->length > 0) {
1900 retval = prepare_dma(ep, req, GFP_ATOMIC);
1901 if (retval)
1902 goto probe_end;
1903 }
1904 usbreq->actual = 0;
1905 usbreq->status = -EINPROGRESS;
1906 req->dma_done = 0;
1907 if (list_empty(&ep->queue) && !ep->halted) {
1908 /* no pending transfer, so start this req */
1909 if (!usbreq->length) {
1910 process_zlp(ep, req);
1911 retval = 0;
1912 goto probe_end;
1913 }
1914 if (!ep->in) {
1915 pch_udc_start_rxrequest(ep, req);
1916 } else {
1917 /*
1918 * For IN trfr the descriptors will be programmed and
1919 * P bit will be set when
1920 * we get an IN token
1921 */
1922 pch_udc_wait_ep_stall(ep);
1923 pch_udc_ep_clear_nak(ep);
1924 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1925 }
1926 }
1927 /* Now add this request to the ep's pending requests */
1928 if (req != NULL)
1929 list_add_tail(&req->queue, &ep->queue);
1930
1931 probe_end:
1932 spin_unlock_irqrestore(&dev->lock, iflags);
1933 return retval;
1934 }
1935
1936 /**
1937 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1938 * It is called by gadget driver
1939 * @usbep: Reference to the USB endpoint structure
1940 * @usbreq: Reference to the USB request
1941 *
1942 * Return codes:
1943 * 0: Success
1944 * linux error number: Failure
1945 */
1946 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1947 struct usb_request *usbreq)
1948 {
1949 struct pch_udc_ep *ep;
1950 struct pch_udc_request *req;
1951 struct pch_udc_dev *dev;
1952 unsigned long flags;
1953 int ret = -EINVAL;
1954
1955 ep = container_of(usbep, struct pch_udc_ep, ep);
1956 dev = ep->dev;
1957 if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
1958 return ret;
1959 req = container_of(usbreq, struct pch_udc_request, req);
1960 spin_lock_irqsave(&ep->dev->lock, flags);
1961 /* make sure it's still queued on this endpoint */
1962 list_for_each_entry(req, &ep->queue, queue) {
1963 if (&req->req == usbreq) {
1964 pch_udc_ep_set_nak(ep);
1965 if (!list_empty(&req->queue))
1966 complete_req(ep, req, -ECONNRESET);
1967 ret = 0;
1968 break;
1969 }
1970 }
1971 spin_unlock_irqrestore(&ep->dev->lock, flags);
1972 return ret;
1973 }
1974
1975 /**
1976 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1977 * feature
1978 * @usbep: Reference to the USB endpoint structure
1979 * @halt: Specifies whether to set or clear the feature
1980 *
1981 * Return codes:
1982 * 0: Success
1983 * linux error number: Failure
1984 */
1985 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1986 {
1987 struct pch_udc_ep *ep;
1988 struct pch_udc_dev *dev;
1989 unsigned long iflags;
1990 int ret;
1991
1992 if (!usbep)
1993 return -EINVAL;
1994 ep = container_of(usbep, struct pch_udc_ep, ep);
1995 dev = ep->dev;
1996 if (!ep->ep.desc && !ep->num)
1997 return -EINVAL;
1998 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1999 return -ESHUTDOWN;
2000 spin_lock_irqsave(&udc_stall_spinlock, iflags);
2001 if (list_empty(&ep->queue)) {
2002 if (halt) {
2003 if (ep->num == PCH_UDC_EP0)
2004 ep->dev->stall = 1;
2005 pch_udc_ep_set_stall(ep);
2006 pch_udc_enable_ep_interrupts(ep->dev,
2007 PCH_UDC_EPINT(ep->in,
2008 ep->num));
2009 } else {
2010 pch_udc_ep_clear_stall(ep);
2011 }
2012 ret = 0;
2013 } else {
2014 ret = -EAGAIN;
2015 }
2016 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2017 return ret;
2018 }
2019
2020 /**
2021 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
2022 * halt feature
2023 * @usbep: Reference to the USB endpoint structure
2024 * @halt: Specifies whether to set or clear the feature
2025 *
2026 * Return codes:
2027 * 0: Success
2028 * linux error number: Failure
2029 */
2030 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
2031 {
2032 struct pch_udc_ep *ep;
2033 struct pch_udc_dev *dev;
2034 unsigned long iflags;
2035 int ret;
2036
2037 if (!usbep)
2038 return -EINVAL;
2039 ep = container_of(usbep, struct pch_udc_ep, ep);
2040 dev = ep->dev;
2041 if (!ep->ep.desc && !ep->num)
2042 return -EINVAL;
2043 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
2044 return -ESHUTDOWN;
2045 spin_lock_irqsave(&udc_stall_spinlock, iflags);
2046 if (!list_empty(&ep->queue)) {
2047 ret = -EAGAIN;
2048 } else {
2049 if (ep->num == PCH_UDC_EP0)
2050 ep->dev->stall = 1;
2051 pch_udc_ep_set_stall(ep);
2052 pch_udc_enable_ep_interrupts(ep->dev,
2053 PCH_UDC_EPINT(ep->in, ep->num));
2054 ep->dev->prot_stall = 1;
2055 ret = 0;
2056 }
2057 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2058 return ret;
2059 }
2060
2061 /**
2062 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
2063 * @usbep: Reference to the USB endpoint structure
2064 */
2065 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
2066 {
2067 struct pch_udc_ep *ep;
2068
2069 if (!usbep)
2070 return;
2071
2072 ep = container_of(usbep, struct pch_udc_ep, ep);
2073 if (ep->ep.desc || !ep->num)
2074 pch_udc_ep_fifo_flush(ep, ep->in);
2075 }
2076
2077 static const struct usb_ep_ops pch_udc_ep_ops = {
2078 .enable = pch_udc_pcd_ep_enable,
2079 .disable = pch_udc_pcd_ep_disable,
2080 .alloc_request = pch_udc_alloc_request,
2081 .free_request = pch_udc_free_request,
2082 .queue = pch_udc_pcd_queue,
