]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/fotg210-hcd.c
Merge branch 'for-3.13/drivers' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / fotg210-hcd.c
1 /*
2 * Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software Foundation,
24 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/dmapool.h>
29 #include <linux/kernel.h>
30 #include <linux/delay.h>
31 #include <linux/ioport.h>
32 #include <linux/sched.h>
33 #include <linux/vmalloc.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/hrtimer.h>
37 #include <linux/list.h>
38 #include <linux/interrupt.h>
39 #include <linux/usb.h>
40 #include <linux/usb/hcd.h>
41 #include <linux/moduleparam.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/debugfs.h>
44 #include <linux/slab.h>
45 #include <linux/uaccess.h>
46 #include <linux/platform_device.h>
47 #include <linux/io.h>
48
49 #include <asm/byteorder.h>
50 #include <asm/irq.h>
51 #include <asm/unaligned.h>
52
53 /*-------------------------------------------------------------------------*/
54 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
55 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
56
57 static const char hcd_name[] = "fotg210_hcd";
58
59 #undef VERBOSE_DEBUG
60 #undef FOTG210_URB_TRACE
61
62 #ifdef DEBUG
63 #define FOTG210_STATS
64 #endif
65
66 /* magic numbers that can affect system performance */
67 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
68 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
69 #define FOTG210_TUNE_RL_TT 0
70 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
71 #define FOTG210_TUNE_MULT_TT 1
72 /*
73 * Some drivers think it's safe to schedule isochronous transfers more than
74 * 256 ms into the future (partly as a result of an old bug in the scheduling
75 * code). In an attempt to avoid trouble, we will use a minimum scheduling
76 * length of 512 frames instead of 256.
77 */
78 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
79
80 /* Initial IRQ latency: faster than hw default */
81 static int log2_irq_thresh; /* 0 to 6 */
82 module_param(log2_irq_thresh, int, S_IRUGO);
83 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
84
85 /* initial park setting: slower than hw default */
86 static unsigned park;
87 module_param(park, uint, S_IRUGO);
88 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
89
90 /* for link power management(LPM) feature */
91 static unsigned int hird;
92 module_param(hird, int, S_IRUGO);
93 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
94
95 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
96
97 #include "fotg210.h"
98
99 /*-------------------------------------------------------------------------*/
100
101 #define fotg210_dbg(fotg210, fmt, args...) \
102 dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
103 #define fotg210_err(fotg210, fmt, args...) \
104 dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
105 #define fotg210_info(fotg210, fmt, args...) \
106 dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
107 #define fotg210_warn(fotg210, fmt, args...) \
108 dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
109
110 #ifdef VERBOSE_DEBUG
111 # define fotg210_vdbg fotg210_dbg
112 #else
113 static inline void fotg210_vdbg(struct fotg210_hcd *fotg210, ...) {}
114 #endif
115
116 #ifdef DEBUG
117
118 /* check the values in the HCSPARAMS register
119 * (host controller _Structural_ parameters)
120 * see EHCI spec, Table 2-4 for each value
121 */
122 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
123 {
124 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
125
126 fotg210_dbg(fotg210,
127 "%s hcs_params 0x%x ports=%d\n",
128 label, params,
129 HCS_N_PORTS(params)
130 );
131 }
132 #else
133
134 static inline void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) {}
135
136 #endif
137
138 #ifdef DEBUG
139
140 /* check the values in the HCCPARAMS register
141 * (host controller _Capability_ parameters)
142 * see EHCI Spec, Table 2-5 for each value
143 * */
144 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
145 {
146 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
147
148 fotg210_dbg(fotg210,
149 "%s hcc_params %04x uframes %s%s\n",
150 label,
151 params,
152 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
153 HCC_CANPARK(params) ? " park" : "");
154 }
155 #else
156
157 static inline void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) {}
158
159 #endif
160
161 #ifdef DEBUG
162
163 static void __maybe_unused
164 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
165 {
166 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
167 hc32_to_cpup(fotg210, &qtd->hw_next),
168 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
169 hc32_to_cpup(fotg210, &qtd->hw_token),
170 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
171 if (qtd->hw_buf[1])
172 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
173 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
174 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
175 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
176 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
177 }
178
179 static void __maybe_unused
180 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
181 {
182 struct fotg210_qh_hw *hw = qh->hw;
183
184 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
185 qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
186 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
187 }
188
189 static void __maybe_unused
190 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
191 {
192 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n",
193 label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
194 itd->urb);
195 fotg210_dbg(fotg210,
196 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
197 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
198 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
199 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
200 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
201 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
202 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
203 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
204 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
205 fotg210_dbg(fotg210,
206 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
207 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
208 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
209 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
210 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
211 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
212 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
213 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
214 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
215 itd->index[0], itd->index[1], itd->index[2],
216 itd->index[3], itd->index[4], itd->index[5],
217 itd->index[6], itd->index[7]);
218 }
219
220 static int __maybe_unused
221 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
222 {
223 return scnprintf(buf, len,
224 "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
225 label, label[0] ? " " : "", status,
226 (status & STS_ASS) ? " Async" : "",
227 (status & STS_PSS) ? " Periodic" : "",
228 (status & STS_RECL) ? " Recl" : "",
229 (status & STS_HALT) ? " Halt" : "",
230 (status & STS_IAA) ? " IAA" : "",
231 (status & STS_FATAL) ? " FATAL" : "",
232 (status & STS_FLR) ? " FLR" : "",
233 (status & STS_PCD) ? " PCD" : "",
234 (status & STS_ERR) ? " ERR" : "",
235 (status & STS_INT) ? " INT" : ""
236 );
237 }
238
239 static int __maybe_unused
240 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
241 {
242 return scnprintf(buf, len,
243 "%s%sintrenable %02x%s%s%s%s%s%s",
244 label, label[0] ? " " : "", enable,
245 (enable & STS_IAA) ? " IAA" : "",
246 (enable & STS_FATAL) ? " FATAL" : "",
247 (enable & STS_FLR) ? " FLR" : "",
248 (enable & STS_PCD) ? " PCD" : "",
249 (enable & STS_ERR) ? " ERR" : "",
250 (enable & STS_INT) ? " INT" : ""
251 );
252 }
253
254 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
255
256 static int
257 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
258 {
259 return scnprintf(buf, len,
260 "%s%scommand %07x %s=%d ithresh=%d%s%s%s "
261 "period=%s%s %s",
262 label, label[0] ? " " : "", command,
263 (command & CMD_PARK) ? " park" : "(park)",
264 CMD_PARK_CNT(command),
265 (command >> 16) & 0x3f,
266 (command & CMD_IAAD) ? " IAAD" : "",
267 (command & CMD_ASE) ? " Async" : "",
268 (command & CMD_PSE) ? " Periodic" : "",
269 fls_strings[(command >> 2) & 0x3],
270 (command & CMD_RESET) ? " Reset" : "",
271 (command & CMD_RUN) ? "RUN" : "HALT"
272 );
273 }
274
275 static int
276 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
277 {
278 char *sig;
279
280 /* signaling state */
281 switch (status & (3 << 10)) {
282 case 0 << 10:
283 sig = "se0";
284 break;
285 case 1 << 10:
286 sig = "k";
287 break; /* low speed */
288 case 2 << 10:
289 sig = "j";
290 break;
291 default:
292 sig = "?";
293 break;
294 }
295
296 return scnprintf(buf, len,
297 "%s%sport:%d status %06x %d "
298 "sig=%s%s%s%s%s%s%s%s",
299 label, label[0] ? " " : "", port, status,
300 status>>25,/*device address */
301 sig,
302 (status & PORT_RESET) ? " RESET" : "",
303 (status & PORT_SUSPEND) ? " SUSPEND" : "",
304 (status & PORT_RESUME) ? " RESUME" : "",
305 (status & PORT_PEC) ? " PEC" : "",
306 (status & PORT_PE) ? " PE" : "",
307 (status & PORT_CSC) ? " CSC" : "",
308 (status & PORT_CONNECT) ? " CONNECT" : "");
309 }
310
311 #else
312 static inline void __maybe_unused
313 dbg_qh(char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
314 {}
315
316 static inline int __maybe_unused
317 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
318 { return 0; }
319
320 static inline int __maybe_unused
321 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
322 { return 0; }
323
324 static inline int __maybe_unused
325 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
326 { return 0; }
327
328 static inline int __maybe_unused
329 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
330 { return 0; }
331
332 #endif /* DEBUG */
333
334 /* functions have the "wrong" filename when they're output... */
335 #define dbg_status(fotg210, label, status) { \
336 char _buf[80]; \
337 dbg_status_buf(_buf, sizeof(_buf), label, status); \
338 fotg210_dbg(fotg210, "%s\n", _buf); \
339 }
340
341 #define dbg_cmd(fotg210, label, command) { \
342 char _buf[80]; \
343 dbg_command_buf(_buf, sizeof(_buf), label, command); \
344 fotg210_dbg(fotg210, "%s\n", _buf); \
345 }
346
347 #define dbg_port(fotg210, label, port, status) { \
348 char _buf[80]; \
349 dbg_port_buf(_buf, sizeof(_buf), label, port, status); \
350 fotg210_dbg(fotg210, "%s\n", _buf); \
351 }
352
353 /*-------------------------------------------------------------------------*/
354
355 #ifdef STUB_DEBUG_FILES
356
357 static inline void create_debug_files(struct fotg210_hcd *bus) { }
358 static inline void remove_debug_files(struct fotg210_hcd *bus) { }
359
360 #else
361
362 /* troubleshooting help: expose state in debugfs */
363
364 static int debug_async_open(struct inode *, struct file *);
365 static int debug_periodic_open(struct inode *, struct file *);
366 static int debug_registers_open(struct inode *, struct file *);
367 static int debug_async_open(struct inode *, struct file *);
368
369 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
370 static int debug_close(struct inode *, struct file *);
371
372 static const struct file_operations debug_async_fops = {
373 .owner = THIS_MODULE,
374 .open = debug_async_open,
375 .read = debug_output,
376 .release = debug_close,
377 .llseek = default_llseek,
378 };
379 static const struct file_operations debug_periodic_fops = {
380 .owner = THIS_MODULE,
381 .open = debug_periodic_open,
382 .read = debug_output,
383 .release = debug_close,
384 .llseek = default_llseek,
385 };
386 static const struct file_operations debug_registers_fops = {
387 .owner = THIS_MODULE,
388 .open = debug_registers_open,
389 .read = debug_output,
390 .release = debug_close,
391 .llseek = default_llseek,
392 };
393
394 static struct dentry *fotg210_debug_root;
395
396 struct debug_buffer {
397 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
398 struct usb_bus *bus;
399 struct mutex mutex; /* protect filling of buffer */
400 size_t count; /* number of characters filled into buffer */
401 char *output_buf;
402 size_t alloc_size;
403 };
404
405 #define speed_char(info1)({ char tmp; \
406 switch (info1 & (3 << 12)) { \
407 case QH_FULL_SPEED: \
408 tmp = 'f'; break; \
409 case QH_LOW_SPEED: \
410 tmp = 'l'; break; \
411 case QH_HIGH_SPEED: \
412 tmp = 'h'; break; \
413 default: \
414 tmp = '?'; break; \
415 } tmp; })
416
417 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
418 {
419 __u32 v = hc32_to_cpu(fotg210, token);
420
421 if (v & QTD_STS_ACTIVE)
422 return '*';
423 if (v & QTD_STS_HALT)
424 return '-';
425 if (!IS_SHORT_READ(v))
426 return ' ';
427 /* tries to advance through hw_alt_next */
428 return '/';
429 }
430
431 static void qh_lines(
432 struct fotg210_hcd *fotg210,
433 struct fotg210_qh *qh,
434 char **nextp,
435 unsigned *sizep
436 )
437 {
438 u32 scratch;
439 u32 hw_curr;
440 struct fotg210_qtd *td;
441 unsigned temp;
442 unsigned size = *sizep;
443 char *next = *nextp;
444 char mark;
445 __le32 list_end = FOTG210_LIST_END(fotg210);
446 struct fotg210_qh_hw *hw = qh->hw;
447
448 if (hw->hw_qtd_next == list_end) /* NEC does this */
449 mark = '@';
450 else
451 mark = token_mark(fotg210, hw->hw_token);
452 if (mark == '/') { /* qh_alt_next controls qh advance? */
453 if ((hw->hw_alt_next & QTD_MASK(fotg210))
454 == fotg210->async->hw->hw_alt_next)
455 mark = '#'; /* blocked */
456 else if (hw->hw_alt_next == list_end)
457 mark = '.'; /* use hw_qtd_next */
458 /* else alt_next points to some other qtd */
459 }
460 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
461 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
462 temp = scnprintf(next, size,
463 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
464 qh, scratch & 0x007f,
465 speed_char(scratch),
466 (scratch >> 8) & 0x000f,
467 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
468 hc32_to_cpup(fotg210, &hw->hw_token), mark,
469 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
470 ? "data1" : "data0",
471 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
472 size -= temp;
473 next += temp;
474
475 /* hc may be modifying the list as we read it ... */
476 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
477 scratch = hc32_to_cpup(fotg210, &td->hw_token);
478 mark = ' ';
479 if (hw_curr == td->qtd_dma)
480 mark = '*';
481 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
482 mark = '+';
483 else if (QTD_LENGTH(scratch)) {
484 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
485 mark = '#';
486 else if (td->hw_alt_next != list_end)
487 mark = '/';
488 }
489 temp = snprintf(next, size,
490 "\n\t%p%c%s len=%d %08x urb %p",
491 td, mark, ({ char *tmp;
492 switch ((scratch>>8)&0x03) {
493 case 0:
494 tmp = "out";
495 break;
496 case 1:
497 tmp = "in";
498 break;
499 case 2:
500 tmp = "setup";
501 break;
502 default:
503 tmp = "?";
504 break;
505 } tmp; }),
506 (scratch >> 16) & 0x7fff,
507 scratch,
508 td->urb);
509 if (size < temp)
510 temp = size;
511 size -= temp;
512 next += temp;
513 if (temp == size)
514 goto done;
515 }
516
517 temp = snprintf(next, size, "\n");
518 if (size < temp)
519 temp = size;
520 size -= temp;
521 next += temp;
522
523 done:
524 *sizep = size;
525 *nextp = next;
526 }
527
528 static ssize_t fill_async_buffer(struct debug_buffer *buf)
529 {
530 struct usb_hcd *hcd;
531 struct fotg210_hcd *fotg210;
532 unsigned long flags;
533 unsigned temp, size;
534 char *next;
535 struct fotg210_qh *qh;
536
537 hcd = bus_to_hcd(buf->bus);
538 fotg210 = hcd_to_fotg210(hcd);
539 next = buf->output_buf;
540 size = buf->alloc_size;
541
542 *next = 0;
543
544 /* dumps a snapshot of the async schedule.
545 * usually empty except for long-term bulk reads, or head.
546 * one QH per line, and TDs we know about
547 */
548 spin_lock_irqsave(&fotg210->lock, flags);
549 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
550 qh = qh->qh_next.qh)
551 qh_lines(fotg210, qh, &next, &size);
552 if (fotg210->async_unlink && size > 0) {
553 temp = scnprintf(next, size, "\nunlink =\n");
554 size -= temp;
555 next += temp;
556
557 for (qh = fotg210->async_unlink; size > 0 && qh;
558 qh = qh->unlink_next)
559 qh_lines(fotg210, qh, &next, &size);
560 }
561 spin_unlock_irqrestore(&fotg210->lock, flags);
562
563 return strlen(buf->output_buf);
564 }
565
566 #define DBG_SCHED_LIMIT 64
567 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
568 {
569 struct usb_hcd *hcd;
570 struct fotg210_hcd *fotg210;
571 unsigned long flags;
572 union fotg210_shadow p, *seen;
573 unsigned temp, size, seen_count;
574 char *next;
575 unsigned i;
576 __hc32 tag;
577
578 seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
579 if (!seen)
580 return 0;
581 seen_count = 0;
582
583 hcd = bus_to_hcd(buf->bus);
584 fotg210 = hcd_to_fotg210(hcd);
585 next = buf->output_buf;
586 size = buf->alloc_size;
587
588 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
589 size -= temp;
590 next += temp;
591
592 /* dump a snapshot of the periodic schedule.
593 * iso changes, interrupt usually doesn't.
594 */
595 spin_lock_irqsave(&fotg210->lock, flags);
596 for (i = 0; i < fotg210->periodic_size; i++) {
597 p = fotg210->pshadow[i];
598 if (likely(!p.ptr))
599 continue;
600 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
601
602 temp = scnprintf(next, size, "%4d: ", i);
603 size -= temp;
604 next += temp;
605
606 do {
607 struct fotg210_qh_hw *hw;
608
609 switch (hc32_to_cpu(fotg210, tag)) {
610 case Q_TYPE_QH:
611 hw = p.qh->hw;
612 temp = scnprintf(next, size, " qh%d-%04x/%p",
613 p.qh->period,
614 hc32_to_cpup(fotg210,
615 &hw->hw_info2)
616 /* uframe masks */
617 & (QH_CMASK | QH_SMASK),
618 p.qh);
619 size -= temp;
620 next += temp;
621 /* don't repeat what follows this qh */
622 for (temp = 0; temp < seen_count; temp++) {
623 if (seen[temp].ptr != p.ptr)
624 continue;
625 if (p.qh->qh_next.ptr) {
626 temp = scnprintf(next, size,
627 " ...");
628 size -= temp;
629 next += temp;
630 }
631 break;
632 }
633 /* show more info the first time around */
634 if (temp == seen_count) {
635 u32 scratch = hc32_to_cpup(fotg210,
636 &hw->hw_info1);
637 struct fotg210_qtd *qtd;
638 char *type = "";
639
640 /* count tds, get ep direction */
641 temp = 0;
642 list_for_each_entry(qtd,
643 &p.qh->qtd_list,
644 qtd_list) {
645 temp++;
646 switch (0x03 & (hc32_to_cpu(
647 fotg210,
648 qtd->hw_token) >> 8)) {
649 case 0:
650 type = "out";
651 continue;
652 case 1:
653 type = "in";
654 continue;
655 }
656 }
657
658 temp = scnprintf(next, size,
659 "(%c%d ep%d%s "
660 "[%d/%d] q%d p%d)",
661 speed_char(scratch),
662 scratch & 0x007f,
663 (scratch >> 8) & 0x000f, type,
664 p.qh->usecs, p.qh->c_usecs,
665 temp,
666 0x7ff & (scratch >> 16));
667
668 if (seen_count < DBG_SCHED_LIMIT)
669 seen[seen_count++].qh = p.qh;
670 } else
671 temp = 0;
672 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
673 p = p.qh->qh_next;
674 break;
675 case Q_TYPE_FSTN:
676 temp = scnprintf(next, size,
677 " fstn-%8x/%p", p.fstn->hw_prev,
678 p.fstn);
679 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
680 p = p.fstn->fstn_next;
681 break;
682 case Q_TYPE_ITD:
683 temp = scnprintf(next, size,
684 " itd/%p", p.itd);
685 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
686 p = p.itd->itd_next;
687 break;
688 }
689 size -= temp;
690 next += temp;
691 } while (p.ptr);
692
693 temp = scnprintf(next, size, "\n");
694 size -= temp;
695 next += temp;
696 }
697 spin_unlock_irqrestore(&fotg210->lock, flags);
698 kfree(seen);
699
700 return buf->alloc_size - size;
701 }
702 #undef DBG_SCHED_LIMIT
703
704 static const char *rh_state_string(struct fotg210_hcd *fotg210)
705 {
706 switch (fotg210->rh_state) {
707 case FOTG210_RH_HALTED:
708 return "halted";
709 case FOTG210_RH_SUSPENDED:
710 return "suspended";
711 case FOTG210_RH_RUNNING:
712 return "running";
713 case FOTG210_RH_STOPPING:
714 return "stopping";
715 }
716 return "?";
717 }
718
719 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
720 {
721 struct usb_hcd *hcd;
722 struct fotg210_hcd *fotg210;
723 unsigned long flags;
724 unsigned temp, size, i;
725 char *next, scratch[80];
726 static const char fmt[] = "%*s\n";
727 static const char label[] = "";
728
729 hcd = bus_to_hcd(buf->bus);
730 fotg210 = hcd_to_fotg210(hcd);
731 next = buf->output_buf;
732 size = buf->alloc_size;
733
734 spin_lock_irqsave(&fotg210->lock, flags);
735
736 if (!HCD_HW_ACCESSIBLE(hcd)) {
737 size = scnprintf(next, size,
738 "bus %s, device %s\n"
739 "%s\n"
740 "SUSPENDED(no register access)\n",
741 hcd->self.controller->bus->name,
742 dev_name(hcd->self.controller),
743 hcd->product_desc);
744 goto done;
745 }
746
747 /* Capability Registers */
748 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
749 &fotg210->caps->hc_capbase));
750 temp = scnprintf(next, size,
751 "bus %s, device %s\n"
752 "%s\n"
753 "EHCI %x.%02x, rh state %s\n",
754 hcd->self.controller->bus->name,
755 dev_name(hcd->self.controller),
756 hcd->product_desc,
757 i >> 8, i & 0x0ff, rh_state_string(fotg210));
758 size -= temp;
759 next += temp;
760
761 /* FIXME interpret both types of params */
762 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
763 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
764 size -= temp;
765 next += temp;
766
767 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
768 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
769 size -= temp;
770 next += temp;
771
772 /* Operational Registers */
773 temp = dbg_status_buf(scratch, sizeof(scratch), label,
774 fotg210_readl(fotg210, &fotg210->regs->status));
775 temp = scnprintf(next, size, fmt, temp, scratch);
776 size -= temp;
777 next += temp;
778
779 temp = dbg_command_buf(scratch, sizeof(scratch), label,
780 fotg210_readl(fotg210, &fotg210->regs->command));
781 temp = scnprintf(next, size, fmt, temp, scratch);
782 size -= temp;
783 next += temp;
784
785 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
786 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
787 temp = scnprintf(next, size, fmt, temp, scratch);
788 size -= temp;
789 next += temp;
790
791 temp = scnprintf(next, size, "uframe %04x\n",
792 fotg210_read_frame_index(fotg210));
793 size -= temp;
794 next += temp;
795
796 if (fotg210->async_unlink) {
797 temp = scnprintf(next, size, "async unlink qh %p\n",
798 fotg210->async_unlink);
799 size -= temp;
800 next += temp;
801 }
802
803 #ifdef FOTG210_STATS
804 temp = scnprintf(next, size,
805 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
806 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
807 fotg210->stats.lost_iaa);
808 size -= temp;
809 next += temp;
810
811 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
812 fotg210->stats.complete, fotg210->stats.unlink);
813 size -= temp;
814 next += temp;
815 #endif
816
817 done:
818 spin_unlock_irqrestore(&fotg210->lock, flags);
819
820 return buf->alloc_size - size;
821 }
822
823 static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
824 ssize_t (*fill_func)(struct debug_buffer *))
825 {
826 struct debug_buffer *buf;
827
828 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
829
830 if (buf) {
831 buf->bus = bus;
832 buf->fill_func = fill_func;
833 mutex_init(&buf->mutex);
834 buf->alloc_size = PAGE_SIZE;
835 }
836
837 return buf;
838 }
839
840 static int fill_buffer(struct debug_buffer *buf)
841 {
842 int ret = 0;
843
844 if (!buf->output_buf)
845 buf->output_buf = vmalloc(buf->alloc_size);
846
847 if (!buf->output_buf) {
848 ret = -ENOMEM;
849 goto out;
850 }
851
852 ret = buf->fill_func(buf);
853
854 if (ret >= 0) {
855 buf->count = ret;
856 ret = 0;
857 }
858
859 out:
860 return ret;
861 }
862
863 static ssize_t debug_output(struct file *file, char __user *user_buf,
864 size_t len, loff_t *offset)
865 {
866 struct debug_buffer *buf = file->private_data;
867 int ret = 0;
868
869 mutex_lock(&buf->mutex);
870 if (buf->count == 0) {
871 ret = fill_buffer(buf);
872 if (ret != 0) {
873 mutex_unlock(&buf->mutex);
874 goto out;
875 }
876 }
877 mutex_unlock(&buf->mutex);
878
879 ret = simple_read_from_buffer(user_buf, len, offset,
880 buf->output_buf, buf->count);
881
882 out:
883 return ret;
884
885 }
886
887 static int debug_close(struct inode *inode, struct file *file)
888 {
889 struct debug_buffer *buf = file->private_data;
890
891 if (buf) {
892 vfree(buf->output_buf);
893 kfree(buf);
894 }
895
896 return 0;
897 }
898 static int debug_async_open(struct inode *inode, struct file *file)
899 {
900 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
901
902 return file->private_data ? 0 : -ENOMEM;
903 }
904
905 static int debug_periodic_open(struct inode *inode, struct file *file)
906 {
907 struct debug_buffer *buf;
908 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
909 if (!buf)
910 return -ENOMEM;
911
912 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
913 file->private_data = buf;
914 return 0;
915 }
916
917 static int debug_registers_open(struct inode *inode, struct file *file)
918 {
919 file->private_data = alloc_buffer(inode->i_private,
920 fill_registers_buffer);
921
922 return file->private_data ? 0 : -ENOMEM;
923 }
924
925 static inline void create_debug_files(struct fotg210_hcd *fotg210)
926 {
927 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
928
929 fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
930 fotg210_debug_root);
931 if (!fotg210->debug_dir)
932 return;
933
934 if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
935 &debug_async_fops))
936 goto file_error;
937
938 if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
939 &debug_periodic_fops))
940 goto file_error;
941
942 if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
943 &debug_registers_fops))
944 goto file_error;
945
946 return;
947
948 file_error:
949 debugfs_remove_recursive(fotg210->debug_dir);
950 }
951
952 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
953 {
954 debugfs_remove_recursive(fotg210->debug_dir);
955 }
956
957 #endif /* STUB_DEBUG_FILES */
958 /*-------------------------------------------------------------------------*/
959
960 /*
961 * handshake - spin reading hc until handshake completes or fails
962 * @ptr: address of hc register to be read
963 * @mask: bits to look at in result of read
964 * @done: value of those bits when handshake succeeds
965 * @usec: timeout in microseconds
966 *
967 * Returns negative errno, or zero on success
968 *
969 * Success happens when the "mask" bits have the specified value (hardware
970 * handshake done). There are two failure modes: "usec" have passed (major
971 * hardware flakeout), or the register reads as all-ones (hardware removed).
