]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/gadget/udc/pch_udc.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / gadget / udc / pch_udc.c
1 /*
2 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/interrupt.h>
16 #include <linux/usb/ch9.h>
17 #include <linux/usb/gadget.h>
18 #include <linux/gpio.h>
19 #include <linux/irq.h>
20
21 /* GPIO port for VBUS detecting */
22 static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
23
24 #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
25 #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
26
27 /* Address offset of Registers */
28 #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
29
30 #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
31 #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
32 #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
33 #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
34 #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
35 #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
36 #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
37
38 #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
39 #define UDC_DEVCTL_ADDR 0x404 /* Device control */
40 #define UDC_DEVSTS_ADDR 0x408 /* Device status */
41 #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
42 #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
43 #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
44 #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
45 #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
46 #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
47 #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
48 #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
49
50 /* Endpoint control register */
51 /* Bit position */
52 #define UDC_EPCTL_MRXFLUSH (1 << 12)
53 #define UDC_EPCTL_RRDY (1 << 9)
54 #define UDC_EPCTL_CNAK (1 << 8)
55 #define UDC_EPCTL_SNAK (1 << 7)
56 #define UDC_EPCTL_NAK (1 << 6)
57 #define UDC_EPCTL_P (1 << 3)
58 #define UDC_EPCTL_F (1 << 1)
59 #define UDC_EPCTL_S (1 << 0)
60 #define UDC_EPCTL_ET_SHIFT 4
61 /* Mask patern */
62 #define UDC_EPCTL_ET_MASK 0x00000030
63 /* Value for ET field */
64 #define UDC_EPCTL_ET_CONTROL 0
65 #define UDC_EPCTL_ET_ISO 1
66 #define UDC_EPCTL_ET_BULK 2
67 #define UDC_EPCTL_ET_INTERRUPT 3
68
69 /* Endpoint status register */
70 /* Bit position */
71 #define UDC_EPSTS_XFERDONE (1 << 27)
72 #define UDC_EPSTS_RSS (1 << 26)
73 #define UDC_EPSTS_RCS (1 << 25)
74 #define UDC_EPSTS_TXEMPTY (1 << 24)
75 #define UDC_EPSTS_TDC (1 << 10)
76 #define UDC_EPSTS_HE (1 << 9)
77 #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
78 #define UDC_EPSTS_BNA (1 << 7)
79 #define UDC_EPSTS_IN (1 << 6)
80 #define UDC_EPSTS_OUT_SHIFT 4
81 /* Mask patern */
82 #define UDC_EPSTS_OUT_MASK 0x00000030
83 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
84 /* Value for OUT field */
85 #define UDC_EPSTS_OUT_SETUP 2
86 #define UDC_EPSTS_OUT_DATA 1
87
88 /* Device configuration register */
89 /* Bit position */
90 #define UDC_DEVCFG_CSR_PRG (1 << 17)
91 #define UDC_DEVCFG_SP (1 << 3)
92 /* SPD Valee */
93 #define UDC_DEVCFG_SPD_HS 0x0
94 #define UDC_DEVCFG_SPD_FS 0x1
95 #define UDC_DEVCFG_SPD_LS 0x2
96
97 /* Device control register */
98 /* Bit position */
99 #define UDC_DEVCTL_THLEN_SHIFT 24
100 #define UDC_DEVCTL_BRLEN_SHIFT 16
101 #define UDC_DEVCTL_CSR_DONE (1 << 13)
102 #define UDC_DEVCTL_SD (1 << 10)
103 #define UDC_DEVCTL_MODE (1 << 9)
104 #define UDC_DEVCTL_BREN (1 << 8)
105 #define UDC_DEVCTL_THE (1 << 7)
106 #define UDC_DEVCTL_DU (1 << 4)
107 #define UDC_DEVCTL_TDE (1 << 3)
108 #define UDC_DEVCTL_RDE (1 << 2)
109 #define UDC_DEVCTL_RES (1 << 0)
110
111 /* Device status register */
112 /* Bit position */
113 #define UDC_DEVSTS_TS_SHIFT 18
114 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
115 #define UDC_DEVSTS_ALT_SHIFT 8
116 #define UDC_DEVSTS_INTF_SHIFT 4
117 #define UDC_DEVSTS_CFG_SHIFT 0
118 /* Mask patern */
119 #define UDC_DEVSTS_TS_MASK 0xfffc0000
120 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
121 #define UDC_DEVSTS_ALT_MASK 0x00000f00
122 #define UDC_DEVSTS_INTF_MASK 0x000000f0
123 #define UDC_DEVSTS_CFG_MASK 0x0000000f
124 /* value for maximum speed for SPEED field */
125 #define UDC_DEVSTS_ENUM_SPEED_FULL 1
126 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
127 #define UDC_DEVSTS_ENUM_SPEED_LOW 2
128 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
129
130 /* Device irq register */
131 /* Bit position */
132 #define UDC_DEVINT_RWKP (1 << 7)
133 #define UDC_DEVINT_ENUM (1 << 6)
134 #define UDC_DEVINT_SOF (1 << 5)
135 #define UDC_DEVINT_US (1 << 4)
136 #define UDC_DEVINT_UR (1 << 3)
137 #define UDC_DEVINT_ES (1 << 2)
138 #define UDC_DEVINT_SI (1 << 1)
139 #define UDC_DEVINT_SC (1 << 0)
140 /* Mask patern */
141 #define UDC_DEVINT_MSK 0x7f
142
143 /* Endpoint irq register */
144 /* Bit position */
145 #define UDC_EPINT_IN_SHIFT 0
146 #define UDC_EPINT_OUT_SHIFT 16
147 #define UDC_EPINT_IN_EP0 (1 << 0)
148 #define UDC_EPINT_OUT_EP0 (1 << 16)
149 /* Mask patern */
150 #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
151
152 /* UDC_CSR_BUSY Status register */
153 /* Bit position */
154 #define UDC_CSR_BUSY (1 << 0)
155
156 /* SOFT RESET register */
157 /* Bit position */
158 #define UDC_PSRST (1 << 1)
159 #define UDC_SRST (1 << 0)
160
161 /* USB_DEVICE endpoint register */
162 /* Bit position */
163 #define UDC_CSR_NE_NUM_SHIFT 0
164 #define UDC_CSR_NE_DIR_SHIFT 4
165 #define UDC_CSR_NE_TYPE_SHIFT 5
166 #define UDC_CSR_NE_CFG_SHIFT 7
167 #define UDC_CSR_NE_INTF_SHIFT 11
168 #define UDC_CSR_NE_ALT_SHIFT 15
169 #define UDC_CSR_NE_MAX_PKT_SHIFT 19
170 /* Mask patern */
171 #define UDC_CSR_NE_NUM_MASK 0x0000000f
172 #define UDC_CSR_NE_DIR_MASK 0x00000010
173 #define UDC_CSR_NE_TYPE_MASK 0x00000060
174 #define UDC_CSR_NE_CFG_MASK 0x00000780
175 #define UDC_CSR_NE_INTF_MASK 0x00007800
176 #define UDC_CSR_NE_ALT_MASK 0x00078000
177 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
178
179 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
180 #define PCH_UDC_EPINT(in, num)\
181 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
182
183 /* Index of endpoint */
184 #define UDC_EP0IN_IDX 0
185 #define UDC_EP0OUT_IDX 1
186 #define UDC_EPIN_IDX(ep) (ep * 2)
187 #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
188 #define PCH_UDC_EP0 0
189 #define PCH_UDC_EP1 1
190 #define PCH_UDC_EP2 2
191 #define PCH_UDC_EP3 3
192
193 /* Number of endpoint */
194 #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
195 #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
196 /* Length Value */
197 #define PCH_UDC_BRLEN 0x0F /* Burst length */
198 #define PCH_UDC_THLEN 0x1F /* Threshold length */
199 /* Value of EP Buffer Size */
200 #define UDC_EP0IN_BUFF_SIZE 16
201 #define UDC_EPIN_BUFF_SIZE 256
202 #define UDC_EP0OUT_BUFF_SIZE 16
203 #define UDC_EPOUT_BUFF_SIZE 256
204 /* Value of EP maximum packet size */
205 #define UDC_EP0IN_MAX_PKT_SIZE 64
206 #define UDC_EP0OUT_MAX_PKT_SIZE 64
207 #define UDC_BULK_MAX_PKT_SIZE 512
208
209 /* DMA */
210 #define DMA_DIR_RX 1 /* DMA for data receive */
211 #define DMA_DIR_TX 2 /* DMA for data transmit */
212 #define DMA_ADDR_INVALID (~(dma_addr_t)0)
213 #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
214
215 /**
216 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
217 * for data
218 * @status: Status quadlet
219 * @reserved: Reserved
220 * @dataptr: Buffer descriptor
221 * @next: Next descriptor
222 */
223 struct pch_udc_data_dma_desc {
224 u32 status;
225 u32 reserved;
226 u32 dataptr;
227 u32 next;
228 };
229
230 /**
231 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
232 * for control data
233 * @status: Status
234 * @reserved: Reserved
235 * @data12: First setup word
236 * @data34: Second setup word
237 */
238 struct pch_udc_stp_dma_desc {
239 u32 status;
240 u32 reserved;
241 struct usb_ctrlrequest request;
242 } __attribute((packed));
243
244 /* DMA status definitions */
245 /* Buffer status */
246 #define PCH_UDC_BUFF_STS 0xC0000000
247 #define PCH_UDC_BS_HST_RDY 0x00000000
248 #define PCH_UDC_BS_DMA_BSY 0x40000000
249 #define PCH_UDC_BS_DMA_DONE 0x80000000
250 #define PCH_UDC_BS_HST_BSY 0xC0000000
251 /* Rx/Tx Status */
252 #define PCH_UDC_RXTX_STS 0x30000000
253 #define PCH_UDC_RTS_SUCC 0x00000000
254 #define PCH_UDC_RTS_DESERR 0x10000000
255 #define PCH_UDC_RTS_BUFERR 0x30000000
256 /* Last Descriptor Indication */
257 #define PCH_UDC_DMA_LAST 0x08000000
258 /* Number of Rx/Tx Bytes Mask */
259 #define PCH_UDC_RXTX_BYTES 0x0000ffff
260
261 /**
262 * struct pch_udc_cfg_data - Structure to hold current configuration
263 * and interface information
264 * @cur_cfg: current configuration in use
265 * @cur_intf: current interface in use
266 * @cur_alt: current alt interface in use
267 */
268 struct pch_udc_cfg_data {
269 u16 cur_cfg;
270 u16 cur_intf;
271 u16 cur_alt;
272 };
273
274 /**
275 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
276 * @ep: embedded ep request
277 * @td_stp_phys: for setup request
278 * @td_data_phys: for data request
279 * @td_stp: for setup request
280 * @td_data: for data request
281 * @dev: reference to device struct
282 * @offset_addr: offset address of ep register
283 * @desc: for this ep
284 * @queue: queue for requests
285 * @num: endpoint number
286 * @in: endpoint is IN
287 * @halted: endpoint halted?
