]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/gadget/udc/pxa27x_udc.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / gadget / udc / pxa27x_udc.c
1 /*
2 * Handles the Intel 27x USB Device Controller (UDC)
3 *
4 * Inspired by original driver by Frank Becker, David Brownell, and others.
5 * Copyright (C) 2008 Robert Jarzmik
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/err.h>
17 #include <linux/platform_device.h>
18 #include <linux/delay.h>
19 #include <linux/list.h>
20 #include <linux/interrupt.h>
21 #include <linux/proc_fs.h>
22 #include <linux/clk.h>
23 #include <linux/irq.h>
24 #include <linux/gpio.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/slab.h>
27 #include <linux/prefetch.h>
28 #include <linux/byteorder/generic.h>
29 #include <linux/platform_data/pxa2xx_udc.h>
30 #include <linux/of_device.h>
31 #include <linux/of_gpio.h>
32
33 #include <linux/usb.h>
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36
37 #include "pxa27x_udc.h"
38
39 /*
40 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
41 * series processors.
42 *
43 * Such controller drivers work with a gadget driver. The gadget driver
44 * returns descriptors, implements configuration and data protocols used
45 * by the host to interact with this device, and allocates endpoints to
46 * the different protocol interfaces. The controller driver virtualizes
47 * usb hardware so that the gadget drivers will be more portable.
48 *
49 * This UDC hardware wants to implement a bit too much USB protocol. The
50 * biggest issues are: that the endpoints have to be set up before the
51 * controller can be enabled (minor, and not uncommon); and each endpoint
52 * can only have one configuration, interface and alternative interface
53 * number (major, and very unusual). Once set up, these cannot be changed
54 * without a controller reset.
55 *
56 * The workaround is to setup all combinations necessary for the gadgets which
57 * will work with this driver. This is done in pxa_udc structure, statically.
58 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
59 * (You could modify this if needed. Some drivers have a "fifo_mode" module
60 * parameter to facilitate such changes.)
61 *
62 * The combinations have been tested with these gadgets :
63 * - zero gadget
64 * - file storage gadget
65 * - ether gadget
66 *
67 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
68 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
69 *
70 * All the requests are handled the same way :
71 * - the drivers tries to handle the request directly to the IO
72 * - if the IO fifo is not big enough, the remaining is send/received in
73 * interrupt handling.
74 */
75
76 #define DRIVER_VERSION "2008-04-18"
77 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
78
79 static const char driver_name[] = "pxa27x_udc";
80 static struct pxa_udc *the_controller;
81
82 static void handle_ep(struct pxa_ep *ep);
83
84 /*
85 * Debug filesystem
86 */
87 #ifdef CONFIG_USB_GADGET_DEBUG_FS
88
89 #include <linux/debugfs.h>
90 #include <linux/uaccess.h>
91 #include <linux/seq_file.h>
92
93 static int state_dbg_show(struct seq_file *s, void *p)
94 {
95 struct pxa_udc *udc = s->private;
96 u32 tmp;
97
98 if (!udc->driver)
99 return -ENODEV;
100
101 /* basic device status */
102 seq_printf(s, DRIVER_DESC "\n"
103 "%s version: %s\n"
104 "Gadget driver: %s\n",
105 driver_name, DRIVER_VERSION,
106 udc->driver ? udc->driver->driver.name : "(none)");
107
108 tmp = udc_readl(udc, UDCCR);
109 seq_printf(s,
110 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
111 tmp,
112 (tmp & UDCCR_OEN) ? " oen":"",
113 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
114 (tmp & UDCCR_AHNP) ? " rem" : "",
115 (tmp & UDCCR_BHNP) ? " rstir" : "",
116 (tmp & UDCCR_DWRE) ? " dwre" : "",
117 (tmp & UDCCR_SMAC) ? " smac" : "",
118 (tmp & UDCCR_EMCE) ? " emce" : "",
119 (tmp & UDCCR_UDR) ? " udr" : "",
120 (tmp & UDCCR_UDA) ? " uda" : "",
121 (tmp & UDCCR_UDE) ? " ude" : "",
122 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
123 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
124 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
125 /* registers for device and ep0 */
126 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
127 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
128 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
129 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
130 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
131 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
132 udc->stats.irqs_reset, udc->stats.irqs_suspend,
133 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
134
135 return 0;
136 }
137
138 static int queues_dbg_show(struct seq_file *s, void *p)
139 {
140 struct pxa_udc *udc = s->private;
141 struct pxa_ep *ep;
142 struct pxa27x_request *req;
143 int i, maxpkt;
144
145 if (!udc->driver)
146 return -ENODEV;
147
148 /* dump endpoint queues */
149 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
150 ep = &udc->pxa_ep[i];
151 maxpkt = ep->fifo_size;
152 seq_printf(s, "%-12s max_pkt=%d %s\n",
153 EPNAME(ep), maxpkt, "pio");
154
155 if (list_empty(&ep->queue)) {
156 seq_puts(s, "\t(nothing queued)\n");
157 continue;
158 }
159
160 list_for_each_entry(req, &ep->queue, queue) {
161 seq_printf(s, "\treq %p len %d/%d buf %p\n",
162 &req->req, req->req.actual,
163 req->req.length, req->req.buf);
164 }
165 }
166
167 return 0;
168 }
169
170 static int eps_dbg_show(struct seq_file *s, void *p)
171 {
172 struct pxa_udc *udc = s->private;
173 struct pxa_ep *ep;
174 int i;
175 u32 tmp;
176
177 if (!udc->driver)
178 return -ENODEV;
179
180 ep = &udc->pxa_ep[0];
181 tmp = udc_ep_readl(ep, UDCCSR);
182 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
183 tmp,
184 (tmp & UDCCSR0_SA) ? " sa" : "",
185 (tmp & UDCCSR0_RNE) ? " rne" : "",
186 (tmp & UDCCSR0_FST) ? " fst" : "",
187 (tmp & UDCCSR0_SST) ? " sst" : "",
188 (tmp & UDCCSR0_DME) ? " dme" : "",
189 (tmp & UDCCSR0_IPR) ? " ipr" : "",
190 (tmp & UDCCSR0_OPC) ? " opc" : "");
191 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
192 ep = &udc->pxa_ep[i];
193 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
194 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
195 EPNAME(ep),
196 ep->stats.in_bytes, ep->stats.in_ops,
197 ep->stats.out_bytes, ep->stats.out_ops,
198 ep->stats.irqs,
199 tmp, udc_ep_readl(ep, UDCCSR),
200 udc_ep_readl(ep, UDCBCR));
201 }
202
203 return 0;
204 }
205
206 static int eps_dbg_open(struct inode *inode, struct file *file)
207 {
208 return single_open(file, eps_dbg_show, inode->i_private);
209 }
210
211 static int queues_dbg_open(struct inode *inode, struct file *file)
212 {
213 return single_open(file, queues_dbg_show, inode->i_private);
214 }
215
216 static int state_dbg_open(struct inode *inode, struct file *file)
217 {
218 return single_open(file, state_dbg_show, inode->i_private);
219 }
220
221 static const struct file_operations state_dbg_fops = {
222 .owner = THIS_MODULE,
223 .open = state_dbg_open,
224 .llseek = seq_lseek,
225 .read = seq_read,
226 .release = single_release,
227 };
228
229 static const struct file_operations queues_dbg_fops = {
230 .owner = THIS_MODULE,
231 .open = queues_dbg_open,
232 .llseek = seq_lseek,
233 .read = seq_read,
234 .release = single_release,
235 };
236
237 static const struct file_operations eps_dbg_fops = {
238 .owner = THIS_MODULE,
239 .open = eps_dbg_open,
240 .llseek = seq_lseek,
241 .read = seq_read,
242 .release = single_release,
243 };
244
245 static void pxa_init_debugfs(struct pxa_udc *udc)
246 {
247 struct dentry *root, *state, *queues, *eps;
248
249 root = debugfs_create_dir(udc->gadget.name, NULL);
250 if (IS_ERR(root) || !root)
251 goto err_root;
252
253 state = debugfs_create_file("udcstate", 0400, root, udc,
254 &state_dbg_fops);
255 if (!state)
256 goto err_state;
257 queues = debugfs_create_file("queues", 0400, root, udc,
258 &queues_dbg_fops);
259 if (!queues)
260 goto err_queues;
261 eps = debugfs_create_file("epstate", 0400, root, udc,
262 &eps_dbg_fops);
263 if (!eps)
264 goto err_eps;
265
266 udc->debugfs_root = root;
267 udc->debugfs_state = state;
268 udc->debugfs_queues = queues;
269 udc->debugfs_eps = eps;
270 return;
271 err_eps:
272 debugfs_remove(eps);
273 err_queues:
274 debugfs_remove(queues);
275 err_state:
276 debugfs_remove(root);
277 err_root:
278 dev_err(udc->dev, "debugfs is not available\n");
279 }
280
281 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
282 {
283 debugfs_remove(udc->debugfs_eps);
284 debugfs_remove(udc->debugfs_queues);
285 debugfs_remove(udc->debugfs_state);
286 debugfs_remove(udc->debugfs_root);
287 udc->debugfs_eps = NULL;
288 udc->debugfs_queues = NULL;
289 udc->debugfs_state = NULL;
290 udc->debugfs_root = NULL;
291 }
292
293 #else
294 static inline void pxa_init_debugfs(struct pxa_udc *udc)
295 {
296 }
297
298 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
299 {
300 }
301 #endif
302
303 /**
304 * is_match_usb_pxa - check if usb_ep and pxa_ep match
305 * @udc_usb_ep: usb endpoint
306 * @ep: pxa endpoint
307 * @config: configuration required in pxa_ep
308 * @interface: interface required in pxa_ep
309 * @altsetting: altsetting required in pxa_ep
310 *
311 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
312 */
313 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
314 int config, int interface, int altsetting)
315 {
316 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
317 return 0;
318 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
319 return 0;
320 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
321 return 0;
322 if ((ep->config != config) || (ep->interface != interface)
323 || (ep->alternate != altsetting))
324 return 0;
325 return 1;
326 }
327
328 /**
329 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
330 * @udc: pxa udc
331 * @udc_usb_ep: udc_usb_ep structure
332 *
333 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
334 * This is necessary because of the strong pxa hardware restriction requiring
335 * that once pxa endpoints are initialized, their configuration is freezed, and
336 * no change can be made to their address, direction, or in which configuration,
337 * interface or altsetting they are active ... which differs from more usual
338 * models which have endpoints be roughly just addressable fifos, and leave
339 * configuration events up to gadget drivers (like all control messages).
