]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/gadget/udc/pxa27x_udc.c
Merge remote-tracking branches 'asoc/topic/sta529', 'asoc/topic/sti', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / gadget / udc / pxa27x_udc.c
1 /*
2 * Handles the Intel 27x USB Device Controller (UDC)
3 *
4 * Inspired by original driver by Frank Becker, David Brownell, and others.
5 * Copyright (C) 2008 Robert Jarzmik
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/err.h>
17 #include <linux/platform_device.h>
18 #include <linux/delay.h>
19 #include <linux/list.h>
20 #include <linux/interrupt.h>
21 #include <linux/proc_fs.h>
22 #include <linux/clk.h>
23 #include <linux/irq.h>
24 #include <linux/gpio.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/slab.h>
27 #include <linux/prefetch.h>
28 #include <linux/byteorder/generic.h>
29 #include <linux/platform_data/pxa2xx_udc.h>
30 #include <linux/of_device.h>
31 #include <linux/of_gpio.h>
32
33 #include <linux/usb.h>
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37
38 #include "pxa27x_udc.h"
39
40 /*
41 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
42 * series processors.
43 *
44 * Such controller drivers work with a gadget driver. The gadget driver
45 * returns descriptors, implements configuration and data protocols used
46 * by the host to interact with this device, and allocates endpoints to
47 * the different protocol interfaces. The controller driver virtualizes
48 * usb hardware so that the gadget drivers will be more portable.
49 *
50 * This UDC hardware wants to implement a bit too much USB protocol. The
51 * biggest issues are: that the endpoints have to be set up before the
52 * controller can be enabled (minor, and not uncommon); and each endpoint
53 * can only have one configuration, interface and alternative interface
54 * number (major, and very unusual). Once set up, these cannot be changed
55 * without a controller reset.
56 *
57 * The workaround is to setup all combinations necessary for the gadgets which
58 * will work with this driver. This is done in pxa_udc structure, statically.
59 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
60 * (You could modify this if needed. Some drivers have a "fifo_mode" module
61 * parameter to facilitate such changes.)
62 *
63 * The combinations have been tested with these gadgets :
64 * - zero gadget
65 * - file storage gadget
66 * - ether gadget
67 *
68 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
69 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
70 *
71 * All the requests are handled the same way :
72 * - the drivers tries to handle the request directly to the IO
73 * - if the IO fifo is not big enough, the remaining is send/received in
74 * interrupt handling.
75 */
76
77 #define DRIVER_VERSION "2008-04-18"
78 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
79
80 static const char driver_name[] = "pxa27x_udc";
81 static struct pxa_udc *the_controller;
82
83 static void handle_ep(struct pxa_ep *ep);
84
85 /*
86 * Debug filesystem
87 */
88 #ifdef CONFIG_USB_GADGET_DEBUG_FS
89
90 #include <linux/debugfs.h>
91 #include <linux/uaccess.h>
92 #include <linux/seq_file.h>
93
94 static int state_dbg_show(struct seq_file *s, void *p)
95 {
96 struct pxa_udc *udc = s->private;
97 u32 tmp;
98
99 if (!udc->driver)
100 return -ENODEV;
101
102 /* basic device status */
103 seq_printf(s, DRIVER_DESC "\n"
104 "%s version: %s\n"
105 "Gadget driver: %s\n",
106 driver_name, DRIVER_VERSION,
107 udc->driver ? udc->driver->driver.name : "(none)");
108
109 tmp = udc_readl(udc, UDCCR);
110 seq_printf(s,
111 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
112 tmp,
113 (tmp & UDCCR_OEN) ? " oen":"",
114 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
115 (tmp & UDCCR_AHNP) ? " rem" : "",
116 (tmp & UDCCR_BHNP) ? " rstir" : "",
117 (tmp & UDCCR_DWRE) ? " dwre" : "",
118 (tmp & UDCCR_SMAC) ? " smac" : "",
119 (tmp & UDCCR_EMCE) ? " emce" : "",
120 (tmp & UDCCR_UDR) ? " udr" : "",
121 (tmp & UDCCR_UDA) ? " uda" : "",
122 (tmp & UDCCR_UDE) ? " ude" : "",
123 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
124 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
125 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
126 /* registers for device and ep0 */
127 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
128 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
129 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
130 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
131 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
132 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
133 udc->stats.irqs_reset, udc->stats.irqs_suspend,
134 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
135
136 return 0;
137 }
138
139 static int queues_dbg_show(struct seq_file *s, void *p)
140 {
141 struct pxa_udc *udc = s->private;
142 struct pxa_ep *ep;
143 struct pxa27x_request *req;
144 int i, maxpkt;
145
146 if (!udc->driver)
147 return -ENODEV;
148
149 /* dump endpoint queues */
150 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
151 ep = &udc->pxa_ep[i];
152 maxpkt = ep->fifo_size;
153 seq_printf(s, "%-12s max_pkt=%d %s\n",
154 EPNAME(ep), maxpkt, "pio");
155
156 if (list_empty(&ep->queue)) {
157 seq_puts(s, "\t(nothing queued)\n");
158 continue;
159 }
160
161 list_for_each_entry(req, &ep->queue, queue) {
162 seq_printf(s, "\treq %p len %d/%d buf %p\n",
163 &req->req, req->req.actual,
164 req->req.length, req->req.buf);
165 }
166 }
167
168 return 0;
169 }
170
171 static int eps_dbg_show(struct seq_file *s, void *p)
172 {
173 struct pxa_udc *udc = s->private;
174 struct pxa_ep *ep;
175 int i;
176 u32 tmp;
177
178 if (!udc->driver)
179 return -ENODEV;
180
181 ep = &udc->pxa_ep[0];
182 tmp = udc_ep_readl(ep, UDCCSR);
183 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
184 tmp,
185 (tmp & UDCCSR0_SA) ? " sa" : "",
186 (tmp & UDCCSR0_RNE) ? " rne" : "",
187 (tmp & UDCCSR0_FST) ? " fst" : "",
188 (tmp & UDCCSR0_SST) ? " sst" : "",
189 (tmp & UDCCSR0_DME) ? " dme" : "",
190 (tmp & UDCCSR0_IPR) ? " ipr" : "",
191 (tmp & UDCCSR0_OPC) ? " opc" : "");
192 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
193 ep = &udc->pxa_ep[i];
194 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
195 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
196 EPNAME(ep),
197 ep->stats.in_bytes, ep->stats.in_ops,
198 ep->stats.out_bytes, ep->stats.out_ops,
199 ep->stats.irqs,
200 tmp, udc_ep_readl(ep, UDCCSR),
201 udc_ep_readl(ep, UDCBCR));
202 }
203
204 return 0;
205 }
206
207 static int eps_dbg_open(struct inode *inode, struct file *file)
208 {
209 return single_open(file, eps_dbg_show, inode->i_private);
210 }
211
212 static int queues_dbg_open(struct inode *inode, struct file *file)
213 {
214 return single_open(file, queues_dbg_show, inode->i_private);
215 }
216
217 static int state_dbg_open(struct inode *inode, struct file *file)
218 {
219 return single_open(file, state_dbg_show, inode->i_private);
220 }
221
222 static const struct file_operations state_dbg_fops = {
223 .owner = THIS_MODULE,
224 .open = state_dbg_open,
225 .llseek = seq_lseek,
226 .read = seq_read,
227 .release = single_release,
228 };
229
230 static const struct file_operations queues_dbg_fops = {
231 .owner = THIS_MODULE,
232 .open = queues_dbg_open,
233 .llseek = seq_lseek,
234 .read = seq_read,
235 .release = single_release,
236 };
237
238 static const struct file_operations eps_dbg_fops = {
239 .owner = THIS_MODULE,
240 .open = eps_dbg_open,
241 .llseek = seq_lseek,
242 .read = seq_read,
243 .release = single_release,
244 };
245
246 static void pxa_init_debugfs(struct pxa_udc *udc)
247 {
248 struct dentry *root, *state, *queues, *eps;
249
250 root = debugfs_create_dir(udc->gadget.name, NULL);
251 if (IS_ERR(root) || !root)
252 goto err_root;
253
254 state = debugfs_create_file("udcstate", 0400, root, udc,
255 &state_dbg_fops);
256 if (!state)
257 goto err_state;
258 queues = debugfs_create_file("queues", 0400, root, udc,
259 &queues_dbg_fops);
260 if (!queues)
261 goto err_queues;
262 eps = debugfs_create_file("epstate", 0400, root, udc,
263 &eps_dbg_fops);
264 if (!eps)
265 goto err_eps;
266
267 udc->debugfs_root = root;
268 udc->debugfs_state = state;
269 udc->debugfs_queues = queues;
270 udc->debugfs_eps = eps;
271 return;
272 err_eps:
273 debugfs_remove(eps);
274 err_queues:
275 debugfs_remove(queues);
276 err_state:
277 debugfs_remove(root);
278 err_root:
279 dev_err(udc->dev, "debugfs is not available\n");
280 }
281
282 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
283 {
284 debugfs_remove(udc->debugfs_eps);
285 debugfs_remove(udc->debugfs_queues);
286 debugfs_remove(udc->debugfs_state);
287 debugfs_remove(udc->debugfs_root);
288 udc->debugfs_eps = NULL;
289 udc->debugfs_queues = NULL;
290 udc->debugfs_state = NULL;
291 udc->debugfs_root = NULL;
292 }
293
294 #else
295 static inline void pxa_init_debugfs(struct pxa_udc *udc)
296 {
297 }
298
299 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
300 {
301 }
302 #endif
303
304 /**
305 * is_match_usb_pxa - check if usb_ep and pxa_ep match
306 * @udc_usb_ep: usb endpoint
307 * @ep: pxa endpoint
308 * @config: configuration required in pxa_ep
309 * @interface: interface required in pxa_ep
310 * @altsetting: altsetting required in pxa_ep
311 *
312 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
313 */
314 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
315 int config, int interface, int altsetting)
316 {
317 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
318 return 0;
319 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
320 return 0;
321 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
322 return 0;
323 if ((ep->config != config) || (ep->interface != interface)
324 || (ep->alternate != altsetting))
325 return 0;
326 return 1;
327 }
328
329 /**
330 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
331 * @udc: pxa udc
332 * @udc_usb_ep: udc_usb_ep structure
333 *
334 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
335 * This is necessary because of the strong pxa hardware restriction requiring
336 * that once pxa endpoints are initialized, their configuration is freezed, and
337 * no change can be made to their address, direction, or in which configuration,
338 * interface or altsetting they are active ... which differs from more usual
339 * models which have endpoints be roughly just addressable fifos, and leave
340 * configuration events up to gadget drivers (like all control messages).