288 * @epsts: Endpoint status
289 */
290 struct pch_udc_ep {
291 struct usb_ep ep;
292 dma_addr_t td_stp_phys;
293 dma_addr_t td_data_phys;
294 struct pch_udc_stp_dma_desc *td_stp;
295 struct pch_udc_data_dma_desc *td_data;
296 struct pch_udc_dev *dev;
297 unsigned long offset_addr;
298 struct list_head queue;
299 unsigned num:5,
300 in:1,
301 halted:1;
302 unsigned long epsts;
303 };
304
305 /**
306 * struct pch_vbus_gpio_data - Structure holding GPIO informaton
307 * for detecting VBUS
308 * @port: gpio port number
309 * @intr: gpio interrupt number
310 * @irq_work_fall Structure for WorkQueue
311 * @irq_work_rise Structure for WorkQueue
312 */
313 struct pch_vbus_gpio_data {
314 int port;
315 int intr;
316 struct work_struct irq_work_fall;
317 struct work_struct irq_work_rise;
318 };
319
320 /**
321 * struct pch_udc_dev - Structure holding complete information
322 * of the PCH USB device
323 * @gadget: gadget driver data
324 * @driver: reference to gadget driver bound
325 * @pdev: reference to the PCI device
326 * @ep: array of endpoints
327 * @lock: protects all state
328 * @stall: stall requested
329 * @prot_stall: protcol stall requested
330 * @registered: driver registered with system
331 * @suspended: driver in suspended state
332 * @connected: gadget driver associated
333 * @vbus_session: required vbus_session state
334 * @set_cfg_not_acked: pending acknowledgement 4 setup
335 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
336 * @data_requests: DMA pool for data requests
337 * @stp_requests: DMA pool for setup requests
338 * @dma_addr: DMA pool for received
339 * @setup_data: Received setup data
340 * @base_addr: for mapped device memory
341 * @cfg_data: current cfg, intf, and alt in use
342 * @vbus_gpio: GPIO informaton for detecting VBUS
343 */
344 struct pch_udc_dev {
345 struct usb_gadget gadget;
346 struct usb_gadget_driver *driver;
347 struct pci_dev *pdev;
348 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
349 spinlock_t lock; /* protects all state */
350 unsigned
351 stall:1,
352 prot_stall:1,
353 suspended:1,
354 connected:1,
355 vbus_session:1,
356 set_cfg_not_acked:1,
357 waiting_zlp_ack:1;
358 struct pci_pool *data_requests;
359 struct pci_pool *stp_requests;
360 dma_addr_t dma_addr;
361 struct usb_ctrlrequest setup_data;
362 void __iomem *base_addr;
363 struct pch_udc_cfg_data cfg_data;
364 struct pch_vbus_gpio_data vbus_gpio;
365 };
366 #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
367
368 #define PCH_UDC_PCI_BAR_QUARK_X1000 0
369 #define PCH_UDC_PCI_BAR 1
370
371 #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939
372 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
373
374 #define PCI_VENDOR_ID_ROHM 0x10DB
375 #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
376 #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
377
378 static const char ep0_string[] = "ep0in";
379 static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
380 static bool speed_fs;
381 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
382 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
383
384 /**
385 * struct pch_udc_request - Structure holding a PCH USB device request packet
386 * @req: embedded ep request
387 * @td_data_phys: phys. address
388 * @td_data: first dma desc. of chain
389 * @td_data_last: last dma desc. of chain
390 * @queue: associated queue
391 * @dma_going: DMA in progress for request
392 * @dma_mapped: DMA memory mapped for request
393 * @dma_done: DMA completed for request
394 * @chain_len: chain length
395 * @buf: Buffer memory for align adjustment
396 * @dma: DMA memory for align adjustment
397 */
398 struct pch_udc_request {
399 struct usb_request req;
400 dma_addr_t td_data_phys;
401 struct pch_udc_data_dma_desc *td_data;
402 struct pch_udc_data_dma_desc *td_data_last;
403 struct list_head queue;
404 unsigned dma_going:1,
405 dma_mapped:1,
406 dma_done:1;
407 unsigned chain_len;
408 void *buf;
409 dma_addr_t dma;
410 };
411
412 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
413 {
414 return ioread32(dev->base_addr + reg);
415 }
416
417 static inline void pch_udc_writel(struct pch_udc_dev *dev,
418 unsigned long val, unsigned long reg)
419 {
420 iowrite32(val, dev->base_addr + reg);
421 }
422
423 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
424 unsigned long reg,
425 unsigned long bitmask)
426 {
427 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
428 }
429
430 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
431 unsigned long reg,
432 unsigned long bitmask)
433 {
434 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
435 }
436
437 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
438 {
439 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
440 }
441
442 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
443 unsigned long val, unsigned long reg)
444 {
445 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
446 }
447
448 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
449 unsigned long reg,
450 unsigned long bitmask)
451 {
452 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
453 }
454
455 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
456 unsigned long reg,
457 unsigned long bitmask)
458 {
459 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
460 }
461
462 /**
463 * pch_udc_csr_busy() - Wait till idle.
464 * @dev: Reference to pch_udc_dev structure
465 */
466 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
467 {
468 unsigned int count = 200;
469
470 /* Wait till idle */
471 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
472 && --count)
473 cpu_relax();
474 if (!count)
475 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
476 }
477
478 /**
479 * pch_udc_write_csr() - Write the command and status registers.
480 * @dev: Reference to pch_udc_dev structure
481 * @val: value to be written to CSR register
482 * @addr: address of CSR register
483 */
484 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
485 unsigned int ep)
486 {
487 unsigned long reg = PCH_UDC_CSR(ep);
488
489 pch_udc_csr_busy(dev); /* Wait till idle */
490 pch_udc_writel(dev, val, reg);
491 pch_udc_csr_busy(dev); /* Wait till idle */
492 }
493
494 /**
495 * pch_udc_read_csr() - Read the command and status registers.
496 * @dev: Reference to pch_udc_dev structure
497 * @addr: address of CSR register
498 *
499 * Return codes: content of CSR register
500 */
501 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
502 {
503 unsigned long reg = PCH_UDC_CSR(ep);
504
505 pch_udc_csr_busy(dev); /* Wait till idle */
506 pch_udc_readl(dev, reg); /* Dummy read */
507 pch_udc_csr_busy(dev); /* Wait till idle */
508 return pch_udc_readl(dev, reg);
509 }
510
511 /**
512 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
513 * @dev: Reference to pch_udc_dev structure
514 */
515 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
516 {
517 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
518 mdelay(1);
519 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
520 }
521
522 /**
523 * pch_udc_get_frame() - Get the current frame from device status register
524 * @dev: Reference to pch_udc_dev structure
525 * Retern current frame
526 */
527 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
528 {
529 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
530 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
531 }
532
533 /**
534 * pch_udc_clear_selfpowered() - Clear the self power control
535 * @dev: Reference to pch_udc_regs structure
536 */
537 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
538 {
539 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
540 }
541
542 /**
543 * pch_udc_set_selfpowered() - Set the self power control
544 * @dev: Reference to pch_udc_regs structure
545 */
546 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
547 {
548 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
549 }
550
551 /**
552 * pch_udc_set_disconnect() - Set the disconnect status.
553 * @dev: Reference to pch_udc_regs structure
554 */
555 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
556 {
557 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
558 }
559
560 /**
561 * pch_udc_clear_disconnect() - Clear the disconnect status.
562 * @dev: Reference to pch_udc_regs structure
563 */
564 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
565 {
566 /* Clear the disconnect */
567 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
568 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
569 mdelay(1);
570 /* Resume USB signalling */
571 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
572 }
573
574 /**
575 * pch_udc_reconnect() - This API initializes usb device controller,
576 * and clear the disconnect status.
577 * @dev: Reference to pch_udc_regs structure
578 */
579 static void pch_udc_init(struct pch_udc_dev *dev);
580 static void pch_udc_reconnect(struct pch_udc_dev *dev)
581 {
582 pch_udc_init(dev);
583
584 /* enable device interrupts */
585 /* pch_udc_enable_interrupts() */
586 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
587 UDC_DEVINT_UR | UDC_DEVINT_ENUM);
588
589 /* Clear the disconnect */
590 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
591 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
592 mdelay(1);
593 /* Resume USB signalling */
594 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
595 }
596
597 /**
598 * pch_udc_vbus_session() - set or clearr the disconnect status.
599 * @dev: Reference to pch_udc_regs structure
600 * @is_active: Parameter specifying the action
601 * 0: indicating VBUS power is ending
602 * !0: indicating VBUS power is starting
603 */
604 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
605 int is_active)
606 {
607 if (is_active) {
608 pch_udc_reconnect(dev);
609 dev->vbus_session = 1;
610 } else {
611 if (dev->driver && dev->driver->disconnect) {
612 spin_lock(&dev->lock);
613 dev->driver->disconnect(&dev->gadget);
614 spin_unlock(&dev->lock);
615 }
616 pch_udc_set_disconnect(dev);
617 dev->vbus_session = 0;
618 }
619 }
620
621 /**
622 * pch_udc_ep_set_stall() - Set the stall of endpoint
623 * @ep: Reference to structure of type pch_udc_ep_regs
624 */
625 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
626 {
627 if (ep->in) {
628 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
629 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
630 } else {
631 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
632 }
633 }
634
635 /**
636 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
637 * @ep: Reference to structure of type pch_udc_ep_regs
638 */
639 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
640 {
641 /* Clear the stall */
642 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
643 /* Clear NAK by writing CNAK */
644 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
645 }
646
647 /**
648 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
649 * @ep: Reference to structure of type pch_udc_ep_regs
650 * @type: Type of endpoint
651 */
652 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
653 u8 type)
654 {
655 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
656 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
657 }
658
659 /**
660 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
661 * @ep: Reference to structure of type pch_udc_ep_regs
662 * @buf_size: The buffer word size
663 */
664 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
665 u32 buf_size, u32 ep_in)
666 {
667 u32 data;
668 if (ep_in) {
669 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
670 data = (data & 0xffff0000) | (buf_size & 0xffff);
671 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
672 } else {
673 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
674 data = (buf_size << 16) | (data & 0xffff);
675 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
676 }
677 }
678
679 /**
680 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
681 * @ep: Reference to structure of type pch_udc_ep_regs
682 * @pkt_size: The packet byte size
683 */
684 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
685 {
686 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
687 data = (data & 0xffff0000) | (pkt_size & 0xffff);
688 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
689 }
690
691 /**
692 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
693 * @ep: Reference to structure of type pch_udc_ep_regs
694 * @addr: Address of the register
695 */
696 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
697 {
698 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
699 }
700
701 /**
702 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
703 * @ep: Reference to structure of type pch_udc_ep_regs
704 * @addr: Address of the register
705 */
706 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
707 {
708 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
709 }
710
711 /**
712 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
713 * @ep: Reference to structure of type pch_udc_ep_regs
714 */
715 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
716 {
717 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
718 }
719
720 /**
721 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
722 * @ep: Reference to structure of type pch_udc_ep_regs
723 */
724 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
725 {
726 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
727 }
728
729 /**
730 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
731 * @ep: Reference to structure of type pch_udc_ep_regs
732 */
733 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
734 {
735 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
736 }
737
738 /**
739 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
740 * register depending on the direction specified
741 * @dev: Reference to structure of type pch_udc_regs
742 * @dir: whether Tx or Rx
743 * DMA_DIR_RX: Receive
744 * DMA_DIR_TX: Transmit
745 */
746 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
747 {
748 if (dir == DMA_DIR_RX)
749 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
750 else if (dir == DMA_DIR_TX)
751 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
752 }
753
754 /**
755 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
756 * register depending on the direction specified
757 * @dev: Reference to structure of type pch_udc_regs
758 * @dir: Whether Tx or Rx
759 * DMA_DIR_RX: Receive
760 * DMA_DIR_TX: Transmit
761 */
762 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
763 {
764 if (dir == DMA_DIR_RX)
765 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
766 else if (dir == DMA_DIR_TX)
767 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
768 }
769
770 /**
771 * pch_udc_set_csr_done() - Set the device control register
772 * CSR done field (bit 13)
773 * @dev: reference to structure of type pch_udc_regs
774 */
775 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
776 {
777 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
778 }
779
780 /**
781 * pch_udc_disable_interrupts() - Disables the specified interrupts
782 * @dev: Reference to structure of type pch_udc_regs
783 * @mask: Mask to disable interrupts
784 */
785 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
786 u32 mask)
787 {
788 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
789 }
790
791 /**
792 * pch_udc_enable_interrupts() - Enable the specified interrupts
793 * @dev: Reference to structure of type pch_udc_regs
794 * @mask: Mask to enable interrupts
795 */
796 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
797 u32 mask)
798 {
799 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
800 }
801
802 /**
803 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
804 * @dev: Reference to structure of type pch_udc_regs
805 * @mask: Mask to disable interrupts
806 */
807 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
