]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/gadget/udc/pch_udc.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / gadget / udc / pch_udc.c
1 /*
2 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/interrupt.h>
16 #include <linux/usb/ch9.h>
17 #include <linux/usb/gadget.h>
18 #include <linux/gpio.h>
19 #include <linux/irq.h>
20
21 /* GPIO port for VBUS detecting */
22 static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
23
24 #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
25 #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
26
27 /* Address offset of Registers */
28 #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
29
30 #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
31 #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
32 #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
33 #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
34 #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
35 #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
36 #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
37
38 #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
39 #define UDC_DEVCTL_ADDR 0x404 /* Device control */
40 #define UDC_DEVSTS_ADDR 0x408 /* Device status */
41 #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
42 #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
43 #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
44 #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
45 #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
46 #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
47 #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
48 #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
49
50 /* Endpoint control register */
51 /* Bit position */
52 #define UDC_EPCTL_MRXFLUSH (1 << 12)
53 #define UDC_EPCTL_RRDY (1 << 9)
54 #define UDC_EPCTL_CNAK (1 << 8)
55 #define UDC_EPCTL_SNAK (1 << 7)
56 #define UDC_EPCTL_NAK (1 << 6)
57 #define UDC_EPCTL_P (1 << 3)
58 #define UDC_EPCTL_F (1 << 1)
59 #define UDC_EPCTL_S (1 << 0)
60 #define UDC_EPCTL_ET_SHIFT 4
61 /* Mask patern */
62 #define UDC_EPCTL_ET_MASK 0x00000030
63 /* Value for ET field */
64 #define UDC_EPCTL_ET_CONTROL 0
65 #define UDC_EPCTL_ET_ISO 1
66 #define UDC_EPCTL_ET_BULK 2
67 #define UDC_EPCTL_ET_INTERRUPT 3
68
69 /* Endpoint status register */
70 /* Bit position */
71 #define UDC_EPSTS_XFERDONE (1 << 27)
72 #define UDC_EPSTS_RSS (1 << 26)
73 #define UDC_EPSTS_RCS (1 << 25)
74 #define UDC_EPSTS_TXEMPTY (1 << 24)
75 #define UDC_EPSTS_TDC (1 << 10)
76 #define UDC_EPSTS_HE (1 << 9)
77 #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
78 #define UDC_EPSTS_BNA (1 << 7)
79 #define UDC_EPSTS_IN (1 << 6)
80 #define UDC_EPSTS_OUT_SHIFT 4
81 /* Mask patern */
82 #define UDC_EPSTS_OUT_MASK 0x00000030
83 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
84 /* Value for OUT field */
85 #define UDC_EPSTS_OUT_SETUP 2
86 #define UDC_EPSTS_OUT_DATA 1
87
88 /* Device configuration register */
89 /* Bit position */
90 #define UDC_DEVCFG_CSR_PRG (1 << 17)
91 #define UDC_DEVCFG_SP (1 << 3)
92 /* SPD Valee */
93 #define UDC_DEVCFG_SPD_HS 0x0
94 #define UDC_DEVCFG_SPD_FS 0x1
95 #define UDC_DEVCFG_SPD_LS 0x2
96
97 /* Device control register */
98 /* Bit position */
99 #define UDC_DEVCTL_THLEN_SHIFT 24
100 #define UDC_DEVCTL_BRLEN_SHIFT 16
101 #define UDC_DEVCTL_CSR_DONE (1 << 13)
102 #define UDC_DEVCTL_SD (1 << 10)
103 #define UDC_DEVCTL_MODE (1 << 9)
104 #define UDC_DEVCTL_BREN (1 << 8)
105 #define UDC_DEVCTL_THE (1 << 7)
106 #define UDC_DEVCTL_DU (1 << 4)
107 #define UDC_DEVCTL_TDE (1 << 3)
108 #define UDC_DEVCTL_RDE (1 << 2)
109 #define UDC_DEVCTL_RES (1 << 0)
110
111 /* Device status register */
112 /* Bit position */
113 #define UDC_DEVSTS_TS_SHIFT 18
114 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
115 #define UDC_DEVSTS_ALT_SHIFT 8
116 #define UDC_DEVSTS_INTF_SHIFT 4
117 #define UDC_DEVSTS_CFG_SHIFT 0
118 /* Mask patern */
119 #define UDC_DEVSTS_TS_MASK 0xfffc0000
120 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
121 #define UDC_DEVSTS_ALT_MASK 0x00000f00
122 #define UDC_DEVSTS_INTF_MASK 0x000000f0
123 #define UDC_DEVSTS_CFG_MASK 0x0000000f
124 /* value for maximum speed for SPEED field */
125 #define UDC_DEVSTS_ENUM_SPEED_FULL 1
126 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
127 #define UDC_DEVSTS_ENUM_SPEED_LOW 2
128 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
129
130 /* Device irq register */
131 /* Bit position */
132 #define UDC_DEVINT_RWKP (1 << 7)
133 #define UDC_DEVINT_ENUM (1 << 6)
134 #define UDC_DEVINT_SOF (1 << 5)
135 #define UDC_DEVINT_US (1 << 4)
136 #define UDC_DEVINT_UR (1 << 3)
137 #define UDC_DEVINT_ES (1 << 2)
138 #define UDC_DEVINT_SI (1 << 1)
139 #define UDC_DEVINT_SC (1 << 0)
140 /* Mask patern */
141 #define UDC_DEVINT_MSK 0x7f
142
143 /* Endpoint irq register */
144 /* Bit position */
145 #define UDC_EPINT_IN_SHIFT 0
146 #define UDC_EPINT_OUT_SHIFT 16
147 #define UDC_EPINT_IN_EP0 (1 << 0)
148 #define UDC_EPINT_OUT_EP0 (1 << 16)
149 /* Mask patern */
150 #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
151
152 /* UDC_CSR_BUSY Status register */
153 /* Bit position */
154 #define UDC_CSR_BUSY (1 << 0)
155
156 /* SOFT RESET register */
157 /* Bit position */
158 #define UDC_PSRST (1 << 1)
159 #define UDC_SRST (1 << 0)
160
161 /* USB_DEVICE endpoint register */
162 /* Bit position */
163 #define UDC_CSR_NE_NUM_SHIFT 0
164 #define UDC_CSR_NE_DIR_SHIFT 4
165 #define UDC_CSR_NE_TYPE_SHIFT 5
166 #define UDC_CSR_NE_CFG_SHIFT 7
167 #define UDC_CSR_NE_INTF_SHIFT 11
168 #define UDC_CSR_NE_ALT_SHIFT 15
169 #define UDC_CSR_NE_MAX_PKT_SHIFT 19
170 /* Mask patern */
171 #define UDC_CSR_NE_NUM_MASK 0x0000000f
172 #define UDC_CSR_NE_DIR_MASK 0x00000010
173 #define UDC_CSR_NE_TYPE_MASK 0x00000060
174 #define UDC_CSR_NE_CFG_MASK 0x00000780
175 #define UDC_CSR_NE_INTF_MASK 0x00007800
176 #define UDC_CSR_NE_ALT_MASK 0x00078000
177 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
178
179 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
180 #define PCH_UDC_EPINT(in, num)\
181 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
182
183 /* Index of endpoint */
184 #define UDC_EP0IN_IDX 0
185 #define UDC_EP0OUT_IDX 1
186 #define UDC_EPIN_IDX(ep) (ep * 2)
187 #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
188 #define PCH_UDC_EP0 0
189 #define PCH_UDC_EP1 1
190 #define PCH_UDC_EP2 2
191 #define PCH_UDC_EP3 3
192
193 /* Number of endpoint */
194 #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
195 #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
196 /* Length Value */
197 #define PCH_UDC_BRLEN 0x0F /* Burst length */
198 #define PCH_UDC_THLEN 0x1F /* Threshold length */
199 /* Value of EP Buffer Size */
200 #define UDC_EP0IN_BUFF_SIZE 16
201 #define UDC_EPIN_BUFF_SIZE 256
202 #define UDC_EP0OUT_BUFF_SIZE 16
203 #define UDC_EPOUT_BUFF_SIZE 256
204 /* Value of EP maximum packet size */
205 #define UDC_EP0IN_MAX_PKT_SIZE 64
206 #define UDC_EP0OUT_MAX_PKT_SIZE 64
207 #define UDC_BULK_MAX_PKT_SIZE 512
208
209 /* DMA */
210 #define DMA_DIR_RX 1 /* DMA for data receive */
211 #define DMA_DIR_TX 2 /* DMA for data transmit */
212 #define DMA_ADDR_INVALID (~(dma_addr_t)0)
213 #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
214
215 /**
216 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
217 * for data
218 * @status: Status quadlet
219 * @reserved: Reserved
220 * @dataptr: Buffer descriptor
221 * @next: Next descriptor
222 */
223 struct pch_udc_data_dma_desc {
224 u32 status;
225 u32 reserved;
226 u32 dataptr;
227 u32 next;
228 };
229
230 /**
231 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
232 * for control data
233 * @status: Status
234 * @reserved: Reserved
235 * @data12: First setup word
236 * @data34: Second setup word
237 */
238 struct pch_udc_stp_dma_desc {
239 u32 status;
240 u32 reserved;
241 struct usb_ctrlrequest request;
242 } __attribute((packed));
243
244 /* DMA status definitions */
245 /* Buffer status */
246 #define PCH_UDC_BUFF_STS 0xC0000000
247 #define PCH_UDC_BS_HST_RDY 0x00000000
248 #define PCH_UDC_BS_DMA_BSY 0x40000000
249 #define PCH_UDC_BS_DMA_DONE 0x80000000
250 #define PCH_UDC_BS_HST_BSY 0xC0000000
251 /* Rx/Tx Status */
252 #define PCH_UDC_RXTX_STS 0x30000000
253 #define PCH_UDC_RTS_SUCC 0x00000000
254 #define PCH_UDC_RTS_DESERR 0x10000000
255 #define PCH_UDC_RTS_BUFERR 0x30000000
256 /* Last Descriptor Indication */
257 #define PCH_UDC_DMA_LAST 0x08000000
258 /* Number of Rx/Tx Bytes Mask */
259 #define PCH_UDC_RXTX_BYTES 0x0000ffff
260
261 /**
262 * struct pch_udc_cfg_data - Structure to hold current configuration
263 * and interface information
264 * @cur_cfg: current configuration in use
265 * @cur_intf: current interface in use
266 * @cur_alt: current alt interface in use
267 */
268 struct pch_udc_cfg_data {
269 u16 cur_cfg;
270 u16 cur_intf;
271 u16 cur_alt;
272 };
273
274 /**
275 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
276 * @ep: embedded ep request
277 * @td_stp_phys: for setup request
278 * @td_data_phys: for data request
279 * @td_stp: for setup request
280 * @td_data: for data request
281 * @dev: reference to device struct
282 * @offset_addr: offset address of ep register
283 * @desc: for this ep
284 * @queue: queue for requests
285 * @num: endpoint number
286 * @in: endpoint is IN
287 * @halted: endpoint halted?