341 *
342 * Note that there is still a blurred point here :
343 * - we rely on UDCCR register "active interface" and "active altsetting".
344 * This is a nonsense in regard of USB spec, where multiple interfaces are
345 * active at the same time.
346 * - if we knew for sure that the pxa can handle multiple interface at the
347 * same time, assuming Intel's Developer Guide is wrong, this function
348 * should be reviewed, and a cache of couples (iface, altsetting) should
349 * be kept in the pxa_udc structure. In this case this function would match
350 * against the cache of couples instead of the "last altsetting" set up.
351 *
352 * Returns the matched pxa_ep structure or NULL if none found
353 */
354 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
355 struct udc_usb_ep *udc_usb_ep)
356 {
357 int i;
358 struct pxa_ep *ep;
359 int cfg = udc->config;
360 int iface = udc->last_interface;
361 int alt = udc->last_alternate;
362
363 if (udc_usb_ep == &udc->udc_usb_ep[0])
364 return &udc->pxa_ep[0];
365
366 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
367 ep = &udc->pxa_ep[i];
368 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
369 return ep;
370 }
371 return NULL;
372 }
373
374 /**
375 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
376 * @udc: pxa udc
377 *
378 * Context: in_interrupt()
379 *
380 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
381 * previously set up (and is not NULL). The update is necessary is a
382 * configuration change or altsetting change was issued by the USB host.
383 */
384 static void update_pxa_ep_matches(struct pxa_udc *udc)
385 {
386 int i;
387 struct udc_usb_ep *udc_usb_ep;
388
389 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
390 udc_usb_ep = &udc->udc_usb_ep[i];
391 if (udc_usb_ep->pxa_ep)
392 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
393 }
394 }
395
396 /**
397 * pio_irq_enable - Enables irq generation for one endpoint
398 * @ep: udc endpoint
399 */
400 static void pio_irq_enable(struct pxa_ep *ep)
401 {
402 struct pxa_udc *udc = ep->dev;
403 int index = EPIDX(ep);
404 u32 udcicr0 = udc_readl(udc, UDCICR0);
405 u32 udcicr1 = udc_readl(udc, UDCICR1);
406
407 if (index < 16)
408 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
409 else
410 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
411 }
412
413 /**
414 * pio_irq_disable - Disables irq generation for one endpoint
415 * @ep: udc endpoint
416 */
417 static void pio_irq_disable(struct pxa_ep *ep)
418 {
419 struct pxa_udc *udc = ep->dev;
420 int index = EPIDX(ep);
421 u32 udcicr0 = udc_readl(udc, UDCICR0);
422 u32 udcicr1 = udc_readl(udc, UDCICR1);
423
424 if (index < 16)
425 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
426 else
427 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
428 }
429
430 /**
431 * udc_set_mask_UDCCR - set bits in UDCCR
432 * @udc: udc device
433 * @mask: bits to set in UDCCR
434 *
435 * Sets bits in UDCCR, leaving DME and FST bits as they were.
436 */
437 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
438 {
439 u32 udccr = udc_readl(udc, UDCCR);
440 udc_writel(udc, UDCCR,
441 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
442 }
443
444 /**
445 * udc_clear_mask_UDCCR - clears bits in UDCCR
446 * @udc: udc device
447 * @mask: bit to clear in UDCCR
448 *
449 * Clears bits in UDCCR, leaving DME and FST bits as they were.
450 */
451 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
452 {
453 u32 udccr = udc_readl(udc, UDCCR);
454 udc_writel(udc, UDCCR,
455 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
456 }
457
458 /**
459 * ep_write_UDCCSR - set bits in UDCCSR
460 * @udc: udc device
461 * @mask: bits to set in UDCCR
462 *
463 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
464 *
465 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
466 * SET_INTERFACE and SET_CONFIGURATION.
467 */
468 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
469 {
470 if (is_ep0(ep))
471 mask |= UDCCSR0_ACM;
472 udc_ep_writel(ep, UDCCSR, mask);
473 }
474
475 /**
476 * ep_count_bytes_remain - get how many bytes in udc endpoint
477 * @ep: udc endpoint
478 *
479 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
480 */
481 static int ep_count_bytes_remain(struct pxa_ep *ep)
482 {
483 if (ep->dir_in)
484 return -EOPNOTSUPP;
485 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
486 }
487
488 /**
489 * ep_is_empty - checks if ep has byte ready for reading
490 * @ep: udc endpoint
491 *
492 * If endpoint is the control endpoint, checks if there are bytes in the
493 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
494 * are ready for reading on OUT endpoint.
495 *
496 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
497 */
498 static int ep_is_empty(struct pxa_ep *ep)
499 {
500 int ret;
501
502 if (!is_ep0(ep) && ep->dir_in)
503 return -EOPNOTSUPP;
504 if (is_ep0(ep))
505 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
506 else
507 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
508 return ret;
509 }
510
511 /**
512 * ep_is_full - checks if ep has place to write bytes
513 * @ep: udc endpoint
514 *
515 * If endpoint is not the control endpoint and is an IN endpoint, checks if
516 * there is place to write bytes into the endpoint.
517 *
518 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
519 */
520 static int ep_is_full(struct pxa_ep *ep)
521 {
522 if (is_ep0(ep))
523 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
524 if (!ep->dir_in)
525 return -EOPNOTSUPP;
526 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
527 }
528
529 /**
530 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
531 * @ep: pxa endpoint
532 *
533 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
534 */
535 static int epout_has_pkt(struct pxa_ep *ep)
536 {
537 if (!is_ep0(ep) && ep->dir_in)
538 return -EOPNOTSUPP;
539 if (is_ep0(ep))
540 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
541 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
542 }
543
544 /**
545 * set_ep0state - Set ep0 automata state
546 * @dev: udc device
547 * @state: state
548 */
549 static void set_ep0state(struct pxa_udc *udc, int state)
550 {
551 struct pxa_ep *ep = &udc->pxa_ep[0];
552 char *old_stname = EP0_STNAME(udc);
553
554 udc->ep0state = state;
555 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
556 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
557 udc_ep_readl(ep, UDCBCR));
558 }
559
560 /**
561 * ep0_idle - Put control endpoint into idle state
562 * @dev: udc device
563 */
564 static void ep0_idle(struct pxa_udc *dev)
565 {
566 set_ep0state(dev, WAIT_FOR_SETUP);
567 }
568
569 /**
570 * inc_ep_stats_reqs - Update ep stats counts
571 * @ep: physical endpoint
572 * @req: usb request
573 * @is_in: ep direction (USB_DIR_IN or 0)
574 *
575 */
576 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
577 {
578 if (is_in)
579 ep->stats.in_ops++;
580 else
581 ep->stats.out_ops++;
582 }
583
584 /**
585 * inc_ep_stats_bytes - Update ep stats counts
586 * @ep: physical endpoint
587 * @count: bytes transferred on endpoint
588 * @is_in: ep direction (USB_DIR_IN or 0)
589 */
590 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
591 {
592 if (is_in)
593 ep->stats.in_bytes += count;
594 else
595 ep->stats.out_bytes += count;
596 }
597
598 /**
599 * pxa_ep_setup - Sets up an usb physical endpoint
600 * @ep: pxa27x physical endpoint
601 *
602 * Find the physical pxa27x ep, and setup its UDCCR
603 */
604 static void pxa_ep_setup(struct pxa_ep *ep)
605 {
606 u32 new_udccr;
607
608 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
609 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
610 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
611 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
612 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
613 | ((ep->dir_in) ? UDCCONR_ED : 0)
614 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
615 | UDCCONR_EE;
616
617 udc_ep_writel(ep, UDCCR, new_udccr);
618 }
619
620 /**
621 * pxa_eps_setup - Sets up all usb physical endpoints
622 * @dev: udc device
623 *
624 * Setup all pxa physical endpoints, except ep0
625 */
626 static void pxa_eps_setup(struct pxa_udc *dev)
627 {
628 unsigned int i;
629
630 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
631
632 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
633 pxa_ep_setup(&dev->pxa_ep[i]);
634 }
635
636 /**
637 * pxa_ep_alloc_request - Allocate usb request
638 * @_ep: usb endpoint
639 * @gfp_flags:
640 *
641 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
642 * must still pass correctly initialized endpoints, since other controller
643 * drivers may care about how it's currently set up (dma issues etc).
644 */
645 static struct usb_request *
646 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
647 {
648 struct pxa27x_request *req;
649
650 req = kzalloc(sizeof *req, gfp_flags);
651 if (!req)
652 return NULL;
653
654 INIT_LIST_HEAD(&req->queue);
655 req->in_use = 0;
656 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
657
658 return &req->req;
659 }
660
661 /**
662 * pxa_ep_free_request - Free usb request
663 * @_ep: usb endpoint
664 * @_req: usb request
665 *
666 * Wrapper around kfree to free _req
667 */
668 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
669 {
670 struct pxa27x_request *req;
671
672 req = container_of(_req, struct pxa27x_request, req);
673 WARN_ON(!list_empty(&req->queue));
674 kfree(req);
675 }
676
677 /**
678 * ep_add_request - add a request to the endpoint's queue
679 * @ep: usb endpoint
680 * @req: usb request
681 *
682 * Context: ep->lock held
683 *
684 * Queues the request in the endpoint's queue, and enables the interrupts
685 * on the endpoint.
