]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/host/oxu210hp-hcd.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / oxu210hp-hcd.c
1 /*
2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4 *
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/timer.h>
33 #include <linux/list.h>
34 #include <linux/interrupt.h>
35 #include <linux/usb.h>
36 #include <linux/usb/hcd.h>
37 #include <linux/moduleparam.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/io.h>
40
41 #include <asm/irq.h>
42 #include <asm/unaligned.h>
43
44 #include <linux/irq.h>
45 #include <linux/platform_device.h>
46
47 #include "oxu210hp.h"
48
49 #define DRIVER_VERSION "0.0.50"
50
51 /*
52 * Main defines
53 */
54
55 #define oxu_dbg(oxu, fmt, args...) \
56 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
57 #define oxu_err(oxu, fmt, args...) \
58 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59 #define oxu_info(oxu, fmt, args...) \
60 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61
62 #ifdef CONFIG_DYNAMIC_DEBUG
63 #define DEBUG
64 #endif
65
66 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
67 {
68 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
69 }
70
71 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
72 {
73 return (struct oxu_hcd *) (hcd->hcd_priv);
74 }
75
76 /*
77 * Debug stuff
78 */
79
80 #undef OXU_URB_TRACE
81 #undef OXU_VERBOSE_DEBUG
82
83 #ifdef OXU_VERBOSE_DEBUG
84 #define oxu_vdbg oxu_dbg
85 #else
86 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
87 #endif
88
89 #ifdef DEBUG
90
91 static int __attribute__((__unused__))
92 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
93 {
94 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
95 label, label[0] ? " " : "", status,
96 (status & STS_ASS) ? " Async" : "",
97 (status & STS_PSS) ? " Periodic" : "",
98 (status & STS_RECL) ? " Recl" : "",
99 (status & STS_HALT) ? " Halt" : "",
100 (status & STS_IAA) ? " IAA" : "",
101 (status & STS_FATAL) ? " FATAL" : "",
102 (status & STS_FLR) ? " FLR" : "",
103 (status & STS_PCD) ? " PCD" : "",
104 (status & STS_ERR) ? " ERR" : "",
105 (status & STS_INT) ? " INT" : ""
106 );
107 }
108
109 static int __attribute__((__unused__))
110 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
111 {
112 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
113 label, label[0] ? " " : "", enable,
114 (enable & STS_IAA) ? " IAA" : "",
115 (enable & STS_FATAL) ? " FATAL" : "",
116 (enable & STS_FLR) ? " FLR" : "",
117 (enable & STS_PCD) ? " PCD" : "",
118 (enable & STS_ERR) ? " ERR" : "",
119 (enable & STS_INT) ? " INT" : ""
120 );
121 }
122
123 static const char *const fls_strings[] =
124 { "1024", "512", "256", "??" };
125
126 static int dbg_command_buf(char *buf, unsigned len,
127 const char *label, u32 command)
128 {
129 return scnprintf(buf, len,
130 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
131 label, label[0] ? " " : "", command,
132 (command & CMD_PARK) ? "park" : "(park)",
133 CMD_PARK_CNT(command),
134 (command >> 16) & 0x3f,
135 (command & CMD_LRESET) ? " LReset" : "",
136 (command & CMD_IAAD) ? " IAAD" : "",
137 (command & CMD_ASE) ? " Async" : "",
138 (command & CMD_PSE) ? " Periodic" : "",
139 fls_strings[(command >> 2) & 0x3],
140 (command & CMD_RESET) ? " Reset" : "",
141 (command & CMD_RUN) ? "RUN" : "HALT"
142 );
143 }
144
145 static int dbg_port_buf(char *buf, unsigned len, const char *label,
146 int port, u32 status)
147 {
148 char *sig;
149
150 /* signaling state */
151 switch (status & (3 << 10)) {
152 case 0 << 10:
153 sig = "se0";
154 break;
155 case 1 << 10:
156 sig = "k"; /* low speed */
157 break;
158 case 2 << 10:
159 sig = "j";
160 break;
161 default:
162 sig = "?";
163 break;
164 }
165
166 return scnprintf(buf, len,
167 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
168 label, label[0] ? " " : "", port, status,
169 (status & PORT_POWER) ? " POWER" : "",
170 (status & PORT_OWNER) ? " OWNER" : "",
171 sig,
172 (status & PORT_RESET) ? " RESET" : "",
173 (status & PORT_SUSPEND) ? " SUSPEND" : "",
174 (status & PORT_RESUME) ? " RESUME" : "",
175 (status & PORT_OCC) ? " OCC" : "",
176 (status & PORT_OC) ? " OC" : "",
177 (status & PORT_PEC) ? " PEC" : "",
178 (status & PORT_PE) ? " PE" : "",
179 (status & PORT_CSC) ? " CSC" : "",
180 (status & PORT_CONNECT) ? " CONNECT" : ""
181 );
182 }
183
184 #else
185
186 static inline int __attribute__((__unused__))
187 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
188 { return 0; }
189
190 static inline int __attribute__((__unused__))
191 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
192 { return 0; }
193
194 static inline int __attribute__((__unused__))
195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 { return 0; }
197
198 static inline int __attribute__((__unused__))
199 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
200 { return 0; }
201
202 #endif /* DEBUG */
203
204 /* functions have the "wrong" filename when they're output... */
205 #define dbg_status(oxu, label, status) { \
206 char _buf[80]; \
207 dbg_status_buf(_buf, sizeof _buf, label, status); \
208 oxu_dbg(oxu, "%s\n", _buf); \
209 }
210
211 #define dbg_cmd(oxu, label, command) { \
212 char _buf[80]; \
213 dbg_command_buf(_buf, sizeof _buf, label, command); \
214 oxu_dbg(oxu, "%s\n", _buf); \
215 }
216
217 #define dbg_port(oxu, label, port, status) { \
218 char _buf[80]; \
219 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
220 oxu_dbg(oxu, "%s\n", _buf); \
221 }
222
223 /*
224 * Module parameters
225 */
226
227 /* Initial IRQ latency: faster than hw default */
228 static int log2_irq_thresh; /* 0 to 6 */
229 module_param(log2_irq_thresh, int, S_IRUGO);
230 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
231
232 /* Initial park setting: slower than hw default */
233 static unsigned park;
234 module_param(park, uint, S_IRUGO);
235 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
236
237 /* For flakey hardware, ignore overcurrent indicators */
238 static bool ignore_oc;
239 module_param(ignore_oc, bool, S_IRUGO);
240 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
241
242
243 static void ehci_work(struct oxu_hcd *oxu);
244 static int oxu_hub_control(struct usb_hcd *hcd,
245 u16 typeReq, u16 wValue, u16 wIndex,
246 char *buf, u16 wLength);
247
248 /*
249 * Local functions
250 */
251
252 /* Low level read/write registers functions */
253 static inline u32 oxu_readl(void *base, u32 reg)
254 {
255 return readl(base + reg);
256 }
257
258 static inline void oxu_writel(void *base, u32 reg, u32 val)
259 {
260 writel(val, base + reg);
261 }
262
263 static inline void timer_action_done(struct oxu_hcd *oxu,
264 enum ehci_timer_action action)
265 {
266 clear_bit(action, &oxu->actions);
267 }
268
269 static inline void timer_action(struct oxu_hcd *oxu,
270 enum ehci_timer_action action)
271 {
272 if (!test_and_set_bit(action, &oxu->actions)) {
273 unsigned long t;
274
275 switch (action) {
276 case TIMER_IAA_WATCHDOG:
277 t = EHCI_IAA_JIFFIES;
278 break;
279 case TIMER_IO_WATCHDOG:
280 t = EHCI_IO_JIFFIES;
281 break;
282 case TIMER_ASYNC_OFF:
283 t = EHCI_ASYNC_JIFFIES;
284 break;
285 case TIMER_ASYNC_SHRINK:
286 default:
287 t = EHCI_SHRINK_JIFFIES;
288 break;
289 }
290 t += jiffies;
291 /* all timings except IAA watchdog can be overridden.
