]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/usb/host/ehci-sched.c
Merge commit 'v2.6.31-rc8' into next
[mirror_ubuntu-jammy-kernel.git] / drivers / usb / host / ehci-sched.c
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 /* this file is part of ehci-hcd.c */
21
22 /*-------------------------------------------------------------------------*/
23
24 /*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37 static int ehci_get_frame (struct usb_hcd *hcd);
38
39 /*-------------------------------------------------------------------------*/
40
41 /*
42 * periodic_next_shadow - return "next" pointer on shadow list
43 * @periodic: host pointer to qh/itd/sitd
44 * @tag: hardware tag for type of this record
45 */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 __hc32 tag)
49 {
50 switch (hc32_to_cpu(ehci, tag)) {
51 case Q_TYPE_QH:
52 return &periodic->qh->qh_next;
53 case Q_TYPE_FSTN:
54 return &periodic->fstn->fstn_next;
55 case Q_TYPE_ITD:
56 return &periodic->itd->itd_next;
57 // case Q_TYPE_SITD:
58 default:
59 return &periodic->sitd->sitd_next;
60 }
61 }
62
63 /* caller must hold ehci->lock */
64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
65 {
66 union ehci_shadow *prev_p = &ehci->pshadow[frame];
67 __hc32 *hw_p = &ehci->periodic[frame];
68 union ehci_shadow here = *prev_p;
69
70 /* find predecessor of "ptr"; hw and shadow lists are in sync */
71 while (here.ptr && here.ptr != ptr) {
72 prev_p = periodic_next_shadow(ehci, prev_p,
73 Q_NEXT_TYPE(ehci, *hw_p));
74 hw_p = here.hw_next;
75 here = *prev_p;
76 }
77 /* an interrupt entry (at list end) could have been shared */
78 if (!here.ptr)
79 return;
80
81 /* update shadow and hardware lists ... the old "next" pointers
82 * from ptr may still be in use, the caller updates them.
83 */
84 *prev_p = *periodic_next_shadow(ehci, &here,
85 Q_NEXT_TYPE(ehci, *hw_p));
86 *hw_p = *here.hw_next;
87 }
88
89 /* how many of the uframe's 125 usecs are allocated? */
90 static unsigned short
91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
92 {
93 __hc32 *hw_p = &ehci->periodic [frame];
94 union ehci_shadow *q = &ehci->pshadow [frame];
95 unsigned usecs = 0;
96
97 while (q->ptr) {
98 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
99 case Q_TYPE_QH:
100 /* is it in the S-mask? */
101 if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
102 usecs += q->qh->usecs;
103 /* ... or C-mask? */
104 if (q->qh->hw_info2 & cpu_to_hc32(ehci,
105 1 << (8 + uframe)))
106 usecs += q->qh->c_usecs;
107 hw_p = &q->qh->hw_next;
108 q = &q->qh->qh_next;
109 break;
110 // case Q_TYPE_FSTN:
111 default:
112 /* for "save place" FSTNs, count the relevant INTR
113 * bandwidth from the previous frame
114 */
115 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
116 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
117 }
118 hw_p = &q->fstn->hw_next;
119 q = &q->fstn->fstn_next;
120 break;
121 case Q_TYPE_ITD:
122 if (q->itd->hw_transaction[uframe])
123 usecs += q->itd->stream->usecs;
124 hw_p = &q->itd->hw_next;
125 q = &q->itd->itd_next;
126 break;
127 case Q_TYPE_SITD:
128 /* is it in the S-mask? (count SPLIT, DATA) */
129 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
130 1 << uframe)) {
131 if (q->sitd->hw_fullspeed_ep &
132 cpu_to_hc32(ehci, 1<<31))
133 usecs += q->sitd->stream->usecs;
134 else /* worst case for OUT start-split */
135 usecs += HS_USECS_ISO (188);
136 }
137
138 /* ... C-mask? (count CSPLIT, DATA) */
139 if (q->sitd->hw_uframe &
140 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
141 /* worst case for IN complete-split */
142 usecs += q->sitd->stream->c_usecs;
143 }
144
145 hw_p = &q->sitd->hw_next;
146 q = &q->sitd->sitd_next;
147 break;
148 }
149 }
150 #ifdef DEBUG
151 if (usecs > 100)
152 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
153 frame * 8 + uframe, usecs);
154 #endif
155 return usecs;
156 }
157
158 /*-------------------------------------------------------------------------*/
159
160 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
161 {
162 if (!dev1->tt || !dev2->tt)
163 return 0;
164 if (dev1->tt != dev2->tt)
165 return 0;
166 if (dev1->tt->multi)
167 return dev1->ttport == dev2->ttport;
168 else
169 return 1;
170 }
171
172 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
173
174 /* Which uframe does the low/fullspeed transfer start in?
175 *
176 * The parameter is the mask of ssplits in "H-frame" terms
177 * and this returns the transfer start uframe in "B-frame" terms,
178 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
179 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
180 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
181 */
182 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
183 {
184 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
185 if (!smask) {
186 ehci_err(ehci, "invalid empty smask!\n");
187 /* uframe 7 can't have bw so this will indicate failure */
188 return 7;
189 }
190 return ffs(smask) - 1;
191 }
192
193 static const unsigned char
194 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
195
196 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
197 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
198 {
199 int i;
200 for (i=0; i<7; i++) {
201 if (max_tt_usecs[i] < tt_usecs[i]) {
202 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
203 tt_usecs[i] = max_tt_usecs[i];
204 }
205 }
206 }
207
208 /* How many of the tt's periodic downstream 1000 usecs are allocated?
209 *
210 * While this measures the bandwidth in terms of usecs/uframe,
211 * the low/fullspeed bus has no notion of uframes, so any particular
212 * low/fullspeed transfer can "carry over" from one uframe to the next,
213 * since the TT just performs downstream transfers in sequence.
214 *
215 * For example two separate 100 usec transfers can start in the same uframe,
216 * and the second one would "carry over" 75 usecs into the next uframe.
217 */
218 static void
219 periodic_tt_usecs (
220 struct ehci_hcd *ehci,
221 struct usb_device *dev,
222 unsigned frame,
223 unsigned short tt_usecs[8]
224 )
225 {
226 __hc32 *hw_p = &ehci->periodic [frame];
227 union ehci_shadow *q = &ehci->pshadow [frame];
228 unsigned char uf;
229
230 memset(tt_usecs, 0, 16);
231
232 while (q->ptr) {
233 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
234 case Q_TYPE_ITD:
235 hw_p = &q->itd->hw_next;
236 q = &q->itd->itd_next;
237 continue;
238 case Q_TYPE_QH:
239 if (same_tt(dev, q->qh->dev)) {
240 uf = tt_start_uframe(ehci, q->qh->hw_info2);
241 tt_usecs[uf] += q->qh->tt_usecs;
242 }
243 hw_p = &q->qh->hw_next;
244 q = &q->qh->qh_next;
245 continue;
246 case Q_TYPE_SITD:
247 if (same_tt(dev, q->sitd->urb->dev)) {
248 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
249 tt_usecs[uf] += q->sitd->stream->tt_usecs;
250 }
251 hw_p = &q->sitd->hw_next;
252 q = &q->sitd->sitd_next;
253 continue;
254 // case Q_TYPE_FSTN:
255 default:
256 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
257 frame);
258 hw_p = &q->fstn->hw_next;
259 q = &q->fstn->fstn_next;
260 }
261 }
262
263 carryover_tt_bandwidth(tt_usecs);
264
265 if (max_tt_usecs[7] < tt_usecs[7])
266 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
267 frame, tt_usecs[7] - max_tt_usecs[7]);
268 }
269
270 /*
271 * Return true if the device's tt's downstream bus is available for a
272 * periodic transfer of the specified length (usecs), starting at the
273 * specified frame/uframe. Note that (as summarized in section 11.19
274 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
275 * uframe.
276 *
277 * The uframe parameter is when the fullspeed/lowspeed transfer
278 * should be executed in "B-frame" terms, which is the same as the
279 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
280 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
281 * See the EHCI spec sec 4.5 and fig 4.7.
282 *
283 * This checks if the full/lowspeed bus, at the specified starting uframe,
284 * has the specified bandwidth available, according to rules listed
285 * in USB 2.0 spec section 11.18.1 fig 11-60.
286 *
287 * This does not check if the transfer would exceed the max ssplit
288 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
289 * since proper scheduling limits ssplits to less than 16 per uframe.