686 */
687 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
688 {
689 if (unlikely(!req))
690 return;
691 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
692 req->req.length, udc_ep_readl(ep, UDCCSR));
693
694 req->in_use = 1;
695 list_add_tail(&req->queue, &ep->queue);
696 pio_irq_enable(ep);
697 }
698
699 /**
700 * ep_del_request - removes a request from the endpoint's queue
701 * @ep: usb endpoint
702 * @req: usb request
703 *
704 * Context: ep->lock held
705 *
706 * Unqueue the request from the endpoint's queue. If there are no more requests
707 * on the endpoint, and if it's not the control endpoint, interrupts are
708 * disabled on the endpoint.
709 */
710 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
711 {
712 if (unlikely(!req))
713 return;
714 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
715 req->req.length, udc_ep_readl(ep, UDCCSR));
716
717 list_del_init(&req->queue);
718 req->in_use = 0;
719 if (!is_ep0(ep) && list_empty(&ep->queue))
720 pio_irq_disable(ep);
721 }
722
723 /**
724 * req_done - Complete an usb request
725 * @ep: pxa physical endpoint
726 * @req: pxa request
727 * @status: usb request status sent to gadget API
728 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
729 *
730 * Context: ep->lock held if flags not NULL, else ep->lock released
731 *
732 * Retire a pxa27x usb request. Endpoint must be locked.
733 */
734 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
735 unsigned long *pflags)
736 {
737 unsigned long flags;
738
739 ep_del_request(ep, req);
740 if (likely(req->req.status == -EINPROGRESS))
741 req->req.status = status;
742 else
743 status = req->req.status;
744
745 if (status && status != -ESHUTDOWN)
746 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
747 &req->req, status,
748 req->req.actual, req->req.length);
749
750 if (pflags)
751 spin_unlock_irqrestore(&ep->lock, *pflags);
752 local_irq_save(flags);
753 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
754 local_irq_restore(flags);
755 if (pflags)
756 spin_lock_irqsave(&ep->lock, *pflags);
757 }
758
759 /**
760 * ep_end_out_req - Ends endpoint OUT request
761 * @ep: physical endpoint
762 * @req: pxa request
763 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
764 *
765 * Context: ep->lock held or released (see req_done())
766 *
767 * Ends endpoint OUT request (completes usb request).
768 */
769 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
770 unsigned long *pflags)
771 {
772 inc_ep_stats_reqs(ep, !USB_DIR_IN);
773 req_done(ep, req, 0, pflags);
774 }
775
776 /**
777 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
778 * @ep: physical endpoint
779 * @req: pxa request
780 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
781 *
782 * Context: ep->lock held or released (see req_done())
783 *
784 * Ends control endpoint OUT request (completes usb request), and puts
785 * control endpoint into idle state
786 */
787 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
788 unsigned long *pflags)
789 {
790 set_ep0state(ep->dev, OUT_STATUS_STAGE);
791 ep_end_out_req(ep, req, pflags);
792 ep0_idle(ep->dev);
793 }
794
795 /**
796 * ep_end_in_req - Ends endpoint IN request
797 * @ep: physical endpoint
798 * @req: pxa request
799 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
800 *
801 * Context: ep->lock held or released (see req_done())
802 *
803 * Ends endpoint IN request (completes usb request).
804 */
805 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
806 unsigned long *pflags)
807 {
808 inc_ep_stats_reqs(ep, USB_DIR_IN);
809 req_done(ep, req, 0, pflags);
810 }
811
812 /**
813 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
814 * @ep: physical endpoint
815 * @req: pxa request
816 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
817 *
818 * Context: ep->lock held or released (see req_done())
819 *
820 * Ends control endpoint IN request (completes usb request), and puts
821 * control endpoint into status state
822 */
823 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
824 unsigned long *pflags)
825 {
826 set_ep0state(ep->dev, IN_STATUS_STAGE);
827 ep_end_in_req(ep, req, pflags);
828 }
829
830 /**
831 * nuke - Dequeue all requests
832 * @ep: pxa endpoint
833 * @status: usb request status
834 *
835 * Context: ep->lock released
836 *
837 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
838 * disabled on that endpoint (because no more requests).
839 */
840 static void nuke(struct pxa_ep *ep, int status)
841 {
842 struct pxa27x_request *req;
843 unsigned long flags;
844
845 spin_lock_irqsave(&ep->lock, flags);
846 while (!list_empty(&ep->queue)) {
847 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
848 req_done(ep, req, status, &flags);
849 }
850 spin_unlock_irqrestore(&ep->lock, flags);
851 }
852
853 /**
854 * read_packet - transfer 1 packet from an OUT endpoint into request
855 * @ep: pxa physical endpoint
856 * @req: usb request
857 *
858 * Takes bytes from OUT endpoint and transfers them info the usb request.
859 * If there is less space in request than bytes received in OUT endpoint,
860 * bytes are left in the OUT endpoint.
861 *
862 * Returns how many bytes were actually transferred
863 */
864 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
865 {
866 u32 *buf;
867 int bytes_ep, bufferspace, count, i;
868
869 bytes_ep = ep_count_bytes_remain(ep);
870 bufferspace = req->req.length - req->req.actual;
871
872 buf = (u32 *)(req->req.buf + req->req.actual);
873 prefetchw(buf);
874
875 if (likely(!ep_is_empty(ep)))
876 count = min(bytes_ep, bufferspace);
877 else /* zlp */
878 count = 0;
879
880 for (i = count; i > 0; i -= 4)
881 *buf++ = udc_ep_readl(ep, UDCDR);
882 req->req.actual += count;
883
884 ep_write_UDCCSR(ep, UDCCSR_PC);
885
886 return count;
887 }
888
889 /**
890 * write_packet - transfer 1 packet from request into an IN endpoint
891 * @ep: pxa physical endpoint
892 * @req: usb request
893 * @max: max bytes that fit into endpoint
894 *
895 * Takes bytes from usb request, and transfers them into the physical
896 * endpoint. If there are no bytes to transfer, doesn't write anything
897 * to physical endpoint.
898 *
899 * Returns how many bytes were actually transferred.
900 */
901 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
902 unsigned int max)
903 {
904 int length, count, remain, i;
905 u32 *buf;
906 u8 *buf_8;
907
908 buf = (u32 *)(req->req.buf + req->req.actual);
909 prefetch(buf);
910
911 length = min(req->req.length - req->req.actual, max);
912 req->req.actual += length;
913
914 remain = length & 0x3;
915 count = length & ~(0x3);
916 for (i = count; i > 0 ; i -= 4)
917 udc_ep_writel(ep, UDCDR, *buf++);
918
919 buf_8 = (u8 *)buf;
920 for (i = remain; i > 0; i--)
921 udc_ep_writeb(ep, UDCDR, *buf_8++);
922
923 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
924 udc_ep_readl(ep, UDCCSR));
925
926 return length;
927 }
928
929 /**
930 * read_fifo - Transfer packets from OUT endpoint into usb request
931 * @ep: pxa physical endpoint
932 * @req: usb request
933 *
934 * Context: callable when in_interrupt()
935 *
936 * Unload as many packets as possible from the fifo we use for usb OUT
937 * transfers and put them into the request. Caller should have made sure
938 * there's at least one packet ready.
939 * Doesn't complete the request, that's the caller's job
940 *
941 * Returns 1 if the request completed, 0 otherwise
942 */
943 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
944 {
945 int count, is_short, completed = 0;
946
947 while (epout_has_pkt(ep)) {
948 count = read_packet(ep, req);
949 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
950
951 is_short = (count < ep->fifo_size);
952 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
953 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
954 &req->req, req->req.actual, req->req.length);
955
956 /* completion */
957 if (is_short || req->req.actual == req->req.length) {
958 completed = 1;
959 break;
960 }
961 /* finished that packet. the next one may be waiting... */
962 }
963 return completed;
964 }
965
966 /**
967 * write_fifo - transfer packets from usb request into an IN endpoint
968 * @ep: pxa physical endpoint
969 * @req: pxa usb request
970 *
971 * Write to an IN endpoint fifo, as many packets as possible.
972 * irqs will use this to write the rest later.
973 * caller guarantees at least one packet buffer is ready (or a zlp).
974 * Doesn't complete the request, that's the caller's job
975 *
976 * Returns 1 if request fully transferred, 0 if partial transfer
977 */
978 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
979 {
980 unsigned max;
981 int count, is_short, is_last = 0, completed = 0, totcount = 0;
982 u32 udccsr;
983
984 max = ep->fifo_size;
985 do {
986 is_short = 0;
987
988 udccsr = udc_ep_readl(ep, UDCCSR);
989 if (udccsr & UDCCSR_PC) {
990 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
991 udccsr);
992 ep_write_UDCCSR(ep, UDCCSR_PC);
993 }
994 if (udccsr & UDCCSR_TRN) {
995 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
996 udccsr);
997 ep_write_UDCCSR(ep, UDCCSR_TRN);
998 }
999
1000 count = write_packet(ep, req, max);
1001 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1002 totcount += count;
1003
1004 /* last packet is usually short (or a zlp) */
1005 if (unlikely(count < max)) {
1006 is_last = 1;
1007 is_short = 1;
1008 } else {
1009 if (likely(req->req.length > req->req.actual)
1010 || req->req.zero)
1011 is_last = 0;
1012 else
1013 is_last = 1;
1014 /* interrupt/iso maxpacket may not fill the fifo */
1015 is_short = unlikely(max < ep->fifo_size);
1016 }
1017
1018 if (is_short)
1019 ep_write_UDCCSR(ep, UDCCSR_SP);
1020
1021 /* requests complete when all IN data is in the FIFO */
1022 if (is_last) {
1023 completed = 1;
1024 break;
1025 }
1026 } while (!ep_is_full(ep));
1027
1028 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
1029 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
1030 req->req.length - req->req.actual, &req->req);
1031
1032 return completed;
1033 }
1034
1035 /**
1036 * read_ep0_fifo - Transfer packets from control endpoint into usb request
1037 * @ep: control endpoint
1038 * @req: pxa usb request
1039 *
1040 * Special ep0 version of the above read_fifo. Reads as many bytes from control
1041 * endpoint as can be read, and stores them into usb request (limited by request
1042 * maximum length).