292 * async queue SHRINK often precedes IAA. while it's ready
293 * to go OFF neither can matter, and afterwards the IO
294 * watchdog stops unless there's still periodic traffic.
295 */
296 if (action != TIMER_IAA_WATCHDOG
297 && t > oxu->watchdog.expires
298 && timer_pending(&oxu->watchdog))
299 return;
300 mod_timer(&oxu->watchdog, t);
301 }
302 }
303
304 /*
305 * handshake - spin reading hc until handshake completes or fails
306 * @ptr: address of hc register to be read
307 * @mask: bits to look at in result of read
308 * @done: value of those bits when handshake succeeds
309 * @usec: timeout in microseconds
310 *
311 * Returns negative errno, or zero on success
312 *
313 * Success happens when the "mask" bits have the specified value (hardware
314 * handshake done). There are two failure modes: "usec" have passed (major
315 * hardware flakeout), or the register reads as all-ones (hardware removed).
316 *
317 * That last failure should_only happen in cases like physical cardbus eject
318 * before driver shutdown. But it also seems to be caused by bugs in cardbus
319 * bridge shutdown: shutting down the bridge before the devices using it.
320 */
321 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
322 u32 mask, u32 done, int usec)
323 {
324 u32 result;
325
326 do {
327 result = readl(ptr);
328 if (result == ~(u32)0) /* card removed */
329 return -ENODEV;
330 result &= mask;
331 if (result == done)
332 return 0;
333 udelay(1);
334 usec--;
335 } while (usec > 0);
336 return -ETIMEDOUT;
337 }
338
339 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
340 static int ehci_halt(struct oxu_hcd *oxu)
341 {
342 u32 temp = readl(&oxu->regs->status);
343
344 /* disable any irqs left enabled by previous code */
345 writel(0, &oxu->regs->intr_enable);
346
347 if ((temp & STS_HALT) != 0)
348 return 0;
349
350 temp = readl(&oxu->regs->command);
351 temp &= ~CMD_RUN;
352 writel(temp, &oxu->regs->command);
353 return handshake(oxu, &oxu->regs->status,
354 STS_HALT, STS_HALT, 16 * 125);
355 }
356
357 /* Put TDI/ARC silicon into EHCI mode */
358 static void tdi_reset(struct oxu_hcd *oxu)
359 {
360 u32 __iomem *reg_ptr;
361 u32 tmp;
362
363 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
364 tmp = readl(reg_ptr);
365 tmp |= 0x3;
366 writel(tmp, reg_ptr);
367 }
368
369 /* Reset a non-running (STS_HALT == 1) controller */
370 static int ehci_reset(struct oxu_hcd *oxu)
371 {
372 int retval;
373 u32 command = readl(&oxu->regs->command);
374
375 command |= CMD_RESET;
376 dbg_cmd(oxu, "reset", command);
377 writel(command, &oxu->regs->command);
378 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
379 oxu->next_statechange = jiffies;
380 retval = handshake(oxu, &oxu->regs->command,
381 CMD_RESET, 0, 250 * 1000);
382
383 if (retval)
384 return retval;
385
386 tdi_reset(oxu);
387
388 return retval;
389 }
390
391 /* Idle the controller (from running) */
392 static void ehci_quiesce(struct oxu_hcd *oxu)
393 {
394 u32 temp;
395
396 #ifdef DEBUG
397 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
398 BUG();
399 #endif
400
401 /* wait for any schedule enables/disables to take effect */
402 temp = readl(&oxu->regs->command) << 10;
403 temp &= STS_ASS | STS_PSS;
404 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
405 temp, 16 * 125) != 0) {
406 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
407 return;
408 }
409
410 /* then disable anything that's still active */
411 temp = readl(&oxu->regs->command);
412 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
413 writel(temp, &oxu->regs->command);
414
415 /* hardware can take 16 microframes to turn off ... */
416 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
417 0, 16 * 125) != 0) {
418 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
419 return;
420 }
421 }
422
423 static int check_reset_complete(struct oxu_hcd *oxu, int index,
424 u32 __iomem *status_reg, int port_status)
425 {
426 if (!(port_status & PORT_CONNECT)) {
427 oxu->reset_done[index] = 0;
428 return port_status;
429 }
430
431 /* if reset finished and it's still not enabled -- handoff */
432 if (!(port_status & PORT_PE)) {
433 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
434 index+1);
435 return port_status;
436 } else
437 oxu_dbg(oxu, "port %d high speed\n", index + 1);
438
439 return port_status;
440 }
441
442 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
443 struct usb_hub_descriptor *desc)
444 {
445 int ports = HCS_N_PORTS(oxu->hcs_params);
446 u16 temp;
447
448 desc->bDescriptorType = USB_DT_HUB;
449 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
450 desc->bHubContrCurrent = 0;
451
452 desc->bNbrPorts = ports;
453 temp = 1 + (ports / 8);
454 desc->bDescLength = 7 + 2 * temp;
455
456 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
457 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
458 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
459
460 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
461 if (HCS_PPC(oxu->hcs_params))
462 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
463 else
464 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
465 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
466 }
467
468
469 /* Allocate an OXU210HP on-chip memory data buffer
470 *
471 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
472 * Each transfer descriptor has one or more on-chip memory data buffers.
473 *
474 * Data buffers are allocated from a fix sized pool of data blocks.
475 * To minimise fragmentation and give reasonable memory utlisation,
476 * data buffers are allocated with sizes the power of 2 multiples of
477 * the block size, starting on an address a multiple of the allocated size.
478 *
479 * FIXME: callers of this function require a buffer to be allocated for
480 * len=0. This is a waste of on-chip memory and should be fix. Then this
481 * function should be changed to not allocate a buffer for len=0.