288 * @epsts: Endpoint status
289 */
290 struct pch_udc_ep {
291 struct usb_ep ep;
292 dma_addr_t td_stp_phys;
293 dma_addr_t td_data_phys;
294 struct pch_udc_stp_dma_desc *td_stp;
295 struct pch_udc_data_dma_desc *td_data;
296 struct pch_udc_dev *dev;
297 unsigned long offset_addr;
298 struct list_head queue;
299 unsigned num:5,
300 in:1,
301 halted:1;
302 unsigned long epsts;
303 };
304
305 /**
306 * struct pch_vbus_gpio_data - Structure holding GPIO informaton
307 * for detecting VBUS
308 * @port: gpio port number
309 * @intr: gpio interrupt number
310 * @irq_work_fall Structure for WorkQueue
311 * @irq_work_rise Structure for WorkQueue
312 */
313 struct pch_vbus_gpio_data {
314 int port;
315 int intr;
316 struct work_struct irq_work_fall;
317 struct work_struct irq_work_rise;
318 };
319
320 /**
321 * struct pch_udc_dev - Structure holding complete information
322 * of the PCH USB device
323 * @gadget: gadget driver data
324 * @driver: reference to gadget driver bound
325 * @pdev: reference to the PCI device
326 * @ep: array of endpoints
327 * @lock: protects all state
328 * @stall: stall requested
329 * @prot_stall: protcol stall requested
330 * @registered: driver registered with system
331 * @suspended: driver in suspended state
332 * @connected: gadget driver associated
333 * @vbus_session: required vbus_session state
334 * @set_cfg_not_acked: pending acknowledgement 4 setup
335 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
336 * @data_requests: DMA pool for data requests
337 * @stp_requests: DMA pool for setup requests
338 * @dma_addr: DMA pool for received
339 * @setup_data: Received setup data
340 * @base_addr: for mapped device memory
341 * @cfg_data: current cfg, intf, and alt in use
342 * @vbus_gpio: GPIO informaton for detecting VBUS
343 */
344 struct pch_udc_dev {
345 struct usb_gadget gadget;
346 struct usb_gadget_driver *driver;
347 struct pci_dev *pdev;
348 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
349 spinlock_t lock; /* protects all state */
350 unsigned
351 stall:1,
352 prot_stall:1,
353 suspended:1,
354 connected:1,
355 vbus_session:1,
356 set_cfg_not_acked:1,
357 waiting_zlp_ack:1;
358 struct pci_pool *data_requests;
359 struct pci_pool *stp_requests;
360 dma_addr_t dma_addr;
361 struct usb_ctrlrequest setup_data;
362 void __iomem *base_addr;
363 struct pch_udc_cfg_data cfg_data;
364 struct pch_vbus_gpio_data vbus_gpio;
365 };
366 #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
367
368 #define PCH_UDC_PCI_BAR_QUARK_X1000 0
369 #define PCH_UDC_PCI_BAR 1
370
371 #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939
372 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
373
374 #define PCI_VENDOR_ID_ROHM 0x10DB
375 #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
376 #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
377
378 static const char ep0_string[] = "ep0in";
379 static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
380 static bool speed_fs;
381 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
382 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
383
384 /**
385 * struct pch_udc_request - Structure holding a PCH USB device request packet
386 * @req: embedded ep request
387 * @td_data_phys: phys. address
388 * @td_data: first dma desc. of chain
389 * @td_data_last: last dma desc. of chain
390 * @queue: associated queue
391 * @dma_going: DMA in progress for request
392 * @dma_mapped: DMA memory mapped for request
393 * @dma_done: DMA completed for request
394 * @chain_len: chain length
395 * @buf: Buffer memory for align adjustment
396 * @dma: DMA memory for align adjustment
397 */
398 struct pch_udc_request {
399 struct usb_request req;
400 dma_addr_t td_data_phys;
401 struct pch_udc_data_dma_desc *td_data;
402 struct pch_udc_data_dma_desc *td_data_last;
403 struct list_head queue;
404 unsigned dma_going:1,
405 dma_mapped:1,
406 dma_done:1;
407 unsigned chain_len;
408 void *buf;
409 dma_addr_t dma;
410 };
411
412 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
413 {
414 return ioread32(dev->base_addr + reg);
415 }
416
417 static inline void pch_udc_writel(struct pch_udc_dev *dev,
418 unsigned long val, unsigned long reg)
419 {
420 iowrite32(val, dev->base_addr + reg);
421 }
422
423 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
424 unsigned long reg,
425 unsigned long bitmask)
426 {
427 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
428 }
429
430 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
431 unsigned long reg,
432 unsigned long bitmask)
433 {
434 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
435 }
436
437 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
438 {
439 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
440 }
441
442 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
443 unsigned long val, unsigned long reg)
444 {
445 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
446 }
447
448 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
449 unsigned long reg,
450 unsigned long bitmask)
451 {
452 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
453 }
454
455 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
456 unsigned long reg,
457 unsigned long bitmask)
458 {
459 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
460 }
461
462 /**
463 * pch_udc_csr_busy() - Wait till idle.
464 * @dev: Reference to pch_udc_dev structure
465 */
466 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
467 {
468 unsigned int count = 200;
469
470 /* Wait till idle */
471 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
472 && --count)
473 cpu_relax();
474 if (!count)
475 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
476 }
477
478 /**
479 * pch_udc_write_csr() - Write the command and status registers.
480 * @dev: Reference to pch_udc_dev structure
481 * @val: value to be written to CSR register
482 * @addr: address of CSR register
483 */
484 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
485 unsigned int ep)
486 {
487 unsigned long reg = PCH_UDC_CSR(ep);
488
489 pch_udc_csr_busy(dev); /* Wait till idle */
490 pch_udc_writel(dev, val, reg);
491 pch_udc_csr_busy(dev); /* Wait till idle */
492 }
493
494 /**
495 * pch_udc_read_csr() - Read the command and status registers.
496 * @dev: Reference to pch_udc_dev structure
497 * @addr: address of CSR register
498 *
499 * Return codes: content of CSR register
500 */
501 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
502 {
503 unsigned long reg = PCH_UDC_CSR(ep);
504
505 pch_udc_csr_busy(dev); /* Wait till idle */
506 pch_udc_readl(dev, reg); /* Dummy read */
507 pch_udc_csr_busy(dev); /* Wait till idle */
508 return pch_udc_readl(dev, reg);
509 }
510
511 /**
512 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
513 * @dev: Reference to pch_udc_dev structure
514 */
515 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
516 {
517 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
518 mdelay(1);
519 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
520 }
521
522 /**
523 * pch_udc_get_frame() - Get the current frame from device status register
524 * @dev: Reference to pch_udc_dev structure
525 * Retern current frame
526 */
527 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
528 {
529 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
530 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
531 }
532
533 /**
534 * pch_udc_clear_selfpowered() - Clear the self power control
535 * @dev: Reference to pch_udc_regs structure
536 */
537 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
538 {
539 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
540 }
541
542 /**
543 * pch_udc_set_selfpowered() - Set the self power control
544 * @dev: Reference to pch_udc_regs structure
545 */
546 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
547 {
548 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
549 }
550
551 /**
552 * pch_udc_set_disconnect() - Set the disconnect status.
553 * @dev: Reference to pch_udc_regs structure
554 */
555 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
556 {
557 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
558 }
559
560 /**
561 * pch_udc_clear_disconnect() - Clear the disconnect status.
562 * @dev: Reference to pch_udc_regs structure
563 */
564 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
565 {
566 /* Clear the disconnect */
567 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
568 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
569 mdelay(1);
570 /* Resume USB signalling */
571 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
572 }
573
574 /**
575 * pch_udc_reconnect() - This API initializes usb device controller,
576 * and clear the disconnect status.
577 * @dev: Reference to pch_udc_regs structure
578 */
579 static void pch_udc_init(struct pch_udc_dev *dev);
580 static void pch_udc_reconnect(struct pch_udc_dev *dev)
581 {
582 pch_udc_init(dev);
583
584 /* enable device interrupts */
585 /* pch_udc_enable_interrupts() */
586 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
587 UDC_DEVINT_UR | UDC_DEVINT_ENUM);
588
589 /* Clear the disconnect */
590 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
591 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
592 mdelay(1);
593 /* Resume USB signalling */
594 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
595 }
596
597 /**
598 * pch_udc_vbus_session() - set or clearr the disconnect status.
599 * @dev: Reference to pch_udc_regs structure
600 * @is_active: Parameter specifying the action
601 * 0: indicating VBUS power is ending
602 * !0: indicating VBUS power is starting
603 */
604 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
605 int is_active)
606 {
607 if (is_active) {
608 pch_udc_reconnect(dev);
609 dev->vbus_session = 1;
610 } else {
611 if (dev->driver && dev->driver->disconnect) {
612 spin_lock(&dev->lock);
613 dev->driver->disconnect(&dev->gadget);
614 spin_unlock(&dev->lock);
615 }
616 pch_udc_set_disconnect(dev);
617 dev->vbus_session = 0;
618 }
619 }
620
621 /**
622 * pch_udc_ep_set_stall() - Set the stall of endpoint
623 * @ep: Reference to structure of type pch_udc_ep_regs
624 */
625 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
626 {
627 if (ep->in) {
628 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
629 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
630 } else {
631 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
632 }
633 }
634
635 /**
636 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
637 * @ep: Reference to structure of type pch_udc_ep_regs
638 */
639 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
640 {
641 /* Clear the stall */
642 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
643 /* Clear NAK by writing CNAK */
644 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
645 }
646
647 /**
648 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
649 * @ep: Reference to structure of type pch_udc_ep_regs
650 * @type: Type of endpoint
651 */
652 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
653 u8 type)
654 {
655 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
656 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
657 }
658
659 /**
660 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
661 * @ep: Reference to structure of type pch_udc_ep_regs
662 * @buf_size: The buffer word size
663 */
664 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
665 u32 buf_size, u32 ep_in)
666 {
667 u32 data;
668 if (ep_in) {
669 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
670 data = (data & 0xffff0000) | (buf_size & 0xffff);
671 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
672 } else {
673 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
674 data = (buf_size << 16) | (data & 0xffff);
675 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
676 }
677 }
678
679 /**
680 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
681 * @ep: Reference to structure of type pch_udc_ep_regs
682 * @pkt_size: The packet byte size
683 */
684 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
685 {
686 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
687 data = (data & 0xffff0000) | (pkt_size & 0xffff);
688 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
689 }
690
691 /**
692 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
693 * @ep: Reference to structure of type pch_udc_ep_regs
694 * @addr: Address of the register
695 */
696 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
697 {
698 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
699 }
700
701 /**
702 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
703 * @ep: Reference to structure of type pch_udc_ep_regs
704 * @addr: Address of the register
705 */
706 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
707 {
708 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
709 }
710
711 /**
712 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
713 * @ep: Reference to structure of type pch_udc_ep_regs
714 */
715 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
716 {
717 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
718 }
719
720 /**
721 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
722 * @ep: Reference to structure of type pch_udc_ep_regs
723 */
724 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
725 {
726 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
727 }
728
729 /**
730 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
731 * @ep: Reference to structure of type pch_udc_ep_regs
732 */
733 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
734 {
735 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
736 }
737
738 /**
739 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
740 * register depending on the direction specified
741 * @dev: Reference to structure of type pch_udc_regs
742 * @dir: whether Tx or Rx
743 * DMA_DIR_RX: Receive
744 * DMA_DIR_TX: Transmit
745 */
746 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
747 {
748 if (dir == DMA_DIR_RX)
749 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
750 else if (dir == DMA_DIR_TX)
751 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
752 }
753
754 /**
755 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
756 * register depending on the direction specified
757 * @dev: Reference to structure of type pch_udc_regs
758 * @dir: Whether Tx or Rx
759 * DMA_DIR_RX: Receive
760 * DMA_DIR_TX: Transmit
761 */
762 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
763 {
764 if (dir == DMA_DIR_RX)
765 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
766 else if (dir == DMA_DIR_TX)
767 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
768 }
769
770 /**
771 * pch_udc_set_csr_done() - Set the device control register
772 * CSR done field (bit 13)
773 * @dev: reference to structure of type pch_udc_regs
774 */
775 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
776 {
777 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
778 }
779
780 /**
781 * pch_udc_disable_interrupts() - Disables the specified interrupts
782 * @dev: Reference to structure of type pch_udc_regs
783 * @mask: Mask to disable interrupts
784 */
785 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
786 u32 mask)
787 {
788 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
789 }
790
791 /**
792 * pch_udc_enable_interrupts() - Enable the specified interrupts
793 * @dev: Reference to structure of type pch_udc_regs
794 * @mask: Mask to enable interrupts
795 */
796 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
797 u32 mask)
798 {
799 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
800 }
801
802 /**
803 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
804 * @dev: Reference to structure of type pch_udc_regs
805 * @mask: Mask to disable interrupts
806 */
807 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