2083 .dequeue = pch_udc_pcd_dequeue,
2084 .set_halt = pch_udc_pcd_set_halt,
2085 .set_wedge = pch_udc_pcd_set_wedge,
2086 .fifo_status = NULL,
2087 .fifo_flush = pch_udc_pcd_fifo_flush,
2088 };
2089
2090 /**
2091 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
2092 * @td_stp: Reference to the SETP buffer structure
2093 */
2094 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
2095 {
2096 static u32 pky_marker;
2097
2098 if (!td_stp)
2099 return;
2100 td_stp->reserved = ++pky_marker;
2101 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
2102 td_stp->status = PCH_UDC_BS_HST_RDY;
2103 }
2104
2105 /**
2106 * pch_udc_start_next_txrequest() - This function starts
2107 * the next transmission requirement
2108 * @ep: Reference to the endpoint structure
2109 */
2110 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
2111 {
2112 struct pch_udc_request *req;
2113 struct pch_udc_data_dma_desc *td_data;
2114
2115 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
2116 return;
2117
2118 if (list_empty(&ep->queue))
2119 return;
2120
2121 /* next request */
2122 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2123 if (req->dma_going)
2124 return;
2125 if (!req->td_data)
2126 return;
2127 pch_udc_wait_ep_stall(ep);
2128 req->dma_going = 1;
2129 pch_udc_ep_set_ddptr(ep, 0);
2130 td_data = req->td_data;
2131 while (1) {
2132 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
2133 PCH_UDC_BS_HST_RDY;
2134 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
2135 break;
2136 td_data = phys_to_virt(td_data->next);
2137 }
2138 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
2139 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
2140 pch_udc_ep_set_pd(ep);
2141 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2142 pch_udc_ep_clear_nak(ep);
2143 }
2144
2145 /**
2146 * pch_udc_complete_transfer() - This function completes a transfer
2147 * @ep: Reference to the endpoint structure
2148 */
2149 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
2150 {
2151 struct pch_udc_request *req;
2152 struct pch_udc_dev *dev = ep->dev;
2153
2154 if (list_empty(&ep->queue))
2155 return;
2156 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2157 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2158 PCH_UDC_BS_DMA_DONE)
2159 return;
2160 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
2161 PCH_UDC_RTS_SUCC) {
2162 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
2163 "epstatus=0x%08x\n",
2164 (req->td_data_last->status & PCH_UDC_RXTX_STS),
2165 (int)(ep->epsts));
2166 return;
2167 }
2168
2169 req->req.actual = req->req.length;
2170 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2171 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2172 complete_req(ep, req, 0);
2173 req->dma_going = 0;
2174 if (!list_empty(&ep->queue)) {
2175 pch_udc_wait_ep_stall(ep);
2176 pch_udc_ep_clear_nak(ep);
2177 pch_udc_enable_ep_interrupts(ep->dev,
2178 PCH_UDC_EPINT(ep->in, ep->num));
2179 } else {
2180 pch_udc_disable_ep_interrupts(ep->dev,
2181 PCH_UDC_EPINT(ep->in, ep->num));
2182 }
2183 }
2184
2185 /**
2186 * pch_udc_complete_receiver() - This function completes a receiver
2187 * @ep: Reference to the endpoint structure
2188 */
2189 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
2190 {
2191 struct pch_udc_request *req;
2192 struct pch_udc_dev *dev = ep->dev;
2193 unsigned int count;
2194 struct pch_udc_data_dma_desc *td;
2195 dma_addr_t addr;
2196
2197 if (list_empty(&ep->queue))
2198 return;
2199 /* next request */
2200 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2201 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
2202 pch_udc_ep_set_ddptr(ep, 0);
2203 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
2204 PCH_UDC_BS_DMA_DONE)
2205 td = req->td_data_last;
2206 else
2207 td = req->td_data;
2208
2209 while (1) {
2210 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
2211 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
2212 "epstatus=0x%08x\n",
2213 (req->td_data->status & PCH_UDC_RXTX_STS),
2214 (int)(ep->epsts));
2215 return;
2216 }
2217 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2218 if (td->status & PCH_UDC_DMA_LAST) {
2219 count = td->status & PCH_UDC_RXTX_BYTES;
2220 break;
2221 }
2222 if (td == req->td_data_last) {
2223 dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2224 return;
2225 }
2226 addr = (dma_addr_t)td->next;
2227 td = phys_to_virt(addr);
2228 }
2229 /* on 64k packets the RXBYTES field is zero */
2230 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2231 count = UDC_DMA_MAXPACKET;
2232 req->td_data->status |= PCH_UDC_DMA_LAST;
2233 td->status |= PCH_UDC_BS_HST_BSY;
2234
2235 req->dma_going = 0;
2236 req->req.actual = count;
2237 complete_req(ep, req, 0);
2238 /* If there is a new/failed requests try that now */
2239 if (!list_empty(&ep->queue)) {
2240 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2241 pch_udc_start_rxrequest(ep, req);
2242 }
2243 }
2244
2245 /**
2246 * pch_udc_svc_data_in() - This function process endpoint interrupts
2247 * for IN endpoints
2248 * @dev: Reference to the device structure
2249 * @ep_num: Endpoint that generated the interrupt