1043 *
1044 * Returns 0 if usb request only partially filled, 1 if fully filled
1045 */
1046 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1047 {
1048 int count, is_short, completed = 0;
1049
1050 while (epout_has_pkt(ep)) {
1051 count = read_packet(ep, req);
1052 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1053 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
1054
1055 is_short = (count < ep->fifo_size);
1056 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
1057 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
1058 &req->req, req->req.actual, req->req.length);
1059
1060 if (is_short || req->req.actual >= req->req.length) {
1061 completed = 1;
1062 break;
1063 }
1064 }
1065
1066 return completed;
1067 }
1068
1069 /**
1070 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
1071 * @ep: control endpoint
1072 * @req: request
1073 *
1074 * Context: callable when in_interrupt()
1075 *
1076 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1077 * If the request doesn't fit, the remaining part will be sent from irq.
1078 * The request is considered fully written only if either :
1079 * - last write transferred all remaining bytes, but fifo was not fully filled
1080 * - last write was a 0 length write
1081 *
1082 * Returns 1 if request fully written, 0 if request only partially sent
1083 */
1084 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1085 {
1086 unsigned count;
1087 int is_last, is_short;
1088
1089 count = write_packet(ep, req, EP0_FIFO_SIZE);
1090 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1091
1092 is_short = (count < EP0_FIFO_SIZE);
1093 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1094
1095 /* Sends either a short packet or a 0 length packet */
1096 if (unlikely(is_short))
1097 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1098
1099 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1100 count, is_short ? "/S" : "", is_last ? "/L" : "",
1101 req->req.length - req->req.actual,
1102 &req->req, udc_ep_readl(ep, UDCCSR));
1103
1104 return is_last;
1105 }
1106
1107 /**
1108 * pxa_ep_queue - Queue a request into an IN endpoint
1109 * @_ep: usb endpoint
1110 * @_req: usb request
1111 * @gfp_flags: flags
1112 *
1113 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1114 * in the special case of ep0 setup :
1115 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1116 *
1117 * Returns 0 if succedeed, error otherwise
1118 */
1119 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1120 gfp_t gfp_flags)
1121 {
1122 struct udc_usb_ep *udc_usb_ep;
1123 struct pxa_ep *ep;
1124 struct pxa27x_request *req;
1125 struct pxa_udc *dev;
1126 unsigned long flags;
1127 int rc = 0;
1128 int is_first_req;
1129 unsigned length;
1130 int recursion_detected;
1131
1132 req = container_of(_req, struct pxa27x_request, req);
1133 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1134
1135 if (unlikely(!_req || !_req->complete || !_req->buf))
1136 return -EINVAL;
1137
1138 if (unlikely(!_ep))
1139 return -EINVAL;
1140
1141 dev = udc_usb_ep->dev;
1142 ep = udc_usb_ep->pxa_ep;
1143 if (unlikely(!ep))
1144 return -EINVAL;
1145
1146 dev = ep->dev;
1147 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1148 ep_dbg(ep, "bogus device state\n");
1149 return -ESHUTDOWN;
1150 }
1151
1152 /* iso is always one packet per request, that's the only way
1153 * we can report per-packet status. that also helps with dma.
1154 */
1155 if (unlikely(EPXFERTYPE_is_ISO(ep)
1156 && req->req.length > ep->fifo_size))
1157 return -EMSGSIZE;
1158
1159 spin_lock_irqsave(&ep->lock, flags);
1160 recursion_detected = ep->in_handle_ep;
1161
1162 is_first_req = list_empty(&ep->queue);
1163 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1164 _req, is_first_req ? "yes" : "no",
1165 _req->length, _req->buf);
1166
1167 if (!ep->enabled) {
1168 _req->status = -ESHUTDOWN;
1169 rc = -ESHUTDOWN;
1170 goto out_locked;
1171 }
1172
1173 if (req->in_use) {
1174 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1175 goto out_locked;
1176 }
1177
1178 length = _req->length;
1179 _req->status = -EINPROGRESS;
1180 _req->actual = 0;
1181
1182 ep_add_request(ep, req);
1183 spin_unlock_irqrestore(&ep->lock, flags);
1184
1185 if (is_ep0(ep)) {
1186 switch (dev->ep0state) {
1187 case WAIT_ACK_SET_CONF_INTERF:
1188 if (length == 0) {
1189 ep_end_in_req(ep, req, NULL);
1190 } else {
1191 ep_err(ep, "got a request of %d bytes while"
1192 "in state WAIT_ACK_SET_CONF_INTERF\n",
1193 length);
1194 ep_del_request(ep, req);
1195 rc = -EL2HLT;
1196 }
1197 ep0_idle(ep->dev);
1198 break;
1199 case IN_DATA_STAGE:
1200 if (!ep_is_full(ep))
1201 if (write_ep0_fifo(ep, req))
1202 ep0_end_in_req(ep, req, NULL);
1203 break;
1204 case OUT_DATA_STAGE:
1205 if ((length == 0) || !epout_has_pkt(ep))
1206 if (read_ep0_fifo(ep, req))
1207 ep0_end_out_req(ep, req, NULL);
1208 break;
1209 default:
1210 ep_err(ep, "odd state %s to send me a request\n",
1211 EP0_STNAME(ep->dev));
1212 ep_del_request(ep, req);
1213 rc = -EL2HLT;
1214 break;
1215 }
1216 } else {
1217 if (!recursion_detected)
1218 handle_ep(ep);
1219 }
1220
1221 out:
1222 return rc;
1223 out_locked:
1224 spin_unlock_irqrestore(&ep->lock, flags);
1225 goto out;
1226 }
1227
1228 /**
1229 * pxa_ep_dequeue - Dequeue one request
1230 * @_ep: usb endpoint
1231 * @_req: usb request
1232 *
1233 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1234 */
1235 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1236 {
1237 struct pxa_ep *ep;
1238 struct udc_usb_ep *udc_usb_ep;
1239 struct pxa27x_request *req;
1240 unsigned long flags;
1241 int rc = -EINVAL;
1242
1243 if (!_ep)
1244 return rc;
1245 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1246 ep = udc_usb_ep->pxa_ep;
1247 if (!ep || is_ep0(ep))
1248 return rc;
1249
1250 spin_lock_irqsave(&ep->lock, flags);
1251
1252 /* make sure it's actually queued on this endpoint */
1253 list_for_each_entry(req, &ep->queue, queue) {
1254 if (&req->req == _req) {
1255 rc = 0;
1256 break;
1257 }
1258 }
1259
1260 spin_unlock_irqrestore(&ep->lock, flags);
1261 if (!rc)
1262 req_done(ep, req, -ECONNRESET, NULL);
1263 return rc;
1264 }
1265
1266 /**
1267 * pxa_ep_set_halt - Halts operations on one endpoint
1268 * @_ep: usb endpoint
1269 * @value:
1270 *
1271 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1272 */
1273 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1274 {
1275 struct pxa_ep *ep;
1276 struct udc_usb_ep *udc_usb_ep;
1277 unsigned long flags;
1278 int rc;
1279
1280
1281 if (!_ep)
1282 return -EINVAL;
1283 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1284 ep = udc_usb_ep->pxa_ep;
1285 if (!ep || is_ep0(ep))
1286 return -EINVAL;
1287
1288 if (value == 0) {
1289 /*
1290 * This path (reset toggle+halt) is needed to implement
1291 * SET_INTERFACE on normal hardware. but it can't be
1292 * done from software on the PXA UDC, and the hardware
1293 * forgets to do it as part of SET_INTERFACE automagic.
1294 */
1295 ep_dbg(ep, "only host can clear halt\n");
1296 return -EROFS;
1297 }
1298
1299 spin_lock_irqsave(&ep->lock, flags);
1300
1301 rc = -EAGAIN;
1302 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1303 goto out;
1304
1305 /* FST, FEF bits are the same for control and non control endpoints */
1306 rc = 0;
1307 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1308 if (is_ep0(ep))
1309 set_ep0state(ep->dev, STALL);
1310
1311 out:
1312 spin_unlock_irqrestore(&ep->lock, flags);
1313 return rc;
1314 }
1315
1316 /**
1317 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1318 * @_ep: usb endpoint
1319 *
1320 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1321 */
1322 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1323 {
1324 struct pxa_ep *ep;
1325 struct udc_usb_ep *udc_usb_ep;
1326
1327 if (!_ep)
1328 return -ENODEV;
1329 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1330 ep = udc_usb_ep->pxa_ep;
1331 if (!ep || is_ep0(ep))
1332 return -ENODEV;
1333
1334 if (ep->dir_in)
1335 return -EOPNOTSUPP;
1336 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1337 return 0;
1338 else
1339 return ep_count_bytes_remain(ep) + 1;
1340 }
1341
1342 /**
1343 * pxa_ep_fifo_flush - Flushes one endpoint
1344 * @_ep: usb endpoint
1345 *
1346 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1347 */
1348 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1349 {
1350 struct pxa_ep *ep;
1351 struct udc_usb_ep *udc_usb_ep;
1352 unsigned long flags;
1353
1354 if (!_ep)
1355 return;
1356 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1357 ep = udc_usb_ep->pxa_ep;
1358 if (!ep || is_ep0(ep))
1359 return;
1360
1361 spin_lock_irqsave(&ep->lock, flags);
1362
1363 if (unlikely(!list_empty(&ep->queue)))
1364 ep_dbg(ep, "called while queue list not empty\n");
1365 ep_dbg(ep, "called\n");
1366
1367 /* for OUT, just read and discard the FIFO contents. */
1368 if (!ep->dir_in) {
1369 while (!ep_is_empty(ep))
1370 udc_ep_readl(ep, UDCDR);
1371 } else {
1372 /* most IN status is the same, but ISO can't stall */
1373 ep_write_UDCCSR(ep,
1374 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1375 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1376 }
1377
1378 spin_unlock_irqrestore(&ep->lock, flags);
1379 }
1380
1381 /**
1382 * pxa_ep_enable - Enables usb endpoint
1383 * @_ep: usb endpoint
1384 * @desc: usb endpoint descriptor
1385 *
1386 * Nothing much to do here, as ep configuration is done once and for all
1387 * before udc is enabled. After udc enable, no physical endpoint configuration
1388 * can be changed.
