]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/host/ehci-q.c
xhci: Use delayed_work instead of timer for command timeout
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / ehci-q.c
1 /*
2 * Copyright (C) 2001-2004 by David Brownell
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19 /* this file is part of ehci-hcd.c */
20
21 /*-------------------------------------------------------------------------*/
22
23 /*
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
25 *
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
30 *
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
34 *
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
39 */
40
41 /*-------------------------------------------------------------------------*/
42
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 size_t len, int token, int maxpacket)
48 {
49 int i, count;
50 u64 addr = buf;
51
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
56 if (likely (len < count)) /* ... iff needed */
57 count = len;
58 else {
59 buf += 0x1000;
60 buf &= ~0x0fff;
61
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i = 1; count < len && i < 5; i++) {
64 addr = buf;
65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 (u32)(addr >> 32));
68 buf += 0x1000;
69 if ((count + 0x1000) < len)
70 count += 0x1000;
71 else
72 count = len;
73 }
74
75 /* short packets may only terminate transfers */
76 if (count != len)
77 count -= (count % maxpacket);
78 }
79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 qtd->length = count;
81
82 return count;
83 }
84
85 /*-------------------------------------------------------------------------*/
86
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 struct ehci_qh_hw *hw = qh->hw;
91
92 /* writes to an active overlay are unsafe */
93 WARN_ON(qh->qh_state != QH_STATE_IDLE);
94
95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 hw->hw_alt_next = EHCI_LIST_END(ehci);
97
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 * ever clear it.
102 */
103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 unsigned is_out, epnum;
105
106 is_out = qh->is_out;
107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 usb_settoggle(qh->ps.udev, epnum, is_out, 1);
111 }
112 }
113
114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
120 */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 struct ehci_qtd *qtd;
125
126 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
127
128 /*
129 * first qtd may already be partially processed.
130 * If we come here during unlink, the QH overlay region
131 * might have reference to the just unlinked qtd. The
132 * qtd is updated in qh_completions(). Update the QH
133 * overlay here.
134 */
135 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
136 qh->hw->hw_qtd_next = qtd->hw_next;
137 if (qh->should_be_inactive)
138 ehci_warn(ehci, "qh %p should be inactive!\n", qh);
139 } else {
140 qh_update(ehci, qh, qtd);
141 }
142 qh->should_be_inactive = 0;
143 }
144
145 /*-------------------------------------------------------------------------*/
146
147 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
148
149 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
150 struct usb_host_endpoint *ep)
151 {
152 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
153 struct ehci_qh *qh = ep->hcpriv;
154 unsigned long flags;
155
156 spin_lock_irqsave(&ehci->lock, flags);
157 qh->clearing_tt = 0;
158 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
159 && ehci->rh_state == EHCI_RH_RUNNING)
160 qh_link_async(ehci, qh);
161 spin_unlock_irqrestore(&ehci->lock, flags);
162 }
163
164 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
165 struct urb *urb, u32 token)
166 {
167
168 /* If an async split transaction gets an error or is unlinked,
169 * the TT buffer may be left in an indeterminate state. We
170 * have to clear the TT buffer.
171 *
172 * Note: this routine is never called for Isochronous transfers.
173 */
174 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
175 #ifdef CONFIG_DYNAMIC_DEBUG
176 struct usb_device *tt = urb->dev->tt->hub;
177 dev_dbg(&tt->dev,
178 "clear tt buffer port %d, a%d ep%d t%08x\n",
179 urb->dev->ttport, urb->dev->devnum,
180 usb_pipeendpoint(urb->pipe), token);
181 #endif /* CONFIG_DYNAMIC_DEBUG */
182 if (!ehci_is_TDI(ehci)
183 || urb->dev->tt->hub !=
184 ehci_to_hcd(ehci)->self.root_hub) {
185 if (usb_hub_clear_tt_buffer(urb) == 0)
186 qh->clearing_tt = 1;
187 } else {
188
189 /* REVISIT ARC-derived cores don't clear the root
190 * hub TT buffer in this way...
191 */
192 }
193 }
194 }
195
196 static int qtd_copy_status (
197 struct ehci_hcd *ehci,
198 struct urb *urb,
199 size_t length,
200 u32 token
201 )
202 {
203 int status = -EINPROGRESS;
204
205 /* count IN/OUT bytes, not SETUP (even short packets) */
206 if (likely (QTD_PID (token) != 2))
207 urb->actual_length += length - QTD_LENGTH (token);
208
209 /* don't modify error codes */
210 if (unlikely(urb->unlinked))
211 return status;
212
213 /* force cleanup after short read; not always an error */
214 if (unlikely (IS_SHORT_READ (token)))
215 status = -EREMOTEIO;
216
217 /* serious "can't proceed" faults reported by the hardware */
218 if (token & QTD_STS_HALT) {
219 if (token & QTD_STS_BABBLE) {
220 /* FIXME "must" disable babbling device's port too */
221 status = -EOVERFLOW;
222 /* CERR nonzero + halt --> stall */
223 } else if (QTD_CERR(token)) {
224 status = -EPIPE;
225
226 /* In theory, more than one of the following bits can be set
227 * since they are sticky and the transaction is retried.
228 * Which to test first is rather arbitrary.
229 */
230 } else if (token & QTD_STS_MMF) {
231 /* fs/ls interrupt xfer missed the complete-split */
232 status = -EPROTO;
233 } else if (token & QTD_STS_DBE) {
234 status = (QTD_PID (token) == 1) /* IN ? */
235 ? -ENOSR /* hc couldn't read data */
236 : -ECOMM; /* hc couldn't write data */
237 } else if (token & QTD_STS_XACT) {
238 /* timeout, bad CRC, wrong PID, etc */
239 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
240 urb->dev->devpath,
241 usb_pipeendpoint(urb->pipe),
242 usb_pipein(urb->pipe) ? "in" : "out");
243 status = -EPROTO;
244 } else { /* unknown */
245 status = -EPROTO;
246 }
247 }
248
249 return status;
250 }
251
252 static void
253 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
254 {
255 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
256 /* ... update hc-wide periodic stats */
257 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
258 }
259
260 if (unlikely(urb->unlinked)) {
261 COUNT(ehci->stats.unlink);
262 } else {
263 /* report non-error and short read status as zero */
264 if (status == -EINPROGRESS || status == -EREMOTEIO)
265 status = 0;
266 COUNT(ehci->stats.complete);
267 }
268
269 #ifdef EHCI_URB_TRACE
270 ehci_dbg (ehci,
271 "%s %s urb %p ep%d%s status %d len %d/%d\n",
272 __func__, urb->dev->devpath, urb,
273 usb_pipeendpoint (urb->pipe),
274 usb_pipein (urb->pipe) ? "in" : "out",
275 status,
276 urb->actual_length, urb->transfer_buffer_length);
277 #endif
278
279 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
280 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
281 }
282
283 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
284
285 /*
286 * Process and free completed qtds for a qh, returning URBs to drivers.