972 *
973 * That last failure should_only happen in cases like physical cardbus eject
974 * before driver shutdown. But it also seems to be caused by bugs in cardbus
975 * bridge shutdown: shutting down the bridge before the devices using it.
976 */
977 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
978 u32 mask, u32 done, int usec)
979 {
980 u32 result;
981
982 do {
983 result = fotg210_readl(fotg210, ptr);
984 if (result == ~(u32)0) /* card removed */
985 return -ENODEV;
986 result &= mask;
987 if (result == done)
988 return 0;
989 udelay(1);
990 usec--;
991 } while (usec > 0);
992 return -ETIMEDOUT;
993 }
994
995 /*
996 * Force HC to halt state from unknown (EHCI spec section 2.3).
997 * Must be called with interrupts enabled and the lock not held.
998 */
999 static int fotg210_halt(struct fotg210_hcd *fotg210)
1000 {
1001 u32 temp;
1002
1003 spin_lock_irq(&fotg210->lock);
1004
1005 /* disable any irqs left enabled by previous code */
1006 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1007
1008 /*
1009 * This routine gets called during probe before fotg210->command
1010 * has been initialized, so we can't rely on its value.
1011 */
1012 fotg210->command &= ~CMD_RUN;
1013 temp = fotg210_readl(fotg210, &fotg210->regs->command);
1014 temp &= ~(CMD_RUN | CMD_IAAD);
1015 fotg210_writel(fotg210, temp, &fotg210->regs->command);
1016
1017 spin_unlock_irq(&fotg210->lock);
1018 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
1019
1020 return handshake(fotg210, &fotg210->regs->status,
1021 STS_HALT, STS_HALT, 16 * 125);
1022 }
1023
1024 /*
1025 * Reset a non-running (STS_HALT == 1) controller.
1026 * Must be called with interrupts enabled and the lock not held.
1027 */
1028 static int fotg210_reset(struct fotg210_hcd *fotg210)
1029 {
1030 int retval;
1031 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
1032
1033 /* If the EHCI debug controller is active, special care must be
1034 * taken before and after a host controller reset */
1035 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
1036 fotg210->debug = NULL;
1037
1038 command |= CMD_RESET;
1039 dbg_cmd(fotg210, "reset", command);
1040 fotg210_writel(fotg210, command, &fotg210->regs->command);
1041 fotg210->rh_state = FOTG210_RH_HALTED;
1042 fotg210->next_statechange = jiffies;
1043 retval = handshake(fotg210, &fotg210->regs->command,
1044 CMD_RESET, 0, 250 * 1000);
1045
1046 if (retval)
1047 return retval;
1048
1049 if (fotg210->debug)
1050 dbgp_external_startup(fotg210_to_hcd(fotg210));
1051
1052 fotg210->port_c_suspend = fotg210->suspended_ports =
1053 fotg210->resuming_ports = 0;
1054 return retval;
1055 }
1056
1057 /*
1058 * Idle the controller (turn off the schedules).
1059 * Must be called with interrupts enabled and the lock not held.
1060 */
1061 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
1062 {
1063 u32 temp;
1064
1065 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1066 return;
1067
1068 /* wait for any schedule enables/disables to take effect */
1069 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
1070 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
1071 16 * 125);
1072
1073 /* then disable anything that's still active */
1074 spin_lock_irq(&fotg210->lock);
1075 fotg210->command &= ~(CMD_ASE | CMD_PSE);
1076 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1077 spin_unlock_irq(&fotg210->lock);
1078
1079 /* hardware can take 16 microframes to turn off ... */
1080 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1081 16 * 125);
1082 }
1083
1084 /*-------------------------------------------------------------------------*/
1085
1086 static void end_unlink_async(struct fotg210_hcd *fotg210);
1087 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1088 static void fotg210_work(struct fotg210_hcd *fotg210);
1089 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1090 struct fotg210_qh *qh);
1091 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1092
1093 /*-------------------------------------------------------------------------*/
1094
1095 /* Set a bit in the USBCMD register */
1096 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1097 {
1098 fotg210->command |= bit;
1099 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1100
1101 /* unblock posted write */
1102 fotg210_readl(fotg210, &fotg210->regs->command);
1103 }
1104
1105 /* Clear a bit in the USBCMD register */
1106 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1107 {
1108 fotg210->command &= ~bit;
1109 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1110
1111 /* unblock posted write */
1112 fotg210_readl(fotg210, &fotg210->regs->command);
1113 }
1114
1115 /*-------------------------------------------------------------------------*/
1116
1117 /*
1118 * EHCI timer support... Now using hrtimers.
1119 *
1120 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1121 * the timer routine runs, it checks each possible event; events that are
1122 * currently enabled and whose expiration time has passed get handled.
1123 * The set of enabled events is stored as a collection of bitflags in
1124 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1125 * increasing delay values (ranging between 1 ms and 100 ms).
1126 *
1127 * Rather than implementing a sorted list or tree of all pending events,
1128 * we keep track only of the lowest-numbered pending event, in
1129 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1130 * expiration time is set to the timeout value for this event.
1131 *
1132 * As a result, events might not get handled right away; the actual delay
1133 * could be anywhere up to twice the requested delay. This doesn't
1134 * matter, because none of the events are especially time-critical. The
1135 * ones that matter most all have a delay of 1 ms, so they will be
1136 * handled after 2 ms at most, which is okay. In addition to this, we
1137 * allow for an expiration range of 1 ms.
1138 */
1139
1140 /*
1141 * Delay lengths for the hrtimer event types.
1142 * Keep this list sorted by delay length, in the same order as
1143 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1144 */
1145 static unsigned event_delays_ns[] = {
1146 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1147 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1148 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1149 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1150 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1151 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1152 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1153 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1154 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1155 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1156 };
1157
1158 /* Enable a pending hrtimer event */
1159 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1160 bool resched)
1161 {
1162 ktime_t *timeout = &fotg210->hr_timeouts[event];
1163
1164 if (resched)
1165 *timeout = ktime_add(ktime_get(),
1166 ktime_set(0, event_delays_ns[event]));
1167 fotg210->enabled_hrtimer_events |= (1 << event);
1168
1169 /* Track only the lowest-numbered pending event */
1170 if (event < fotg210->next_hrtimer_event) {
1171 fotg210->next_hrtimer_event = event;
1172 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1173 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1174 }
1175 }
1176
1177
1178 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1179 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1180 {
1181 unsigned actual, want;
1182
1183 /* Don't enable anything if the controller isn't running (e.g., died) */
1184 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1185 return;
1186
1187 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1188 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1189
1190 if (want != actual) {
1191
1192 /* Poll again later, but give up after about 20 ms */
1193 if (fotg210->ASS_poll_count++ < 20) {
1194 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1195 true);
1196 return;
1197 }
1198 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1199 want, actual);
1200 }
1201 fotg210->ASS_poll_count = 0;
1202
1203 /* The status is up-to-date; restart or stop the schedule as needed */
1204 if (want == 0) { /* Stopped */
1205 if (fotg210->async_count > 0)
1206 fotg210_set_command_bit(fotg210, CMD_ASE);
1207
1208 } else { /* Running */
1209 if (fotg210->async_count == 0) {
1210
1211 /* Turn off the schedule after a while */
1212 fotg210_enable_event(fotg210,
1213 FOTG210_HRTIMER_DISABLE_ASYNC,
1214 true);
1215 }
1216 }
1217 }
1218
1219 /* Turn off the async schedule after a brief delay */
1220 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1221 {
1222 fotg210_clear_command_bit(fotg210, CMD_ASE);
1223 }
1224
1225
1226 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1227 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1228 {
1229 unsigned actual, want;
1230
1231 /* Don't do anything if the controller isn't running (e.g., died) */
1232 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1233 return;
1234
1235 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1236 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1237
1238 if (want != actual) {
1239
1240 /* Poll again later, but give up after about 20 ms */
1241 if (fotg210->PSS_poll_count++ < 20) {
1242 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1243 true);
1244 return;
1245 }
1246 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1247 want, actual);
1248 }
1249 fotg210->PSS_poll_count = 0;
1250
1251 /* The status is up-to-date; restart or stop the schedule as needed */
1252 if (want == 0) { /* Stopped */
1253 if (fotg210->periodic_count > 0)
1254 fotg210_set_command_bit(fotg210, CMD_PSE);
1255
1256 } else { /* Running */
1257 if (fotg210->periodic_count == 0) {
1258
1259 /* Turn off the schedule after a while */
1260 fotg210_enable_event(fotg210,
1261 FOTG210_HRTIMER_DISABLE_PERIODIC,
1262 true);
1263 }
1264 }
1265 }
1266
1267 /* Turn off the periodic schedule after a brief delay */
1268 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1269 {
1270 fotg210_clear_command_bit(fotg210, CMD_PSE);
1271 }
1272
1273
1274 /* Poll the STS_HALT status bit; see when a dead controller stops */
1275 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1276 {
1277 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1278
1279 /* Give up after a few milliseconds */
1280 if (fotg210->died_poll_count++ < 5) {
1281 /* Try again later */
1282 fotg210_enable_event(fotg210,
1283 FOTG210_HRTIMER_POLL_DEAD, true);
1284 return;
1285 }
1286 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1287 }
1288
1289 /* Clean up the mess */
1290 fotg210->rh_state = FOTG210_RH_HALTED;
1291 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1292 fotg210_work(fotg210);
1293 end_unlink_async(fotg210);
1294
1295 /* Not in process context, so don't try to reset the controller */
1296 }
1297
1298
1299 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1300 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1301 {
1302 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1303
1304 /*
1305 * Process all the QHs on the intr_unlink list that were added
1306 * before the current unlink cycle began. The list is in
1307 * temporal order, so stop when we reach the first entry in the
1308 * current cycle. But if the root hub isn't running then
1309 * process all the QHs on the list.
1310 */
1311 fotg210->intr_unlinking = true;
1312 while (fotg210->intr_unlink) {
1313 struct fotg210_qh *qh = fotg210->intr_unlink;
1314
1315 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1316 break;
1317 fotg210->intr_unlink = qh->unlink_next;
1318 qh->unlink_next = NULL;
1319 end_unlink_intr(fotg210, qh);
1320 }
1321
1322 /* Handle remaining entries later */
1323 if (fotg210->intr_unlink) {
1324 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1325 true);
1326 ++fotg210->intr_unlink_cycle;
1327 }
1328 fotg210->intr_unlinking = false;
1329 }
1330
1331
1332 /* Start another free-iTDs/siTDs cycle */
1333 static void start_free_itds(struct fotg210_hcd *fotg210)
1334 {
1335 if (!(fotg210->enabled_hrtimer_events &
1336 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1337 fotg210->last_itd_to_free = list_entry(
1338 fotg210->cached_itd_list.prev,
1339 struct fotg210_itd, itd_list);
1340 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1341 }
1342 }
1343
1344 /* Wait for controller to stop using old iTDs and siTDs */
1345 static void end_free_itds(struct fotg210_hcd *fotg210)
1346 {
1347 struct fotg210_itd *itd, *n;
1348
1349 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1350 fotg210->last_itd_to_free = NULL;
1351
1352 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1353 list_del(&itd->itd_list);
1354 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1355 if (itd == fotg210->last_itd_to_free)
1356 break;
1357 }
1358
1359 if (!list_empty(&fotg210->cached_itd_list))
1360 start_free_itds(fotg210);
1361 }
1362
1363
1364 /* Handle lost (or very late) IAA interrupts */
1365 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1366 {
1367 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1368 return;
1369
1370 /*
1371 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1372 * So we need this watchdog, but must protect it against both
1373 * (a) SMP races against real IAA firing and retriggering, and
1374 * (b) clean HC shutdown, when IAA watchdog was pending.
1375 */
1376 if (fotg210->async_iaa) {
1377 u32 cmd, status;
1378
1379 /* If we get here, IAA is *REALLY* late. It's barely
1380 * conceivable that the system is so busy that CMD_IAAD
1381 * is still legitimately set, so let's be sure it's
1382 * clear before we read STS_IAA. (The HC should clear
1383 * CMD_IAAD when it sets STS_IAA.)
1384 */
1385 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1386
1387 /*
1388 * If IAA is set here it either legitimately triggered
1389 * after the watchdog timer expired (_way_ late, so we'll
1390 * still count it as lost) ... or a silicon erratum:
1391 * - VIA seems to set IAA without triggering the IRQ;
1392 * - IAAD potentially cleared without setting IAA.
1393 */
1394 status = fotg210_readl(fotg210, &fotg210->regs->status);
1395 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1396 COUNT(fotg210->stats.lost_iaa);
1397 fotg210_writel(fotg210, STS_IAA,
1398 &fotg210->regs->status);
1399 }
1400
1401 fotg210_vdbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1402 status, cmd);
1403 end_unlink_async(fotg210);
1404 }
1405 }
1406
1407
1408 /* Enable the I/O watchdog, if appropriate */
1409 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1410 {
1411 /* Not needed if the controller isn't running or it's already enabled */
1412 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1413 (fotg210->enabled_hrtimer_events &
1414 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1415 return;
1416
1417 /*
1418 * Isochronous transfers always need the watchdog.
1419 * For other sorts we use it only if the flag is set.
1420 */
1421 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1422 fotg210->async_count + fotg210->intr_count > 0))
1423 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1424 true);
1425 }
1426
1427
1428 /*
1429 * Handler functions for the hrtimer event types.
1430 * Keep this array in the same order as the event types indexed by
1431 * enum fotg210_hrtimer_event in fotg210.h.
1432 */
1433 static void (*event_handlers[])(struct fotg210_hcd *) = {
1434 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1435 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1436 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1437 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1438 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1439 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1440 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1441 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1442 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1443 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1444 };
1445
1446 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1447 {
1448 struct fotg210_hcd *fotg210 =
1449 container_of(t, struct fotg210_hcd, hrtimer);
1450 ktime_t now;
1451 unsigned long events;
1452 unsigned long flags;
1453 unsigned e;
1454
1455 spin_lock_irqsave(&fotg210->lock, flags);
1456
1457 events = fotg210->enabled_hrtimer_events;
1458 fotg210->enabled_hrtimer_events = 0;
1459 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1460
1461 /*
1462 * Check each pending event. If its time has expired, handle
1463 * the event; otherwise re-enable it.
1464 */
1465 now = ktime_get();
1466 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1467 if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1468 event_handlers[e](fotg210);
1469 else
1470 fotg210_enable_event(fotg210, e, false);
1471 }
1472
1473 spin_unlock_irqrestore(&fotg210->lock, flags);
1474 return HRTIMER_NORESTART;
1475 }
1476
1477 /*-------------------------------------------------------------------------*/
1478
1479 #define fotg210_bus_suspend NULL
1480 #define fotg210_bus_resume NULL
1481
1482 /*-------------------------------------------------------------------------*/
1483
1484 static int check_reset_complete(
1485 struct fotg210_hcd *fotg210,
1486 int index,
1487 u32 __iomem *status_reg,
1488 int port_status
1489 ) {
1490 if (!(port_status & PORT_CONNECT))
1491 return port_status;
1492
1493 /* if reset finished and it's still not enabled -- handoff */
1494 if (!(port_status & PORT_PE)) {
1495 /* with integrated TT, there's nobody to hand it to! */
1496 fotg210_dbg(fotg210,
1497 "Failed to enable port %d on root hub TT\n",
1498 index+1);
1499 return port_status;
1500 } else {
1501 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1502 index + 1);
1503 }
1504
1505 return port_status;
1506 }
1507
1508 /*-------------------------------------------------------------------------*/
1509
1510
1511 /* build "status change" packet (one or two bytes) from HC registers */
1512
1513 static int
1514 fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1515 {
1516 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1517 u32 temp, status;
1518 u32 mask;
1519 int retval = 1;
1520 unsigned long flags;
1521
1522 /* init status to no-changes */
1523 buf[0] = 0;
1524
1525 /* Inform the core about resumes-in-progress by returning
1526 * a non-zero value even if there are no status changes.
1527 */
1528 status = fotg210->resuming_ports;
1529
1530 mask = PORT_CSC | PORT_PEC;
1531 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1532
1533 /* no hub change reports (bit 0) for now (power, ...) */
1534
1535 /* port N changes (bit N)? */
1536 spin_lock_irqsave(&fotg210->lock, flags);
1537
1538 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1539
1540 /*
1541 * Return status information even for ports with OWNER set.
1542 * Otherwise khubd wouldn't see the disconnect event when a
1543 * high-speed device is switched over to the companion
1544 * controller by the user.
1545 */
1546
1547 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
1548 || (fotg210->reset_done[0] && time_after_eq(
1549 jiffies, fotg210->reset_done[0]))) {
1550 buf[0] |= 1 << 1;
1551 status = STS_PCD;
1552 }
1553 /* FIXME autosuspend idle root hubs */
1554 spin_unlock_irqrestore(&fotg210->lock, flags);
1555 return status ? retval : 0;
1556 }
1557
1558 /*-------------------------------------------------------------------------*/
1559
1560 static void
1561 fotg210_hub_descriptor(
1562 struct fotg210_hcd *fotg210,
1563 struct usb_hub_descriptor *desc
1564 ) {
1565 int ports = HCS_N_PORTS(fotg210->hcs_params);
1566 u16 temp;
1567
1568 desc->bDescriptorType = 0x29;
1569 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1570 desc->bHubContrCurrent = 0;
1571
1572 desc->bNbrPorts = ports;
1573 temp = 1 + (ports / 8);
1574 desc->bDescLength = 7 + 2 * temp;
1575
1576 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1577 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1578 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1579
1580 temp = 0x0008; /* per-port overcurrent reporting */
1581 temp |= 0x0002; /* no power switching */
1582 desc->wHubCharacteristics = cpu_to_le16(temp);
1583 }
1584
1585 /*-------------------------------------------------------------------------*/
1586
1587 static int fotg210_hub_control(
1588 struct usb_hcd *hcd,
1589 u16 typeReq,
1590 u16 wValue,
1591 u16 wIndex,
1592 char *buf,
1593 u16 wLength
1594 ) {
1595 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1596 int ports = HCS_N_PORTS(fotg210->hcs_params);
1597 u32 __iomem *status_reg = &fotg210->regs->port_status;
1598 u32 temp, temp1, status;
1599 unsigned long flags;
1600 int retval = 0;
1601 unsigned selector;
1602
1603 /*
1604 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1605 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1606 * (track current state ourselves) ... blink for diagnostics,
1607 * power, "this is the one", etc. EHCI spec supports this.
1608 */
1609
1610 spin_lock_irqsave(&fotg210->lock, flags);
1611 switch (typeReq) {
1612 case ClearHubFeature:
1613 switch (wValue) {
1614 case C_HUB_LOCAL_POWER:
1615 case C_HUB_OVER_CURRENT:
1616 /* no hub-wide feature/status flags */
1617 break;
1618 default:
1619 goto error;
1620 }
1621 break;
1622 case ClearPortFeature:
1623 if (!wIndex || wIndex > ports)
1624 goto error;
1625 wIndex--;
1626 temp = fotg210_readl(fotg210, status_reg);
1627 temp &= ~PORT_RWC_BITS;
1628
1629 /*
1630 * Even if OWNER is set, so the port is owned by the
1631 * companion controller, khubd needs to be able to clear
1632 * the port-change status bits (especially
1633 * USB_PORT_STAT_C_CONNECTION).