290 */
291 static int tt_available (
292 struct ehci_hcd *ehci,
293 unsigned period,
294 struct usb_device *dev,
295 unsigned frame,
296 unsigned uframe,
297 u16 usecs
298 )
299 {
300 if ((period == 0) || (uframe >= 7)) /* error */
301 return 0;
302
303 for (; frame < ehci->periodic_size; frame += period) {
304 unsigned short tt_usecs[8];
305
306 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
307
308 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
309 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
310 frame, usecs, uframe,
311 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
312 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
313
314 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
315 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
316 frame, uframe);
317 return 0;
318 }
319
320 /* special case for isoc transfers larger than 125us:
321 * the first and each subsequent fully used uframe
322 * must be empty, so as to not illegally delay
323 * already scheduled transactions
324 */
325 if (125 < usecs) {
326 int ufs = (usecs / 125);
327 int i;
328 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
329 if (0 < tt_usecs[i]) {
330 ehci_vdbg(ehci,
331 "multi-uframe xfer can't fit "
332 "in frame %d uframe %d\n",
333 frame, i);
334 return 0;
335 }
336 }
337
338 tt_usecs[uframe] += usecs;
339
340 carryover_tt_bandwidth(tt_usecs);
341
342 /* fail if the carryover pushed bw past the last uframe's limit */
343 if (max_tt_usecs[7] < tt_usecs[7]) {
344 ehci_vdbg(ehci,
345 "tt unavailable usecs %d frame %d uframe %d\n",
346 usecs, frame, uframe);
347 return 0;
348 }
349 }
350
351 return 1;
352 }
353
354 #else
355
356 /* return true iff the device's transaction translator is available
357 * for a periodic transfer starting at the specified frame, using
358 * all the uframes in the mask.
359 */
360 static int tt_no_collision (
361 struct ehci_hcd *ehci,
362 unsigned period,
363 struct usb_device *dev,
364 unsigned frame,
365 u32 uf_mask
366 )
367 {
368 if (period == 0) /* error */
369 return 0;
370
371 /* note bandwidth wastage: split never follows csplit
372 * (different dev or endpoint) until the next uframe.
373 * calling convention doesn't make that distinction.
374 */
375 for (; frame < ehci->periodic_size; frame += period) {
376 union ehci_shadow here;
377 __hc32 type;
378
379 here = ehci->pshadow [frame];
380 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
381 while (here.ptr) {
382 switch (hc32_to_cpu(ehci, type)) {
383 case Q_TYPE_ITD:
384 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
385 here = here.itd->itd_next;
386 continue;
387 case Q_TYPE_QH:
388 if (same_tt (dev, here.qh->dev)) {
389 u32 mask;
390
391 mask = hc32_to_cpu(ehci,
392 here.qh->hw_info2);
393 /* "knows" no gap is needed */
394 mask |= mask >> 8;
395 if (mask & uf_mask)
396 break;
397 }
398 type = Q_NEXT_TYPE(ehci, here.qh->hw_next);
399 here = here.qh->qh_next;
400 continue;
401 case Q_TYPE_SITD:
402 if (same_tt (dev, here.sitd->urb->dev)) {
403 u16 mask;
404
405 mask = hc32_to_cpu(ehci, here.sitd
406 ->hw_uframe);
407 /* FIXME assumes no gap for IN! */
408 mask |= mask >> 8;
409 if (mask & uf_mask)
410 break;
411 }
412 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
413 here = here.sitd->sitd_next;
414 continue;
415 // case Q_TYPE_FSTN:
416 default:
417 ehci_dbg (ehci,
418 "periodic frame %d bogus type %d\n",
419 frame, type);
420 }
421
422 /* collision or error */
423 return 0;
424 }
425 }
426
427 /* no collision */
428 return 1;
429 }
430
431 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
432
433 /*-------------------------------------------------------------------------*/
434
435 static int enable_periodic (struct ehci_hcd *ehci)
436 {
437 u32 cmd;
438 int status;
439
440 if (ehci->periodic_sched++)
441 return 0;
442
443 /* did clearing PSE did take effect yet?
444 * takes effect only at frame boundaries...
445 */
446 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
447 STS_PSS, 0, 9 * 125);
448 if (status)
449 return status;
450
451 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
452 ehci_writel(ehci, cmd, &ehci->regs->command);
453 /* posted write ... PSS happens later */
454 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
455
456 /* make sure ehci_work scans these */
457 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
458 % (ehci->periodic_size << 3);
459 return 0;
460 }
461
462 static int disable_periodic (struct ehci_hcd *ehci)
463 {
464 u32 cmd;
465 int status;
466
467 if (--ehci->periodic_sched)
468 return 0;
469
470 /* did setting PSE not take effect yet?
471 * takes effect only at frame boundaries...
472 */
473 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
474 STS_PSS, STS_PSS, 9 * 125);
475 if (status)
476 return status;
477
478 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
479 ehci_writel(ehci, cmd, &ehci->regs->command);
480 /* posted write ... */
481
482 ehci->next_uframe = -1;
483 return 0;
484 }
485
486 /*-------------------------------------------------------------------------*/
487
488 /* periodic schedule slots have iso tds (normal or split) first, then a
489 * sparse tree for active interrupt transfers.
490 *
491 * this just links in a qh; caller guarantees uframe masks are set right.
492 * no FSTN support (yet; ehci 0.96+)
493 */
494 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
495 {
496 unsigned i;
497 unsigned period = qh->period;
498
499 dev_dbg (&qh->dev->dev,
500 "link qh%d-%04x/%p start %d [%d/%d us]\n",
501 period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
502 qh, qh->start, qh->usecs, qh->c_usecs);
503
504 /* high bandwidth, or otherwise every microframe */
505 if (period == 0)
506 period = 1;
507
508 for (i = qh->start; i < ehci->periodic_size; i += period) {
509 union ehci_shadow *prev = &ehci->pshadow[i];
510 __hc32 *hw_p = &ehci->periodic[i];
511 union ehci_shadow here = *prev;
512 __hc32 type = 0;
513
514 /* skip the iso nodes at list head */
515 while (here.ptr) {
516 type = Q_NEXT_TYPE(ehci, *hw_p);
517 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
518 break;
519 prev = periodic_next_shadow(ehci, prev, type);
520 hw_p = &here.qh->hw_next;
521 here = *prev;
522 }
523
524 /* sorting each branch by period (slow-->fast)
525 * enables sharing interior tree nodes
526 */
527 while (here.ptr && qh != here.qh) {
528 if (qh->period > here.qh->period)
529 break;
530 prev = &here.qh->qh_next;
531 hw_p = &here.qh->hw_next;
532 here = *prev;
533 }
534 /* link in this qh, unless some earlier pass did that */
535 if (qh != here.qh) {
536 qh->qh_next = here;
537 if (here.qh)
538 qh->hw_next = *hw_p;
539 wmb ();
540 prev->qh = qh;
541 *hw_p = QH_NEXT (ehci, qh->qh_dma);
542 }
543 }
544 qh->qh_state = QH_STATE_LINKED;
545 qh->xacterrs = 0;
546 qh_get (qh);
547
548 /* update per-qh bandwidth for usbfs */
549 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
550 ? ((qh->usecs + qh->c_usecs) / qh->period)
551 : (qh->usecs * 8);
552
553 /* maybe enable periodic schedule processing */
554 return enable_periodic(ehci);
555 }
556
557 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
558 {
559 unsigned i;
560 unsigned period;
561
562 // FIXME:
563 // IF this isn't high speed
564 // and this qh is active in the current uframe
565 // (and overlay token SplitXstate is false?)
566 // THEN
567 // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
568
569 /* high bandwidth, or otherwise part of every microframe */
570 if ((period = qh->period) == 0)
571 period = 1;
572
573 for (i = qh->start; i < ehci->periodic_size; i += period)
574 periodic_unlink (ehci, i, qh);
575
576 /* update per-qh bandwidth for usbfs */
577 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
578 ? ((qh->usecs + qh->c_usecs) / qh->period)
579 : (qh->usecs * 8);
580
581 dev_dbg (&qh->dev->dev,
582 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
583 qh->period,
584 hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
585 qh, qh->start, qh->usecs, qh->c_usecs);
586
587 /* qh->qh_next still "live" to HC */
588 qh->qh_state = QH_STATE_UNLINK;
589 qh->qh_next.ptr = NULL;
590 qh_put (qh);
591
592 /* maybe turn off periodic schedule */
593 return disable_periodic(ehci);
594 }
595
596 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
597 {
598 unsigned wait;
599
600 qh_unlink_periodic (ehci, qh);
601
602 /* simple/paranoid: always delay, expecting the HC needs to read
603 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
604 * expect khubd to clean up after any CSPLITs we won't issue.
605 * active high speed queues may need bigger delays...
606 */
607 if (list_empty (&qh->qtd_list)
608 || (cpu_to_hc32(ehci, QH_CMASK)
609 & qh->hw_info2) != 0)
610 wait = 2;
611 else
612 wait = 55; /* worst case: 3 * 1024 */
613
614 udelay (wait);
615 qh->qh_state = QH_STATE_IDLE;
616 qh->hw_next = EHCI_LIST_END(ehci);
617 wmb ();
618 }
619
620 /*-------------------------------------------------------------------------*/
621
622 static int check_period (
623 struct ehci_hcd *ehci,
624 unsigned frame,
625 unsigned uframe,
626 unsigned period,
627 unsigned usecs
628 ) {
629 int claimed;
630
631 /* complete split running into next frame?
632 * given FSTN support, we could sometimes check...