287 * Chases up to qh->hw_current. Returns nonzero if the caller should
288 * unlink qh.
289 */
290 static unsigned
291 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
292 {
293 struct ehci_qtd *last, *end = qh->dummy;
294 struct list_head *entry, *tmp;
295 int last_status;
296 int stopped;
297 u8 state;
298 struct ehci_qh_hw *hw = qh->hw;
299
300 /* completions (or tasks on other cpus) must never clobber HALT
301 * till we've gone through and cleaned everything up, even when
302 * they add urbs to this qh's queue or mark them for unlinking.
303 *
304 * NOTE: unlinking expects to be done in queue order.
305 *
306 * It's a bug for qh->qh_state to be anything other than
307 * QH_STATE_IDLE, unless our caller is scan_async() or
308 * scan_intr().
309 */
310 state = qh->qh_state;
311 qh->qh_state = QH_STATE_COMPLETING;
312 stopped = (state == QH_STATE_IDLE);
313
314 rescan:
315 last = NULL;
316 last_status = -EINPROGRESS;
317 qh->dequeue_during_giveback = 0;
318
319 /* remove de-activated QTDs from front of queue.
320 * after faults (including short reads), cleanup this urb
321 * then let the queue advance.
322 * if queue is stopped, handles unlinks.
323 */
324 list_for_each_safe (entry, tmp, &qh->qtd_list) {
325 struct ehci_qtd *qtd;
326 struct urb *urb;
327 u32 token = 0;
328
329 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
330 urb = qtd->urb;
331
332 /* clean up any state from previous QTD ...*/
333 if (last) {
334 if (likely (last->urb != urb)) {
335 ehci_urb_done(ehci, last->urb, last_status);
336 last_status = -EINPROGRESS;
337 }
338 ehci_qtd_free (ehci, last);
339 last = NULL;
340 }
341
342 /* ignore urbs submitted during completions we reported */
343 if (qtd == end)
344 break;
345
346 /* hardware copies qtd out of qh overlay */
347 rmb ();
348 token = hc32_to_cpu(ehci, qtd->hw_token);
349
350 /* always clean up qtds the hc de-activated */
351 retry_xacterr:
352 if ((token & QTD_STS_ACTIVE) == 0) {
353
354 /* Report Data Buffer Error: non-fatal but useful */
355 if (token & QTD_STS_DBE)
356 ehci_dbg(ehci,
357 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
358 urb,
359 usb_endpoint_num(&urb->ep->desc),
360 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
361 urb->transfer_buffer_length,
362 qtd,
363 qh);
364
365 /* on STALL, error, and short reads this urb must
366 * complete and all its qtds must be recycled.
367 */
368 if ((token & QTD_STS_HALT) != 0) {
369
370 /* retry transaction errors until we
371 * reach the software xacterr limit
372 */
373 if ((token & QTD_STS_XACT) &&
374 QTD_CERR(token) == 0 &&
375 ++qh->xacterrs < QH_XACTERR_MAX &&
376 !urb->unlinked) {
377 ehci_dbg(ehci,
378 "detected XactErr len %zu/%zu retry %d\n",
379 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
380
381 /* reset the token in the qtd and the
382 * qh overlay (which still contains
383 * the qtd) so that we pick up from
384 * where we left off
385 */
386 token &= ~QTD_STS_HALT;
387 token |= QTD_STS_ACTIVE |
388 (EHCI_TUNE_CERR << 10);
389 qtd->hw_token = cpu_to_hc32(ehci,
390 token);
391 wmb();
392 hw->hw_token = cpu_to_hc32(ehci,
393 token);
394 goto retry_xacterr;
395 }
396 stopped = 1;
397 qh->unlink_reason |= QH_UNLINK_HALTED;
398
399 /* magic dummy for some short reads; qh won't advance.
400 * that silicon quirk can kick in with this dummy too.
401 *
402 * other short reads won't stop the queue, including
403 * control transfers (status stage handles that) or
404 * most other single-qtd reads ... the queue stops if
405 * URB_SHORT_NOT_OK was set so the driver submitting
406 * the urbs could clean it up.
407 */
408 } else if (IS_SHORT_READ (token)
409 && !(qtd->hw_alt_next
410 & EHCI_LIST_END(ehci))) {
411 stopped = 1;
412 qh->unlink_reason |= QH_UNLINK_SHORT_READ;
413 }
414
415 /* stop scanning when we reach qtds the hc is using */
416 } else if (likely (!stopped
417 && ehci->rh_state >= EHCI_RH_RUNNING)) {
418 break;
419
420 /* scan the whole queue for unlinks whenever it stops */
421 } else {
422 stopped = 1;
423
424 /* cancel everything if we halt, suspend, etc */
425 if (ehci->rh_state < EHCI_RH_RUNNING) {
426 last_status = -ESHUTDOWN;
427 qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
428 }
429
430 /* this qtd is active; skip it unless a previous qtd
431 * for its urb faulted, or its urb was canceled.
432 */
433 else if (last_status == -EINPROGRESS && !urb->unlinked)
434 continue;
435
436 /*
437 * If this was the active qtd when the qh was unlinked
438 * and the overlay's token is active, then the overlay
439 * hasn't been written back to the qtd yet so use its
440 * token instead of the qtd's. After the qtd is
441 * processed and removed, the overlay won't be valid
442 * any more.