482 */
483 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
484 {
485 int n_blocks; /* minium blocks needed to hold len */
486 int a_blocks; /* blocks allocated */
487 int i, j;
488
489 /* Don't allocte bigger than supported */
490 if (len > BUFFER_SIZE * BUFFER_NUM) {
491 oxu_err(oxu, "buffer too big (%d)\n", len);
492 return -ENOMEM;
493 }
494
495 spin_lock(&oxu->mem_lock);
496
497 /* Number of blocks needed to hold len */
498 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
499
500 /* Round the number of blocks up to the power of 2 */
501 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
502 ;
503
504 /* Find a suitable available data buffer */
505 for (i = 0; i < BUFFER_NUM;
506 i += max(a_blocks, (int)oxu->db_used[i])) {
507
508 /* Check all the required blocks are available */
509 for (j = 0; j < a_blocks; j++)
510 if (oxu->db_used[i + j])
511 break;
512
513 if (j != a_blocks)
514 continue;
515
516 /* Allocate blocks found! */
517 qtd->buffer = (void *) &oxu->mem->db_pool[i];
518 qtd->buffer_dma = virt_to_phys(qtd->buffer);
519
520 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
521 oxu->db_used[i] = a_blocks;
522
523 spin_unlock(&oxu->mem_lock);
524
525 return 0;
526 }
527
528 /* Failed */
529
530 spin_unlock(&oxu->mem_lock);
531
532 return -ENOMEM;
533 }
534
535 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
536 {
537 int index;
538
539 spin_lock(&oxu->mem_lock);
540
541 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
542 / BUFFER_SIZE;
543 oxu->db_used[index] = 0;
544 qtd->qtd_buffer_len = 0;
545 qtd->buffer_dma = 0;
546 qtd->buffer = NULL;
547
548 spin_unlock(&oxu->mem_lock);
549 }
550
551 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
552 {
553 memset(qtd, 0, sizeof *qtd);
554 qtd->qtd_dma = dma;
555 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
556 qtd->hw_next = EHCI_LIST_END;
557 qtd->hw_alt_next = EHCI_LIST_END;
558 INIT_LIST_HEAD(&qtd->qtd_list);
559 }
560
561 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
562 {
563 int index;
564
565 if (qtd->buffer)
566 oxu_buf_free(oxu, qtd);
567
568 spin_lock(&oxu->mem_lock);
569
570 index = qtd - &oxu->mem->qtd_pool[0];
571 oxu->qtd_used[index] = 0;
572
573 spin_unlock(&oxu->mem_lock);
574 }
575
576 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
577 {
578 int i;
579 struct ehci_qtd *qtd = NULL;
580
581 spin_lock(&oxu->mem_lock);
582
583 for (i = 0; i < QTD_NUM; i++)
584 if (!oxu->qtd_used[i])
585 break;
586
587 if (i < QTD_NUM) {
588 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
589 memset(qtd, 0, sizeof *qtd);
590
591 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
592 qtd->hw_next = EHCI_LIST_END;
593 qtd->hw_alt_next = EHCI_LIST_END;
594 INIT_LIST_HEAD(&qtd->qtd_list);
595
596 qtd->qtd_dma = virt_to_phys(qtd);
597
598 oxu->qtd_used[i] = 1;
599 }
600
601 spin_unlock(&oxu->mem_lock);
602
603 return qtd;
604 }
605
606 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
607 {
608 int index;
609
610 spin_lock(&oxu->mem_lock);
611
612 index = qh - &oxu->mem->qh_pool[0];
613 oxu->qh_used[index] = 0;
614
615 spin_unlock(&oxu->mem_lock);
616 }
617
618 static void qh_destroy(struct kref *kref)
619 {
620 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
621 struct oxu_hcd *oxu = qh->oxu;
622
623 /* clean qtds first, and know this is not linked */
624 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
625 oxu_dbg(oxu, "unused qh not empty!\n");
626 BUG();
627 }
628 if (qh->dummy)
629 oxu_qtd_free(oxu, qh->dummy);
630 oxu_qh_free(oxu, qh);
631 }
632
633 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
634 {
635 int i;
636 struct ehci_qh *qh = NULL;
637
638 spin_lock(&oxu->mem_lock);
639
640 for (i = 0; i < QHEAD_NUM; i++)
641 if (!oxu->qh_used[i])
642 break;
643
644 if (i < QHEAD_NUM) {
645 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
646 memset(qh, 0, sizeof *qh);
647
648 kref_init(&qh->kref);
649 qh->oxu = oxu;
650 qh->qh_dma = virt_to_phys(qh);
651 INIT_LIST_HEAD(&qh->qtd_list);
652
653 /* dummy td enables safe urb queuing */
654 qh->dummy = ehci_qtd_alloc(oxu);
655 if (qh->dummy == NULL) {
656 oxu_dbg(oxu, "no dummy td\n");
657 oxu->qh_used[i] = 0;
658 qh = NULL;
659 goto unlock;
660 }
661
662 oxu->qh_used[i] = 1;
663 }
664 unlock:
665 spin_unlock(&oxu->mem_lock);
666
667 return qh;
668 }
669
670 /* to share a qh (cpu threads, or hc) */
671 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
672 {
673 kref_get(&qh->kref);
674 return qh;
675 }
676
677 static inline void qh_put(struct ehci_qh *qh)
678 {
679 kref_put(&qh->kref, qh_destroy);
680 }
681
682 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
683 {
684 int index;
685
686 spin_lock(&oxu->mem_lock);
687
688 index = murb - &oxu->murb_pool[0];
689 oxu->murb_used[index] = 0;
690
691 spin_unlock(&oxu->mem_lock);
692 }
693
694 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
695
696 {
697 int i;
698 struct oxu_murb *murb = NULL;
699
700 spin_lock(&oxu->mem_lock);
701
702 for (i = 0; i < MURB_NUM; i++)
703 if (!oxu->murb_used[i])
704 break;
705
706 if (i < MURB_NUM) {
707 murb = &(oxu->murb_pool)[i];
708
709 oxu->murb_used[i] = 1;
710 }
711
712 spin_unlock(&oxu->mem_lock);
713
714 return murb;
715 }
716
717 /* The queue heads and transfer descriptors are managed from pools tied
718 * to each of the "per device" structures.
719 * This is the initialisation and cleanup code.
720 */
721 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
722 {
723 kfree(oxu->murb_pool);
724 oxu->murb_pool = NULL;
725
726 if (oxu->async)
727 qh_put(oxu->async);
728 oxu->async = NULL;
729
730 del_timer(&oxu->urb_timer);
731
732 oxu->periodic = NULL;
733
734 /* shadow periodic table */
735 kfree(oxu->pshadow);
736 oxu->pshadow = NULL;
737 }
738
739 /* Remember to add cleanup code (above) if you add anything here.
740 */
741 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
742 {
743 int i;
744
745 for (i = 0; i < oxu->periodic_size; i++)
746 oxu->mem->frame_list[i] = EHCI_LIST_END;
747 for (i = 0; i < QHEAD_NUM; i++)
748 oxu->qh_used[i] = 0;
749 for (i = 0; i < QTD_NUM; i++)
750 oxu->qtd_used[i] = 0;
751
752 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
753 if (!oxu->murb_pool)
754 goto fail;
755
756 for (i = 0; i < MURB_NUM; i++)
757 oxu->murb_used[i] = 0;
758
759 oxu->async = oxu_qh_alloc(oxu);
760 if (!oxu->async)
761 goto fail;
762
763 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
764 oxu->periodic_dma = virt_to_phys(oxu->periodic);
765
766 for (i = 0; i < oxu->periodic_size; i++)
767 oxu->periodic[i] = EHCI_LIST_END;
768
769 /* software shadow of hardware table */
770 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
771 if (oxu->pshadow != NULL)
772 return 0;
773
774 fail:
775 oxu_dbg(oxu, "couldn't init memory\n");
776 ehci_mem_cleanup(oxu);
777 return -ENOMEM;
778 }
779
780 /* Fill a qtd, returning how much of the buffer we were able to queue up.
781 */
782 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
783 int token, int maxpacket)
784 {
785 int i, count;
786 u64 addr = buf;
787
788 /* one buffer entry per 4K ... first might be short or unaligned */
789 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
790 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
791 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
792 if (likely(len < count)) /* ... iff needed */
793 count = len;
794 else {
795 buf += 0x1000;
796 buf &= ~0x0fff;
797
798 /* per-qtd limit: from 16K to 20K (best alignment) */
799 for (i = 1; count < len && i < 5; i++) {
800 addr = buf;
801 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
802 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
803 buf += 0x1000;
804 if ((count + 0x1000) < len)
805 count += 0x1000;
806 else
807 count = len;
808 }
809
810 /* short packets may only terminate transfers */
811 if (count != len)
812 count -= (count % maxpacket);
813 }
814 qtd->hw_token = cpu_to_le32((count << 16) | token);
815 qtd->length = count;
816
817 return count;
818 }
819
820 static inline void qh_update(struct oxu_hcd *oxu,
821 struct ehci_qh *qh, struct ehci_qtd *qtd)
822 {
823 /* writes to an active overlay are unsafe */
824 BUG_ON(qh->qh_state != QH_STATE_IDLE);
825
826 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
827 qh->hw_alt_next = EHCI_LIST_END;
828
829 /* Except for control endpoints, we make hardware maintain data
830 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
831 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
832 * ever clear it.