2250 */
2251 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2252 {
2253 u32 epsts;
2254 struct pch_udc_ep *ep;
2255
2256 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2257 epsts = ep->epsts;
2258 ep->epsts = 0;
2259
2260 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2261 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2262 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2263 return;
2264 if ((epsts & UDC_EPSTS_BNA))
2265 return;
2266 if (epsts & UDC_EPSTS_HE)
2267 return;
2268 if (epsts & UDC_EPSTS_RSS) {
2269 pch_udc_ep_set_stall(ep);
2270 pch_udc_enable_ep_interrupts(ep->dev,
2271 PCH_UDC_EPINT(ep->in, ep->num));
2272 }
2273 if (epsts & UDC_EPSTS_RCS) {
2274 if (!dev->prot_stall) {
2275 pch_udc_ep_clear_stall(ep);
2276 } else {
2277 pch_udc_ep_set_stall(ep);
2278 pch_udc_enable_ep_interrupts(ep->dev,
2279 PCH_UDC_EPINT(ep->in, ep->num));
2280 }
2281 }
2282 if (epsts & UDC_EPSTS_TDC)
2283 pch_udc_complete_transfer(ep);
2284 /* On IN interrupt, provide data if we have any */
2285 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2286 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2287 pch_udc_start_next_txrequest(ep);
2288 }
2289
2290 /**
2291 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2292 * @dev: Reference to the device structure
2293 * @ep_num: Endpoint that generated the interrupt
2294 */
2295 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2296 {
2297 u32 epsts;
2298 struct pch_udc_ep *ep;
2299 struct pch_udc_request *req = NULL;
2300
2301 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2302 epsts = ep->epsts;
2303 ep->epsts = 0;
2304
2305 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2306 /* next request */
2307 req = list_entry(ep->queue.next, struct pch_udc_request,
2308 queue);
2309 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2310 PCH_UDC_BS_DMA_DONE) {
2311 if (!req->dma_going)
2312 pch_udc_start_rxrequest(ep, req);
2313 return;
2314 }
2315 }
2316 if (epsts & UDC_EPSTS_HE)
2317 return;
2318 if (epsts & UDC_EPSTS_RSS) {
2319 pch_udc_ep_set_stall(ep);
2320 pch_udc_enable_ep_interrupts(ep->dev,
2321 PCH_UDC_EPINT(ep->in, ep->num));
2322 }
2323 if (epsts & UDC_EPSTS_RCS) {
2324 if (!dev->prot_stall) {
2325 pch_udc_ep_clear_stall(ep);
2326 } else {
2327 pch_udc_ep_set_stall(ep);
2328 pch_udc_enable_ep_interrupts(ep->dev,
2329 PCH_UDC_EPINT(ep->in, ep->num));
2330 }
2331 }
2332 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2333 UDC_EPSTS_OUT_DATA) {
2334 if (ep->dev->prot_stall == 1) {
2335 pch_udc_ep_set_stall(ep);
2336 pch_udc_enable_ep_interrupts(ep->dev,
2337 PCH_UDC_EPINT(ep->in, ep->num));
2338 } else {
2339 pch_udc_complete_receiver(ep);
2340 }
2341 }
2342 if (list_empty(&ep->queue))
2343 pch_udc_set_dma(dev, DMA_DIR_RX);
2344 }
2345
2346 /**
2347 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2348 * @dev: Reference to the device structure
2349 */
2350 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2351 {
2352 u32 epsts;
2353 struct pch_udc_ep *ep;
2354 struct pch_udc_ep *ep_out;
2355
2356 ep = &dev->ep[UDC_EP0IN_IDX];
2357 ep_out = &dev->ep[UDC_EP0OUT_IDX];
2358 epsts = ep->epsts;
2359 ep->epsts = 0;
2360
2361 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2362 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2363 UDC_EPSTS_XFERDONE)))
2364 return;
2365 if ((epsts & UDC_EPSTS_BNA))
2366 return;
2367 if (epsts & UDC_EPSTS_HE)
2368 return;
2369 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2370 pch_udc_complete_transfer(ep);
2371 pch_udc_clear_dma(dev, DMA_DIR_RX);
2372 ep_out->td_data->status = (ep_out->td_data->status &
2373 ~PCH_UDC_BUFF_STS) |
2374 PCH_UDC_BS_HST_RDY;
2375 pch_udc_ep_clear_nak(ep_out);
2376 pch_udc_set_dma(dev, DMA_DIR_RX);
2377 pch_udc_ep_set_rrdy(ep_out);
2378 }
2379 /* On IN interrupt, provide data if we have any */
2380 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2381 !(epsts & UDC_EPSTS_TXEMPTY))
2382 pch_udc_start_next_txrequest(ep);
2383 }
2384
2385 /**
2386 * pch_udc_svc_control_out() - Routine that handle Control
2387 * OUT endpoint interrupts
2388 * @dev: Reference to the device structure
2389 */
2390 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2391 __releases(&dev->lock)
2392 __acquires(&dev->lock)
2393 {
2394 u32 stat;
2395 int setup_supported;
2396 struct pch_udc_ep *ep;
2397
2398 ep = &dev->ep[UDC_EP0OUT_IDX];
2399 stat = ep->epsts;
2400 ep->epsts = 0;
2401
2402 /* If setup data */
2403 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2404 UDC_EPSTS_OUT_SETUP) {
2405 dev->stall = 0;
2406 dev->ep[UDC_EP0IN_IDX].halted = 0;
2407 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2408 dev->setup_data = ep->td_stp->request;
2409 pch_udc_init_setup_buff(ep->td_stp);
2410 pch_udc_clear_dma(dev, DMA_DIR_RX);
2411 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2412 dev->ep[UDC_EP0IN_IDX].in);
2413 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2414 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2415 else /* OUT */
2416 dev->gadget.ep0 = &ep->ep;
2417 spin_unlock(&dev->lock);
2418 /* If Mass storage Reset */
2419 if ((dev->setup_data.bRequestType == 0x21) &&