808 u32 mask)
809 {
810 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
811 }
812
813 /**
814 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
815 * @dev: Reference to structure of type pch_udc_regs
816 * @mask: Mask to enable interrupts
817 */
818 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
819 u32 mask)
820 {
821 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
822 }
823
824 /**
825 * pch_udc_read_device_interrupts() - Read the device interrupts
826 * @dev: Reference to structure of type pch_udc_regs
827 * Retern The device interrupts
828 */
829 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
830 {
831 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
832 }
833
834 /**
835 * pch_udc_write_device_interrupts() - Write device interrupts
836 * @dev: Reference to structure of type pch_udc_regs
837 * @val: The value to be written to interrupt register
838 */
839 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
840 u32 val)
841 {
842 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
843 }
844
845 /**
846 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
847 * @dev: Reference to structure of type pch_udc_regs
848 * Retern The endpoint interrupt
849 */
850 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
851 {
852 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
853 }
854
855 /**
856 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
857 * @dev: Reference to structure of type pch_udc_regs
858 * @val: The value to be written to interrupt register
859 */
860 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
861 u32 val)
862 {
863 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
864 }
865
866 /**
867 * pch_udc_read_device_status() - Read the device status
868 * @dev: Reference to structure of type pch_udc_regs
869 * Retern The device status
870 */
871 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
872 {
873 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
874 }
875
876 /**
877 * pch_udc_read_ep_control() - Read the endpoint control
878 * @ep: Reference to structure of type pch_udc_ep_regs
879 * Retern The endpoint control register value
880 */
881 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
882 {
883 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
884 }
885
886 /**
887 * pch_udc_clear_ep_control() - Clear the endpoint control register
888 * @ep: Reference to structure of type pch_udc_ep_regs
889 * Retern The endpoint control register value
890 */
891 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
892 {
893 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
894 }
895
896 /**
897 * pch_udc_read_ep_status() - Read the endpoint status
898 * @ep: Reference to structure of type pch_udc_ep_regs
899 * Retern The endpoint status
900 */
901 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
902 {
903 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
904 }
905
906 /**
907 * pch_udc_clear_ep_status() - Clear the endpoint status
908 * @ep: Reference to structure of type pch_udc_ep_regs
909 * @stat: Endpoint status
910 */
911 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
912 u32 stat)
913 {
914 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
915 }
916
917 /**
918 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
919 * of the endpoint control register
920 * @ep: Reference to structure of type pch_udc_ep_regs
921 */
922 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
923 {
924 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
925 }
926
927 /**
928 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
929 * of the endpoint control register
930 * @ep: reference to structure of type pch_udc_ep_regs
931 */
932 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
933 {
934 unsigned int loopcnt = 0;
935 struct pch_udc_dev *dev = ep->dev;
936
937 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
938 return;
939 if (!ep->in) {
940 loopcnt = 10000;
941 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
942 --loopcnt)
943 udelay(5);
944 if (!loopcnt)
945 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
946 __func__);
947 }
948 loopcnt = 10000;
949 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
950 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
951 udelay(5);
952 }
953 if (!loopcnt)
954 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
955 __func__, ep->num, (ep->in ? "in" : "out"));
956 }
957
958 /**
959 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
960 * @ep: reference to structure of type pch_udc_ep_regs
961 * @dir: direction of endpoint
962 * 0: endpoint is OUT
963 * !0: endpoint is IN
964 */
965 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
966 {
967 if (dir) { /* IN ep */
968 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
969 return;
970 }
971 }
972
973 /**
974 * pch_udc_ep_enable() - This api enables endpoint
975 * @regs: Reference to structure pch_udc_ep_regs
976 * @desc: endpoint descriptor
977 */
978 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
979 struct pch_udc_cfg_data *cfg,
980 const struct usb_endpoint_descriptor *desc)
981 {
982 u32 val = 0;
983 u32 buff_size = 0;
984
985 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
986 if (ep->in)
987 buff_size = UDC_EPIN_BUFF_SIZE;
988 else
989 buff_size = UDC_EPOUT_BUFF_SIZE;
990 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
991 pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
992 pch_udc_ep_set_nak(ep);
993 pch_udc_ep_fifo_flush(ep, ep->in);
994 /* Configure the endpoint */
995 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
996 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
997 UDC_CSR_NE_TYPE_SHIFT) |
998 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
999 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
1000 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
1001 usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
1002
1003 if (ep->in)
1004 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
1005 else
1006 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
1007 }
1008
1009 /**
1010 * pch_udc_ep_disable() - This api disables endpoint
1011 * @regs: Reference to structure pch_udc_ep_regs
1012 */
1013 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
1014 {
1015 if (ep->in) {
1016 /* flush the fifo */
1017 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1018 /* set NAK */
1019 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1020 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1021 } else {
1022 /* set NAK */
1023 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1024 }
1025 /* reset desc pointer */
1026 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1027 }
1028
1029 /**
1030 * pch_udc_wait_ep_stall() - Wait EP stall.
1031 * @dev: Reference to pch_udc_dev structure
1032 */
1033 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1034 {
1035 unsigned int count = 10000;
1036
1037 /* Wait till idle */
1038 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1039 udelay(5);
1040 if (!count)
1041 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1042 }
1043
1044 /**
1045 * pch_udc_init() - This API initializes usb device controller
1046 * @dev: Rreference to pch_udc_regs structure
1047 */
1048 static void pch_udc_init(struct pch_udc_dev *dev)
1049 {
1050 if (NULL == dev) {
1051 pr_err("%s: Invalid address\n", __func__);
1052 return;
1053 }
1054 /* Soft Reset and Reset PHY */
1055 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1056 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1057 mdelay(1);
1058 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1059 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1060 mdelay(1);
1061 /* mask and clear all device interrupts */
1062 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1063 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1064
1065 /* mask and clear all ep interrupts */
1066 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1067 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1068
1069 /* enable dynamic CSR programmingi, self powered and device speed */
1070 if (speed_fs)
1071 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1072 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1073 else /* defaul high speed */
1074 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1075 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1076 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1077 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1078 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1079 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1080 UDC_DEVCTL_THE);
1081 }
1082
1083 /**
1084 * pch_udc_exit() - This API exit usb device controller
1085 * @dev: Reference to pch_udc_regs structure
1086 */
1087 static void pch_udc_exit(struct pch_udc_dev *dev)
1088 {
1089 /* mask all device interrupts */
1090 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1091 /* mask all ep interrupts */
1092 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1093 /* put device in disconnected state */
1094 pch_udc_set_disconnect(dev);
1095 }
1096
1097 /**
1098 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1099 * @gadget: Reference to the gadget driver
1100 *
1101 * Return codes:
1102 * 0: Success
1103 * -EINVAL: If the gadget passed is NULL
1104 */
1105 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1106 {
1107 struct pch_udc_dev *dev;
1108
1109 if (!gadget)
1110 return -EINVAL;
1111 dev = container_of(gadget, struct pch_udc_dev, gadget);
1112 return pch_udc_get_frame(dev);
1113 }
1114
1115 /**
1116 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1117 * @gadget: Reference to the gadget driver
1118 *
1119 * Return codes:
1120 * 0: Success
1121 * -EINVAL: If the gadget passed is NULL
1122 */
1123 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1124 {
1125 struct pch_udc_dev *dev;
1126 unsigned long flags;
1127
1128 if (!gadget)
1129 return -EINVAL;
1130 dev = container_of(gadget, struct pch_udc_dev, gadget);
1131 spin_lock_irqsave(&dev->lock, flags);
1132 pch_udc_rmt_wakeup(dev);
1133 spin_unlock_irqrestore(&dev->lock, flags);
1134 return 0;
1135 }
1136
1137 /**
1138 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1139 * is self powered or not
1140 * @gadget: Reference to the gadget driver
1141 * @value: Specifies self powered or not
1142 *
1143 * Return codes:
1144 * 0: Success
1145 * -EINVAL: If the gadget passed is NULL
1146 */
1147 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1148 {
1149 struct pch_udc_dev *dev;
1150
1151 if (!gadget)
1152 return -EINVAL;
1153 gadget->is_selfpowered = (value != 0);
1154 dev = container_of(gadget, struct pch_udc_dev, gadget);
1155 if (value)
1156 pch_udc_set_selfpowered(dev);
1157 else
1158 pch_udc_clear_selfpowered(dev);
1159 return 0;
1160 }
1161
1162 /**
1163 * pch_udc_pcd_pullup() - This API is invoked to make the device
1164 * visible/invisible to the host
1165 * @gadget: Reference to the gadget driver
1166 * @is_on: Specifies whether the pull up is made active or inactive
1167 *
1168 * Return codes:
1169 * 0: Success
1170 * -EINVAL: If the gadget passed is NULL
1171 */
1172 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1173 {
1174 struct pch_udc_dev *dev;
1175
1176 if (!gadget)
1177 return -EINVAL;
1178 dev = container_of(gadget, struct pch_udc_dev, gadget);
1179 if (is_on) {
1180 pch_udc_reconnect(dev);
1181 } else {
1182 if (dev->driver && dev->driver->disconnect) {
1183 spin_lock(&dev->lock);
1184 dev->driver->disconnect(&dev->gadget);
1185 spin_unlock(&dev->lock);
1186 }
1187 pch_udc_set_disconnect(dev);
1188 }
1189
1190 return 0;
1191 }
1192
1193 /**
1194 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1195 * transceiver (or GPIO) that
1196 * detects a VBUS power session starting/ending
1197 * @gadget: Reference to the gadget driver
1198 * @is_active: specifies whether the session is starting or ending
1199 *
1200 * Return codes:
1201 * 0: Success
1202 * -EINVAL: If the gadget passed is NULL
1203 */
1204 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1205 {
1206 struct pch_udc_dev *dev;
1207
1208 if (!gadget)
1209 return -EINVAL;
1210 dev = container_of(gadget, struct pch_udc_dev, gadget);
1211 pch_udc_vbus_session(dev, is_active);
1212 return 0;
1213 }
1214
1215 /**
1216 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1217 * SET_CONFIGURATION calls to
1218 * specify how much power the device can consume
1219 * @gadget: Reference to the gadget driver
1220 * @mA: specifies the current limit in 2mA unit
1221 *
1222 * Return codes:
1223 * -EINVAL: If the gadget passed is NULL
1224 * -EOPNOTSUPP:
1225 */
1226 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1227 {
1228 return -EOPNOTSUPP;
1229 }
1230
1231 static int pch_udc_start(struct usb_gadget *g,
1232 struct usb_gadget_driver *driver);
1233 static int pch_udc_stop(struct usb_gadget *g);
1234
1235 static const struct usb_gadget_ops pch_udc_ops = {
1236 .get_frame = pch_udc_pcd_get_frame,
1237 .wakeup = pch_udc_pcd_wakeup,
1238 .set_selfpowered = pch_udc_pcd_selfpowered,
1239 .pullup = pch_udc_pcd_pullup,
1240 .vbus_session = pch_udc_pcd_vbus_session,
1241 .vbus_draw = pch_udc_pcd_vbus_draw,
1242 .udc_start = pch_udc_start,
1243 .udc_stop = pch_udc_stop,
1244 };
1245
1246 /**
1247 * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
1248 * @dev: Reference to the driver structure
1249 *
1250 * Return value:
1251 * 1: VBUS is high
1252 * 0: VBUS is low
1253 * -1: It is not enable to detect VBUS using GPIO
1254 */
1255 static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
1256 {
1257 int vbus = 0;
1258
1259 if (dev->vbus_gpio.port)
1260 vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
1261 else
1262 vbus = -1;
1263
1264 return vbus;
1265 }
1266
1267 /**
1268 * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
1269 * If VBUS is Low, disconnect is processed
1270 * @irq_work: Structure for WorkQueue
1271 *
1272 */
1273 static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
1274 {
1275 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1276 struct pch_vbus_gpio_data, irq_work_fall);
1277 struct pch_udc_dev *dev =
1278 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1279 int vbus_saved = -1;
1280 int vbus;
1281 int count;
1282
1283 if (!dev->vbus_gpio.port)
1284 return;
1285
1286 for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
1287 count++) {
1288 vbus = pch_vbus_gpio_get_value(dev);
1289
1290 if ((vbus_saved == vbus) && (vbus == 0)) {
1291 dev_dbg(&dev->pdev->dev, "VBUS fell");
1292 if (dev->driver
1293 && dev->driver->disconnect) {
1294 dev->driver->disconnect(
1295 &dev->gadget);
1296 }
1297 if (dev->vbus_gpio.intr)
1298 pch_udc_init(dev);
1299 else
1300 pch_udc_reconnect(dev);
1301 return;
1302 }
1303 vbus_saved = vbus;
1304 mdelay(PCH_VBUS_INTERVAL);
1305 }
1306 }
1307
1308 /**
1309 * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
1310 * If VBUS is High, connect is processed
1311 * @irq_work: Structure for WorkQueue
1312 *
1313 */
1314 static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
1315 {
1316 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1317 struct pch_vbus_gpio_data, irq_work_rise);
1318 struct pch_udc_dev *dev =
1319 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1320 int vbus;
1321
1322 if (!dev->vbus_gpio.port)
1323 return;
1324
1325 mdelay(PCH_VBUS_INTERVAL);
1326 vbus = pch_vbus_gpio_get_value(dev);
1327
1328 if (vbus == 1) {
1329 dev_dbg(&dev->pdev->dev, "VBUS rose");
1330 pch_udc_reconnect(dev);
1331 return;
1332 }
1333 }
1334
1335 /**
1336 * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
1337 * @irq: Interrupt request number
1338 * @dev: Reference to the device structure
1339 *
1340 * Return codes:
1341 * 0: Success
1342 * -EINVAL: GPIO port is invalid or can't be initialized.