833 */
834 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
835 unsigned is_out, epnum;
836
837 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
838 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
839 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
840 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
841 usb_settoggle(qh->dev, epnum, is_out, 1);
842 }
843 }
844
845 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
846 wmb();
847 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
848 }
849
850 /* If it weren't for a common silicon quirk (writing the dummy into the qh
851 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
852 * recovery (including urb dequeue) would need software changes to a QH...
853 */
854 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
855 {
856 struct ehci_qtd *qtd;
857
858 if (list_empty(&qh->qtd_list))
859 qtd = qh->dummy;
860 else {
861 qtd = list_entry(qh->qtd_list.next,
862 struct ehci_qtd, qtd_list);
863 /* first qtd may already be partially processed */
864 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
865 qtd = NULL;
866 }
867
868 if (qtd)
869 qh_update(oxu, qh, qtd);
870 }
871
872 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
873 size_t length, u32 token)
874 {
875 /* count IN/OUT bytes, not SETUP (even short packets) */
876 if (likely(QTD_PID(token) != 2))
877 urb->actual_length += length - QTD_LENGTH(token);
878
879 /* don't modify error codes */
880 if (unlikely(urb->status != -EINPROGRESS))
881 return;
882
883 /* force cleanup after short read; not always an error */
884 if (unlikely(IS_SHORT_READ(token)))
885 urb->status = -EREMOTEIO;
886
887 /* serious "can't proceed" faults reported by the hardware */
888 if (token & QTD_STS_HALT) {
889 if (token & QTD_STS_BABBLE) {
890 /* FIXME "must" disable babbling device's port too */
891 urb->status = -EOVERFLOW;
892 } else if (token & QTD_STS_MMF) {
893 /* fs/ls interrupt xfer missed the complete-split */
894 urb->status = -EPROTO;
895 } else if (token & QTD_STS_DBE) {
896 urb->status = (QTD_PID(token) == 1) /* IN ? */
897 ? -ENOSR /* hc couldn't read data */
898 : -ECOMM; /* hc couldn't write data */
899 } else if (token & QTD_STS_XACT) {
900 /* timeout, bad crc, wrong PID, etc; retried */
901 if (QTD_CERR(token))
902 urb->status = -EPIPE;
903 else {
904 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
905 urb->dev->devpath,
906 usb_pipeendpoint(urb->pipe),
907 usb_pipein(urb->pipe) ? "in" : "out");
908 urb->status = -EPROTO;
909 }
910 /* CERR nonzero + no errors + halt --> stall */
911 } else if (QTD_CERR(token))
912 urb->status = -EPIPE;
913 else /* unknown */
914 urb->status = -EPROTO;
915
916 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
917 usb_pipedevice(urb->pipe),
918 usb_pipeendpoint(urb->pipe),
919 usb_pipein(urb->pipe) ? "in" : "out",
920 token, urb->status);
921 }
922 }
923
924 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
925 __releases(oxu->lock)
926 __acquires(oxu->lock)
927 {
928 if (likely(urb->hcpriv != NULL)) {
929 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
930
931 /* S-mask in a QH means it's an interrupt urb */
932 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
933
934 /* ... update hc-wide periodic stats (for usbfs) */
935 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
936 }
937 qh_put(qh);
938 }
939
940 urb->hcpriv = NULL;
941 switch (urb->status) {
942 case -EINPROGRESS: /* success */
943 urb->status = 0;
944 default: /* fault */
945 break;
946 case -EREMOTEIO: /* fault or normal */
947 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
948 urb->status = 0;
949 break;
950 case -ECONNRESET: /* canceled */
951 case -ENOENT:
952 break;
953 }
954
955 #ifdef OXU_URB_TRACE
956 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
957 __func__, urb->dev->devpath, urb,
958 usb_pipeendpoint(urb->pipe),
959 usb_pipein(urb->pipe) ? "in" : "out",
960 urb->status,
961 urb->actual_length, urb->transfer_buffer_length);
962 #endif
963
964 /* complete() can reenter this HCD */
965 spin_unlock(&oxu->lock);
966 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
967 spin_lock(&oxu->lock);
968 }
969
970 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
971 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
972
973 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
974 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
975
976 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
977
978 /* Process and free completed qtds for a qh, returning URBs to drivers.
979 * Chases up to qh->hw_current. Returns number of completions called,
980 * indicating how much "real" work we did.
981 */
982 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
983 {
984 struct ehci_qtd *last = NULL, *end = qh->dummy;
985 struct list_head *entry, *tmp;
986 int stopped;
987 unsigned count = 0;
988 int do_status = 0;
989 u8 state;
990 struct oxu_murb *murb = NULL;
991
992 if (unlikely(list_empty(&qh->qtd_list)))
993 return count;
994
995 /* completions (or tasks on other cpus) must never clobber HALT
996 * till we've gone through and cleaned everything up, even when
997 * they add urbs to this qh's queue or mark them for unlinking.
998 *
999 * NOTE: unlinking expects to be done in queue order.
1000 */
1001 state = qh->qh_state;
1002 qh->qh_state = QH_STATE_COMPLETING;
1003 stopped = (state == QH_STATE_IDLE);
1004
1005 /* remove de-activated QTDs from front of queue.
1006 * after faults (including short reads), cleanup this urb
1007 * then let the queue advance.
1008 * if queue is stopped, handles unlinks.
1009 */
1010 list_for_each_safe(entry, tmp, &qh->qtd_list) {
1011 struct ehci_qtd *qtd;
1012 struct urb *urb;
1013 u32 token = 0;
1014
1015 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1016 urb = qtd->urb;
1017
1018 /* Clean up any state from previous QTD ...*/
1019 if (last) {
1020 if (likely(last->urb != urb)) {
1021 if (last->urb->complete == NULL) {
1022 murb = (struct oxu_murb *) last->urb;
1023 last->urb = murb->main;
1024 if (murb->last) {
1025 ehci_urb_done(oxu, last->urb);
1026 count++;
1027 }
1028 oxu_murb_free(oxu, murb);
1029 } else {
1030 ehci_urb_done(oxu, last->urb);
1031 count++;
1032 }
1033 }
1034 oxu_qtd_free(oxu, last);
1035 last = NULL;
1036 }
1037
1038 /* ignore urbs submitted during completions we reported */
1039 if (qtd == end)
1040 break;
1041
1042 /* hardware copies qtd out of qh overlay */
1043 rmb();
1044 token = le32_to_cpu(qtd->hw_token);
1045
1046 /* always clean up qtds the hc de-activated */
1047 if ((token & QTD_STS_ACTIVE) == 0) {
1048
1049 if ((token & QTD_STS_HALT) != 0) {
1050 stopped = 1;
1051
1052 /* magic dummy for some short reads; qh won't advance.
1053 * that silicon quirk can kick in with this dummy too.
1054 */
1055 } else if (IS_SHORT_READ(token) &&
1056 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1057 stopped = 1;
1058 goto halt;
1059 }
1060
1061 /* stop scanning when we reach qtds the hc is using */
1062 } else if (likely(!stopped &&
1063 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1064 break;
1065
1066 } else {
1067 stopped = 1;
1068
1069 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1070 urb->status = -ESHUTDOWN;
1071
1072 /* ignore active urbs unless some previous qtd
1073 * for the urb faulted (including short read) or
1074 * its urb was canceled. we may patch qh or qtds.