2420 (dev->setup_data.bRequest == 0xFF))
2421 dev->prot_stall = 0;
2422 /* call gadget with setup data received */
2423 setup_supported = dev->driver->setup(&dev->gadget,
2424 &dev->setup_data);
2425 spin_lock(&dev->lock);
2426
2427 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2428 ep->td_data->status = (ep->td_data->status &
2429 ~PCH_UDC_BUFF_STS) |
2430 PCH_UDC_BS_HST_RDY;
2431 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2432 }
2433 /* ep0 in returns data on IN phase */
2434 if (setup_supported >= 0 && setup_supported <
2435 UDC_EP0IN_MAX_PKT_SIZE) {
2436 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2437 /* Gadget would have queued a request when
2438 * we called the setup */
2439 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2440 pch_udc_set_dma(dev, DMA_DIR_RX);
2441 pch_udc_ep_clear_nak(ep);
2442 }
2443 } else if (setup_supported < 0) {
2444 /* if unsupported request, then stall */
2445 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2446 pch_udc_enable_ep_interrupts(ep->dev,
2447 PCH_UDC_EPINT(ep->in, ep->num));
2448 dev->stall = 0;
2449 pch_udc_set_dma(dev, DMA_DIR_RX);
2450 } else {
2451 dev->waiting_zlp_ack = 1;
2452 }
2453 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2454 UDC_EPSTS_OUT_DATA) && !dev->stall) {
2455 pch_udc_clear_dma(dev, DMA_DIR_RX);
2456 pch_udc_ep_set_ddptr(ep, 0);
2457 if (!list_empty(&ep->queue)) {
2458 ep->epsts = stat;
2459 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2460 }
2461 pch_udc_set_dma(dev, DMA_DIR_RX);
2462 }
2463 pch_udc_ep_set_rrdy(ep);
2464 }
2465
2466
2467 /**
2468 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2469 * and clears NAK status
2470 * @dev: Reference to the device structure
2471 * @ep_num: End point number
2472 */
2473 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2474 {
2475 struct pch_udc_ep *ep;
2476 struct pch_udc_request *req;
2477
2478 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2479 if (!list_empty(&ep->queue)) {
2480 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2481 pch_udc_enable_ep_interrupts(ep->dev,
2482 PCH_UDC_EPINT(ep->in, ep->num));
2483 pch_udc_ep_clear_nak(ep);
2484 }
2485 }
2486
2487 /**
2488 * pch_udc_read_all_epstatus() - This function read all endpoint status
2489 * @dev: Reference to the device structure
2490 * @ep_intr: Status of endpoint interrupt
2491 */
2492 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2493 {
2494 int i;
2495 struct pch_udc_ep *ep;
2496
2497 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2498 /* IN */
2499 if (ep_intr & (0x1 << i)) {
2500 ep = &dev->ep[UDC_EPIN_IDX(i)];
2501 ep->epsts = pch_udc_read_ep_status(ep);
2502 pch_udc_clear_ep_status(ep, ep->epsts);
2503 }
2504 /* OUT */
2505 if (ep_intr & (0x10000 << i)) {
2506 ep = &dev->ep[UDC_EPOUT_IDX(i)];
2507 ep->epsts = pch_udc_read_ep_status(ep);
2508 pch_udc_clear_ep_status(ep, ep->epsts);
2509 }
2510 }
2511 }
2512
2513 /**
2514 * pch_udc_activate_control_ep() - This function enables the control endpoints
2515 * for traffic after a reset
2516 * @dev: Reference to the device structure
2517 */
2518 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2519 {
2520 struct pch_udc_ep *ep;
2521 u32 val;
2522
2523 /* Setup the IN endpoint */
2524 ep = &dev->ep[UDC_EP0IN_IDX];
2525 pch_udc_clear_ep_control(ep);
2526 pch_udc_ep_fifo_flush(ep, ep->in);
2527 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2528 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2529 /* Initialize the IN EP Descriptor */
2530 ep->td_data = NULL;
2531 ep->td_stp = NULL;
2532 ep->td_data_phys = 0;
2533 ep->td_stp_phys = 0;
2534
2535 /* Setup the OUT endpoint */
2536 ep = &dev->ep[UDC_EP0OUT_IDX];
2537 pch_udc_clear_ep_control(ep);
2538 pch_udc_ep_fifo_flush(ep, ep->in);
2539 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2540 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2541 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2542 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2543
2544 /* Initialize the SETUP buffer */
2545 pch_udc_init_setup_buff(ep->td_stp);
2546 /* Write the pointer address of dma descriptor */
2547 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2548 /* Write the pointer address of Setup descriptor */
2549 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2550
2551 /* Initialize the dma descriptor */
2552 ep->td_data->status = PCH_UDC_DMA_LAST;
2553 ep->td_data->dataptr = dev->dma_addr;
2554 ep->td_data->next = ep->td_data_phys;
2555
2556 pch_udc_ep_clear_nak(ep);
2557 }
2558
2559
2560 /**
2561 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2562 * @dev: Reference to driver structure
2563 */
2564 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2565 {
2566 struct pch_udc_ep *ep;
2567 int i;
2568
2569 pch_udc_clear_dma(dev, DMA_DIR_TX);
2570 pch_udc_clear_dma(dev, DMA_DIR_RX);
2571 /* Mask all endpoint interrupts */
2572 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2573 /* clear all endpoint interrupts */
2574 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2575
2576 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2577 ep = &dev->ep[i];