1343 */
1344 static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
1345 {
1346 struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
1347
1348 if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
1349 return IRQ_NONE;
1350
1351 if (pch_vbus_gpio_get_value(dev))
1352 schedule_work(&dev->vbus_gpio.irq_work_rise);
1353 else
1354 schedule_work(&dev->vbus_gpio.irq_work_fall);
1355
1356 return IRQ_HANDLED;
1357 }
1358
1359 /**
1360 * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
1361 * @dev: Reference to the driver structure
1362 * @vbus_gpio Number of GPIO port to detect gpio
1363 *
1364 * Return codes:
1365 * 0: Success
1366 * -EINVAL: GPIO port is invalid or can't be initialized.
1367 */
1368 static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
1369 {
1370 int err;
1371 int irq_num = 0;
1372
1373 dev->vbus_gpio.port = 0;
1374 dev->vbus_gpio.intr = 0;
1375
1376 if (vbus_gpio_port <= -1)
1377 return -EINVAL;
1378
1379 err = gpio_is_valid(vbus_gpio_port);
1380 if (!err) {
1381 pr_err("%s: gpio port %d is invalid\n",
1382 __func__, vbus_gpio_port);
1383 return -EINVAL;
1384 }
1385
1386 err = gpio_request(vbus_gpio_port, "pch_vbus");
1387 if (err) {
1388 pr_err("%s: can't request gpio port %d, err: %d\n",
1389 __func__, vbus_gpio_port, err);
1390 return -EINVAL;
1391 }
1392
1393 dev->vbus_gpio.port = vbus_gpio_port;
1394 gpio_direction_input(vbus_gpio_port);
1395 INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
1396
1397 irq_num = gpio_to_irq(vbus_gpio_port);
1398 if (irq_num > 0) {
1399 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
1400 err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
1401 "vbus_detect", dev);
1402 if (!err) {
1403 dev->vbus_gpio.intr = irq_num;
1404 INIT_WORK(&dev->vbus_gpio.irq_work_rise,
1405 pch_vbus_gpio_work_rise);
1406 } else {
1407 pr_err("%s: can't request irq %d, err: %d\n",
1408 __func__, irq_num, err);
1409 }
1410 }
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * pch_vbus_gpio_free() - This API frees resources of GPIO port
1417 * @dev: Reference to the driver structure
1418 */
1419 static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
1420 {
1421 if (dev->vbus_gpio.intr)
1422 free_irq(dev->vbus_gpio.intr, dev);
1423
1424 if (dev->vbus_gpio.port)
1425 gpio_free(dev->vbus_gpio.port);
1426 }
1427
1428 /**
1429 * complete_req() - This API is invoked from the driver when processing
1430 * of a request is complete
1431 * @ep: Reference to the endpoint structure
1432 * @req: Reference to the request structure
1433 * @status: Indicates the success/failure of completion
1434 */
1435 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1436 int status)
1437 __releases(&dev->lock)
1438 __acquires(&dev->lock)
1439 {
1440 struct pch_udc_dev *dev;
1441 unsigned halted = ep->halted;
1442
1443 list_del_init(&req->queue);
1444
1445 /* set new status if pending */
1446 if (req->req.status == -EINPROGRESS)
1447 req->req.status = status;
1448 else
1449 status = req->req.status;
1450
1451 dev = ep->dev;
1452 if (req->dma_mapped) {
1453 if (req->dma == DMA_ADDR_INVALID) {
1454 if (ep->in)
1455 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1456 req->req.length,
1457 DMA_TO_DEVICE);
1458 else
1459 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1460 req->req.length,
1461 DMA_FROM_DEVICE);
1462 req->req.dma = DMA_ADDR_INVALID;
1463 } else {
1464 if (ep->in)
1465 dma_unmap_single(&dev->pdev->dev, req->dma,
1466 req->req.length,
1467 DMA_TO_DEVICE);
1468 else {
1469 dma_unmap_single(&dev->pdev->dev, req->dma,
1470 req->req.length,
1471 DMA_FROM_DEVICE);
1472 memcpy(req->req.buf, req->buf, req->req.length);
1473 }
1474 kfree(req->buf);
1475 req->dma = DMA_ADDR_INVALID;
1476 }
1477 req->dma_mapped = 0;
1478 }
1479 ep->halted = 1;
1480 spin_unlock(&dev->lock);
1481 if (!ep->in)
1482 pch_udc_ep_clear_rrdy(ep);
1483 usb_gadget_giveback_request(&ep->ep, &req->req);
1484 spin_lock(&dev->lock);
1485 ep->halted = halted;
1486 }
1487
1488 /**
1489 * empty_req_queue() - This API empties the request queue of an endpoint
1490 * @ep: Reference to the endpoint structure
1491 */
1492 static void empty_req_queue(struct pch_udc_ep *ep)
1493 {
1494 struct pch_udc_request *req;
1495
1496 ep->halted = 1;
1497 while (!list_empty(&ep->queue)) {
1498 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1499 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1500 }
1501 }
1502
1503 /**
1504 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1505 * for the request
1506 * @dev Reference to the driver structure
1507 * @req Reference to the request to be freed
1508 *
1509 * Return codes:
1510 * 0: Success
1511 */
1512 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1513 struct pch_udc_request *req)
1514 {
1515 struct pch_udc_data_dma_desc *td = req->td_data;
1516 unsigned i = req->chain_len;
1517
1518 dma_addr_t addr2;
1519 dma_addr_t addr = (dma_addr_t)td->next;
1520 td->next = 0x00;
1521 for (; i > 1; --i) {
1522 /* do not free first desc., will be done by free for request */
1523 td = phys_to_virt(addr);
1524 addr2 = (dma_addr_t)td->next;
1525 pci_pool_free(dev->data_requests, td, addr);
1526 addr = addr2;
1527 }
1528 req->chain_len = 1;
1529 }
1530
1531 /**
1532 * pch_udc_create_dma_chain() - This function creates or reinitializes
1533 * a DMA chain
1534 * @ep: Reference to the endpoint structure
1535 * @req: Reference to the request
1536 * @buf_len: The buffer length
1537 * @gfp_flags: Flags to be used while mapping the data buffer
1538 *
1539 * Return codes:
1540 * 0: success,
1541 * -ENOMEM: pci_pool_alloc invocation fails
1542 */
1543 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1544 struct pch_udc_request *req,
1545 unsigned long buf_len,
1546 gfp_t gfp_flags)
1547 {
1548 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1549 unsigned long bytes = req->req.length, i = 0;
1550 dma_addr_t dma_addr;
1551 unsigned len = 1;
1552
1553 if (req->chain_len > 1)
1554 pch_udc_free_dma_chain(ep->dev, req);
1555
1556 if (req->dma == DMA_ADDR_INVALID)
1557 td->dataptr = req->req.dma;
1558 else
1559 td->dataptr = req->dma;
1560
1561 td->status = PCH_UDC_BS_HST_BSY;
1562 for (; ; bytes -= buf_len, ++len) {
1563 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1564 if (bytes <= buf_len)
1565 break;
1566 last = td;
1567 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1568 &dma_addr);
1569 if (!td)
1570 goto nomem;
1571 i += buf_len;
1572 td->dataptr = req->td_data->dataptr + i;
1573 last->next = dma_addr;
1574 }
1575
1576 req->td_data_last = td;
1577 td->status |= PCH_UDC_DMA_LAST;
1578 td->next = req->td_data_phys;
1579 req->chain_len = len;
1580 return 0;
1581
1582 nomem:
1583 if (len > 1) {
1584 req->chain_len = len;
1585 pch_udc_free_dma_chain(ep->dev, req);
1586 }
1587 req->chain_len = 1;
1588 return -ENOMEM;
1589 }
1590
1591 /**
1592 * prepare_dma() - This function creates and initializes the DMA chain
1593 * for the request
1594 * @ep: Reference to the endpoint structure
1595 * @req: Reference to the request
1596 * @gfp: Flag to be used while mapping the data buffer
1597 *
1598 * Return codes:
1599 * 0: Success
1600 * Other 0: linux error number on failure
1601 */
1602 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1603 gfp_t gfp)
1604 {
1605 int retval;
1606
1607 /* Allocate and create a DMA chain */
1608 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1609 if (retval) {
1610 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1611 return retval;
1612 }
1613 if (ep->in)
1614 req->td_data->status = (req->td_data->status &
1615 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1616 return 0;
1617 }
1618
1619 /**
1620 * process_zlp() - This function process zero length packets
1621 * from the gadget driver
1622 * @ep: Reference to the endpoint structure
1623 * @req: Reference to the request
1624 */
1625 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1626 {
1627 struct pch_udc_dev *dev = ep->dev;
1628
1629 /* IN zlp's are handled by hardware */
1630 complete_req(ep, req, 0);
1631
1632 /* if set_config or set_intf is waiting for ack by zlp
1633 * then set CSR_DONE
1634 */
1635 if (dev->set_cfg_not_acked) {
1636 pch_udc_set_csr_done(dev);
1637 dev->set_cfg_not_acked = 0;
1638 }
1639 /* setup command is ACK'ed now by zlp */
1640 if (!dev->stall && dev->waiting_zlp_ack) {
1641 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1642 dev->waiting_zlp_ack = 0;
1643 }
1644 }
1645
1646 /**
1647 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1648 * @ep: Reference to the endpoint structure
1649 * @req: Reference to the request structure
1650 */
1651 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1652 struct pch_udc_request *req)
1653 {
1654 struct pch_udc_data_dma_desc *td_data;
1655
1656 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1657 td_data = req->td_data;
1658 /* Set the status bits for all descriptors */
1659 while (1) {
1660 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1661 PCH_UDC_BS_HST_RDY;
1662 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1663 break;
1664 td_data = phys_to_virt(td_data->next);
1665 }
1666 /* Write the descriptor pointer */
1667 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1668 req->dma_going = 1;
1669 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1670 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1671 pch_udc_ep_clear_nak(ep);
1672 pch_udc_ep_set_rrdy(ep);
1673 }
1674
1675 /**
1676 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1677 * from gadget driver
1678 * @usbep: Reference to the USB endpoint structure
1679 * @desc: Reference to the USB endpoint descriptor structure
1680 *
1681 * Return codes:
1682 * 0: Success
1683 * -EINVAL:
1684 * -ESHUTDOWN:
1685 */
1686 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1687 const struct usb_endpoint_descriptor *desc)
1688 {
1689 struct pch_udc_ep *ep;
1690 struct pch_udc_dev *dev;
1691 unsigned long iflags;
1692
1693 if (!usbep || (usbep->name == ep0_string) || !desc ||
1694 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1695 return -EINVAL;
1696
1697 ep = container_of(usbep, struct pch_udc_ep, ep);
1698 dev = ep->dev;
1699 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1700 return -ESHUTDOWN;
1701 spin_lock_irqsave(&dev->lock, iflags);
1702 ep->ep.desc = desc;
1703 ep->halted = 0;
1704 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1705 ep->ep.maxpacket = usb_endpoint_maxp(desc);
1706 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1707 spin_unlock_irqrestore(&dev->lock, iflags);
1708 return 0;
1709 }
1710
1711 /**
1712 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1713 * from gadget driver
1714 * @usbep Reference to the USB endpoint structure
1715 *
1716 * Return codes:
1717 * 0: Success
1718 * -EINVAL:
1719 */
1720 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1721 {
1722 struct pch_udc_ep *ep;
1723 unsigned long iflags;
1724
1725 if (!usbep)
1726 return -EINVAL;
1727
1728 ep = container_of(usbep, struct pch_udc_ep, ep);
1729 if ((usbep->name == ep0_string) || !ep->ep.desc)
1730 return -EINVAL;
1731
1732 spin_lock_irqsave(&ep->dev->lock, iflags);
1733 empty_req_queue(ep);
1734 ep->halted = 1;
1735 pch_udc_ep_disable(ep);
1736 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1737 ep->ep.desc = NULL;
1738 INIT_LIST_HEAD(&ep->queue);
1739 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1740 return 0;
1741 }
1742
1743 /**
1744 * pch_udc_alloc_request() - This function allocates request structure.