1075 */
1076 if (likely(urb->status == -EINPROGRESS))
1077 continue;
1078
1079 /* issue status after short control reads */
1080 if (unlikely(do_status != 0)
1081 && QTD_PID(token) == 0 /* OUT */) {
1082 do_status = 0;
1083 continue;
1084 }
1085
1086 /* token in overlay may be most current */
1087 if (state == QH_STATE_IDLE
1088 && cpu_to_le32(qtd->qtd_dma)
1089 == qh->hw_current)
1090 token = le32_to_cpu(qh->hw_token);
1091
1092 /* force halt for unlinked or blocked qh, so we'll
1093 * patch the qh later and so that completions can't
1094 * activate it while we "know" it's stopped.
1095 */
1096 if ((HALT_BIT & qh->hw_token) == 0) {
1097 halt:
1098 qh->hw_token |= HALT_BIT;
1099 wmb();
1100 }
1101 }
1102
1103 /* Remove it from the queue */
1104 qtd_copy_status(oxu, urb->complete ?
1105 urb : ((struct oxu_murb *) urb)->main,
1106 qtd->length, token);
1107 if ((usb_pipein(qtd->urb->pipe)) &&
1108 (NULL != qtd->transfer_buffer))
1109 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1110 do_status = (urb->status == -EREMOTEIO)
1111 && usb_pipecontrol(urb->pipe);
1112
1113 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1114 last = list_entry(qtd->qtd_list.prev,
1115 struct ehci_qtd, qtd_list);
1116 last->hw_next = qtd->hw_next;
1117 }
1118 list_del(&qtd->qtd_list);
1119 last = qtd;
1120 }
1121
1122 /* last urb's completion might still need calling */
1123 if (likely(last != NULL)) {
1124 if (last->urb->complete == NULL) {
1125 murb = (struct oxu_murb *) last->urb;
1126 last->urb = murb->main;
1127 if (murb->last) {
1128 ehci_urb_done(oxu, last->urb);
1129 count++;
1130 }
1131 oxu_murb_free(oxu, murb);
1132 } else {
1133 ehci_urb_done(oxu, last->urb);
1134 count++;
1135 }
1136 oxu_qtd_free(oxu, last);
1137 }
1138
1139 /* restore original state; caller must unlink or relink */
1140 qh->qh_state = state;
1141
1142 /* be sure the hardware's done with the qh before refreshing
1143 * it after fault cleanup, or recovering from silicon wrongly
1144 * overlaying the dummy qtd (which reduces DMA chatter).
1145 */
1146 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1147 switch (state) {
1148 case QH_STATE_IDLE:
1149 qh_refresh(oxu, qh);
1150 break;
1151 case QH_STATE_LINKED:
1152 /* should be rare for periodic transfers,
1153 * except maybe high bandwidth ...
1154 */
1155 if ((cpu_to_le32(QH_SMASK)
1156 & qh->hw_info2) != 0) {
1157 intr_deschedule(oxu, qh);
1158 (void) qh_schedule(oxu, qh);
1159 } else
1160 unlink_async(oxu, qh);
1161 break;
1162 /* otherwise, unlink already started */
1163 }
1164 }
1165
1166 return count;
1167 }
1168
1169 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1170 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1171 /* ... and packet size, for any kind of endpoint descriptor */
1172 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1173
1174 /* Reverse of qh_urb_transaction: free a list of TDs.
1175 * used for cleanup after errors, before HC sees an URB's TDs.
1176 */
1177 static void qtd_list_free(struct oxu_hcd *oxu,
1178 struct urb *urb, struct list_head *qtd_list)
1179 {
1180 struct list_head *entry, *temp;
1181
1182 list_for_each_safe(entry, temp, qtd_list) {
1183 struct ehci_qtd *qtd;
1184
1185 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1186 list_del(&qtd->qtd_list);
1187 oxu_qtd_free(oxu, qtd);
1188 }
1189 }
1190
1191 /* Create a list of filled qtds for this URB; won't link into qh.
1192 */
1193 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1194 struct urb *urb,
1195 struct list_head *head,
1196 gfp_t flags)
1197 {
1198 struct ehci_qtd *qtd, *qtd_prev;
1199 dma_addr_t buf;
1200 int len, maxpacket;
1201 int is_input;
1202 u32 token;
1203 void *transfer_buf = NULL;
1204 int ret;
1205
1206 /*
1207 * URBs map to sequences of QTDs: one logical transaction
1208 */
1209 qtd = ehci_qtd_alloc(oxu);
1210 if (unlikely(!qtd))
1211 return NULL;
1212 list_add_tail(&qtd->qtd_list, head);
1213 qtd->urb = urb;
1214
1215 token = QTD_STS_ACTIVE;
1216 token |= (EHCI_TUNE_CERR << 10);
1217 /* for split transactions, SplitXState initialized to zero */
1218
1219 len = urb->transfer_buffer_length;
1220 is_input = usb_pipein(urb->pipe);
1221 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1222 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1223
1224 if (usb_pipecontrol(urb->pipe)) {
1225 /* SETUP pid */
1226 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1227 if (ret)
1228 goto cleanup;
1229
1230 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1231 token | (2 /* "setup" */ << 8), 8);
1232 memcpy(qtd->buffer, qtd->urb->setup_packet,
1233 sizeof(struct usb_ctrlrequest));
1234
1235 /* ... and always at least one more pid */
1236 token ^= QTD_TOGGLE;
1237 qtd_prev = qtd;
1238 qtd = ehci_qtd_alloc(oxu);
1239 if (unlikely(!qtd))
1240 goto cleanup;
1241 qtd->urb = urb;
1242 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1243 list_add_tail(&qtd->qtd_list, head);
1244
1245 /* for zero length DATA stages, STATUS is always IN */
1246 if (len == 0)
1247 token |= (1 /* "in" */ << 8);
1248 }
1249
1250 /*
1251 * Data transfer stage: buffer setup
1252 */
1253
1254 ret = oxu_buf_alloc(oxu, qtd, len);
1255 if (ret)
1256 goto cleanup;
1257
1258 buf = qtd->buffer_dma;
1259 transfer_buf = urb->transfer_buffer;
1260
1261 if (!is_input)
1262 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1263
1264 if (is_input)
1265 token |= (1 /* "in" */ << 8);
1266 /* else it's already initted to "out" pid (0 << 8) */
1267
1268 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1269
1270 /*
1271 * buffer gets wrapped in one or more qtds;
1272 * last one may be "short" (including zero len)
1273 * and may serve as a control status ack
1274 */
1275 for (;;) {
1276 int this_qtd_len;
1277
1278 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1279 qtd->transfer_buffer = transfer_buf;
1280 len -= this_qtd_len;
1281 buf += this_qtd_len;
1282 transfer_buf += this_qtd_len;
1283 if (is_input)
1284 qtd->hw_alt_next = oxu->async->hw_alt_next;
1285
1286 /* qh makes control packets use qtd toggle; maybe switch it */
1287 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1288 token ^= QTD_TOGGLE;
1289
1290 if (likely(len <= 0))
1291 break;
1292
1293 qtd_prev = qtd;
1294 qtd = ehci_qtd_alloc(oxu);
1295 if (unlikely(!qtd))
1296 goto cleanup;
1297 if (likely(len > 0)) {
1298 ret = oxu_buf_alloc(oxu, qtd, len);
1299 if (ret)
1300 goto cleanup;
1301 }
1302 qtd->urb = urb;
1303 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1304 list_add_tail(&qtd->qtd_list, head);
1305 }
1306
1307 /* unless the bulk/interrupt caller wants a chance to clean
1308 * up after short reads, hc should advance qh past this urb
1309 */
1310 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1311 || usb_pipecontrol(urb->pipe)))
1312 qtd->hw_alt_next = EHCI_LIST_END;
1313
1314 /*
1315 * control requests may need a terminating data "status" ack;
1316 * bulk ones may need a terminating short packet (zero length).