2578 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2579 pch_udc_clear_ep_control(ep);
2580 pch_udc_ep_set_ddptr(ep, 0);
2581 pch_udc_write_csr(ep->dev, 0x00, i);
2582 }
2583 dev->stall = 0;
2584 dev->prot_stall = 0;
2585 dev->waiting_zlp_ack = 0;
2586 dev->set_cfg_not_acked = 0;
2587
2588 /* disable ep to empty req queue. Skip the control EP's */
2589 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2590 ep = &dev->ep[i];
2591 pch_udc_ep_set_nak(ep);
2592 pch_udc_ep_fifo_flush(ep, ep->in);
2593 /* Complete request queue */
2594 empty_req_queue(ep);
2595 }
2596 if (dev->driver) {
2597 spin_unlock(&dev->lock);
2598 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2599 spin_lock(&dev->lock);
2600 }
2601 }
2602
2603 /**
2604 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2605 * done interrupt
2606 * @dev: Reference to driver structure
2607 */
2608 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2609 {
2610 u32 dev_stat, dev_speed;
2611 u32 speed = USB_SPEED_FULL;
2612
2613 dev_stat = pch_udc_read_device_status(dev);
2614 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2615 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2616 switch (dev_speed) {
2617 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2618 speed = USB_SPEED_HIGH;
2619 break;
2620 case UDC_DEVSTS_ENUM_SPEED_FULL:
2621 speed = USB_SPEED_FULL;
2622 break;
2623 case UDC_DEVSTS_ENUM_SPEED_LOW:
2624 speed = USB_SPEED_LOW;
2625 break;
2626 default:
2627 BUG();
2628 }
2629 dev->gadget.speed = speed;
2630 pch_udc_activate_control_ep(dev);
2631 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2632 pch_udc_set_dma(dev, DMA_DIR_TX);
2633 pch_udc_set_dma(dev, DMA_DIR_RX);
2634 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2635
2636 /* enable device interrupts */
2637 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2638 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2639 UDC_DEVINT_SI | UDC_DEVINT_SC);
2640 }
2641
2642 /**
2643 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2644 * interrupt
2645 * @dev: Reference to driver structure
2646 */
2647 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2648 {
2649 u32 reg, dev_stat = 0;
2650 int i, ret;
2651
2652 dev_stat = pch_udc_read_device_status(dev);
2653 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2654 UDC_DEVSTS_INTF_SHIFT;
2655 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2656 UDC_DEVSTS_ALT_SHIFT;
2657 dev->set_cfg_not_acked = 1;
2658 /* Construct the usb request for gadget driver and inform it */
2659 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2660 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2661 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2662 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2663 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2664 /* programm the Endpoint Cfg registers */
2665 /* Only one end point cfg register */
2666 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2667 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2668 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2669 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2670 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2671 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2672 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2673 /* clear stall bits */
2674 pch_udc_ep_clear_stall(&(dev->ep[i]));
2675 dev->ep[i].halted = 0;
2676 }
2677 dev->stall = 0;
2678 spin_unlock(&dev->lock);
2679 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2680 spin_lock(&dev->lock);
2681 }
2682
2683 /**
2684 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2685 * interrupt
2686 * @dev: Reference to driver structure
2687 */
2688 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2689 {
2690 int i, ret;
2691 u32 reg, dev_stat = 0;
2692
2693 dev_stat = pch_udc_read_device_status(dev);
2694 dev->set_cfg_not_acked = 1;
2695 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2696 UDC_DEVSTS_CFG_SHIFT;
2697 /* make usb request for gadget driver */
2698 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2699 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2700 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2701 /* program the NE registers */
2702 /* Only one end point cfg register */
2703 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2704 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2705 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2706 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2707 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2708 /* clear stall bits */
2709 pch_udc_ep_clear_stall(&(dev->ep[i]));
2710 dev->ep[i].halted = 0;
2711 }
2712 dev->stall = 0;
2713
2714 /* call gadget zero with setup data received */
2715 spin_unlock(&dev->lock);
2716 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2717 spin_lock(&dev->lock);
2718 }
2719
2720 /**
2721 * pch_udc_dev_isr() - This function services device interrupts
2722 * by invoking appropriate routines.
2723 * @dev: Reference to the device structure
2724 * @dev_intr: The Device interrupt status.