443 */
444 if (state == QH_STATE_IDLE &&
445 qh->qtd_list.next == &qtd->qtd_list &&
446 (hw->hw_token & ACTIVE_BIT(ehci))) {
447 token = hc32_to_cpu(ehci, hw->hw_token);
448 hw->hw_token &= ~ACTIVE_BIT(ehci);
449 qh->should_be_inactive = 1;
450
451 /* An unlink may leave an incomplete
452 * async transaction in the TT buffer.
453 * We have to clear it.
454 */
455 ehci_clear_tt_buffer(ehci, qh, urb, token);
456 }
457 }
458
459 /* unless we already know the urb's status, collect qtd status
460 * and update count of bytes transferred. in common short read
461 * cases with only one data qtd (including control transfers),
462 * queue processing won't halt. but with two or more qtds (for
463 * example, with a 32 KB transfer), when the first qtd gets a
464 * short read the second must be removed by hand.
465 */
466 if (last_status == -EINPROGRESS) {
467 last_status = qtd_copy_status(ehci, urb,
468 qtd->length, token);
469 if (last_status == -EREMOTEIO
470 && (qtd->hw_alt_next
471 & EHCI_LIST_END(ehci)))
472 last_status = -EINPROGRESS;
473
474 /* As part of low/full-speed endpoint-halt processing
475 * we must clear the TT buffer (11.17.5).
476 */
477 if (unlikely(last_status != -EINPROGRESS &&
478 last_status != -EREMOTEIO)) {
479 /* The TT's in some hubs malfunction when they
480 * receive this request following a STALL (they
481 * stop sending isochronous packets). Since a
482 * STALL can't leave the TT buffer in a busy
483 * state (if you believe Figures 11-48 - 11-51
484 * in the USB 2.0 spec), we won't clear the TT
485 * buffer in this case. Strictly speaking this
486 * is a violation of the spec.
487 */
488 if (last_status != -EPIPE)
489 ehci_clear_tt_buffer(ehci, qh, urb,
490 token);
491 }
492 }
493
494 /* if we're removing something not at the queue head,
495 * patch the hardware queue pointer.
496 */
497 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
498 last = list_entry (qtd->qtd_list.prev,
499 struct ehci_qtd, qtd_list);
500 last->hw_next = qtd->hw_next;
501 }
502
503 /* remove qtd; it's recycled after possible urb completion */
504 list_del (&qtd->qtd_list);
505 last = qtd;
506
507 /* reinit the xacterr counter for the next qtd */
508 qh->xacterrs = 0;
509 }
510
511 /* last urb's completion might still need calling */
512 if (likely (last != NULL)) {
513 ehci_urb_done(ehci, last->urb, last_status);
514 ehci_qtd_free (ehci, last);
515 }
516
517 /* Do we need to rescan for URBs dequeued during a giveback? */
518 if (unlikely(qh->dequeue_during_giveback)) {
519 /* If the QH is already unlinked, do the rescan now. */
520 if (state == QH_STATE_IDLE)
521 goto rescan;
522
523 /* Otherwise the caller must unlink the QH. */
524 }
525
526 /* restore original state; caller must unlink or relink */
527 qh->qh_state = state;
528
529 /* be sure the hardware's done with the qh before refreshing
530 * it after fault cleanup, or recovering from silicon wrongly
531 * overlaying the dummy qtd (which reduces DMA chatter).
532 *
533 * We won't refresh a QH that's linked (after the HC
534 * stopped the queue). That avoids a race:
535 * - HC reads first part of QH;
536 * - CPU updates that first part and the token;
537 * - HC reads rest of that QH, including token
538 * Result: HC gets an inconsistent image, and then
539 * DMAs to/from the wrong memory (corrupting it).
540 *
541 * That should be rare for interrupt transfers,
542 * except maybe high bandwidth ...
543 */
544 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
545 qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
546
547 /* Let the caller know if the QH needs to be unlinked. */
548 return qh->unlink_reason;
549 }
550
551 /*-------------------------------------------------------------------------*/
552
553 /*
554 * reverse of qh_urb_transaction: free a list of TDs.
555 * used for cleanup after errors, before HC sees an URB's TDs.
556 */
557 static void qtd_list_free (
558 struct ehci_hcd *ehci,
559 struct urb *urb,
560 struct list_head *qtd_list
561 ) {
562 struct list_head *entry, *temp;
563
564 list_for_each_safe (entry, temp, qtd_list) {
565 struct ehci_qtd *qtd;
566
567 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
568 list_del (&qtd->qtd_list);
569 ehci_qtd_free (ehci, qtd);
570 }
571 }
572
573 /*
574 * create a list of filled qtds for this URB; won't link into qh.