1634 */
1635
1636 switch (wValue) {
1637 case USB_PORT_FEAT_ENABLE:
1638 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1639 break;
1640 case USB_PORT_FEAT_C_ENABLE:
1641 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1642 break;
1643 case USB_PORT_FEAT_SUSPEND:
1644 if (temp & PORT_RESET)
1645 goto error;
1646 if (!(temp & PORT_SUSPEND))
1647 break;
1648 if ((temp & PORT_PE) == 0)
1649 goto error;
1650
1651 /* resume signaling for 20 msec */
1652 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1653 fotg210->reset_done[wIndex] = jiffies
1654 + msecs_to_jiffies(20);
1655 break;
1656 case USB_PORT_FEAT_C_SUSPEND:
1657 clear_bit(wIndex, &fotg210->port_c_suspend);
1658 break;
1659 case USB_PORT_FEAT_C_CONNECTION:
1660 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1661 break;
1662 case USB_PORT_FEAT_C_OVER_CURRENT:
1663 fotg210_writel(fotg210, temp | OTGISR_OVC,
1664 &fotg210->regs->otgisr);
1665 break;
1666 case USB_PORT_FEAT_C_RESET:
1667 /* GetPortStatus clears reset */
1668 break;
1669 default:
1670 goto error;
1671 }
1672 fotg210_readl(fotg210, &fotg210->regs->command);
1673 break;
1674 case GetHubDescriptor:
1675 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1676 buf);
1677 break;
1678 case GetHubStatus:
1679 /* no hub-wide feature/status flags */
1680 memset(buf, 0, 4);
1681 /*cpu_to_le32s ((u32 *) buf); */
1682 break;
1683 case GetPortStatus:
1684 if (!wIndex || wIndex > ports)
1685 goto error;
1686 wIndex--;
1687 status = 0;
1688 temp = fotg210_readl(fotg210, status_reg);
1689
1690 /* wPortChange bits */
1691 if (temp & PORT_CSC)
1692 status |= USB_PORT_STAT_C_CONNECTION << 16;
1693 if (temp & PORT_PEC)
1694 status |= USB_PORT_STAT_C_ENABLE << 16;
1695
1696 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1697 if (temp1 & OTGISR_OVC)
1698 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1699
1700 /* whoever resumes must GetPortStatus to complete it!! */
1701 if (temp & PORT_RESUME) {
1702
1703 /* Remote Wakeup received? */
1704 if (!fotg210->reset_done[wIndex]) {
1705 /* resume signaling for 20 msec */
1706 fotg210->reset_done[wIndex] = jiffies
1707 + msecs_to_jiffies(20);
1708 /* check the port again */
1709 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1710 fotg210->reset_done[wIndex]);
1711 }
1712
1713 /* resume completed? */
1714 else if (time_after_eq(jiffies,
1715 fotg210->reset_done[wIndex])) {
1716 clear_bit(wIndex, &fotg210->suspended_ports);
1717 set_bit(wIndex, &fotg210->port_c_suspend);
1718 fotg210->reset_done[wIndex] = 0;
1719
1720 /* stop resume signaling */
1721 temp = fotg210_readl(fotg210, status_reg);
1722 fotg210_writel(fotg210,
1723 temp & ~(PORT_RWC_BITS | PORT_RESUME),
1724 status_reg);
1725 clear_bit(wIndex, &fotg210->resuming_ports);
1726 retval = handshake(fotg210, status_reg,
1727 PORT_RESUME, 0, 2000 /* 2msec */);
1728 if (retval != 0) {
1729 fotg210_err(fotg210,
1730 "port %d resume error %d\n",
1731 wIndex + 1, retval);
1732 goto error;
1733 }
1734 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1735 }
1736 }
1737
1738 /* whoever resets must GetPortStatus to complete it!! */
1739 if ((temp & PORT_RESET)
1740 && time_after_eq(jiffies,
1741 fotg210->reset_done[wIndex])) {
1742 status |= USB_PORT_STAT_C_RESET << 16;
1743 fotg210->reset_done[wIndex] = 0;
1744 clear_bit(wIndex, &fotg210->resuming_ports);
1745
1746 /* force reset to complete */
1747 fotg210_writel(fotg210,
1748 temp & ~(PORT_RWC_BITS | PORT_RESET),
1749 status_reg);
1750 /* REVISIT: some hardware needs 550+ usec to clear
1751 * this bit; seems too long to spin routinely...
1752 */
1753 retval = handshake(fotg210, status_reg,
1754 PORT_RESET, 0, 1000);
1755 if (retval != 0) {
1756 fotg210_err(fotg210, "port %d reset error %d\n",
1757 wIndex + 1, retval);
1758 goto error;
1759 }
1760
1761 /* see what we found out */
1762 temp = check_reset_complete(fotg210, wIndex, status_reg,
1763 fotg210_readl(fotg210, status_reg));
1764 }
1765
1766 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1767 fotg210->reset_done[wIndex] = 0;
1768 clear_bit(wIndex, &fotg210->resuming_ports);
1769 }
1770
1771 /* transfer dedicated ports to the companion hc */
1772 if ((temp & PORT_CONNECT) &&
1773 test_bit(wIndex, &fotg210->companion_ports)) {
1774 temp &= ~PORT_RWC_BITS;
1775 fotg210_writel(fotg210, temp, status_reg);
1776 fotg210_dbg(fotg210, "port %d --> companion\n",
1777 wIndex + 1);
1778 temp = fotg210_readl(fotg210, status_reg);
1779 }
1780
1781 /*
1782 * Even if OWNER is set, there's no harm letting khubd
1783 * see the wPortStatus values (they should all be 0 except
1784 * for PORT_POWER anyway).
1785 */
1786
1787 if (temp & PORT_CONNECT) {
1788 status |= USB_PORT_STAT_CONNECTION;
1789 status |= fotg210_port_speed(fotg210, temp);
1790 }
1791 if (temp & PORT_PE)
1792 status |= USB_PORT_STAT_ENABLE;
1793
1794 /* maybe the port was unsuspended without our knowledge */
1795 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1796 status |= USB_PORT_STAT_SUSPEND;
1797 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1798 clear_bit(wIndex, &fotg210->suspended_ports);
1799 clear_bit(wIndex, &fotg210->resuming_ports);
1800 fotg210->reset_done[wIndex] = 0;
1801 if (temp & PORT_PE)
1802 set_bit(wIndex, &fotg210->port_c_suspend);
1803 }
1804
1805 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1806 if (temp1 & OTGISR_OVC)
1807 status |= USB_PORT_STAT_OVERCURRENT;
1808 if (temp & PORT_RESET)
1809 status |= USB_PORT_STAT_RESET;
1810 if (test_bit(wIndex, &fotg210->port_c_suspend))
1811 status |= USB_PORT_STAT_C_SUSPEND << 16;
1812
1813 #ifndef VERBOSE_DEBUG
1814 if (status & ~0xffff) /* only if wPortChange is interesting */
1815 #endif
1816 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1817 put_unaligned_le32(status, buf);
1818 break;
1819 case SetHubFeature:
1820 switch (wValue) {
1821 case C_HUB_LOCAL_POWER:
1822 case C_HUB_OVER_CURRENT:
1823 /* no hub-wide feature/status flags */
1824 break;
1825 default:
1826 goto error;
1827 }
1828 break;
1829 case SetPortFeature:
1830 selector = wIndex >> 8;
1831 wIndex &= 0xff;
1832
1833 if (!wIndex || wIndex > ports)
1834 goto error;
1835 wIndex--;
1836 temp = fotg210_readl(fotg210, status_reg);
1837 temp &= ~PORT_RWC_BITS;
1838 switch (wValue) {
1839 case USB_PORT_FEAT_SUSPEND:
1840 if ((temp & PORT_PE) == 0
1841 || (temp & PORT_RESET) != 0)
1842 goto error;
1843
1844 /* After above check the port must be connected.
1845 * Set appropriate bit thus could put phy into low power
1846 * mode if we have hostpc feature
1847 */
1848 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1849 status_reg);
1850 set_bit(wIndex, &fotg210->suspended_ports);
1851 break;
1852 case USB_PORT_FEAT_RESET:
1853 if (temp & PORT_RESUME)
1854 goto error;
1855 /* line status bits may report this as low speed,
1856 * which can be fine if this root hub has a
1857 * transaction translator built in.
1858 */
1859 fotg210_vdbg(fotg210, "port %d reset\n", wIndex + 1);
1860 temp |= PORT_RESET;
1861 temp &= ~PORT_PE;
1862
1863 /*
1864 * caller must wait, then call GetPortStatus
1865 * usb 2.0 spec says 50 ms resets on root
1866 */
1867 fotg210->reset_done[wIndex] = jiffies
1868 + msecs_to_jiffies(50);
1869 fotg210_writel(fotg210, temp, status_reg);
1870 break;
1871
1872 /* For downstream facing ports (these): one hub port is put
1873 * into test mode according to USB2 11.24.2.13, then the hub
1874 * must be reset (which for root hub now means rmmod+modprobe,
1875 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1876 * about the EHCI-specific stuff.
1877 */
1878 case USB_PORT_FEAT_TEST:
1879 if (!selector || selector > 5)
1880 goto error;
1881 spin_unlock_irqrestore(&fotg210->lock, flags);
1882 fotg210_quiesce(fotg210);
1883 spin_lock_irqsave(&fotg210->lock, flags);
1884
1885 /* Put all enabled ports into suspend */
1886 temp = fotg210_readl(fotg210, status_reg) &
1887 ~PORT_RWC_BITS;
1888 if (temp & PORT_PE)
1889 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1890 status_reg);
1891
1892 spin_unlock_irqrestore(&fotg210->lock, flags);
1893 fotg210_halt(fotg210);
1894 spin_lock_irqsave(&fotg210->lock, flags);
1895
1896 temp = fotg210_readl(fotg210, status_reg);
1897 temp |= selector << 16;
1898 fotg210_writel(fotg210, temp, status_reg);
1899 break;
1900
1901 default:
1902 goto error;
1903 }
1904 fotg210_readl(fotg210, &fotg210->regs->command);
1905 break;
1906
1907 default:
1908 error:
1909 /* "stall" on error */
1910 retval = -EPIPE;
1911 }
1912 spin_unlock_irqrestore(&fotg210->lock, flags);
1913 return retval;
1914 }
1915
1916 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1917 int portnum)
1918 {
1919 return;
1920 }
1921
1922 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1923 int portnum)
1924 {
1925 return 0;
1926 }
1927 /*-------------------------------------------------------------------------*/
1928 /*
1929 * There's basically three types of memory:
1930 * - data used only by the HCD ... kmalloc is fine
1931 * - async and periodic schedules, shared by HC and HCD ... these
1932 * need to use dma_pool or dma_alloc_coherent
1933 * - driver buffers, read/written by HC ... single shot DMA mapped
1934 *
1935 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1936 * No memory seen by this driver is pageable.
1937 */
1938
1939 /*-------------------------------------------------------------------------*/
1940
1941 /* Allocate the key transfer structures from the previously allocated pool */
1942
1943 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1944 struct fotg210_qtd *qtd, dma_addr_t dma)
1945 {
1946 memset(qtd, 0, sizeof(*qtd));
1947 qtd->qtd_dma = dma;
1948 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1949 qtd->hw_next = FOTG210_LIST_END(fotg210);
1950 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1951 INIT_LIST_HEAD(&qtd->qtd_list);
1952 }
1953
1954 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1955 gfp_t flags)
1956 {
1957 struct fotg210_qtd *qtd;
1958 dma_addr_t dma;
1959
1960 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1961 if (qtd != NULL)
1962 fotg210_qtd_init(fotg210, qtd, dma);
1963
1964 return qtd;
1965 }
1966
1967 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1968 struct fotg210_qtd *qtd)
1969 {
1970 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1971 }
1972
1973
1974 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1975 {
1976 /* clean qtds first, and know this is not linked */
1977 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1978 fotg210_dbg(fotg210, "unused qh not empty!\n");
1979 BUG();
1980 }
1981 if (qh->dummy)
1982 fotg210_qtd_free(fotg210, qh->dummy);
1983 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1984 kfree(qh);
1985 }
1986
1987 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1988 gfp_t flags)
1989 {
1990 struct fotg210_qh *qh;
1991 dma_addr_t dma;
1992
1993 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1994 if (!qh)
1995 goto done;
1996 qh->hw = (struct fotg210_qh_hw *)
1997 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1998 if (!qh->hw)
1999 goto fail;
2000 memset(qh->hw, 0, sizeof(*qh->hw));
2001 qh->qh_dma = dma;
2002 INIT_LIST_HEAD(&qh->qtd_list);
2003
2004 /* dummy td enables safe urb queuing */
2005 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
2006 if (qh->dummy == NULL) {
2007 fotg210_dbg(fotg210, "no dummy td\n");
2008 goto fail1;
2009 }
2010 done:
2011 return qh;
2012 fail1:
2013 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
2014 fail:
2015 kfree(qh);
2016 return NULL;
2017 }
2018
2019 /*-------------------------------------------------------------------------*/
2020
2021 /* The queue heads and transfer descriptors are managed from pools tied
2022 * to each of the "per device" structures.
2023 * This is the initialisation and cleanup code.
2024 */
2025
2026 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
2027 {
2028 if (fotg210->async)
2029 qh_destroy(fotg210, fotg210->async);
2030 fotg210->async = NULL;
2031
2032 if (fotg210->dummy)
2033 qh_destroy(fotg210, fotg210->dummy);
2034 fotg210->dummy = NULL;
2035
2036 /* DMA consistent memory and pools */
2037 if (fotg210->qtd_pool)
2038 dma_pool_destroy(fotg210->qtd_pool);
2039 fotg210->qtd_pool = NULL;
2040
2041 if (fotg210->qh_pool) {
2042 dma_pool_destroy(fotg210->qh_pool);
2043 fotg210->qh_pool = NULL;
2044 }
2045
2046 if (fotg210->itd_pool)
2047 dma_pool_destroy(fotg210->itd_pool);
2048 fotg210->itd_pool = NULL;
2049
2050 if (fotg210->periodic)
2051 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
2052 fotg210->periodic_size * sizeof(u32),
2053 fotg210->periodic, fotg210->periodic_dma);
2054 fotg210->periodic = NULL;
2055
2056 /* shadow periodic table */
2057 kfree(fotg210->pshadow);
2058 fotg210->pshadow = NULL;
2059 }
2060
2061 /* remember to add cleanup code (above) if you add anything here */
2062 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
2063 {
2064 int i;
2065
2066 /* QTDs for control/bulk/intr transfers */
2067 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
2068 fotg210_to_hcd(fotg210)->self.controller,
2069 sizeof(struct fotg210_qtd),
2070 32 /* byte alignment (for hw parts) */,
2071 4096 /* can't cross 4K */);
2072 if (!fotg210->qtd_pool)
2073 goto fail;
2074
2075 /* QHs for control/bulk/intr transfers */
2076 fotg210->qh_pool = dma_pool_create("fotg210_qh",
2077 fotg210_to_hcd(fotg210)->self.controller,
2078 sizeof(struct fotg210_qh_hw),
2079 32 /* byte alignment (for hw parts) */,
2080 4096 /* can't cross 4K */);
2081 if (!fotg210->qh_pool)
2082 goto fail;
2083
2084 fotg210->async = fotg210_qh_alloc(fotg210, flags);
2085 if (!fotg210->async)
2086 goto fail;
2087
2088 /* ITD for high speed ISO transfers */
2089 fotg210->itd_pool = dma_pool_create("fotg210_itd",
2090 fotg210_to_hcd(fotg210)->self.controller,
2091 sizeof(struct fotg210_itd),
2092 64 /* byte alignment (for hw parts) */,
2093 4096 /* can't cross 4K */);
2094 if (!fotg210->itd_pool)
2095 goto fail;
2096
2097 /* Hardware periodic table */
2098 fotg210->periodic = (__le32 *)
2099 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
2100 fotg210->periodic_size * sizeof(__le32),
2101 &fotg210->periodic_dma, 0);
2102 if (fotg210->periodic == NULL)
2103 goto fail;
2104
2105 for (i = 0; i < fotg210->periodic_size; i++)
2106 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
2107
2108 /* software shadow of hardware table */
2109 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
2110 flags);
2111 if (fotg210->pshadow != NULL)
2112 return 0;
2113
2114 fail:
2115 fotg210_dbg(fotg210, "couldn't init memory\n");
2116 fotg210_mem_cleanup(fotg210);
2117 return -ENOMEM;
2118 }
2119 /*-------------------------------------------------------------------------*/
2120 /*
2121 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
2122 *
2123 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
2124 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2125 * buffers needed for the larger number). We use one QH per endpoint, queue
2126 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
2127 *
2128 * ISO traffic uses "ISO TD" (itd) records, and (along with
2129 * interrupts) needs careful scheduling. Performance improvements can be
2130 * an ongoing challenge. That's in "ehci-sched.c".
2131 *
2132 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2133 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2134 * (b) special fields in qh entries or (c) split iso entries. TTs will
2135 * buffer low/full speed data so the host collects it at high speed.
2136 */
2137
2138 /*-------------------------------------------------------------------------*/
2139
2140 /* fill a qtd, returning how much of the buffer we were able to queue up */
2141
2142 static int
2143 qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
2144 size_t len, int token, int maxpacket)
2145 {
2146 int i, count;
2147 u64 addr = buf;
2148
2149 /* one buffer entry per 4K ... first might be short or unaligned */
2150 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2151 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2152 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2153 if (likely(len < count)) /* ... iff needed */
2154 count = len;
2155 else {
2156 buf += 0x1000;
2157 buf &= ~0x0fff;
2158
2159 /* per-qtd limit: from 16K to 20K (best alignment) */
2160 for (i = 1; count < len && i < 5; i++) {
2161 addr = buf;
2162 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2163 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2164 (u32)(addr >> 32));
2165 buf += 0x1000;
2166 if ((count + 0x1000) < len)
2167 count += 0x1000;
2168 else
2169 count = len;
2170 }
2171
2172 /* short packets may only terminate transfers */
2173 if (count != len)
2174 count -= (count % maxpacket);
2175 }
2176 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2177 qtd->length = count;
2178
2179 return count;
2180 }
2181
2182 /*-------------------------------------------------------------------------*/
2183
2184 static inline void
2185 qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
2186 struct fotg210_qtd *qtd)
2187 {
2188 struct fotg210_qh_hw *hw = qh->hw;
2189
2190 /* writes to an active overlay are unsafe */
2191 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2192
2193 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2194 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2195
2196 /* Except for control endpoints, we make hardware maintain data
2197 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2198 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2199 * ever clear it.
2200 */
2201 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2202 unsigned is_out, epnum;
2203
2204 is_out = qh->is_out;
2205 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2206 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2207 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2208 usb_settoggle(qh->dev, epnum, is_out, 1);
2209 }
2210 }
2211
2212 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2213 }
2214
2215 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2216 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2217 * recovery (including urb dequeue) would need software changes to a QH...
2218 */
2219 static void
2220 qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2221 {
2222 struct fotg210_qtd *qtd;
2223
2224 if (list_empty(&qh->qtd_list))
2225 qtd = qh->dummy;
2226 else {
2227 qtd = list_entry(qh->qtd_list.next,
2228 struct fotg210_qtd, qtd_list);
2229 /*
2230 * first qtd may already be partially processed.
2231 * If we come here during unlink, the QH overlay region
2232 * might have reference to the just unlinked qtd. The
2233 * qtd is updated in qh_completions(). Update the QH
2234 * overlay here.
2235 */
2236 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2237 qh->hw->hw_qtd_next = qtd->hw_next;
2238 qtd = NULL;
2239 }
2240 }
2241
2242 if (qtd)
2243 qh_update(fotg210, qh, qtd);
2244 }
2245
2246 /*-------------------------------------------------------------------------*/
2247
2248 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2249
2250 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2251 struct usb_host_endpoint *ep)
2252 {
2253 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2254 struct fotg210_qh *qh = ep->hcpriv;
2255 unsigned long flags;
2256
2257 spin_lock_irqsave(&fotg210->lock, flags);
2258 qh->clearing_tt = 0;
2259 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2260 && fotg210->rh_state == FOTG210_RH_RUNNING)
2261 qh_link_async(fotg210, qh);
2262 spin_unlock_irqrestore(&fotg210->lock, flags);
2263 }
2264
2265 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2266 struct fotg210_qh *qh,
2267 struct urb *urb, u32 token)
2268 {
2269
2270 /* If an async split transaction gets an error or is unlinked,
2271 * the TT buffer may be left in an indeterminate state. We
2272 * have to clear the TT buffer.
2273 *
2274 * Note: this routine is never called for Isochronous transfers.
2275 */
2276 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2277 #ifdef DEBUG
2278 struct usb_device *tt = urb->dev->tt->hub;
2279 dev_dbg(&tt->dev,
2280 "clear tt buffer port %d, a%d ep%d t%08x\n",
2281 urb->dev->ttport, urb->dev->devnum,
2282 usb_pipeendpoint(urb->pipe), token);
2283 #endif /* DEBUG */
2284 if (urb->dev->tt->hub !=
2285 fotg210_to_hcd(fotg210)->self.root_hub) {
2286 if (usb_hub_clear_tt_buffer(urb) == 0)
2287 qh->clearing_tt = 1;
2288 }
2289 }
2290 }
2291
2292 static int qtd_copy_status(
2293 struct fotg210_hcd *fotg210,
2294 struct urb *urb,
2295 size_t length,
2296 u32 token
2297 )
2298 {
2299 int status = -EINPROGRESS;
2300
2301 /* count IN/OUT bytes, not SETUP (even short packets) */
2302 if (likely(QTD_PID(token) != 2))
2303 urb->actual_length += length - QTD_LENGTH(token);
2304
2305 /* don't modify error codes */
2306 if (unlikely(urb->unlinked))
2307 return status;
2308
2309 /* force cleanup after short read; not always an error */
2310 if (unlikely(IS_SHORT_READ(token)))
2311 status = -EREMOTEIO;
2312
2313 /* serious "can't proceed" faults reported by the hardware */
2314 if (token & QTD_STS_HALT) {
2315 if (token & QTD_STS_BABBLE) {
2316 /* FIXME "must" disable babbling device's port too */
2317 status = -EOVERFLOW;
2318 /* CERR nonzero + halt --> stall */
2319 } else if (QTD_CERR(token)) {
2320 status = -EPIPE;
2321
2322 /* In theory, more than one of the following bits can be set
2323 * since they are sticky and the transaction is retried.
2324 * Which to test first is rather arbitrary.
2325 */
2326 } else if (token & QTD_STS_MMF) {
2327 /* fs/ls interrupt xfer missed the complete-split */
2328 status = -EPROTO;
2329 } else if (token & QTD_STS_DBE) {
2330 status = (QTD_PID(token) == 1) /* IN ? */
2331 ? -ENOSR /* hc couldn't read data */
2332 : -ECOMM; /* hc couldn't write data */
2333 } else if (token & QTD_STS_XACT) {
2334 /* timeout, bad CRC, wrong PID, etc */
2335 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2336 urb->dev->devpath,
2337 usb_pipeendpoint(urb->pipe),
2338 usb_pipein(urb->pipe) ? "in" : "out");
2339 status = -EPROTO;
2340 } else { /* unknown */
2341 status = -EPROTO;
2342 }
2343
2344 fotg210_vdbg(fotg210,
2345 "dev%d ep%d%s qtd token %08x --> status %d\n",
2346 usb_pipedevice(urb->pipe),
2347 usb_pipeendpoint(urb->pipe),
2348 usb_pipein(urb->pipe) ? "in" : "out",
2349 token, status);
2350 }
2351
2352 return status;
2353 }
2354
2355 static void
2356 fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
2357 __releases(fotg210->lock)
2358 __acquires(fotg210->lock)
2359 {
2360 if (likely(urb->hcpriv != NULL)) {
2361 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2362
2363 /* S-mask in a QH means it's an interrupt urb */
2364 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2365
2366 /* ... update hc-wide periodic stats (for usbfs) */
2367 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2368 }
2369 }
2370
2371 if (unlikely(urb->unlinked)) {
2372 COUNT(fotg210->stats.unlink);
2373 } else {
2374 /* report non-error and short read status as zero */
2375 if (status == -EINPROGRESS || status == -EREMOTEIO)
2376 status = 0;
2377 COUNT(fotg210->stats.complete);
2378 }
2379
2380 #ifdef FOTG210_URB_TRACE
2381 fotg210_dbg(fotg210,
2382 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2383 __func__, urb->dev->devpath, urb,
2384 usb_pipeendpoint(urb->pipe),
2385 usb_pipein(urb->pipe) ? "in" : "out",
2386 status,
2387 urb->actual_length, urb->transfer_buffer_length);
2388 #endif
2389
2390 /* complete() can reenter this HCD */
2391 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2392 spin_unlock(&fotg210->lock);
2393 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2394 spin_lock(&fotg210->lock);
2395 }
2396
2397 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2398
2399 /*
2400 * Process and free completed qtds for a qh, returning URBs to drivers.