1317 */
1318 if (likely(urb->transfer_buffer_length != 0)) {
1319 int one_more = 0;
1320
1321 if (usb_pipecontrol(urb->pipe)) {
1322 one_more = 1;
1323 token ^= 0x0100; /* "in" <--> "out" */
1324 token |= QTD_TOGGLE; /* force DATA1 */
1325 } else if (usb_pipebulk(urb->pipe)
1326 && (urb->transfer_flags & URB_ZERO_PACKET)
1327 && !(urb->transfer_buffer_length % maxpacket)) {
1328 one_more = 1;
1329 }
1330 if (one_more) {
1331 qtd_prev = qtd;
1332 qtd = ehci_qtd_alloc(oxu);
1333 if (unlikely(!qtd))
1334 goto cleanup;
1335 qtd->urb = urb;
1336 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1337 list_add_tail(&qtd->qtd_list, head);
1338
1339 /* never any data in such packets */
1340 qtd_fill(qtd, 0, 0, token, 0);
1341 }
1342 }
1343
1344 /* by default, enable interrupt on urb completion */
1345 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1346 return head;
1347
1348 cleanup:
1349 qtd_list_free(oxu, urb, head);
1350 return NULL;
1351 }
1352
1353 /* Each QH holds a qtd list; a QH is used for everything except iso.
1354 *
1355 * For interrupt urbs, the scheduler must set the microframe scheduling
1356 * mask(s) each time the QH gets scheduled. For highspeed, that's
1357 * just one microframe in the s-mask. For split interrupt transactions
1358 * there are additional complications: c-mask, maybe FSTNs.
1359 */
1360 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1361 struct urb *urb, gfp_t flags)
1362 {
1363 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1364 u32 info1 = 0, info2 = 0;
1365 int is_input, type;
1366 int maxp = 0;
1367
1368 if (!qh)
1369 return qh;
1370
1371 /*
1372 * init endpoint/device data for this QH
1373 */
1374 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1375 info1 |= usb_pipedevice(urb->pipe) << 0;
1376
1377 is_input = usb_pipein(urb->pipe);
1378 type = usb_pipetype(urb->pipe);
1379 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1380
1381 /* Compute interrupt scheduling parameters just once, and save.
1382 * - allowing for high bandwidth, how many nsec/uframe are used?
1383 * - split transactions need a second CSPLIT uframe; same question
1384 * - splits also need a schedule gap (for full/low speed I/O)
1385 * - qh has a polling interval
1386 *
1387 * For control/bulk requests, the HC or TT handles these.
1388 */
1389 if (type == PIPE_INTERRUPT) {
1390 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1391 is_input, 0,
1392 hb_mult(maxp) * max_packet(maxp)));
1393 qh->start = NO_FRAME;
1394
1395 if (urb->dev->speed == USB_SPEED_HIGH) {
1396 qh->c_usecs = 0;
1397 qh->gap_uf = 0;
1398
1399 qh->period = urb->interval >> 3;
1400 if (qh->period == 0 && urb->interval != 1) {
1401 /* NOTE interval 2 or 4 uframes could work.
1402 * But interval 1 scheduling is simpler, and
1403 * includes high bandwidth.
1404 */
1405 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1406 urb->interval);
1407 goto done;
1408 }
1409 } else {
1410 struct usb_tt *tt = urb->dev->tt;
1411 int think_time;
1412
1413 /* gap is f(FS/LS transfer times) */
1414 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1415 is_input, 0, maxp) / (125 * 1000);
1416
1417 /* FIXME this just approximates SPLIT/CSPLIT times */
1418 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1419 qh->c_usecs = qh->usecs + HS_USECS(0);
1420 qh->usecs = HS_USECS(1);
1421 } else { /* SPLIT+DATA, gap, CSPLIT */
1422 qh->usecs += HS_USECS(1);
1423 qh->c_usecs = HS_USECS(0);
1424 }
1425
1426 think_time = tt ? tt->think_time : 0;
1427 qh->tt_usecs = NS_TO_US(think_time +
1428 usb_calc_bus_time(urb->dev->speed,
1429 is_input, 0, max_packet(maxp)));
1430 qh->period = urb->interval;
1431 }
1432 }
1433
1434 /* support for tt scheduling, and access to toggles */
1435 qh->dev = urb->dev;
1436
1437 /* using TT? */
1438 switch (urb->dev->speed) {
1439 case USB_SPEED_LOW:
1440 info1 |= (1 << 12); /* EPS "low" */
1441 /* FALL THROUGH */
1442
1443 case USB_SPEED_FULL:
1444 /* EPS 0 means "full" */
1445 if (type != PIPE_INTERRUPT)
1446 info1 |= (EHCI_TUNE_RL_TT << 28);
1447 if (type == PIPE_CONTROL) {
1448 info1 |= (1 << 27); /* for TT */
1449 info1 |= 1 << 14; /* toggle from qtd */
1450 }
1451 info1 |= maxp << 16;
1452
1453 info2 |= (EHCI_TUNE_MULT_TT << 30);
1454 info2 |= urb->dev->ttport << 23;
1455
1456 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1457
1458 break;
1459
1460 case USB_SPEED_HIGH: /* no TT involved */
1461 info1 |= (2 << 12); /* EPS "high" */
1462 if (type == PIPE_CONTROL) {
1463 info1 |= (EHCI_TUNE_RL_HS << 28);
1464 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1465 info1 |= 1 << 14; /* toggle from qtd */
1466 info2 |= (EHCI_TUNE_MULT_HS << 30);
1467 } else if (type == PIPE_BULK) {
1468 info1 |= (EHCI_TUNE_RL_HS << 28);
1469 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1470 info2 |= (EHCI_TUNE_MULT_HS << 30);
1471 } else { /* PIPE_INTERRUPT */
1472 info1 |= max_packet(maxp) << 16;
1473 info2 |= hb_mult(maxp) << 30;
1474 }
1475 break;
1476 default:
1477 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1478 done:
1479 qh_put(qh);
1480 return NULL;
1481 }
1482
1483 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1484
1485 /* init as live, toggle clear, advance to dummy */
1486 qh->qh_state = QH_STATE_IDLE;
1487 qh->hw_info1 = cpu_to_le32(info1);
1488 qh->hw_info2 = cpu_to_le32(info2);
1489 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1490 qh_refresh(oxu, qh);
1491 return qh;
1492 }
1493
1494 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1495 */
1496 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1497 {
1498 __le32 dma = QH_NEXT(qh->qh_dma);
1499 struct ehci_qh *head;
1500
1501 /* (re)start the async schedule? */
1502 head = oxu->async;
1503 timer_action_done(oxu, TIMER_ASYNC_OFF);
1504 if (!head->qh_next.qh) {
1505 u32 cmd = readl(&oxu->regs->command);
1506
1507 if (!(cmd & CMD_ASE)) {
1508 /* in case a clear of CMD_ASE didn't take yet */
1509 (void)handshake(oxu, &oxu->regs->status,
1510 STS_ASS, 0, 150);
1511 cmd |= CMD_ASE | CMD_RUN;
1512 writel(cmd, &oxu->regs->command);
1513 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1514 /* posted write need not be known to HC yet ... */
1515 }
1516 }
1517
1518 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1519 if (qh->qh_state == QH_STATE_IDLE)
1520 qh_refresh(oxu, qh);
1521
1522 /* splice right after start */
1523 qh->qh_next = head->qh_next;
1524 qh->hw_next = head->hw_next;
1525 wmb();
1526
1527 head->qh_next.qh = qh;
1528 head->hw_next = dma;
1529
1530 qh->qh_state = QH_STATE_LINKED;
1531 /* qtd completions reported later by interrupt */
1532 }
1533
1534 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1535
1536 /*
1537 * For control/bulk/interrupt, return QH with these TDs appended.