1745 * It is called by gadget driver
1746 * @usbep: Reference to the USB endpoint structure
1747 * @gfp: Flag to be used while allocating memory
1748 *
1749 * Return codes:
1750 * NULL: Failure
1751 * Allocated address: Success
1752 */
1753 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1754 gfp_t gfp)
1755 {
1756 struct pch_udc_request *req;
1757 struct pch_udc_ep *ep;
1758 struct pch_udc_data_dma_desc *dma_desc;
1759
1760 if (!usbep)
1761 return NULL;
1762 ep = container_of(usbep, struct pch_udc_ep, ep);
1763 req = kzalloc(sizeof *req, gfp);
1764 if (!req)
1765 return NULL;
1766 req->req.dma = DMA_ADDR_INVALID;
1767 req->dma = DMA_ADDR_INVALID;
1768 INIT_LIST_HEAD(&req->queue);
1769 if (!ep->dev->dma_addr)
1770 return &req->req;
1771 /* ep0 in requests are allocated from data pool here */
1772 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1773 &req->td_data_phys);
1774 if (NULL == dma_desc) {
1775 kfree(req);
1776 return NULL;
1777 }
1778 /* prevent from using desc. - set HOST BUSY */
1779 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1780 dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
1781 req->td_data = dma_desc;
1782 req->td_data_last = dma_desc;
1783 req->chain_len = 1;
1784 return &req->req;
1785 }
1786
1787 /**
1788 * pch_udc_free_request() - This function frees request structure.
1789 * It is called by gadget driver
1790 * @usbep: Reference to the USB endpoint structure
1791 * @usbreq: Reference to the USB request
1792 */
1793 static void pch_udc_free_request(struct usb_ep *usbep,
1794 struct usb_request *usbreq)
1795 {
1796 struct pch_udc_ep *ep;
1797 struct pch_udc_request *req;
1798 struct pch_udc_dev *dev;
1799
1800 if (!usbep || !usbreq)
1801 return;
1802 ep = container_of(usbep, struct pch_udc_ep, ep);
1803 req = container_of(usbreq, struct pch_udc_request, req);
1804 dev = ep->dev;
1805 if (!list_empty(&req->queue))
1806 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1807 __func__, usbep->name, req);
1808 if (req->td_data != NULL) {
1809 if (req->chain_len > 1)
1810 pch_udc_free_dma_chain(ep->dev, req);
1811 pci_pool_free(ep->dev->data_requests, req->td_data,
1812 req->td_data_phys);
1813 }
1814 kfree(req);
1815 }
1816
1817 /**
1818 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1819 * by gadget driver
1820 * @usbep: Reference to the USB endpoint structure
1821 * @usbreq: Reference to the USB request
1822 * @gfp: Flag to be used while mapping the data buffer
1823 *
1824 * Return codes:
1825 * 0: Success
1826 * linux error number: Failure
1827 */
1828 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1829 gfp_t gfp)
1830 {
1831 int retval = 0;
1832 struct pch_udc_ep *ep;
1833 struct pch_udc_dev *dev;
1834 struct pch_udc_request *req;
1835 unsigned long iflags;
1836
1837 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1838 return -EINVAL;
1839 ep = container_of(usbep, struct pch_udc_ep, ep);
1840 dev = ep->dev;
1841 if (!ep->ep.desc && ep->num)
1842 return -EINVAL;
1843 req = container_of(usbreq, struct pch_udc_request, req);
1844 if (!list_empty(&req->queue))
1845 return -EINVAL;
1846 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1847 return -ESHUTDOWN;
1848 spin_lock_irqsave(&dev->lock, iflags);
1849 /* map the buffer for dma */
1850 if (usbreq->length &&
1851 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1852 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1853 if (ep->in)
1854 usbreq->dma = dma_map_single(&dev->pdev->dev,
1855 usbreq->buf,
1856 usbreq->length,
1857 DMA_TO_DEVICE);
1858 else
1859 usbreq->dma = dma_map_single(&dev->pdev->dev,
1860 usbreq->buf,
1861 usbreq->length,
1862 DMA_FROM_DEVICE);
1863 } else {
1864 req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1865 if (!req->buf) {
1866 retval = -ENOMEM;
1867 goto probe_end;
1868 }
1869 if (ep->in) {
1870 memcpy(req->buf, usbreq->buf, usbreq->length);
1871 req->dma = dma_map_single(&dev->pdev->dev,
1872 req->buf,
1873 usbreq->length,
1874 DMA_TO_DEVICE);
1875 } else
1876 req->dma = dma_map_single(&dev->pdev->dev,
1877 req->buf,
1878 usbreq->length,
1879 DMA_FROM_DEVICE);
1880 }
1881 req->dma_mapped = 1;
1882 }
1883 if (usbreq->length > 0) {
1884 retval = prepare_dma(ep, req, GFP_ATOMIC);
1885 if (retval)
1886 goto probe_end;
1887 }
1888 usbreq->actual = 0;
1889 usbreq->status = -EINPROGRESS;
1890 req->dma_done = 0;
1891 if (list_empty(&ep->queue) && !ep->halted) {
1892 /* no pending transfer, so start this req */
1893 if (!usbreq->length) {
1894 process_zlp(ep, req);
1895 retval = 0;
1896 goto probe_end;
1897 }
1898 if (!ep->in) {
1899 pch_udc_start_rxrequest(ep, req);
1900 } else {
1901 /*
1902 * For IN trfr the descriptors will be programmed and
1903 * P bit will be set when
1904 * we get an IN token
1905 */
1906 pch_udc_wait_ep_stall(ep);
1907 pch_udc_ep_clear_nak(ep);
1908 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1909 }
1910 }
1911 /* Now add this request to the ep's pending requests */
1912 if (req != NULL)
1913 list_add_tail(&req->queue, &ep->queue);
1914
1915 probe_end:
1916 spin_unlock_irqrestore(&dev->lock, iflags);
1917 return retval;
1918 }
1919
1920 /**
1921 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1922 * It is called by gadget driver
1923 * @usbep: Reference to the USB endpoint structure
1924 * @usbreq: Reference to the USB request
1925 *
1926 * Return codes:
1927 * 0: Success
1928 * linux error number: Failure
1929 */
1930 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1931 struct usb_request *usbreq)
1932 {
1933 struct pch_udc_ep *ep;
1934 struct pch_udc_request *req;
1935 unsigned long flags;
1936 int ret = -EINVAL;
1937
1938 ep = container_of(usbep, struct pch_udc_ep, ep);
1939 if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
1940 return ret;
1941 req = container_of(usbreq, struct pch_udc_request, req);
1942 spin_lock_irqsave(&ep->dev->lock, flags);
1943 /* make sure it's still queued on this endpoint */
1944 list_for_each_entry(req, &ep->queue, queue) {
1945 if (&req->req == usbreq) {
1946 pch_udc_ep_set_nak(ep);
1947 if (!list_empty(&req->queue))
1948 complete_req(ep, req, -ECONNRESET);
1949 ret = 0;
1950 break;
1951 }
1952 }
1953 spin_unlock_irqrestore(&ep->dev->lock, flags);
1954 return ret;
1955 }
1956
1957 /**
1958 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1959 * feature
1960 * @usbep: Reference to the USB endpoint structure
1961 * @halt: Specifies whether to set or clear the feature
1962 *
1963 * Return codes:
1964 * 0: Success
1965 * linux error number: Failure
1966 */
1967 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1968 {
1969 struct pch_udc_ep *ep;
1970 unsigned long iflags;
1971 int ret;
1972
1973 if (!usbep)
1974 return -EINVAL;
1975 ep = container_of(usbep, struct pch_udc_ep, ep);
1976 if (!ep->ep.desc && !ep->num)
1977 return -EINVAL;
1978 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1979 return -ESHUTDOWN;
1980 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1981 if (list_empty(&ep->queue)) {
1982 if (halt) {
1983 if (ep->num == PCH_UDC_EP0)
1984 ep->dev->stall = 1;
1985 pch_udc_ep_set_stall(ep);
1986 pch_udc_enable_ep_interrupts(
1987 ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1988 } else {
1989 pch_udc_ep_clear_stall(ep);
1990 }
1991 ret = 0;
1992 } else {
1993 ret = -EAGAIN;
1994 }
1995 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1996 return ret;
1997 }
1998
1999 /**
2000 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
2001 * halt feature
2002 * @usbep: Reference to the USB endpoint structure
2003 * @halt: Specifies whether to set or clear the feature
2004 *
2005 * Return codes:
2006 * 0: Success
2007 * linux error number: Failure
2008 */
2009 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
2010 {
2011 struct pch_udc_ep *ep;
2012 unsigned long iflags;
2013 int ret;
2014
2015 if (!usbep)
2016 return -EINVAL;
2017 ep = container_of(usbep, struct pch_udc_ep, ep);
2018 if (!ep->ep.desc && !ep->num)
2019 return -EINVAL;
2020 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
2021 return -ESHUTDOWN;
2022 spin_lock_irqsave(&udc_stall_spinlock, iflags);
2023 if (!list_empty(&ep->queue)) {
2024 ret = -EAGAIN;
2025 } else {
2026 if (ep->num == PCH_UDC_EP0)
2027 ep->dev->stall = 1;
2028 pch_udc_ep_set_stall(ep);
2029 pch_udc_enable_ep_interrupts(ep->dev,
2030 PCH_UDC_EPINT(ep->in, ep->num));
2031 ep->dev->prot_stall = 1;
2032 ret = 0;
2033 }
2034 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2035 return ret;
2036 }
2037
2038 /**
2039 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
2040 * @usbep: Reference to the USB endpoint structure
2041 */
2042 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
2043 {
2044 struct pch_udc_ep *ep;
2045
2046 if (!usbep)
2047 return;
2048
2049 ep = container_of(usbep, struct pch_udc_ep, ep);
2050 if (ep->ep.desc || !ep->num)
2051 pch_udc_ep_fifo_flush(ep, ep->in);
2052 }
2053
2054 static const struct usb_ep_ops pch_udc_ep_ops = {
2055 .enable = pch_udc_pcd_ep_enable,
2056 .disable = pch_udc_pcd_ep_disable,
2057 .alloc_request = pch_udc_alloc_request,
2058 .free_request = pch_udc_free_request,
2059 .queue = pch_udc_pcd_queue,
2060 .dequeue = pch_udc_pcd_dequeue,
2061 .set_halt = pch_udc_pcd_set_halt,
2062 .set_wedge = pch_udc_pcd_set_wedge,
2063 .fifo_status = NULL,
2064 .fifo_flush = pch_udc_pcd_fifo_flush,
2065 };
2066
2067 /**
2068 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
2069 * @td_stp: Reference to the SETP buffer structure
2070 */
2071 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
2072 {
2073 static u32 pky_marker;
2074
2075 if (!td_stp)
2076 return;
2077 td_stp->reserved = ++pky_marker;
2078 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
2079 td_stp->status = PCH_UDC_BS_HST_RDY;
2080 }
2081
2082 /**
2083 * pch_udc_start_next_txrequest() - This function starts
2084 * the next transmission requirement