340 *
341 * Note that there is still a blurred point here :
342 * - we rely on UDCCR register "active interface" and "active altsetting".
343 * This is a nonsense in regard of USB spec, where multiple interfaces are
344 * active at the same time.
345 * - if we knew for sure that the pxa can handle multiple interface at the
346 * same time, assuming Intel's Developer Guide is wrong, this function
347 * should be reviewed, and a cache of couples (iface, altsetting) should
348 * be kept in the pxa_udc structure. In this case this function would match
349 * against the cache of couples instead of the "last altsetting" set up.
350 *
351 * Returns the matched pxa_ep structure or NULL if none found
352 */
353 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
354 struct udc_usb_ep *udc_usb_ep)
355 {
356 int i;
357 struct pxa_ep *ep;
358 int cfg = udc->config;
359 int iface = udc->last_interface;
360 int alt = udc->last_alternate;
361
362 if (udc_usb_ep == &udc->udc_usb_ep[0])
363 return &udc->pxa_ep[0];
364
365 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
366 ep = &udc->pxa_ep[i];
367 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
368 return ep;
369 }
370 return NULL;
371 }
372
373 /**
374 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
375 * @udc: pxa udc
376 *
377 * Context: in_interrupt()
378 *
379 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
380 * previously set up (and is not NULL). The update is necessary is a
381 * configuration change or altsetting change was issued by the USB host.
382 */
383 static void update_pxa_ep_matches(struct pxa_udc *udc)
384 {
385 int i;
386 struct udc_usb_ep *udc_usb_ep;
387
388 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
389 udc_usb_ep = &udc->udc_usb_ep[i];
390 if (udc_usb_ep->pxa_ep)
391 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
392 }
393 }
394
395 /**
396 * pio_irq_enable - Enables irq generation for one endpoint
397 * @ep: udc endpoint
398 */
399 static void pio_irq_enable(struct pxa_ep *ep)
400 {
401 struct pxa_udc *udc = ep->dev;
402 int index = EPIDX(ep);
403 u32 udcicr0 = udc_readl(udc, UDCICR0);
404 u32 udcicr1 = udc_readl(udc, UDCICR1);
405
406 if (index < 16)
407 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
408 else
409 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
410 }
411
412 /**
413 * pio_irq_disable - Disables irq generation for one endpoint
414 * @ep: udc endpoint
415 */
416 static void pio_irq_disable(struct pxa_ep *ep)
417 {
418 struct pxa_udc *udc = ep->dev;
419 int index = EPIDX(ep);
420 u32 udcicr0 = udc_readl(udc, UDCICR0);
421 u32 udcicr1 = udc_readl(udc, UDCICR1);
422
423 if (index < 16)
424 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
425 else
426 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
427 }
428
429 /**
430 * udc_set_mask_UDCCR - set bits in UDCCR
431 * @udc: udc device
432 * @mask: bits to set in UDCCR
433 *
434 * Sets bits in UDCCR, leaving DME and FST bits as they were.
435 */
436 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
437 {
438 u32 udccr = udc_readl(udc, UDCCR);
439 udc_writel(udc, UDCCR,
440 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
441 }
442
443 /**
444 * udc_clear_mask_UDCCR - clears bits in UDCCR
445 * @udc: udc device
446 * @mask: bit to clear in UDCCR
447 *
448 * Clears bits in UDCCR, leaving DME and FST bits as they were.
449 */
450 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
451 {
452 u32 udccr = udc_readl(udc, UDCCR);
453 udc_writel(udc, UDCCR,
454 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
455 }
456
457 /**
458 * ep_write_UDCCSR - set bits in UDCCSR
459 * @udc: udc device
460 * @mask: bits to set in UDCCR
461 *
462 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
463 *
464 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
465 * SET_INTERFACE and SET_CONFIGURATION.
466 */
467 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
468 {
469 if (is_ep0(ep))
470 mask |= UDCCSR0_ACM;
471 udc_ep_writel(ep, UDCCSR, mask);
472 }
473
474 /**
475 * ep_count_bytes_remain - get how many bytes in udc endpoint
476 * @ep: udc endpoint
477 *
478 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
479 */
480 static int ep_count_bytes_remain(struct pxa_ep *ep)
481 {
482 if (ep->dir_in)
483 return -EOPNOTSUPP;
484 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
485 }
486
487 /**
488 * ep_is_empty - checks if ep has byte ready for reading
489 * @ep: udc endpoint
490 *
491 * If endpoint is the control endpoint, checks if there are bytes in the
492 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
493 * are ready for reading on OUT endpoint.
494 *
495 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
496 */
497 static int ep_is_empty(struct pxa_ep *ep)
498 {
499 int ret;
500
501 if (!is_ep0(ep) && ep->dir_in)
502 return -EOPNOTSUPP;
503 if (is_ep0(ep))
504 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
505 else
506 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
507 return ret;
508 }
509
510 /**
511 * ep_is_full - checks if ep has place to write bytes
512 * @ep: udc endpoint
513 *
514 * If endpoint is not the control endpoint and is an IN endpoint, checks if
515 * there is place to write bytes into the endpoint.
516 *
517 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
518 */
519 static int ep_is_full(struct pxa_ep *ep)
520 {
521 if (is_ep0(ep))
522 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
523 if (!ep->dir_in)
524 return -EOPNOTSUPP;
525 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
526 }
527
528 /**
529 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
530 * @ep: pxa endpoint
531 *
532 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
533 */
534 static int epout_has_pkt(struct pxa_ep *ep)
535 {
536 if (!is_ep0(ep) && ep->dir_in)
537 return -EOPNOTSUPP;
538 if (is_ep0(ep))
539 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
540 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
541 }
542
543 /**
544 * set_ep0state - Set ep0 automata state
545 * @dev: udc device
546 * @state: state
547 */
548 static void set_ep0state(struct pxa_udc *udc, int state)
549 {
550 struct pxa_ep *ep = &udc->pxa_ep[0];
551 char *old_stname = EP0_STNAME(udc);
552
553 udc->ep0state = state;
554 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
555 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
556 udc_ep_readl(ep, UDCBCR));
557 }
558
559 /**
560 * ep0_idle - Put control endpoint into idle state
561 * @dev: udc device
562 */
563 static void ep0_idle(struct pxa_udc *dev)
564 {
565 set_ep0state(dev, WAIT_FOR_SETUP);
566 }
567
568 /**
569 * inc_ep_stats_reqs - Update ep stats counts
570 * @ep: physical endpoint
571 * @req: usb request
572 * @is_in: ep direction (USB_DIR_IN or 0)
573 *
574 */
575 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
576 {
577 if (is_in)
578 ep->stats.in_ops++;
579 else
580 ep->stats.out_ops++;
581 }
582
583 /**
584 * inc_ep_stats_bytes - Update ep stats counts
585 * @ep: physical endpoint
586 * @count: bytes transferred on endpoint
587 * @is_in: ep direction (USB_DIR_IN or 0)
588 */
589 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
590 {
591 if (is_in)
592 ep->stats.in_bytes += count;
593 else
594 ep->stats.out_bytes += count;
595 }
596
597 /**
598 * pxa_ep_setup - Sets up an usb physical endpoint
599 * @ep: pxa27x physical endpoint
600 *
601 * Find the physical pxa27x ep, and setup its UDCCR
602 */
603 static void pxa_ep_setup(struct pxa_ep *ep)
604 {
605 u32 new_udccr;
606
607 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
608 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
609 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
610 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
611 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
612 | ((ep->dir_in) ? UDCCONR_ED : 0)
613 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
614 | UDCCONR_EE;
615
616 udc_ep_writel(ep, UDCCR, new_udccr);
617 }
618
619 /**
620 * pxa_eps_setup - Sets up all usb physical endpoints
621 * @dev: udc device
622 *
623 * Setup all pxa physical endpoints, except ep0
624 */
625 static void pxa_eps_setup(struct pxa_udc *dev)
626 {
627 unsigned int i;
628
629 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
630
631 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
632 pxa_ep_setup(&dev->pxa_ep[i]);
633 }
634
635 /**
636 * pxa_ep_alloc_request - Allocate usb request
637 * @_ep: usb endpoint
638 * @gfp_flags:
639 *
640 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
641 * must still pass correctly initialized endpoints, since other controller
642 * drivers may care about how it's currently set up (dma issues etc).