575 */
576 static struct list_head *
577 qh_urb_transaction (
578 struct ehci_hcd *ehci,
579 struct urb *urb,
580 struct list_head *head,
581 gfp_t flags
582 ) {
583 struct ehci_qtd *qtd, *qtd_prev;
584 dma_addr_t buf;
585 int len, this_sg_len, maxpacket;
586 int is_input;
587 u32 token;
588 int i;
589 struct scatterlist *sg;
590
591 /*
592 * URBs map to sequences of QTDs: one logical transaction
593 */
594 qtd = ehci_qtd_alloc (ehci, flags);
595 if (unlikely (!qtd))
596 return NULL;
597 list_add_tail (&qtd->qtd_list, head);
598 qtd->urb = urb;
599
600 token = QTD_STS_ACTIVE;
601 token |= (EHCI_TUNE_CERR << 10);
602 /* for split transactions, SplitXState initialized to zero */
603
604 len = urb->transfer_buffer_length;
605 is_input = usb_pipein (urb->pipe);
606 if (usb_pipecontrol (urb->pipe)) {
607 /* SETUP pid */
608 qtd_fill(ehci, qtd, urb->setup_dma,
609 sizeof (struct usb_ctrlrequest),
610 token | (2 /* "setup" */ << 8), 8);
611
612 /* ... and always at least one more pid */
613 token ^= QTD_TOGGLE;
614 qtd_prev = qtd;
615 qtd = ehci_qtd_alloc (ehci, flags);
616 if (unlikely (!qtd))
617 goto cleanup;
618 qtd->urb = urb;
619 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
620 list_add_tail (&qtd->qtd_list, head);
621
622 /* for zero length DATA stages, STATUS is always IN */
623 if (len == 0)
624 token |= (1 /* "in" */ << 8);
625 }
626
627 /*
628 * data transfer stage: buffer setup
629 */
630 i = urb->num_mapped_sgs;
631 if (len > 0 && i > 0) {
632 sg = urb->sg;
633 buf = sg_dma_address(sg);
634
635 /* urb->transfer_buffer_length may be smaller than the
636 * size of the scatterlist (or vice versa)
637 */
638 this_sg_len = min_t(int, sg_dma_len(sg), len);
639 } else {
640 sg = NULL;
641 buf = urb->transfer_dma;
642 this_sg_len = len;
643 }
644
645 if (is_input)
646 token |= (1 /* "in" */ << 8);
647 /* else it's already initted to "out" pid (0 << 8) */
648
649 maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
650
651 /*
652 * buffer gets wrapped in one or more qtds;
653 * last one may be "short" (including zero len)
654 * and may serve as a control status ack
655 */
656 for (;;) {
657 int this_qtd_len;
658
659 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
660 maxpacket);
661 this_sg_len -= this_qtd_len;
662 len -= this_qtd_len;
663 buf += this_qtd_len;
664
665 /*
666 * short reads advance to a "magic" dummy instead of the next
667 * qtd ... that forces the queue to stop, for manual cleanup.
668 * (this will usually be overridden later.)
669 */
670 if (is_input)
671 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
672
673 /* qh makes control packets use qtd toggle; maybe switch it */
674 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
675 token ^= QTD_TOGGLE;
676
677 if (likely(this_sg_len <= 0)) {
678 if (--i <= 0 || len <= 0)
679 break;
680 sg = sg_next(sg);
681 buf = sg_dma_address(sg);
682 this_sg_len = min_t(int, sg_dma_len(sg), len);
683 }
684
685 qtd_prev = qtd;
686 qtd = ehci_qtd_alloc (ehci, flags);
687 if (unlikely (!qtd))
688 goto cleanup;
689 qtd->urb = urb;
690 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
691 list_add_tail (&qtd->qtd_list, head);
692 }
693
694 /*
695 * unless the caller requires manual cleanup after short reads,
696 * have the alt_next mechanism keep the queue running after the
697 * last data qtd (the only one, for control and most other cases).
698 */
699 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
700 || usb_pipecontrol (urb->pipe)))
701 qtd->hw_alt_next = EHCI_LIST_END(ehci);
702
703 /*
704 * control requests may need a terminating data "status" ack;
705 * other OUT ones may need a terminating short packet
706 * (zero length).
707 */
708 if (likely (urb->transfer_buffer_length != 0)) {
709 int one_more = 0;
710
711 if (usb_pipecontrol (urb->pipe)) {
712 one_more = 1;
713 token ^= 0x0100; /* "in" <--> "out" */
714 token |= QTD_TOGGLE; /* force DATA1 */
715 } else if (usb_pipeout(urb->pipe)
716 && (urb->transfer_flags & URB_ZERO_PACKET)
717 && !(urb->transfer_buffer_length % maxpacket)) {
718 one_more = 1;
719 }
720 if (one_more) {
721 qtd_prev = qtd;
722 qtd = ehci_qtd_alloc (ehci, flags);
723 if (unlikely (!qtd))
724 goto cleanup;
725 qtd->urb = urb;
726 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
727 list_add_tail (&qtd->qtd_list, head);
728
729 /* never any data in such packets */
730 qtd_fill(ehci, qtd, 0, 0, token, 0);
731 }
732 }
733
734 /* by default, enable interrupt on urb completion */
735 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
736 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
737 return head;
738
739 cleanup:
740 qtd_list_free (ehci, urb, head);
741 return NULL;
742 }
743
744 /*-------------------------------------------------------------------------*/
745
746 // Would be best to create all qh's from config descriptors,
747 // when each interface/altsetting is established. Unlink
748 // any previous qh and cancel its urbs first; endpoints are
749 // implicitly reset then (data toggle too).
750 // That'd mean updating how usbcore talks to HCDs. (2.7?)
751
752
753 /*
754 * Each QH holds a qtd list; a QH is used for everything except iso.
755 *
756 * For interrupt urbs, the scheduler must set the microframe scheduling
757 * mask(s) each time the QH gets scheduled. For highspeed, that's
758 * just one microframe in the s-mask. For split interrupt transactions
759 * there are additional complications: c-mask, maybe FSTNs.
760 */
761 static struct ehci_qh *
762 qh_make (
763 struct ehci_hcd *ehci,
764 struct urb *urb,
765 gfp_t flags
766 ) {
767 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
768 struct usb_host_endpoint *ep;
769 u32 info1 = 0, info2 = 0;
770 int is_input, type;
771 int maxp = 0;
772 int mult;
773 struct usb_tt *tt = urb->dev->tt;
774 struct ehci_qh_hw *hw;
775
776 if (!qh)
777 return qh;
778
779 /*
780 * init endpoint/device data for this QH
781 */
782 info1 |= usb_pipeendpoint (urb->pipe) << 8;
783 info1 |= usb_pipedevice (urb->pipe) << 0;
784
785 is_input = usb_pipein (urb->pipe);
786 type = usb_pipetype (urb->pipe);
787 ep = usb_pipe_endpoint (urb->dev, urb->pipe);
788 maxp = usb_endpoint_maxp (&ep->desc);
789 mult = usb_endpoint_maxp_mult (&ep->desc);
790
791 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
792 * acts like up to 3KB, but is built from smaller packets.
793 */
794 if (maxp > 1024) {
795 ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
796 goto done;
797 }
798
799 /* Compute interrupt scheduling parameters just once, and save.
800 * - allowing for high bandwidth, how many nsec/uframe are used?
801 * - split transactions need a second CSPLIT uframe; same question
802 * - splits also need a schedule gap (for full/low speed I/O)
803 * - qh has a polling interval
804 *
805 * For control/bulk requests, the HC or TT handles these.