2401 * Chases up to qh->hw_current. Returns number of completions called,
2402 * indicating how much "real" work we did.
2403 */
2404 static unsigned
2405 qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2406 {
2407 struct fotg210_qtd *last, *end = qh->dummy;
2408 struct list_head *entry, *tmp;
2409 int last_status;
2410 int stopped;
2411 unsigned count = 0;
2412 u8 state;
2413 struct fotg210_qh_hw *hw = qh->hw;
2414
2415 if (unlikely(list_empty(&qh->qtd_list)))
2416 return count;
2417
2418 /* completions (or tasks on other cpus) must never clobber HALT
2419 * till we've gone through and cleaned everything up, even when
2420 * they add urbs to this qh's queue or mark them for unlinking.
2421 *
2422 * NOTE: unlinking expects to be done in queue order.
2423 *
2424 * It's a bug for qh->qh_state to be anything other than
2425 * QH_STATE_IDLE, unless our caller is scan_async() or
2426 * scan_intr().
2427 */
2428 state = qh->qh_state;
2429 qh->qh_state = QH_STATE_COMPLETING;
2430 stopped = (state == QH_STATE_IDLE);
2431
2432 rescan:
2433 last = NULL;
2434 last_status = -EINPROGRESS;
2435 qh->needs_rescan = 0;
2436
2437 /* remove de-activated QTDs from front of queue.
2438 * after faults (including short reads), cleanup this urb
2439 * then let the queue advance.
2440 * if queue is stopped, handles unlinks.
2441 */
2442 list_for_each_safe(entry, tmp, &qh->qtd_list) {
2443 struct fotg210_qtd *qtd;
2444 struct urb *urb;
2445 u32 token = 0;
2446
2447 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2448 urb = qtd->urb;
2449
2450 /* clean up any state from previous QTD ...*/
2451 if (last) {
2452 if (likely(last->urb != urb)) {
2453 fotg210_urb_done(fotg210, last->urb,
2454 last_status);
2455 count++;
2456 last_status = -EINPROGRESS;
2457 }
2458 fotg210_qtd_free(fotg210, last);
2459 last = NULL;
2460 }
2461
2462 /* ignore urbs submitted during completions we reported */
2463 if (qtd == end)
2464 break;
2465
2466 /* hardware copies qtd out of qh overlay */
2467 rmb();
2468 token = hc32_to_cpu(fotg210, qtd->hw_token);
2469
2470 /* always clean up qtds the hc de-activated */
2471 retry_xacterr:
2472 if ((token & QTD_STS_ACTIVE) == 0) {
2473
2474 /* Report Data Buffer Error: non-fatal but useful */
2475 if (token & QTD_STS_DBE)
2476 fotg210_dbg(fotg210,
2477 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2478 urb,
2479 usb_endpoint_num(&urb->ep->desc),
2480 usb_endpoint_dir_in(&urb->ep->desc)
2481 ? "in" : "out",
2482 urb->transfer_buffer_length,
2483 qtd,
2484 qh);
2485
2486 /* on STALL, error, and short reads this urb must
2487 * complete and all its qtds must be recycled.
2488 */
2489 if ((token & QTD_STS_HALT) != 0) {
2490
2491 /* retry transaction errors until we
2492 * reach the software xacterr limit
2493 */
2494 if ((token & QTD_STS_XACT) &&
2495 QTD_CERR(token) == 0 &&
2496 ++qh->xacterrs < QH_XACTERR_MAX &&
2497 !urb->unlinked) {
2498 fotg210_dbg(fotg210,
2499 "detected XactErr len %zu/%zu retry %d\n",
2500 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
2501
2502 /* reset the token in the qtd and the
2503 * qh overlay (which still contains
2504 * the qtd) so that we pick up from
2505 * where we left off
2506 */
2507 token &= ~QTD_STS_HALT;
2508 token |= QTD_STS_ACTIVE |
2509 (FOTG210_TUNE_CERR << 10);
2510 qtd->hw_token = cpu_to_hc32(fotg210,
2511 token);
2512 wmb();
2513 hw->hw_token = cpu_to_hc32(fotg210,
2514 token);
2515 goto retry_xacterr;
2516 }
2517 stopped = 1;
2518
2519 /* magic dummy for some short reads; qh won't advance.
2520 * that silicon quirk can kick in with this dummy too.
2521 *
2522 * other short reads won't stop the queue, including
2523 * control transfers (status stage handles that) or
2524 * most other single-qtd reads ... the queue stops if
2525 * URB_SHORT_NOT_OK was set so the driver submitting
2526 * the urbs could clean it up.
2527 */
2528 } else if (IS_SHORT_READ(token)
2529 && !(qtd->hw_alt_next
2530 & FOTG210_LIST_END(fotg210))) {
2531 stopped = 1;
2532 }
2533
2534 /* stop scanning when we reach qtds the hc is using */
2535 } else if (likely(!stopped
2536 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2537 break;
2538
2539 /* scan the whole queue for unlinks whenever it stops */
2540 } else {
2541 stopped = 1;
2542
2543 /* cancel everything if we halt, suspend, etc */
2544 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2545 last_status = -ESHUTDOWN;
2546
2547 /* this qtd is active; skip it unless a previous qtd
2548 * for its urb faulted, or its urb was canceled.
2549 */
2550 else if (last_status == -EINPROGRESS && !urb->unlinked)
2551 continue;
2552
2553 /* qh unlinked; token in overlay may be most current */
2554 if (state == QH_STATE_IDLE
2555 && cpu_to_hc32(fotg210, qtd->qtd_dma)
2556 == hw->hw_current) {
2557 token = hc32_to_cpu(fotg210, hw->hw_token);
2558
2559 /* An unlink may leave an incomplete
2560 * async transaction in the TT buffer.
2561 * We have to clear it.
2562 */
2563 fotg210_clear_tt_buffer(fotg210, qh, urb,
2564 token);
2565 }
2566 }
2567
2568 /* unless we already know the urb's status, collect qtd status
2569 * and update count of bytes transferred. in common short read
2570 * cases with only one data qtd (including control transfers),
2571 * queue processing won't halt. but with two or more qtds (for
2572 * example, with a 32 KB transfer), when the first qtd gets a
2573 * short read the second must be removed by hand.
2574 */
2575 if (last_status == -EINPROGRESS) {
2576 last_status = qtd_copy_status(fotg210, urb,
2577 qtd->length, token);
2578 if (last_status == -EREMOTEIO
2579 && (qtd->hw_alt_next
2580 & FOTG210_LIST_END(fotg210)))
2581 last_status = -EINPROGRESS;
2582
2583 /* As part of low/full-speed endpoint-halt processing
2584 * we must clear the TT buffer (11.17.5).
2585 */
2586 if (unlikely(last_status != -EINPROGRESS &&
2587 last_status != -EREMOTEIO)) {
2588 /* The TT's in some hubs malfunction when they
2589 * receive this request following a STALL (they
2590 * stop sending isochronous packets). Since a
2591 * STALL can't leave the TT buffer in a busy
2592 * state (if you believe Figures 11-48 - 11-51
2593 * in the USB 2.0 spec), we won't clear the TT
2594 * buffer in this case. Strictly speaking this
2595 * is a violation of the spec.
2596 */
2597 if (last_status != -EPIPE)
2598 fotg210_clear_tt_buffer(fotg210, qh,
2599 urb, token);
2600 }
2601 }
2602
2603 /* if we're removing something not at the queue head,
2604 * patch the hardware queue pointer.
2605 */
2606 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2607 last = list_entry(qtd->qtd_list.prev,
2608 struct fotg210_qtd, qtd_list);
2609 last->hw_next = qtd->hw_next;
2610 }
2611
2612 /* remove qtd; it's recycled after possible urb completion */
2613 list_del(&qtd->qtd_list);
2614 last = qtd;
2615
2616 /* reinit the xacterr counter for the next qtd */
2617 qh->xacterrs = 0;
2618 }
2619
2620 /* last urb's completion might still need calling */
2621 if (likely(last != NULL)) {
2622 fotg210_urb_done(fotg210, last->urb, last_status);
2623 count++;
2624 fotg210_qtd_free(fotg210, last);
2625 }
2626
2627 /* Do we need to rescan for URBs dequeued during a giveback? */
2628 if (unlikely(qh->needs_rescan)) {
2629 /* If the QH is already unlinked, do the rescan now. */
2630 if (state == QH_STATE_IDLE)
2631 goto rescan;
2632
2633 /* Otherwise we have to wait until the QH is fully unlinked.
2634 * Our caller will start an unlink if qh->needs_rescan is
2635 * set. But if an unlink has already started, nothing needs
2636 * to be done.
2637 */
2638 if (state != QH_STATE_LINKED)
2639 qh->needs_rescan = 0;
2640 }
2641
2642 /* restore original state; caller must unlink or relink */
2643 qh->qh_state = state;
2644
2645 /* be sure the hardware's done with the qh before refreshing
2646 * it after fault cleanup, or recovering from silicon wrongly
2647 * overlaying the dummy qtd (which reduces DMA chatter).
2648 */
2649 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2650 switch (state) {
2651 case QH_STATE_IDLE:
2652 qh_refresh(fotg210, qh);
2653 break;
2654 case QH_STATE_LINKED:
2655 /* We won't refresh a QH that's linked (after the HC
2656 * stopped the queue). That avoids a race:
2657 * - HC reads first part of QH;
2658 * - CPU updates that first part and the token;
2659 * - HC reads rest of that QH, including token
2660 * Result: HC gets an inconsistent image, and then
2661 * DMAs to/from the wrong memory (corrupting it).
2662 *
2663 * That should be rare for interrupt transfers,
2664 * except maybe high bandwidth ...
2665 */
2666
2667 /* Tell the caller to start an unlink */
2668 qh->needs_rescan = 1;
2669 break;
2670 /* otherwise, unlink already started */
2671 }
2672 }
2673
2674 return count;
2675 }
2676
2677 /*-------------------------------------------------------------------------*/
2678
2679 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2680 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2681 /* ... and packet size, for any kind of endpoint descriptor */
2682 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2683
2684 /*
2685 * reverse of qh_urb_transaction: free a list of TDs.
2686 * used for cleanup after errors, before HC sees an URB's TDs.
2687 */
2688 static void qtd_list_free(
2689 struct fotg210_hcd *fotg210,
2690 struct urb *urb,
2691 struct list_head *qtd_list
2692 ) {
2693 struct list_head *entry, *temp;
2694
2695 list_for_each_safe(entry, temp, qtd_list) {
2696 struct fotg210_qtd *qtd;
2697
2698 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2699 list_del(&qtd->qtd_list);
2700 fotg210_qtd_free(fotg210, qtd);
2701 }
2702 }
2703
2704 /*
2705 * create a list of filled qtds for this URB; won't link into qh.
2706 */
2707 static struct list_head *
2708 qh_urb_transaction(
2709 struct fotg210_hcd *fotg210,
2710 struct urb *urb,
2711 struct list_head *head,
2712 gfp_t flags
2713 ) {
2714 struct fotg210_qtd *qtd, *qtd_prev;
2715 dma_addr_t buf;
2716 int len, this_sg_len, maxpacket;
2717 int is_input;
2718 u32 token;
2719 int i;
2720 struct scatterlist *sg;
2721
2722 /*
2723 * URBs map to sequences of QTDs: one logical transaction
2724 */
2725 qtd = fotg210_qtd_alloc(fotg210, flags);
2726 if (unlikely(!qtd))
2727 return NULL;
2728 list_add_tail(&qtd->qtd_list, head);
2729 qtd->urb = urb;
2730
2731 token = QTD_STS_ACTIVE;
2732 token |= (FOTG210_TUNE_CERR << 10);
2733 /* for split transactions, SplitXState initialized to zero */
2734
2735 len = urb->transfer_buffer_length;
2736 is_input = usb_pipein(urb->pipe);
2737 if (usb_pipecontrol(urb->pipe)) {
2738 /* SETUP pid */
2739 qtd_fill(fotg210, qtd, urb->setup_dma,
2740 sizeof(struct usb_ctrlrequest),
2741 token | (2 /* "setup" */ << 8), 8);
2742
2743 /* ... and always at least one more pid */
2744 token ^= QTD_TOGGLE;
2745 qtd_prev = qtd;
2746 qtd = fotg210_qtd_alloc(fotg210, flags);
2747 if (unlikely(!qtd))
2748 goto cleanup;
2749 qtd->urb = urb;
2750 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2751 list_add_tail(&qtd->qtd_list, head);
2752
2753 /* for zero length DATA stages, STATUS is always IN */
2754 if (len == 0)
2755 token |= (1 /* "in" */ << 8);
2756 }
2757
2758 /*
2759 * data transfer stage: buffer setup
2760 */
2761 i = urb->num_mapped_sgs;
2762 if (len > 0 && i > 0) {
2763 sg = urb->sg;
2764 buf = sg_dma_address(sg);
2765
2766 /* urb->transfer_buffer_length may be smaller than the
2767 * size of the scatterlist (or vice versa)
2768 */
2769 this_sg_len = min_t(int, sg_dma_len(sg), len);
2770 } else {
2771 sg = NULL;
2772 buf = urb->transfer_dma;
2773 this_sg_len = len;
2774 }
2775
2776 if (is_input)
2777 token |= (1 /* "in" */ << 8);
2778 /* else it's already initted to "out" pid (0 << 8) */
2779
2780 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2781
2782 /*
2783 * buffer gets wrapped in one or more qtds;
2784 * last one may be "short" (including zero len)
2785 * and may serve as a control status ack
2786 */
2787 for (;;) {
2788 int this_qtd_len;
2789
2790 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2791 maxpacket);
2792 this_sg_len -= this_qtd_len;
2793 len -= this_qtd_len;
2794 buf += this_qtd_len;
2795
2796 /*
2797 * short reads advance to a "magic" dummy instead of the next
2798 * qtd ... that forces the queue to stop, for manual cleanup.
2799 * (this will usually be overridden later.)
2800 */
2801 if (is_input)
2802 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2803
2804 /* qh makes control packets use qtd toggle; maybe switch it */
2805 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2806 token ^= QTD_TOGGLE;
2807
2808 if (likely(this_sg_len <= 0)) {
2809 if (--i <= 0 || len <= 0)
2810 break;
2811 sg = sg_next(sg);
2812 buf = sg_dma_address(sg);
2813 this_sg_len = min_t(int, sg_dma_len(sg), len);
2814 }
2815
2816 qtd_prev = qtd;
2817 qtd = fotg210_qtd_alloc(fotg210, flags);
2818 if (unlikely(!qtd))
2819 goto cleanup;
2820 qtd->urb = urb;
2821 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2822 list_add_tail(&qtd->qtd_list, head);
2823 }
2824
2825 /*
2826 * unless the caller requires manual cleanup after short reads,
2827 * have the alt_next mechanism keep the queue running after the
2828 * last data qtd (the only one, for control and most other cases).
2829 */
2830 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
2831 || usb_pipecontrol(urb->pipe)))
2832 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2833
2834 /*
2835 * control requests may need a terminating data "status" ack;
2836 * other OUT ones may need a terminating short packet
2837 * (zero length).
2838 */
2839 if (likely(urb->transfer_buffer_length != 0)) {
2840 int one_more = 0;
2841
2842 if (usb_pipecontrol(urb->pipe)) {
2843 one_more = 1;
2844 token ^= 0x0100; /* "in" <--> "out" */
2845 token |= QTD_TOGGLE; /* force DATA1 */
2846 } else if (usb_pipeout(urb->pipe)
2847 && (urb->transfer_flags & URB_ZERO_PACKET)
2848 && !(urb->transfer_buffer_length % maxpacket)) {
2849 one_more = 1;
2850 }
2851 if (one_more) {
2852 qtd_prev = qtd;
2853 qtd = fotg210_qtd_alloc(fotg210, flags);
2854 if (unlikely(!qtd))
2855 goto cleanup;
2856 qtd->urb = urb;
2857 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2858 list_add_tail(&qtd->qtd_list, head);
2859
2860 /* never any data in such packets */
2861 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2862 }
2863 }
2864
2865 /* by default, enable interrupt on urb completion */
2866 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2867 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2868 return head;
2869
2870 cleanup:
2871 qtd_list_free(fotg210, urb, head);
2872 return NULL;
2873 }
2874
2875 /*-------------------------------------------------------------------------*/
2876 /*
2877 * Would be best to create all qh's from config descriptors,
2878 * when each interface/altsetting is established. Unlink
2879 * any previous qh and cancel its urbs first; endpoints are
2880 * implicitly reset then (data toggle too).
2881 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2882 */
2883
2884
2885 /*
2886 * Each QH holds a qtd list; a QH is used for everything except iso.
2887 *
2888 * For interrupt urbs, the scheduler must set the microframe scheduling
2889 * mask(s) each time the QH gets scheduled. For highspeed, that's
2890 * just one microframe in the s-mask. For split interrupt transactions
2891 * there are additional complications: c-mask, maybe FSTNs.
2892 */
2893 static struct fotg210_qh *
2894 qh_make(
2895 struct fotg210_hcd *fotg210,
2896 struct urb *urb,
2897 gfp_t flags
2898 ) {
2899 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2900 u32 info1 = 0, info2 = 0;
2901 int is_input, type;
2902 int maxp = 0;
2903 struct usb_tt *tt = urb->dev->tt;
2904 struct fotg210_qh_hw *hw;
2905
2906 if (!qh)
2907 return qh;
2908
2909 /*
2910 * init endpoint/device data for this QH
2911 */
2912 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2913 info1 |= usb_pipedevice(urb->pipe) << 0;
2914
2915 is_input = usb_pipein(urb->pipe);
2916 type = usb_pipetype(urb->pipe);
2917 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2918
2919 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2920 * acts like up to 3KB, but is built from smaller packets.
2921 */
2922 if (max_packet(maxp) > 1024) {
2923 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2924 max_packet(maxp));
2925 goto done;
2926 }
2927
2928 /* Compute interrupt scheduling parameters just once, and save.
2929 * - allowing for high bandwidth, how many nsec/uframe are used?
2930 * - split transactions need a second CSPLIT uframe; same question
2931 * - splits also need a schedule gap (for full/low speed I/O)
2932 * - qh has a polling interval
2933 *
2934 * For control/bulk requests, the HC or TT handles these.
2935 */
2936 if (type == PIPE_INTERRUPT) {
2937 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2938 is_input, 0,
2939 hb_mult(maxp) * max_packet(maxp)));
2940 qh->start = NO_FRAME;
2941
2942 if (urb->dev->speed == USB_SPEED_HIGH) {
2943 qh->c_usecs = 0;
2944 qh->gap_uf = 0;
2945
2946 qh->period = urb->interval >> 3;
2947 if (qh->period == 0 && urb->interval != 1) {
2948 /* NOTE interval 2 or 4 uframes could work.
2949 * But interval 1 scheduling is simpler, and
2950 * includes high bandwidth.
2951 */
2952 urb->interval = 1;
2953 } else if (qh->period > fotg210->periodic_size) {
2954 qh->period = fotg210->periodic_size;
2955 urb->interval = qh->period << 3;
2956 }
2957 } else {
2958 int think_time;
2959
2960 /* gap is f(FS/LS transfer times) */
2961 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2962 is_input, 0, maxp) / (125 * 1000);
2963
2964 /* FIXME this just approximates SPLIT/CSPLIT times */
2965 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2966 qh->c_usecs = qh->usecs + HS_USECS(0);
2967 qh->usecs = HS_USECS(1);
2968 } else { /* SPLIT+DATA, gap, CSPLIT */
2969 qh->usecs += HS_USECS(1);
2970 qh->c_usecs = HS_USECS(0);
2971 }
2972
2973 think_time = tt ? tt->think_time : 0;
2974 qh->tt_usecs = NS_TO_US(think_time +
2975 usb_calc_bus_time(urb->dev->speed,
2976 is_input, 0, max_packet(maxp)));
2977 qh->period = urb->interval;
2978 if (qh->period > fotg210->periodic_size) {
2979 qh->period = fotg210->periodic_size;
2980 urb->interval = qh->period;
2981 }
2982 }
2983 }
2984
2985 /* support for tt scheduling, and access to toggles */
2986 qh->dev = urb->dev;
2987
2988 /* using TT? */
2989 switch (urb->dev->speed) {
2990 case USB_SPEED_LOW:
2991 info1 |= QH_LOW_SPEED;
2992 /* FALL THROUGH */
2993
2994 case USB_SPEED_FULL:
2995 /* EPS 0 means "full" */
2996 if (type != PIPE_INTERRUPT)
2997 info1 |= (FOTG210_TUNE_RL_TT << 28);
2998 if (type == PIPE_CONTROL) {
2999 info1 |= QH_CONTROL_EP; /* for TT */
3000 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
3001 }
3002 info1 |= maxp << 16;
3003
3004 info2 |= (FOTG210_TUNE_MULT_TT << 30);
3005
3006 /* Some Freescale processors have an erratum in which the
3007 * port number in the queue head was 0..N-1 instead of 1..N.
3008 */
3009 if (fotg210_has_fsl_portno_bug(fotg210))
3010 info2 |= (urb->dev->ttport-1) << 23;
3011 else
3012 info2 |= urb->dev->ttport << 23;
3013
3014 /* set the address of the TT; for TDI's integrated
3015 * root hub tt, leave it zeroed.
3016 */
3017 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
3018 info2 |= tt->hub->devnum << 16;
3019
3020 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
3021
3022 break;
3023
3024 case USB_SPEED_HIGH: /* no TT involved */
3025 info1 |= QH_HIGH_SPEED;
3026 if (type == PIPE_CONTROL) {
3027 info1 |= (FOTG210_TUNE_RL_HS << 28);
3028 info1 |= 64 << 16; /* usb2 fixed maxpacket */
3029 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
3030 info2 |= (FOTG210_TUNE_MULT_HS << 30);
3031 } else if (type == PIPE_BULK) {
3032 info1 |= (FOTG210_TUNE_RL_HS << 28);
3033 /* The USB spec says that high speed bulk endpoints
3034 * always use 512 byte maxpacket. But some device
3035 * vendors decided to ignore that, and MSFT is happy
3036 * to help them do so. So now people expect to use
3037 * such nonconformant devices with Linux too; sigh.
3038 */
3039 info1 |= max_packet(maxp) << 16;
3040 info2 |= (FOTG210_TUNE_MULT_HS << 30);
3041 } else { /* PIPE_INTERRUPT */
3042 info1 |= max_packet(maxp) << 16;
3043 info2 |= hb_mult(maxp) << 30;
3044 }
3045 break;
3046 default:
3047 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
3048 urb->dev->speed);
3049 done:
3050 qh_destroy(fotg210, qh);
3051 return NULL;
3052 }
3053
3054 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
3055
3056 /* init as live, toggle clear, advance to dummy */
3057 qh->qh_state = QH_STATE_IDLE;
3058 hw = qh->hw;
3059 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
3060 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
3061 qh->is_out = !is_input;
3062 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
3063 qh_refresh(fotg210, qh);
3064 return qh;
3065 }
3066
3067 /*-------------------------------------------------------------------------*/
3068
3069 static void enable_async(struct fotg210_hcd *fotg210)
3070 {
3071 if (fotg210->async_count++)
3072 return;
3073
3074 /* Stop waiting to turn off the async schedule */
3075 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
3076
3077 /* Don't start the schedule until ASS is 0 */
3078 fotg210_poll_ASS(fotg210);
3079 turn_on_io_watchdog(fotg210);
3080 }
3081
3082 static void disable_async(struct fotg210_hcd *fotg210)
3083 {
3084 if (--fotg210->async_count)
3085 return;
3086
3087 /* The async schedule and async_unlink list are supposed to be empty */
3088 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
3089
3090 /* Don't turn off the schedule until ASS is 1 */
3091 fotg210_poll_ASS(fotg210);
3092 }
3093
3094 /* move qh (and its qtds) onto async queue; maybe enable queue. */
3095
3096 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3097 {
3098 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
3099 struct fotg210_qh *head;
3100
3101 /* Don't link a QH if there's a Clear-TT-Buffer pending */
3102 if (unlikely(qh->clearing_tt))
3103 return;
3104
3105 WARN_ON(qh->qh_state != QH_STATE_IDLE);
3106
3107 /* clear halt and/or toggle; and maybe recover from silicon quirk */
3108 qh_refresh(fotg210, qh);
3109
3110 /* splice right after start */
3111 head = fotg210->async;
3112 qh->qh_next = head->qh_next;
3113 qh->hw->hw_next = head->hw->hw_next;
3114 wmb();
3115
3116 head->qh_next.qh = qh;
3117 head->hw->hw_next = dma;
3118
3119 qh->xacterrs = 0;
3120 qh->qh_state = QH_STATE_LINKED;
3121 /* qtd completions reported later by interrupt */
3122
3123 enable_async(fotg210);
3124 }
3125
3126 /*-------------------------------------------------------------------------*/
3127
3128 /*
3129 * For control/bulk/interrupt, return QH with these TDs appended.