808 u32 mask)
809 {
810 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
811 }
812
813 /**
814 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
815 * @dev: Reference to structure of type pch_udc_regs
816 * @mask: Mask to enable interrupts
817 */
818 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
819 u32 mask)
820 {
821 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
822 }
823
824 /**
825 * pch_udc_read_device_interrupts() - Read the device interrupts
826 * @dev: Reference to structure of type pch_udc_regs
827 * Retern The device interrupts
828 */
829 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
830 {
831 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
832 }
833
834 /**
835 * pch_udc_write_device_interrupts() - Write device interrupts
836 * @dev: Reference to structure of type pch_udc_regs
837 * @val: The value to be written to interrupt register
838 */
839 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
840 u32 val)
841 {
842 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
843 }
844
845 /**
846 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
847 * @dev: Reference to structure of type pch_udc_regs
848 * Retern The endpoint interrupt
849 */
850 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
851 {
852 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
853 }
854
855 /**
856 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
857 * @dev: Reference to structure of type pch_udc_regs
858 * @val: The value to be written to interrupt register
859 */
860 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
861 u32 val)
862 {
863 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
864 }
865
866 /**
867 * pch_udc_read_device_status() - Read the device status
868 * @dev: Reference to structure of type pch_udc_regs
869 * Retern The device status
870 */
871 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
872 {
873 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
874 }
875
876 /**
877 * pch_udc_read_ep_control() - Read the endpoint control
878 * @ep: Reference to structure of type pch_udc_ep_regs
879 * Retern The endpoint control register value
880 */
881 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
882 {
883 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
884 }
885
886 /**
887 * pch_udc_clear_ep_control() - Clear the endpoint control register
888 * @ep: Reference to structure of type pch_udc_ep_regs
889 * Retern The endpoint control register value
890 */
891 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
892 {
893 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
894 }
895
896 /**
897 * pch_udc_read_ep_status() - Read the endpoint status
898 * @ep: Reference to structure of type pch_udc_ep_regs
899 * Retern The endpoint status
900 */
901 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
902 {
903 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
904 }
905
906 /**
907 * pch_udc_clear_ep_status() - Clear the endpoint status
908 * @ep: Reference to structure of type pch_udc_ep_regs
909 * @stat: Endpoint status
910 */
911 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
912 u32 stat)
913 {
914 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
915 }
916
917 /**
918 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
919 * of the endpoint control register
920 * @ep: Reference to structure of type pch_udc_ep_regs
921 */
922 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
923 {
924 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
925 }
926
927 /**
928 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
929 * of the endpoint control register
930 * @ep: reference to structure of type pch_udc_ep_regs
931 */
932 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
933 {
934 unsigned int loopcnt = 0;
935 struct pch_udc_dev *dev = ep->dev;
936
937 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
938 return;
939 if (!ep->in) {
940 loopcnt = 10000;
941 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
942 --loopcnt)
943 udelay(5);
944 if (!loopcnt)
945 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
946 __func__);
947 }
948 loopcnt = 10000;
949 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
950 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
951 udelay(5);
952 }
953 if (!loopcnt)
954 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
955 __func__, ep->num, (ep->in ? "in" : "out"));
956 }
957
958 /**
959 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
960 * @ep: reference to structure of type pch_udc_ep_regs
961 * @dir: direction of endpoint
962 * 0: endpoint is OUT
963 * !0: endpoint is IN
964 */
965 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
966 {
967 if (dir) { /* IN ep */
968 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
969 return;
970 }
971 }
972
973 /**
974 * pch_udc_ep_enable() - This api enables endpoint
975 * @regs: Reference to structure pch_udc_ep_regs
976 * @desc: endpoint descriptor
977 */
978 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
979 struct pch_udc_cfg_data *cfg,
980 const struct usb_endpoint_descriptor *desc)
981 {
982 u32 val = 0;
983 u32 buff_size = 0;
984
985 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
986 if (ep->in)
987 buff_size = UDC_EPIN_BUFF_SIZE;
988 else
989 buff_size = UDC_EPOUT_BUFF_SIZE;
990 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
991 pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
992 pch_udc_ep_set_nak(ep);
993 pch_udc_ep_fifo_flush(ep, ep->in);
994 /* Configure the endpoint */
995 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
996 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
997 UDC_CSR_NE_TYPE_SHIFT) |
998 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
999 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
1000 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
1001 usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
1002
1003 if (ep->in)
1004 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
1005 else
1006 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
1007 }
1008
1009 /**
1010 * pch_udc_ep_disable() - This api disables endpoint
1011 * @regs: Reference to structure pch_udc_ep_regs
1012 */
1013 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
1014 {
1015 if (ep->in) {
1016 /* flush the fifo */
1017 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1018 /* set NAK */
1019 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1020 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1021 } else {
1022 /* set NAK */
1023 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1024 }
1025 /* reset desc pointer */
1026 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1027 }
1028
1029 /**
1030 * pch_udc_wait_ep_stall() - Wait EP stall.
1031 * @dev: Reference to pch_udc_dev structure
1032 */
1033 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1034 {
1035 unsigned int count = 10000;
1036
1037 /* Wait till idle */
1038 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1039 udelay(5);
1040 if (!count)
1041 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1042 }
1043
1044 /**
1045 * pch_udc_init() - This API initializes usb device controller
1046 * @dev: Rreference to pch_udc_regs structure
1047 */
1048 static void pch_udc_init(struct pch_udc_dev *dev)
1049 {
1050 if (NULL == dev) {
1051 pr_err("%s: Invalid address\n", __func__);
1052 return;
1053 }
1054 /* Soft Reset and Reset PHY */
1055 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1056 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1057 mdelay(1);
1058 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1059 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1060 mdelay(1);
1061 /* mask and clear all device interrupts */
1062 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1063 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1064
1065 /* mask and clear all ep interrupts */
1066 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1067 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1068
1069 /* enable dynamic CSR programmingi, self powered and device speed */
1070 if (speed_fs)
1071 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1072 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1073 else /* defaul high speed */
1074 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1075 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1076 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1077 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1078 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1079 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1080 UDC_DEVCTL_THE);
1081 }
1082
1083 /**
1084 * pch_udc_exit() - This API exit usb device controller
1085 * @dev: Reference to pch_udc_regs structure
1086 */
1087 static void pch_udc_exit(struct pch_udc_dev *dev)
1088 {
1089 /* mask all device interrupts */
1090 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1091 /* mask all ep interrupts */
1092 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1093 /* put device in disconnected state */
1094 pch_udc_set_disconnect(dev);
1095 }
1096
1097 /**
1098 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1099 * @gadget: Reference to the gadget driver
1100 *
1101 * Return codes:
1102 * 0: Success
1103 * -EINVAL: If the gadget passed is NULL
1104 */
1105 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1106 {
1107 struct pch_udc_dev *dev;
1108
1109 if (!gadget)
1110 return -EINVAL;
1111 dev = container_of(gadget, struct pch_udc_dev, gadget);
1112 return pch_udc_get_frame(dev);
1113 }
1114
1115 /**
1116 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1117 * @gadget: Reference to the gadget driver
1118 *
1119 * Return codes:
1120 * 0: Success
1121 * -EINVAL: If the gadget passed is NULL
1122 */
1123 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1124 {
1125 struct pch_udc_dev *dev;
1126 unsigned long flags;
1127
1128 if (!gadget)
1129 return -EINVAL;
1130 dev = container_of(gadget, struct pch_udc_dev, gadget);
1131 spin_lock_irqsave(&dev->lock, flags);
1132 pch_udc_rmt_wakeup(dev);
1133 spin_unlock_irqrestore(&dev->lock, flags);
1134 return 0;
1135 }
1136
1137 /**
1138 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1139 * is self powered or not
1140 * @gadget: Reference to the gadget driver
1141 * @value: Specifies self powered or not
1142 *
1143 * Return codes:
1144 * 0: Success
1145 * -EINVAL: If the gadget passed is NULL
1146 */
1147 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1148 {
1149 struct pch_udc_dev *dev;
1150
1151 if (!gadget)
1152 return -EINVAL;
1153 gadget->is_selfpowered = (value != 0);
1154 dev = container_of(gadget, struct pch_udc_dev, gadget);
1155 if (value)
1156 pch_udc_set_selfpowered(dev);
1157 else
1158 pch_udc_clear_selfpowered(dev);
1159 return 0;
1160 }
1161
1162 /**
1163 * pch_udc_pcd_pullup() - This API is invoked to make the device
1164 * visible/invisible to the host
1165 * @gadget: Reference to the gadget driver
1166 * @is_on: Specifies whether the pull up is made active or inactive
1167 *
1168 * Return codes:
1169 * 0: Success
1170 * -EINVAL: If the gadget passed is NULL
1171 */
1172 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1173 {
1174 struct pch_udc_dev *dev;
1175
1176 if (!gadget)
1177 return -EINVAL;
1178 dev = container_of(gadget, struct pch_udc_dev, gadget);
1179 if (is_on) {
1180 pch_udc_reconnect(dev);
1181 } else {
1182 if (dev->driver && dev->driver->disconnect) {
1183 spin_lock(&dev->lock);
1184 dev->driver->disconnect(&dev->gadget);
1185 spin_unlock(&dev->lock);
1186 }
1187 pch_udc_set_disconnect(dev);
1188 }
1189
1190 return 0;
1191 }
1192
1193 /**
1194 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1195 * transceiver (or GPIO) that
1196 * detects a VBUS power session starting/ending
1197 * @gadget: Reference to the gadget driver
1198 * @is_active: specifies whether the session is starting or ending
1199 *
1200 * Return codes:
1201 * 0: Success
1202 * -EINVAL: If the gadget passed is NULL
1203 */
1204 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1205 {
1206 struct pch_udc_dev *dev;
1207
1208 if (!gadget)
1209 return -EINVAL;
1210 dev = container_of(gadget, struct pch_udc_dev, gadget);
1211 pch_udc_vbus_session(dev, is_active);
1212 return 0;
1213 }
1214
1215 /**
1216 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1217 * SET_CONFIGURATION calls to
1218 * specify how much power the device can consume
1219 * @gadget: Reference to the gadget driver
1220 * @mA: specifies the current limit in 2mA unit
1221 *
1222 * Return codes:
1223 * -EINVAL: If the gadget passed is NULL
1224 * -EOPNOTSUPP:
1225 */
1226 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1227 {
1228 return -EOPNOTSUPP;
1229 }
1230
1231 static int pch_udc_start(struct usb_gadget *g,
1232 struct usb_gadget_driver *driver);
1233 static int pch_udc_stop(struct usb_gadget *g);
1234
1235 static const struct usb_gadget_ops pch_udc_ops = {
1236 .get_frame = pch_udc_pcd_get_frame,
1237 .wakeup = pch_udc_pcd_wakeup,
1238 .set_selfpowered = pch_udc_pcd_selfpowered,
1239 .pullup = pch_udc_pcd_pullup,
1240 .vbus_session = pch_udc_pcd_vbus_session,
1241 .vbus_draw = pch_udc_pcd_vbus_draw,
1242 .udc_start = pch_udc_start,
1243 .udc_stop = pch_udc_stop,
1244 };
1245
1246 /**
1247 * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
1248 * @dev: Reference to the driver structure
1249 *
1250 * Return value:
1251 * 1: VBUS is high
1252 * 0: VBUS is low
1253 * -1: It is not enable to detect VBUS using GPIO
1254 */
1255 static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
1256 {
1257 int vbus = 0;
1258
1259 if (dev->vbus_gpio.port)
1260 vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
1261 else
1262 vbus = -1;
1263
1264 return vbus;
1265 }
1266
1267 /**
1268 * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
1269 * If VBUS is Low, disconnect is processed
1270 * @irq_work: Structure for WorkQueue
1271 *
1272 */
1273 static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
1274 {
1275 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1276 struct pch_vbus_gpio_data, irq_work_fall);
1277 struct pch_udc_dev *dev =
1278 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1279 int vbus_saved = -1;
1280 int vbus;
1281 int count;
1282
1283 if (!dev->vbus_gpio.port)
1284 return;
1285
1286 for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
1287 count++) {
1288 vbus = pch_vbus_gpio_get_value(dev);
1289
1290 if ((vbus_saved == vbus) && (vbus == 0)) {
1291 dev_dbg(&dev->pdev->dev, "VBUS fell");
1292 if (dev->driver
1293 && dev->driver->disconnect) {
1294 dev->driver->disconnect(
1295 &dev->gadget);
1296 }
1297 if (dev->vbus_gpio.intr)
1298 pch_udc_init(dev);
1299 else
1300 pch_udc_reconnect(dev);
1301 return;
1302 }
1303 vbus_saved = vbus;
1304 mdelay(PCH_VBUS_INTERVAL);
1305 }
1306 }
1307
1308 /**
1309 * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
1310 * If VBUS is High, connect is processed
1311 * @irq_work: Structure for WorkQueue
1312 *
1313 */
1314 static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
1315 {
1316 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1317 struct pch_vbus_gpio_data, irq_work_rise);
1318 struct pch_udc_dev *dev =
1319 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1320 int vbus;
1321
1322 if (!dev->vbus_gpio.port)
1323 return;
1324
1325 mdelay(PCH_VBUS_INTERVAL);
1326 vbus = pch_vbus_gpio_get_value(dev);
1327
1328 if (vbus == 1) {
1329 dev_dbg(&dev->pdev->dev, "VBUS rose");
1330 pch_udc_reconnect(dev);
1331 return;
1332 }
1333 }
1334
1335 /**
1336 * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
1337 * @irq: Interrupt request number
1338 * @dev: Reference to the device structure
1339 *
1340 * Return codes:
1341 * 0: Success
1342 * -EINVAL: GPIO port is invalid or can't be initialized.