633 */
634 if (uframe >= 8)
635 return 0;
636
637 /*
638 * 80% periodic == 100 usec/uframe available
639 * convert "usecs we need" to "max already claimed"
640 */
641 usecs = 100 - usecs;
642
643 /* we "know" 2 and 4 uframe intervals were rejected; so
644 * for period 0, check _every_ microframe in the schedule.
645 */
646 if (unlikely (period == 0)) {
647 do {
648 for (uframe = 0; uframe < 7; uframe++) {
649 claimed = periodic_usecs (ehci, frame, uframe);
650 if (claimed > usecs)
651 return 0;
652 }
653 } while ((frame += 1) < ehci->periodic_size);
654
655 /* just check the specified uframe, at that period */
656 } else {
657 do {
658 claimed = periodic_usecs (ehci, frame, uframe);
659 if (claimed > usecs)
660 return 0;
661 } while ((frame += period) < ehci->periodic_size);
662 }
663
664 // success!
665 return 1;
666 }
667
668 static int check_intr_schedule (
669 struct ehci_hcd *ehci,
670 unsigned frame,
671 unsigned uframe,
672 const struct ehci_qh *qh,
673 __hc32 *c_maskp
674 )
675 {
676 int retval = -ENOSPC;
677 u8 mask = 0;
678
679 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
680 goto done;
681
682 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
683 goto done;
684 if (!qh->c_usecs) {
685 retval = 0;
686 *c_maskp = 0;
687 goto done;
688 }
689
690 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
691 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
692 qh->tt_usecs)) {
693 unsigned i;
694
695 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
696 for (i=uframe+1; i<8 && i<uframe+4; i++)
697 if (!check_period (ehci, frame, i,
698 qh->period, qh->c_usecs))
699 goto done;
700 else
701 mask |= 1 << i;
702
703 retval = 0;
704
705 *c_maskp = cpu_to_hc32(ehci, mask << 8);
706 }
707 #else
708 /* Make sure this tt's buffer is also available for CSPLITs.
709 * We pessimize a bit; probably the typical full speed case
710 * doesn't need the second CSPLIT.
711 *
712 * NOTE: both SPLIT and CSPLIT could be checked in just
713 * one smart pass...
714 */
715 mask = 0x03 << (uframe + qh->gap_uf);
716 *c_maskp = cpu_to_hc32(ehci, mask << 8);
717
718 mask |= 1 << uframe;
719 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
720 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
721 qh->period, qh->c_usecs))
722 goto done;
723 if (!check_period (ehci, frame, uframe + qh->gap_uf,
724 qh->period, qh->c_usecs))
725 goto done;
726 retval = 0;
727 }
728 #endif
729 done:
730 return retval;
731 }
732
733 /* "first fit" scheduling policy used the first time through,
734 * or when the previous schedule slot can't be re-used.
735 */
736 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
737 {
738 int status;
739 unsigned uframe;
740 __hc32 c_mask;
741 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
742
743 qh_refresh(ehci, qh);
744 qh->hw_next = EHCI_LIST_END(ehci);
745 frame = qh->start;
746
747 /* reuse the previous schedule slots, if we can */
748 if (frame < qh->period) {
749 uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK);
750 status = check_intr_schedule (ehci, frame, --uframe,
751 qh, &c_mask);
752 } else {
753 uframe = 0;
754 c_mask = 0;
755 status = -ENOSPC;
756 }
757
758 /* else scan the schedule to find a group of slots such that all
759 * uframes have enough periodic bandwidth available.
760 */
761 if (status) {
762 /* "normal" case, uframing flexible except with splits */
763 if (qh->period) {
764 int i;
765
766 for (i = qh->period; status && i > 0; --i) {
767 frame = ++ehci->random_frame % qh->period;
768 for (uframe = 0; uframe < 8; uframe++) {
769 status = check_intr_schedule (ehci,
770 frame, uframe, qh,
771 &c_mask);
772 if (status == 0)
773 break;
774 }
775 }
776
777 /* qh->period == 0 means every uframe */
778 } else {
779 frame = 0;
780 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
781 }
782 if (status)
783 goto done;
784 qh->start = frame;
785
786 /* reset S-frame and (maybe) C-frame masks */
787 qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
788 qh->hw_info2 |= qh->period
789 ? cpu_to_hc32(ehci, 1 << uframe)
790 : cpu_to_hc32(ehci, QH_SMASK);
791 qh->hw_info2 |= c_mask;
792 } else
793 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
794
795 /* stuff into the periodic schedule */
796 status = qh_link_periodic (ehci, qh);
797 done:
798 return status;
799 }
800
801 static int intr_submit (
802 struct ehci_hcd *ehci,
803 struct urb *urb,
804 struct list_head *qtd_list,
805 gfp_t mem_flags
806 ) {
807 unsigned epnum;
808 unsigned long flags;
809 struct ehci_qh *qh;
810 int status;
811 struct list_head empty;
812
813 /* get endpoint and transfer/schedule data */
814 epnum = urb->ep->desc.bEndpointAddress;
815
816 spin_lock_irqsave (&ehci->lock, flags);
817
818 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
819 &ehci_to_hcd(ehci)->flags))) {
820 status = -ESHUTDOWN;
821 goto done_not_linked;
822 }
823 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
824 if (unlikely(status))
825 goto done_not_linked;
826
827 /* get qh and force any scheduling errors */
828 INIT_LIST_HEAD (&empty);
829 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
830 if (qh == NULL) {
831 status = -ENOMEM;
832 goto done;
833 }
834 if (qh->qh_state == QH_STATE_IDLE) {
835 if ((status = qh_schedule (ehci, qh)) != 0)
836 goto done;
837 }
838
839 /* then queue the urb's tds to the qh */
840 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
841 BUG_ON (qh == NULL);
842
843 /* ... update usbfs periodic stats */
844 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
845
846 done:
847 if (unlikely(status))
848 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
849 done_not_linked:
850 spin_unlock_irqrestore (&ehci->lock, flags);
851 if (status)
852 qtd_list_free (ehci, urb, qtd_list);
853
854 return status;
855 }
856
857 /*-------------------------------------------------------------------------*/
858
859 /* ehci_iso_stream ops work with both ITD and SITD */
860
861 static struct ehci_iso_stream *
862 iso_stream_alloc (gfp_t mem_flags)
863 {
864 struct ehci_iso_stream *stream;
865
866 stream = kzalloc(sizeof *stream, mem_flags);
867 if (likely (stream != NULL)) {
868 INIT_LIST_HEAD(&stream->td_list);
869 INIT_LIST_HEAD(&stream->free_list);
870 stream->next_uframe = -1;
871 stream->refcount = 1;
872 }
873 return stream;
874 }
875
876 static void
877 iso_stream_init (
878 struct ehci_hcd *ehci,
879 struct ehci_iso_stream *stream,
880 struct usb_device *dev,
881 int pipe,
882 unsigned interval
883 )
884 {
885 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
886
887 u32 buf1;
888 unsigned epnum, maxp;
889 int is_input;
890 long bandwidth;
891
892 /*
893 * this might be a "high bandwidth" highspeed endpoint,
894 * as encoded in the ep descriptor's wMaxPacket field
895 */
896 epnum = usb_pipeendpoint (pipe);
897 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
898 maxp = usb_maxpacket(dev, pipe, !is_input);
899 if (is_input) {
900 buf1 = (1 << 11);
901 } else {
902 buf1 = 0;
903 }
904
905 /* knows about ITD vs SITD */
906 if (dev->speed == USB_SPEED_HIGH) {
907 unsigned multi = hb_mult(maxp);
908
909 stream->highspeed = 1;
910
911 maxp = max_packet(maxp);
912 buf1 |= maxp;
913 maxp *= multi;
914
915 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
916 stream->buf1 = cpu_to_hc32(ehci, buf1);
917 stream->buf2 = cpu_to_hc32(ehci, multi);
918
919 /* usbfs wants to report the average usecs per frame tied up
920 * when transfers on this endpoint are scheduled ...
921 */
922 stream->usecs = HS_USECS_ISO (maxp);
923 bandwidth = stream->usecs * 8;
924 bandwidth /= interval;
925
926 } else {
927 u32 addr;
928 int think_time;
929 int hs_transfers;
930
931 addr = dev->ttport << 24;
932 if (!ehci_is_TDI(ehci)
933 || (dev->tt->hub !=
934 ehci_to_hcd(ehci)->self.root_hub))
935 addr |= dev->tt->hub->devnum << 16;
936 addr |= epnum << 8;
937 addr |= dev->devnum;
938 stream->usecs = HS_USECS_ISO (maxp);
939 think_time = dev->tt ? dev->tt->think_time : 0;
940 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
941 dev->speed, is_input, 1, maxp));
942 hs_transfers = max (1u, (maxp + 187) / 188);
943 if (is_input) {
944 u32 tmp;
945
946 addr |= 1 << 31;
947 stream->c_usecs = stream->usecs;
948 stream->usecs = HS_USECS_ISO (1);
949 stream->raw_mask = 1;
950
951 /* c-mask as specified in USB 2.0 11.18.4 3.c */
952 tmp = (1 << (hs_transfers + 2)) - 1;
953 stream->raw_mask |= tmp << (8 + 2);
954 } else
955 stream->raw_mask = smask_out [hs_transfers - 1];
956 bandwidth = stream->usecs + stream->c_usecs;
957 bandwidth /= interval << 3;
958
959 /* stream->splits gets created from raw_mask later */
960 stream->address = cpu_to_hc32(ehci, addr);
961 }
962 stream->bandwidth = bandwidth;
963
964 stream->udev = dev;
965
966 stream->bEndpointAddress = is_input | epnum;
967 stream->interval = interval;
968 stream->maxp = maxp;
969 }
970
971 static void
972 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
973 {
974 stream->refcount--;
975
976 /* free whenever just a dev->ep reference remains.