3130 * Allocates and initializes the QH if necessary.
3131 * Returns null if it can't allocate a QH it needs to.
3132 * If the QH has TDs (urbs) already, that's great.
3133 */
3134 static struct fotg210_qh *qh_append_tds(
3135 struct fotg210_hcd *fotg210,
3136 struct urb *urb,
3137 struct list_head *qtd_list,
3138 int epnum,
3139 void **ptr
3140 )
3141 {
3142 struct fotg210_qh *qh = NULL;
3143 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
3144
3145 qh = (struct fotg210_qh *) *ptr;
3146 if (unlikely(qh == NULL)) {
3147 /* can't sleep here, we have fotg210->lock... */
3148 qh = qh_make(fotg210, urb, GFP_ATOMIC);
3149 *ptr = qh;
3150 }
3151 if (likely(qh != NULL)) {
3152 struct fotg210_qtd *qtd;
3153
3154 if (unlikely(list_empty(qtd_list)))
3155 qtd = NULL;
3156 else
3157 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
3158 qtd_list);
3159
3160 /* control qh may need patching ... */
3161 if (unlikely(epnum == 0)) {
3162 /* usb_reset_device() briefly reverts to address 0 */
3163 if (usb_pipedevice(urb->pipe) == 0)
3164 qh->hw->hw_info1 &= ~qh_addr_mask;
3165 }
3166
3167 /* just one way to queue requests: swap with the dummy qtd.
3168 * only hc or qh_refresh() ever modify the overlay.
3169 */
3170 if (likely(qtd != NULL)) {
3171 struct fotg210_qtd *dummy;
3172 dma_addr_t dma;
3173 __hc32 token;
3174
3175 /* to avoid racing the HC, use the dummy td instead of
3176 * the first td of our list (becomes new dummy). both
3177 * tds stay deactivated until we're done, when the
3178 * HC is allowed to fetch the old dummy (4.10.2).
3179 */
3180 token = qtd->hw_token;
3181 qtd->hw_token = HALT_BIT(fotg210);
3182
3183 dummy = qh->dummy;
3184
3185 dma = dummy->qtd_dma;
3186 *dummy = *qtd;
3187 dummy->qtd_dma = dma;
3188
3189 list_del(&qtd->qtd_list);
3190 list_add(&dummy->qtd_list, qtd_list);
3191 list_splice_tail(qtd_list, &qh->qtd_list);
3192
3193 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3194 qh->dummy = qtd;
3195
3196 /* hc must see the new dummy at list end */
3197 dma = qtd->qtd_dma;
3198 qtd = list_entry(qh->qtd_list.prev,
3199 struct fotg210_qtd, qtd_list);
3200 qtd->hw_next = QTD_NEXT(fotg210, dma);
3201
3202 /* let the hc process these next qtds */
3203 wmb();
3204 dummy->hw_token = token;
3205
3206 urb->hcpriv = qh;
3207 }
3208 }
3209 return qh;
3210 }
3211
3212 /*-------------------------------------------------------------------------*/
3213
3214 static int
3215 submit_async(
3216 struct fotg210_hcd *fotg210,
3217 struct urb *urb,
3218 struct list_head *qtd_list,
3219 gfp_t mem_flags
3220 ) {
3221 int epnum;
3222 unsigned long flags;
3223 struct fotg210_qh *qh = NULL;
3224 int rc;
3225
3226 epnum = urb->ep->desc.bEndpointAddress;
3227
3228 #ifdef FOTG210_URB_TRACE
3229 {
3230 struct fotg210_qtd *qtd;
3231 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3232 fotg210_dbg(fotg210,
3233 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3234 __func__, urb->dev->devpath, urb,
3235 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
3236 urb->transfer_buffer_length,
3237 qtd, urb->ep->hcpriv);
3238 }
3239 #endif
3240
3241 spin_lock_irqsave(&fotg210->lock, flags);
3242 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3243 rc = -ESHUTDOWN;
3244 goto done;
3245 }
3246 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3247 if (unlikely(rc))
3248 goto done;
3249
3250 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3251 if (unlikely(qh == NULL)) {
3252 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3253 rc = -ENOMEM;
3254 goto done;
3255 }
3256
3257 /* Control/bulk operations through TTs don't need scheduling,
3258 * the HC and TT handle it when the TT has a buffer ready.
3259 */
3260 if (likely(qh->qh_state == QH_STATE_IDLE))
3261 qh_link_async(fotg210, qh);
3262 done:
3263 spin_unlock_irqrestore(&fotg210->lock, flags);
3264 if (unlikely(qh == NULL))
3265 qtd_list_free(fotg210, urb, qtd_list);
3266 return rc;
3267 }
3268
3269 /*-------------------------------------------------------------------------*/
3270
3271 static void single_unlink_async(struct fotg210_hcd *fotg210,
3272 struct fotg210_qh *qh)
3273 {
3274 struct fotg210_qh *prev;
3275
3276 /* Add to the end of the list of QHs waiting for the next IAAD */
3277 qh->qh_state = QH_STATE_UNLINK;
3278 if (fotg210->async_unlink)
3279 fotg210->async_unlink_last->unlink_next = qh;
3280 else
3281 fotg210->async_unlink = qh;
3282 fotg210->async_unlink_last = qh;
3283
3284 /* Unlink it from the schedule */
3285 prev = fotg210->async;
3286 while (prev->qh_next.qh != qh)
3287 prev = prev->qh_next.qh;
3288
3289 prev->hw->hw_next = qh->hw->hw_next;
3290 prev->qh_next = qh->qh_next;
3291 if (fotg210->qh_scan_next == qh)
3292 fotg210->qh_scan_next = qh->qh_next.qh;
3293 }
3294
3295 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3296 {
3297 /*
3298 * Do nothing if an IAA cycle is already running or
3299 * if one will be started shortly.
3300 */
3301 if (fotg210->async_iaa || fotg210->async_unlinking)
3302 return;
3303
3304 /* Do all the waiting QHs at once */
3305 fotg210->async_iaa = fotg210->async_unlink;
3306 fotg210->async_unlink = NULL;
3307
3308 /* If the controller isn't running, we don't have to wait for it */
3309 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3310 if (!nested) /* Avoid recursion */
3311 end_unlink_async(fotg210);
3312
3313 /* Otherwise start a new IAA cycle */
3314 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3315 /* Make sure the unlinks are all visible to the hardware */
3316 wmb();
3317
3318 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3319 &fotg210->regs->command);
3320 fotg210_readl(fotg210, &fotg210->regs->command);
3321 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3322 true);
3323 }
3324 }
3325
3326 /* the async qh for the qtds being unlinked are now gone from the HC */
3327
3328 static void end_unlink_async(struct fotg210_hcd *fotg210)
3329 {
3330 struct fotg210_qh *qh;
3331
3332 /* Process the idle QHs */
3333 restart:
3334 fotg210->async_unlinking = true;
3335 while (fotg210->async_iaa) {
3336 qh = fotg210->async_iaa;
3337 fotg210->async_iaa = qh->unlink_next;
3338 qh->unlink_next = NULL;
3339
3340 qh->qh_state = QH_STATE_IDLE;
3341 qh->qh_next.qh = NULL;
3342
3343 qh_completions(fotg210, qh);
3344 if (!list_empty(&qh->qtd_list) &&
3345 fotg210->rh_state == FOTG210_RH_RUNNING)
3346 qh_link_async(fotg210, qh);
3347 disable_async(fotg210);
3348 }
3349 fotg210->async_unlinking = false;
3350
3351 /* Start a new IAA cycle if any QHs are waiting for it */
3352 if (fotg210->async_unlink) {
3353 start_iaa_cycle(fotg210, true);
3354 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3355 goto restart;
3356 }
3357 }
3358
3359 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3360 {
3361 struct fotg210_qh *qh, *next;
3362 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3363 bool check_unlinks_later = false;
3364
3365 /* Unlink all the async QHs that have been empty for a timer cycle */
3366 next = fotg210->async->qh_next.qh;
3367 while (next) {
3368 qh = next;
3369 next = qh->qh_next.qh;
3370
3371 if (list_empty(&qh->qtd_list) &&
3372 qh->qh_state == QH_STATE_LINKED) {
3373 if (!stopped && qh->unlink_cycle ==
3374 fotg210->async_unlink_cycle)
3375 check_unlinks_later = true;
3376 else
3377 single_unlink_async(fotg210, qh);
3378 }
3379 }
3380
3381 /* Start a new IAA cycle if any QHs are waiting for it */
3382 if (fotg210->async_unlink)
3383 start_iaa_cycle(fotg210, false);
3384
3385 /* QHs that haven't been empty for long enough will be handled later */
3386 if (check_unlinks_later) {
3387 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3388 true);
3389 ++fotg210->async_unlink_cycle;
3390 }
3391 }
3392
3393 /* makes sure the async qh will become idle */
3394 /* caller must own fotg210->lock */
3395
3396 static void start_unlink_async(struct fotg210_hcd *fotg210,
3397 struct fotg210_qh *qh)
3398 {
3399 /*
3400 * If the QH isn't linked then there's nothing we can do
3401 * unless we were called during a giveback, in which case
3402 * qh_completions() has to deal with it.
3403 */
3404 if (qh->qh_state != QH_STATE_LINKED) {
3405 if (qh->qh_state == QH_STATE_COMPLETING)
3406 qh->needs_rescan = 1;
3407 return;
3408 }
3409
3410 single_unlink_async(fotg210, qh);
3411 start_iaa_cycle(fotg210, false);
3412 }
3413
3414 /*-------------------------------------------------------------------------*/
3415
3416 static void scan_async(struct fotg210_hcd *fotg210)
3417 {
3418 struct fotg210_qh *qh;
3419 bool check_unlinks_later = false;
3420
3421 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3422 while (fotg210->qh_scan_next) {
3423 qh = fotg210->qh_scan_next;
3424 fotg210->qh_scan_next = qh->qh_next.qh;
3425 rescan:
3426 /* clean any finished work for this qh */
3427 if (!list_empty(&qh->qtd_list)) {
3428 int temp;
3429
3430 /*
3431 * Unlinks could happen here; completion reporting
3432 * drops the lock. That's why fotg210->qh_scan_next
3433 * always holds the next qh to scan; if the next qh
3434 * gets unlinked then fotg210->qh_scan_next is adjusted
3435 * in single_unlink_async().
3436 */
3437 temp = qh_completions(fotg210, qh);
3438 if (qh->needs_rescan) {
3439 start_unlink_async(fotg210, qh);
3440 } else if (list_empty(&qh->qtd_list)
3441 && qh->qh_state == QH_STATE_LINKED) {
3442 qh->unlink_cycle = fotg210->async_unlink_cycle;
3443 check_unlinks_later = true;
3444 } else if (temp != 0)
3445 goto rescan;
3446 }
3447 }
3448
3449 /*
3450 * Unlink empty entries, reducing DMA usage as well
3451 * as HCD schedule-scanning costs. Delay for any qh
3452 * we just scanned, there's a not-unusual case that it
3453 * doesn't stay idle for long.
3454 */
3455 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3456 !(fotg210->enabled_hrtimer_events &
3457 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3458 fotg210_enable_event(fotg210,
3459 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3460 ++fotg210->async_unlink_cycle;
3461 }
3462 }
3463 /*-------------------------------------------------------------------------*/
3464 /*
3465 * EHCI scheduled transaction support: interrupt, iso, split iso
3466 * These are called "periodic" transactions in the EHCI spec.
3467 *
3468 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3469 * with the "asynchronous" transaction support (control/bulk transfers).
3470 * The only real difference is in how interrupt transfers are scheduled.
3471 *
3472 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3473 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3474 * pre-calculated schedule data to make appending to the queue be quick.
3475 */
3476
3477 static int fotg210_get_frame(struct usb_hcd *hcd);
3478
3479 /*-------------------------------------------------------------------------*/
3480
3481 /*
3482 * periodic_next_shadow - return "next" pointer on shadow list
3483 * @periodic: host pointer to qh/itd
3484 * @tag: hardware tag for type of this record
3485 */
3486 static union fotg210_shadow *
3487 periodic_next_shadow(struct fotg210_hcd *fotg210,
3488 union fotg210_shadow *periodic, __hc32 tag)
3489 {
3490 switch (hc32_to_cpu(fotg210, tag)) {
3491 case Q_TYPE_QH:
3492 return &periodic->qh->qh_next;
3493 case Q_TYPE_FSTN:
3494 return &periodic->fstn->fstn_next;
3495 default:
3496 return &periodic->itd->itd_next;
3497 }
3498 }
3499
3500 static __hc32 *
3501 shadow_next_periodic(struct fotg210_hcd *fotg210,
3502 union fotg210_shadow *periodic, __hc32 tag)
3503 {
3504 switch (hc32_to_cpu(fotg210, tag)) {
3505 /* our fotg210_shadow.qh is actually software part */
3506 case Q_TYPE_QH:
3507 return &periodic->qh->hw->hw_next;
3508 /* others are hw parts */
3509 default:
3510 return periodic->hw_next;
3511 }
3512 }
3513
3514 /* caller must hold fotg210->lock */
3515 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3516 void *ptr)
3517 {
3518 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3519 __hc32 *hw_p = &fotg210->periodic[frame];
3520 union fotg210_shadow here = *prev_p;
3521
3522 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3523 while (here.ptr && here.ptr != ptr) {
3524 prev_p = periodic_next_shadow(fotg210, prev_p,
3525 Q_NEXT_TYPE(fotg210, *hw_p));
3526 hw_p = shadow_next_periodic(fotg210, &here,
3527 Q_NEXT_TYPE(fotg210, *hw_p));
3528 here = *prev_p;
3529 }
3530 /* an interrupt entry (at list end) could have been shared */
3531 if (!here.ptr)
3532 return;
3533
3534 /* update shadow and hardware lists ... the old "next" pointers
3535 * from ptr may still be in use, the caller updates them.
3536 */
3537 *prev_p = *periodic_next_shadow(fotg210, &here,
3538 Q_NEXT_TYPE(fotg210, *hw_p));
3539
3540 *hw_p = *shadow_next_periodic(fotg210, &here,
3541 Q_NEXT_TYPE(fotg210, *hw_p));
3542 }
3543
3544 /* how many of the uframe's 125 usecs are allocated? */
3545 static unsigned short
3546 periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
3547 {
3548 __hc32 *hw_p = &fotg210->periodic[frame];
3549 union fotg210_shadow *q = &fotg210->pshadow[frame];
3550 unsigned usecs = 0;
3551 struct fotg210_qh_hw *hw;
3552
3553 while (q->ptr) {
3554 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3555 case Q_TYPE_QH:
3556 hw = q->qh->hw;
3557 /* is it in the S-mask? */
3558 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3559 usecs += q->qh->usecs;
3560 /* ... or C-mask? */
3561 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3562 1 << (8 + uframe)))
3563 usecs += q->qh->c_usecs;
3564 hw_p = &hw->hw_next;
3565 q = &q->qh->qh_next;
3566 break;
3567 /* case Q_TYPE_FSTN: */
3568 default:
3569 /* for "save place" FSTNs, count the relevant INTR
3570 * bandwidth from the previous frame
3571 */
3572 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3573 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3574
3575 hw_p = &q->fstn->hw_next;
3576 q = &q->fstn->fstn_next;
3577 break;
3578 case Q_TYPE_ITD:
3579 if (q->itd->hw_transaction[uframe])
3580 usecs += q->itd->stream->usecs;
3581 hw_p = &q->itd->hw_next;
3582 q = &q->itd->itd_next;
3583 break;
3584 }
3585 }
3586 #ifdef DEBUG
3587 if (usecs > fotg210->uframe_periodic_max)
3588 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3589 frame * 8 + uframe, usecs);
3590 #endif
3591 return usecs;
3592 }
3593
3594 /*-------------------------------------------------------------------------*/
3595
3596 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3597 {
3598 if (!dev1->tt || !dev2->tt)
3599 return 0;
3600 if (dev1->tt != dev2->tt)
3601 return 0;
3602 if (dev1->tt->multi)
3603 return dev1->ttport == dev2->ttport;
3604 else
3605 return 1;
3606 }
3607
3608 /* return true iff the device's transaction translator is available
3609 * for a periodic transfer starting at the specified frame, using
3610 * all the uframes in the mask.
3611 */
3612 static int tt_no_collision(
3613 struct fotg210_hcd *fotg210,
3614 unsigned period,
3615 struct usb_device *dev,
3616 unsigned frame,
3617 u32 uf_mask
3618 )
3619 {
3620 if (period == 0) /* error */
3621 return 0;
3622
3623 /* note bandwidth wastage: split never follows csplit
3624 * (different dev or endpoint) until the next uframe.
3625 * calling convention doesn't make that distinction.
3626 */
3627 for (; frame < fotg210->periodic_size; frame += period) {
3628 union fotg210_shadow here;
3629 __hc32 type;
3630 struct fotg210_qh_hw *hw;
3631
3632 here = fotg210->pshadow[frame];
3633 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3634 while (here.ptr) {
3635 switch (hc32_to_cpu(fotg210, type)) {
3636 case Q_TYPE_ITD:
3637 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3638 here = here.itd->itd_next;
3639 continue;
3640 case Q_TYPE_QH:
3641 hw = here.qh->hw;
3642 if (same_tt(dev, here.qh->dev)) {
3643 u32 mask;
3644
3645 mask = hc32_to_cpu(fotg210,
3646 hw->hw_info2);
3647 /* "knows" no gap is needed */
3648 mask |= mask >> 8;
3649 if (mask & uf_mask)
3650 break;
3651 }
3652 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3653 here = here.qh->qh_next;
3654 continue;
3655 /* case Q_TYPE_FSTN: */
3656 default:
3657 fotg210_dbg(fotg210,
3658 "periodic frame %d bogus type %d\n",
3659 frame, type);
3660 }
3661
3662 /* collision or error */
3663 return 0;
3664 }
3665 }
3666
3667 /* no collision */
3668 return 1;
3669 }
3670
3671 /*-------------------------------------------------------------------------*/
3672
3673 static void enable_periodic(struct fotg210_hcd *fotg210)
3674 {
3675 if (fotg210->periodic_count++)
3676 return;
3677
3678 /* Stop waiting to turn off the periodic schedule */
3679 fotg210->enabled_hrtimer_events &=
3680 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3681
3682 /* Don't start the schedule until PSS is 0 */
3683 fotg210_poll_PSS(fotg210);
3684 turn_on_io_watchdog(fotg210);
3685 }
3686
3687 static void disable_periodic(struct fotg210_hcd *fotg210)
3688 {
3689 if (--fotg210->periodic_count)
3690 return;
3691
3692 /* Don't turn off the schedule until PSS is 1 */
3693 fotg210_poll_PSS(fotg210);
3694 }
3695
3696 /*-------------------------------------------------------------------------*/
3697
3698 /* periodic schedule slots have iso tds (normal or split) first, then a
3699 * sparse tree for active interrupt transfers.
3700 *
3701 * this just links in a qh; caller guarantees uframe masks are set right.
3702 * no FSTN support (yet; fotg210 0.96+)
3703 */
3704 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3705 {
3706 unsigned i;
3707 unsigned period = qh->period;
3708
3709 dev_dbg(&qh->dev->dev,
3710 "link qh%d-%04x/%p start %d [%d/%d us]\n",
3711 period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
3712 & (QH_CMASK | QH_SMASK),
3713 qh, qh->start, qh->usecs, qh->c_usecs);
3714
3715 /* high bandwidth, or otherwise every microframe */
3716 if (period == 0)
3717 period = 1;
3718
3719 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3720 union fotg210_shadow *prev = &fotg210->pshadow[i];
3721 __hc32 *hw_p = &fotg210->periodic[i];
3722 union fotg210_shadow here = *prev;
3723 __hc32 type = 0;
3724
3725 /* skip the iso nodes at list head */
3726 while (here.ptr) {
3727 type = Q_NEXT_TYPE(fotg210, *hw_p);
3728 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3729 break;
3730 prev = periodic_next_shadow(fotg210, prev, type);
3731 hw_p = shadow_next_periodic(fotg210, &here, type);
3732 here = *prev;
3733 }
3734
3735 /* sorting each branch by period (slow-->fast)
3736 * enables sharing interior tree nodes
3737 */
3738 while (here.ptr && qh != here.qh) {
3739 if (qh->period > here.qh->period)
3740 break;
3741 prev = &here.qh->qh_next;
3742 hw_p = &here.qh->hw->hw_next;
3743 here = *prev;
3744 }
3745 /* link in this qh, unless some earlier pass did that */
3746 if (qh != here.qh) {
3747 qh->qh_next = here;
3748 if (here.qh)
3749 qh->hw->hw_next = *hw_p;
3750 wmb();
3751 prev->qh = qh;
3752 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3753 }
3754 }
3755 qh->qh_state = QH_STATE_LINKED;
3756 qh->xacterrs = 0;
3757
3758 /* update per-qh bandwidth for usbfs */
3759 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3760 ? ((qh->usecs + qh->c_usecs) / qh->period)
3761 : (qh->usecs * 8);
3762
3763 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3764
3765 /* maybe enable periodic schedule processing */
3766 ++fotg210->intr_count;
3767 enable_periodic(fotg210);
3768 }
3769
3770 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3771 struct fotg210_qh *qh)
3772 {
3773 unsigned i;
3774 unsigned period;
3775
3776 /*
3777 * If qh is for a low/full-speed device, simply unlinking it
3778 * could interfere with an ongoing split transaction. To unlink
3779 * it safely would require setting the QH_INACTIVATE bit and
3780 * waiting at least one frame, as described in EHCI 4.12.2.5.
3781 *
3782 * We won't bother with any of this. Instead, we assume that the
3783 * only reason for unlinking an interrupt QH while the current URB
3784 * is still active is to dequeue all the URBs (flush the whole
3785 * endpoint queue).
3786 *
3787 * If rebalancing the periodic schedule is ever implemented, this
3788 * approach will no longer be valid.