806 */
807 if (type == PIPE_INTERRUPT) {
808 unsigned tmp;
809
810 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
811 is_input, 0, mult * maxp));
812 qh->ps.phase = NO_FRAME;
813
814 if (urb->dev->speed == USB_SPEED_HIGH) {
815 qh->ps.c_usecs = 0;
816 qh->gap_uf = 0;
817
818 if (urb->interval > 1 && urb->interval < 8) {
819 /* NOTE interval 2 or 4 uframes could work.
820 * But interval 1 scheduling is simpler, and
821 * includes high bandwidth.
822 */
823 urb->interval = 1;
824 } else if (urb->interval > ehci->periodic_size << 3) {
825 urb->interval = ehci->periodic_size << 3;
826 }
827 qh->ps.period = urb->interval >> 3;
828
829 /* period for bandwidth allocation */
830 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
831 1 << (urb->ep->desc.bInterval - 1));
832
833 /* Allow urb->interval to override */
834 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
835 qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
836 } else {
837 int think_time;
838
839 /* gap is f(FS/LS transfer times) */
840 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
841 is_input, 0, maxp) / (125 * 1000);
842
843 /* FIXME this just approximates SPLIT/CSPLIT times */
844 if (is_input) { // SPLIT, gap, CSPLIT+DATA
845 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
846 qh->ps.usecs = HS_USECS(1);
847 } else { // SPLIT+DATA, gap, CSPLIT
848 qh->ps.usecs += HS_USECS(1);
849 qh->ps.c_usecs = HS_USECS(0);
850 }
851
852 think_time = tt ? tt->think_time : 0;
853 qh->ps.tt_usecs = NS_TO_US(think_time +
854 usb_calc_bus_time (urb->dev->speed,
855 is_input, 0, maxp));
856 if (urb->interval > ehci->periodic_size)
857 urb->interval = ehci->periodic_size;
858 qh->ps.period = urb->interval;
859
860 /* period for bandwidth allocation */
861 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
862 urb->ep->desc.bInterval);
863 tmp = rounddown_pow_of_two(tmp);
864
865 /* Allow urb->interval to override */
866 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
867 qh->ps.bw_uperiod = qh->ps.bw_period << 3;
868 }
869 }
870
871 /* support for tt scheduling, and access to toggles */
872 qh->ps.udev = urb->dev;
873 qh->ps.ep = urb->ep;
874
875 /* using TT? */
876 switch (urb->dev->speed) {
877 case USB_SPEED_LOW:
878 info1 |= QH_LOW_SPEED;
879 /* FALL THROUGH */
880
881 case USB_SPEED_FULL:
882 /* EPS 0 means "full" */
883 if (type != PIPE_INTERRUPT)
884 info1 |= (EHCI_TUNE_RL_TT << 28);
885 if (type == PIPE_CONTROL) {
886 info1 |= QH_CONTROL_EP; /* for TT */
887 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
888 }
889 info1 |= maxp << 16;
890
891 info2 |= (EHCI_TUNE_MULT_TT << 30);
892
893 /* Some Freescale processors have an erratum in which the
894 * port number in the queue head was 0..N-1 instead of 1..N.
895 */
896 if (ehci_has_fsl_portno_bug(ehci))
897 info2 |= (urb->dev->ttport-1) << 23;
898 else
899 info2 |= urb->dev->ttport << 23;
900
901 /* set the address of the TT; for TDI's integrated
902 * root hub tt, leave it zeroed.
903 */
904 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
905 info2 |= tt->hub->devnum << 16;
906
907 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
908
909 break;
910
911 case USB_SPEED_HIGH: /* no TT involved */
912 info1 |= QH_HIGH_SPEED;
913 if (type == PIPE_CONTROL) {
914 info1 |= (EHCI_TUNE_RL_HS << 28);
915 info1 |= 64 << 16; /* usb2 fixed maxpacket */
916 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
917 info2 |= (EHCI_TUNE_MULT_HS << 30);
918 } else if (type == PIPE_BULK) {
919 info1 |= (EHCI_TUNE_RL_HS << 28);
920 /* The USB spec says that high speed bulk endpoints
921 * always use 512 byte maxpacket. But some device
922 * vendors decided to ignore that, and MSFT is happy
923 * to help them do so. So now people expect to use
924 * such nonconformant devices with Linux too; sigh.
925 */
926 info1 |= maxp << 16;
927 info2 |= (EHCI_TUNE_MULT_HS << 30);
928 } else { /* PIPE_INTERRUPT */
929 info1 |= maxp << 16;
930 info2 |= mult << 30;
931 }
932 break;
933 default:
934 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
935 urb->dev->speed);
936 done:
937 qh_destroy(ehci, qh);
938 return NULL;
939 }
940
941 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
942
943 /* init as live, toggle clear */
944 qh->qh_state = QH_STATE_IDLE;
945 hw = qh->hw;
946 hw->hw_info1 = cpu_to_hc32(ehci, info1);
947 hw->hw_info2 = cpu_to_hc32(ehci, info2);
948 qh->is_out = !is_input;
949 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
950 return qh;
951 }
952
953 /*-------------------------------------------------------------------------*/
954
955 static void enable_async(struct ehci_hcd *ehci)
956 {
957 if (ehci->async_count++)
958 return;
959
960 /* Stop waiting to turn off the async schedule */
961 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
962
963 /* Don't start the schedule until ASS is 0 */
964 ehci_poll_ASS(ehci);
965 turn_on_io_watchdog(ehci);
966 }
967
968 static void disable_async(struct ehci_hcd *ehci)
969 {
970 if (--ehci->async_count)
971 return;
972
973 /* The async schedule and unlink lists are supposed to be empty */
974 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
975 !list_empty(&ehci->async_idle));
976
977 /* Don't turn off the schedule until ASS is 1 */
978 ehci_poll_ASS(ehci);
979 }
980
981 /* move qh (and its qtds) onto async queue; maybe enable queue. */
982
983 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
984 {
985 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
986 struct ehci_qh *head;
987
988 /* Don't link a QH if there's a Clear-TT-Buffer pending */
989 if (unlikely(qh->clearing_tt))
990 return;
991
992 WARN_ON(qh->qh_state != QH_STATE_IDLE);
993
994 /* clear halt and/or toggle; and maybe recover from silicon quirk */
995 qh_refresh(ehci, qh);
996
997 /* splice right after start */
998 head = ehci->async;
999 qh->qh_next = head->qh_next;
1000 qh->hw->hw_next = head->hw->hw_next;
1001 wmb ();
1002
1003 head->qh_next.qh = qh;
1004 head->hw->hw_next = dma;
1005
1006 qh->qh_state = QH_STATE_LINKED;
1007 qh->xacterrs = 0;
1008 qh->unlink_reason = 0;
1009 /* qtd completions reported later by interrupt */
1010
1011 enable_async(ehci);
1012 }
1013
1014 /*-------------------------------------------------------------------------*/
1015
1016 /*
1017 * For control/bulk/interrupt, return QH with these TDs appended.