643 */
644 static struct usb_request *
645 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
646 {
647 struct pxa27x_request *req;
648
649 req = kzalloc(sizeof *req, gfp_flags);
650 if (!req)
651 return NULL;
652
653 INIT_LIST_HEAD(&req->queue);
654 req->in_use = 0;
655 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
656
657 return &req->req;
658 }
659
660 /**
661 * pxa_ep_free_request - Free usb request
662 * @_ep: usb endpoint
663 * @_req: usb request
664 *
665 * Wrapper around kfree to free _req
666 */
667 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
668 {
669 struct pxa27x_request *req;
670
671 req = container_of(_req, struct pxa27x_request, req);
672 WARN_ON(!list_empty(&req->queue));
673 kfree(req);
674 }
675
676 /**
677 * ep_add_request - add a request to the endpoint's queue
678 * @ep: usb endpoint
679 * @req: usb request
680 *
681 * Context: ep->lock held
682 *
683 * Queues the request in the endpoint's queue, and enables the interrupts
684 * on the endpoint.
685 */
686 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
687 {
688 if (unlikely(!req))
689 return;
690 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
691 req->req.length, udc_ep_readl(ep, UDCCSR));
692
693 req->in_use = 1;
694 list_add_tail(&req->queue, &ep->queue);
695 pio_irq_enable(ep);
696 }
697
698 /**
699 * ep_del_request - removes a request from the endpoint's queue
700 * @ep: usb endpoint
701 * @req: usb request
702 *
703 * Context: ep->lock held
704 *
705 * Unqueue the request from the endpoint's queue. If there are no more requests
706 * on the endpoint, and if it's not the control endpoint, interrupts are
707 * disabled on the endpoint.
708 */
709 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
710 {
711 if (unlikely(!req))
712 return;
713 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
714 req->req.length, udc_ep_readl(ep, UDCCSR));
715
716 list_del_init(&req->queue);
717 req->in_use = 0;
718 if (!is_ep0(ep) && list_empty(&ep->queue))
719 pio_irq_disable(ep);
720 }
721
722 /**
723 * req_done - Complete an usb request
724 * @ep: pxa physical endpoint
725 * @req: pxa request
726 * @status: usb request status sent to gadget API
727 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
728 *
729 * Context: ep->lock held if flags not NULL, else ep->lock released
730 *
731 * Retire a pxa27x usb request. Endpoint must be locked.
732 */
733 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
734 unsigned long *pflags)
735 {
736 unsigned long flags;
737
738 ep_del_request(ep, req);
739 if (likely(req->req.status == -EINPROGRESS))
740 req->req.status = status;
741 else
742 status = req->req.status;
743
744 if (status && status != -ESHUTDOWN)
745 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
746 &req->req, status,
747 req->req.actual, req->req.length);
748
749 if (pflags)
750 spin_unlock_irqrestore(&ep->lock, *pflags);
751 local_irq_save(flags);
752 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
753 local_irq_restore(flags);
754 if (pflags)
755 spin_lock_irqsave(&ep->lock, *pflags);
756 }
757
758 /**
759 * ep_end_out_req - Ends endpoint OUT request
760 * @ep: physical endpoint
761 * @req: pxa request
762 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
763 *
764 * Context: ep->lock held or released (see req_done())
765 *
766 * Ends endpoint OUT request (completes usb request).
767 */
768 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
769 unsigned long *pflags)
770 {
771 inc_ep_stats_reqs(ep, !USB_DIR_IN);
772 req_done(ep, req, 0, pflags);
773 }
774
775 /**
776 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
777 * @ep: physical endpoint
778 * @req: pxa request
779 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
780 *
781 * Context: ep->lock held or released (see req_done())
782 *
783 * Ends control endpoint OUT request (completes usb request), and puts
784 * control endpoint into idle state
785 */
786 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
787 unsigned long *pflags)
788 {
789 set_ep0state(ep->dev, OUT_STATUS_STAGE);
790 ep_end_out_req(ep, req, pflags);
791 ep0_idle(ep->dev);
792 }
793
794 /**
795 * ep_end_in_req - Ends endpoint IN request
796 * @ep: physical endpoint
797 * @req: pxa request
798 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
799 *
800 * Context: ep->lock held or released (see req_done())
801 *
802 * Ends endpoint IN request (completes usb request).
803 */
804 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
805 unsigned long *pflags)
806 {
807 inc_ep_stats_reqs(ep, USB_DIR_IN);
808 req_done(ep, req, 0, pflags);
809 }
810
811 /**
812 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
813 * @ep: physical endpoint
814 * @req: pxa request
815 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
816 *
817 * Context: ep->lock held or released (see req_done())
818 *
819 * Ends control endpoint IN request (completes usb request), and puts
820 * control endpoint into status state
821 */
822 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
823 unsigned long *pflags)
824 {
825 set_ep0state(ep->dev, IN_STATUS_STAGE);
826 ep_end_in_req(ep, req, pflags);
827 }
828
829 /**
830 * nuke - Dequeue all requests
831 * @ep: pxa endpoint
832 * @status: usb request status
833 *
834 * Context: ep->lock released
835 *
836 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
837 * disabled on that endpoint (because no more requests).
838 */
839 static void nuke(struct pxa_ep *ep, int status)
840 {
841 struct pxa27x_request *req;
842 unsigned long flags;
843
844 spin_lock_irqsave(&ep->lock, flags);
845 while (!list_empty(&ep->queue)) {
846 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
847 req_done(ep, req, status, &flags);
848 }
849 spin_unlock_irqrestore(&ep->lock, flags);
850 }
851
852 /**
853 * read_packet - transfer 1 packet from an OUT endpoint into request
854 * @ep: pxa physical endpoint
855 * @req: usb request
856 *
857 * Takes bytes from OUT endpoint and transfers them info the usb request.
858 * If there is less space in request than bytes received in OUT endpoint,
859 * bytes are left in the OUT endpoint.
860 *
861 * Returns how many bytes were actually transferred
862 */
863 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
864 {
865 u32 *buf;
866 int bytes_ep, bufferspace, count, i;
867
868 bytes_ep = ep_count_bytes_remain(ep);
869 bufferspace = req->req.length - req->req.actual;
870
871 buf = (u32 *)(req->req.buf + req->req.actual);
872 prefetchw(buf);
873
874 if (likely(!ep_is_empty(ep)))
875 count = min(bytes_ep, bufferspace);
876 else /* zlp */
877 count = 0;
878
879 for (i = count; i > 0; i -= 4)
880 *buf++ = udc_ep_readl(ep, UDCDR);
881 req->req.actual += count;
882
883 ep_write_UDCCSR(ep, UDCCSR_PC);
884
885 return count;
886 }
887
888 /**
889 * write_packet - transfer 1 packet from request into an IN endpoint
890 * @ep: pxa physical endpoint
891 * @req: usb request
892 * @max: max bytes that fit into endpoint
893 *
894 * Takes bytes from usb request, and transfers them into the physical
895 * endpoint. If there are no bytes to transfer, doesn't write anything
896 * to physical endpoint.
897 *
898 * Returns how many bytes were actually transferred.
899 */
900 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
901 unsigned int max)
902 {
903 int length, count, remain, i;
904 u32 *buf;
905 u8 *buf_8;
906
907 buf = (u32 *)(req->req.buf + req->req.actual);
908 prefetch(buf);
909
910 length = min(req->req.length - req->req.actual, max);
911 req->req.actual += length;
912
913 remain = length & 0x3;
914 count = length & ~(0x3);
915 for (i = count; i > 0 ; i -= 4)
916 udc_ep_writel(ep, UDCDR, *buf++);
917
918 buf_8 = (u8 *)buf;
919 for (i = remain; i > 0; i--)
920 udc_ep_writeb(ep, UDCDR, *buf_8++);
921
922 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
923 udc_ep_readl(ep, UDCCSR));
924
925 return length;
926 }
927
928 /**
929 * read_fifo - Transfer packets from OUT endpoint into usb request
930 * @ep: pxa physical endpoint
931 * @req: usb request
932 *
933 * Context: callable when in_interrupt()
934 *
935 * Unload as many packets as possible from the fifo we use for usb OUT
936 * transfers and put them into the request. Caller should have made sure
937 * there's at least one packet ready.
938 * Doesn't complete the request, that's the caller's job
939 *
940 * Returns 1 if the request completed, 0 otherwise
941 */
942 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
943 {
944 int count, is_short, completed = 0;
945
946 while (epout_has_pkt(ep)) {
947 count = read_packet(ep, req);
948 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
949
950 is_short = (count < ep->fifo_size);
951 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
952 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
953 &req->req, req->req.actual, req->req.length);
954
955 /* completion */
956 if (is_short || req->req.actual == req->req.length) {
957 completed = 1;
958 break;
959 }
960 /* finished that packet. the next one may be waiting... */
961 }
962 return completed;
963 }
964
965 /**
966 * write_fifo - transfer packets from usb request into an IN endpoint
967 * @ep: pxa physical endpoint
968 * @req: pxa usb request
969 *
970 * Write to an IN endpoint fifo, as many packets as possible.
971 * irqs will use this to write the rest later.
972 * caller guarantees at least one packet buffer is ready (or a zlp).