2085 * @ep: Reference to the endpoint structure
2086 */
2087 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
2088 {
2089 struct pch_udc_request *req;
2090 struct pch_udc_data_dma_desc *td_data;
2091
2092 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
2093 return;
2094
2095 if (list_empty(&ep->queue))
2096 return;
2097
2098 /* next request */
2099 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2100 if (req->dma_going)
2101 return;
2102 if (!req->td_data)
2103 return;
2104 pch_udc_wait_ep_stall(ep);
2105 req->dma_going = 1;
2106 pch_udc_ep_set_ddptr(ep, 0);
2107 td_data = req->td_data;
2108 while (1) {
2109 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
2110 PCH_UDC_BS_HST_RDY;
2111 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
2112 break;
2113 td_data = phys_to_virt(td_data->next);
2114 }
2115 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
2116 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
2117 pch_udc_ep_set_pd(ep);
2118 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2119 pch_udc_ep_clear_nak(ep);
2120 }
2121
2122 /**
2123 * pch_udc_complete_transfer() - This function completes a transfer
2124 * @ep: Reference to the endpoint structure
2125 */
2126 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
2127 {
2128 struct pch_udc_request *req;
2129 struct pch_udc_dev *dev = ep->dev;
2130
2131 if (list_empty(&ep->queue))
2132 return;
2133 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2134 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2135 PCH_UDC_BS_DMA_DONE)
2136 return;
2137 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
2138 PCH_UDC_RTS_SUCC) {
2139 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
2140 "epstatus=0x%08x\n",
2141 (req->td_data_last->status & PCH_UDC_RXTX_STS),
2142 (int)(ep->epsts));
2143 return;
2144 }
2145
2146 req->req.actual = req->req.length;
2147 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2148 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2149 complete_req(ep, req, 0);
2150 req->dma_going = 0;
2151 if (!list_empty(&ep->queue)) {
2152 pch_udc_wait_ep_stall(ep);
2153 pch_udc_ep_clear_nak(ep);
2154 pch_udc_enable_ep_interrupts(ep->dev,
2155 PCH_UDC_EPINT(ep->in, ep->num));
2156 } else {
2157 pch_udc_disable_ep_interrupts(ep->dev,
2158 PCH_UDC_EPINT(ep->in, ep->num));
2159 }
2160 }
2161
2162 /**
2163 * pch_udc_complete_receiver() - This function completes a receiver
2164 * @ep: Reference to the endpoint structure
2165 */
2166 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
2167 {
2168 struct pch_udc_request *req;
2169 struct pch_udc_dev *dev = ep->dev;
2170 unsigned int count;
2171 struct pch_udc_data_dma_desc *td;
2172 dma_addr_t addr;
2173
2174 if (list_empty(&ep->queue))
2175 return;
2176 /* next request */
2177 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2178 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
2179 pch_udc_ep_set_ddptr(ep, 0);
2180 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
2181 PCH_UDC_BS_DMA_DONE)
2182 td = req->td_data_last;
2183 else
2184 td = req->td_data;
2185
2186 while (1) {
2187 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
2188 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
2189 "epstatus=0x%08x\n",
2190 (req->td_data->status & PCH_UDC_RXTX_STS),
2191 (int)(ep->epsts));
2192 return;
2193 }
2194 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2195 if (td->status & PCH_UDC_DMA_LAST) {
2196 count = td->status & PCH_UDC_RXTX_BYTES;
2197 break;
2198 }
2199 if (td == req->td_data_last) {
2200 dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2201 return;
2202 }
2203 addr = (dma_addr_t)td->next;
2204 td = phys_to_virt(addr);
2205 }
2206 /* on 64k packets the RXBYTES field is zero */
2207 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2208 count = UDC_DMA_MAXPACKET;
2209 req->td_data->status |= PCH_UDC_DMA_LAST;
2210 td->status |= PCH_UDC_BS_HST_BSY;
2211
2212 req->dma_going = 0;
2213 req->req.actual = count;
2214 complete_req(ep, req, 0);
2215 /* If there is a new/failed requests try that now */
2216 if (!list_empty(&ep->queue)) {
2217 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2218 pch_udc_start_rxrequest(ep, req);
2219 }
2220 }
2221
2222 /**
2223 * pch_udc_svc_data_in() - This function process endpoint interrupts
2224 * for IN endpoints
2225 * @dev: Reference to the device structure
2226 * @ep_num: Endpoint that generated the interrupt
2227 */
2228 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2229 {
2230 u32 epsts;
2231 struct pch_udc_ep *ep;
2232
2233 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2234 epsts = ep->epsts;
2235 ep->epsts = 0;
2236
2237 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2238 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2239 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2240 return;
2241 if ((epsts & UDC_EPSTS_BNA))
2242 return;
2243 if (epsts & UDC_EPSTS_HE)
2244 return;
2245 if (epsts & UDC_EPSTS_RSS) {
2246 pch_udc_ep_set_stall(ep);
2247 pch_udc_enable_ep_interrupts(ep->dev,
2248 PCH_UDC_EPINT(ep->in, ep->num));
2249 }
2250 if (epsts & UDC_EPSTS_RCS) {
2251 if (!dev->prot_stall) {
2252 pch_udc_ep_clear_stall(ep);
2253 } else {
2254 pch_udc_ep_set_stall(ep);
2255 pch_udc_enable_ep_interrupts(ep->dev,
2256 PCH_UDC_EPINT(ep->in, ep->num));
2257 }
2258 }
2259 if (epsts & UDC_EPSTS_TDC)
2260 pch_udc_complete_transfer(ep);
2261 /* On IN interrupt, provide data if we have any */
2262 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2263 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2264 pch_udc_start_next_txrequest(ep);
2265 }
2266
2267 /**
2268 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2269 * @dev: Reference to the device structure
2270 * @ep_num: Endpoint that generated the interrupt
2271 */
2272 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2273 {
2274 u32 epsts;
2275 struct pch_udc_ep *ep;
2276 struct pch_udc_request *req = NULL;
2277
2278 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2279 epsts = ep->epsts;
2280 ep->epsts = 0;
2281
2282 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2283 /* next request */
2284 req = list_entry(ep->queue.next, struct pch_udc_request,
2285 queue);
2286 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2287 PCH_UDC_BS_DMA_DONE) {
2288 if (!req->dma_going)
2289 pch_udc_start_rxrequest(ep, req);
2290 return;
2291 }
2292 }
2293 if (epsts & UDC_EPSTS_HE)
2294 return;
2295 if (epsts & UDC_EPSTS_RSS) {
2296 pch_udc_ep_set_stall(ep);
2297 pch_udc_enable_ep_interrupts(ep->dev,
2298 PCH_UDC_EPINT(ep->in, ep->num));
2299 }
2300 if (epsts & UDC_EPSTS_RCS) {
2301 if (!dev->prot_stall) {
2302 pch_udc_ep_clear_stall(ep);
2303 } else {
2304 pch_udc_ep_set_stall(ep);
2305 pch_udc_enable_ep_interrupts(ep->dev,
2306 PCH_UDC_EPINT(ep->in, ep->num));
2307 }
2308 }
2309 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2310 UDC_EPSTS_OUT_DATA) {
2311 if (ep->dev->prot_stall == 1) {
2312 pch_udc_ep_set_stall(ep);
2313 pch_udc_enable_ep_interrupts(ep->dev,
2314 PCH_UDC_EPINT(ep->in, ep->num));
2315 } else {
2316 pch_udc_complete_receiver(ep);
2317 }
2318 }
2319 if (list_empty(&ep->queue))
2320 pch_udc_set_dma(dev, DMA_DIR_RX);
2321 }
2322
2323 /**
2324 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2325 * @dev: Reference to the device structure
2326 */
2327 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2328 {
2329 u32 epsts;
2330 struct pch_udc_ep *ep;
2331 struct pch_udc_ep *ep_out;
2332
2333 ep = &dev->ep[UDC_EP0IN_IDX];
2334 ep_out = &dev->ep[UDC_EP0OUT_IDX];
2335 epsts = ep->epsts;
2336 ep->epsts = 0;
2337
2338 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2339 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2340 UDC_EPSTS_XFERDONE)))
2341 return;
2342 if ((epsts & UDC_EPSTS_BNA))
2343 return;
2344 if (epsts & UDC_EPSTS_HE)
2345 return;
2346 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2347 pch_udc_complete_transfer(ep);
2348 pch_udc_clear_dma(dev, DMA_DIR_RX);
2349 ep_out->td_data->status = (ep_out->td_data->status &
2350 ~PCH_UDC_BUFF_STS) |
2351 PCH_UDC_BS_HST_RDY;
2352 pch_udc_ep_clear_nak(ep_out);
2353 pch_udc_set_dma(dev, DMA_DIR_RX);
2354 pch_udc_ep_set_rrdy(ep_out);
2355 }
2356 /* On IN interrupt, provide data if we have any */
2357 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2358 !(epsts & UDC_EPSTS_TXEMPTY))
2359 pch_udc_start_next_txrequest(ep);
2360 }
2361
2362 /**
2363 * pch_udc_svc_control_out() - Routine that handle Control
2364 * OUT endpoint interrupts
2365 * @dev: Reference to the device structure
2366 */
2367 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2368 __releases(&dev->lock)
2369 __acquires(&dev->lock)
2370 {
2371 u32 stat;
2372 int setup_supported;
2373 struct pch_udc_ep *ep;
2374
2375 ep = &dev->ep[UDC_EP0OUT_IDX];
2376 stat = ep->epsts;
2377 ep->epsts = 0;
2378
2379 /* If setup data */
2380 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2381 UDC_EPSTS_OUT_SETUP) {
2382 dev->stall = 0;
2383 dev->ep[UDC_EP0IN_IDX].halted = 0;
2384 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2385 dev->setup_data = ep->td_stp->request;
2386 pch_udc_init_setup_buff(ep->td_stp);
2387 pch_udc_clear_dma(dev, DMA_DIR_RX);
2388 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2389 dev->ep[UDC_EP0IN_IDX].in);
2390 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2391 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2392 else /* OUT */
2393 dev->gadget.ep0 = &ep->ep;
2394 spin_lock(&dev->lock);
2395 /* If Mass storage Reset */
2396 if ((dev->setup_data.bRequestType == 0x21) &&
2397 (dev->setup_data.bRequest == 0xFF))
2398 dev->prot_stall = 0;
2399 /* call gadget with setup data received */
2400 setup_supported = dev->driver->setup(&dev->gadget,
2401 &dev->setup_data);
2402 spin_unlock(&dev->lock);
2403