1389 * Function makes sanity checks and flushes the endpoint.
1390 */
1391 static int pxa_ep_enable(struct usb_ep *_ep,
1392 const struct usb_endpoint_descriptor *desc)
1393 {
1394 struct pxa_ep *ep;
1395 struct udc_usb_ep *udc_usb_ep;
1396 struct pxa_udc *udc;
1397
1398 if (!_ep || !desc)
1399 return -EINVAL;
1400
1401 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1402 if (udc_usb_ep->pxa_ep) {
1403 ep = udc_usb_ep->pxa_ep;
1404 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1405 _ep->name);
1406 } else {
1407 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1408 }
1409
1410 if (!ep || is_ep0(ep)) {
1411 dev_err(udc_usb_ep->dev->dev,
1412 "unable to match pxa_ep for ep %s\n",
1413 _ep->name);
1414 return -EINVAL;
1415 }
1416
1417 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1418 || (ep->type != usb_endpoint_type(desc))) {
1419 ep_err(ep, "type mismatch\n");
1420 return -EINVAL;
1421 }
1422
1423 if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1424 ep_err(ep, "bad maxpacket\n");
1425 return -ERANGE;
1426 }
1427
1428 udc_usb_ep->pxa_ep = ep;
1429 udc = ep->dev;
1430
1431 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1432 ep_err(ep, "bogus device state\n");
1433 return -ESHUTDOWN;
1434 }
1435
1436 ep->enabled = 1;
1437
1438 /* flush fifo (mostly for OUT buffers) */
1439 pxa_ep_fifo_flush(_ep);
1440
1441 ep_dbg(ep, "enabled\n");
1442 return 0;
1443 }
1444
1445 /**
1446 * pxa_ep_disable - Disable usb endpoint
1447 * @_ep: usb endpoint
1448 *
1449 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1450 * changed.
1451 * Function flushes the endpoint and related requests.
1452 */
1453 static int pxa_ep_disable(struct usb_ep *_ep)
1454 {
1455 struct pxa_ep *ep;
1456 struct udc_usb_ep *udc_usb_ep;
1457
1458 if (!_ep)
1459 return -EINVAL;
1460
1461 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1462 ep = udc_usb_ep->pxa_ep;
1463 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1464 return -EINVAL;
1465
1466 ep->enabled = 0;
1467 nuke(ep, -ESHUTDOWN);
1468
1469 pxa_ep_fifo_flush(_ep);
1470 udc_usb_ep->pxa_ep = NULL;
1471
1472 ep_dbg(ep, "disabled\n");
1473 return 0;
1474 }
1475
1476 static const struct usb_ep_ops pxa_ep_ops = {
1477 .enable = pxa_ep_enable,
1478 .disable = pxa_ep_disable,
1479
1480 .alloc_request = pxa_ep_alloc_request,
1481 .free_request = pxa_ep_free_request,
1482
1483 .queue = pxa_ep_queue,
1484 .dequeue = pxa_ep_dequeue,
1485
1486 .set_halt = pxa_ep_set_halt,
1487 .fifo_status = pxa_ep_fifo_status,
1488 .fifo_flush = pxa_ep_fifo_flush,
1489 };
1490
1491 /**
1492 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1493 * @udc: udc device
1494 * @on: 0 if disconnect pullup resistor, 1 otherwise
1495 * Context: any
1496 *
1497 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1498 * declare it as a full speed usb device
1499 */
1500 static void dplus_pullup(struct pxa_udc *udc, int on)
1501 {
1502 if (udc->gpiod) {
1503 gpiod_set_value(udc->gpiod, on);
1504 } else if (udc->udc_command) {
1505 if (on)
1506 udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1507 else
1508 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1509 }
1510 udc->pullup_on = on;
1511 }
1512
1513 /**
1514 * pxa_udc_get_frame - Returns usb frame number
1515 * @_gadget: usb gadget
1516 */
1517 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1518 {
1519 struct pxa_udc *udc = to_gadget_udc(_gadget);
1520
1521 return (udc_readl(udc, UDCFNR) & 0x7ff);
1522 }
1523
1524 /**
1525 * pxa_udc_wakeup - Force udc device out of suspend
1526 * @_gadget: usb gadget
1527 *
1528 * Returns 0 if successful, error code otherwise
1529 */
1530 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1531 {
1532 struct pxa_udc *udc = to_gadget_udc(_gadget);
1533
1534 /* host may not have enabled remote wakeup */
1535 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1536 return -EHOSTUNREACH;
1537 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1538 return 0;
1539 }
1540
1541 static void udc_enable(struct pxa_udc *udc);
1542 static void udc_disable(struct pxa_udc *udc);
1543
1544 /**
1545 * should_enable_udc - Tells if UDC should be enabled
1546 * @udc: udc device
1547 * Context: any
1548 *
1549 * The UDC should be enabled if :
1550
1551 * - the pullup resistor is connected
1552 * - and a gadget driver is bound
1553 * - and vbus is sensed (or no vbus sense is available)
1554 *
1555 * Returns 1 if UDC should be enabled, 0 otherwise
1556 */
1557 static int should_enable_udc(struct pxa_udc *udc)
1558 {
1559 int put_on;
1560
1561 put_on = ((udc->pullup_on) && (udc->driver));
1562 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1563 return put_on;
1564 }
1565
1566 /**
1567 * should_disable_udc - Tells if UDC should be disabled
1568 * @udc: udc device
1569 * Context: any
1570 *
1571 * The UDC should be disabled if :
1572 * - the pullup resistor is not connected
1573 * - or no gadget driver is bound
1574 * - or no vbus is sensed (when vbus sesing is available)
1575 *
1576 * Returns 1 if UDC should be disabled
1577 */
1578 static int should_disable_udc(struct pxa_udc *udc)
1579 {
1580 int put_off;
1581
1582 put_off = ((!udc->pullup_on) || (!udc->driver));
1583 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1584 return put_off;
1585 }
1586
1587 /**
1588 * pxa_udc_pullup - Offer manual D+ pullup control
1589 * @_gadget: usb gadget using the control
1590 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1591 * Context: !in_interrupt()
1592 *
1593 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1594 */
1595 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1596 {
1597 struct pxa_udc *udc = to_gadget_udc(_gadget);
1598
1599 if (!udc->gpiod && !udc->udc_command)
1600 return -EOPNOTSUPP;
1601
1602 dplus_pullup(udc, is_active);
1603
1604 if (should_enable_udc(udc))
1605 udc_enable(udc);
1606 if (should_disable_udc(udc))
1607 udc_disable(udc);
1608 return 0;
1609 }
1610
1611 static void udc_enable(struct pxa_udc *udc);
1612 static void udc_disable(struct pxa_udc *udc);
1613
1614 /**
1615 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1616 * @_gadget: usb gadget
1617 * @is_active: 0 if should disable the udc, 1 if should enable
1618 *
1619 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1620 * udc, and deactivates D+ pullup resistor.
1621 *
1622 * Returns 0
1623 */
1624 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1625 {
1626 struct pxa_udc *udc = to_gadget_udc(_gadget);
1627
1628 udc->vbus_sensed = is_active;
1629 if (should_enable_udc(udc))
1630 udc_enable(udc);
1631 if (should_disable_udc(udc))
1632 udc_disable(udc);
1633
1634 return 0;
1635 }
1636
1637 /**
1638 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1639 * @_gadget: usb gadget
1640 * @mA: current drawn
1641 *
1642 * Context: !in_interrupt()
1643 *
1644 * Called after a configuration was chosen by a USB host, to inform how much
1645 * current can be drawn by the device from VBus line.
1646 *
1647 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1648 */
1649 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1650 {
1651 struct pxa_udc *udc;
1652
1653 udc = to_gadget_udc(_gadget);
1654 if (!IS_ERR_OR_NULL(udc->transceiver))
1655 return usb_phy_set_power(udc->transceiver, mA);
1656 return -EOPNOTSUPP;
1657 }
1658
1659 /**
1660 * pxa_udc_phy_event - Called by phy upon VBus event
1661 * @nb: notifier block
1662 * @action: phy action, is vbus connect or disconnect
1663 * @data: the usb_gadget structure in pxa_udc
1664 *
1665 * Called by the USB Phy when a cable connect or disconnect is sensed.