973 * Doesn't complete the request, that's the caller's job
974 *
975 * Returns 1 if request fully transferred, 0 if partial transfer
976 */
977 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
978 {
979 unsigned max;
980 int count, is_short, is_last = 0, completed = 0, totcount = 0;
981 u32 udccsr;
982
983 max = ep->fifo_size;
984 do {
985 is_short = 0;
986
987 udccsr = udc_ep_readl(ep, UDCCSR);
988 if (udccsr & UDCCSR_PC) {
989 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
990 udccsr);
991 ep_write_UDCCSR(ep, UDCCSR_PC);
992 }
993 if (udccsr & UDCCSR_TRN) {
994 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
995 udccsr);
996 ep_write_UDCCSR(ep, UDCCSR_TRN);
997 }
998
999 count = write_packet(ep, req, max);
1000 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1001 totcount += count;
1002
1003 /* last packet is usually short (or a zlp) */
1004 if (unlikely(count < max)) {
1005 is_last = 1;
1006 is_short = 1;
1007 } else {
1008 if (likely(req->req.length > req->req.actual)
1009 || req->req.zero)
1010 is_last = 0;
1011 else
1012 is_last = 1;
1013 /* interrupt/iso maxpacket may not fill the fifo */
1014 is_short = unlikely(max < ep->fifo_size);
1015 }
1016
1017 if (is_short)
1018 ep_write_UDCCSR(ep, UDCCSR_SP);
1019
1020 /* requests complete when all IN data is in the FIFO */
1021 if (is_last) {
1022 completed = 1;
1023 break;
1024 }
1025 } while (!ep_is_full(ep));
1026
1027 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
1028 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
1029 req->req.length - req->req.actual, &req->req);
1030
1031 return completed;
1032 }
1033
1034 /**
1035 * read_ep0_fifo - Transfer packets from control endpoint into usb request
1036 * @ep: control endpoint
1037 * @req: pxa usb request
1038 *
1039 * Special ep0 version of the above read_fifo. Reads as many bytes from control
1040 * endpoint as can be read, and stores them into usb request (limited by request
1041 * maximum length).
1042 *
1043 * Returns 0 if usb request only partially filled, 1 if fully filled
1044 */
1045 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1046 {
1047 int count, is_short, completed = 0;
1048
1049 while (epout_has_pkt(ep)) {
1050 count = read_packet(ep, req);
1051 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1052 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
1053
1054 is_short = (count < ep->fifo_size);
1055 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
1056 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
1057 &req->req, req->req.actual, req->req.length);
1058
1059 if (is_short || req->req.actual >= req->req.length) {
1060 completed = 1;
1061 break;
1062 }
1063 }
1064
1065 return completed;
1066 }
1067
1068 /**
1069 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
1070 * @ep: control endpoint
1071 * @req: request
1072 *
1073 * Context: callable when in_interrupt()
1074 *
1075 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1076 * If the request doesn't fit, the remaining part will be sent from irq.
1077 * The request is considered fully written only if either :
1078 * - last write transferred all remaining bytes, but fifo was not fully filled
1079 * - last write was a 0 length write
1080 *
1081 * Returns 1 if request fully written, 0 if request only partially sent
1082 */
1083 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1084 {
1085 unsigned count;
1086 int is_last, is_short;
1087
1088 count = write_packet(ep, req, EP0_FIFO_SIZE);
1089 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1090
1091 is_short = (count < EP0_FIFO_SIZE);
1092 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1093
1094 /* Sends either a short packet or a 0 length packet */
1095 if (unlikely(is_short))
1096 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1097
1098 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1099 count, is_short ? "/S" : "", is_last ? "/L" : "",
1100 req->req.length - req->req.actual,
1101 &req->req, udc_ep_readl(ep, UDCCSR));
1102
1103 return is_last;
1104 }
1105
1106 /**
1107 * pxa_ep_queue - Queue a request into an IN endpoint
1108 * @_ep: usb endpoint
1109 * @_req: usb request
1110 * @gfp_flags: flags
1111 *
1112 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1113 * in the special case of ep0 setup :
1114 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1115 *
1116 * Returns 0 if succedeed, error otherwise
1117 */
1118 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1119 gfp_t gfp_flags)
1120 {
1121 struct udc_usb_ep *udc_usb_ep;
1122 struct pxa_ep *ep;
1123 struct pxa27x_request *req;
1124 struct pxa_udc *dev;
1125 unsigned long flags;
1126 int rc = 0;
1127 int is_first_req;
1128 unsigned length;
1129 int recursion_detected;
1130
1131 req = container_of(_req, struct pxa27x_request, req);
1132 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1133
1134 if (unlikely(!_req || !_req->complete || !_req->buf))
1135 return -EINVAL;
1136
1137 if (unlikely(!_ep))
1138 return -EINVAL;
1139
1140 dev = udc_usb_ep->dev;
1141 ep = udc_usb_ep->pxa_ep;
1142 if (unlikely(!ep))
1143 return -EINVAL;
1144
1145 dev = ep->dev;
1146 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1147 ep_dbg(ep, "bogus device state\n");
1148 return -ESHUTDOWN;
1149 }
1150
1151 /* iso is always one packet per request, that's the only way
1152 * we can report per-packet status. that also helps with dma.
1153 */
1154 if (unlikely(EPXFERTYPE_is_ISO(ep)
1155 && req->req.length > ep->fifo_size))
1156 return -EMSGSIZE;
1157
1158 spin_lock_irqsave(&ep->lock, flags);
1159 recursion_detected = ep->in_handle_ep;
1160
1161 is_first_req = list_empty(&ep->queue);
1162 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1163 _req, is_first_req ? "yes" : "no",
1164 _req->length, _req->buf);
1165
1166 if (!ep->enabled) {
1167 _req->status = -ESHUTDOWN;
1168 rc = -ESHUTDOWN;
1169 goto out_locked;
1170 }
1171
1172 if (req->in_use) {
1173 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1174 goto out_locked;
1175 }
1176
1177 length = _req->length;
1178 _req->status = -EINPROGRESS;
1179 _req->actual = 0;
1180
1181 ep_add_request(ep, req);
1182 spin_unlock_irqrestore(&ep->lock, flags);
1183
1184 if (is_ep0(ep)) {
1185 switch (dev->ep0state) {
1186 case WAIT_ACK_SET_CONF_INTERF:
1187 if (length == 0) {
1188 ep_end_in_req(ep, req, NULL);
1189 } else {
1190 ep_err(ep, "got a request of %d bytes while"
1191 "in state WAIT_ACK_SET_CONF_INTERF\n",
1192 length);
1193 ep_del_request(ep, req);
1194 rc = -EL2HLT;
1195 }
1196 ep0_idle(ep->dev);
1197 break;
1198 case IN_DATA_STAGE:
1199 if (!ep_is_full(ep))
1200 if (write_ep0_fifo(ep, req))
1201 ep0_end_in_req(ep, req, NULL);
1202 break;
1203 case OUT_DATA_STAGE:
1204 if ((length == 0) || !epout_has_pkt(ep))
1205 if (read_ep0_fifo(ep, req))
1206 ep0_end_out_req(ep, req, NULL);
1207 break;
1208 default:
1209 ep_err(ep, "odd state %s to send me a request\n",
1210 EP0_STNAME(ep->dev));
1211 ep_del_request(ep, req);
1212 rc = -EL2HLT;
1213 break;
1214 }
1215 } else {
1216 if (!recursion_detected)
1217 handle_ep(ep);
1218 }
1219
1220 out:
1221 return rc;
1222 out_locked:
1223 spin_unlock_irqrestore(&ep->lock, flags);
1224 goto out;
1225 }
1226
1227 /**
1228 * pxa_ep_dequeue - Dequeue one request
1229 * @_ep: usb endpoint
1230 * @_req: usb request
1231 *
1232 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1233 */
1234 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1235 {
1236 struct pxa_ep *ep;
1237 struct udc_usb_ep *udc_usb_ep;
1238 struct pxa27x_request *req;
1239 unsigned long flags;
1240 int rc = -EINVAL;
1241
1242 if (!_ep)
1243 return rc;
1244 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1245 ep = udc_usb_ep->pxa_ep;
1246 if (!ep || is_ep0(ep))
1247 return rc;
1248
1249 spin_lock_irqsave(&ep->lock, flags);
1250
1251 /* make sure it's actually queued on this endpoint */
1252 list_for_each_entry(req, &ep->queue, queue) {
1253 if (&req->req == _req) {
1254 rc = 0;
1255 break;
1256 }
1257 }
1258
1259 spin_unlock_irqrestore(&ep->lock, flags);
1260 if (!rc)
1261 req_done(ep, req, -ECONNRESET, NULL);
1262 return rc;
1263 }
1264
1265 /**
1266 * pxa_ep_set_halt - Halts operations on one endpoint
1267 * @_ep: usb endpoint
1268 * @value:
1269 *
1270 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1271 */
1272 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1273 {
1274 struct pxa_ep *ep;
1275 struct udc_usb_ep *udc_usb_ep;
1276 unsigned long flags;
1277 int rc;
1278
1279
1280 if (!_ep)
1281 return -EINVAL;
1282 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1283 ep = udc_usb_ep->pxa_ep;
1284 if (!ep || is_ep0(ep))
1285 return -EINVAL;
1286
1287 if (value == 0) {
1288 /*
1289 * This path (reset toggle+halt) is needed to implement
1290 * SET_INTERFACE on normal hardware. but it can't be
1291 * done from software on the PXA UDC, and the hardware
1292 * forgets to do it as part of SET_INTERFACE automagic.