1538 * Allocates and initializes the QH if necessary.
1539 * Returns null if it can't allocate a QH it needs to.
1540 * If the QH has TDs (urbs) already, that's great.
1541 */
1542 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1543 struct urb *urb, struct list_head *qtd_list,
1544 int epnum, void **ptr)
1545 {
1546 struct ehci_qh *qh = NULL;
1547
1548 qh = (struct ehci_qh *) *ptr;
1549 if (unlikely(qh == NULL)) {
1550 /* can't sleep here, we have oxu->lock... */
1551 qh = qh_make(oxu, urb, GFP_ATOMIC);
1552 *ptr = qh;
1553 }
1554 if (likely(qh != NULL)) {
1555 struct ehci_qtd *qtd;
1556
1557 if (unlikely(list_empty(qtd_list)))
1558 qtd = NULL;
1559 else
1560 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1561 qtd_list);
1562
1563 /* control qh may need patching ... */
1564 if (unlikely(epnum == 0)) {
1565
1566 /* usb_reset_device() briefly reverts to address 0 */
1567 if (usb_pipedevice(urb->pipe) == 0)
1568 qh->hw_info1 &= ~QH_ADDR_MASK;
1569 }
1570
1571 /* just one way to queue requests: swap with the dummy qtd.
1572 * only hc or qh_refresh() ever modify the overlay.
1573 */
1574 if (likely(qtd != NULL)) {
1575 struct ehci_qtd *dummy;
1576 dma_addr_t dma;
1577 __le32 token;
1578
1579 /* to avoid racing the HC, use the dummy td instead of
1580 * the first td of our list (becomes new dummy). both
1581 * tds stay deactivated until we're done, when the
1582 * HC is allowed to fetch the old dummy (4.10.2).
1583 */
1584 token = qtd->hw_token;
1585 qtd->hw_token = HALT_BIT;
1586 wmb();
1587 dummy = qh->dummy;
1588
1589 dma = dummy->qtd_dma;
1590 *dummy = *qtd;
1591 dummy->qtd_dma = dma;
1592
1593 list_del(&qtd->qtd_list);
1594 list_add(&dummy->qtd_list, qtd_list);
1595 list_splice(qtd_list, qh->qtd_list.prev);
1596
1597 ehci_qtd_init(qtd, qtd->qtd_dma);
1598 qh->dummy = qtd;
1599
1600 /* hc must see the new dummy at list end */
1601 dma = qtd->qtd_dma;
1602 qtd = list_entry(qh->qtd_list.prev,
1603 struct ehci_qtd, qtd_list);
1604 qtd->hw_next = QTD_NEXT(dma);
1605
1606 /* let the hc process these next qtds */
1607 dummy->hw_token = (token & ~(0x80));
1608 wmb();
1609 dummy->hw_token = token;
1610
1611 urb->hcpriv = qh_get(qh);
1612 }
1613 }
1614 return qh;
1615 }
1616
1617 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
1618 struct list_head *qtd_list, gfp_t mem_flags)
1619 {
1620 struct ehci_qtd *qtd;
1621 int epnum;
1622 unsigned long flags;
1623 struct ehci_qh *qh = NULL;
1624 int rc = 0;
1625
1626 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1627 epnum = urb->ep->desc.bEndpointAddress;
1628
1629 #ifdef OXU_URB_TRACE
1630 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1631 __func__, urb->dev->devpath, urb,
1632 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1633 urb->transfer_buffer_length,
1634 qtd, urb->ep->hcpriv);
1635 #endif
1636
1637 spin_lock_irqsave(&oxu->lock, flags);
1638 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1639 rc = -ESHUTDOWN;
1640 goto done;
1641 }
1642
1643 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1644 if (unlikely(qh == NULL)) {
1645 rc = -ENOMEM;
1646 goto done;
1647 }
1648
1649 /* Control/bulk operations through TTs don't need scheduling,
1650 * the HC and TT handle it when the TT has a buffer ready.
1651 */
1652 if (likely(qh->qh_state == QH_STATE_IDLE))
1653 qh_link_async(oxu, qh_get(qh));
1654 done:
1655 spin_unlock_irqrestore(&oxu->lock, flags);
1656 if (unlikely(qh == NULL))
1657 qtd_list_free(oxu, urb, qtd_list);
1658 return rc;
1659 }
1660
1661 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1662
1663 static void end_unlink_async(struct oxu_hcd *oxu)
1664 {
1665 struct ehci_qh *qh = oxu->reclaim;
1666 struct ehci_qh *next;
1667
1668 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1669
1670 qh->qh_state = QH_STATE_IDLE;
1671 qh->qh_next.qh = NULL;
1672 qh_put(qh); /* refcount from reclaim */
1673
1674 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1675 next = qh->reclaim;
1676 oxu->reclaim = next;
1677 oxu->reclaim_ready = 0;
1678 qh->reclaim = NULL;
1679
1680 qh_completions(oxu, qh);
1681
1682 if (!list_empty(&qh->qtd_list)
1683 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1684 qh_link_async(oxu, qh);
1685 else {
1686 qh_put(qh); /* refcount from async list */
1687
1688 /* it's not free to turn the async schedule on/off; leave it
1689 * active but idle for a while once it empties.
1690 */
1691 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1692 && oxu->async->qh_next.qh == NULL)
1693 timer_action(oxu, TIMER_ASYNC_OFF);
1694 }
1695
1696 if (next) {
1697 oxu->reclaim = NULL;
1698 start_unlink_async(oxu, next);
1699 }
1700 }
1701
1702 /* makes sure the async qh will become idle */
1703 /* caller must own oxu->lock */
1704
1705 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1706 {
1707 int cmd = readl(&oxu->regs->command);
1708 struct ehci_qh *prev;
1709
1710 #ifdef DEBUG
1711 assert_spin_locked(&oxu->lock);
1712 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1713 && qh->qh_state != QH_STATE_UNLINK_WAIT))
1714 BUG();
1715 #endif
1716
1717 /* stop async schedule right now? */
1718 if (unlikely(qh == oxu->async)) {
1719 /* can't get here without STS_ASS set */
1720 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1721 && !oxu->reclaim) {
1722 /* ... and CMD_IAAD clear */
1723 writel(cmd & ~CMD_ASE, &oxu->regs->command);
1724 wmb();
1725 /* handshake later, if we need to */
1726 timer_action_done(oxu, TIMER_ASYNC_OFF);
1727 }
1728 return;
1729 }
1730
1731 qh->qh_state = QH_STATE_UNLINK;
1732 oxu->reclaim = qh = qh_get(qh);
1733
1734 prev = oxu->async;
1735 while (prev->qh_next.qh != qh)
1736 prev = prev->qh_next.qh;
1737
1738 prev->hw_next = qh->hw_next;
1739 prev->qh_next = qh->qh_next;
1740 wmb();
1741
1742 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1743 /* if (unlikely(qh->reclaim != 0))
1744 * this will recurse, probably not much
1745 */
1746 end_unlink_async(oxu);
1747 return;
1748 }
1749
1750 oxu->reclaim_ready = 0;
1751 cmd |= CMD_IAAD;
1752 writel(cmd, &oxu->regs->command);
1753 (void) readl(&oxu->regs->command);
1754 timer_action(oxu, TIMER_IAA_WATCHDOG);
1755 }
1756
1757 static void scan_async(struct oxu_hcd *oxu)
1758 {
1759 struct ehci_qh *qh;
1760 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1761
1762 if (!++(oxu->stamp))
1763 oxu->stamp++;
1764 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1765 rescan:
1766 qh = oxu->async->qh_next.qh;
1767 if (likely(qh != NULL)) {
1768 do {
1769 /* clean any finished work for this qh */
1770 if (!list_empty(&qh->qtd_list)
1771 && qh->stamp != oxu->stamp) {
1772 int temp;
1773
1774 /* unlinks could happen here; completion
1775 * reporting drops the lock. rescan using
1776 * the latest schedule, but don't rescan
1777 * qhs we already finished (no looping).