2725 */
2726 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2727 {
2728 int vbus;
2729
2730 /* USB Reset Interrupt */
2731 if (dev_intr & UDC_DEVINT_UR) {
2732 pch_udc_svc_ur_interrupt(dev);
2733 dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2734 }
2735 /* Enumeration Done Interrupt */
2736 if (dev_intr & UDC_DEVINT_ENUM) {
2737 pch_udc_svc_enum_interrupt(dev);
2738 dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2739 }
2740 /* Set Interface Interrupt */
2741 if (dev_intr & UDC_DEVINT_SI)
2742 pch_udc_svc_intf_interrupt(dev);
2743 /* Set Config Interrupt */
2744 if (dev_intr & UDC_DEVINT_SC)
2745 pch_udc_svc_cfg_interrupt(dev);
2746 /* USB Suspend interrupt */
2747 if (dev_intr & UDC_DEVINT_US) {
2748 if (dev->driver
2749 && dev->driver->suspend) {
2750 spin_unlock(&dev->lock);
2751 dev->driver->suspend(&dev->gadget);
2752 spin_lock(&dev->lock);
2753 }
2754
2755 vbus = pch_vbus_gpio_get_value(dev);
2756 if ((dev->vbus_session == 0)
2757 && (vbus != 1)) {
2758 if (dev->driver && dev->driver->disconnect) {
2759 spin_unlock(&dev->lock);
2760 dev->driver->disconnect(&dev->gadget);
2761 spin_lock(&dev->lock);
2762 }
2763 pch_udc_reconnect(dev);
2764 } else if ((dev->vbus_session == 0)
2765 && (vbus == 1)
2766 && !dev->vbus_gpio.intr)
2767 schedule_work(&dev->vbus_gpio.irq_work_fall);
2768
2769 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2770 }
2771 /* Clear the SOF interrupt, if enabled */
2772 if (dev_intr & UDC_DEVINT_SOF)
2773 dev_dbg(&dev->pdev->dev, "SOF\n");
2774 /* ES interrupt, IDLE > 3ms on the USB */
2775 if (dev_intr & UDC_DEVINT_ES)
2776 dev_dbg(&dev->pdev->dev, "ES\n");
2777 /* RWKP interrupt */
2778 if (dev_intr & UDC_DEVINT_RWKP)
2779 dev_dbg(&dev->pdev->dev, "RWKP\n");
2780 }
2781
2782 /**
2783 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2784 * @irq: Interrupt request number
2785 * @dev: Reference to the device structure
2786 */
2787 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2788 {
2789 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2790 u32 dev_intr, ep_intr;
2791 int i;
2792
2793 dev_intr = pch_udc_read_device_interrupts(dev);
2794 ep_intr = pch_udc_read_ep_interrupts(dev);
2795
2796 /* For a hot plug, this find that the controller is hung up. */
2797 if (dev_intr == ep_intr)
2798 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2799 dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2800 /* The controller is reset */
2801 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2802 return IRQ_HANDLED;
2803 }
2804 if (dev_intr)
2805 /* Clear device interrupts */
2806 pch_udc_write_device_interrupts(dev, dev_intr);
2807 if (ep_intr)
2808 /* Clear ep interrupts */
2809 pch_udc_write_ep_interrupts(dev, ep_intr);
2810 if (!dev_intr && !ep_intr)
2811 return IRQ_NONE;
2812 spin_lock(&dev->lock);
2813 if (dev_intr)
2814 pch_udc_dev_isr(dev, dev_intr);
2815 if (ep_intr) {
2816 pch_udc_read_all_epstatus(dev, ep_intr);
2817 /* Process Control In interrupts, if present */
2818 if (ep_intr & UDC_EPINT_IN_EP0) {
2819 pch_udc_svc_control_in(dev);
2820 pch_udc_postsvc_epinters(dev, 0);
2821 }
2822 /* Process Control Out interrupts, if present */
2823 if (ep_intr & UDC_EPINT_OUT_EP0)
2824 pch_udc_svc_control_out(dev);
2825 /* Process data in end point interrupts */
2826 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2827 if (ep_intr & (1 << i)) {
2828 pch_udc_svc_data_in(dev, i);
2829 pch_udc_postsvc_epinters(dev, i);
2830 }
2831 }
2832 /* Process data out end point interrupts */
2833 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2834 PCH_UDC_USED_EP_NUM); i++)
2835 if (ep_intr & (1 << i))
2836 pch_udc_svc_data_out(dev, i -
2837 UDC_EPINT_OUT_SHIFT);
2838 }
2839 spin_unlock(&dev->lock);
2840 return IRQ_HANDLED;
2841 }
2842
2843 /**
2844 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2845 * @dev: Reference to the device structure
2846 */
2847 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2848 {
2849 /* enable ep0 interrupts */
2850 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2851 UDC_EPINT_OUT_EP0);
2852 /* enable device interrupts */
2853 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2854 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2855 UDC_DEVINT_SI | UDC_DEVINT_SC);
2856 }
2857
2858 /**
2859 * gadget_release() - Free the gadget driver private data
2860 * @pdev reference to struct pci_dev
2861 */
2862 static void gadget_release(struct device *pdev)
2863 {
2864 struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2865
2866 kfree(dev);
2867 }
2868
2869 /**
2870 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2871 * @dev: Reference to the driver structure
2872 */
2873 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2874 {
2875 const char *const ep_string[] = {
2876 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2877 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2878 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2879 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2880 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2881 "ep15in", "ep15out",
2882 };
2883 int i;
2884
2885 dev->gadget.speed = USB_SPEED_UNKNOWN;
2886 INIT_LIST_HEAD(&dev->gadget.ep_list);
2887
2888 /* Initialize the endpoints structures */
2889 memset(dev->ep, 0, sizeof dev->ep);
2890 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2891 struct pch_udc_ep *ep = &dev->ep[i];
2892 ep->dev = dev;
2893 ep->halted = 1;
2894 ep->num = i / 2;