1293 */
1294 ep_dbg(ep, "only host can clear halt\n");
1295 return -EROFS;
1296 }
1297
1298 spin_lock_irqsave(&ep->lock, flags);
1299
1300 rc = -EAGAIN;
1301 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1302 goto out;
1303
1304 /* FST, FEF bits are the same for control and non control endpoints */
1305 rc = 0;
1306 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1307 if (is_ep0(ep))
1308 set_ep0state(ep->dev, STALL);
1309
1310 out:
1311 spin_unlock_irqrestore(&ep->lock, flags);
1312 return rc;
1313 }
1314
1315 /**
1316 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1317 * @_ep: usb endpoint
1318 *
1319 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1320 */
1321 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1322 {
1323 struct pxa_ep *ep;
1324 struct udc_usb_ep *udc_usb_ep;
1325
1326 if (!_ep)
1327 return -ENODEV;
1328 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1329 ep = udc_usb_ep->pxa_ep;
1330 if (!ep || is_ep0(ep))
1331 return -ENODEV;
1332
1333 if (ep->dir_in)
1334 return -EOPNOTSUPP;
1335 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1336 return 0;
1337 else
1338 return ep_count_bytes_remain(ep) + 1;
1339 }
1340
1341 /**
1342 * pxa_ep_fifo_flush - Flushes one endpoint
1343 * @_ep: usb endpoint
1344 *
1345 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1346 */
1347 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1348 {
1349 struct pxa_ep *ep;
1350 struct udc_usb_ep *udc_usb_ep;
1351 unsigned long flags;
1352
1353 if (!_ep)
1354 return;
1355 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1356 ep = udc_usb_ep->pxa_ep;
1357 if (!ep || is_ep0(ep))
1358 return;
1359
1360 spin_lock_irqsave(&ep->lock, flags);
1361
1362 if (unlikely(!list_empty(&ep->queue)))
1363 ep_dbg(ep, "called while queue list not empty\n");
1364 ep_dbg(ep, "called\n");
1365
1366 /* for OUT, just read and discard the FIFO contents. */
1367 if (!ep->dir_in) {
1368 while (!ep_is_empty(ep))
1369 udc_ep_readl(ep, UDCDR);
1370 } else {
1371 /* most IN status is the same, but ISO can't stall */
1372 ep_write_UDCCSR(ep,
1373 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1374 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1375 }
1376
1377 spin_unlock_irqrestore(&ep->lock, flags);
1378 }
1379
1380 /**
1381 * pxa_ep_enable - Enables usb endpoint
1382 * @_ep: usb endpoint
1383 * @desc: usb endpoint descriptor
1384 *
1385 * Nothing much to do here, as ep configuration is done once and for all
1386 * before udc is enabled. After udc enable, no physical endpoint configuration
1387 * can be changed.
1388 * Function makes sanity checks and flushes the endpoint.
1389 */
1390 static int pxa_ep_enable(struct usb_ep *_ep,
1391 const struct usb_endpoint_descriptor *desc)
1392 {
1393 struct pxa_ep *ep;
1394 struct udc_usb_ep *udc_usb_ep;
1395 struct pxa_udc *udc;
1396
1397 if (!_ep || !desc)
1398 return -EINVAL;
1399
1400 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1401 if (udc_usb_ep->pxa_ep) {
1402 ep = udc_usb_ep->pxa_ep;
1403 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1404 _ep->name);
1405 } else {
1406 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1407 }
1408
1409 if (!ep || is_ep0(ep)) {
1410 dev_err(udc_usb_ep->dev->dev,
1411 "unable to match pxa_ep for ep %s\n",
1412 _ep->name);
1413 return -EINVAL;
1414 }
1415
1416 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1417 || (ep->type != usb_endpoint_type(desc))) {
1418 ep_err(ep, "type mismatch\n");
1419 return -EINVAL;
1420 }
1421
1422 if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1423 ep_err(ep, "bad maxpacket\n");
1424 return -ERANGE;
1425 }
1426
1427 udc_usb_ep->pxa_ep = ep;
1428 udc = ep->dev;
1429
1430 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1431 ep_err(ep, "bogus device state\n");
1432 return -ESHUTDOWN;
1433 }
1434
1435 ep->enabled = 1;
1436
1437 /* flush fifo (mostly for OUT buffers) */
1438 pxa_ep_fifo_flush(_ep);
1439
1440 ep_dbg(ep, "enabled\n");
1441 return 0;
1442 }
1443
1444 /**
1445 * pxa_ep_disable - Disable usb endpoint
1446 * @_ep: usb endpoint
1447 *
1448 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1449 * changed.
1450 * Function flushes the endpoint and related requests.
1451 */
1452 static int pxa_ep_disable(struct usb_ep *_ep)
1453 {
1454 struct pxa_ep *ep;
1455 struct udc_usb_ep *udc_usb_ep;
1456
1457 if (!_ep)
1458 return -EINVAL;
1459
1460 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1461 ep = udc_usb_ep->pxa_ep;
1462 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1463 return -EINVAL;
1464
1465 ep->enabled = 0;
1466 nuke(ep, -ESHUTDOWN);
1467
1468 pxa_ep_fifo_flush(_ep);
1469 udc_usb_ep->pxa_ep = NULL;
1470
1471 ep_dbg(ep, "disabled\n");
1472 return 0;
1473 }
1474
1475 static struct usb_ep_ops pxa_ep_ops = {
1476 .enable = pxa_ep_enable,
1477 .disable = pxa_ep_disable,
1478
1479 .alloc_request = pxa_ep_alloc_request,
1480 .free_request = pxa_ep_free_request,
1481
1482 .queue = pxa_ep_queue,
1483 .dequeue = pxa_ep_dequeue,
1484
1485 .set_halt = pxa_ep_set_halt,
1486 .fifo_status = pxa_ep_fifo_status,
1487 .fifo_flush = pxa_ep_fifo_flush,
1488 };
1489
1490 /**
1491 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1492 * @udc: udc device
1493 * @on: 0 if disconnect pullup resistor, 1 otherwise
1494 * Context: any
1495 *
1496 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1497 * declare it as a full speed usb device
1498 */
1499 static void dplus_pullup(struct pxa_udc *udc, int on)
1500 {
1501 if (udc->gpiod) {
1502 gpiod_set_value(udc->gpiod, on);
1503 } else if (udc->udc_command) {
1504 if (on)
1505 udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1506 else
1507 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1508 }
1509 udc->pullup_on = on;
1510 }
1511
1512 /**
1513 * pxa_udc_get_frame - Returns usb frame number
1514 * @_gadget: usb gadget
1515 */
1516 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1517 {
1518 struct pxa_udc *udc = to_gadget_udc(_gadget);
1519
1520 return (udc_readl(udc, UDCFNR) & 0x7ff);
1521 }
1522
1523 /**
1524 * pxa_udc_wakeup - Force udc device out of suspend
1525 * @_gadget: usb gadget
1526 *
1527 * Returns 0 if successful, error code otherwise
1528 */
1529 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1530 {
1531 struct pxa_udc *udc = to_gadget_udc(_gadget);
1532
1533 /* host may not have enabled remote wakeup */
1534 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1535 return -EHOSTUNREACH;
1536 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1537 return 0;
1538 }
1539
1540 static void udc_enable(struct pxa_udc *udc);
1541 static void udc_disable(struct pxa_udc *udc);
1542
1543 /**
1544 * should_enable_udc - Tells if UDC should be enabled
1545 * @udc: udc device
1546 * Context: any
1547 *
1548 * The UDC should be enabled if :
1549
1550 * - the pullup resistor is connected
1551 * - and a gadget driver is bound
1552 * - and vbus is sensed (or no vbus sense is available)
1553 *
1554 * Returns 1 if UDC should be enabled, 0 otherwise
1555 */
1556 static int should_enable_udc(struct pxa_udc *udc)
1557 {
1558 int put_on;
1559
1560 put_on = ((udc->pullup_on) && (udc->driver));
1561 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1562 return put_on;
1563 }
1564
1565 /**
1566 * should_disable_udc - Tells if UDC should be disabled
1567 * @udc: udc device
1568 * Context: any
1569 *
1570 * The UDC should be disabled if :
1571 * - the pullup resistor is not connected
1572 * - or no gadget driver is bound
1573 * - or no vbus is sensed (when vbus sesing is available)
1574 *
1575 * Returns 1 if UDC should be disabled
1576 */
1577 static int should_disable_udc(struct pxa_udc *udc)
1578 {
1579 int put_off;
1580
1581 put_off = ((!udc->pullup_on) || (!udc->driver));
1582 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1583 return put_off;
1584 }
1585
1586 /**
1587 * pxa_udc_pullup - Offer manual D+ pullup control
1588 * @_gadget: usb gadget using the control
1589 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1590 * Context: !in_interrupt()
1591 *
1592 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1593 */
1594 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1595 {
1596 struct pxa_udc *udc = to_gadget_udc(_gadget);
1597
1598 if (!udc->gpiod && !udc->udc_command)
1599 return -EOPNOTSUPP;
1600
1601 dplus_pullup(udc, is_active);
1602
1603 if (should_enable_udc(udc))
1604 udc_enable(udc);
1605 if (should_disable_udc(udc))
1606 udc_disable(udc);
1607 return 0;
1608 }
1609
1610 static void udc_enable(struct pxa_udc *udc);
1611 static void udc_disable(struct pxa_udc *udc);
1612
1613 /**
1614 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1615 * @_gadget: usb gadget
1616 * @is_active: 0 if should disable the udc, 1 if should enable
1617 *
1618 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1619 * udc, and deactivates D+ pullup resistor.
1620 *
1621 * Returns 0
1622 */
1623 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1624 {
1625 struct pxa_udc *udc = to_gadget_udc(_gadget);
1626
1627 udc->vbus_sensed = is_active;
1628 if (should_enable_udc(udc))
1629 udc_enable(udc);
1630 if (should_disable_udc(udc))
1631 udc_disable(udc);
1632
1633 return 0;
1634 }
1635
1636 /**
1637 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1638 * @_gadget: usb gadget
1639 * @mA: current drawn
1640 *
1641 * Context: !in_interrupt()
1642 *
1643 * Called after a configuration was chosen by a USB host, to inform how much
1644 * current can be drawn by the device from VBus line.