977 * not like a QH -- no persistent state (toggle, halt)
978 */
979 if (stream->refcount == 1) {
980 int is_in;
981
982 // BUG_ON (!list_empty(&stream->td_list));
983
984 while (!list_empty (&stream->free_list)) {
985 struct list_head *entry;
986
987 entry = stream->free_list.next;
988 list_del (entry);
989
990 /* knows about ITD vs SITD */
991 if (stream->highspeed) {
992 struct ehci_itd *itd;
993
994 itd = list_entry (entry, struct ehci_itd,
995 itd_list);
996 dma_pool_free (ehci->itd_pool, itd,
997 itd->itd_dma);
998 } else {
999 struct ehci_sitd *sitd;
1000
1001 sitd = list_entry (entry, struct ehci_sitd,
1002 sitd_list);
1003 dma_pool_free (ehci->sitd_pool, sitd,
1004 sitd->sitd_dma);
1005 }
1006 }
1007
1008 is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1009 stream->bEndpointAddress &= 0x0f;
1010 if (stream->ep)
1011 stream->ep->hcpriv = NULL;
1012
1013 if (stream->rescheduled) {
1014 ehci_info (ehci, "ep%d%s-iso rescheduled "
1015 "%lu times in %lu seconds\n",
1016 stream->bEndpointAddress, is_in ? "in" : "out",
1017 stream->rescheduled,
1018 ((jiffies - stream->start)/HZ)
1019 );
1020 }
1021
1022 kfree(stream);
1023 }
1024 }
1025
1026 static inline struct ehci_iso_stream *
1027 iso_stream_get (struct ehci_iso_stream *stream)
1028 {
1029 if (likely (stream != NULL))
1030 stream->refcount++;
1031 return stream;
1032 }
1033
1034 static struct ehci_iso_stream *
1035 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1036 {
1037 unsigned epnum;
1038 struct ehci_iso_stream *stream;
1039 struct usb_host_endpoint *ep;
1040 unsigned long flags;
1041
1042 epnum = usb_pipeendpoint (urb->pipe);
1043 if (usb_pipein(urb->pipe))
1044 ep = urb->dev->ep_in[epnum];
1045 else
1046 ep = urb->dev->ep_out[epnum];
1047
1048 spin_lock_irqsave (&ehci->lock, flags);
1049 stream = ep->hcpriv;
1050
1051 if (unlikely (stream == NULL)) {
1052 stream = iso_stream_alloc(GFP_ATOMIC);
1053 if (likely (stream != NULL)) {
1054 /* dev->ep owns the initial refcount */
1055 ep->hcpriv = stream;
1056 stream->ep = ep;
1057 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1058 urb->interval);
1059 }
1060
1061 /* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1062 } else if (unlikely (stream->hw_info1 != 0)) {
1063 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1064 urb->dev->devpath, epnum,
1065 usb_pipein(urb->pipe) ? "in" : "out");
1066 stream = NULL;
1067 }
1068
1069 /* caller guarantees an eventual matching iso_stream_put */
1070 stream = iso_stream_get (stream);
1071
1072 spin_unlock_irqrestore (&ehci->lock, flags);
1073 return stream;
1074 }
1075
1076 /*-------------------------------------------------------------------------*/
1077
1078 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1079
1080 static struct ehci_iso_sched *
1081 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1082 {
1083 struct ehci_iso_sched *iso_sched;
1084 int size = sizeof *iso_sched;
1085
1086 size += packets * sizeof (struct ehci_iso_packet);
1087 iso_sched = kzalloc(size, mem_flags);
1088 if (likely (iso_sched != NULL)) {
1089 INIT_LIST_HEAD (&iso_sched->td_list);
1090 }
1091 return iso_sched;
1092 }
1093
1094 static inline void
1095 itd_sched_init(
1096 struct ehci_hcd *ehci,
1097 struct ehci_iso_sched *iso_sched,
1098 struct ehci_iso_stream *stream,
1099 struct urb *urb
1100 )
1101 {
1102 unsigned i;
1103 dma_addr_t dma = urb->transfer_dma;
1104
1105 /* how many uframes are needed for these transfers */
1106 iso_sched->span = urb->number_of_packets * stream->interval;
1107
1108 /* figure out per-uframe itd fields that we'll need later
1109 * when we fit new itds into the schedule.
1110 */
1111 for (i = 0; i < urb->number_of_packets; i++) {
1112 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1113 unsigned length;
1114 dma_addr_t buf;
1115 u32 trans;
1116
1117 length = urb->iso_frame_desc [i].length;
1118 buf = dma + urb->iso_frame_desc [i].offset;
1119
1120 trans = EHCI_ISOC_ACTIVE;
1121 trans |= buf & 0x0fff;
1122 if (unlikely (((i + 1) == urb->number_of_packets))
1123 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1124 trans |= EHCI_ITD_IOC;
1125 trans |= length << 16;
1126 uframe->transaction = cpu_to_hc32(ehci, trans);
1127
1128 /* might need to cross a buffer page within a uframe */
1129 uframe->bufp = (buf & ~(u64)0x0fff);
1130 buf += length;
1131 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1132 uframe->cross = 1;
1133 }
1134 }
1135
1136 static void
1137 iso_sched_free (
1138 struct ehci_iso_stream *stream,
1139 struct ehci_iso_sched *iso_sched
1140 )
1141 {
1142 if (!iso_sched)
1143 return;
1144 // caller must hold ehci->lock!
1145 list_splice (&iso_sched->td_list, &stream->free_list);
1146 kfree (iso_sched);
1147 }
1148
1149 static int
1150 itd_urb_transaction (
1151 struct ehci_iso_stream *stream,
1152 struct ehci_hcd *ehci,
1153 struct urb *urb,
1154 gfp_t mem_flags
1155 )
1156 {
1157 struct ehci_itd *itd;
1158 dma_addr_t itd_dma;
1159 int i;
1160 unsigned num_itds;
1161 struct ehci_iso_sched *sched;
1162 unsigned long flags;
1163
1164 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1165 if (unlikely (sched == NULL))
1166 return -ENOMEM;
1167
1168 itd_sched_init(ehci, sched, stream, urb);
1169
1170 if (urb->interval < 8)
1171 num_itds = 1 + (sched->span + 7) / 8;
1172 else
1173 num_itds = urb->number_of_packets;
1174
1175 /* allocate/init ITDs */
1176 spin_lock_irqsave (&ehci->lock, flags);
1177 for (i = 0; i < num_itds; i++) {
1178
1179 /* free_list.next might be cache-hot ... but maybe
1180 * the HC caches it too. avoid that issue for now.
1181 */
1182
1183 /* prefer previously-allocated itds */
1184 if (likely (!list_empty(&stream->free_list))) {
1185 itd = list_entry (stream->free_list.prev,
1186 struct ehci_itd, itd_list);
1187 list_del (&itd->itd_list);
1188 itd_dma = itd->itd_dma;
1189 } else {
1190 spin_unlock_irqrestore (&ehci->lock, flags);
1191 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1192 &itd_dma);
1193 spin_lock_irqsave (&ehci->lock, flags);
1194 if (!itd) {
1195 iso_sched_free(stream, sched);
1196 spin_unlock_irqrestore(&ehci->lock, flags);
1197 return -ENOMEM;
1198 }
1199 }
1200
1201 memset (itd, 0, sizeof *itd);
1202 itd->itd_dma = itd_dma;
1203 list_add (&itd->itd_list, &sched->td_list);
1204 }
1205 spin_unlock_irqrestore (&ehci->lock, flags);
1206
1207 /* temporarily store schedule info in hcpriv */
1208 urb->hcpriv = sched;
1209 urb->error_count = 0;
1210 return 0;
1211 }
1212
1213 /*-------------------------------------------------------------------------*/
1214
1215 static inline int
1216 itd_slot_ok (
1217 struct ehci_hcd *ehci,
1218 u32 mod,
1219 u32 uframe,
1220 u8 usecs,
1221 u32 period
1222 )
1223 {
1224 uframe %= period;
1225 do {
1226 /* can't commit more than 80% periodic == 100 usec */
1227 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1228 > (100 - usecs))
1229 return 0;
1230
1231 /* we know urb->interval is 2^N uframes */
1232 uframe += period;
1233 } while (uframe < mod);
1234 return 1;
1235 }
1236
1237 static inline int
1238 sitd_slot_ok (
1239 struct ehci_hcd *ehci,
1240 u32 mod,
1241 struct ehci_iso_stream *stream,
1242 u32 uframe,
1243 struct ehci_iso_sched *sched,
1244 u32 period_uframes
1245 )
1246 {
1247 u32 mask, tmp;
1248 u32 frame, uf;
1249
1250 mask = stream->raw_mask << (uframe & 7);
1251
1252 /* for IN, don't wrap CSPLIT into the next frame */
1253 if (mask & ~0xffff)
1254 return 0;
1255
1256 /* this multi-pass logic is simple, but performance may
1257 * suffer when the schedule data isn't cached.