1343 */
1344 static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
1345 {
1346 struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
1347
1348 if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
1349 return IRQ_NONE;
1350
1351 if (pch_vbus_gpio_get_value(dev))
1352 schedule_work(&dev->vbus_gpio.irq_work_rise);
1353 else
1354 schedule_work(&dev->vbus_gpio.irq_work_fall);
1355
1356 return IRQ_HANDLED;
1357 }
1358
1359 /**
1360 * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
1361 * @dev: Reference to the driver structure
1362 * @vbus_gpio Number of GPIO port to detect gpio
1363 *
1364 * Return codes:
1365 * 0: Success
1366 * -EINVAL: GPIO port is invalid or can't be initialized.
1367 */
1368 static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
1369 {
1370 int err;
1371 int irq_num = 0;
1372
1373 dev->vbus_gpio.port = 0;
1374 dev->vbus_gpio.intr = 0;
1375
1376 if (vbus_gpio_port <= -1)
1377 return -EINVAL;
1378
1379 err = gpio_is_valid(vbus_gpio_port);
1380 if (!err) {
1381 pr_err("%s: gpio port %d is invalid\n",
1382 __func__, vbus_gpio_port);
1383 return -EINVAL;
1384 }
1385
1386 err = gpio_request(vbus_gpio_port, "pch_vbus");
1387 if (err) {
1388 pr_err("%s: can't request gpio port %d, err: %d\n",
1389 __func__, vbus_gpio_port, err);
1390 return -EINVAL;
1391 }
1392
1393 dev->vbus_gpio.port = vbus_gpio_port;
1394 gpio_direction_input(vbus_gpio_port);
1395 INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
1396
1397 irq_num = gpio_to_irq(vbus_gpio_port);
1398 if (irq_num > 0) {
1399 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
1400 err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
1401 "vbus_detect", dev);
1402 if (!err) {
1403 dev->vbus_gpio.intr = irq_num;
1404 INIT_WORK(&dev->vbus_gpio.irq_work_rise,
1405 pch_vbus_gpio_work_rise);
1406 } else {
1407 pr_err("%s: can't request irq %d, err: %d\n",
1408 __func__, irq_num, err);
1409 }
1410 }
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * pch_vbus_gpio_free() - This API frees resources of GPIO port
1417 * @dev: Reference to the driver structure
1418 */
1419 static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
1420 {
1421 if (dev->vbus_gpio.intr)
1422 free_irq(dev->vbus_gpio.intr, dev);
1423
1424 if (dev->vbus_gpio.port)
1425 gpio_free(dev->vbus_gpio.port);
1426 }
1427
1428 /**
1429 * complete_req() - This API is invoked from the driver when processing
1430 * of a request is complete
1431 * @ep: Reference to the endpoint structure
1432 * @req: Reference to the request structure
1433 * @status: Indicates the success/failure of completion
1434 */
1435 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1436 int status)
1437 __releases(&dev->lock)
1438 __acquires(&dev->lock)
1439 {
1440 struct pch_udc_dev *dev;
1441 unsigned halted = ep->halted;
1442
1443 list_del_init(&req->queue);
1444
1445 /* set new status if pending */
1446 if (req->req.status == -EINPROGRESS)
1447 req->req.status = status;
1448 else
1449 status = req->req.status;
1450
1451 dev = ep->dev;
1452 if (req->dma_mapped) {
1453 if (req->dma == DMA_ADDR_INVALID) {
1454 if (ep->in)
1455 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1456 req->req.length,
1457 DMA_TO_DEVICE);
1458 else
1459 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1460 req->req.length,
1461 DMA_FROM_DEVICE);
1462 req->req.dma = DMA_ADDR_INVALID;
1463 } else {
1464 if (ep->in)
1465 dma_unmap_single(&dev->pdev->dev, req->dma,
1466 req->req.length,
1467 DMA_TO_DEVICE);
1468 else {
1469 dma_unmap_single(&dev->pdev->dev, req->dma,
1470 req->req.length,
1471 DMA_FROM_DEVICE);
1472 memcpy(req->req.buf, req->buf, req->req.length);
1473 }
1474 kfree(req->buf);
1475 req->dma = DMA_ADDR_INVALID;
1476 }
1477 req->dma_mapped = 0;
1478 }
1479 ep->halted = 1;
1480 spin_unlock(&dev->lock);
1481 if (!ep->in)
1482 pch_udc_ep_clear_rrdy(ep);
1483 usb_gadget_giveback_request(&ep->ep, &req->req);
1484 spin_lock(&dev->lock);
1485 ep->halted = halted;
1486 }
1487
1488 /**
1489 * empty_req_queue() - This API empties the request queue of an endpoint
1490 * @ep: Reference to the endpoint structure
1491 */
1492 static void empty_req_queue(struct pch_udc_ep *ep)
1493 {
1494 struct pch_udc_request *req;
1495
1496 ep->halted = 1;
1497 while (!list_empty(&ep->queue)) {
1498 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1499 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1500 }
1501 }
1502
1503 /**
1504 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1505 * for the request
1506 * @dev Reference to the driver structure
1507 * @req Reference to the request to be freed
1508 *
1509 * Return codes:
1510 * 0: Success
1511 */
1512 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1513 struct pch_udc_request *req)
1514 {
1515 struct pch_udc_data_dma_desc *td = req->td_data;
1516 unsigned i = req->chain_len;
1517
1518 dma_addr_t addr2;
1519 dma_addr_t addr = (dma_addr_t)td->next;
1520 td->next = 0x00;
1521 for (; i > 1; --i) {
1522 /* do not free first desc., will be done by free for request */
1523 td = phys_to_virt(addr);
1524 addr2 = (dma_addr_t)td->next;
1525 pci_pool_free(dev->data_requests, td, addr);
1526 td->next = 0x00;
1527 addr = addr2;
1528 }
1529 req->chain_len = 1;
1530 }
1531
1532 /**
1533 * pch_udc_create_dma_chain() - This function creates or reinitializes
1534 * a DMA chain
1535 * @ep: Reference to the endpoint structure
1536 * @req: Reference to the request
1537 * @buf_len: The buffer length
1538 * @gfp_flags: Flags to be used while mapping the data buffer
1539 *
1540 * Return codes:
1541 * 0: success,
1542 * -ENOMEM: pci_pool_alloc invocation fails
1543 */
1544 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1545 struct pch_udc_request *req,
1546 unsigned long buf_len,
1547 gfp_t gfp_flags)
1548 {
1549 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1550 unsigned long bytes = req->req.length, i = 0;
1551 dma_addr_t dma_addr;
1552 unsigned len = 1;
1553
1554 if (req->chain_len > 1)
1555 pch_udc_free_dma_chain(ep->dev, req);
1556
1557 if (req->dma == DMA_ADDR_INVALID)
1558 td->dataptr = req->req.dma;
1559 else
1560 td->dataptr = req->dma;
1561
1562 td->status = PCH_UDC_BS_HST_BSY;
1563 for (; ; bytes -= buf_len, ++len) {
1564 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1565 if (bytes <= buf_len)
1566 break;
1567 last = td;
1568 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1569 &dma_addr);
1570 if (!td)
1571 goto nomem;
1572 i += buf_len;
1573 td->dataptr = req->td_data->dataptr + i;
1574 last->next = dma_addr;
1575 }
1576
1577 req->td_data_last = td;
1578 td->status |= PCH_UDC_DMA_LAST;
1579 td->next = req->td_data_phys;
1580 req->chain_len = len;
1581 return 0;
1582
1583 nomem:
1584 if (len > 1) {
1585 req->chain_len = len;
1586 pch_udc_free_dma_chain(ep->dev, req);
1587 }
1588 req->chain_len = 1;
1589 return -ENOMEM;
1590 }
1591
1592 /**
1593 * prepare_dma() - This function creates and initializes the DMA chain
1594 * for the request
1595 * @ep: Reference to the endpoint structure
1596 * @req: Reference to the request
1597 * @gfp: Flag to be used while mapping the data buffer
1598 *
1599 * Return codes:
1600 * 0: Success
1601 * Other 0: linux error number on failure
1602 */
1603 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1604 gfp_t gfp)
1605 {
1606 int retval;
1607
1608 /* Allocate and create a DMA chain */
1609 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1610 if (retval) {
1611 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1612 return retval;
1613 }
1614 if (ep->in)
1615 req->td_data->status = (req->td_data->status &
1616 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1617 return 0;
1618 }
1619
1620 /**
1621 * process_zlp() - This function process zero length packets
1622 * from the gadget driver
1623 * @ep: Reference to the endpoint structure
1624 * @req: Reference to the request
1625 */
1626 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1627 {
1628 struct pch_udc_dev *dev = ep->dev;
1629
1630 /* IN zlp's are handled by hardware */
1631 complete_req(ep, req, 0);
1632
1633 /* if set_config or set_intf is waiting for ack by zlp
1634 * then set CSR_DONE
1635 */
1636 if (dev->set_cfg_not_acked) {
1637 pch_udc_set_csr_done(dev);
1638 dev->set_cfg_not_acked = 0;
1639 }
1640 /* setup command is ACK'ed now by zlp */
1641 if (!dev->stall && dev->waiting_zlp_ack) {
1642 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1643 dev->waiting_zlp_ack = 0;
1644 }
1645 }
1646
1647 /**
1648 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1649 * @ep: Reference to the endpoint structure
1650 * @req: Reference to the request structure
1651 */
1652 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1653 struct pch_udc_request *req)
1654 {
1655 struct pch_udc_data_dma_desc *td_data;
1656
1657 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1658 td_data = req->td_data;
1659 /* Set the status bits for all descriptors */
1660 while (1) {
1661 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1662 PCH_UDC_BS_HST_RDY;
1663 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1664 break;
1665 td_data = phys_to_virt(td_data->next);
1666 }
1667 /* Write the descriptor pointer */
1668 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1669 req->dma_going = 1;
1670 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1671 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1672 pch_udc_ep_clear_nak(ep);
1673 pch_udc_ep_set_rrdy(ep);
1674 }
1675
1676 /**
1677 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1678 * from gadget driver
1679 * @usbep: Reference to the USB endpoint structure
1680 * @desc: Reference to the USB endpoint descriptor structure
1681 *
1682 * Return codes:
1683 * 0: Success
1684 * -EINVAL:
1685 * -ESHUTDOWN:
1686 */
1687 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1688 const struct usb_endpoint_descriptor *desc)
1689 {
1690 struct pch_udc_ep *ep;
1691 struct pch_udc_dev *dev;
1692 unsigned long iflags;
1693
1694 if (!usbep || (usbep->name == ep0_string) || !desc ||
1695 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1696 return -EINVAL;
1697
1698 ep = container_of(usbep, struct pch_udc_ep, ep);
1699 dev = ep->dev;
1700 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1701 return -ESHUTDOWN;
1702 spin_lock_irqsave(&dev->lock, iflags);
1703 ep->ep.desc = desc;
1704 ep->halted = 0;
1705 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1706 ep->ep.maxpacket = usb_endpoint_maxp(desc);
1707 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1708 spin_unlock_irqrestore(&dev->lock, iflags);
1709 return 0;
1710 }
1711
1712 /**
1713 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1714 * from gadget driver
1715 * @usbep Reference to the USB endpoint structure
1716 *
1717 * Return codes:
1718 * 0: Success
1719 * -EINVAL:
1720 */
1721 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1722 {
1723 struct pch_udc_ep *ep;
1724 unsigned long iflags;
1725
1726 if (!usbep)
1727 return -EINVAL;
1728
1729 ep = container_of(usbep, struct pch_udc_ep, ep);
1730 if ((usbep->name == ep0_string) || !ep->ep.desc)
1731 return -EINVAL;
1732
1733 spin_lock_irqsave(&ep->dev->lock, iflags);
1734 empty_req_queue(ep);
1735 ep->halted = 1;
1736 pch_udc_ep_disable(ep);
1737 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1738 ep->ep.desc = NULL;
1739 INIT_LIST_HEAD(&ep->queue);
1740 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1741 return 0;
1742 }
1743
1744 /**
1745 * pch_udc_alloc_request() - This function allocates request structure.