1645 *
1646 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1647 */
1648 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1649 {
1650 struct pxa_udc *udc;
1651
1652 udc = to_gadget_udc(_gadget);
1653 if (!IS_ERR_OR_NULL(udc->transceiver))
1654 return usb_phy_set_power(udc->transceiver, mA);
1655 return -EOPNOTSUPP;
1656 }
1657
1658 static int pxa27x_udc_start(struct usb_gadget *g,
1659 struct usb_gadget_driver *driver);
1660 static int pxa27x_udc_stop(struct usb_gadget *g);
1661
1662 static const struct usb_gadget_ops pxa_udc_ops = {
1663 .get_frame = pxa_udc_get_frame,
1664 .wakeup = pxa_udc_wakeup,
1665 .pullup = pxa_udc_pullup,
1666 .vbus_session = pxa_udc_vbus_session,
1667 .vbus_draw = pxa_udc_vbus_draw,
1668 .udc_start = pxa27x_udc_start,
1669 .udc_stop = pxa27x_udc_stop,
1670 };
1671
1672 /**
1673 * udc_disable - disable udc device controller
1674 * @udc: udc device
1675 * Context: any
1676 *
1677 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1678 * interrupts.
1679 */
1680 static void udc_disable(struct pxa_udc *udc)
1681 {
1682 if (!udc->enabled)
1683 return;
1684
1685 udc_writel(udc, UDCICR0, 0);
1686 udc_writel(udc, UDCICR1, 0);
1687
1688 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1689
1690 ep0_idle(udc);
1691 udc->gadget.speed = USB_SPEED_UNKNOWN;
1692 clk_disable(udc->clk);
1693
1694 udc->enabled = 0;
1695 }
1696
1697 /**
1698 * udc_init_data - Initialize udc device data structures
1699 * @dev: udc device
1700 *
1701 * Initializes gadget endpoint list, endpoints locks. No action is taken
1702 * on the hardware.
1703 */
1704 static void udc_init_data(struct pxa_udc *dev)
1705 {
1706 int i;
1707 struct pxa_ep *ep;
1708
1709 /* device/ep0 records init */
1710 INIT_LIST_HEAD(&dev->gadget.ep_list);
1711 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1712 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1713 ep0_idle(dev);
1714
1715 /* PXA endpoints init */
1716 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1717 ep = &dev->pxa_ep[i];
1718
1719 ep->enabled = is_ep0(ep);
1720 INIT_LIST_HEAD(&ep->queue);
1721 spin_lock_init(&ep->lock);
1722 }
1723
1724 /* USB endpoints init */
1725 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1726 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1727 &dev->gadget.ep_list);
1728 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1729 dev->udc_usb_ep[i].usb_ep.maxpacket);
1730 }
1731 }
1732
1733 /**
1734 * udc_enable - Enables the udc device
1735 * @dev: udc device
1736 *
1737 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1738 * interrupts, sets usb as UDC client and setups endpoints.
1739 */
1740 static void udc_enable(struct pxa_udc *udc)
1741 {
1742 if (udc->enabled)
1743 return;
1744
1745 clk_enable(udc->clk);
1746 udc_writel(udc, UDCICR0, 0);
1747 udc_writel(udc, UDCICR1, 0);
1748 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1749
1750 ep0_idle(udc);
1751 udc->gadget.speed = USB_SPEED_FULL;
1752 memset(&udc->stats, 0, sizeof(udc->stats));
1753
1754 pxa_eps_setup(udc);
1755 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1756 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1757 udelay(2);
1758 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1759 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1760
1761 /*
1762 * Caller must be able to sleep in order to cope with startup transients
1763 */
1764 msleep(100);
1765
1766 /* enable suspend/resume and reset irqs */
1767 udc_writel(udc, UDCICR1,
1768 UDCICR1_IECC | UDCICR1_IERU
1769 | UDCICR1_IESU | UDCICR1_IERS);
1770
1771 /* enable ep0 irqs */
1772 pio_irq_enable(&udc->pxa_ep[0]);
1773
1774 udc->enabled = 1;
1775 }
1776
1777 /**
1778 * pxa27x_start - Register gadget driver
1779 * @driver: gadget driver
1780 * @bind: bind function
1781 *
1782 * When a driver is successfully registered, it will receive control requests
1783 * including set_configuration(), which enables non-control requests. Then
1784 * usb traffic follows until a disconnect is reported. Then a host may connect
1785 * again, or the driver might get unbound.
1786 *
1787 * Note that the udc is not automatically enabled. Check function
1788 * should_enable_udc().
1789 *
1790 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1791 */
1792 static int pxa27x_udc_start(struct usb_gadget *g,
1793 struct usb_gadget_driver *driver)
1794 {
1795 struct pxa_udc *udc = to_pxa(g);
1796 int retval;
1797
1798 /* first hook up the driver ... */
1799 udc->driver = driver;
1800
1801 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1802 retval = otg_set_peripheral(udc->transceiver->otg,
1803 &udc->gadget);
1804 if (retval) {
1805 dev_err(udc->dev, "can't bind to transceiver\n");
1806 goto fail;
1807 }
1808 }
1809
1810 if (should_enable_udc(udc))
1811 udc_enable(udc);
1812 return 0;
1813
1814 fail:
1815 udc->driver = NULL;
1816 return retval;
1817 }
1818
1819 /**
1820 * stop_activity - Stops udc endpoints
1821 * @udc: udc device
1822 * @driver: gadget driver
1823 *
1824 * Disables all udc endpoints (even control endpoint), report disconnect to
1825 * the gadget user.
1826 */
1827 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver)
1828 {
1829 int i;
1830
1831 /* don't disconnect drivers more than once */
1832 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1833 driver = NULL;
1834 udc->gadget.speed = USB_SPEED_UNKNOWN;
1835
1836 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1837 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1838 }
1839
1840 /**
1841 * pxa27x_udc_stop - Unregister the gadget driver
1842 * @driver: gadget driver
1843 *
1844 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1845 */
1846 static int pxa27x_udc_stop(struct usb_gadget *g)
1847 {
1848 struct pxa_udc *udc = to_pxa(g);
1849
1850 stop_activity(udc, NULL);
1851 udc_disable(udc);
1852
1853 udc->driver = NULL;
1854
1855 if (!IS_ERR_OR_NULL(udc->transceiver))
1856 return otg_set_peripheral(udc->transceiver->otg, NULL);
1857 return 0;
1858 }
1859
1860 /**
1861 * handle_ep0_ctrl_req - handle control endpoint control request
1862 * @udc: udc device
1863 * @req: control request
1864 */
1865 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1866 struct pxa27x_request *req)
1867 {
1868 struct pxa_ep *ep = &udc->pxa_ep[0];
1869 union {
1870 struct usb_ctrlrequest r;
1871 u32 word[2];
1872 } u;
1873 int i;
1874 int have_extrabytes = 0;
1875 unsigned long flags;
1876
1877 nuke(ep, -EPROTO);
1878 spin_lock_irqsave(&ep->lock, flags);
1879
1880 /*
1881 * In the PXA320 manual, in the section about Back-to-Back setup
1882 * packets, it describes this situation. The solution is to set OPC to
1883 * get rid of the status packet, and then continue with the setup
1884 * packet. Generalize to pxa27x CPUs.
1885 */
1886 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1887 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1888
1889 /* read SETUP packet */
1890 for (i = 0; i < 2; i++) {
1891 if (unlikely(ep_is_empty(ep)))
1892 goto stall;
1893 u.word[i] = udc_ep_readl(ep, UDCDR);
1894 }
1895
1896 have_extrabytes = !ep_is_empty(ep);
1897 while (!ep_is_empty(ep)) {
1898 i = udc_ep_readl(ep, UDCDR);
1899 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1900 }
1901
1902 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1903 u.r.bRequestType, u.r.bRequest,
1904 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1905 le16_to_cpu(u.r.wLength));
1906 if (unlikely(have_extrabytes))
1907 goto stall;
1908
1909 if (u.r.bRequestType & USB_DIR_IN)
1910 set_ep0state(udc, IN_DATA_STAGE);
1911 else
1912 set_ep0state(udc, OUT_DATA_STAGE);
1913
1914 /* Tell UDC to enter Data Stage */
1915 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1916
1917 spin_unlock_irqrestore(&ep->lock, flags);
1918 i = udc->driver->setup(&udc->gadget, &u.r);
1919 spin_lock_irqsave(&ep->lock, flags);
1920 if (i < 0)
1921 goto stall;
1922 out:
1923 spin_unlock_irqrestore(&ep->lock, flags);
1924 return;
1925 stall:
1926 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1927 udc_ep_readl(ep, UDCCSR), i);
1928 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1929 set_ep0state(udc, STALL);
1930 goto out;
1931 }
1932
1933 /**
1934 * handle_ep0 - Handle control endpoint data transfers
1935 * @udc: udc device
1936 * @fifo_irq: 1 if triggered by fifo service type irq
1937 * @opc_irq: 1 if triggered by output packet complete type irq
1938 *
1939 * Context : when in_interrupt() or with ep->lock held
1940 *
1941 * Tries to transfer all pending request data into the endpoint and/or
1942 * transfer all pending data in the endpoint into usb requests.
1943 * Handles states of ep0 automata.
1944 *
1945 * PXA27x hardware handles several standard usb control requests without
1946 * driver notification. The requests fully handled by hardware are :
1947 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1948 * GET_STATUS
1949 * The requests handled by hardware, but with irq notification are :
1950 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1951 * The remaining standard requests really handled by handle_ep0 are :
1952 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1953 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1954 * uniformly, by gadget drivers.