1258 */
1259
1260 /* check bandwidth */
1261 uframe %= period_uframes;
1262 do {
1263 u32 max_used;
1264
1265 frame = uframe >> 3;
1266 uf = uframe & 7;
1267
1268 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1269 /* The tt's fullspeed bus bandwidth must be available.
1270 * tt_available scheduling guarantees 10+% for control/bulk.
1271 */
1272 if (!tt_available (ehci, period_uframes << 3,
1273 stream->udev, frame, uf, stream->tt_usecs))
1274 return 0;
1275 #else
1276 /* tt must be idle for start(s), any gap, and csplit.
1277 * assume scheduling slop leaves 10+% for control/bulk.
1278 */
1279 if (!tt_no_collision (ehci, period_uframes << 3,
1280 stream->udev, frame, mask))
1281 return 0;
1282 #endif
1283
1284 /* check starts (OUT uses more than one) */
1285 max_used = 100 - stream->usecs;
1286 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1287 if (periodic_usecs (ehci, frame, uf) > max_used)
1288 return 0;
1289 }
1290
1291 /* for IN, check CSPLIT */
1292 if (stream->c_usecs) {
1293 uf = uframe & 7;
1294 max_used = 100 - stream->c_usecs;
1295 do {
1296 tmp = 1 << uf;
1297 tmp <<= 8;
1298 if ((stream->raw_mask & tmp) == 0)
1299 continue;
1300 if (periodic_usecs (ehci, frame, uf)
1301 > max_used)
1302 return 0;
1303 } while (++uf < 8);
1304 }
1305
1306 /* we know urb->interval is 2^N uframes */
1307 uframe += period_uframes;
1308 } while (uframe < mod);
1309
1310 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1311 return 1;
1312 }
1313
1314 /*
1315 * This scheduler plans almost as far into the future as it has actual
1316 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1317 * "as small as possible" to be cache-friendlier.) That limits the size
1318 * transfers you can stream reliably; avoid more than 64 msec per urb.
1319 * Also avoid queue depths of less than ehci's worst irq latency (affected
1320 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1321 * and other factors); or more than about 230 msec total (for portability,
1322 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1323 */
1324
1325 #define SCHEDULE_SLOP 10 /* frames */
1326
1327 static int
1328 iso_stream_schedule (
1329 struct ehci_hcd *ehci,
1330 struct urb *urb,
1331 struct ehci_iso_stream *stream
1332 )
1333 {
1334 u32 now, start, max, period;
1335 int status;
1336 unsigned mod = ehci->periodic_size << 3;
1337 struct ehci_iso_sched *sched = urb->hcpriv;
1338
1339 if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1340 ehci_dbg (ehci, "iso request %p too long\n", urb);
1341 status = -EFBIG;
1342 goto fail;
1343 }
1344
1345 if ((stream->depth + sched->span) > mod) {
1346 ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1347 urb, stream->depth, sched->span, mod);
1348 status = -EFBIG;
1349 goto fail;
1350 }
1351
1352 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1353
1354 /* when's the last uframe this urb could start? */
1355 max = now + mod;
1356
1357 /* Typical case: reuse current schedule, stream is still active.
1358 * Hopefully there are no gaps from the host falling behind
1359 * (irq delays etc), but if there are we'll take the next
1360 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1361 */
1362 if (likely (!list_empty (&stream->td_list))) {
1363 start = stream->next_uframe;
1364 if (start < now)
1365 start += mod;
1366
1367 /* Fell behind (by up to twice the slop amount)? */
1368 if (start >= max - 2 * 8 * SCHEDULE_SLOP)
1369 start += stream->interval * DIV_ROUND_UP(
1370 max - start, stream->interval) - mod;
1371
1372 /* Tried to schedule too far into the future? */
1373 if (unlikely((start + sched->span) >= max)) {
1374 status = -EFBIG;
1375 goto fail;
1376 }
1377 goto ready;
1378 }
1379
1380 /* need to schedule; when's the next (u)frame we could start?
1381 * this is bigger than ehci->i_thresh allows; scheduling itself
1382 * isn't free, the slop should handle reasonably slow cpus. it
1383 * can also help high bandwidth if the dma and irq loads don't
1384 * jump until after the queue is primed.
1385 */
1386 start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1387 start %= mod;
1388 stream->next_uframe = start;
1389
1390 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1391
1392 period = urb->interval;
1393 if (!stream->highspeed)
1394 period <<= 3;
1395
1396 /* find a uframe slot with enough bandwidth */
1397 for (; start < (stream->next_uframe + period); start++) {
1398 int enough_space;
1399
1400 /* check schedule: enough space? */
1401 if (stream->highspeed)
1402 enough_space = itd_slot_ok (ehci, mod, start,
1403 stream->usecs, period);
1404 else {
1405 if ((start % 8) >= 6)
1406 continue;
1407 enough_space = sitd_slot_ok (ehci, mod, stream,
1408 start, sched, period);
1409 }
1410
1411 /* schedule it here if there's enough bandwidth */
1412 if (enough_space) {
1413 stream->next_uframe = start % mod;
1414 goto ready;
1415 }
1416 }
1417
1418 /* no room in the schedule */
1419 ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1420 list_empty (&stream->td_list) ? "" : "re",
1421 urb, now, max);
1422 status = -ENOSPC;
1423
1424 fail:
1425 iso_sched_free (stream, sched);
1426 urb->hcpriv = NULL;
1427 return status;
1428
1429 ready:
1430 /* report high speed start in uframes; full speed, in frames */
1431 urb->start_frame = stream->next_uframe;
1432 if (!stream->highspeed)
1433 urb->start_frame >>= 3;
1434 return 0;
1435 }
1436
1437 /*-------------------------------------------------------------------------*/
1438
1439 static inline void
1440 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1441 struct ehci_itd *itd)
1442 {
1443 int i;
1444
1445 /* it's been recently zeroed */
1446 itd->hw_next = EHCI_LIST_END(ehci);
1447 itd->hw_bufp [0] = stream->buf0;
1448 itd->hw_bufp [1] = stream->buf1;
1449 itd->hw_bufp [2] = stream->buf2;
1450
1451 for (i = 0; i < 8; i++)
1452 itd->index[i] = -1;
1453
1454 /* All other fields are filled when scheduling */
1455 }
1456
1457 static inline void
1458 itd_patch(
1459 struct ehci_hcd *ehci,
1460 struct ehci_itd *itd,
1461 struct ehci_iso_sched *iso_sched,
1462 unsigned index,
1463 u16 uframe
1464 )
1465 {
1466 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1467 unsigned pg = itd->pg;
1468
1469 // BUG_ON (pg == 6 && uf->cross);
1470
1471 uframe &= 0x07;
1472 itd->index [uframe] = index;
1473
1474 itd->hw_transaction[uframe] = uf->transaction;
1475 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1476 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1477 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1478
1479 /* iso_frame_desc[].offset must be strictly increasing */
1480 if (unlikely (uf->cross)) {
1481 u64 bufp = uf->bufp + 4096;
1482
1483 itd->pg = ++pg;
1484 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1485 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1486 }
1487 }
1488
1489 static inline void
1490 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1491 {
1492 /* always prepend ITD/SITD ... only QH tree is order-sensitive */
1493 itd->itd_next = ehci->pshadow [frame];
1494 itd->hw_next = ehci->periodic [frame];
1495 ehci->pshadow [frame].itd = itd;
1496 itd->frame = frame;
1497 wmb ();
1498 ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1499 }
1500
1501 /* fit urb's itds into the selected schedule slot; activate as needed */
1502 static int
1503 itd_link_urb (
1504 struct ehci_hcd *ehci,
1505 struct urb *urb,
1506 unsigned mod,
1507 struct ehci_iso_stream *stream
1508 )
1509 {
1510 int packet;
1511 unsigned next_uframe, uframe, frame;
1512 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1513 struct ehci_itd *itd;
1514
1515 next_uframe = stream->next_uframe % mod;
1516
1517 if (unlikely (list_empty(&stream->td_list))) {
1518 ehci_to_hcd(ehci)->self.bandwidth_allocated
1519 += stream->bandwidth;
1520 ehci_vdbg (ehci,
1521 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1522 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1523 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1524 urb->interval,
1525 next_uframe >> 3, next_uframe & 0x7);
1526 stream->start = jiffies;
1527 }
1528 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1529
1530 /* fill iTDs uframe by uframe */
1531 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1532 if (itd == NULL) {
1533 /* ASSERT: we have all necessary itds */
1534 // BUG_ON (list_empty (&iso_sched->td_list));
1535
1536 /* ASSERT: no itds for this endpoint in this uframe */
1537
1538 itd = list_entry (iso_sched->td_list.next,
1539 struct ehci_itd, itd_list);
1540 list_move_tail (&itd->itd_list, &stream->td_list);
1541 itd->stream = iso_stream_get (stream);
1542 itd->urb = urb;
1543 itd_init (ehci, stream, itd);
1544 }
1545
1546 uframe = next_uframe & 0x07;
1547 frame = next_uframe >> 3;
1548
1549 itd_patch(ehci, itd, iso_sched, packet, uframe);
1550
1551 next_uframe += stream->interval;
1552 stream->depth += stream->interval;
1553 next_uframe %= mod;
1554 packet++;
1555
1556 /* link completed itds into the schedule */
1557 if (((next_uframe >> 3) != frame)
1558 || packet == urb->number_of_packets) {
1559 itd_link (ehci, frame % ehci->periodic_size, itd);
1560 itd = NULL;
1561 }
1562 }
1563 stream->next_uframe = next_uframe;
1564
1565 /* don't need that schedule data any more */
1566 iso_sched_free (stream, iso_sched);
1567 urb->hcpriv = NULL;
1568
1569 timer_action (ehci, TIMER_IO_WATCHDOG);
1570 return enable_periodic(ehci);
1571 }
1572
1573 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1574
1575 /* Process and recycle a completed ITD. Return true iff its urb completed,
1576 * and hence its completion callback probably added things to the hardware
1577 * schedule.