2404 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2405 ep->td_data->status = (ep->td_data->status &
2406 ~PCH_UDC_BUFF_STS) |
2407 PCH_UDC_BS_HST_RDY;
2408 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2409 }
2410 /* ep0 in returns data on IN phase */
2411 if (setup_supported >= 0 && setup_supported <
2412 UDC_EP0IN_MAX_PKT_SIZE) {
2413 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2414 /* Gadget would have queued a request when
2415 * we called the setup */
2416 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2417 pch_udc_set_dma(dev, DMA_DIR_RX);
2418 pch_udc_ep_clear_nak(ep);
2419 }
2420 } else if (setup_supported < 0) {
2421 /* if unsupported request, then stall */
2422 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2423 pch_udc_enable_ep_interrupts(ep->dev,
2424 PCH_UDC_EPINT(ep->in, ep->num));
2425 dev->stall = 0;
2426 pch_udc_set_dma(dev, DMA_DIR_RX);
2427 } else {
2428 dev->waiting_zlp_ack = 1;
2429 }
2430 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2431 UDC_EPSTS_OUT_DATA) && !dev->stall) {
2432 pch_udc_clear_dma(dev, DMA_DIR_RX);
2433 pch_udc_ep_set_ddptr(ep, 0);
2434 if (!list_empty(&ep->queue)) {
2435 ep->epsts = stat;
2436 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2437 }
2438 pch_udc_set_dma(dev, DMA_DIR_RX);
2439 }
2440 pch_udc_ep_set_rrdy(ep);
2441 }
2442
2443
2444 /**
2445 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2446 * and clears NAK status
2447 * @dev: Reference to the device structure
2448 * @ep_num: End point number
2449 */
2450 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2451 {
2452 struct pch_udc_ep *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2453 if (list_empty(&ep->queue))
2454 return;
2455 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2456 pch_udc_ep_clear_nak(ep);
2457 }
2458
2459 /**
2460 * pch_udc_read_all_epstatus() - This function read all endpoint status
2461 * @dev: Reference to the device structure
2462 * @ep_intr: Status of endpoint interrupt
2463 */
2464 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2465 {
2466 int i;
2467 struct pch_udc_ep *ep;
2468
2469 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2470 /* IN */
2471 if (ep_intr & (0x1 << i)) {
2472 ep = &dev->ep[UDC_EPIN_IDX(i)];
2473 ep->epsts = pch_udc_read_ep_status(ep);
2474 pch_udc_clear_ep_status(ep, ep->epsts);
2475 }
2476 /* OUT */
2477 if (ep_intr & (0x10000 << i)) {
2478 ep = &dev->ep[UDC_EPOUT_IDX(i)];
2479 ep->epsts = pch_udc_read_ep_status(ep);
2480 pch_udc_clear_ep_status(ep, ep->epsts);
2481 }
2482 }
2483 }
2484
2485 /**
2486 * pch_udc_activate_control_ep() - This function enables the control endpoints
2487 * for traffic after a reset
2488 * @dev: Reference to the device structure
2489 */
2490 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2491 {
2492 struct pch_udc_ep *ep;
2493 u32 val;
2494
2495 /* Setup the IN endpoint */
2496 ep = &dev->ep[UDC_EP0IN_IDX];
2497 pch_udc_clear_ep_control(ep);
2498 pch_udc_ep_fifo_flush(ep, ep->in);
2499 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2500 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2501 /* Initialize the IN EP Descriptor */
2502 ep->td_data = NULL;
2503 ep->td_stp = NULL;
2504 ep->td_data_phys = 0;
2505 ep->td_stp_phys = 0;
2506
2507 /* Setup the OUT endpoint */
2508 ep = &dev->ep[UDC_EP0OUT_IDX];
2509 pch_udc_clear_ep_control(ep);
2510 pch_udc_ep_fifo_flush(ep, ep->in);
2511 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2512 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2513 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2514 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2515
2516 /* Initialize the SETUP buffer */
2517 pch_udc_init_setup_buff(ep->td_stp);
2518 /* Write the pointer address of dma descriptor */
2519 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2520 /* Write the pointer address of Setup descriptor */
2521 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2522
2523 /* Initialize the dma descriptor */
2524 ep->td_data->status = PCH_UDC_DMA_LAST;
2525 ep->td_data->dataptr = dev->dma_addr;
2526 ep->td_data->next = ep->td_data_phys;
2527
2528 pch_udc_ep_clear_nak(ep);
2529 }
2530
2531
2532 /**
2533 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2534 * @dev: Reference to driver structure
2535 */
2536 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2537 {
2538 struct pch_udc_ep *ep;
2539 int i;
2540
2541 pch_udc_clear_dma(dev, DMA_DIR_TX);
2542 pch_udc_clear_dma(dev, DMA_DIR_RX);
2543 /* Mask all endpoint interrupts */
2544 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2545 /* clear all endpoint interrupts */
2546 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2547
2548 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2549 ep = &dev->ep[i];
2550 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2551 pch_udc_clear_ep_control(ep);
2552 pch_udc_ep_set_ddptr(ep, 0);
2553 pch_udc_write_csr(ep->dev, 0x00, i);
2554 }
2555 dev->stall = 0;
2556 dev->prot_stall = 0;
2557 dev->waiting_zlp_ack = 0;
2558 dev->set_cfg_not_acked = 0;
2559
2560 /* disable ep to empty req queue. Skip the control EP's */
2561 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2562 ep = &dev->ep[i];
2563 pch_udc_ep_set_nak(ep);
2564 pch_udc_ep_fifo_flush(ep, ep->in);
2565 /* Complete request queue */
2566 empty_req_queue(ep);
2567 }
2568 if (dev->driver) {
2569 spin_unlock(&dev->lock);
2570 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2571 spin_lock(&dev->lock);
2572 }
2573 }
2574
2575 /**
2576 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2577 * done interrupt
2578 * @dev: Reference to driver structure
2579 */
2580 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2581 {
2582 u32 dev_stat, dev_speed;
2583 u32 speed = USB_SPEED_FULL;
2584
2585 dev_stat = pch_udc_read_device_status(dev);
2586 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2587 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2588 switch (dev_speed) {
2589 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2590 speed = USB_SPEED_HIGH;
2591 break;
2592 case UDC_DEVSTS_ENUM_SPEED_FULL:
2593 speed = USB_SPEED_FULL;
2594 break;
2595 case UDC_DEVSTS_ENUM_SPEED_LOW:
2596 speed = USB_SPEED_LOW;
2597 break;
2598 default:
2599 BUG();
2600 }
2601 dev->gadget.speed = speed;
2602 pch_udc_activate_control_ep(dev);
2603 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2604 pch_udc_set_dma(dev, DMA_DIR_TX);
2605 pch_udc_set_dma(dev, DMA_DIR_RX);
2606 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2607
2608 /* enable device interrupts */
2609 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2610 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2611 UDC_DEVINT_SI | UDC_DEVINT_SC);
2612 }
2613
2614 /**
2615 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2616 * interrupt
2617 * @dev: Reference to driver structure
2618 */
2619 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2620 {
2621 u32 reg, dev_stat = 0;
2622 int i;
2623
2624 dev_stat = pch_udc_read_device_status(dev);
2625 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2626 UDC_DEVSTS_INTF_SHIFT;
2627 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2628 UDC_DEVSTS_ALT_SHIFT;
2629 dev->set_cfg_not_acked = 1;
2630 /* Construct the usb request for gadget driver and inform it */
2631 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2632 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2633 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2634 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2635 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2636 /* programm the Endpoint Cfg registers */
2637 /* Only one end point cfg register */
2638 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2639 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2640 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2641 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2642 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2643 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2644 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2645 /* clear stall bits */
2646 pch_udc_ep_clear_stall(&(dev->ep[i]));
2647 dev->ep[i].halted = 0;
2648 }
2649 dev->stall = 0;
2650 spin_unlock(&dev->lock);
2651 dev->driver->setup(&dev->gadget, &dev->setup_data);
2652 spin_lock(&dev->lock);
2653 }
2654
2655 /**
2656 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2657 * interrupt
2658 * @dev: Reference to driver structure
2659 */
2660 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2661 {
2662 int i;
2663 u32 reg, dev_stat = 0;
2664
2665 dev_stat = pch_udc_read_device_status(dev);
2666 dev->set_cfg_not_acked = 1;
2667 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2668 UDC_DEVSTS_CFG_SHIFT;
2669 /* make usb request for gadget driver */
2670 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2671 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2672 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2673 /* program the NE registers */
2674 /* Only one end point cfg register */
2675 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2676 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2677 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2678 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2679 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2680 /* clear stall bits */
2681 pch_udc_ep_clear_stall(&(dev->ep[i]));
2682 dev->ep[i].halted = 0;
2683 }
2684 dev->stall = 0;
2685
2686 /* call gadget zero with setup data received */
2687 spin_unlock(&dev->lock);
2688 dev->driver->setup(&dev->gadget, &dev->setup_data);
2689 spin_lock(&dev->lock);
2690 }
2691
2692 /**
2693 * pch_udc_dev_isr() - This function services device interrupts
2694 * by invoking appropriate routines.
2695 * @dev: Reference to the device structure
2696 * @dev_intr: The Device interrupt status.