1746 * It is called by gadget driver
1747 * @usbep: Reference to the USB endpoint structure
1748 * @gfp: Flag to be used while allocating memory
1749 *
1750 * Return codes:
1751 * NULL: Failure
1752 * Allocated address: Success
1753 */
1754 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1755 gfp_t gfp)
1756 {
1757 struct pch_udc_request *req;
1758 struct pch_udc_ep *ep;
1759 struct pch_udc_data_dma_desc *dma_desc;
1760
1761 if (!usbep)
1762 return NULL;
1763 ep = container_of(usbep, struct pch_udc_ep, ep);
1764 req = kzalloc(sizeof *req, gfp);
1765 if (!req)
1766 return NULL;
1767 req->req.dma = DMA_ADDR_INVALID;
1768 req->dma = DMA_ADDR_INVALID;
1769 INIT_LIST_HEAD(&req->queue);
1770 if (!ep->dev->dma_addr)
1771 return &req->req;
1772 /* ep0 in requests are allocated from data pool here */
1773 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1774 &req->td_data_phys);
1775 if (NULL == dma_desc) {
1776 kfree(req);
1777 return NULL;
1778 }
1779 /* prevent from using desc. - set HOST BUSY */
1780 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1781 dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
1782 req->td_data = dma_desc;
1783 req->td_data_last = dma_desc;
1784 req->chain_len = 1;
1785 return &req->req;
1786 }
1787
1788 /**
1789 * pch_udc_free_request() - This function frees request structure.
1790 * It is called by gadget driver
1791 * @usbep: Reference to the USB endpoint structure
1792 * @usbreq: Reference to the USB request
1793 */
1794 static void pch_udc_free_request(struct usb_ep *usbep,
1795 struct usb_request *usbreq)
1796 {
1797 struct pch_udc_ep *ep;
1798 struct pch_udc_request *req;
1799 struct pch_udc_dev *dev;
1800
1801 if (!usbep || !usbreq)
1802 return;
1803 ep = container_of(usbep, struct pch_udc_ep, ep);
1804 req = container_of(usbreq, struct pch_udc_request, req);
1805 dev = ep->dev;
1806 if (!list_empty(&req->queue))
1807 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1808 __func__, usbep->name, req);
1809 if (req->td_data != NULL) {
1810 if (req->chain_len > 1)
1811 pch_udc_free_dma_chain(ep->dev, req);
1812 pci_pool_free(ep->dev->data_requests, req->td_data,
1813 req->td_data_phys);
1814 }
1815 kfree(req);
1816 }
1817
1818 /**
1819 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1820 * by gadget driver
1821 * @usbep: Reference to the USB endpoint structure
1822 * @usbreq: Reference to the USB request
1823 * @gfp: Flag to be used while mapping the data buffer
1824 *
1825 * Return codes:
1826 * 0: Success
1827 * linux error number: Failure
1828 */
1829 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1830 gfp_t gfp)
1831 {
1832 int retval = 0;
1833 struct pch_udc_ep *ep;
1834 struct pch_udc_dev *dev;
1835 struct pch_udc_request *req;
1836 unsigned long iflags;
1837
1838 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1839 return -EINVAL;
1840 ep = container_of(usbep, struct pch_udc_ep, ep);
1841 dev = ep->dev;
1842 if (!ep->ep.desc && ep->num)
1843 return -EINVAL;
1844 req = container_of(usbreq, struct pch_udc_request, req);
1845 if (!list_empty(&req->queue))
1846 return -EINVAL;
1847 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1848 return -ESHUTDOWN;
1849 spin_lock_irqsave(&dev->lock, iflags);
1850 /* map the buffer for dma */
1851 if (usbreq->length &&
1852 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1853 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1854 if (ep->in)
1855 usbreq->dma = dma_map_single(&dev->pdev->dev,
1856 usbreq->buf,
1857 usbreq->length,
1858 DMA_TO_DEVICE);
1859 else
1860 usbreq->dma = dma_map_single(&dev->pdev->dev,
1861 usbreq->buf,
1862 usbreq->length,
1863 DMA_FROM_DEVICE);
1864 } else {
1865 req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1866 if (!req->buf) {
1867 retval = -ENOMEM;
1868 goto probe_end;
1869 }
1870 if (ep->in) {
1871 memcpy(req->buf, usbreq->buf, usbreq->length);
1872 req->dma = dma_map_single(&dev->pdev->dev,
1873 req->buf,
1874 usbreq->length,
1875 DMA_TO_DEVICE);
1876 } else
1877 req->dma = dma_map_single(&dev->pdev->dev,
1878 req->buf,
1879 usbreq->length,
1880 DMA_FROM_DEVICE);
1881 }
1882 req->dma_mapped = 1;
1883 }
1884 if (usbreq->length > 0) {
1885 retval = prepare_dma(ep, req, GFP_ATOMIC);
1886 if (retval)
1887 goto probe_end;
1888 }
1889 usbreq->actual = 0;
1890 usbreq->status = -EINPROGRESS;
1891 req->dma_done = 0;
1892 if (list_empty(&ep->queue) && !ep->halted) {
1893 /* no pending transfer, so start this req */
1894 if (!usbreq->length) {
1895 process_zlp(ep, req);
1896 retval = 0;
1897 goto probe_end;
1898 }
1899 if (!ep->in) {
1900 pch_udc_start_rxrequest(ep, req);
1901 } else {
1902 /*
1903 * For IN trfr the descriptors will be programmed and
1904 * P bit will be set when
1905 * we get an IN token
1906 */
1907 pch_udc_wait_ep_stall(ep);
1908 pch_udc_ep_clear_nak(ep);
1909 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1910 }
1911 }
1912 /* Now add this request to the ep's pending requests */
1913 if (req != NULL)
1914 list_add_tail(&req->queue, &ep->queue);
1915
1916 probe_end:
1917 spin_unlock_irqrestore(&dev->lock, iflags);
1918 return retval;
1919 }
1920
1921 /**
1922 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1923 * It is called by gadget driver
1924 * @usbep: Reference to the USB endpoint structure
1925 * @usbreq: Reference to the USB request
1926 *
1927 * Return codes:
1928 * 0: Success
1929 * linux error number: Failure
1930 */
1931 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1932 struct usb_request *usbreq)
1933 {
1934 struct pch_udc_ep *ep;
1935 struct pch_udc_request *req;
1936 unsigned long flags;
1937 int ret = -EINVAL;
1938
1939 ep = container_of(usbep, struct pch_udc_ep, ep);
1940 if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
1941 return ret;
1942 req = container_of(usbreq, struct pch_udc_request, req);
1943 spin_lock_irqsave(&ep->dev->lock, flags);
1944 /* make sure it's still queued on this endpoint */
1945 list_for_each_entry(req, &ep->queue, queue) {
1946 if (&req->req == usbreq) {
1947 pch_udc_ep_set_nak(ep);
1948 if (!list_empty(&req->queue))
1949 complete_req(ep, req, -ECONNRESET);
1950 ret = 0;
1951 break;
1952 }
1953 }
1954 spin_unlock_irqrestore(&ep->dev->lock, flags);
1955 return ret;
1956 }
1957
1958 /**
1959 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1960 * feature
1961 * @usbep: Reference to the USB endpoint structure
1962 * @halt: Specifies whether to set or clear the feature
1963 *
1964 * Return codes:
1965 * 0: Success
1966 * linux error number: Failure
1967 */
1968 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1969 {
1970 struct pch_udc_ep *ep;
1971 unsigned long iflags;
1972 int ret;
1973
1974 if (!usbep)
1975 return -EINVAL;
1976 ep = container_of(usbep, struct pch_udc_ep, ep);
1977 if (!ep->ep.desc && !ep->num)
1978 return -EINVAL;
1979 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1980 return -ESHUTDOWN;
1981 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1982 if (list_empty(&ep->queue)) {
1983 if (halt) {
1984 if (ep->num == PCH_UDC_EP0)
1985 ep->dev->stall = 1;
1986 pch_udc_ep_set_stall(ep);
1987 pch_udc_enable_ep_interrupts(
1988 ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1989 } else {
1990 pch_udc_ep_clear_stall(ep);
1991 }
1992 ret = 0;
1993 } else {
1994 ret = -EAGAIN;
1995 }
1996 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1997 return ret;
1998 }
1999
2000 /**
2001 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
2002 * halt feature
2003 * @usbep: Reference to the USB endpoint structure
2004 * @halt: Specifies whether to set or clear the feature
2005 *
2006 * Return codes:
2007 * 0: Success
2008 * linux error number: Failure
2009 */
2010 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
2011 {
2012 struct pch_udc_ep *ep;
2013 unsigned long iflags;
2014 int ret;
2015
2016 if (!usbep)
2017 return -EINVAL;
2018 ep = container_of(usbep, struct pch_udc_ep, ep);
2019 if (!ep->ep.desc && !ep->num)
2020 return -EINVAL;
2021 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
2022 return -ESHUTDOWN;
2023 spin_lock_irqsave(&udc_stall_spinlock, iflags);
2024 if (!list_empty(&ep->queue)) {
2025 ret = -EAGAIN;
2026 } else {
2027 if (ep->num == PCH_UDC_EP0)
2028 ep->dev->stall = 1;
2029 pch_udc_ep_set_stall(ep);
2030 pch_udc_enable_ep_interrupts(ep->dev,
2031 PCH_UDC_EPINT(ep->in, ep->num));
2032 ep->dev->prot_stall = 1;
2033 ret = 0;
2034 }
2035 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2036 return ret;
2037 }
2038
2039 /**
2040 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
2041 * @usbep: Reference to the USB endpoint structure
2042 */
2043 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
2044 {
2045 struct pch_udc_ep *ep;
2046
2047 if (!usbep)
2048 return;
2049
2050 ep = container_of(usbep, struct pch_udc_ep, ep);
2051 if (ep->ep.desc || !ep->num)
2052 pch_udc_ep_fifo_flush(ep, ep->in);
2053 }
2054
2055 static const struct usb_ep_ops pch_udc_ep_ops = {
2056 .enable = pch_udc_pcd_ep_enable,
2057 .disable = pch_udc_pcd_ep_disable,
2058 .alloc_request = pch_udc_alloc_request,
2059 .free_request = pch_udc_free_request,
2060 .queue = pch_udc_pcd_queue,
2061 .dequeue = pch_udc_pcd_dequeue,
2062 .set_halt = pch_udc_pcd_set_halt,
2063 .set_wedge = pch_udc_pcd_set_wedge,
2064 .fifo_status = NULL,
2065 .fifo_flush = pch_udc_pcd_fifo_flush,
2066 };
2067
2068 /**
2069 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
2070 * @td_stp: Reference to the SETP buffer structure
2071 */
2072 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
2073 {
2074 static u32 pky_marker;
2075
2076 if (!td_stp)
2077 return;
2078 td_stp->reserved = ++pky_marker;
2079 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
2080 td_stp->status = PCH_UDC_BS_HST_RDY;
2081 }
2082
2083 /**
2084 * pch_udc_start_next_txrequest() - This function starts
2085 * the next transmission requirement