1578 *
1579 * Note that we carefully avoid recycling this descriptor until after any
1580 * completion callback runs, so that it won't be reused quickly. That is,
1581 * assuming (a) no more than two urbs per frame on this endpoint, and also
1582 * (b) only this endpoint's completions submit URBs. It seems some silicon
1583 * corrupts things if you reuse completed descriptors very quickly...
1584 */
1585 static unsigned
1586 itd_complete (
1587 struct ehci_hcd *ehci,
1588 struct ehci_itd *itd
1589 ) {
1590 struct urb *urb = itd->urb;
1591 struct usb_iso_packet_descriptor *desc;
1592 u32 t;
1593 unsigned uframe;
1594 int urb_index = -1;
1595 struct ehci_iso_stream *stream = itd->stream;
1596 struct usb_device *dev;
1597 unsigned retval = false;
1598
1599 /* for each uframe with a packet */
1600 for (uframe = 0; uframe < 8; uframe++) {
1601 if (likely (itd->index[uframe] == -1))
1602 continue;
1603 urb_index = itd->index[uframe];
1604 desc = &urb->iso_frame_desc [urb_index];
1605
1606 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1607 itd->hw_transaction [uframe] = 0;
1608 stream->depth -= stream->interval;
1609
1610 /* report transfer status */
1611 if (unlikely (t & ISO_ERRS)) {
1612 urb->error_count++;
1613 if (t & EHCI_ISOC_BUF_ERR)
1614 desc->status = usb_pipein (urb->pipe)
1615 ? -ENOSR /* hc couldn't read */
1616 : -ECOMM; /* hc couldn't write */
1617 else if (t & EHCI_ISOC_BABBLE)
1618 desc->status = -EOVERFLOW;
1619 else /* (t & EHCI_ISOC_XACTERR) */
1620 desc->status = -EPROTO;
1621
1622 /* HC need not update length with this error */
1623 if (!(t & EHCI_ISOC_BABBLE)) {
1624 desc->actual_length = EHCI_ITD_LENGTH(t);
1625 urb->actual_length += desc->actual_length;
1626 }
1627 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1628 desc->status = 0;
1629 desc->actual_length = EHCI_ITD_LENGTH(t);
1630 urb->actual_length += desc->actual_length;
1631 } else {
1632 /* URB was too late */
1633 desc->status = -EXDEV;
1634 }
1635 }
1636
1637 /* handle completion now? */
1638 if (likely ((urb_index + 1) != urb->number_of_packets))
1639 goto done;
1640
1641 /* ASSERT: it's really the last itd for this urb
1642 list_for_each_entry (itd, &stream->td_list, itd_list)
1643 BUG_ON (itd->urb == urb);
1644 */
1645
1646 /* give urb back to the driver; completion often (re)submits */
1647 dev = urb->dev;
1648 ehci_urb_done(ehci, urb, 0);
1649 retval = true;
1650 urb = NULL;
1651 (void) disable_periodic(ehci);
1652 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1653
1654 if (unlikely(list_is_singular(&stream->td_list))) {
1655 ehci_to_hcd(ehci)->self.bandwidth_allocated
1656 -= stream->bandwidth;
1657 ehci_vdbg (ehci,
1658 "deschedule devp %s ep%d%s-iso\n",
1659 dev->devpath, stream->bEndpointAddress & 0x0f,
1660 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1661 }
1662 iso_stream_put (ehci, stream);
1663
1664 done:
1665 itd->urb = NULL;
1666 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1667 /* OK to recycle this ITD now. */
1668 itd->stream = NULL;
1669 list_move(&itd->itd_list, &stream->free_list);
1670 iso_stream_put(ehci, stream);
1671 } else {
1672 /* HW might remember this ITD, so we can't recycle it yet.
1673 * Move it to a safe place until a new frame starts.
1674 */
1675 list_move(&itd->itd_list, &ehci->cached_itd_list);
1676 if (stream->refcount == 2) {
1677 /* If iso_stream_put() were called here, stream
1678 * would be freed. Instead, just prevent reuse.
1679 */
1680 stream->ep->hcpriv = NULL;
1681 stream->ep = NULL;
1682 }
1683 }
1684 return retval;
1685 }
1686
1687 /*-------------------------------------------------------------------------*/
1688
1689 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1690 gfp_t mem_flags)
1691 {
1692 int status = -EINVAL;
1693 unsigned long flags;
1694 struct ehci_iso_stream *stream;
1695
1696 /* Get iso_stream head */
1697 stream = iso_stream_find (ehci, urb);
1698 if (unlikely (stream == NULL)) {
1699 ehci_dbg (ehci, "can't get iso stream\n");
1700 return -ENOMEM;
1701 }
1702 if (unlikely (urb->interval != stream->interval)) {
1703 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1704 stream->interval, urb->interval);
1705 goto done;
1706 }
1707
1708 #ifdef EHCI_URB_TRACE
1709 ehci_dbg (ehci,
1710 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1711 __func__, urb->dev->devpath, urb,
1712 usb_pipeendpoint (urb->pipe),
1713 usb_pipein (urb->pipe) ? "in" : "out",
1714 urb->transfer_buffer_length,
1715 urb->number_of_packets, urb->interval,
1716 stream);
1717 #endif
1718
1719 /* allocate ITDs w/o locking anything */
1720 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1721 if (unlikely (status < 0)) {
1722 ehci_dbg (ehci, "can't init itds\n");
1723 goto done;
1724 }
1725
1726 /* schedule ... need to lock */
1727 spin_lock_irqsave (&ehci->lock, flags);
1728 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1729 &ehci_to_hcd(ehci)->flags))) {
1730 status = -ESHUTDOWN;
1731 goto done_not_linked;
1732 }
1733 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1734 if (unlikely(status))
1735 goto done_not_linked;
1736 status = iso_stream_schedule(ehci, urb, stream);
1737 if (likely (status == 0))
1738 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1739 else
1740 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1741 done_not_linked:
1742 spin_unlock_irqrestore (&ehci->lock, flags);
1743
1744 done:
1745 if (unlikely (status < 0))
1746 iso_stream_put (ehci, stream);
1747 return status;
1748 }
1749
1750 /*-------------------------------------------------------------------------*/
1751
1752 /*
1753 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1754 * TTs in USB 2.0 hubs. These need microframe scheduling.
1755 */
1756
1757 static inline void
1758 sitd_sched_init(
1759 struct ehci_hcd *ehci,
1760 struct ehci_iso_sched *iso_sched,
1761 struct ehci_iso_stream *stream,
1762 struct urb *urb
1763 )
1764 {
1765 unsigned i;
1766 dma_addr_t dma = urb->transfer_dma;
1767
1768 /* how many frames are needed for these transfers */
1769 iso_sched->span = urb->number_of_packets * stream->interval;
1770
1771 /* figure out per-frame sitd fields that we'll need later
1772 * when we fit new sitds into the schedule.