2697 */
2698 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2699 {
2700 int vbus;
2701
2702 /* USB Reset Interrupt */
2703 if (dev_intr & UDC_DEVINT_UR) {
2704 pch_udc_svc_ur_interrupt(dev);
2705 dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2706 }
2707 /* Enumeration Done Interrupt */
2708 if (dev_intr & UDC_DEVINT_ENUM) {
2709 pch_udc_svc_enum_interrupt(dev);
2710 dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2711 }
2712 /* Set Interface Interrupt */
2713 if (dev_intr & UDC_DEVINT_SI)
2714 pch_udc_svc_intf_interrupt(dev);
2715 /* Set Config Interrupt */
2716 if (dev_intr & UDC_DEVINT_SC)
2717 pch_udc_svc_cfg_interrupt(dev);
2718 /* USB Suspend interrupt */
2719 if (dev_intr & UDC_DEVINT_US) {
2720 if (dev->driver
2721 && dev->driver->suspend) {
2722 spin_unlock(&dev->lock);
2723 dev->driver->suspend(&dev->gadget);
2724 spin_lock(&dev->lock);
2725 }
2726
2727 vbus = pch_vbus_gpio_get_value(dev);
2728 if ((dev->vbus_session == 0)
2729 && (vbus != 1)) {
2730 if (dev->driver && dev->driver->disconnect) {
2731 spin_unlock(&dev->lock);
2732 dev->driver->disconnect(&dev->gadget);
2733 spin_lock(&dev->lock);
2734 }
2735 pch_udc_reconnect(dev);
2736 } else if ((dev->vbus_session == 0)
2737 && (vbus == 1)
2738 && !dev->vbus_gpio.intr)
2739 schedule_work(&dev->vbus_gpio.irq_work_fall);
2740
2741 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2742 }
2743 /* Clear the SOF interrupt, if enabled */
2744 if (dev_intr & UDC_DEVINT_SOF)
2745 dev_dbg(&dev->pdev->dev, "SOF\n");
2746 /* ES interrupt, IDLE > 3ms on the USB */
2747 if (dev_intr & UDC_DEVINT_ES)
2748 dev_dbg(&dev->pdev->dev, "ES\n");
2749 /* RWKP interrupt */
2750 if (dev_intr & UDC_DEVINT_RWKP)
2751 dev_dbg(&dev->pdev->dev, "RWKP\n");
2752 }
2753
2754 /**
2755 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2756 * @irq: Interrupt request number
2757 * @dev: Reference to the device structure
2758 */
2759 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2760 {
2761 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2762 u32 dev_intr, ep_intr;
2763 int i;
2764
2765 dev_intr = pch_udc_read_device_interrupts(dev);
2766 ep_intr = pch_udc_read_ep_interrupts(dev);
2767
2768 /* For a hot plug, this find that the controller is hung up. */
2769 if (dev_intr == ep_intr)
2770 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2771 dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2772 /* The controller is reset */
2773 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2774 return IRQ_HANDLED;
2775 }
2776 if (dev_intr)
2777 /* Clear device interrupts */
2778 pch_udc_write_device_interrupts(dev, dev_intr);
2779 if (ep_intr)
2780 /* Clear ep interrupts */
2781 pch_udc_write_ep_interrupts(dev, ep_intr);
2782 if (!dev_intr && !ep_intr)
2783 return IRQ_NONE;
2784 spin_lock(&dev->lock);
2785 if (dev_intr)
2786 pch_udc_dev_isr(dev, dev_intr);
2787 if (ep_intr) {
2788 pch_udc_read_all_epstatus(dev, ep_intr);
2789 /* Process Control In interrupts, if present */
2790 if (ep_intr & UDC_EPINT_IN_EP0) {
2791 pch_udc_svc_control_in(dev);
2792 pch_udc_postsvc_epinters(dev, 0);
2793 }
2794 /* Process Control Out interrupts, if present */
2795 if (ep_intr & UDC_EPINT_OUT_EP0)
2796 pch_udc_svc_control_out(dev);
2797 /* Process data in end point interrupts */
2798 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2799 if (ep_intr & (1 << i)) {
2800 pch_udc_svc_data_in(dev, i);
2801 pch_udc_postsvc_epinters(dev, i);
2802 }
2803 }
2804 /* Process data out end point interrupts */
2805 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2806 PCH_UDC_USED_EP_NUM); i++)
2807 if (ep_intr & (1 << i))
2808 pch_udc_svc_data_out(dev, i -
2809 UDC_EPINT_OUT_SHIFT);
2810 }
2811 spin_unlock(&dev->lock);
2812 return IRQ_HANDLED;
2813 }
2814
2815 /**
2816 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2817 * @dev: Reference to the device structure
2818 */
2819 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2820 {
2821 /* enable ep0 interrupts */
2822 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2823 UDC_EPINT_OUT_EP0);
2824 /* enable device interrupts */
2825 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2826 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2827 UDC_DEVINT_SI | UDC_DEVINT_SC);
2828 }
2829
2830 /**
2831 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2832 * @dev: Reference to the driver structure
2833 */
2834 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2835 {
2836 const char *const ep_string[] = {
2837 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2838 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2839 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2840 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2841 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2842 "ep15in", "ep15out",
2843 };
2844 int i;
2845
2846 dev->gadget.speed = USB_SPEED_UNKNOWN;
2847 INIT_LIST_HEAD(&dev->gadget.ep_list);
2848
2849 /* Initialize the endpoints structures */
2850 memset(dev->ep, 0, sizeof dev->ep);
2851 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2852 struct pch_udc_ep *ep = &dev->ep[i];
2853 ep->dev = dev;
2854 ep->halted = 1;
2855 ep->num = i / 2;
2856 ep->in = ~i & 1;
2857 ep->ep.name = ep_string[i];
2858 ep->ep.ops = &pch_udc_ep_ops;
2859 if (ep->in) {
2860 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2861 ep->ep.caps.dir_in = true;
2862 } else {
2863 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2864 UDC_EP_REG_SHIFT;
2865 ep->ep.caps.dir_out = true;
2866 }
2867 if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
2868 ep->ep.caps.type_control = true;
2869 } else {
2870 ep->ep.caps.type_iso = true;
2871 ep->ep.caps.type_bulk = true;
2872 ep->ep.caps.type_int = true;
2873 }
2874 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2875 usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
2876 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2877 INIT_LIST_HEAD(&ep->queue);
2878 }
2879 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
2880 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
2881
2882 /* remove ep0 in and out from the list. They have own pointer */
2883 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2884 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2885
2886 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2887 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2888 }
2889
2890 /**
2891 * pch_udc_pcd_init() - This API initializes the driver structure
2892 * @dev: Reference to the driver structure
2893 *
2894 * Return codes:
2895 * 0: Success
2896 */
2897 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2898 {
2899 pch_udc_init(dev);
2900 pch_udc_pcd_reinit(dev);
2901 pch_vbus_gpio_init(dev, vbus_gpio_port);
2902 return 0;
2903 }
2904
2905 /**
2906 * init_dma_pools() - create dma pools during initialization
2907 * @pdev: reference to struct pci_dev
2908 */
2909 static int init_dma_pools(struct pch_udc_dev *dev)
2910 {
2911 struct pch_udc_stp_dma_desc *td_stp;
2912 struct pch_udc_data_dma_desc *td_data;
2913 void *ep0out_buf;
2914
2915 /* DMA setup */
2916 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2917 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2918 if (!dev->data_requests) {
2919 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2920 __func__);
2921 return -ENOMEM;
2922 }
2923
2924 /* dma desc for setup data */
2925 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2926 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2927 if (!dev->stp_requests) {
2928 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2929 __func__);
2930 return -ENOMEM;
2931 }
2932 /* setup */
2933 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2934 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2935 if (!td_stp) {
2936 dev_err(&dev->pdev->dev,
2937 "%s: can't allocate setup dma descriptor\n", __func__);
2938 return -ENOMEM;
2939 }
2940 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2941
2942 /* data: 0 packets !? */
2943 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2944 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2945 if (!td_data) {
2946 dev_err(&dev->pdev->dev,
2947 "%s: can't allocate data dma descriptor\n", __func__);
2948 return -ENOMEM;
2949 }
2950 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2951 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2952 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2953 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2954 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2955
2956 ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
2957 GFP_KERNEL);
2958 if (!ep0out_buf)
2959 return -ENOMEM;
2960 dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
2961 UDC_EP0OUT_BUFF_SIZE * 4,
2962 DMA_FROM_DEVICE);
2963 return 0;
2964 }
2965
2966 static int pch_udc_start(struct usb_gadget *g,
2967 struct usb_gadget_driver *driver)
2968 {
2969 struct pch_udc_dev *dev = to_pch_udc(g);
2970
2971 driver->driver.bus = NULL;
2972 dev->driver = driver;
2973
2974 /* get ready for ep0 traffic */
2975 pch_udc_setup_ep0(dev);
2976
2977 /* clear SD */
2978 if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
2979 pch_udc_clear_disconnect(dev);
2980
2981 dev->connected = 1;
2982 return 0;
2983 }
2984
2985 static int pch_udc_stop(struct usb_gadget *g)
2986 {
2987 struct pch_udc_dev *dev = to_pch_udc(g);
2988
2989 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2990
2991 /* Assures that there are no pending requests with this driver */
2992 dev->driver = NULL;
2993 dev->connected = 0;
2994
2995 /* set SD */
2996 pch_udc_set_disconnect(dev);
2997
2998 return 0;
2999 }
3000
3001 static void pch_udc_shutdown(struct pci_dev *pdev)
3002 {
3003 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3004
3005 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3006 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3007
3008 /* disable the pullup so the host will think we're gone */
3009 pch_udc_set_disconnect(dev);
3010 }
3011
3012 static void pch_udc_remove(struct pci_dev *pdev)
3013 {
3014 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3015
3016 usb_del_gadget_udc(&dev->gadget);
3017
3018 /* gadget driver must not be registered */
3019 if (dev->driver)
3020 dev_err(&pdev->dev,
3021 "%s: gadget driver still bound!!!\n", __func__);
3022 /* dma pool cleanup */
3023 if (dev->data_requests)
3024 pci_pool_destroy(dev->data_requests);
3025
3026 if (dev->stp_requests) {
3027 /* cleanup DMA desc's for ep0in */
3028 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
3029 pci_pool_free(dev->stp_requests,
3030 dev->ep[UDC_EP0OUT_IDX].td_stp,
3031 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
3032 }
3033 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
3034 pci_pool_free(dev->stp_requests,
3035 dev->ep[UDC_EP0OUT_IDX].td_data,
3036 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
3037 }
3038 pci_pool_destroy(dev->stp_requests);
3039 }
3040
3041 if (dev->dma_addr)
3042 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
3043 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
3044
3045 pch_vbus_gpio_free(dev);
3046
3047 pch_udc_exit(dev);
3048 }
3049
3050 #ifdef CONFIG_PM_SLEEP
3051 static int pch_udc_suspend(struct device *d)
3052 {
3053 struct pci_dev *pdev = to_pci_dev(d);
3054 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3055
3056 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3057 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3058
3059 return 0;
3060 }
3061
3062 static int pch_udc_resume(struct device *d)
3063 {
3064 return 0;
3065 }
3066
3067 static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
3068 #define PCH_UDC_PM_OPS (&pch_udc_pm)
3069 #else
3070 #define PCH_UDC_PM_OPS NULL
3071 #endif /* CONFIG_PM_SLEEP */
3072
3073 static int pch_udc_probe(struct pci_dev *pdev,
3074 const struct pci_device_id *id)
3075 {
3076 int bar;
3077 int retval;
3078 struct pch_udc_dev *dev;
3079
3080 /* init */
3081 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
3082 if (!dev)
3083 return -ENOMEM;
3084
3085 /* pci setup */
3086 retval = pcim_enable_device(pdev);
3087 if (retval)
3088 return retval;
3089
3090 pci_set_drvdata(pdev, dev);
3091
3092 /* Determine BAR based on PCI ID */
3093 if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
3094 bar = PCH_UDC_PCI_BAR_QUARK_X1000;
3095 else
3096 bar = PCH_UDC_PCI_BAR;
3097
3098 /* PCI resource allocation */
3099 retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
3100 if (retval)
3101 return retval;
3102
3103 dev->base_addr = pcim_iomap_table(pdev)[bar];
3104
3105 /* initialize the hardware */
3106 if (pch_udc_pcd_init(dev))
3107 return -ENODEV;
3108
3109 pci_enable_msi(pdev);
3110
3111 retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
3112 IRQF_SHARED, KBUILD_MODNAME, dev);
3113 if (retval) {
3114 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3115 pdev->irq);
3116 goto finished;
3117 }
3118
3119 pci_set_master(pdev);
3120 pci_try_set_mwi(pdev);
3121
3122 /* device struct setup */
3123 spin_lock_init(&dev->lock);
3124 dev->pdev = pdev;
3125 dev->gadget.ops = &pch_udc_ops;
3126
3127 retval = init_dma_pools(dev);
3128 if (retval)
3129 goto finished;
3130
3131 dev->gadget.name = KBUILD_MODNAME;
3132 dev->gadget.max_speed = USB_SPEED_HIGH;
3133
3134 /* Put the device in disconnected state till a driver is bound */
3135 pch_udc_set_disconnect(dev);
3136 retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
3137 if (retval)
3138 goto finished;
3139 return 0;
3140
3141 finished:
3142 pch_udc_remove(pdev);
3143 return retval;
3144 }
3145
3146 static const struct pci_device_id pch_udc_pcidev_id[] = {
3147 {
3148 PCI_DEVICE(PCI_VENDOR_ID_INTEL,
3149 PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
3150 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3151 .class_mask = 0xffffffff,
3152 },
3153 {
3154 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3155 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3156 .class_mask = 0xffffffff,
3157 },
3158 {
3159 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3160 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3161 .class_mask = 0xffffffff,
3162 },
3163 {
3164 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3165 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3166 .class_mask = 0xffffffff,
3167 },
3168 { 0 },
3169 };
3170
3171 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3172
3173 static struct pci_driver pch_udc_driver = {
3174 .name = KBUILD_MODNAME,
3175 .id_table = pch_udc_pcidev_id,
3176 .probe = pch_udc_probe,
3177 .remove = pch_udc_remove,
3178 .shutdown = pch_udc_shutdown,
3179 .driver = {
3180 .pm = PCH_UDC_PM_OPS,
3181 },
3182 };
3183
3184 module_pci_driver(pch_udc_driver);
3185
3186 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3187 MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
3188 MODULE_LICENSE("GPL");