3789 */
3790
3791 /* high bandwidth, or otherwise part of every microframe */
3792 period = qh->period;
3793 if (!period)
3794 period = 1;
3795
3796 for (i = qh->start; i < fotg210->periodic_size; i += period)
3797 periodic_unlink(fotg210, i, qh);
3798
3799 /* update per-qh bandwidth for usbfs */
3800 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3801 ? ((qh->usecs + qh->c_usecs) / qh->period)
3802 : (qh->usecs * 8);
3803
3804 dev_dbg(&qh->dev->dev,
3805 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3806 qh->period,
3807 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3808 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs);
3809
3810 /* qh->qh_next still "live" to HC */
3811 qh->qh_state = QH_STATE_UNLINK;
3812 qh->qh_next.ptr = NULL;
3813
3814 if (fotg210->qh_scan_next == qh)
3815 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3816 struct fotg210_qh, intr_node);
3817 list_del(&qh->intr_node);
3818 }
3819
3820 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3821 struct fotg210_qh *qh)
3822 {
3823 /* If the QH isn't linked then there's nothing we can do
3824 * unless we were called during a giveback, in which case
3825 * qh_completions() has to deal with it.
3826 */
3827 if (qh->qh_state != QH_STATE_LINKED) {
3828 if (qh->qh_state == QH_STATE_COMPLETING)
3829 qh->needs_rescan = 1;
3830 return;
3831 }
3832
3833 qh_unlink_periodic(fotg210, qh);
3834
3835 /* Make sure the unlinks are visible before starting the timer */
3836 wmb();
3837
3838 /*
3839 * The EHCI spec doesn't say how long it takes the controller to
3840 * stop accessing an unlinked interrupt QH. The timer delay is
3841 * 9 uframes; presumably that will be long enough.
3842 */
3843 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3844
3845 /* New entries go at the end of the intr_unlink list */
3846 if (fotg210->intr_unlink)
3847 fotg210->intr_unlink_last->unlink_next = qh;
3848 else
3849 fotg210->intr_unlink = qh;
3850 fotg210->intr_unlink_last = qh;
3851
3852 if (fotg210->intr_unlinking)
3853 ; /* Avoid recursive calls */
3854 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3855 fotg210_handle_intr_unlinks(fotg210);
3856 else if (fotg210->intr_unlink == qh) {
3857 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3858 true);
3859 ++fotg210->intr_unlink_cycle;
3860 }
3861 }
3862
3863 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3864 {
3865 struct fotg210_qh_hw *hw = qh->hw;
3866 int rc;
3867
3868 qh->qh_state = QH_STATE_IDLE;
3869 hw->hw_next = FOTG210_LIST_END(fotg210);
3870
3871 qh_completions(fotg210, qh);
3872
3873 /* reschedule QH iff another request is queued */
3874 if (!list_empty(&qh->qtd_list) &&
3875 fotg210->rh_state == FOTG210_RH_RUNNING) {
3876 rc = qh_schedule(fotg210, qh);
3877
3878 /* An error here likely indicates handshake failure
3879 * or no space left in the schedule. Neither fault
3880 * should happen often ...
3881 *
3882 * FIXME kill the now-dysfunctional queued urbs
3883 */
3884 if (rc != 0)
3885 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3886 qh, rc);
3887 }
3888
3889 /* maybe turn off periodic schedule */
3890 --fotg210->intr_count;
3891 disable_periodic(fotg210);
3892 }
3893
3894 /*-------------------------------------------------------------------------*/
3895
3896 static int check_period(
3897 struct fotg210_hcd *fotg210,
3898 unsigned frame,
3899 unsigned uframe,
3900 unsigned period,
3901 unsigned usecs
3902 ) {
3903 int claimed;
3904
3905 /* complete split running into next frame?
3906 * given FSTN support, we could sometimes check...
3907 */
3908 if (uframe >= 8)
3909 return 0;
3910
3911 /* convert "usecs we need" to "max already claimed" */
3912 usecs = fotg210->uframe_periodic_max - usecs;
3913
3914 /* we "know" 2 and 4 uframe intervals were rejected; so
3915 * for period 0, check _every_ microframe in the schedule.
3916 */
3917 if (unlikely(period == 0)) {
3918 do {
3919 for (uframe = 0; uframe < 7; uframe++) {
3920 claimed = periodic_usecs(fotg210, frame,
3921 uframe);
3922 if (claimed > usecs)
3923 return 0;
3924 }
3925 } while ((frame += 1) < fotg210->periodic_size);
3926
3927 /* just check the specified uframe, at that period */
3928 } else {
3929 do {
3930 claimed = periodic_usecs(fotg210, frame, uframe);
3931 if (claimed > usecs)
3932 return 0;
3933 } while ((frame += period) < fotg210->periodic_size);
3934 }
3935
3936 /* success! */
3937 return 1;
3938 }
3939
3940 static int check_intr_schedule(
3941 struct fotg210_hcd *fotg210,
3942 unsigned frame,
3943 unsigned uframe,
3944 const struct fotg210_qh *qh,
3945 __hc32 *c_maskp
3946 )
3947 {
3948 int retval = -ENOSPC;
3949 u8 mask = 0;
3950
3951 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3952 goto done;
3953
3954 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3955 goto done;
3956 if (!qh->c_usecs) {
3957 retval = 0;
3958 *c_maskp = 0;
3959 goto done;
3960 }
3961
3962 /* Make sure this tt's buffer is also available for CSPLITs.
3963 * We pessimize a bit; probably the typical full speed case
3964 * doesn't need the second CSPLIT.
3965 *
3966 * NOTE: both SPLIT and CSPLIT could be checked in just
3967 * one smart pass...
3968 */
3969 mask = 0x03 << (uframe + qh->gap_uf);
3970 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3971
3972 mask |= 1 << uframe;
3973 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3974 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3975 qh->period, qh->c_usecs))
3976 goto done;
3977 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3978 qh->period, qh->c_usecs))
3979 goto done;
3980 retval = 0;
3981 }
3982 done:
3983 return retval;
3984 }
3985
3986 /* "first fit" scheduling policy used the first time through,
3987 * or when the previous schedule slot can't be re-used.
3988 */
3989 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3990 {
3991 int status;
3992 unsigned uframe;
3993 __hc32 c_mask;
3994 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3995 struct fotg210_qh_hw *hw = qh->hw;
3996
3997 qh_refresh(fotg210, qh);
3998 hw->hw_next = FOTG210_LIST_END(fotg210);
3999 frame = qh->start;
4000
4001 /* reuse the previous schedule slots, if we can */
4002 if (frame < qh->period) {
4003 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
4004 status = check_intr_schedule(fotg210, frame, --uframe,
4005 qh, &c_mask);
4006 } else {
4007 uframe = 0;
4008 c_mask = 0;
4009 status = -ENOSPC;
4010 }
4011
4012 /* else scan the schedule to find a group of slots such that all
4013 * uframes have enough periodic bandwidth available.
4014 */
4015 if (status) {
4016 /* "normal" case, uframing flexible except with splits */
4017 if (qh->period) {
4018 int i;
4019
4020 for (i = qh->period; status && i > 0; --i) {
4021 frame = ++fotg210->random_frame % qh->period;
4022 for (uframe = 0; uframe < 8; uframe++) {
4023 status = check_intr_schedule(fotg210,
4024 frame, uframe, qh,
4025 &c_mask);
4026 if (status == 0)
4027 break;
4028 }
4029 }
4030
4031 /* qh->period == 0 means every uframe */
4032 } else {
4033 frame = 0;
4034 status = check_intr_schedule(fotg210, 0, 0, qh,
4035 &c_mask);
4036 }
4037 if (status)
4038 goto done;
4039 qh->start = frame;
4040
4041 /* reset S-frame and (maybe) C-frame masks */
4042 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
4043 hw->hw_info2 |= qh->period
4044 ? cpu_to_hc32(fotg210, 1 << uframe)
4045 : cpu_to_hc32(fotg210, QH_SMASK);
4046 hw->hw_info2 |= c_mask;
4047 } else
4048 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
4049
4050 /* stuff into the periodic schedule */
4051 qh_link_periodic(fotg210, qh);
4052 done:
4053 return status;
4054 }
4055
4056 static int intr_submit(
4057 struct fotg210_hcd *fotg210,
4058 struct urb *urb,
4059 struct list_head *qtd_list,
4060 gfp_t mem_flags
4061 ) {
4062 unsigned epnum;
4063 unsigned long flags;
4064 struct fotg210_qh *qh;
4065 int status;
4066 struct list_head empty;
4067
4068 /* get endpoint and transfer/schedule data */
4069 epnum = urb->ep->desc.bEndpointAddress;
4070
4071 spin_lock_irqsave(&fotg210->lock, flags);
4072
4073 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4074 status = -ESHUTDOWN;
4075 goto done_not_linked;
4076 }
4077 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4078 if (unlikely(status))
4079 goto done_not_linked;
4080
4081 /* get qh and force any scheduling errors */
4082 INIT_LIST_HEAD(&empty);
4083 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
4084 if (qh == NULL) {
4085 status = -ENOMEM;
4086 goto done;
4087 }
4088 if (qh->qh_state == QH_STATE_IDLE) {
4089 status = qh_schedule(fotg210, qh);
4090 if (status)
4091 goto done;
4092 }
4093
4094 /* then queue the urb's tds to the qh */
4095 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
4096 BUG_ON(qh == NULL);
4097
4098 /* ... update usbfs periodic stats */
4099 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
4100
4101 done:
4102 if (unlikely(status))
4103 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4104 done_not_linked:
4105 spin_unlock_irqrestore(&fotg210->lock, flags);
4106 if (status)
4107 qtd_list_free(fotg210, urb, qtd_list);
4108
4109 return status;
4110 }
4111
4112 static void scan_intr(struct fotg210_hcd *fotg210)
4113 {
4114 struct fotg210_qh *qh;
4115
4116 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
4117 &fotg210->intr_qh_list, intr_node) {
4118 rescan:
4119 /* clean any finished work for this qh */
4120 if (!list_empty(&qh->qtd_list)) {
4121 int temp;
4122
4123 /*
4124 * Unlinks could happen here; completion reporting
4125 * drops the lock. That's why fotg210->qh_scan_next
4126 * always holds the next qh to scan; if the next qh
4127 * gets unlinked then fotg210->qh_scan_next is adjusted
4128 * in qh_unlink_periodic().
4129 */
4130 temp = qh_completions(fotg210, qh);
4131 if (unlikely(qh->needs_rescan ||
4132 (list_empty(&qh->qtd_list) &&
4133 qh->qh_state == QH_STATE_LINKED)))
4134 start_unlink_intr(fotg210, qh);
4135 else if (temp != 0)
4136 goto rescan;
4137 }
4138 }
4139 }
4140
4141 /*-------------------------------------------------------------------------*/
4142
4143 /* fotg210_iso_stream ops work with both ITD and SITD */
4144
4145 static struct fotg210_iso_stream *
4146 iso_stream_alloc(gfp_t mem_flags)
4147 {
4148 struct fotg210_iso_stream *stream;
4149
4150 stream = kzalloc(sizeof(*stream), mem_flags);
4151 if (likely(stream != NULL)) {
4152 INIT_LIST_HEAD(&stream->td_list);
4153 INIT_LIST_HEAD(&stream->free_list);
4154 stream->next_uframe = -1;
4155 }
4156 return stream;
4157 }
4158
4159 static void
4160 iso_stream_init(
4161 struct fotg210_hcd *fotg210,
4162 struct fotg210_iso_stream *stream,
4163 struct usb_device *dev,
4164 int pipe,
4165 unsigned interval
4166 )
4167 {
4168 u32 buf1;
4169 unsigned epnum, maxp;
4170 int is_input;
4171 long bandwidth;
4172 unsigned multi;
4173
4174 /*
4175 * this might be a "high bandwidth" highspeed endpoint,
4176 * as encoded in the ep descriptor's wMaxPacket field
4177 */
4178 epnum = usb_pipeendpoint(pipe);
4179 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
4180 maxp = usb_maxpacket(dev, pipe, !is_input);
4181 if (is_input)
4182 buf1 = (1 << 11);
4183 else
4184 buf1 = 0;
4185
4186 maxp = max_packet(maxp);
4187 multi = hb_mult(maxp);
4188 buf1 |= maxp;
4189 maxp *= multi;
4190
4191 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
4192 stream->buf1 = cpu_to_hc32(fotg210, buf1);
4193 stream->buf2 = cpu_to_hc32(fotg210, multi);
4194
4195 /* usbfs wants to report the average usecs per frame tied up
4196 * when transfers on this endpoint are scheduled ...
4197 */
4198 if (dev->speed == USB_SPEED_FULL) {
4199 interval <<= 3;
4200 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
4201 is_input, 1, maxp));
4202 stream->usecs /= 8;
4203 } else {
4204 stream->highspeed = 1;
4205 stream->usecs = HS_USECS_ISO(maxp);
4206 }
4207 bandwidth = stream->usecs * 8;
4208 bandwidth /= interval;
4209
4210 stream->bandwidth = bandwidth;
4211 stream->udev = dev;
4212 stream->bEndpointAddress = is_input | epnum;
4213 stream->interval = interval;
4214 stream->maxp = maxp;
4215 }
4216
4217 static struct fotg210_iso_stream *
4218 iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb)
4219 {
4220 unsigned epnum;
4221 struct fotg210_iso_stream *stream;
4222 struct usb_host_endpoint *ep;
4223 unsigned long flags;
4224
4225 epnum = usb_pipeendpoint(urb->pipe);
4226 if (usb_pipein(urb->pipe))
4227 ep = urb->dev->ep_in[epnum];
4228 else
4229 ep = urb->dev->ep_out[epnum];
4230
4231 spin_lock_irqsave(&fotg210->lock, flags);
4232 stream = ep->hcpriv;
4233
4234 if (unlikely(stream == NULL)) {
4235 stream = iso_stream_alloc(GFP_ATOMIC);
4236 if (likely(stream != NULL)) {
4237 ep->hcpriv = stream;
4238 stream->ep = ep;
4239 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4240 urb->interval);
4241 }
4242
4243 /* if dev->ep[epnum] is a QH, hw is set */
4244 } else if (unlikely(stream->hw != NULL)) {
4245 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4246 urb->dev->devpath, epnum,
4247 usb_pipein(urb->pipe) ? "in" : "out");
4248 stream = NULL;
4249 }
4250
4251 spin_unlock_irqrestore(&fotg210->lock, flags);
4252 return stream;
4253 }
4254
4255 /*-------------------------------------------------------------------------*/
4256
4257 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4258
4259 static struct fotg210_iso_sched *
4260 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
4261 {
4262 struct fotg210_iso_sched *iso_sched;
4263 int size = sizeof(*iso_sched);
4264
4265 size += packets * sizeof(struct fotg210_iso_packet);
4266 iso_sched = kzalloc(size, mem_flags);
4267 if (likely(iso_sched != NULL))
4268 INIT_LIST_HEAD(&iso_sched->td_list);
4269
4270 return iso_sched;
4271 }
4272
4273 static inline void
4274 itd_sched_init(
4275 struct fotg210_hcd *fotg210,
4276 struct fotg210_iso_sched *iso_sched,
4277 struct fotg210_iso_stream *stream,
4278 struct urb *urb
4279 )
4280 {
4281 unsigned i;
4282 dma_addr_t dma = urb->transfer_dma;
4283
4284 /* how many uframes are needed for these transfers */
4285 iso_sched->span = urb->number_of_packets * stream->interval;
4286
4287 /* figure out per-uframe itd fields that we'll need later
4288 * when we fit new itds into the schedule.
4289 */
4290 for (i = 0; i < urb->number_of_packets; i++) {
4291 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4292 unsigned length;
4293 dma_addr_t buf;
4294 u32 trans;
4295
4296 length = urb->iso_frame_desc[i].length;
4297 buf = dma + urb->iso_frame_desc[i].offset;
4298
4299 trans = FOTG210_ISOC_ACTIVE;
4300 trans |= buf & 0x0fff;
4301 if (unlikely(((i + 1) == urb->number_of_packets))
4302 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4303 trans |= FOTG210_ITD_IOC;
4304 trans |= length << 16;
4305 uframe->transaction = cpu_to_hc32(fotg210, trans);
4306
4307 /* might need to cross a buffer page within a uframe */
4308 uframe->bufp = (buf & ~(u64)0x0fff);
4309 buf += length;
4310 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4311 uframe->cross = 1;
4312 }
4313 }
4314
4315 static void
4316 iso_sched_free(
4317 struct fotg210_iso_stream *stream,
4318 struct fotg210_iso_sched *iso_sched
4319 )
4320 {
4321 if (!iso_sched)
4322 return;
4323 /* caller must hold fotg210->lock!*/
4324 list_splice(&iso_sched->td_list, &stream->free_list);
4325 kfree(iso_sched);
4326 }
4327
4328 static int
4329 itd_urb_transaction(
4330 struct fotg210_iso_stream *stream,
4331 struct fotg210_hcd *fotg210,
4332 struct urb *urb,
4333 gfp_t mem_flags
4334 )
4335 {
4336 struct fotg210_itd *itd;
4337 dma_addr_t itd_dma;
4338 int i;
4339 unsigned num_itds;
4340 struct fotg210_iso_sched *sched;
4341 unsigned long flags;
4342
4343 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4344 if (unlikely(sched == NULL))
4345 return -ENOMEM;
4346
4347 itd_sched_init(fotg210, sched, stream, urb);
4348
4349 if (urb->interval < 8)
4350 num_itds = 1 + (sched->span + 7) / 8;
4351 else
4352 num_itds = urb->number_of_packets;
4353
4354 /* allocate/init ITDs */
4355 spin_lock_irqsave(&fotg210->lock, flags);
4356 for (i = 0; i < num_itds; i++) {
4357
4358 /*
4359 * Use iTDs from the free list, but not iTDs that may
4360 * still be in use by the hardware.
4361 */
4362 if (likely(!list_empty(&stream->free_list))) {
4363 itd = list_first_entry(&stream->free_list,
4364 struct fotg210_itd, itd_list);
4365 if (itd->frame == fotg210->now_frame)
4366 goto alloc_itd;
4367 list_del(&itd->itd_list);
4368 itd_dma = itd->itd_dma;
4369 } else {
4370 alloc_itd:
4371 spin_unlock_irqrestore(&fotg210->lock, flags);
4372 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4373 &itd_dma);
4374 spin_lock_irqsave(&fotg210->lock, flags);
4375 if (!itd) {
4376 iso_sched_free(stream, sched);
4377 spin_unlock_irqrestore(&fotg210->lock, flags);
4378 return -ENOMEM;
4379 }
4380 }
4381
4382 memset(itd, 0, sizeof(*itd));
4383 itd->itd_dma = itd_dma;
4384 list_add(&itd->itd_list, &sched->td_list);
4385 }
4386 spin_unlock_irqrestore(&fotg210->lock, flags);
4387
4388 /* temporarily store schedule info in hcpriv */
4389 urb->hcpriv = sched;
4390 urb->error_count = 0;
4391 return 0;
4392 }
4393
4394 /*-------------------------------------------------------------------------*/
4395
4396 static inline int
4397 itd_slot_ok(
4398 struct fotg210_hcd *fotg210,
4399 u32 mod,
4400 u32 uframe,
4401 u8 usecs,
4402 u32 period
4403 )
4404 {
4405 uframe %= period;
4406 do {
4407 /* can't commit more than uframe_periodic_max usec */
4408 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4409 > (fotg210->uframe_periodic_max - usecs))
4410 return 0;
4411
4412 /* we know urb->interval is 2^N uframes */
4413 uframe += period;
4414 } while (uframe < mod);
4415 return 1;
4416 }
4417
4418 /*
4419 * This scheduler plans almost as far into the future as it has actual
4420 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4421 * "as small as possible" to be cache-friendlier.) That limits the size
4422 * transfers you can stream reliably; avoid more than 64 msec per urb.
4423 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4424 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4425 * and other factors); or more than about 230 msec total (for portability,
4426 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4427 */
4428
4429 #define SCHEDULE_SLOP 80 /* microframes */
4430
4431 static int
4432 iso_stream_schedule(
4433 struct fotg210_hcd *fotg210,
4434 struct urb *urb,
4435 struct fotg210_iso_stream *stream
4436 )
4437 {
4438 u32 now, next, start, period, span;
4439 int status;
4440 unsigned mod = fotg210->periodic_size << 3;
4441 struct fotg210_iso_sched *sched = urb->hcpriv;
4442
4443 period = urb->interval;
4444 span = sched->span;
4445
4446 if (span > mod - SCHEDULE_SLOP) {
4447 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4448 status = -EFBIG;
4449 goto fail;
4450 }
4451
4452 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4453
4454 /* Typical case: reuse current schedule, stream is still active.
4455 * Hopefully there are no gaps from the host falling behind
4456 * (irq delays etc), but if there are we'll take the next
4457 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4458 */
4459 if (likely(!list_empty(&stream->td_list))) {
4460 u32 excess;
4461
4462 /* For high speed devices, allow scheduling within the
4463 * isochronous scheduling threshold. For full speed devices
4464 * and Intel PCI-based controllers, don't (work around for
4465 * Intel ICH9 bug).
4466 */
4467 if (!stream->highspeed && fotg210->fs_i_thresh)
4468 next = now + fotg210->i_thresh;
4469 else
4470 next = now;
4471
4472 /* Fell behind (by up to twice the slop amount)?
4473 * We decide based on the time of the last currently-scheduled
4474 * slot, not the time of the next available slot.
4475 */
4476 excess = (stream->next_uframe - period - next) & (mod - 1);
4477 if (excess >= mod - 2 * SCHEDULE_SLOP)
4478 start = next + excess - mod + period *
4479 DIV_ROUND_UP(mod - excess, period);
4480 else
4481 start = next + excess + period;
4482 if (start - now >= mod) {
4483 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4484 urb, start - now - period, period,
4485 mod);
4486 status = -EFBIG;
4487 goto fail;
4488 }
4489 }
4490
4491 /* need to schedule; when's the next (u)frame we could start?
4492 * this is bigger than fotg210->i_thresh allows; scheduling itself
4493 * isn't free, the slop should handle reasonably slow cpus. it
4494 * can also help high bandwidth if the dma and irq loads don't
4495 * jump until after the queue is primed.
4496 */
4497 else {
4498 int done = 0;
4499 start = SCHEDULE_SLOP + (now & ~0x07);
4500
4501 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4502
4503 /* find a uframe slot with enough bandwidth.
4504 * Early uframes are more precious because full-speed
4505 * iso IN transfers can't use late uframes,
4506 * and therefore they should be allocated last.