1018 * Allocates and initializes the QH if necessary.
1019 * Returns null if it can't allocate a QH it needs to.
1020 * If the QH has TDs (urbs) already, that's great.
1021 */
1022 static struct ehci_qh *qh_append_tds (
1023 struct ehci_hcd *ehci,
1024 struct urb *urb,
1025 struct list_head *qtd_list,
1026 int epnum,
1027 void **ptr
1028 )
1029 {
1030 struct ehci_qh *qh = NULL;
1031 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1032
1033 qh = (struct ehci_qh *) *ptr;
1034 if (unlikely (qh == NULL)) {
1035 /* can't sleep here, we have ehci->lock... */
1036 qh = qh_make (ehci, urb, GFP_ATOMIC);
1037 *ptr = qh;
1038 }
1039 if (likely (qh != NULL)) {
1040 struct ehci_qtd *qtd;
1041
1042 if (unlikely (list_empty (qtd_list)))
1043 qtd = NULL;
1044 else
1045 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1046 qtd_list);
1047
1048 /* control qh may need patching ... */
1049 if (unlikely (epnum == 0)) {
1050
1051 /* usb_reset_device() briefly reverts to address 0 */
1052 if (usb_pipedevice (urb->pipe) == 0)
1053 qh->hw->hw_info1 &= ~qh_addr_mask;
1054 }
1055
1056 /* just one way to queue requests: swap with the dummy qtd.
1057 * only hc or qh_refresh() ever modify the overlay.
1058 */
1059 if (likely (qtd != NULL)) {
1060 struct ehci_qtd *dummy;
1061 dma_addr_t dma;
1062 __hc32 token;
1063
1064 /* to avoid racing the HC, use the dummy td instead of
1065 * the first td of our list (becomes new dummy). both
1066 * tds stay deactivated until we're done, when the
1067 * HC is allowed to fetch the old dummy (4.10.2).
1068 */
1069 token = qtd->hw_token;
1070 qtd->hw_token = HALT_BIT(ehci);
1071
1072 dummy = qh->dummy;
1073
1074 dma = dummy->qtd_dma;
1075 *dummy = *qtd;
1076 dummy->qtd_dma = dma;
1077
1078 list_del (&qtd->qtd_list);
1079 list_add (&dummy->qtd_list, qtd_list);
1080 list_splice_tail(qtd_list, &qh->qtd_list);
1081
1082 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1083 qh->dummy = qtd;
1084
1085 /* hc must see the new dummy at list end */
1086 dma = qtd->qtd_dma;
1087 qtd = list_entry (qh->qtd_list.prev,
1088 struct ehci_qtd, qtd_list);
1089 qtd->hw_next = QTD_NEXT(ehci, dma);
1090
1091 /* let the hc process these next qtds */
1092 wmb ();
1093 dummy->hw_token = token;
1094
1095 urb->hcpriv = qh;
1096 }
1097 }
1098 return qh;
1099 }
1100
1101 /*-------------------------------------------------------------------------*/
1102
1103 static int
1104 submit_async (
1105 struct ehci_hcd *ehci,
1106 struct urb *urb,
1107 struct list_head *qtd_list,
1108 gfp_t mem_flags
1109 ) {
1110 int epnum;
1111 unsigned long flags;
1112 struct ehci_qh *qh = NULL;
1113 int rc;
1114
1115 epnum = urb->ep->desc.bEndpointAddress;
1116
1117 #ifdef EHCI_URB_TRACE
1118 {
1119 struct ehci_qtd *qtd;
1120 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1121 ehci_dbg(ehci,
1122 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1123 __func__, urb->dev->devpath, urb,
1124 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1125 urb->transfer_buffer_length,
1126 qtd, urb->ep->hcpriv);
1127 }
1128 #endif
1129
1130 spin_lock_irqsave (&ehci->lock, flags);
1131 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1132 rc = -ESHUTDOWN;
1133 goto done;
1134 }
1135 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1136 if (unlikely(rc))
1137 goto done;
1138
1139 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1140 if (unlikely(qh == NULL)) {
1141 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1142 rc = -ENOMEM;
1143 goto done;
1144 }
1145
1146 /* Control/bulk operations through TTs don't need scheduling,
1147 * the HC and TT handle it when the TT has a buffer ready.
1148 */
1149 if (likely (qh->qh_state == QH_STATE_IDLE))
1150 qh_link_async(ehci, qh);
1151 done:
1152 spin_unlock_irqrestore (&ehci->lock, flags);
1153 if (unlikely (qh == NULL))
1154 qtd_list_free (ehci, urb, qtd_list);
1155 return rc;
1156 }
1157
1158 /*-------------------------------------------------------------------------*/
1159 #ifdef CONFIG_USB_HCD_TEST_MODE
1160 /*
1161 * This function creates the qtds and submits them for the
1162 * SINGLE_STEP_SET_FEATURE Test.