2086 * @ep: Reference to the endpoint structure
2087 */
2088 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
2089 {
2090 struct pch_udc_request *req;
2091 struct pch_udc_data_dma_desc *td_data;
2092
2093 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
2094 return;
2095
2096 if (list_empty(&ep->queue))
2097 return;
2098
2099 /* next request */
2100 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2101 if (req->dma_going)
2102 return;
2103 if (!req->td_data)
2104 return;
2105 pch_udc_wait_ep_stall(ep);
2106 req->dma_going = 1;
2107 pch_udc_ep_set_ddptr(ep, 0);
2108 td_data = req->td_data;
2109 while (1) {
2110 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
2111 PCH_UDC_BS_HST_RDY;
2112 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
2113 break;
2114 td_data = phys_to_virt(td_data->next);
2115 }
2116 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
2117 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
2118 pch_udc_ep_set_pd(ep);
2119 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2120 pch_udc_ep_clear_nak(ep);
2121 }
2122
2123 /**
2124 * pch_udc_complete_transfer() - This function completes a transfer
2125 * @ep: Reference to the endpoint structure
2126 */
2127 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
2128 {
2129 struct pch_udc_request *req;
2130 struct pch_udc_dev *dev = ep->dev;
2131
2132 if (list_empty(&ep->queue))
2133 return;
2134 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2135 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2136 PCH_UDC_BS_DMA_DONE)
2137 return;
2138 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
2139 PCH_UDC_RTS_SUCC) {
2140 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
2141 "epstatus=0x%08x\n",
2142 (req->td_data_last->status & PCH_UDC_RXTX_STS),
2143 (int)(ep->epsts));
2144 return;
2145 }
2146
2147 req->req.actual = req->req.length;
2148 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2149 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2150 complete_req(ep, req, 0);
2151 req->dma_going = 0;
2152 if (!list_empty(&ep->queue)) {
2153 pch_udc_wait_ep_stall(ep);
2154 pch_udc_ep_clear_nak(ep);
2155 pch_udc_enable_ep_interrupts(ep->dev,
2156 PCH_UDC_EPINT(ep->in, ep->num));
2157 } else {
2158 pch_udc_disable_ep_interrupts(ep->dev,
2159 PCH_UDC_EPINT(ep->in, ep->num));
2160 }
2161 }
2162
2163 /**
2164 * pch_udc_complete_receiver() - This function completes a receiver
2165 * @ep: Reference to the endpoint structure
2166 */
2167 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
2168 {
2169 struct pch_udc_request *req;
2170 struct pch_udc_dev *dev = ep->dev;
2171 unsigned int count;
2172 struct pch_udc_data_dma_desc *td;
2173 dma_addr_t addr;
2174
2175 if (list_empty(&ep->queue))
2176 return;
2177 /* next request */
2178 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2179 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
2180 pch_udc_ep_set_ddptr(ep, 0);
2181 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
2182 PCH_UDC_BS_DMA_DONE)
2183 td = req->td_data_last;
2184 else
2185 td = req->td_data;
2186
2187 while (1) {
2188 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
2189 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
2190 "epstatus=0x%08x\n",
2191 (req->td_data->status & PCH_UDC_RXTX_STS),
2192 (int)(ep->epsts));
2193 return;
2194 }
2195 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2196 if (td->status & PCH_UDC_DMA_LAST) {
2197 count = td->status & PCH_UDC_RXTX_BYTES;
2198 break;
2199 }
2200 if (td == req->td_data_last) {
2201 dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2202 return;
2203 }
2204 addr = (dma_addr_t)td->next;
2205 td = phys_to_virt(addr);
2206 }
2207 /* on 64k packets the RXBYTES field is zero */
2208 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2209 count = UDC_DMA_MAXPACKET;
2210 req->td_data->status |= PCH_UDC_DMA_LAST;
2211 td->status |= PCH_UDC_BS_HST_BSY;
2212
2213 req->dma_going = 0;
2214 req->req.actual = count;
2215 complete_req(ep, req, 0);
2216 /* If there is a new/failed requests try that now */
2217 if (!list_empty(&ep->queue)) {
2218 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2219 pch_udc_start_rxrequest(ep, req);
2220 }
2221 }
2222
2223 /**
2224 * pch_udc_svc_data_in() - This function process endpoint interrupts
2225 * for IN endpoints
2226 * @dev: Reference to the device structure
2227 * @ep_num: Endpoint that generated the interrupt
2228 */
2229 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2230 {
2231 u32 epsts;
2232 struct pch_udc_ep *ep;
2233
2234 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2235 epsts = ep->epsts;
2236 ep->epsts = 0;
2237
2238 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2239 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2240 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2241 return;
2242 if ((epsts & UDC_EPSTS_BNA))
2243 return;
2244 if (epsts & UDC_EPSTS_HE)
2245 return;
2246 if (epsts & UDC_EPSTS_RSS) {
2247 pch_udc_ep_set_stall(ep);
2248 pch_udc_enable_ep_interrupts(ep->dev,
2249 PCH_UDC_EPINT(ep->in, ep->num));
2250 }
2251 if (epsts & UDC_EPSTS_RCS) {
2252 if (!dev->prot_stall) {
2253 pch_udc_ep_clear_stall(ep);
2254 } else {
2255 pch_udc_ep_set_stall(ep);
2256 pch_udc_enable_ep_interrupts(ep->dev,
2257 PCH_UDC_EPINT(ep->in, ep->num));
2258 }
2259 }
2260 if (epsts & UDC_EPSTS_TDC)
2261 pch_udc_complete_transfer(ep);
2262 /* On IN interrupt, provide data if we have any */
2263 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2264 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2265 pch_udc_start_next_txrequest(ep);
2266 }
2267
2268 /**
2269 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2270 * @dev: Reference to the device structure
2271 * @ep_num: Endpoint that generated the interrupt
2272 */
2273 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2274 {
2275 u32 epsts;
2276 struct pch_udc_ep *ep;
2277 struct pch_udc_request *req = NULL;
2278
2279 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2280 epsts = ep->epsts;
2281 ep->epsts = 0;
2282
2283 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2284 /* next request */
2285 req = list_entry(ep->queue.next, struct pch_udc_request,
2286 queue);
2287 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2288 PCH_UDC_BS_DMA_DONE) {
2289 if (!req->dma_going)
2290 pch_udc_start_rxrequest(ep, req);
2291 return;
2292 }
2293 }
2294 if (epsts & UDC_EPSTS_HE)
2295 return;
2296 if (epsts & UDC_EPSTS_RSS) {
2297 pch_udc_ep_set_stall(ep);
2298 pch_udc_enable_ep_interrupts(ep->dev,
2299 PCH_UDC_EPINT(ep->in, ep->num));
2300 }
2301 if (epsts & UDC_EPSTS_RCS) {
2302 if (!dev->prot_stall) {
2303 pch_udc_ep_clear_stall(ep);
2304 } else {
2305 pch_udc_ep_set_stall(ep);
2306 pch_udc_enable_ep_interrupts(ep->dev,
2307 PCH_UDC_EPINT(ep->in, ep->num));
2308 }
2309 }
2310 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2311 UDC_EPSTS_OUT_DATA) {
2312 if (ep->dev->prot_stall == 1) {
2313 pch_udc_ep_set_stall(ep);
2314 pch_udc_enable_ep_interrupts(ep->dev,
2315 PCH_UDC_EPINT(ep->in, ep->num));
2316 } else {
2317 pch_udc_complete_receiver(ep);
2318 }
2319 }
2320 if (list_empty(&ep->queue))
2321 pch_udc_set_dma(dev, DMA_DIR_RX);
2322 }
2323
2324 /**
2325 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2326 * @dev: Reference to the device structure
2327 */
2328 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2329 {
2330 u32 epsts;
2331 struct pch_udc_ep *ep;
2332 struct pch_udc_ep *ep_out;
2333
2334 ep = &dev->ep[UDC_EP0IN_IDX];
2335 ep_out = &dev->ep[UDC_EP0OUT_IDX];
2336 epsts = ep->epsts;
2337 ep->epsts = 0;
2338
2339 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2340 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2341 UDC_EPSTS_XFERDONE)))
2342 return;
2343 if ((epsts & UDC_EPSTS_BNA))
2344 return;
2345 if (epsts & UDC_EPSTS_HE)
2346 return;
2347 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2348 pch_udc_complete_transfer(ep);
2349 pch_udc_clear_dma(dev, DMA_DIR_RX);
2350 ep_out->td_data->status = (ep_out->td_data->status &
2351 ~PCH_UDC_BUFF_STS) |
2352 PCH_UDC_BS_HST_RDY;
2353 pch_udc_ep_clear_nak(ep_out);
2354 pch_udc_set_dma(dev, DMA_DIR_RX);
2355 pch_udc_ep_set_rrdy(ep_out);
2356 }
2357 /* On IN interrupt, provide data if we have any */
2358 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2359 !(epsts & UDC_EPSTS_TXEMPTY))
2360 pch_udc_start_next_txrequest(ep);
2361 }
2362
2363 /**
2364 * pch_udc_svc_control_out() - Routine that handle Control
2365 * OUT endpoint interrupts
2366 * @dev: Reference to the device structure
2367 */
2368 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2369 __releases(&dev->lock)
2370 __acquires(&dev->lock)
2371 {
2372 u32 stat;
2373 int setup_supported;
2374 struct pch_udc_ep *ep;
2375
2376 ep = &dev->ep[UDC_EP0OUT_IDX];
2377 stat = ep->epsts;
2378 ep->epsts = 0;
2379
2380 /* If setup data */
2381 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2382 UDC_EPSTS_OUT_SETUP) {
2383 dev->stall = 0;
2384 dev->ep[UDC_EP0IN_IDX].halted = 0;
2385 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2386 dev->setup_data = ep->td_stp->request;
2387 pch_udc_init_setup_buff(ep->td_stp);
2388 pch_udc_clear_dma(dev, DMA_DIR_RX);
2389 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2390 dev->ep[UDC_EP0IN_IDX].in);
2391 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2392 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2393 else /* OUT */
2394 dev->gadget.ep0 = &ep->ep;
2395 spin_lock(&dev->lock);
2396 /* If Mass storage Reset */
2397 if ((dev->setup_data.bRequestType == 0x21) &&
2398 (dev->setup_data.bRequest == 0xFF))
2399 dev->prot_stall = 0;
2400 /* call gadget with setup data received */
2401 setup_supported = dev->driver->setup(&dev->gadget,
2402 &dev->setup_data);
2403 spin_unlock(&dev->lock);
2404