1666 *
1667 * Returns 0
1668 */
1669 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action,
1670 void *data)
1671 {
1672 struct usb_gadget *gadget = data;
1673
1674 switch (action) {
1675 case USB_EVENT_VBUS:
1676 usb_gadget_vbus_connect(gadget);
1677 return NOTIFY_OK;
1678 case USB_EVENT_NONE:
1679 usb_gadget_vbus_disconnect(gadget);
1680 return NOTIFY_OK;
1681 default:
1682 return NOTIFY_DONE;
1683 }
1684 }
1685
1686 static struct notifier_block pxa27x_udc_phy = {
1687 .notifier_call = pxa_udc_phy_event,
1688 };
1689
1690 static int pxa27x_udc_start(struct usb_gadget *g,
1691 struct usb_gadget_driver *driver);
1692 static int pxa27x_udc_stop(struct usb_gadget *g);
1693
1694 static const struct usb_gadget_ops pxa_udc_ops = {
1695 .get_frame = pxa_udc_get_frame,
1696 .wakeup = pxa_udc_wakeup,
1697 .pullup = pxa_udc_pullup,
1698 .vbus_session = pxa_udc_vbus_session,
1699 .vbus_draw = pxa_udc_vbus_draw,
1700 .udc_start = pxa27x_udc_start,
1701 .udc_stop = pxa27x_udc_stop,
1702 };
1703
1704 /**
1705 * udc_disable - disable udc device controller
1706 * @udc: udc device
1707 * Context: any
1708 *
1709 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1710 * interrupts.
1711 */
1712 static void udc_disable(struct pxa_udc *udc)
1713 {
1714 if (!udc->enabled)
1715 return;
1716
1717 udc_writel(udc, UDCICR0, 0);
1718 udc_writel(udc, UDCICR1, 0);
1719
1720 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1721
1722 ep0_idle(udc);
1723 udc->gadget.speed = USB_SPEED_UNKNOWN;
1724 clk_disable(udc->clk);
1725
1726 udc->enabled = 0;
1727 }
1728
1729 /**
1730 * udc_init_data - Initialize udc device data structures
1731 * @dev: udc device
1732 *
1733 * Initializes gadget endpoint list, endpoints locks. No action is taken
1734 * on the hardware.
1735 */
1736 static void udc_init_data(struct pxa_udc *dev)
1737 {
1738 int i;
1739 struct pxa_ep *ep;
1740
1741 /* device/ep0 records init */
1742 INIT_LIST_HEAD(&dev->gadget.ep_list);
1743 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1744 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1745 dev->gadget.quirk_altset_not_supp = 1;
1746 ep0_idle(dev);
1747
1748 /* PXA endpoints init */
1749 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1750 ep = &dev->pxa_ep[i];
1751
1752 ep->enabled = is_ep0(ep);
1753 INIT_LIST_HEAD(&ep->queue);
1754 spin_lock_init(&ep->lock);
1755 }
1756
1757 /* USB endpoints init */
1758 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1759 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1760 &dev->gadget.ep_list);
1761 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1762 dev->udc_usb_ep[i].usb_ep.maxpacket);
1763 }
1764 }
1765
1766 /**
1767 * udc_enable - Enables the udc device
1768 * @dev: udc device
1769 *
1770 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1771 * interrupts, sets usb as UDC client and setups endpoints.
1772 */
1773 static void udc_enable(struct pxa_udc *udc)
1774 {
1775 if (udc->enabled)
1776 return;
1777
1778 clk_enable(udc->clk);
1779 udc_writel(udc, UDCICR0, 0);
1780 udc_writel(udc, UDCICR1, 0);
1781 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1782
1783 ep0_idle(udc);
1784 udc->gadget.speed = USB_SPEED_FULL;
1785 memset(&udc->stats, 0, sizeof(udc->stats));
1786
1787 pxa_eps_setup(udc);
1788 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1789 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1790 udelay(2);
1791 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1792 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1793
1794 /*
1795 * Caller must be able to sleep in order to cope with startup transients
1796 */
1797 msleep(100);
1798
1799 /* enable suspend/resume and reset irqs */
1800 udc_writel(udc, UDCICR1,
1801 UDCICR1_IECC | UDCICR1_IERU
1802 | UDCICR1_IESU | UDCICR1_IERS);
1803
1804 /* enable ep0 irqs */
1805 pio_irq_enable(&udc->pxa_ep[0]);
1806
1807 udc->enabled = 1;
1808 }
1809
1810 /**
1811 * pxa27x_start - Register gadget driver
1812 * @driver: gadget driver
1813 * @bind: bind function
1814 *
1815 * When a driver is successfully registered, it will receive control requests
1816 * including set_configuration(), which enables non-control requests. Then
1817 * usb traffic follows until a disconnect is reported. Then a host may connect
1818 * again, or the driver might get unbound.
1819 *
1820 * Note that the udc is not automatically enabled. Check function
1821 * should_enable_udc().
1822 *
1823 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1824 */
1825 static int pxa27x_udc_start(struct usb_gadget *g,
1826 struct usb_gadget_driver *driver)
1827 {
1828 struct pxa_udc *udc = to_pxa(g);
1829 int retval;
1830
1831 /* first hook up the driver ... */
1832 udc->driver = driver;
1833
1834 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1835 retval = otg_set_peripheral(udc->transceiver->otg,
1836 &udc->gadget);
1837 if (retval) {
1838 dev_err(udc->dev, "can't bind to transceiver\n");
1839 goto fail;
1840 }
1841 }
1842
1843 if (should_enable_udc(udc))
1844 udc_enable(udc);
1845 return 0;
1846
1847 fail:
1848 udc->driver = NULL;
1849 return retval;
1850 }
1851
1852 /**
1853 * stop_activity - Stops udc endpoints
1854 * @udc: udc device
1855 * @driver: gadget driver
1856 *
1857 * Disables all udc endpoints (even control endpoint), report disconnect to
1858 * the gadget user.
1859 */
1860 static void stop_activity(struct pxa_udc *udc)
1861 {
1862 int i;
1863
1864 udc->gadget.speed = USB_SPEED_UNKNOWN;
1865
1866 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1867 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1868 }
1869
1870 /**
1871 * pxa27x_udc_stop - Unregister the gadget driver
1872 * @driver: gadget driver
1873 *
1874 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1875 */
1876 static int pxa27x_udc_stop(struct usb_gadget *g)
1877 {
1878 struct pxa_udc *udc = to_pxa(g);
1879
1880 stop_activity(udc);
1881 udc_disable(udc);
1882
1883 udc->driver = NULL;
1884
1885 if (!IS_ERR_OR_NULL(udc->transceiver))
1886 return otg_set_peripheral(udc->transceiver->otg, NULL);
1887 return 0;
1888 }
1889
1890 /**
1891 * handle_ep0_ctrl_req - handle control endpoint control request
1892 * @udc: udc device
1893 * @req: control request
1894 */
1895 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1896 struct pxa27x_request *req)
1897 {
1898 struct pxa_ep *ep = &udc->pxa_ep[0];
1899 union {
1900 struct usb_ctrlrequest r;
1901 u32 word[2];
1902 } u;
1903 int i;
1904 int have_extrabytes = 0;
1905 unsigned long flags;
1906
1907 nuke(ep, -EPROTO);
1908 spin_lock_irqsave(&ep->lock, flags);
1909
1910 /*
1911 * In the PXA320 manual, in the section about Back-to-Back setup
1912 * packets, it describes this situation. The solution is to set OPC to
1913 * get rid of the status packet, and then continue with the setup
1914 * packet. Generalize to pxa27x CPUs.
1915 */
1916 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1917 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1918
1919 /* read SETUP packet */
1920 for (i = 0; i < 2; i++) {
1921 if (unlikely(ep_is_empty(ep)))
1922 goto stall;
1923 u.word[i] = udc_ep_readl(ep, UDCDR);
1924 }
1925
1926 have_extrabytes = !ep_is_empty(ep);
1927 while (!ep_is_empty(ep)) {
1928 i = udc_ep_readl(ep, UDCDR);
1929 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1930 }
1931
1932 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1933 u.r.bRequestType, u.r.bRequest,
1934 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1935 le16_to_cpu(u.r.wLength));
1936 if (unlikely(have_extrabytes))
1937 goto stall;
1938
1939 if (u.r.bRequestType & USB_DIR_IN)
1940 set_ep0state(udc, IN_DATA_STAGE);
1941 else
1942 set_ep0state(udc, OUT_DATA_STAGE);
1943
1944 /* Tell UDC to enter Data Stage */
1945 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1946
1947 spin_unlock_irqrestore(&ep->lock, flags);
1948 i = udc->driver->setup(&udc->gadget, &u.r);
1949 spin_lock_irqsave(&ep->lock, flags);
1950 if (i < 0)
1951 goto stall;
1952 out:
1953 spin_unlock_irqrestore(&ep->lock, flags);
1954 return;
1955 stall:
1956 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1957 udc_ep_readl(ep, UDCCSR), i);
1958 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1959 set_ep0state(udc, STALL);
1960 goto out;
1961 }
1962
1963 /**
1964 * handle_ep0 - Handle control endpoint data transfers
1965 * @udc: udc device
1966 * @fifo_irq: 1 if triggered by fifo service type irq
1967 * @opc_irq: 1 if triggered by output packet complete type irq
1968 *
1969 * Context : when in_interrupt() or with ep->lock held
1970 *
1971 * Tries to transfer all pending request data into the endpoint and/or
1972 * transfer all pending data in the endpoint into usb requests.
1973 * Handles states of ep0 automata.
1974 *
1975 * PXA27x hardware handles several standard usb control requests without
1976 * driver notification. The requests fully handled by hardware are :
1977 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1978 * GET_STATUS
1979 * The requests handled by hardware, but with irq notification are :
1980 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1981 * The remaining standard requests really handled by handle_ep0 are :
1982 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1983 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1984 * uniformly, by gadget drivers.
1985 *
1986 * The control endpoint state machine is _not_ USB spec compliant, it's even
1987 * hardly compliant with Intel PXA270 developers guide.
1988 * The key points which inferred this state machine are :
1989 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1990 * software.
1991 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1992 * cleared by software.
1993 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1994 * before reading ep0.