1955 *
1956 * The control endpoint state machine is _not_ USB spec compliant, it's even
1957 * hardly compliant with Intel PXA270 developers guide.
1958 * The key points which inferred this state machine are :
1959 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1960 * software.
1961 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1962 * cleared by software.
1963 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1964 * before reading ep0.
1965 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1966 * (check Back-to-Back setup packet in developers guide).
1967 * - irq can be called on a "packet complete" event (opc_irq=1), while
1968 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1969 * from experimentation).
1970 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
1971 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1972 * => we never actually read the "status stage" packet of an IN data stage
1973 * => this is not documented in Intel documentation
1974 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1975 * STAGE. The driver add STATUS STAGE to send last zero length packet in
1976 * OUT_STATUS_STAGE.
1977 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
1978 * event is detected, we terminate the status stage without ackowledging the
1979 * packet (not to risk to loose a potential SETUP packet)
1980 */
1981 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1982 {
1983 u32 udccsr0;
1984 struct pxa_ep *ep = &udc->pxa_ep[0];
1985 struct pxa27x_request *req = NULL;
1986 int completed = 0;
1987
1988 if (!list_empty(&ep->queue))
1989 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
1990
1991 udccsr0 = udc_ep_readl(ep, UDCCSR);
1992 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
1993 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
1994 (fifo_irq << 1 | opc_irq));
1995
1996 if (udccsr0 & UDCCSR0_SST) {
1997 ep_dbg(ep, "clearing stall status\n");
1998 nuke(ep, -EPIPE);
1999 ep_write_UDCCSR(ep, UDCCSR0_SST);
2000 ep0_idle(udc);
2001 }
2002
2003 if (udccsr0 & UDCCSR0_SA) {
2004 nuke(ep, 0);
2005 set_ep0state(udc, SETUP_STAGE);
2006 }
2007
2008 switch (udc->ep0state) {
2009 case WAIT_FOR_SETUP:
2010 /*
2011 * Hardware bug : beware, we cannot clear OPC, since we would
2012 * miss a potential OPC irq for a setup packet.
2013 * So, we only do ... nothing, and hope for a next irq with
2014 * UDCCSR0_SA set.
2015 */
2016 break;
2017 case SETUP_STAGE:
2018 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
2019 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
2020 handle_ep0_ctrl_req(udc, req);
2021 break;
2022 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
2023 if (epout_has_pkt(ep))
2024 ep_write_UDCCSR(ep, UDCCSR0_OPC);
2025 if (req && !ep_is_full(ep))
2026 completed = write_ep0_fifo(ep, req);
2027 if (completed)
2028 ep0_end_in_req(ep, req, NULL);
2029 break;
2030 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
2031 if (epout_has_pkt(ep) && req)
2032 completed = read_ep0_fifo(ep, req);
2033 if (completed)
2034 ep0_end_out_req(ep, req, NULL);
2035 break;
2036 case STALL:
2037 ep_write_UDCCSR(ep, UDCCSR0_FST);
2038 break;
2039 case IN_STATUS_STAGE:
2040 /*
2041 * Hardware bug : beware, we cannot clear OPC, since we would
2042 * miss a potential PC irq for a setup packet.
2043 * So, we only put the ep0 into WAIT_FOR_SETUP state.
2044 */
2045 if (opc_irq)
2046 ep0_idle(udc);
2047 break;
2048 case OUT_STATUS_STAGE:
2049 case WAIT_ACK_SET_CONF_INTERF:
2050 ep_warn(ep, "should never get in %s state here!!!\n",
2051 EP0_STNAME(ep->dev));
2052 ep0_idle(udc);
2053 break;
2054 }
2055 }
2056
2057 /**
2058 * handle_ep - Handle endpoint data tranfers
2059 * @ep: pxa physical endpoint
2060 *
2061 * Tries to transfer all pending request data into the endpoint and/or
2062 * transfer all pending data in the endpoint into usb requests.
2063 *
2064 * Is always called when in_interrupt() and with ep->lock released.
2065 */
2066 static void handle_ep(struct pxa_ep *ep)
2067 {
2068 struct pxa27x_request *req;
2069 int completed;
2070 u32 udccsr;
2071 int is_in = ep->dir_in;
2072 int loop = 0;
2073 unsigned long flags;
2074
2075 spin_lock_irqsave(&ep->lock, flags);
2076 if (ep->in_handle_ep)
2077 goto recursion_detected;
2078 ep->in_handle_ep = 1;
2079
2080 do {
2081 completed = 0;
2082 udccsr = udc_ep_readl(ep, UDCCSR);
2083
2084 if (likely(!list_empty(&ep->queue)))
2085 req = list_entry(ep->queue.next,
2086 struct pxa27x_request, queue);
2087 else
2088 req = NULL;
2089
2090 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2091 req, udccsr, loop++);
2092
2093 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2094 udc_ep_writel(ep, UDCCSR,
2095 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2096 if (!req)
2097 break;
2098
2099 if (unlikely(is_in)) {
2100 if (likely(!ep_is_full(ep)))
2101 completed = write_fifo(ep, req);
2102 } else {
2103 if (likely(epout_has_pkt(ep)))
2104 completed = read_fifo(ep, req);
2105 }
2106
2107 if (completed) {
2108 if (is_in)
2109 ep_end_in_req(ep, req, &flags);
2110 else
2111 ep_end_out_req(ep, req, &flags);
2112 }
2113 } while (completed);
2114
2115 ep->in_handle_ep = 0;
2116 recursion_detected:
2117 spin_unlock_irqrestore(&ep->lock, flags);
2118 }
2119
2120 /**
2121 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2122 * @udc: udc device
2123 * @config: usb configuration
2124 *
2125 * Post the request to upper level.
2126 * Don't use any pxa specific harware configuration capabilities
2127 */
2128 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2129 {
2130 struct usb_ctrlrequest req ;
2131
2132 dev_dbg(udc->dev, "config=%d\n", config);
2133
2134 udc->config = config;
2135 udc->last_interface = 0;
2136 udc->last_alternate = 0;
2137
2138 req.bRequestType = 0;
2139 req.bRequest = USB_REQ_SET_CONFIGURATION;
2140 req.wValue = config;
2141 req.wIndex = 0;
2142 req.wLength = 0;
2143
2144 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2145 udc->driver->setup(&udc->gadget, &req);
2146 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2147 }
2148
2149 /**
2150 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2151 * @udc: udc device
2152 * @iface: interface number
2153 * @alt: alternate setting number
2154 *
2155 * Post the request to upper level.
2156 * Don't use any pxa specific harware configuration capabilities
2157 */
2158 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2159 {
2160 struct usb_ctrlrequest req;
2161
2162 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2163
2164 udc->last_interface = iface;
2165 udc->last_alternate = alt;
2166
2167 req.bRequestType = USB_RECIP_INTERFACE;
2168 req.bRequest = USB_REQ_SET_INTERFACE;
2169 req.wValue = alt;
2170 req.wIndex = iface;
2171 req.wLength = 0;
2172
2173 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2174 udc->driver->setup(&udc->gadget, &req);
2175 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2176 }
2177
2178 /*
2179 * irq_handle_data - Handle data transfer
2180 * @irq: irq IRQ number
2181 * @udc: dev pxa_udc device structure
2182 *
2183 * Called from irq handler, transferts data to or from endpoint to queue
2184 */
2185 static void irq_handle_data(int irq, struct pxa_udc *udc)
2186 {
2187 int i;
2188 struct pxa_ep *ep;
2189 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2190 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2191
2192 if (udcisr0 & UDCISR_INT_MASK) {
2193 udc->pxa_ep[0].stats.irqs++;
2194 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2195 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2196 !!(udcisr0 & UDCICR_PKTCOMPL));
2197 }
2198
2199 udcisr0 >>= 2;
2200 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2201 if (!(udcisr0 & UDCISR_INT_MASK))
2202 continue;
2203
2204 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2205
2206 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2207 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2208 ep = &udc->pxa_ep[i];
2209 ep->stats.irqs++;
2210 handle_ep(ep);
2211 }
2212 }
2213
2214 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2215 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2216 if (!(udcisr1 & UDCISR_INT_MASK))
2217 continue;
2218
2219 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2220 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2221 ep = &udc->pxa_ep[i];
2222 ep->stats.irqs++;
2223 handle_ep(ep);
2224 }
2225 }
2226
2227 }
2228
2229 /**
2230 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2231 * @udc: udc device
2232 */
2233 static void irq_udc_suspend(struct pxa_udc *udc)
2234 {
2235 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2236 udc->stats.irqs_suspend++;
2237
2238 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2239 && udc->driver && udc->driver->suspend)
2240 udc->driver->suspend(&udc->gadget);
2241 ep0_idle(udc);
2242 }
2243
2244 /**
2245 * irq_udc_resume - Handle IRQ "UDC Resume"
2246 * @udc: udc device
2247 */
2248 static void irq_udc_resume(struct pxa_udc *udc)
2249 {
2250 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2251 udc->stats.irqs_resume++;
2252
2253 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2254 && udc->driver && udc->driver->resume)
2255 udc->driver->resume(&udc->gadget);
2256 }
2257
2258 /**
2259 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2260 * @udc: udc device
2261 */
2262 static void irq_udc_reconfig(struct pxa_udc *udc)
2263 {
2264 unsigned config, interface, alternate, config_change;
2265 u32 udccr = udc_readl(udc, UDCCR);