2895 ep->in = ~i & 1;
2896 ep->ep.name = ep_string[i];
2897 ep->ep.ops = &pch_udc_ep_ops;
2898 if (ep->in)
2899 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2900 else
2901 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2902 UDC_EP_REG_SHIFT;
2903 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2904 usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
2905 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2906 INIT_LIST_HEAD(&ep->queue);
2907 }
2908 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
2909 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
2910
2911 /* remove ep0 in and out from the list. They have own pointer */
2912 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2913 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2914
2915 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2916 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2917 }
2918
2919 /**
2920 * pch_udc_pcd_init() - This API initializes the driver structure
2921 * @dev: Reference to the driver structure
2922 *
2923 * Return codes:
2924 * 0: Success
2925 */
2926 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2927 {
2928 pch_udc_init(dev);
2929 pch_udc_pcd_reinit(dev);
2930 pch_vbus_gpio_init(dev, vbus_gpio_port);
2931 return 0;
2932 }
2933
2934 /**
2935 * init_dma_pools() - create dma pools during initialization
2936 * @pdev: reference to struct pci_dev
2937 */
2938 static int init_dma_pools(struct pch_udc_dev *dev)
2939 {
2940 struct pch_udc_stp_dma_desc *td_stp;
2941 struct pch_udc_data_dma_desc *td_data;
2942
2943 /* DMA setup */
2944 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2945 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2946 if (!dev->data_requests) {
2947 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2948 __func__);
2949 return -ENOMEM;
2950 }
2951
2952 /* dma desc for setup data */
2953 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2954 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2955 if (!dev->stp_requests) {
2956 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2957 __func__);
2958 return -ENOMEM;
2959 }
2960 /* setup */
2961 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2962 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2963 if (!td_stp) {
2964 dev_err(&dev->pdev->dev,
2965 "%s: can't allocate setup dma descriptor\n", __func__);
2966 return -ENOMEM;
2967 }
2968 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2969
2970 /* data: 0 packets !? */
2971 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2972 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2973 if (!td_data) {
2974 dev_err(&dev->pdev->dev,
2975 "%s: can't allocate data dma descriptor\n", __func__);
2976 return -ENOMEM;
2977 }
2978 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2979 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2980 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2981 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2982 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2983
2984 dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2985 if (!dev->ep0out_buf)
2986 return -ENOMEM;
2987 dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2988 UDC_EP0OUT_BUFF_SIZE * 4,
2989 DMA_FROM_DEVICE);
2990 return 0;
2991 }
2992
2993 static int pch_udc_start(struct usb_gadget *g,
2994 struct usb_gadget_driver *driver)
2995 {
2996 struct pch_udc_dev *dev = to_pch_udc(g);
2997
2998 driver->driver.bus = NULL;
2999 dev->driver = driver;
3000
3001 /* get ready for ep0 traffic */
3002 pch_udc_setup_ep0(dev);
3003
3004 /* clear SD */
3005 if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
3006 pch_udc_clear_disconnect(dev);
3007
3008 dev->connected = 1;
3009 return 0;
3010 }
3011
3012 static int pch_udc_stop(struct usb_gadget *g)
3013 {
3014 struct pch_udc_dev *dev = to_pch_udc(g);
3015
3016 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3017
3018 /* Assures that there are no pending requests with this driver */
3019 dev->driver = NULL;
3020 dev->connected = 0;
3021
3022 /* set SD */
3023 pch_udc_set_disconnect(dev);
3024
3025 return 0;
3026 }
3027
3028 static void pch_udc_shutdown(struct pci_dev *pdev)
3029 {
3030 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3031
3032 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3033 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3034
3035 /* disable the pullup so the host will think we're gone */
3036 pch_udc_set_disconnect(dev);
3037 }
3038
3039 static void pch_udc_remove(struct pci_dev *pdev)
3040 {
3041 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3042
3043 usb_del_gadget_udc(&dev->gadget);
3044
3045 /* gadget driver must not be registered */
3046 if (dev->driver)
3047 dev_err(&pdev->dev,
3048 "%s: gadget driver still bound!!!\n", __func__);
3049 /* dma pool cleanup */
3050 if (dev->data_requests)
3051 pci_pool_destroy(dev->data_requests);
3052
3053 if (dev->stp_requests) {
3054 /* cleanup DMA desc's for ep0in */
3055 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
3056 pci_pool_free(dev->stp_requests,
3057 dev->ep[UDC_EP0OUT_IDX].td_stp,
3058 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
3059 }
3060 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
3061 pci_pool_free(dev->stp_requests,
3062 dev->ep[UDC_EP0OUT_IDX].td_data,
3063 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
3064 }
3065 pci_pool_destroy(dev->stp_requests);
3066 }
3067