1773 */
1774 for (i = 0; i < urb->number_of_packets; i++) {
1775 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1776 unsigned length;
1777 dma_addr_t buf;
1778 u32 trans;
1779
1780 length = urb->iso_frame_desc [i].length & 0x03ff;
1781 buf = dma + urb->iso_frame_desc [i].offset;
1782
1783 trans = SITD_STS_ACTIVE;
1784 if (((i + 1) == urb->number_of_packets)
1785 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1786 trans |= SITD_IOC;
1787 trans |= length << 16;
1788 packet->transaction = cpu_to_hc32(ehci, trans);
1789
1790 /* might need to cross a buffer page within a td */
1791 packet->bufp = buf;
1792 packet->buf1 = (buf + length) & ~0x0fff;
1793 if (packet->buf1 != (buf & ~(u64)0x0fff))
1794 packet->cross = 1;
1795
1796 /* OUT uses multiple start-splits */
1797 if (stream->bEndpointAddress & USB_DIR_IN)
1798 continue;
1799 length = (length + 187) / 188;
1800 if (length > 1) /* BEGIN vs ALL */
1801 length |= 1 << 3;
1802 packet->buf1 |= length;
1803 }
1804 }
1805
1806 static int
1807 sitd_urb_transaction (
1808 struct ehci_iso_stream *stream,
1809 struct ehci_hcd *ehci,
1810 struct urb *urb,
1811 gfp_t mem_flags
1812 )
1813 {
1814 struct ehci_sitd *sitd;
1815 dma_addr_t sitd_dma;
1816 int i;
1817 struct ehci_iso_sched *iso_sched;
1818 unsigned long flags;
1819
1820 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1821 if (iso_sched == NULL)
1822 return -ENOMEM;
1823
1824 sitd_sched_init(ehci, iso_sched, stream, urb);
1825
1826 /* allocate/init sITDs */
1827 spin_lock_irqsave (&ehci->lock, flags);
1828 for (i = 0; i < urb->number_of_packets; i++) {
1829
1830 /* NOTE: for now, we don't try to handle wraparound cases
1831 * for IN (using sitd->hw_backpointer, like a FSTN), which
1832 * means we never need two sitds for full speed packets.
1833 */
1834
1835 /* free_list.next might be cache-hot ... but maybe
1836 * the HC caches it too. avoid that issue for now.
1837 */
1838
1839 /* prefer previously-allocated sitds */
1840 if (!list_empty(&stream->free_list)) {
1841 sitd = list_entry (stream->free_list.prev,
1842 struct ehci_sitd, sitd_list);
1843 list_del (&sitd->sitd_list);
1844 sitd_dma = sitd->sitd_dma;
1845 } else {
1846 spin_unlock_irqrestore (&ehci->lock, flags);
1847 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1848 &sitd_dma);
1849 spin_lock_irqsave (&ehci->lock, flags);
1850 if (!sitd) {
1851 iso_sched_free(stream, iso_sched);
1852 spin_unlock_irqrestore(&ehci->lock, flags);
1853 return -ENOMEM;
1854 }
1855 }
1856
1857 memset (sitd, 0, sizeof *sitd);
1858 sitd->sitd_dma = sitd_dma;
1859 list_add (&sitd->sitd_list, &iso_sched->td_list);
1860 }
1861
1862 /* temporarily store schedule info in hcpriv */
1863 urb->hcpriv = iso_sched;
1864 urb->error_count = 0;
1865
1866 spin_unlock_irqrestore (&ehci->lock, flags);
1867 return 0;
1868 }
1869
1870 /*-------------------------------------------------------------------------*/
1871
1872 static inline void
1873 sitd_patch(
1874 struct ehci_hcd *ehci,
1875 struct ehci_iso_stream *stream,
1876 struct ehci_sitd *sitd,
1877 struct ehci_iso_sched *iso_sched,
1878 unsigned index
1879 )
1880 {
1881 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1882 u64 bufp = uf->bufp;
1883
1884 sitd->hw_next = EHCI_LIST_END(ehci);
1885 sitd->hw_fullspeed_ep = stream->address;
1886 sitd->hw_uframe = stream->splits;
1887 sitd->hw_results = uf->transaction;
1888 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1889
1890 bufp = uf->bufp;
1891 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1892 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1893
1894 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1895 if (uf->cross)
1896 bufp += 4096;
1897 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1898 sitd->index = index;
1899 }
1900
1901 static inline void
1902 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1903 {
1904 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1905 sitd->sitd_next = ehci->pshadow [frame];
1906 sitd->hw_next = ehci->periodic [frame];
1907 ehci->pshadow [frame].sitd = sitd;
1908 sitd->frame = frame;
1909 wmb ();
1910 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1911 }
1912
1913 /* fit urb's sitds into the selected schedule slot; activate as needed */
1914 static int
1915 sitd_link_urb (
1916 struct ehci_hcd *ehci,
1917 struct urb *urb,
1918 unsigned mod,
1919 struct ehci_iso_stream *stream
1920 )
1921 {
1922 int packet;
1923 unsigned next_uframe;
1924 struct ehci_iso_sched *sched = urb->hcpriv;
1925 struct ehci_sitd *sitd;
1926
1927 next_uframe = stream->next_uframe;
1928
1929 if (list_empty(&stream->td_list)) {
1930 /* usbfs ignores TT bandwidth */
1931 ehci_to_hcd(ehci)->self.bandwidth_allocated
1932 += stream->bandwidth;
1933 ehci_vdbg (ehci,
1934 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1935 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1936 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1937 (next_uframe >> 3) % ehci->periodic_size,
1938 stream->interval, hc32_to_cpu(ehci, stream->splits));
1939 stream->start = jiffies;
1940 }
1941 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1942
1943 /* fill sITDs frame by frame */
1944 for (packet = 0, sitd = NULL;
1945 packet < urb->number_of_packets;
1946 packet++) {
1947
1948 /* ASSERT: we have all necessary sitds */
1949 BUG_ON (list_empty (&sched->td_list));
1950
1951 /* ASSERT: no itds for this endpoint in this frame */
1952
1953 sitd = list_entry (sched->td_list.next,
1954 struct ehci_sitd, sitd_list);
1955 list_move_tail (&sitd->sitd_list, &stream->td_list);
1956 sitd->stream = iso_stream_get (stream);
1957 sitd->urb = urb;
1958
1959 sitd_patch(ehci, stream, sitd, sched, packet);
1960 sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
1961 sitd);
1962
1963 next_uframe += stream->interval << 3;
1964 stream->depth += stream->interval << 3;
1965 }
1966 stream->next_uframe = next_uframe % mod;
1967
1968 /* don't need that schedule data any more */
1969 iso_sched_free (stream, sched);
1970 urb->hcpriv = NULL;
1971
1972 timer_action (ehci, TIMER_IO_WATCHDOG);
1973 return enable_periodic(ehci);
1974 }
1975
1976 /*-------------------------------------------------------------------------*/
1977
1978 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
1979 | SITD_STS_XACT | SITD_STS_MMF)
1980
1981 /* Process and recycle a completed SITD. Return true iff its urb completed,
1982 * and hence its completion callback probably added things to the hardware
1983 * schedule.
1984 *
1985 * Note that we carefully avoid recycling this descriptor until after any
1986 * completion callback runs, so that it won't be reused quickly. That is,
1987 * assuming (a) no more than two urbs per frame on this endpoint, and also
1988 * (b) only this endpoint's completions submit URBs. It seems some silicon
1989 * corrupts things if you reuse completed descriptors very quickly...