2405 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2406 ep->td_data->status = (ep->td_data->status &
2407 ~PCH_UDC_BUFF_STS) |
2408 PCH_UDC_BS_HST_RDY;
2409 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2410 }
2411 /* ep0 in returns data on IN phase */
2412 if (setup_supported >= 0 && setup_supported <
2413 UDC_EP0IN_MAX_PKT_SIZE) {
2414 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2415 /* Gadget would have queued a request when
2416 * we called the setup */
2417 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2418 pch_udc_set_dma(dev, DMA_DIR_RX);
2419 pch_udc_ep_clear_nak(ep);
2420 }
2421 } else if (setup_supported < 0) {
2422 /* if unsupported request, then stall */
2423 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2424 pch_udc_enable_ep_interrupts(ep->dev,
2425 PCH_UDC_EPINT(ep->in, ep->num));
2426 dev->stall = 0;
2427 pch_udc_set_dma(dev, DMA_DIR_RX);
2428 } else {
2429 dev->waiting_zlp_ack = 1;
2430 }
2431 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2432 UDC_EPSTS_OUT_DATA) && !dev->stall) {
2433 pch_udc_clear_dma(dev, DMA_DIR_RX);
2434 pch_udc_ep_set_ddptr(ep, 0);
2435 if (!list_empty(&ep->queue)) {
2436 ep->epsts = stat;
2437 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2438 }
2439 pch_udc_set_dma(dev, DMA_DIR_RX);
2440 }
2441 pch_udc_ep_set_rrdy(ep);
2442 }
2443
2444
2445 /**
2446 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2447 * and clears NAK status
2448 * @dev: Reference to the device structure
2449 * @ep_num: End point number
2450 */
2451 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2452 {
2453 struct pch_udc_ep *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2454 if (list_empty(&ep->queue))
2455 return;
2456 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2457 pch_udc_ep_clear_nak(ep);
2458 }
2459
2460 /**
2461 * pch_udc_read_all_epstatus() - This function read all endpoint status
2462 * @dev: Reference to the device structure
2463 * @ep_intr: Status of endpoint interrupt
2464 */
2465 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2466 {
2467 int i;
2468 struct pch_udc_ep *ep;
2469
2470 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2471 /* IN */
2472 if (ep_intr & (0x1 << i)) {
2473 ep = &dev->ep[UDC_EPIN_IDX(i)];
2474 ep->epsts = pch_udc_read_ep_status(ep);
2475 pch_udc_clear_ep_status(ep, ep->epsts);
2476 }
2477 /* OUT */
2478 if (ep_intr & (0x10000 << i)) {
2479 ep = &dev->ep[UDC_EPOUT_IDX(i)];
2480 ep->epsts = pch_udc_read_ep_status(ep);
2481 pch_udc_clear_ep_status(ep, ep->epsts);
2482 }
2483 }
2484 }
2485
2486 /**
2487 * pch_udc_activate_control_ep() - This function enables the control endpoints
2488 * for traffic after a reset
2489 * @dev: Reference to the device structure
2490 */
2491 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2492 {
2493 struct pch_udc_ep *ep;
2494 u32 val;
2495
2496 /* Setup the IN endpoint */
2497 ep = &dev->ep[UDC_EP0IN_IDX];
2498 pch_udc_clear_ep_control(ep);
2499 pch_udc_ep_fifo_flush(ep, ep->in);
2500 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2501 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2502 /* Initialize the IN EP Descriptor */
2503 ep->td_data = NULL;
2504 ep->td_stp = NULL;
2505 ep->td_data_phys = 0;
2506 ep->td_stp_phys = 0;
2507
2508 /* Setup the OUT endpoint */
2509 ep = &dev->ep[UDC_EP0OUT_IDX];
2510 pch_udc_clear_ep_control(ep);
2511 pch_udc_ep_fifo_flush(ep, ep->in);
2512 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2513 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2514 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2515 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2516
2517 /* Initialize the SETUP buffer */
2518 pch_udc_init_setup_buff(ep->td_stp);
2519 /* Write the pointer address of dma descriptor */
2520 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2521 /* Write the pointer address of Setup descriptor */
2522 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2523
2524 /* Initialize the dma descriptor */
2525 ep->td_data->status = PCH_UDC_DMA_LAST;
2526 ep->td_data->dataptr = dev->dma_addr;
2527 ep->td_data->next = ep->td_data_phys;
2528
2529 pch_udc_ep_clear_nak(ep);
2530 }
2531
2532
2533 /**
2534 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2535 * @dev: Reference to driver structure
2536 */
2537 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2538 {
2539 struct pch_udc_ep *ep;
2540 int i;
2541
2542 pch_udc_clear_dma(dev, DMA_DIR_TX);
2543 pch_udc_clear_dma(dev, DMA_DIR_RX);
2544 /* Mask all endpoint interrupts */
2545 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2546 /* clear all endpoint interrupts */
2547 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2548
2549 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2550 ep = &dev->ep[i];
2551 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2552 pch_udc_clear_ep_control(ep);
2553 pch_udc_ep_set_ddptr(ep, 0);
2554 pch_udc_write_csr(ep->dev, 0x00, i);
2555 }
2556 dev->stall = 0;
2557 dev->prot_stall = 0;
2558 dev->waiting_zlp_ack = 0;
2559 dev->set_cfg_not_acked = 0;
2560
2561 /* disable ep to empty req queue. Skip the control EP's */
2562 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2563 ep = &dev->ep[i];
2564 pch_udc_ep_set_nak(ep);
2565 pch_udc_ep_fifo_flush(ep, ep->in);
2566 /* Complete request queue */
2567 empty_req_queue(ep);
2568 }
2569 if (dev->driver) {
2570 spin_unlock(&dev->lock);
2571 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2572 spin_lock(&dev->lock);
2573 }
2574 }
2575
2576 /**
2577 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2578 * done interrupt
2579 * @dev: Reference to driver structure
2580 */
2581 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2582 {
2583 u32 dev_stat, dev_speed;
2584 u32 speed = USB_SPEED_FULL;
2585
2586 dev_stat = pch_udc_read_device_status(dev);
2587 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2588 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2589 switch (dev_speed) {
2590 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2591 speed = USB_SPEED_HIGH;
2592 break;
2593 case UDC_DEVSTS_ENUM_SPEED_FULL:
2594 speed = USB_SPEED_FULL;
2595 break;
2596 case UDC_DEVSTS_ENUM_SPEED_LOW:
2597 speed = USB_SPEED_LOW;
2598 break;
2599 default:
2600 BUG();
2601 }
2602 dev->gadget.speed = speed;
2603 pch_udc_activate_control_ep(dev);
2604 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2605 pch_udc_set_dma(dev, DMA_DIR_TX);
2606 pch_udc_set_dma(dev, DMA_DIR_RX);
2607 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2608
2609 /* enable device interrupts */
2610 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2611 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2612 UDC_DEVINT_SI | UDC_DEVINT_SC);
2613 }
2614
2615 /**
2616 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2617 * interrupt
2618 * @dev: Reference to driver structure
2619 */
2620 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2621 {
2622 u32 reg, dev_stat = 0;
2623 int i;
2624
2625 dev_stat = pch_udc_read_device_status(dev);
2626 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2627 UDC_DEVSTS_INTF_SHIFT;
2628 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2629 UDC_DEVSTS_ALT_SHIFT;
2630 dev->set_cfg_not_acked = 1;
2631 /* Construct the usb request for gadget driver and inform it */
2632 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2633 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2634 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2635 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2636 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2637 /* programm the Endpoint Cfg registers */
2638 /* Only one end point cfg register */
2639 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2640 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2641 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2642 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2643 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2644 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2645 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2646 /* clear stall bits */
2647 pch_udc_ep_clear_stall(&(dev->ep[i]));
2648 dev->ep[i].halted = 0;
2649 }
2650 dev->stall = 0;
2651 spin_unlock(&dev->lock);
2652 dev->driver->setup(&dev->gadget, &dev->setup_data);
2653 spin_lock(&dev->lock);
2654 }
2655
2656 /**
2657 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2658 * interrupt
2659 * @dev: Reference to driver structure
2660 */
2661 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2662 {
2663 int i;
2664 u32 reg, dev_stat = 0;
2665
2666 dev_stat = pch_udc_read_device_status(dev);
2667 dev->set_cfg_not_acked = 1;
2668 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2669 UDC_DEVSTS_CFG_SHIFT;
2670 /* make usb request for gadget driver */
2671 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2672 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2673 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2674 /* program the NE registers */
2675 /* Only one end point cfg register */
2676 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2677 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2678 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2679 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2680 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2681 /* clear stall bits */
2682 pch_udc_ep_clear_stall(&(dev->ep[i]));
2683 dev->ep[i].halted = 0;
2684 }
2685 dev->stall = 0;
2686
2687 /* call gadget zero with setup data received */
2688 spin_unlock(&dev->lock);
2689 dev->driver->setup(&dev->gadget, &dev->setup_data);
2690 spin_lock(&dev->lock);
2691 }
2692
2693 /**
2694 * pch_udc_dev_isr() - This function services device interrupts
2695 * by invoking appropriate routines.
2696 * @dev: Reference to the device structure
2697 * @dev_intr: The Device interrupt status.