1995 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1996 * (check Back-to-Back setup packet in developers guide).
1997 * - irq can be called on a "packet complete" event (opc_irq=1), while
1998 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1999 * from experimentation).
2000 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
2001 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
2002 * => we never actually read the "status stage" packet of an IN data stage
2003 * => this is not documented in Intel documentation
2004 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
2005 * STAGE. The driver add STATUS STAGE to send last zero length packet in
2006 * OUT_STATUS_STAGE.
2007 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
2008 * event is detected, we terminate the status stage without ackowledging the
2009 * packet (not to risk to loose a potential SETUP packet)
2010 */
2011 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
2012 {
2013 u32 udccsr0;
2014 struct pxa_ep *ep = &udc->pxa_ep[0];
2015 struct pxa27x_request *req = NULL;
2016 int completed = 0;
2017
2018 if (!list_empty(&ep->queue))
2019 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
2020
2021 udccsr0 = udc_ep_readl(ep, UDCCSR);
2022 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
2023 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
2024 (fifo_irq << 1 | opc_irq));
2025
2026 if (udccsr0 & UDCCSR0_SST) {
2027 ep_dbg(ep, "clearing stall status\n");
2028 nuke(ep, -EPIPE);
2029 ep_write_UDCCSR(ep, UDCCSR0_SST);
2030 ep0_idle(udc);
2031 }
2032
2033 if (udccsr0 & UDCCSR0_SA) {
2034 nuke(ep, 0);
2035 set_ep0state(udc, SETUP_STAGE);
2036 }
2037
2038 switch (udc->ep0state) {
2039 case WAIT_FOR_SETUP:
2040 /*
2041 * Hardware bug : beware, we cannot clear OPC, since we would
2042 * miss a potential OPC irq for a setup packet.
2043 * So, we only do ... nothing, and hope for a next irq with
2044 * UDCCSR0_SA set.
2045 */
2046 break;
2047 case SETUP_STAGE:
2048 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
2049 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
2050 handle_ep0_ctrl_req(udc, req);
2051 break;
2052 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
2053 if (epout_has_pkt(ep))
2054 ep_write_UDCCSR(ep, UDCCSR0_OPC);
2055 if (req && !ep_is_full(ep))
2056 completed = write_ep0_fifo(ep, req);
2057 if (completed)
2058 ep0_end_in_req(ep, req, NULL);
2059 break;
2060 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
2061 if (epout_has_pkt(ep) && req)
2062 completed = read_ep0_fifo(ep, req);
2063 if (completed)
2064 ep0_end_out_req(ep, req, NULL);
2065 break;
2066 case STALL:
2067 ep_write_UDCCSR(ep, UDCCSR0_FST);
2068 break;
2069 case IN_STATUS_STAGE:
2070 /*
2071 * Hardware bug : beware, we cannot clear OPC, since we would
2072 * miss a potential PC irq for a setup packet.
2073 * So, we only put the ep0 into WAIT_FOR_SETUP state.
2074 */
2075 if (opc_irq)
2076 ep0_idle(udc);
2077 break;
2078 case OUT_STATUS_STAGE:
2079 case WAIT_ACK_SET_CONF_INTERF:
2080 ep_warn(ep, "should never get in %s state here!!!\n",
2081 EP0_STNAME(ep->dev));
2082 ep0_idle(udc);
2083 break;
2084 }
2085 }
2086
2087 /**
2088 * handle_ep - Handle endpoint data tranfers
2089 * @ep: pxa physical endpoint
2090 *
2091 * Tries to transfer all pending request data into the endpoint and/or
2092 * transfer all pending data in the endpoint into usb requests.
2093 *
2094 * Is always called when in_interrupt() and with ep->lock released.
2095 */
2096 static void handle_ep(struct pxa_ep *ep)
2097 {
2098 struct pxa27x_request *req;
2099 int completed;
2100 u32 udccsr;
2101 int is_in = ep->dir_in;
2102 int loop = 0;
2103 unsigned long flags;
2104
2105 spin_lock_irqsave(&ep->lock, flags);
2106 if (ep->in_handle_ep)
2107 goto recursion_detected;
2108 ep->in_handle_ep = 1;
2109
2110 do {
2111 completed = 0;
2112 udccsr = udc_ep_readl(ep, UDCCSR);
2113
2114 if (likely(!list_empty(&ep->queue)))
2115 req = list_entry(ep->queue.next,
2116 struct pxa27x_request, queue);
2117 else
2118 req = NULL;
2119
2120 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2121 req, udccsr, loop++);
2122
2123 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2124 udc_ep_writel(ep, UDCCSR,
2125 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2126 if (!req)
2127 break;
2128
2129 if (unlikely(is_in)) {
2130 if (likely(!ep_is_full(ep)))
2131 completed = write_fifo(ep, req);
2132 } else {
2133 if (likely(epout_has_pkt(ep)))
2134 completed = read_fifo(ep, req);
2135 }
2136
2137 if (completed) {
2138 if (is_in)
2139 ep_end_in_req(ep, req, &flags);
2140 else
2141 ep_end_out_req(ep, req, &flags);
2142 }
2143 } while (completed);
2144
2145 ep->in_handle_ep = 0;
2146 recursion_detected:
2147 spin_unlock_irqrestore(&ep->lock, flags);
2148 }
2149
2150 /**
2151 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2152 * @udc: udc device
2153 * @config: usb configuration
2154 *
2155 * Post the request to upper level.
2156 * Don't use any pxa specific harware configuration capabilities
2157 */
2158 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2159 {
2160 struct usb_ctrlrequest req ;
2161
2162 dev_dbg(udc->dev, "config=%d\n", config);
2163
2164 udc->config = config;
2165 udc->last_interface = 0;
2166 udc->last_alternate = 0;
2167
2168 req.bRequestType = 0;
2169 req.bRequest = USB_REQ_SET_CONFIGURATION;
2170 req.wValue = config;
2171 req.wIndex = 0;
2172 req.wLength = 0;
2173
2174 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2175 udc->driver->setup(&udc->gadget, &req);
2176 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2177 }
2178
2179 /**
2180 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2181 * @udc: udc device
2182 * @iface: interface number
2183 * @alt: alternate setting number
2184 *
2185 * Post the request to upper level.
2186 * Don't use any pxa specific harware configuration capabilities
2187 */
2188 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2189 {
2190 struct usb_ctrlrequest req;
2191
2192 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2193
2194 udc->last_interface = iface;
2195 udc->last_alternate = alt;
2196
2197 req.bRequestType = USB_RECIP_INTERFACE;
2198 req.bRequest = USB_REQ_SET_INTERFACE;
2199 req.wValue = alt;
2200 req.wIndex = iface;
2201 req.wLength = 0;
2202
2203 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2204 udc->driver->setup(&udc->gadget, &req);
2205 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2206 }
2207
2208 /*
2209 * irq_handle_data - Handle data transfer
2210 * @irq: irq IRQ number
2211 * @udc: dev pxa_udc device structure
2212 *
2213 * Called from irq handler, transferts data to or from endpoint to queue
2214 */
2215 static void irq_handle_data(int irq, struct pxa_udc *udc)
2216 {
2217 int i;
2218 struct pxa_ep *ep;
2219 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2220 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2221
2222 if (udcisr0 & UDCISR_INT_MASK) {
2223 udc->pxa_ep[0].stats.irqs++;
2224 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2225 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2226 !!(udcisr0 & UDCICR_PKTCOMPL));
2227 }
2228
2229 udcisr0 >>= 2;
2230 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2231 if (!(udcisr0 & UDCISR_INT_MASK))
2232 continue;
2233
2234 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2235
2236 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2237 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2238 ep = &udc->pxa_ep[i];
2239 ep->stats.irqs++;
2240 handle_ep(ep);
2241 }
2242 }
2243
2244 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2245 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2246 if (!(udcisr1 & UDCISR_INT_MASK))
2247 continue;
2248
2249 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2250 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2251 ep = &udc->pxa_ep[i];
2252 ep->stats.irqs++;
2253 handle_ep(ep);
2254 }
2255 }
2256
2257 }
2258
2259 /**
2260 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2261 * @udc: udc device
2262 */
2263 static void irq_udc_suspend(struct pxa_udc *udc)
2264 {
2265 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2266 udc->stats.irqs_suspend++;
2267
2268 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2269 && udc->driver && udc->driver->suspend)
2270 udc->driver->suspend(&udc->gadget);
2271 ep0_idle(udc);
2272 }
2273
2274 /**
2275 * irq_udc_resume - Handle IRQ "UDC Resume"
2276 * @udc: udc device
2277 */
2278 static void irq_udc_resume(struct pxa_udc *udc)
2279 {
2280 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2281 udc->stats.irqs_resume++;
2282
2283 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2284 && udc->driver && udc->driver->resume)
2285 udc->driver->resume(&udc->gadget);
2286 }
2287
2288 /**
2289 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2290 * @udc: udc device
2291 */
2292 static void irq_udc_reconfig(struct pxa_udc *udc)
2293 {
2294 unsigned config, interface, alternate, config_change;
2295 u32 udccr = udc_readl(udc, UDCCR);
2296
2297 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2298 udc->stats.irqs_reconfig++;
2299
2300 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2301 config_change = (config != udc->config);
2302 pxa27x_change_configuration(udc, config);
2303
2304 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2305 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2306 pxa27x_change_interface(udc, interface, alternate);
2307
2308 if (config_change)
2309 update_pxa_ep_matches(udc);
2310 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2311 }
2312
2313 /**
2314 * irq_udc_reset - Handle IRQ "UDC Reset"
2315 * @udc: udc device
2316 */
2317 static void irq_udc_reset(struct pxa_udc *udc)
2318 {
2319 u32 udccr = udc_readl(udc, UDCCR);
2320 struct pxa_ep *ep = &udc->pxa_ep[0];
2321
2322 dev_info(udc->dev, "USB reset\n");
2323 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2324 udc->stats.irqs_reset++;
2325
2326 if ((udccr & UDCCR_UDA) == 0) {
2327 dev_dbg(udc->dev, "USB reset start\n");
2328 stop_activity(udc);
2329 }
2330 udc->gadget.speed = USB_SPEED_FULL;
2331 memset(&udc->stats, 0, sizeof udc->stats);
2332
2333 nuke(ep, -EPROTO);
2334 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2335 ep0_idle(udc);
2336 }
2337
2338 /**
2339 * pxa_udc_irq - Main irq handler
2340 * @irq: irq number
2341 * @_dev: udc device
2342 *
2343 * Handles all udc interrupts
2344 */
2345 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2346 {
2347 struct pxa_udc *udc = _dev;
2348 u32 udcisr0 = udc_readl(udc, UDCISR0);
2349 u32 udcisr1 = udc_readl(udc, UDCISR1);
2350 u32 udccr = udc_readl(udc, UDCCR);
2351 u32 udcisr1_spec;
2352
2353 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2354 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2355
2356 udcisr1_spec = udcisr1 & 0xf8000000;
2357 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2358 irq_udc_suspend(udc);
2359 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2360 irq_udc_resume(udc);
2361 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2362 irq_udc_reconfig(udc);
2363 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2364 irq_udc_reset(udc);
2365
2366 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2367 irq_handle_data(irq, udc);
2368
2369 return IRQ_HANDLED;
2370 }
2371
2372 static struct pxa_udc memory = {
2373 .gadget = {
2374 .ops = &pxa_udc_ops,
2375 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2376 .name = driver_name,
2377 .dev = {
2378 .init_name = "gadget",
2379 },
2380 },
2381
2382 .udc_usb_ep = {
2383 USB_EP_CTRL,
2384 USB_EP_OUT_BULK(1),
2385 USB_EP_IN_BULK(2),
2386 USB_EP_IN_ISO(3),
2387 USB_EP_OUT_ISO(4),
2388 USB_EP_IN_INT(5),
2389 },
2390
2391 .pxa_ep = {
2392 PXA_EP_CTRL,
2393 /* Endpoints for gadget zero */
2394 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2395 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2396 /* Endpoints for ether gadget, file storage gadget */
2397 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2398 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2399 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2400 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2401 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2402 /* Endpoints for RNDIS, serial */
2403 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2404 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2405 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2406 /*
2407 * All the following endpoints are only for completion. They
2408 * won't never work, as multiple interfaces are really broken on
2409 * the pxa.