1163 * This is done in two parts: first SETUP req for GetDesc is sent then
1164 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1165 *
1166 * is_setup : i/p arguement decides which of the two stage needs to be
1167 * performed; TRUE - SETUP and FALSE - IN+STATUS
1168 * Returns 0 if success
1169 */
1170 static int submit_single_step_set_feature(
1171 struct usb_hcd *hcd,
1172 struct urb *urb,
1173 int is_setup
1174 ) {
1175 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
1176 struct list_head qtd_list;
1177 struct list_head *head;
1178
1179 struct ehci_qtd *qtd, *qtd_prev;
1180 dma_addr_t buf;
1181 int len, maxpacket;
1182 u32 token;
1183
1184 INIT_LIST_HEAD(&qtd_list);
1185 head = &qtd_list;
1186
1187 /* URBs map to sequences of QTDs: one logical transaction */
1188 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1189 if (unlikely(!qtd))
1190 return -1;
1191 list_add_tail(&qtd->qtd_list, head);
1192 qtd->urb = urb;
1193
1194 token = QTD_STS_ACTIVE;
1195 token |= (EHCI_TUNE_CERR << 10);
1196
1197 len = urb->transfer_buffer_length;
1198 /*
1199 * Check if the request is to perform just the SETUP stage (getDesc)
1200 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1201 * 15 secs after the setup
1202 */
1203 if (is_setup) {
1204 /* SETUP pid */
1205 qtd_fill(ehci, qtd, urb->setup_dma,
1206 sizeof(struct usb_ctrlrequest),
1207 token | (2 /* "setup" */ << 8), 8);
1208
1209 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1210 return 0; /*Return now; we shall come back after 15 seconds*/
1211 }
1212
1213 /*
1214 * IN: data transfer stage: buffer setup : start the IN txn phase for
1215 * the get_Desc SETUP which was sent 15seconds back
1216 */
1217 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
1218 buf = urb->transfer_dma;
1219
1220 token |= (1 /* "in" */ << 8); /*This is IN stage*/
1221
1222 maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
1223
1224 qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1225
1226 /*
1227 * Our IN phase shall always be a short read; so keep the queue running
1228 * and let it advance to the next qtd which zero length OUT status
1229 */
1230 qtd->hw_alt_next = EHCI_LIST_END(ehci);
1231
1232 /* STATUS stage for GetDesc control request */
1233 token ^= 0x0100; /* "in" <--> "out" */
1234 token |= QTD_TOGGLE; /* force DATA1 */
1235
1236 qtd_prev = qtd;
1237 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1238 if (unlikely(!qtd))
1239 goto cleanup;
1240 qtd->urb = urb;
1241 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1242 list_add_tail(&qtd->qtd_list, head);
1243
1244 /* dont fill any data in such packets */
1245 qtd_fill(ehci, qtd, 0, 0, token, 0);
1246
1247 /* by default, enable interrupt on urb completion */
1248 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1249 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1250
1251 submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1252
1253 return 0;
1254
1255 cleanup:
1256 qtd_list_free(ehci, urb, head);
1257 return -1;
1258 }
1259 #endif /* CONFIG_USB_HCD_TEST_MODE */
1260
1261 /*-------------------------------------------------------------------------*/
1262
1263 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1264 {
1265 struct ehci_qh *prev;
1266
1267 /* Add to the end of the list of QHs waiting for the next IAAD */
1268 qh->qh_state = QH_STATE_UNLINK_WAIT;
1269 list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1270
1271 /* Unlink it from the schedule */
1272 prev = ehci->async;
1273 while (prev->qh_next.qh != qh)
1274 prev = prev->qh_next.qh;
1275
1276 prev->hw->hw_next = qh->hw->hw_next;
1277 prev->qh_next = qh->qh_next;
1278 if (ehci->qh_scan_next == qh)
1279 ehci->qh_scan_next = qh->qh_next.qh;
1280 }
1281
1282 static void start_iaa_cycle(struct ehci_hcd *ehci)
1283 {
1284 /* If the controller isn't running, we don't have to wait for it */
1285 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1286 end_unlink_async(ehci);
1287
1288 /* Otherwise start a new IAA cycle if one isn't already running */
1289 } else if (ehci->rh_state == EHCI_RH_RUNNING &&
1290 !ehci->iaa_in_progress) {
1291
1292 /* Make sure the unlinks are all visible to the hardware */
1293 wmb();
1294
1295 ehci_writel(ehci, ehci->command | CMD_IAAD,
1296 &ehci->regs->command);
1297 ehci_readl(ehci, &ehci->regs->command);
1298 ehci->iaa_in_progress = true;
1299 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1300 }
1301 }
1302
1303 static void end_iaa_cycle(struct ehci_hcd *ehci)
1304 {
1305 if (ehci->has_synopsys_hc_bug)
1306 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1307 &ehci->regs->async_next);
1308
1309 /* The current IAA cycle has ended */
1310 ehci->iaa_in_progress = false;
1311
1312 end_unlink_async(ehci);
1313 }
1314
1315 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1316
1317 static void end_unlink_async(struct ehci_hcd *ehci)
1318 {
1319 struct ehci_qh *qh;
1320 bool early_exit;
1321
1322 if (list_empty(&ehci->async_unlink))
1323 return;
1324 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1325 unlink_node); /* QH whose IAA cycle just ended */
1326
1327 /*
1328 * If async_unlinking is set then this routine is already running,
1329 * either on the stack or on another CPU.
1330 */
1331 early_exit = ehci->async_unlinking;
1332
1333 /* If the controller isn't running, process all the waiting QHs */
1334 if (ehci->rh_state < EHCI_RH_RUNNING)
1335 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1336
1337 /*
1338 * Intel (?) bug: The HC can write back the overlay region even
1339 * after the IAA interrupt occurs. In self-defense, always go
1340 * through two IAA cycles for each QH.
1341 */
1342 else if (qh->qh_state == QH_STATE_UNLINK) {
1343 /*
1344 * Second IAA cycle has finished. Process only the first
1345 * waiting QH (NVIDIA (?) bug).
1346 */
1347 list_move_tail(&qh->unlink_node, &ehci->async_idle);
1348 }
1349
1350 /*
1351 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1352 * after the IAA interrupt occurs. To prevent problems, QHs that
1353 * may still be active will wait until 2 ms have passed with no
1354 * change to the hw_current and hw_token fields (this delay occurs
1355 * between the two IAA cycles).