4507 */
4508 next = start;
4509 start += period;
4510 do {
4511 start--;
4512 /* check schedule: enough space? */
4513 if (itd_slot_ok(fotg210, mod, start,
4514 stream->usecs, period))
4515 done = 1;
4516 } while (start > next && !done);
4517
4518 /* no room in the schedule */
4519 if (!done) {
4520 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4521 urb, now, now + mod);
4522 status = -ENOSPC;
4523 goto fail;
4524 }
4525 }
4526
4527 /* Tried to schedule too far into the future? */
4528 if (unlikely(start - now + span - period
4529 >= mod - 2 * SCHEDULE_SLOP)) {
4530 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4531 urb, start - now, span - period,
4532 mod - 2 * SCHEDULE_SLOP);
4533 status = -EFBIG;
4534 goto fail;
4535 }
4536
4537 stream->next_uframe = start & (mod - 1);
4538
4539 /* report high speed start in uframes; full speed, in frames */
4540 urb->start_frame = stream->next_uframe;
4541 if (!stream->highspeed)
4542 urb->start_frame >>= 3;
4543
4544 /* Make sure scan_isoc() sees these */
4545 if (fotg210->isoc_count == 0)
4546 fotg210->next_frame = now >> 3;
4547 return 0;
4548
4549 fail:
4550 iso_sched_free(stream, sched);
4551 urb->hcpriv = NULL;
4552 return status;
4553 }
4554
4555 /*-------------------------------------------------------------------------*/
4556
4557 static inline void
4558 itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
4559 struct fotg210_itd *itd)
4560 {
4561 int i;
4562
4563 /* it's been recently zeroed */
4564 itd->hw_next = FOTG210_LIST_END(fotg210);
4565 itd->hw_bufp[0] = stream->buf0;
4566 itd->hw_bufp[1] = stream->buf1;
4567 itd->hw_bufp[2] = stream->buf2;
4568
4569 for (i = 0; i < 8; i++)
4570 itd->index[i] = -1;
4571
4572 /* All other fields are filled when scheduling */
4573 }
4574
4575 static inline void
4576 itd_patch(
4577 struct fotg210_hcd *fotg210,
4578 struct fotg210_itd *itd,
4579 struct fotg210_iso_sched *iso_sched,
4580 unsigned index,
4581 u16 uframe
4582 )
4583 {
4584 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4585 unsigned pg = itd->pg;
4586
4587 uframe &= 0x07;
4588 itd->index[uframe] = index;
4589
4590 itd->hw_transaction[uframe] = uf->transaction;
4591 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4592 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4593 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4594
4595 /* iso_frame_desc[].offset must be strictly increasing */
4596 if (unlikely(uf->cross)) {
4597 u64 bufp = uf->bufp + 4096;
4598
4599 itd->pg = ++pg;
4600 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4601 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4602 }
4603 }
4604
4605 static inline void
4606 itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
4607 {
4608 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4609 __hc32 *hw_p = &fotg210->periodic[frame];
4610 union fotg210_shadow here = *prev;
4611 __hc32 type = 0;
4612
4613 /* skip any iso nodes which might belong to previous microframes */
4614 while (here.ptr) {
4615 type = Q_NEXT_TYPE(fotg210, *hw_p);
4616 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4617 break;
4618 prev = periodic_next_shadow(fotg210, prev, type);
4619 hw_p = shadow_next_periodic(fotg210, &here, type);
4620 here = *prev;
4621 }
4622
4623 itd->itd_next = here;
4624 itd->hw_next = *hw_p;
4625 prev->itd = itd;
4626 itd->frame = frame;
4627 wmb();
4628 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4629 }
4630
4631 /* fit urb's itds into the selected schedule slot; activate as needed */
4632 static void itd_link_urb(
4633 struct fotg210_hcd *fotg210,
4634 struct urb *urb,
4635 unsigned mod,
4636 struct fotg210_iso_stream *stream
4637 )
4638 {
4639 int packet;
4640 unsigned next_uframe, uframe, frame;
4641 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4642 struct fotg210_itd *itd;
4643
4644 next_uframe = stream->next_uframe & (mod - 1);
4645
4646 if (unlikely(list_empty(&stream->td_list))) {
4647 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4648 += stream->bandwidth;
4649 fotg210_vdbg(fotg210,
4650 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4651 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4652 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4653 urb->interval,
4654 next_uframe >> 3, next_uframe & 0x7);
4655 }
4656
4657 /* fill iTDs uframe by uframe */
4658 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4659 if (itd == NULL) {
4660 /* ASSERT: we have all necessary itds */
4661
4662 /* ASSERT: no itds for this endpoint in this uframe */
4663
4664 itd = list_entry(iso_sched->td_list.next,
4665 struct fotg210_itd, itd_list);
4666 list_move_tail(&itd->itd_list, &stream->td_list);
4667 itd->stream = stream;
4668 itd->urb = urb;
4669 itd_init(fotg210, stream, itd);
4670 }
4671
4672 uframe = next_uframe & 0x07;
4673 frame = next_uframe >> 3;
4674
4675 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4676
4677 next_uframe += stream->interval;
4678 next_uframe &= mod - 1;
4679 packet++;
4680
4681 /* link completed itds into the schedule */
4682 if (((next_uframe >> 3) != frame)
4683 || packet == urb->number_of_packets) {
4684 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4685 itd);
4686 itd = NULL;
4687 }
4688 }
4689 stream->next_uframe = next_uframe;
4690
4691 /* don't need that schedule data any more */
4692 iso_sched_free(stream, iso_sched);
4693 urb->hcpriv = NULL;
4694
4695 ++fotg210->isoc_count;
4696 enable_periodic(fotg210);
4697 }
4698
4699 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4700 FOTG210_ISOC_XACTERR)
4701
4702 /* Process and recycle a completed ITD. Return true iff its urb completed,
4703 * and hence its completion callback probably added things to the hardware
4704 * schedule.
4705 *
4706 * Note that we carefully avoid recycling this descriptor until after any
4707 * completion callback runs, so that it won't be reused quickly. That is,
4708 * assuming (a) no more than two urbs per frame on this endpoint, and also
4709 * (b) only this endpoint's completions submit URBs. It seems some silicon
4710 * corrupts things if you reuse completed descriptors very quickly...
4711 */
4712 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4713 {
4714 struct urb *urb = itd->urb;
4715 struct usb_iso_packet_descriptor *desc;
4716 u32 t;
4717 unsigned uframe;
4718 int urb_index = -1;
4719 struct fotg210_iso_stream *stream = itd->stream;
4720 struct usb_device *dev;
4721 bool retval = false;
4722
4723 /* for each uframe with a packet */
4724 for (uframe = 0; uframe < 8; uframe++) {
4725 if (likely(itd->index[uframe] == -1))
4726 continue;
4727 urb_index = itd->index[uframe];
4728 desc = &urb->iso_frame_desc[urb_index];
4729
4730 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4731 itd->hw_transaction[uframe] = 0;
4732
4733 /* report transfer status */
4734 if (unlikely(t & ISO_ERRS)) {
4735 urb->error_count++;
4736 if (t & FOTG210_ISOC_BUF_ERR)
4737 desc->status = usb_pipein(urb->pipe)
4738 ? -ENOSR /* hc couldn't read */
4739 : -ECOMM; /* hc couldn't write */
4740 else if (t & FOTG210_ISOC_BABBLE)
4741 desc->status = -EOVERFLOW;
4742 else /* (t & FOTG210_ISOC_XACTERR) */
4743 desc->status = -EPROTO;
4744
4745 /* HC need not update length with this error */
4746 if (!(t & FOTG210_ISOC_BABBLE)) {
4747 desc->actual_length =
4748 fotg210_itdlen(urb, desc, t);
4749 urb->actual_length += desc->actual_length;
4750 }
4751 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4752 desc->status = 0;
4753 desc->actual_length = fotg210_itdlen(urb, desc, t);
4754 urb->actual_length += desc->actual_length;
4755 } else {
4756 /* URB was too late */
4757 desc->status = -EXDEV;
4758 }
4759 }
4760
4761 /* handle completion now? */
4762 if (likely((urb_index + 1) != urb->number_of_packets))
4763 goto done;
4764
4765 /* ASSERT: it's really the last itd for this urb
4766 list_for_each_entry (itd, &stream->td_list, itd_list)
4767 BUG_ON (itd->urb == urb);
4768 */
4769
4770 /* give urb back to the driver; completion often (re)submits */
4771 dev = urb->dev;
4772 fotg210_urb_done(fotg210, urb, 0);
4773 retval = true;
4774 urb = NULL;
4775
4776 --fotg210->isoc_count;
4777 disable_periodic(fotg210);
4778
4779 if (unlikely(list_is_singular(&stream->td_list))) {
4780 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4781 -= stream->bandwidth;
4782 fotg210_vdbg(fotg210,
4783 "deschedule devp %s ep%d%s-iso\n",
4784 dev->devpath, stream->bEndpointAddress & 0x0f,
4785 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4786 }
4787
4788 done:
4789 itd->urb = NULL;
4790
4791 /* Add to the end of the free list for later reuse */
4792 list_move_tail(&itd->itd_list, &stream->free_list);
4793
4794 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4795 if (list_empty(&stream->td_list)) {
4796 list_splice_tail_init(&stream->free_list,
4797 &fotg210->cached_itd_list);
4798 start_free_itds(fotg210);
4799 }
4800
4801 return retval;
4802 }
4803
4804 /*-------------------------------------------------------------------------*/
4805
4806 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4807 gfp_t mem_flags)
4808 {
4809 int status = -EINVAL;
4810 unsigned long flags;
4811 struct fotg210_iso_stream *stream;
4812
4813 /* Get iso_stream head */
4814 stream = iso_stream_find(fotg210, urb);
4815 if (unlikely(stream == NULL)) {
4816 fotg210_dbg(fotg210, "can't get iso stream\n");
4817 return -ENOMEM;
4818 }
4819 if (unlikely(urb->interval != stream->interval &&
4820 fotg210_port_speed(fotg210, 0) ==
4821 USB_PORT_STAT_HIGH_SPEED)) {
4822 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4823 stream->interval, urb->interval);
4824 goto done;
4825 }
4826
4827 #ifdef FOTG210_URB_TRACE
4828 fotg210_dbg(fotg210,
4829 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4830 __func__, urb->dev->devpath, urb,
4831 usb_pipeendpoint(urb->pipe),
4832 usb_pipein(urb->pipe) ? "in" : "out",
4833 urb->transfer_buffer_length,
4834 urb->number_of_packets, urb->interval,
4835 stream);
4836 #endif
4837
4838 /* allocate ITDs w/o locking anything */
4839 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4840 if (unlikely(status < 0)) {
4841 fotg210_dbg(fotg210, "can't init itds\n");
4842 goto done;
4843 }
4844
4845 /* schedule ... need to lock */
4846 spin_lock_irqsave(&fotg210->lock, flags);
4847 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4848 status = -ESHUTDOWN;
4849 goto done_not_linked;
4850 }
4851 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4852 if (unlikely(status))
4853 goto done_not_linked;
4854 status = iso_stream_schedule(fotg210, urb, stream);
4855 if (likely(status == 0))
4856 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4857 else
4858 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4859 done_not_linked:
4860 spin_unlock_irqrestore(&fotg210->lock, flags);
4861 done:
4862 return status;
4863 }
4864
4865 /*-------------------------------------------------------------------------*/
4866
4867 static void scan_isoc(struct fotg210_hcd *fotg210)
4868 {
4869 unsigned uf, now_frame, frame;
4870 unsigned fmask = fotg210->periodic_size - 1;
4871 bool modified, live;
4872
4873 /*
4874 * When running, scan from last scan point up to "now"
4875 * else clean up by scanning everything that's left.
4876 * Touches as few pages as possible: cache-friendly.
4877 */
4878 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4879 uf = fotg210_read_frame_index(fotg210);
4880 now_frame = (uf >> 3) & fmask;
4881 live = true;
4882 } else {
4883 now_frame = (fotg210->next_frame - 1) & fmask;
4884 live = false;
4885 }
4886 fotg210->now_frame = now_frame;
4887
4888 frame = fotg210->next_frame;
4889 for (;;) {
4890 union fotg210_shadow q, *q_p;
4891 __hc32 type, *hw_p;
4892
4893 restart:
4894 /* scan each element in frame's queue for completions */
4895 q_p = &fotg210->pshadow[frame];
4896 hw_p = &fotg210->periodic[frame];
4897 q.ptr = q_p->ptr;
4898 type = Q_NEXT_TYPE(fotg210, *hw_p);
4899 modified = false;
4900
4901 while (q.ptr != NULL) {
4902 switch (hc32_to_cpu(fotg210, type)) {
4903 case Q_TYPE_ITD:
4904 /* If this ITD is still active, leave it for
4905 * later processing ... check the next entry.
4906 * No need to check for activity unless the
4907 * frame is current.
4908 */
4909 if (frame == now_frame && live) {
4910 rmb();
4911 for (uf = 0; uf < 8; uf++) {
4912 if (q.itd->hw_transaction[uf] &
4913 ITD_ACTIVE(fotg210))
4914 break;
4915 }
4916 if (uf < 8) {
4917 q_p = &q.itd->itd_next;
4918 hw_p = &q.itd->hw_next;
4919 type = Q_NEXT_TYPE(fotg210,
4920 q.itd->hw_next);
4921 q = *q_p;
4922 break;
4923 }
4924 }
4925
4926 /* Take finished ITDs out of the schedule
4927 * and process them: recycle, maybe report
4928 * URB completion. HC won't cache the
4929 * pointer for much longer, if at all.
4930 */
4931 *q_p = q.itd->itd_next;
4932 *hw_p = q.itd->hw_next;
4933 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4934 wmb();
4935 modified = itd_complete(fotg210, q.itd);
4936 q = *q_p;
4937 break;
4938 default:
4939 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4940 type, frame, q.ptr);
4941 /* FALL THROUGH */
4942 case Q_TYPE_QH:
4943 case Q_TYPE_FSTN:
4944 /* End of the iTDs and siTDs */
4945 q.ptr = NULL;
4946 break;
4947 }
4948
4949 /* assume completion callbacks modify the queue */
4950 if (unlikely(modified && fotg210->isoc_count > 0))
4951 goto restart;
4952 }
4953
4954 /* Stop when we have reached the current frame */
4955 if (frame == now_frame)
4956 break;
4957 frame = (frame + 1) & fmask;
4958 }
4959 fotg210->next_frame = now_frame;
4960 }
4961 /*-------------------------------------------------------------------------*/
4962 /*
4963 * Display / Set uframe_periodic_max
4964 */
4965 static ssize_t show_uframe_periodic_max(struct device *dev,
4966 struct device_attribute *attr,
4967 char *buf)
4968 {
4969 struct fotg210_hcd *fotg210;
4970 int n;
4971
4972 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4973 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4974 return n;
4975 }
4976
4977
4978 static ssize_t store_uframe_periodic_max(struct device *dev,
4979 struct device_attribute *attr,
4980 const char *buf, size_t count)
4981 {
4982 struct fotg210_hcd *fotg210;
4983 unsigned uframe_periodic_max;
4984 unsigned frame, uframe;
4985 unsigned short allocated_max;
4986 unsigned long flags;
4987 ssize_t ret;
4988
4989 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4990 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4991 return -EINVAL;
4992
4993 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4994 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4995 uframe_periodic_max);
4996 return -EINVAL;
4997 }
4998
4999 ret = -EINVAL;
5000
5001 /*
5002 * lock, so that our checking does not race with possible periodic
5003 * bandwidth allocation through submitting new urbs.
5004 */
5005 spin_lock_irqsave(&fotg210->lock, flags);
5006
5007 /*
5008 * for request to decrease max periodic bandwidth, we have to check
5009 * every microframe in the schedule to see whether the decrease is
5010 * possible.
5011 */
5012 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
5013 allocated_max = 0;
5014
5015 for (frame = 0; frame < fotg210->periodic_size; ++frame)
5016 for (uframe = 0; uframe < 7; ++uframe)
5017 allocated_max = max(allocated_max,
5018 periodic_usecs(fotg210, frame, uframe));
5019
5020 if (allocated_max > uframe_periodic_max) {
5021 fotg210_info(fotg210,
5022 "cannot decrease uframe_periodic_max becase "
5023 "periodic bandwidth is already allocated "
5024 "(%u > %u)\n",
5025 allocated_max, uframe_periodic_max);
5026 goto out_unlock;
5027 }
5028 }
5029
5030 /* increasing is always ok */
5031
5032 fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
5033 100 * uframe_periodic_max/125, uframe_periodic_max);
5034
5035 if (uframe_periodic_max != 100)
5036 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
5037
5038 fotg210->uframe_periodic_max = uframe_periodic_max;
5039 ret = count;
5040
5041 out_unlock:
5042 spin_unlock_irqrestore(&fotg210->lock, flags);
5043 return ret;
5044 }
5045
5046 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
5047 store_uframe_periodic_max);
5048
5049 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
5050 {
5051 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
5052 int i = 0;
5053
5054 if (i)
5055 goto out;
5056
5057 i = device_create_file(controller, &dev_attr_uframe_periodic_max);
5058 out:
5059 return i;
5060 }
5061
5062 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
5063 {
5064 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
5065
5066 device_remove_file(controller, &dev_attr_uframe_periodic_max);
5067 }
5068 /*-------------------------------------------------------------------------*/
5069
5070 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
5071 * The firmware seems to think that powering off is a wakeup event!
5072 * This routine turns off remote wakeup and everything else, on all ports.
5073 */
5074 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
5075 {
5076 u32 __iomem *status_reg = &fotg210->regs->port_status;
5077
5078 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
5079 }
5080
5081 /*
5082 * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
5083 * Must be called with interrupts enabled and the lock not held.
5084 */
5085 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
5086 {
5087 fotg210_halt(fotg210);
5088
5089 spin_lock_irq(&fotg210->lock);
5090 fotg210->rh_state = FOTG210_RH_HALTED;
5091 fotg210_turn_off_all_ports(fotg210);
5092 spin_unlock_irq(&fotg210->lock);
5093 }
5094
5095 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
5096 * This forcibly disables dma and IRQs, helping kexec and other cases
5097 * where the next system software may expect clean state.
5098 */
5099 static void fotg210_shutdown(struct usb_hcd *hcd)
5100 {
5101 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5102
5103 spin_lock_irq(&fotg210->lock);
5104 fotg210->shutdown = true;
5105 fotg210->rh_state = FOTG210_RH_STOPPING;
5106 fotg210->enabled_hrtimer_events = 0;
5107 spin_unlock_irq(&fotg210->lock);
5108
5109 fotg210_silence_controller(fotg210);
5110
5111 hrtimer_cancel(&fotg210->hrtimer);
5112 }
5113
5114 /*-------------------------------------------------------------------------*/
5115
5116 /*
5117 * fotg210_work is called from some interrupts, timers, and so on.
5118 * it calls driver completion functions, after dropping fotg210->lock.
5119 */
5120 static void fotg210_work(struct fotg210_hcd *fotg210)
5121 {
5122 /* another CPU may drop fotg210->lock during a schedule scan while
5123 * it reports urb completions. this flag guards against bogus
5124 * attempts at re-entrant schedule scanning.
5125 */
5126 if (fotg210->scanning) {
5127 fotg210->need_rescan = true;
5128 return;
5129 }
5130 fotg210->scanning = true;
5131
5132 rescan:
5133 fotg210->need_rescan = false;
5134 if (fotg210->async_count)
5135 scan_async(fotg210);
5136 if (fotg210->intr_count > 0)
5137 scan_intr(fotg210);
5138 if (fotg210->isoc_count > 0)
5139 scan_isoc(fotg210);
5140 if (fotg210->need_rescan)
5141 goto rescan;
5142 fotg210->scanning = false;
5143
5144 /* the IO watchdog guards against hardware or driver bugs that
5145 * misplace IRQs, and should let us run completely without IRQs.
5146 * such lossage has been observed on both VT6202 and VT8235.
5147 */
5148 turn_on_io_watchdog(fotg210);
5149 }
5150
5151 /*
5152 * Called when the fotg210_hcd module is removed.
5153 */
5154 static void fotg210_stop(struct usb_hcd *hcd)
5155 {
5156 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5157
5158 fotg210_dbg(fotg210, "stop\n");
5159
5160 /* no more interrupts ... */
5161
5162 spin_lock_irq(&fotg210->lock);
5163 fotg210->enabled_hrtimer_events = 0;
5164 spin_unlock_irq(&fotg210->lock);
5165
5166 fotg210_quiesce(fotg210);
5167 fotg210_silence_controller(fotg210);
5168 fotg210_reset(fotg210);
5169
5170 hrtimer_cancel(&fotg210->hrtimer);
5171 remove_sysfs_files(fotg210);
5172 remove_debug_files(fotg210);
5173
5174 /* root hub is shut down separately (first, when possible) */
5175 spin_lock_irq(&fotg210->lock);
5176 end_free_itds(fotg210);
5177 spin_unlock_irq(&fotg210->lock);
5178 fotg210_mem_cleanup(fotg210);
5179
5180 #ifdef FOTG210_STATS
5181 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
5182 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
5183 fotg210->stats.lost_iaa);
5184 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
5185 fotg210->stats.complete, fotg210->stats.unlink);
5186 #endif
5187
5188 dbg_status(fotg210, "fotg210_stop completed",
5189 fotg210_readl(fotg210, &fotg210->regs->status));
5190 }
5191
5192 /* one-time init, only for memory state */
5193 static int hcd_fotg210_init(struct usb_hcd *hcd)
5194 {
5195 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5196 u32 temp;
5197 int retval;
5198 u32 hcc_params;
5199 struct fotg210_qh_hw *hw;
5200
5201 spin_lock_init(&fotg210->lock);
5202
5203 /*
5204 * keep io watchdog by default, those good HCDs could turn off it later
5205 */
5206 fotg210->need_io_watchdog = 1;
5207
5208 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
5209 fotg210->hrtimer.function = fotg210_hrtimer_func;
5210 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
5211
5212 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5213
5214 /*
5215 * by default set standard 80% (== 100 usec/uframe) max periodic
5216 * bandwidth as required by USB 2.0
5217 */
5218 fotg210->uframe_periodic_max = 100;
5219
5220 /*
5221 * hw default: 1K periodic list heads, one per frame.
5222 * periodic_size can shrink by USBCMD update if hcc_params allows.
5223 */
5224 fotg210->periodic_size = DEFAULT_I_TDPS;
5225 INIT_LIST_HEAD(&fotg210->intr_qh_list);
5226 INIT_LIST_HEAD(&fotg210->cached_itd_list);
5227
5228 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5229 /* periodic schedule size can be smaller than default */
5230 switch (FOTG210_TUNE_FLS) {
5231 case 0:
5232 fotg210->periodic_size = 1024;
5233 break;
5234 case 1:
5235 fotg210->periodic_size = 512;
5236 break;
5237 case 2:
5238 fotg210->periodic_size = 256;
5239 break;
5240 default:
5241 BUG();
5242 }
5243 }
5244 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
5245 if (retval < 0)
5246 return retval;
5247
5248 /* controllers may cache some of the periodic schedule ... */
5249 fotg210->i_thresh = 2;
5250
5251 /*
5252 * dedicate a qh for the async ring head, since we couldn't unlink
5253 * a 'real' qh without stopping the async schedule [4.8]. use it
5254 * as the 'reclamation list head' too.
5255 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5256 * from automatically advancing to the next td after short reads.
5257 */
5258 fotg210->async->qh_next.qh = NULL;
5259 hw = fotg210->async->hw;
5260 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5261 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5262 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5263 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5264 fotg210->async->qh_state = QH_STATE_LINKED;
5265 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5266
5267 /* clear interrupt enables, set irq latency */
5268 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5269 log2_irq_thresh = 0;
5270 temp = 1 << (16 + log2_irq_thresh);
5271 if (HCC_CANPARK(hcc_params)) {
5272 /* HW default park == 3, on hardware that supports it (like
5273 * NVidia and ALI silicon), maximizes throughput on the async
5274 * schedule by avoiding QH fetches between transfers.
5275 *
5276 * With fast usb storage devices and NForce2, "park" seems to
5277 * make problems: throughput reduction (!), data errors...
5278 */
5279 if (park) {
5280 park = min_t(unsigned, park, 3);
5281 temp |= CMD_PARK;
5282 temp |= park << 8;
5283 }
5284 fotg210_dbg(fotg210, "park %d\n", park);
5285 }
5286 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5287 /* periodic schedule size can be smaller than default */
5288 temp &= ~(3 << 2);
5289 temp |= (FOTG210_TUNE_FLS << 2);
5290 }
5291 fotg210->command = temp;
5292
5293 /* Accept arbitrarily long scatter-gather lists */
5294 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5295 hcd->self.sg_tablesize = ~0;
5296 return 0;
5297 }
5298
5299 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5300 static int fotg210_run(struct usb_hcd *hcd)
5301 {
5302 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5303 u32 temp;
5304 u32 hcc_params;
5305
5306 hcd->uses_new_polling = 1;
5307
5308 /* EHCI spec section 4.1 */
5309
5310 fotg210_writel(fotg210, fotg210->periodic_dma,
5311 &fotg210->regs->frame_list);
5312 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5313 &fotg210->regs->async_next);
5314
5315 /*
5316 * hcc_params controls whether fotg210->regs->segment must (!!!)