2410 */
2411 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2412 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2413 /* Endpoint for CDC Ether */
2414 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2415 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2416 }
2417 };
2418
2419 #if defined(CONFIG_OF)
2420 static const struct of_device_id udc_pxa_dt_ids[] = {
2421 { .compatible = "marvell,pxa270-udc" },
2422 {}
2423 };
2424 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2425 #endif
2426
2427 /**
2428 * pxa_udc_probe - probes the udc device
2429 * @_dev: platform device
2430 *
2431 * Perform basic init : allocates udc clock, creates sysfs files, requests
2432 * irq.
2433 */
2434 static int pxa_udc_probe(struct platform_device *pdev)
2435 {
2436 struct resource *regs;
2437 struct pxa_udc *udc = &memory;
2438 int retval = 0, gpio;
2439 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2440 unsigned long gpio_flags;
2441
2442 if (mach) {
2443 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2444 gpio = mach->gpio_pullup;
2445 if (gpio_is_valid(gpio)) {
2446 retval = devm_gpio_request_one(&pdev->dev, gpio,
2447 gpio_flags,
2448 "USB D+ pullup");
2449 if (retval)
2450 return retval;
2451 udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2452 }
2453 udc->udc_command = mach->udc_command;
2454 } else {
2455 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS);
2456 }
2457
2458 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2459 udc->regs = devm_ioremap_resource(&pdev->dev, regs);
2460 if (IS_ERR(udc->regs))
2461 return PTR_ERR(udc->regs);
2462 udc->irq = platform_get_irq(pdev, 0);
2463 if (udc->irq < 0)
2464 return udc->irq;
2465
2466 udc->dev = &pdev->dev;
2467 if (of_have_populated_dt()) {
2468 udc->transceiver =
2469 devm_usb_get_phy_by_phandle(udc->dev, "phys", 0);
2470 if (IS_ERR(udc->transceiver))
2471 return PTR_ERR(udc->transceiver);
2472 } else {
2473 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2474 }
2475
2476 if (IS_ERR(udc->gpiod)) {
2477 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2478 PTR_ERR(udc->gpiod));
2479 return PTR_ERR(udc->gpiod);
2480 }
2481 if (udc->gpiod)
2482 gpiod_direction_output(udc->gpiod, 0);
2483
2484 udc->clk = devm_clk_get(&pdev->dev, NULL);
2485 if (IS_ERR(udc->clk))
2486 return PTR_ERR(udc->clk);
2487
2488 retval = clk_prepare(udc->clk);
2489 if (retval)
2490 return retval;
2491
2492 udc->vbus_sensed = 0;
2493
2494 the_controller = udc;
2495 platform_set_drvdata(pdev, udc);
2496 udc_init_data(udc);
2497
2498 /* irq setup after old hardware state is cleaned up */
2499 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2500 IRQF_SHARED, driver_name, udc);
2501 if (retval != 0) {
2502 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2503 driver_name, udc->irq, retval);
2504 goto err;
2505 }
2506
2507 if (!IS_ERR_OR_NULL(udc->transceiver))
2508 usb_register_notifier(udc->transceiver, &pxa27x_udc_phy);
2509 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2510 if (retval)
2511 goto err_add_gadget;
2512
2513 pxa_init_debugfs(udc);
2514 if (should_enable_udc(udc))
2515 udc_enable(udc);
2516 return 0;
2517
2518 err_add_gadget:
2519 if (!IS_ERR_OR_NULL(udc->transceiver))
2520 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2521 err:
2522 clk_unprepare(udc->clk);
2523 return retval;
2524 }
2525
2526 /**
2527 * pxa_udc_remove - removes the udc device driver
2528 * @_dev: platform device
2529 */
2530 static int pxa_udc_remove(struct platform_device *_dev)
2531 {
2532 struct pxa_udc *udc = platform_get_drvdata(_dev);
2533
2534 usb_del_gadget_udc(&udc->gadget);
2535 pxa_cleanup_debugfs(udc);
2536
2537 if (!IS_ERR_OR_NULL(udc->transceiver)) {
2538 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2539 usb_put_phy(udc->transceiver);
2540 }
2541
2542 udc->transceiver = NULL;
2543 the_controller = NULL;
2544 clk_unprepare(udc->clk);
2545
2546 return 0;
2547 }
2548
2549 static void pxa_udc_shutdown(struct platform_device *_dev)
2550 {
2551 struct pxa_udc *udc = platform_get_drvdata(_dev);
2552
2553 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2554 udc_disable(udc);
2555 }
2556
2557 #ifdef CONFIG_PXA27x
2558 extern void pxa27x_clear_otgph(void);
2559 #else
2560 #define pxa27x_clear_otgph() do {} while (0)
2561 #endif
2562
2563 #ifdef CONFIG_PM
2564 /**
2565 * pxa_udc_suspend - Suspend udc device
2566 * @_dev: platform device
2567 * @state: suspend state
2568 *
2569 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2570 * device.
2571 */
2572 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2573 {
2574 struct pxa_udc *udc = platform_get_drvdata(_dev);
2575 struct pxa_ep *ep;
2576
2577 ep = &udc->pxa_ep[0];
2578 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2579
2580 udc_disable(udc);
2581 udc->pullup_resume = udc->pullup_on;
2582 dplus_pullup(udc, 0);
2583
2584 if (udc->driver)
2585 udc->driver->disconnect(&udc->gadget);
2586
2587 return 0;
2588 }
2589
2590 /**
2591 * pxa_udc_resume - Resume udc device
2592 * @_dev: platform device
2593 *
2594 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2595 * device.
2596 */
2597 static int pxa_udc_resume(struct platform_device *_dev)
2598 {
2599 struct pxa_udc *udc = platform_get_drvdata(_dev);
2600 struct pxa_ep *ep;
2601
2602 ep = &udc->pxa_ep[0];
2603 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2604
2605 dplus_pullup(udc, udc->pullup_resume);
2606 if (should_enable_udc(udc))
2607 udc_enable(udc);
2608 /*
2609 * We do not handle OTG yet.
2610 *
2611 * OTGPH bit is set when sleep mode is entered.
2612 * it indicates that OTG pad is retaining its state.
2613 * Upon exit from sleep mode and before clearing OTGPH,
2614 * Software must configure the USB OTG pad, UDC, and UHC
2615 * to the state they were in before entering sleep mode.
2616 */
2617 pxa27x_clear_otgph();
2618
2619 return 0;
2620 }
2621 #endif
2622
2623 /* work with hotplug and coldplug */
2624 MODULE_ALIAS("platform:pxa27x-udc");
2625
2626 static struct platform_driver udc_driver = {
2627 .driver = {
2628 .name = "pxa27x-udc",
2629 .of_match_table = of_match_ptr(udc_pxa_dt_ids),
2630 },
2631 .probe = pxa_udc_probe,
2632 .remove = pxa_udc_remove,
2633 .shutdown = pxa_udc_shutdown,
2634 #ifdef CONFIG_PM
2635 .suspend = pxa_udc_suspend,
2636 .resume = pxa_udc_resume
2637 #endif
2638 };
2639
2640 module_platform_driver(udc_driver);
2641
2642 MODULE_DESCRIPTION(DRIVER_DESC);
2643 MODULE_AUTHOR("Robert Jarzmik");
2644 MODULE_LICENSE("GPL");