2266
2267 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2268 udc->stats.irqs_reconfig++;
2269
2270 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2271 config_change = (config != udc->config);
2272 pxa27x_change_configuration(udc, config);
2273
2274 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2275 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2276 pxa27x_change_interface(udc, interface, alternate);
2277
2278 if (config_change)
2279 update_pxa_ep_matches(udc);
2280 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2281 }
2282
2283 /**
2284 * irq_udc_reset - Handle IRQ "UDC Reset"
2285 * @udc: udc device
2286 */
2287 static void irq_udc_reset(struct pxa_udc *udc)
2288 {
2289 u32 udccr = udc_readl(udc, UDCCR);
2290 struct pxa_ep *ep = &udc->pxa_ep[0];
2291
2292 dev_info(udc->dev, "USB reset\n");
2293 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2294 udc->stats.irqs_reset++;
2295
2296 if ((udccr & UDCCR_UDA) == 0) {
2297 dev_dbg(udc->dev, "USB reset start\n");
2298 stop_activity(udc, udc->driver);
2299 }
2300 udc->gadget.speed = USB_SPEED_FULL;
2301 memset(&udc->stats, 0, sizeof udc->stats);
2302
2303 nuke(ep, -EPROTO);
2304 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2305 ep0_idle(udc);
2306 }
2307
2308 /**
2309 * pxa_udc_irq - Main irq handler
2310 * @irq: irq number
2311 * @_dev: udc device
2312 *
2313 * Handles all udc interrupts
2314 */
2315 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2316 {
2317 struct pxa_udc *udc = _dev;
2318 u32 udcisr0 = udc_readl(udc, UDCISR0);
2319 u32 udcisr1 = udc_readl(udc, UDCISR1);
2320 u32 udccr = udc_readl(udc, UDCCR);
2321 u32 udcisr1_spec;
2322
2323 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2324 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2325
2326 udcisr1_spec = udcisr1 & 0xf8000000;
2327 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2328 irq_udc_suspend(udc);
2329 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2330 irq_udc_resume(udc);
2331 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2332 irq_udc_reconfig(udc);
2333 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2334 irq_udc_reset(udc);
2335
2336 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2337 irq_handle_data(irq, udc);
2338
2339 return IRQ_HANDLED;
2340 }
2341
2342 static struct pxa_udc memory = {
2343 .gadget = {
2344 .ops = &pxa_udc_ops,
2345 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2346 .name = driver_name,
2347 .dev = {
2348 .init_name = "gadget",
2349 },
2350 },
2351
2352 .udc_usb_ep = {
2353 USB_EP_CTRL,
2354 USB_EP_OUT_BULK(1),
2355 USB_EP_IN_BULK(2),
2356 USB_EP_IN_ISO(3),
2357 USB_EP_OUT_ISO(4),
2358 USB_EP_IN_INT(5),
2359 },
2360
2361 .pxa_ep = {
2362 PXA_EP_CTRL,
2363 /* Endpoints for gadget zero */
2364 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2365 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2366 /* Endpoints for ether gadget, file storage gadget */
2367 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2368 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2369 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2370 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2371 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2372 /* Endpoints for RNDIS, serial */
2373 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2374 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2375 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2376 /*
2377 * All the following endpoints are only for completion. They
2378 * won't never work, as multiple interfaces are really broken on
2379 * the pxa.
2380 */
2381 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2382 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2383 /* Endpoint for CDC Ether */
2384 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2385 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2386 }
2387 };
2388
2389 #if defined(CONFIG_OF)
2390 static const struct of_device_id udc_pxa_dt_ids[] = {
2391 { .compatible = "marvell,pxa270-udc" },
2392 {}
2393 };
2394 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2395 #endif
2396
2397 /**
2398 * pxa_udc_probe - probes the udc device
2399 * @_dev: platform device
2400 *
2401 * Perform basic init : allocates udc clock, creates sysfs files, requests
2402 * irq.
2403 */
2404 static int pxa_udc_probe(struct platform_device *pdev)
2405 {
2406 struct resource *regs;
2407 struct pxa_udc *udc = &memory;
2408 int retval = 0, gpio;
2409 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2410 unsigned long gpio_flags;
2411
2412 if (mach) {
2413 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2414 gpio = mach->gpio_pullup;
2415 if (gpio_is_valid(gpio)) {
2416 retval = devm_gpio_request_one(&pdev->dev, gpio,
2417 gpio_flags,
2418 "USB D+ pullup");
2419 if (retval)
2420 return retval;
2421 udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2422 }
2423 udc->udc_command = mach->udc_command;
2424 } else {
2425 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL);
2426 }
2427
2428 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2429 udc->regs = devm_ioremap_resource(&pdev->dev, regs);
2430 if (IS_ERR(udc->regs))
2431 return PTR_ERR(udc->regs);
2432 udc->irq = platform_get_irq(pdev, 0);
2433 if (udc->irq < 0)
2434 return udc->irq;
2435
2436 udc->dev = &pdev->dev;
2437 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2438
2439 if (IS_ERR(udc->gpiod)) {
2440 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2441 PTR_ERR(udc->gpiod));
2442 return PTR_ERR(udc->gpiod);
2443 }
2444 if (udc->gpiod)
2445 gpiod_direction_output(udc->gpiod, 0);
2446
2447 udc->clk = devm_clk_get(&pdev->dev, NULL);
2448 if (IS_ERR(udc->clk))
2449 return PTR_ERR(udc->clk);
2450
2451 retval = clk_prepare(udc->clk);
2452 if (retval)
2453 return retval;
2454
2455 udc->vbus_sensed = 0;
2456
2457 the_controller = udc;
2458 platform_set_drvdata(pdev, udc);
2459 udc_init_data(udc);
2460
2461 /* irq setup after old hardware state is cleaned up */
2462 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2463 IRQF_SHARED, driver_name, udc);
2464 if (retval != 0) {
2465 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2466 driver_name, udc->irq, retval);
2467 goto err;
2468 }
2469
2470 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2471 if (retval)
2472 goto err;
2473
2474 pxa_init_debugfs(udc);
2475 if (should_enable_udc(udc))
2476 udc_enable(udc);
2477 return 0;
2478 err:
2479 clk_unprepare(udc->clk);
2480 return retval;
2481 }
2482
2483 /**
2484 * pxa_udc_remove - removes the udc device driver
2485 * @_dev: platform device
2486 */
2487 static int pxa_udc_remove(struct platform_device *_dev)
2488 {
2489 struct pxa_udc *udc = platform_get_drvdata(_dev);
2490
2491 usb_del_gadget_udc(&udc->gadget);
2492 pxa_cleanup_debugfs(udc);
2493
2494 usb_put_phy(udc->transceiver);
2495
2496 udc->transceiver = NULL;
2497 the_controller = NULL;
2498 clk_unprepare(udc->clk);
2499
2500 return 0;
2501 }
2502
2503 static void pxa_udc_shutdown(struct platform_device *_dev)
2504 {
2505 struct pxa_udc *udc = platform_get_drvdata(_dev);
2506
2507 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2508 udc_disable(udc);
2509 }
2510
2511 #ifdef CONFIG_PXA27x
2512 extern void pxa27x_clear_otgph(void);
2513 #else
2514 #define pxa27x_clear_otgph() do {} while (0)
2515 #endif
2516
2517 #ifdef CONFIG_PM
2518 /**
2519 * pxa_udc_suspend - Suspend udc device
2520 * @_dev: platform device
2521 * @state: suspend state
2522 *
2523 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2524 * device.
2525 */
2526 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2527 {
2528 struct pxa_udc *udc = platform_get_drvdata(_dev);
2529 struct pxa_ep *ep;
2530
2531 ep = &udc->pxa_ep[0];
2532 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2533
2534 udc_disable(udc);
2535 udc->pullup_resume = udc->pullup_on;
2536 dplus_pullup(udc, 0);
2537
2538 return 0;
2539 }
2540
2541 /**
2542 * pxa_udc_resume - Resume udc device
2543 * @_dev: platform device
2544 *
2545 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2546 * device.
2547 */
2548 static int pxa_udc_resume(struct platform_device *_dev)
2549 {
2550 struct pxa_udc *udc = platform_get_drvdata(_dev);
2551 struct pxa_ep *ep;
2552
2553 ep = &udc->pxa_ep[0];
2554 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2555
2556 dplus_pullup(udc, udc->pullup_resume);
2557 if (should_enable_udc(udc))
2558 udc_enable(udc);
2559 /*
2560 * We do not handle OTG yet.
2561 *
2562 * OTGPH bit is set when sleep mode is entered.
2563 * it indicates that OTG pad is retaining its state.
2564 * Upon exit from sleep mode and before clearing OTGPH,
2565 * Software must configure the USB OTG pad, UDC, and UHC
2566 * to the state they were in before entering sleep mode.
2567 */
2568 pxa27x_clear_otgph();
2569
2570 return 0;
2571 }
2572 #endif
2573
2574 /* work with hotplug and coldplug */
2575 MODULE_ALIAS("platform:pxa27x-udc");
2576
2577 static struct platform_driver udc_driver = {
2578 .driver = {
2579 .name = "pxa27x-udc",
2580 .of_match_table = of_match_ptr(udc_pxa_dt_ids),
2581 },
2582 .probe = pxa_udc_probe,
2583 .remove = pxa_udc_remove,
2584 .shutdown = pxa_udc_shutdown,
2585 #ifdef CONFIG_PM
2586 .suspend = pxa_udc_suspend,
2587 .resume = pxa_udc_resume
2588 #endif
2589 };
2590
2591 module_platform_driver(udc_driver);
2592
2593 MODULE_DESCRIPTION(DRIVER_DESC);
2594 MODULE_AUTHOR("Robert Jarzmik");
2595 MODULE_LICENSE("GPL");