1990 */
1991 static unsigned
1992 sitd_complete (
1993 struct ehci_hcd *ehci,
1994 struct ehci_sitd *sitd
1995 ) {
1996 struct urb *urb = sitd->urb;
1997 struct usb_iso_packet_descriptor *desc;
1998 u32 t;
1999 int urb_index = -1;
2000 struct ehci_iso_stream *stream = sitd->stream;
2001 struct usb_device *dev;
2002 unsigned retval = false;
2003
2004 urb_index = sitd->index;
2005 desc = &urb->iso_frame_desc [urb_index];
2006 t = hc32_to_cpup(ehci, &sitd->hw_results);
2007
2008 /* report transfer status */
2009 if (t & SITD_ERRS) {
2010 urb->error_count++;
2011 if (t & SITD_STS_DBE)
2012 desc->status = usb_pipein (urb->pipe)
2013 ? -ENOSR /* hc couldn't read */
2014 : -ECOMM; /* hc couldn't write */
2015 else if (t & SITD_STS_BABBLE)
2016 desc->status = -EOVERFLOW;
2017 else /* XACT, MMF, etc */
2018 desc->status = -EPROTO;
2019 } else {
2020 desc->status = 0;
2021 desc->actual_length = desc->length - SITD_LENGTH(t);
2022 urb->actual_length += desc->actual_length;
2023 }
2024 stream->depth -= stream->interval << 3;
2025
2026 /* handle completion now? */
2027 if ((urb_index + 1) != urb->number_of_packets)
2028 goto done;
2029
2030 /* ASSERT: it's really the last sitd for this urb
2031 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2032 BUG_ON (sitd->urb == urb);
2033 */
2034
2035 /* give urb back to the driver; completion often (re)submits */
2036 dev = urb->dev;
2037 ehci_urb_done(ehci, urb, 0);
2038 retval = true;
2039 urb = NULL;
2040 (void) disable_periodic(ehci);
2041 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2042
2043 if (list_is_singular(&stream->td_list)) {
2044 ehci_to_hcd(ehci)->self.bandwidth_allocated
2045 -= stream->bandwidth;
2046 ehci_vdbg (ehci,
2047 "deschedule devp %s ep%d%s-iso\n",
2048 dev->devpath, stream->bEndpointAddress & 0x0f,
2049 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2050 }
2051 iso_stream_put (ehci, stream);
2052 /* OK to recycle this SITD now that its completion callback ran. */
2053 done:
2054 sitd->urb = NULL;
2055 sitd->stream = NULL;
2056 list_move(&sitd->sitd_list, &stream->free_list);
2057 iso_stream_put(ehci, stream);
2058
2059 return retval;
2060 }
2061
2062
2063 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2064 gfp_t mem_flags)
2065 {
2066 int status = -EINVAL;
2067 unsigned long flags;
2068 struct ehci_iso_stream *stream;
2069
2070 /* Get iso_stream head */
2071 stream = iso_stream_find (ehci, urb);
2072 if (stream == NULL) {
2073 ehci_dbg (ehci, "can't get iso stream\n");
2074 return -ENOMEM;
2075 }
2076 if (urb->interval != stream->interval) {
2077 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2078 stream->interval, urb->interval);
2079 goto done;
2080 }
2081
2082 #ifdef EHCI_URB_TRACE
2083 ehci_dbg (ehci,
2084 "submit %p dev%s ep%d%s-iso len %d\n",
2085 urb, urb->dev->devpath,
2086 usb_pipeendpoint (urb->pipe),
2087 usb_pipein (urb->pipe) ? "in" : "out",
2088 urb->transfer_buffer_length);
2089 #endif
2090
2091 /* allocate SITDs */
2092 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2093 if (status < 0) {
2094 ehci_dbg (ehci, "can't init sitds\n");
2095 goto done;
2096 }
2097
2098 /* schedule ... need to lock */
2099 spin_lock_irqsave (&ehci->lock, flags);
2100 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2101 &ehci_to_hcd(ehci)->flags))) {
2102 status = -ESHUTDOWN;
2103 goto done_not_linked;
2104 }
2105 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2106 if (unlikely(status))
2107 goto done_not_linked;
2108 status = iso_stream_schedule(ehci, urb, stream);
2109 if (status == 0)
2110 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2111 else
2112 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2113 done_not_linked:
2114 spin_unlock_irqrestore (&ehci->lock, flags);
2115
2116 done:
2117 if (status < 0)
2118 iso_stream_put (ehci, stream);
2119 return status;
2120 }
2121
2122 /*-------------------------------------------------------------------------*/
2123
2124 static void free_cached_itd_list(struct ehci_hcd *ehci)
2125 {
2126 struct ehci_itd *itd, *n;
2127
2128 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2129 struct ehci_iso_stream *stream = itd->stream;
2130 itd->stream = NULL;
2131 list_move(&itd->itd_list, &stream->free_list);
2132 iso_stream_put(ehci, stream);
2133 }
2134 }
2135
2136 /*-------------------------------------------------------------------------*/
2137
2138 static void
2139 scan_periodic (struct ehci_hcd *ehci)
2140 {
2141 unsigned now_uframe, frame, clock, clock_frame, mod;
2142 unsigned modified;
2143
2144 mod = ehci->periodic_size << 3;
2145
2146 /*
2147 * When running, scan from last scan point up to "now"
2148 * else clean up by scanning everything that's left.
2149 * Touches as few pages as possible: cache-friendly.
2150 */
2151 now_uframe = ehci->next_uframe;
2152 if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2153 clock = ehci_readl(ehci, &ehci->regs->frame_index);
2154 clock_frame = (clock >> 3) % ehci->periodic_size;
2155 } else {
2156 clock = now_uframe + mod - 1;
2157 clock_frame = -1;
2158 }
2159 if (ehci->clock_frame != clock_frame) {
2160 free_cached_itd_list(ehci);
2161 ehci->clock_frame = clock_frame;
2162 }
2163 clock %= mod;
2164 clock_frame = clock >> 3;
2165
2166 for (;;) {
2167 union ehci_shadow q, *q_p;
2168 __hc32 type, *hw_p;
2169 unsigned incomplete = false;
2170
2171 frame = now_uframe >> 3;
2172
2173 restart:
2174 /* scan each element in frame's queue for completions */
2175 q_p = &ehci->pshadow [frame];
2176 hw_p = &ehci->periodic [frame];
2177 q.ptr = q_p->ptr;
2178 type = Q_NEXT_TYPE(ehci, *hw_p);
2179 modified = 0;
2180
2181 while (q.ptr != NULL) {
2182 unsigned uf;
2183 union ehci_shadow temp;
2184 int live;
2185
2186 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2187 switch (hc32_to_cpu(ehci, type)) {
2188 case Q_TYPE_QH:
2189 /* handle any completions */
2190 temp.qh = qh_get (q.qh);
2191 type = Q_NEXT_TYPE(ehci, q.qh->hw_next);
2192 q = q.qh->qh_next;
2193 modified = qh_completions (ehci, temp.qh);
2194 if (unlikely (list_empty (&temp.qh->qtd_list)))
2195 intr_deschedule (ehci, temp.qh);
2196 qh_put (temp.qh);
2197 break;
2198 case Q_TYPE_FSTN:
2199 /* for "save place" FSTNs, look at QH entries
2200 * in the previous frame for completions.
2201 */
2202 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2203 dbg ("ignoring completions from FSTNs");
2204 }
2205 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2206 q = q.fstn->fstn_next;
2207 break;
2208 case Q_TYPE_ITD:
2209 /* If this ITD is still active, leave it for
2210 * later processing ... check the next entry.
2211 * No need to check for activity unless the
2212 * frame is current.
2213 */
2214 if (frame == clock_frame && live) {
2215 rmb();
2216 for (uf = 0; uf < 8; uf++) {
2217 if (q.itd->hw_transaction[uf] &
2218 ITD_ACTIVE(ehci))
2219 break;
2220 }
2221 if (uf < 8) {
2222 incomplete = true;
2223 q_p = &q.itd->itd_next;
2224 hw_p = &q.itd->hw_next;
2225 type = Q_NEXT_TYPE(ehci,
2226 q.itd->hw_next);
2227 q = *q_p;
2228 break;
2229 }
2230 }
2231
2232 /* Take finished ITDs out of the schedule
2233 * and process them: recycle, maybe report
2234 * URB completion. HC won't cache the
2235 * pointer for much longer, if at all.
2236 */
2237 *q_p = q.itd->itd_next;
2238 *hw_p = q.itd->hw_next;
2239 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2240 wmb();
2241 modified = itd_complete (ehci, q.itd);
2242 q = *q_p;
2243 break;
2244 case Q_TYPE_SITD:
2245 /* If this SITD is still active, leave it for
2246 * later processing ... check the next entry.
2247 * No need to check for activity unless the
2248 * frame is current.
2249 */
2250 if (frame == clock_frame && live &&
2251 (q.sitd->hw_results &
2252 SITD_ACTIVE(ehci))) {
2253 incomplete = true;
2254 q_p = &q.sitd->sitd_next;
2255 hw_p = &q.sitd->hw_next;
2256 type = Q_NEXT_TYPE(ehci,
2257 q.sitd->hw_next);
2258 q = *q_p;
2259 break;
2260 }
2261
2262 /* Take finished SITDs out of the schedule
2263 * and process them: recycle, maybe report
2264 * URB completion.
2265 */
2266 *q_p = q.sitd->sitd_next;
2267 *hw_p = q.sitd->hw_next;
2268 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2269 wmb();
2270 modified = sitd_complete (ehci, q.sitd);
2271 q = *q_p;
2272 break;
2273 default:
2274 dbg ("corrupt type %d frame %d shadow %p",
2275 type, frame, q.ptr);
2276 // BUG ();
2277 q.ptr = NULL;
2278 }
2279
2280 /* assume completion callbacks modify the queue */
2281 if (unlikely (modified)) {
2282 if (likely(ehci->periodic_sched > 0))
2283 goto restart;
2284 /* short-circuit this scan */
2285 now_uframe = clock;
2286 break;
2287 }
2288 }
2289
2290 /* If we can tell we caught up to the hardware, stop now.
2291 * We can't advance our scan without collecting the ISO
2292 * transfers that are still pending in this frame.
2293 */
2294 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2295 ehci->next_uframe = now_uframe;
2296 break;
2297 }
2298
2299 // FIXME: this assumes we won't get lapped when
2300 // latencies climb; that should be rare, but...
2301 // detect it, and just go all the way around.
2302 // FLR might help detect this case, so long as latencies
2303 // don't exceed periodic_size msec (default 1.024 sec).
2304
2305 // FIXME: likewise assumes HC doesn't halt mid-scan
2306
2307 if (now_uframe == clock) {
2308 unsigned now;
2309
2310 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2311 || ehci->periodic_sched == 0)
2312 break;
2313 ehci->next_uframe = now_uframe;
2314 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2315 if (now_uframe == now)
2316 break;
2317
2318 /* rescan the rest of this frame, then ... */
2319 clock = now;
2320 clock_frame = clock >> 3;
2321 if (ehci->clock_frame != clock_frame) {
2322 free_cached_itd_list(ehci);
2323 ehci->clock_frame = clock_frame;
2324 }
2325 } else {
2326 now_uframe++;
2327 now_uframe %= mod;
2328 }
2329 }
2330 }