2698 */
2699 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2700 {
2701 int vbus;
2702
2703 /* USB Reset Interrupt */
2704 if (dev_intr & UDC_DEVINT_UR) {
2705 pch_udc_svc_ur_interrupt(dev);
2706 dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2707 }
2708 /* Enumeration Done Interrupt */
2709 if (dev_intr & UDC_DEVINT_ENUM) {
2710 pch_udc_svc_enum_interrupt(dev);
2711 dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2712 }
2713 /* Set Interface Interrupt */
2714 if (dev_intr & UDC_DEVINT_SI)
2715 pch_udc_svc_intf_interrupt(dev);
2716 /* Set Config Interrupt */
2717 if (dev_intr & UDC_DEVINT_SC)
2718 pch_udc_svc_cfg_interrupt(dev);
2719 /* USB Suspend interrupt */
2720 if (dev_intr & UDC_DEVINT_US) {
2721 if (dev->driver
2722 && dev->driver->suspend) {
2723 spin_unlock(&dev->lock);
2724 dev->driver->suspend(&dev->gadget);
2725 spin_lock(&dev->lock);
2726 }
2727
2728 vbus = pch_vbus_gpio_get_value(dev);
2729 if ((dev->vbus_session == 0)
2730 && (vbus != 1)) {
2731 if (dev->driver && dev->driver->disconnect) {
2732 spin_unlock(&dev->lock);
2733 dev->driver->disconnect(&dev->gadget);
2734 spin_lock(&dev->lock);
2735 }
2736 pch_udc_reconnect(dev);
2737 } else if ((dev->vbus_session == 0)
2738 && (vbus == 1)
2739 && !dev->vbus_gpio.intr)
2740 schedule_work(&dev->vbus_gpio.irq_work_fall);
2741
2742 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2743 }
2744 /* Clear the SOF interrupt, if enabled */
2745 if (dev_intr & UDC_DEVINT_SOF)
2746 dev_dbg(&dev->pdev->dev, "SOF\n");
2747 /* ES interrupt, IDLE > 3ms on the USB */
2748 if (dev_intr & UDC_DEVINT_ES)
2749 dev_dbg(&dev->pdev->dev, "ES\n");
2750 /* RWKP interrupt */
2751 if (dev_intr & UDC_DEVINT_RWKP)
2752 dev_dbg(&dev->pdev->dev, "RWKP\n");
2753 }
2754
2755 /**
2756 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2757 * @irq: Interrupt request number
2758 * @dev: Reference to the device structure
2759 */
2760 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2761 {
2762 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2763 u32 dev_intr, ep_intr;
2764 int i;
2765
2766 dev_intr = pch_udc_read_device_interrupts(dev);
2767 ep_intr = pch_udc_read_ep_interrupts(dev);
2768
2769 /* For a hot plug, this find that the controller is hung up. */
2770 if (dev_intr == ep_intr)
2771 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2772 dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2773 /* The controller is reset */
2774 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2775 return IRQ_HANDLED;
2776 }
2777 if (dev_intr)
2778 /* Clear device interrupts */
2779 pch_udc_write_device_interrupts(dev, dev_intr);
2780 if (ep_intr)
2781 /* Clear ep interrupts */
2782 pch_udc_write_ep_interrupts(dev, ep_intr);
2783 if (!dev_intr && !ep_intr)
2784 return IRQ_NONE;
2785 spin_lock(&dev->lock);
2786 if (dev_intr)
2787 pch_udc_dev_isr(dev, dev_intr);
2788 if (ep_intr) {
2789 pch_udc_read_all_epstatus(dev, ep_intr);
2790 /* Process Control In interrupts, if present */
2791 if (ep_intr & UDC_EPINT_IN_EP0) {
2792 pch_udc_svc_control_in(dev);
2793 pch_udc_postsvc_epinters(dev, 0);
2794 }
2795 /* Process Control Out interrupts, if present */
2796 if (ep_intr & UDC_EPINT_OUT_EP0)
2797 pch_udc_svc_control_out(dev);
2798 /* Process data in end point interrupts */
2799 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2800 if (ep_intr & (1 << i)) {
2801 pch_udc_svc_data_in(dev, i);
2802 pch_udc_postsvc_epinters(dev, i);
2803 }
2804 }
2805 /* Process data out end point interrupts */
2806 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2807 PCH_UDC_USED_EP_NUM); i++)
2808 if (ep_intr & (1 << i))
2809 pch_udc_svc_data_out(dev, i -
2810 UDC_EPINT_OUT_SHIFT);
2811 }
2812 spin_unlock(&dev->lock);
2813 return IRQ_HANDLED;
2814 }
2815
2816 /**
2817 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2818 * @dev: Reference to the device structure
2819 */
2820 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2821 {
2822 /* enable ep0 interrupts */
2823 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2824 UDC_EPINT_OUT_EP0);
2825 /* enable device interrupts */
2826 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2827 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2828 UDC_DEVINT_SI | UDC_DEVINT_SC);
2829 }
2830
2831 /**
2832 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2833 * @dev: Reference to the driver structure
2834 */
2835 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2836 {
2837 const char *const ep_string[] = {
2838 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2839 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2840 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2841 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2842 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2843 "ep15in", "ep15out",
2844 };
2845 int i;
2846
2847 dev->gadget.speed = USB_SPEED_UNKNOWN;
2848 INIT_LIST_HEAD(&dev->gadget.ep_list);
2849
2850 /* Initialize the endpoints structures */
2851 memset(dev->ep, 0, sizeof dev->ep);
2852 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2853 struct pch_udc_ep *ep = &dev->ep[i];
2854 ep->dev = dev;
2855 ep->halted = 1;
2856 ep->num = i / 2;
2857 ep->in = ~i & 1;
2858 ep->ep.name = ep_string[i];
2859 ep->ep.ops = &pch_udc_ep_ops;
2860 if (ep->in) {
2861 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2862 ep->ep.caps.dir_in = true;
2863 } else {
2864 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2865 UDC_EP_REG_SHIFT;
2866 ep->ep.caps.dir_out = true;
2867 }
2868 if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
2869 ep->ep.caps.type_control = true;
2870 } else {
2871 ep->ep.caps.type_iso = true;
2872 ep->ep.caps.type_bulk = true;
2873 ep->ep.caps.type_int = true;
2874 }
2875 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2876 usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
2877 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2878 INIT_LIST_HEAD(&ep->queue);
2879 }
2880 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
2881 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
2882
2883 /* remove ep0 in and out from the list. They have own pointer */
2884 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2885 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2886
2887 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2888 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2889 }
2890
2891 /**
2892 * pch_udc_pcd_init() - This API initializes the driver structure
2893 * @dev: Reference to the driver structure
2894 *
2895 * Return codes:
2896 * 0: Success
2897 */
2898 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2899 {
2900 pch_udc_init(dev);
2901 pch_udc_pcd_reinit(dev);
2902 pch_vbus_gpio_init(dev, vbus_gpio_port);
2903 return 0;
2904 }
2905
2906 /**
2907 * init_dma_pools() - create dma pools during initialization
2908 * @pdev: reference to struct pci_dev
2909 */
2910 static int init_dma_pools(struct pch_udc_dev *dev)
2911 {
2912 struct pch_udc_stp_dma_desc *td_stp;
2913 struct pch_udc_data_dma_desc *td_data;
2914 void *ep0out_buf;
2915
2916 /* DMA setup */
2917 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2918 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2919 if (!dev->data_requests) {
2920 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2921 __func__);
2922 return -ENOMEM;
2923 }
2924
2925 /* dma desc for setup data */
2926 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2927 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2928 if (!dev->stp_requests) {
2929 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2930 __func__);
2931 return -ENOMEM;
2932 }
2933 /* setup */
2934 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2935 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2936 if (!td_stp) {
2937 dev_err(&dev->pdev->dev,
2938 "%s: can't allocate setup dma descriptor\n", __func__);
2939 return -ENOMEM;
2940 }
2941 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2942
2943 /* data: 0 packets !? */
2944 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2945 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2946 if (!td_data) {
2947 dev_err(&dev->pdev->dev,
2948 "%s: can't allocate data dma descriptor\n", __func__);
2949 return -ENOMEM;
2950 }
2951 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2952 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2953 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2954 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2955 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2956
2957 ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
2958 GFP_KERNEL);
2959 if (!ep0out_buf)
2960 return -ENOMEM;
2961 dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
2962 UDC_EP0OUT_BUFF_SIZE * 4,
2963 DMA_FROM_DEVICE);
2964 return 0;
2965 }
2966
2967 static int pch_udc_start(struct usb_gadget *g,
2968 struct usb_gadget_driver *driver)
2969 {
2970 struct pch_udc_dev *dev = to_pch_udc(g);
2971
2972 driver->driver.bus = NULL;
2973 dev->driver = driver;
2974
2975 /* get ready for ep0 traffic */
2976 pch_udc_setup_ep0(dev);
2977
2978 /* clear SD */
2979 if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
2980 pch_udc_clear_disconnect(dev);
2981
2982 dev->connected = 1;
2983 return 0;
2984 }
2985
2986 static int pch_udc_stop(struct usb_gadget *g)
2987 {
2988 struct pch_udc_dev *dev = to_pch_udc(g);
2989
2990 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2991
2992 /* Assures that there are no pending requests with this driver */
2993 dev->driver = NULL;
2994 dev->connected = 0;
2995
2996 /* set SD */
2997 pch_udc_set_disconnect(dev);
2998
2999 return 0;
3000 }
3001
3002 static void pch_udc_shutdown(struct pci_dev *pdev)
3003 {
3004 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3005
3006 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3007 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3008
3009 /* disable the pullup so the host will think we're gone */
3010 pch_udc_set_disconnect(dev);
3011 }
3012
3013 static void pch_udc_remove(struct pci_dev *pdev)
3014 {
3015 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3016
3017 usb_del_gadget_udc(&dev->gadget);
3018
3019 /* gadget driver must not be registered */
3020 if (dev->driver)
3021 dev_err(&pdev->dev,
3022 "%s: gadget driver still bound!!!\n", __func__);
3023 /* dma pool cleanup */
3024 if (dev->data_requests)
3025 pci_pool_destroy(dev->data_requests);
3026
3027 if (dev->stp_requests) {
3028 /* cleanup DMA desc's for ep0in */
3029 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
3030 pci_pool_free(dev->stp_requests,
3031 dev->ep[UDC_EP0OUT_IDX].td_stp,
3032 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
3033 }
3034 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
3035 pci_pool_free(dev->stp_requests,
3036 dev->ep[UDC_EP0OUT_IDX].td_data,
3037 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
3038 }
3039 pci_pool_destroy(dev->stp_requests);
3040 }
3041
3042 if (dev->dma_addr)
3043 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
3044 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
3045
3046 pch_vbus_gpio_free(dev);
3047
3048 pch_udc_exit(dev);
3049 }
3050
3051 #ifdef CONFIG_PM_SLEEP
3052 static int pch_udc_suspend(struct device *d)
3053 {
3054 struct pci_dev *pdev = to_pci_dev(d);
3055 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3056
3057 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3058 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3059
3060 return 0;
3061 }
3062
3063 static int pch_udc_resume(struct device *d)
3064 {
3065 return 0;
3066 }
3067
3068 static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
3069 #define PCH_UDC_PM_OPS (&pch_udc_pm)
3070 #else
3071 #define PCH_UDC_PM_OPS NULL
3072 #endif /* CONFIG_PM_SLEEP */
3073
3074 static int pch_udc_probe(struct pci_dev *pdev,
3075 const struct pci_device_id *id)
3076 {
3077 int bar;
3078 int retval;
3079 struct pch_udc_dev *dev;
3080
3081 /* init */
3082 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
3083 if (!dev)
3084 return -ENOMEM;
3085
3086 /* pci setup */
3087 retval = pcim_enable_device(pdev);
3088 if (retval)
3089 return retval;
3090
3091 pci_set_drvdata(pdev, dev);
3092
3093 /* Determine BAR based on PCI ID */
3094 if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
3095 bar = PCH_UDC_PCI_BAR_QUARK_X1000;
3096 else
3097 bar = PCH_UDC_PCI_BAR;
3098
3099 /* PCI resource allocation */
3100 retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
3101 if (retval)
3102 return retval;
3103
3104 dev->base_addr = pcim_iomap_table(pdev)[bar];
3105
3106 /* initialize the hardware */
3107 if (pch_udc_pcd_init(dev))
3108 return -ENODEV;
3109
3110 pci_enable_msi(pdev);
3111
3112 retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
3113 IRQF_SHARED, KBUILD_MODNAME, dev);
3114 if (retval) {
3115 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3116 pdev->irq);
3117 goto finished;
3118 }
3119
3120 pci_set_master(pdev);
3121 pci_try_set_mwi(pdev);
3122
3123 /* device struct setup */
3124 spin_lock_init(&dev->lock);
3125 dev->pdev = pdev;
3126 dev->gadget.ops = &pch_udc_ops;
3127
3128 retval = init_dma_pools(dev);
3129 if (retval)
3130 goto finished;
3131
3132 dev->gadget.name = KBUILD_MODNAME;
3133 dev->gadget.max_speed = USB_SPEED_HIGH;
3134
3135 /* Put the device in disconnected state till a driver is bound */
3136 pch_udc_set_disconnect(dev);
3137 retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
3138 if (retval)
3139 goto finished;
3140 return 0;
3141
3142 finished:
3143 pch_udc_remove(pdev);
3144 return retval;
3145 }
3146
3147 static const struct pci_device_id pch_udc_pcidev_id[] = {
3148 {
3149 PCI_DEVICE(PCI_VENDOR_ID_INTEL,
3150 PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
3151 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3152 .class_mask = 0xffffffff,
3153 },
3154 {
3155 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3156 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3157 .class_mask = 0xffffffff,
3158 },
3159 {
3160 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3161 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3162 .class_mask = 0xffffffff,
3163 },
3164 {
3165 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3166 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3167 .class_mask = 0xffffffff,
3168 },
3169 { 0 },
3170 };
3171
3172 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3173
3174 static struct pci_driver pch_udc_driver = {
3175 .name = KBUILD_MODNAME,
3176 .id_table = pch_udc_pcidev_id,
3177 .probe = pch_udc_probe,
3178 .remove = pch_udc_remove,
3179 .shutdown = pch_udc_shutdown,
3180 .driver = {
3181 .pm = PCH_UDC_PM_OPS,
3182 },
3183 };
3184
3185 module_pci_driver(pch_udc_driver);
3186
3187 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3188 MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
3189 MODULE_LICENSE("GPL");