5317 * be used; it constrains QH/ITD/SITD and QTD locations.
5318 * pci_pool consistent memory always uses segment zero.
5319 * streaming mappings for I/O buffers, like pci_map_single(),
5320 * can return segments above 4GB, if the device allows.
5321 *
5322 * NOTE: the dma mask is visible through dma_supported(), so
5323 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5324 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5325 * host side drivers though.
5326 */
5327 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5328
5329 /*
5330 * Philips, Intel, and maybe others need CMD_RUN before the
5331 * root hub will detect new devices (why?); NEC doesn't
5332 */
5333 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5334 fotg210->command |= CMD_RUN;
5335 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5336 dbg_cmd(fotg210, "init", fotg210->command);
5337
5338 /*
5339 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5340 * are explicitly handed to companion controller(s), so no TT is
5341 * involved with the root hub. (Except where one is integrated,
5342 * and there's no companion controller unless maybe for USB OTG.)
5343 *
5344 * Turning on the CF flag will transfer ownership of all ports
5345 * from the companions to the EHCI controller. If any of the
5346 * companions are in the middle of a port reset at the time, it
5347 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5348 * guarantees that no resets are in progress. After we set CF,
5349 * a short delay lets the hardware catch up; new resets shouldn't
5350 * be started before the port switching actions could complete.
5351 */
5352 down_write(&ehci_cf_port_reset_rwsem);
5353 fotg210->rh_state = FOTG210_RH_RUNNING;
5354 /* unblock posted writes */
5355 fotg210_readl(fotg210, &fotg210->regs->command);
5356 msleep(5);
5357 up_write(&ehci_cf_port_reset_rwsem);
5358 fotg210->last_periodic_enable = ktime_get_real();
5359
5360 temp = HC_VERSION(fotg210,
5361 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5362 fotg210_info(fotg210,
5363 "USB %x.%x started, EHCI %x.%02x\n",
5364 ((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
5365 temp >> 8, temp & 0xff);
5366
5367 fotg210_writel(fotg210, INTR_MASK,
5368 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5369
5370 /* GRR this is run-once init(), being done every time the HC starts.
5371 * So long as they're part of class devices, we can't do it init()
5372 * since the class device isn't created that early.
5373 */
5374 create_debug_files(fotg210);
5375 create_sysfs_files(fotg210);
5376
5377 return 0;
5378 }
5379
5380 static int fotg210_setup(struct usb_hcd *hcd)
5381 {
5382 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5383 int retval;
5384
5385 fotg210->regs = (void __iomem *)fotg210->caps +
5386 HC_LENGTH(fotg210,
5387 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5388 dbg_hcs_params(fotg210, "reset");
5389 dbg_hcc_params(fotg210, "reset");
5390
5391 /* cache this readonly data; minimize chip reads */
5392 fotg210->hcs_params = fotg210_readl(fotg210,
5393 &fotg210->caps->hcs_params);
5394
5395 fotg210->sbrn = HCD_USB2;
5396
5397 /* data structure init */
5398 retval = hcd_fotg210_init(hcd);
5399 if (retval)
5400 return retval;
5401
5402 retval = fotg210_halt(fotg210);
5403 if (retval)
5404 return retval;
5405
5406 fotg210_reset(fotg210);
5407
5408 return 0;
5409 }
5410
5411 /*-------------------------------------------------------------------------*/
5412
5413 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5414 {
5415 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5416 u32 status, masked_status, pcd_status = 0, cmd;
5417 int bh;
5418
5419 spin_lock(&fotg210->lock);
5420
5421 status = fotg210_readl(fotg210, &fotg210->regs->status);
5422
5423 /* e.g. cardbus physical eject */
5424 if (status == ~(u32) 0) {
5425 fotg210_dbg(fotg210, "device removed\n");
5426 goto dead;
5427 }
5428
5429 /*
5430 * We don't use STS_FLR, but some controllers don't like it to
5431 * remain on, so mask it out along with the other status bits.
5432 */
5433 masked_status = status & (INTR_MASK | STS_FLR);
5434
5435 /* Shared IRQ? */
5436 if (!masked_status ||
5437 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5438 spin_unlock(&fotg210->lock);
5439 return IRQ_NONE;
5440 }
5441
5442 /* clear (just) interrupts */
5443 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5444 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5445 bh = 0;
5446
5447 #ifdef VERBOSE_DEBUG
5448 /* unrequested/ignored: Frame List Rollover */
5449 dbg_status(fotg210, "irq", status);
5450 #endif
5451
5452 /* INT, ERR, and IAA interrupt rates can be throttled */
5453
5454 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5455 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5456 if (likely((status & STS_ERR) == 0))
5457 COUNT(fotg210->stats.normal);
5458 else
5459 COUNT(fotg210->stats.error);
5460 bh = 1;
5461 }
5462
5463 /* complete the unlinking of some qh [4.15.2.3] */
5464 if (status & STS_IAA) {
5465
5466 /* Turn off the IAA watchdog */
5467 fotg210->enabled_hrtimer_events &=
5468 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5469
5470 /*
5471 * Mild optimization: Allow another IAAD to reset the
5472 * hrtimer, if one occurs before the next expiration.
5473 * In theory we could always cancel the hrtimer, but
5474 * tests show that about half the time it will be reset
5475 * for some other event anyway.
5476 */
5477 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5478 ++fotg210->next_hrtimer_event;
5479
5480 /* guard against (alleged) silicon errata */
5481 if (cmd & CMD_IAAD)
5482 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5483 if (fotg210->async_iaa) {
5484 COUNT(fotg210->stats.iaa);
5485 end_unlink_async(fotg210);
5486 } else
5487 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5488 }
5489
5490 /* remote wakeup [4.3.1] */
5491 if (status & STS_PCD) {
5492 int pstatus;
5493 u32 __iomem *status_reg = &fotg210->regs->port_status;
5494
5495 /* kick root hub later */
5496 pcd_status = status;
5497
5498 /* resume root hub? */
5499 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5500 usb_hcd_resume_root_hub(hcd);
5501
5502 pstatus = fotg210_readl(fotg210, status_reg);
5503
5504 if (test_bit(0, &fotg210->suspended_ports) &&
5505 ((pstatus & PORT_RESUME) ||
5506 !(pstatus & PORT_SUSPEND)) &&
5507 (pstatus & PORT_PE) &&
5508 fotg210->reset_done[0] == 0) {
5509
5510 /* start 20 msec resume signaling from this port,
5511 * and make khubd collect PORT_STAT_C_SUSPEND to
5512 * stop that signaling. Use 5 ms extra for safety,
5513 * like usb_port_resume() does.
5514 */
5515 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5516 set_bit(0, &fotg210->resuming_ports);
5517 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5518 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5519 }
5520 }
5521
5522 /* PCI errors [4.15.2.4] */
5523 if (unlikely((status & STS_FATAL) != 0)) {
5524 fotg210_err(fotg210, "fatal error\n");
5525 dbg_cmd(fotg210, "fatal", cmd);
5526 dbg_status(fotg210, "fatal", status);
5527 dead:
5528 usb_hc_died(hcd);
5529
5530 /* Don't let the controller do anything more */
5531 fotg210->shutdown = true;
5532 fotg210->rh_state = FOTG210_RH_STOPPING;
5533 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5534 fotg210_writel(fotg210, fotg210->command,
5535 &fotg210->regs->command);
5536 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5537 fotg210_handle_controller_death(fotg210);
5538
5539 /* Handle completions when the controller stops */
5540 bh = 0;
5541 }
5542
5543 if (bh)
5544 fotg210_work(fotg210);
5545 spin_unlock(&fotg210->lock);
5546 if (pcd_status)
5547 usb_hcd_poll_rh_status(hcd);
5548 return IRQ_HANDLED;
5549 }
5550
5551 /*-------------------------------------------------------------------------*/
5552
5553 /*
5554 * non-error returns are a promise to giveback() the urb later
5555 * we drop ownership so next owner (or urb unlink) can get it
5556 *
5557 * urb + dev is in hcd.self.controller.urb_list
5558 * we're queueing TDs onto software and hardware lists
5559 *
5560 * hcd-specific init for hcpriv hasn't been done yet
5561 *
5562 * NOTE: control, bulk, and interrupt share the same code to append TDs
5563 * to a (possibly active) QH, and the same QH scanning code.
5564 */
5565 static int fotg210_urb_enqueue(
5566 struct usb_hcd *hcd,
5567 struct urb *urb,
5568 gfp_t mem_flags
5569 ) {
5570 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5571 struct list_head qtd_list;
5572
5573 INIT_LIST_HEAD(&qtd_list);
5574
5575 switch (usb_pipetype(urb->pipe)) {
5576 case PIPE_CONTROL:
5577 /* qh_completions() code doesn't handle all the fault cases
5578 * in multi-TD control transfers. Even 1KB is rare anyway.
5579 */
5580 if (urb->transfer_buffer_length > (16 * 1024))
5581 return -EMSGSIZE;
5582 /* FALLTHROUGH */
5583 /* case PIPE_BULK: */
5584 default:
5585 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5586 return -ENOMEM;
5587 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5588
5589 case PIPE_INTERRUPT:
5590 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5591 return -ENOMEM;
5592 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5593
5594 case PIPE_ISOCHRONOUS:
5595 return itd_submit(fotg210, urb, mem_flags);
5596 }
5597 }
5598
5599 /* remove from hardware lists
5600 * completions normally happen asynchronously
5601 */
5602
5603 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5604 {
5605 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5606 struct fotg210_qh *qh;
5607 unsigned long flags;
5608 int rc;
5609
5610 spin_lock_irqsave(&fotg210->lock, flags);
5611 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5612 if (rc)
5613 goto done;
5614
5615 switch (usb_pipetype(urb->pipe)) {
5616 /* case PIPE_CONTROL: */
5617 /* case PIPE_BULK:*/
5618 default:
5619 qh = (struct fotg210_qh *) urb->hcpriv;
5620 if (!qh)
5621 break;
5622 switch (qh->qh_state) {
5623 case QH_STATE_LINKED:
5624 case QH_STATE_COMPLETING:
5625 start_unlink_async(fotg210, qh);
5626 break;
5627 case QH_STATE_UNLINK:
5628 case QH_STATE_UNLINK_WAIT:
5629 /* already started */
5630 break;
5631 case QH_STATE_IDLE:
5632 /* QH might be waiting for a Clear-TT-Buffer */
5633 qh_completions(fotg210, qh);
5634 break;
5635 }
5636 break;
5637
5638 case PIPE_INTERRUPT:
5639 qh = (struct fotg210_qh *) urb->hcpriv;
5640 if (!qh)
5641 break;
5642 switch (qh->qh_state) {
5643 case QH_STATE_LINKED:
5644 case QH_STATE_COMPLETING:
5645 start_unlink_intr(fotg210, qh);
5646 break;
5647 case QH_STATE_IDLE:
5648 qh_completions(fotg210, qh);
5649 break;
5650 default:
5651 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5652 qh, qh->qh_state);
5653 goto done;
5654 }
5655 break;
5656
5657 case PIPE_ISOCHRONOUS:
5658 /* itd... */
5659
5660 /* wait till next completion, do it then. */
5661 /* completion irqs can wait up to 1024 msec, */
5662 break;
5663 }
5664 done:
5665 spin_unlock_irqrestore(&fotg210->lock, flags);
5666 return rc;
5667 }
5668
5669 /*-------------------------------------------------------------------------*/
5670
5671 /* bulk qh holds the data toggle */
5672
5673 static void
5674 fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5675 {
5676 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5677 unsigned long flags;
5678 struct fotg210_qh *qh, *tmp;
5679
5680 /* ASSERT: any requests/urbs are being unlinked */
5681 /* ASSERT: nobody can be submitting urbs for this any more */
5682
5683 rescan:
5684 spin_lock_irqsave(&fotg210->lock, flags);
5685 qh = ep->hcpriv;
5686 if (!qh)
5687 goto done;
5688
5689 /* endpoints can be iso streams. for now, we don't
5690 * accelerate iso completions ... so spin a while.
5691 */
5692 if (qh->hw == NULL) {
5693 struct fotg210_iso_stream *stream = ep->hcpriv;
5694
5695 if (!list_empty(&stream->td_list))
5696 goto idle_timeout;
5697
5698 /* BUG_ON(!list_empty(&stream->free_list)); */
5699 kfree(stream);
5700 goto done;
5701 }
5702
5703 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5704 qh->qh_state = QH_STATE_IDLE;
5705 switch (qh->qh_state) {
5706 case QH_STATE_LINKED:
5707 case QH_STATE_COMPLETING:
5708 for (tmp = fotg210->async->qh_next.qh;
5709 tmp && tmp != qh;
5710 tmp = tmp->qh_next.qh)
5711 continue;
5712 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5713 * may already be unlinked.
5714 */
5715 if (tmp)
5716 start_unlink_async(fotg210, qh);
5717 /* FALL THROUGH */
5718 case QH_STATE_UNLINK: /* wait for hw to finish? */
5719 case QH_STATE_UNLINK_WAIT:
5720 idle_timeout:
5721 spin_unlock_irqrestore(&fotg210->lock, flags);
5722 schedule_timeout_uninterruptible(1);
5723 goto rescan;
5724 case QH_STATE_IDLE: /* fully unlinked */
5725 if (qh->clearing_tt)
5726 goto idle_timeout;
5727 if (list_empty(&qh->qtd_list)) {
5728 qh_destroy(fotg210, qh);
5729 break;
5730 }
5731 /* else FALL THROUGH */
5732 default:
5733 /* caller was supposed to have unlinked any requests;
5734 * that's not our job. just leak this memory.
5735 */
5736 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5737 qh, ep->desc.bEndpointAddress, qh->qh_state,
5738 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5739 break;
5740 }
5741 done:
5742 ep->hcpriv = NULL;
5743 spin_unlock_irqrestore(&fotg210->lock, flags);
5744 }
5745
5746 static void
5747 fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5748 {
5749 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5750 struct fotg210_qh *qh;
5751 int eptype = usb_endpoint_type(&ep->desc);
5752 int epnum = usb_endpoint_num(&ep->desc);
5753 int is_out = usb_endpoint_dir_out(&ep->desc);
5754 unsigned long flags;
5755
5756 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5757 return;
5758
5759 spin_lock_irqsave(&fotg210->lock, flags);
5760 qh = ep->hcpriv;
5761
5762 /* For Bulk and Interrupt endpoints we maintain the toggle state
5763 * in the hardware; the toggle bits in udev aren't used at all.
5764 * When an endpoint is reset by usb_clear_halt() we must reset
5765 * the toggle bit in the QH.
5766 */
5767 if (qh) {
5768 usb_settoggle(qh->dev, epnum, is_out, 0);
5769 if (!list_empty(&qh->qtd_list)) {
5770 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5771 } else if (qh->qh_state == QH_STATE_LINKED ||
5772 qh->qh_state == QH_STATE_COMPLETING) {
5773
5774 /* The toggle value in the QH can't be updated
5775 * while the QH is active. Unlink it now;
5776 * re-linking will call qh_refresh().
5777 */
5778 if (eptype == USB_ENDPOINT_XFER_BULK)
5779 start_unlink_async(fotg210, qh);
5780 else
5781 start_unlink_intr(fotg210, qh);
5782 }
5783 }
5784 spin_unlock_irqrestore(&fotg210->lock, flags);
5785 }
5786
5787 static int fotg210_get_frame(struct usb_hcd *hcd)
5788 {
5789 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5790 return (fotg210_read_frame_index(fotg210) >> 3) %
5791 fotg210->periodic_size;
5792 }
5793
5794 /*-------------------------------------------------------------------------*/
5795
5796 /*
5797 * The EHCI in ChipIdea HDRC cannot be a separate module or device,
5798 * because its registers (and irq) are shared between host/gadget/otg
5799 * functions and in order to facilitate role switching we cannot
5800 * give the fotg210 driver exclusive access to those.
5801 */
5802 MODULE_DESCRIPTION(DRIVER_DESC);
5803 MODULE_AUTHOR(DRIVER_AUTHOR);
5804 MODULE_LICENSE("GPL");
5805
5806 static const struct hc_driver fotg210_fotg210_hc_driver = {
5807 .description = hcd_name,
5808 .product_desc = "Faraday USB2.0 Host Controller",
5809 .hcd_priv_size = sizeof(struct fotg210_hcd),
5810
5811 /*
5812 * generic hardware linkage
5813 */
5814 .irq = fotg210_irq,
5815 .flags = HCD_MEMORY | HCD_USB2,
5816
5817 /*
5818 * basic lifecycle operations
5819 */
5820 .reset = hcd_fotg210_init,
5821 .start = fotg210_run,
5822 .stop = fotg210_stop,
5823 .shutdown = fotg210_shutdown,
5824
5825 /*
5826 * managing i/o requests and associated device resources
5827 */
5828 .urb_enqueue = fotg210_urb_enqueue,
5829 .urb_dequeue = fotg210_urb_dequeue,
5830 .endpoint_disable = fotg210_endpoint_disable,
5831 .endpoint_reset = fotg210_endpoint_reset,
5832
5833 /*
5834 * scheduling support
5835 */
5836 .get_frame_number = fotg210_get_frame,
5837
5838 /*
5839 * root hub support
5840 */
5841 .hub_status_data = fotg210_hub_status_data,
5842 .hub_control = fotg210_hub_control,
5843 .bus_suspend = fotg210_bus_suspend,
5844 .bus_resume = fotg210_bus_resume,
5845
5846 .relinquish_port = fotg210_relinquish_port,
5847 .port_handed_over = fotg210_port_handed_over,
5848
5849 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5850 };
5851
5852 static void fotg210_init(struct fotg210_hcd *fotg210)
5853 {
5854 u32 value;
5855
5856 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5857 &fotg210->regs->gmir);
5858
5859 value = ioread32(&fotg210->regs->otgcsr);
5860 value &= ~OTGCSR_A_BUS_DROP;
5861 value |= OTGCSR_A_BUS_REQ;
5862 iowrite32(value, &fotg210->regs->otgcsr);
5863 }
5864
5865 /**
5866 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5867 *
5868 * Allocates basic resources for this USB host controller, and
5869 * then invokes the start() method for the HCD associated with it
5870 * through the hotplug entry's driver_data.
5871 */
5872 static int fotg210_hcd_probe(struct platform_device *pdev)
5873 {
5874 struct device *dev = &pdev->dev;
5875 struct usb_hcd *hcd;
5876 struct resource *res;
5877 int irq;
5878 int retval = -ENODEV;
5879 struct fotg210_hcd *fotg210;
5880
5881 if (usb_disabled())
5882 return -ENODEV;
5883
5884 pdev->dev.power.power_state = PMSG_ON;
5885
5886 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5887 if (!res) {
5888 dev_err(dev,
5889 "Found HC with no IRQ. Check %s setup!\n",
5890 dev_name(dev));
5891 return -ENODEV;
5892 }
5893
5894 irq = res->start;
5895
5896 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5897 dev_name(dev));
5898 if (!hcd) {
5899 dev_err(dev, "failed to create hcd with err %d\n", retval);
5900 retval = -ENOMEM;
5901 goto fail_create_hcd;
5902 }
5903
5904 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5905 if (!res) {
5906 dev_err(dev,
5907 "Found HC with no register addr. Check %s setup!\n",
5908 dev_name(dev));
5909 retval = -ENODEV;
5910 goto fail_request_resource;
5911 }
5912
5913 hcd->rsrc_start = res->start;
5914 hcd->rsrc_len = resource_size(res);
5915 hcd->has_tt = 1;
5916
5917 if (!request_mem_region(hcd->rsrc_start, hcd->rsrc_len,
5918 fotg210_fotg210_hc_driver.description)) {
5919 dev_dbg(dev, "controller already in use\n");
5920 retval = -EBUSY;
5921 goto fail_request_resource;
5922 }
5923
5924 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
5925 if (!res) {
5926 dev_err(dev,
5927 "Found HC with no register addr. Check %s setup!\n",
5928 dev_name(dev));
5929 retval = -ENODEV;
5930 goto fail_request_resource;
5931 }
5932
5933 hcd->regs = ioremap_nocache(res->start, resource_size(res));
5934 if (hcd->regs == NULL) {
5935 dev_dbg(dev, "error mapping memory\n");
5936 retval = -EFAULT;
5937 goto fail_ioremap;
5938 }
5939
5940 fotg210 = hcd_to_fotg210(hcd);
5941
5942 fotg210->caps = hcd->regs;
5943
5944 retval = fotg210_setup(hcd);
5945 if (retval)
5946 goto fail_add_hcd;
5947
5948 fotg210_init(fotg210);
5949
5950 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5951 if (retval) {
5952 dev_err(dev, "failed to add hcd with err %d\n", retval);
5953 goto fail_add_hcd;
5954 }
5955
5956 return retval;
5957
5958 fail_add_hcd:
5959 iounmap(hcd->regs);
5960 fail_ioremap:
5961 release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
5962 fail_request_resource:
5963 usb_put_hcd(hcd);
5964 fail_create_hcd:
5965 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5966 return retval;
5967 }
5968
5969 /**
5970 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5971 * @dev: USB Host Controller being removed
5972 *
5973 */
5974 static int fotg210_hcd_remove(struct platform_device *pdev)
5975 {
5976 struct device *dev = &pdev->dev;
5977 struct usb_hcd *hcd = dev_get_drvdata(dev);
5978
5979 if (!hcd)
5980 return 0;
5981
5982 usb_remove_hcd(hcd);
5983 iounmap(hcd->regs);
5984 release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
5985 usb_put_hcd(hcd);
5986
5987 return 0;
5988 }
5989
5990 static struct platform_driver fotg210_hcd_driver = {
5991 .driver = {
5992 .name = "fotg210-hcd",
5993 },
5994 .probe = fotg210_hcd_probe,
5995 .remove = fotg210_hcd_remove,
5996 };
5997
5998 static int __init fotg210_hcd_init(void)
5999 {
6000 int retval = 0;
6001
6002 if (usb_disabled())
6003 return -ENODEV;
6004
6005 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
6006 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
6007 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
6008 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
6009 pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
6010
6011 pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
6012 hcd_name,
6013 sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
6014 sizeof(struct fotg210_itd));
6015
6016 #ifdef DEBUG
6017 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
6018 if (!fotg210_debug_root) {
6019 retval = -ENOENT;
6020 goto err_debug;
6021 }
6022 #endif
6023
6024 retval = platform_driver_register(&fotg210_hcd_driver);
6025 if (retval < 0)
6026 goto clean;
6027 return retval;
6028
6029 platform_driver_unregister(&fotg210_hcd_driver);
6030 clean:
6031 #ifdef DEBUG
6032 debugfs_remove(fotg210_debug_root);
6033 fotg210_debug_root = NULL;
6034 err_debug:
6035 #endif
6036 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
6037 return retval;
6038 }
6039 module_init(fotg210_hcd_init);
6040
6041 static void __exit fotg210_hcd_cleanup(void)
6042 {
6043 platform_driver_unregister(&fotg210_hcd_driver);
6044 #ifdef DEBUG
6045 debugfs_remove(fotg210_debug_root);
6046 #endif
6047 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
6048 }
6049 module_exit(fotg210_hcd_cleanup);