1356 *
1357 * The EHCI spec (4.8.2) says that active QHs must not be removed
1358 * from the async schedule and recommends waiting until the QH
1359 * goes inactive. This is ridiculous because the QH will _never_
1360 * become inactive if the endpoint NAKs indefinitely.
1361 */
1362
1363 /* Some reasons for unlinking guarantee the QH can't be active */
1364 else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1365 QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1366 goto DelayDone;
1367
1368 /* The QH can't be active if the queue was and still is empty... */
1369 else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1370 list_empty(&qh->qtd_list))
1371 goto DelayDone;
1372
1373 /* ... or if the QH has halted */
1374 else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1375 goto DelayDone;
1376
1377 /* Otherwise we have to wait until the QH stops changing */
1378 else {
1379 __hc32 qh_current, qh_token;
1380
1381 qh_current = qh->hw->hw_current;
1382 qh_token = qh->hw->hw_token;
1383 if (qh_current != ehci->old_current ||
1384 qh_token != ehci->old_token) {
1385 ehci->old_current = qh_current;
1386 ehci->old_token = qh_token;
1387 ehci_enable_event(ehci,
1388 EHCI_HRTIMER_ACTIVE_UNLINK, true);
1389 return;
1390 }
1391 DelayDone:
1392 qh->qh_state = QH_STATE_UNLINK;
1393 early_exit = true;
1394 }
1395 ehci->old_current = ~0; /* Prepare for next QH */
1396
1397 /* Start a new IAA cycle if any QHs are waiting for it */
1398 if (!list_empty(&ehci->async_unlink))
1399 start_iaa_cycle(ehci);
1400
1401 /*
1402 * Don't allow nesting or concurrent calls,
1403 * or wait for the second IAA cycle for the next QH.
1404 */
1405 if (early_exit)
1406 return;
1407
1408 /* Process the idle QHs */
1409 ehci->async_unlinking = true;
1410 while (!list_empty(&ehci->async_idle)) {
1411 qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1412 unlink_node);
1413 list_del(&qh->unlink_node);
1414
1415 qh->qh_state = QH_STATE_IDLE;
1416 qh->qh_next.qh = NULL;
1417
1418 if (!list_empty(&qh->qtd_list))
1419 qh_completions(ehci, qh);
1420 if (!list_empty(&qh->qtd_list) &&
1421 ehci->rh_state == EHCI_RH_RUNNING)
1422 qh_link_async(ehci, qh);
1423 disable_async(ehci);
1424 }
1425 ehci->async_unlinking = false;
1426 }
1427
1428 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1429
1430 static void unlink_empty_async(struct ehci_hcd *ehci)
1431 {
1432 struct ehci_qh *qh;
1433 struct ehci_qh *qh_to_unlink = NULL;
1434 int count = 0;
1435
1436 /* Find the last async QH which has been empty for a timer cycle */
1437 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1438 if (list_empty(&qh->qtd_list) &&
1439 qh->qh_state == QH_STATE_LINKED) {
1440 ++count;
1441 if (qh->unlink_cycle != ehci->async_unlink_cycle)
1442 qh_to_unlink = qh;
1443 }
1444 }
1445
1446 /* If nothing else is being unlinked, unlink the last empty QH */
1447 if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1448 qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1449 start_unlink_async(ehci, qh_to_unlink);
1450 --count;
1451 }
1452
1453 /* Other QHs will be handled later */
1454 if (count > 0) {
1455 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1456 ++ehci->async_unlink_cycle;
1457 }
1458 }
1459
1460 #ifdef CONFIG_PM
1461
1462 /* The root hub is suspended; unlink all the async QHs */
1463 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1464 {
1465 struct ehci_qh *qh;
1466
1467 while (ehci->async->qh_next.qh) {
1468 qh = ehci->async->qh_next.qh;
1469 WARN_ON(!list_empty(&qh->qtd_list));
1470 single_unlink_async(ehci, qh);
1471 }
1472 }
1473
1474 #endif
1475
1476 /* makes sure the async qh will become idle */
1477 /* caller must own ehci->lock */
1478
1479 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1480 {
1481 /* If the QH isn't linked then there's nothing we can do. */
1482 if (qh->qh_state != QH_STATE_LINKED)
1483 return;
1484
1485 single_unlink_async(ehci, qh);
1486 start_iaa_cycle(ehci);
1487 }
1488
1489 /*-------------------------------------------------------------------------*/
1490
1491 static void scan_async (struct ehci_hcd *ehci)
1492 {
1493 struct ehci_qh *qh;
1494 bool check_unlinks_later = false;
1495
1496 ehci->qh_scan_next = ehci->async->qh_next.qh;
1497 while (ehci->qh_scan_next) {
1498 qh = ehci->qh_scan_next;
1499 ehci->qh_scan_next = qh->qh_next.qh;
1500
1501 /* clean any finished work for this qh */
1502 if (!list_empty(&qh->qtd_list)) {
1503 int temp;
1504
1505 /*
1506 * Unlinks could happen here; completion reporting
1507 * drops the lock. That's why ehci->qh_scan_next
1508 * always holds the next qh to scan; if the next qh
1509 * gets unlinked then ehci->qh_scan_next is adjusted
1510 * in single_unlink_async().
1511 */
1512 temp = qh_completions(ehci, qh);
1513 if (unlikely(temp)) {
1514 start_unlink_async(ehci, qh);
1515 } else if (list_empty(&qh->qtd_list)
1516 && qh->qh_state == QH_STATE_LINKED) {
1517 qh->unlink_cycle = ehci->async_unlink_cycle;
1518 check_unlinks_later = true;
1519 }
1520 }
1521 }
1522
1523 /*
1524 * Unlink empty entries, reducing DMA usage as well
1525 * as HCD schedule-scanning costs. Delay for any qh
1526 * we just scanned, there's a not-unusual case that it
1527 * doesn't stay idle for long.
1528 */
1529 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1530 !(ehci->enabled_hrtimer_events &
1531 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1532 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1533 ++ehci->async_unlink_cycle;
1534 }
1535 }