3068 if (dev->dma_addr)
3069 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
3070 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
3071 kfree(dev->ep0out_buf);
3072
3073 pch_vbus_gpio_free(dev);
3074
3075 pch_udc_exit(dev);
3076
3077 if (dev->irq_registered)
3078 free_irq(pdev->irq, dev);
3079 if (dev->base_addr)
3080 iounmap(dev->base_addr);
3081 if (dev->mem_region)
3082 release_mem_region(dev->phys_addr,
3083 pci_resource_len(pdev, dev->bar));
3084 if (dev->active)
3085 pci_disable_device(pdev);
3086 kfree(dev);
3087 }
3088
3089 #ifdef CONFIG_PM
3090 static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
3091 {
3092 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3093
3094 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3095 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3096
3097 pci_disable_device(pdev);
3098 pci_enable_wake(pdev, PCI_D3hot, 0);
3099
3100 if (pci_save_state(pdev)) {
3101 dev_err(&pdev->dev,
3102 "%s: could not save PCI config state\n", __func__);
3103 return -ENOMEM;
3104 }
3105 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3106 return 0;
3107 }
3108
3109 static int pch_udc_resume(struct pci_dev *pdev)
3110 {
3111 int ret;
3112
3113 pci_set_power_state(pdev, PCI_D0);
3114 pci_restore_state(pdev);
3115 ret = pci_enable_device(pdev);
3116 if (ret) {
3117 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
3118 return ret;
3119 }
3120 pci_enable_wake(pdev, PCI_D3hot, 0);
3121 return 0;
3122 }
3123 #else
3124 #define pch_udc_suspend NULL
3125 #define pch_udc_resume NULL
3126 #endif /* CONFIG_PM */
3127
3128 static int pch_udc_probe(struct pci_dev *pdev,
3129 const struct pci_device_id *id)
3130 {
3131 unsigned long resource;
3132 unsigned long len;
3133 int retval;
3134 struct pch_udc_dev *dev;
3135
3136 /* init */
3137 dev = kzalloc(sizeof *dev, GFP_KERNEL);
3138 if (!dev) {
3139 pr_err("%s: no memory for device structure\n", __func__);
3140 return -ENOMEM;
3141 }
3142 /* pci setup */
3143 if (pci_enable_device(pdev) < 0) {
3144 kfree(dev);
3145 pr_err("%s: pci_enable_device failed\n", __func__);
3146 return -ENODEV;
3147 }
3148 dev->active = 1;
3149 pci_set_drvdata(pdev, dev);
3150
3151 /* Determine BAR based on PCI ID */
3152 if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
3153 dev->bar = PCH_UDC_PCI_BAR_QUARK_X1000;
3154 else
3155 dev->bar = PCH_UDC_PCI_BAR;
3156
3157 /* PCI resource allocation */
3158 resource = pci_resource_start(pdev, dev->bar);
3159 len = pci_resource_len(pdev, dev->bar);
3160
3161 if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
3162 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
3163 retval = -EBUSY;
3164 goto finished;
3165 }
3166 dev->phys_addr = resource;
3167 dev->mem_region = 1;
3168
3169 dev->base_addr = ioremap_nocache(resource, len);
3170 if (!dev->base_addr) {
3171 pr_err("%s: device memory cannot be mapped\n", __func__);
3172 retval = -ENOMEM;
3173 goto finished;
3174 }
3175 if (!pdev->irq) {
3176 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
3177 retval = -ENODEV;
3178 goto finished;
3179 }
3180 /* initialize the hardware */
3181 if (pch_udc_pcd_init(dev)) {
3182 retval = -ENODEV;
3183 goto finished;
3184 }
3185 if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
3186 dev)) {
3187 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3188 pdev->irq);
3189 retval = -ENODEV;
3190 goto finished;
3191 }
3192 dev->irq = pdev->irq;
3193 dev->irq_registered = 1;
3194
3195 pci_set_master(pdev);
3196 pci_try_set_mwi(pdev);
3197
3198 /* device struct setup */
3199 spin_lock_init(&dev->lock);
3200 dev->pdev = pdev;
3201 dev->gadget.ops = &pch_udc_ops;
3202
3203 retval = init_dma_pools(dev);
3204 if (retval)
3205 goto finished;
3206
3207 dev->gadget.name = KBUILD_MODNAME;
3208 dev->gadget.max_speed = USB_SPEED_HIGH;
3209
3210 /* Put the device in disconnected state till a driver is bound */
3211 pch_udc_set_disconnect(dev);
3212 retval = usb_add_gadget_udc_release(&pdev->dev, &dev->gadget,
3213 gadget_release);
3214 if (retval)
3215 goto finished;
3216 return 0;
3217
3218 finished:
3219 pch_udc_remove(pdev);
3220 return retval;
3221 }
3222
3223 static const struct pci_device_id pch_udc_pcidev_id[] = {
3224 {
3225 PCI_DEVICE(PCI_VENDOR_ID_INTEL,
3226 PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
3227 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3228 .class_mask = 0xffffffff,
3229 },
3230 {
3231 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3232 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3233 .class_mask = 0xffffffff,
3234 },
3235 {
3236 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3237 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3238 .class_mask = 0xffffffff,
3239 },
3240 {
3241 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3242 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3243 .class_mask = 0xffffffff,
3244 },
3245 { 0 },
3246 };
3247
3248 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3249
3250 static struct pci_driver pch_udc_driver = {
3251 .name = KBUILD_MODNAME,
3252 .id_table = pch_udc_pcidev_id,
3253 .probe = pch_udc_probe,
3254 .remove = pch_udc_remove,
3255 .suspend = pch_udc_suspend,
3256 .resume = pch_udc_resume,
3257 .shutdown = pch_udc_shutdown,
3258 };
3259
3260 module_pci_driver(pch_udc_driver);
3261
3262 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3263 MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
3264 MODULE_LICENSE("GPL");