1778 */
1779 qh = qh_get(qh);
1780 qh->stamp = oxu->stamp;
1781 temp = qh_completions(oxu, qh);
1782 qh_put(qh);
1783 if (temp != 0)
1784 goto rescan;
1785 }
1786
1787 /* unlink idle entries, reducing HC PCI usage as well
1788 * as HCD schedule-scanning costs. delay for any qh
1789 * we just scanned, there's a not-unusual case that it
1790 * doesn't stay idle for long.
1791 * (plus, avoids some kind of re-activation race.)
1792 */
1793 if (list_empty(&qh->qtd_list)) {
1794 if (qh->stamp == oxu->stamp)
1795 action = TIMER_ASYNC_SHRINK;
1796 else if (!oxu->reclaim
1797 && qh->qh_state == QH_STATE_LINKED)
1798 start_unlink_async(oxu, qh);
1799 }
1800
1801 qh = qh->qh_next.qh;
1802 } while (qh);
1803 }
1804 if (action == TIMER_ASYNC_SHRINK)
1805 timer_action(oxu, TIMER_ASYNC_SHRINK);
1806 }
1807
1808 /*
1809 * periodic_next_shadow - return "next" pointer on shadow list
1810 * @periodic: host pointer to qh/itd/sitd
1811 * @tag: hardware tag for type of this record
1812 */
1813 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1814 __le32 tag)
1815 {
1816 switch (tag) {
1817 default:
1818 case Q_TYPE_QH:
1819 return &periodic->qh->qh_next;
1820 }
1821 }
1822
1823 /* caller must hold oxu->lock */
1824 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1825 {
1826 union ehci_shadow *prev_p = &oxu->pshadow[frame];
1827 __le32 *hw_p = &oxu->periodic[frame];
1828 union ehci_shadow here = *prev_p;
1829
1830 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1831 while (here.ptr && here.ptr != ptr) {
1832 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1833 hw_p = here.hw_next;
1834 here = *prev_p;
1835 }
1836 /* an interrupt entry (at list end) could have been shared */
1837 if (!here.ptr)
1838 return;
1839
1840 /* update shadow and hardware lists ... the old "next" pointers
1841 * from ptr may still be in use, the caller updates them.
1842 */
1843 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1844 *hw_p = *here.hw_next;
1845 }
1846
1847 /* how many of the uframe's 125 usecs are allocated? */
1848 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1849 unsigned frame, unsigned uframe)
1850 {
1851 __le32 *hw_p = &oxu->periodic[frame];
1852 union ehci_shadow *q = &oxu->pshadow[frame];
1853 unsigned usecs = 0;
1854
1855 while (q->ptr) {
1856 switch (Q_NEXT_TYPE(*hw_p)) {
1857 case Q_TYPE_QH:
1858 default:
1859 /* is it in the S-mask? */
1860 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1861 usecs += q->qh->usecs;
1862 /* ... or C-mask? */
1863 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1864 usecs += q->qh->c_usecs;
1865 hw_p = &q->qh->hw_next;
1866 q = &q->qh->qh_next;
1867 break;
1868 }
1869 }
1870 #ifdef DEBUG
1871 if (usecs > 100)
1872 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1873 frame * 8 + uframe, usecs);
1874 #endif
1875 return usecs;
1876 }
1877
1878 static int enable_periodic(struct oxu_hcd *oxu)
1879 {
1880 u32 cmd;
1881 int status;
1882
1883 /* did clearing PSE did take effect yet?
1884 * takes effect only at frame boundaries...
1885 */
1886 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1887 if (status != 0) {
1888 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1889 usb_hc_died(oxu_to_hcd(oxu));
1890 return status;
1891 }
1892
1893 cmd = readl(&oxu->regs->command) | CMD_PSE;
1894 writel(cmd, &oxu->regs->command);
1895 /* posted write ... PSS happens later */
1896 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1897
1898 /* make sure ehci_work scans these */
1899 oxu->next_uframe = readl(&oxu->regs->frame_index)
1900 % (oxu->periodic_size << 3);
1901 return 0;
1902 }
1903
1904 static int disable_periodic(struct oxu_hcd *oxu)
1905 {
1906 u32 cmd;
1907 int status;
1908
1909 /* did setting PSE not take effect yet?
1910 * takes effect only at frame boundaries...
1911 */
1912 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1913 if (status != 0) {
1914 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1915 usb_hc_died(oxu_to_hcd(oxu));
1916 return status;
1917 }
1918
1919 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1920 writel(cmd, &oxu->regs->command);
1921 /* posted write ... */
1922
1923 oxu->next_uframe = -1;
1924 return 0;
1925 }
1926
1927 /* periodic schedule slots have iso tds (normal or split) first, then a
1928 * sparse tree for active interrupt transfers.
1929 *
1930 * this just links in a qh; caller guarantees uframe masks are set right.
1931 * no FSTN support (yet; oxu 0.96+)
1932 */
1933 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1934 {
1935 unsigned i;
1936 unsigned period = qh->period;
1937
1938 dev_dbg(&qh->dev->dev,
1939 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1940 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1941 qh, qh->start, qh->usecs, qh->c_usecs);
1942
1943 /* high bandwidth, or otherwise every microframe */
1944 if (period == 0)
1945 period = 1;
1946
1947 for (i = qh->start; i < oxu->periodic_size; i += period) {
1948 union ehci_shadow *prev = &oxu->pshadow[i];
1949 __le32 *hw_p = &oxu->periodic[i];
1950 union ehci_shadow here = *prev;
1951 __le32 type = 0;
1952
1953 /* skip the iso nodes at list head */
1954 while (here.ptr) {
1955 type = Q_NEXT_TYPE(*hw_p);
1956 if (type == Q_TYPE_QH)
1957 break;
1958 prev = periodic_next_shadow(prev, type);
1959 hw_p = &here.qh->hw_next;
1960 here = *prev;
1961 }
1962
1963 /* sorting each branch by period (slow-->fast)
1964 * enables sharing interior tree nodes
1965 */
1966 while (here.ptr && qh != here.qh) {
1967 if (qh->period > here.qh->period)
1968 break;
1969 prev = &here.qh->qh_next;
1970 hw_p = &here.qh->hw_next;
1971 here = *prev;
1972 }
1973 /* link in this qh, unless some earlier pass did that */
1974 if (qh != here.qh) {
1975 qh->qh_next = here;
1976 if (here.qh)
1977 qh->hw_next = *hw_p;
1978 wmb();
1979 prev->qh = qh;
1980 *hw_p = QH_NEXT(qh->qh_dma);
1981 }
1982 }
1983 qh->qh_state = QH_STATE_LINKED;
1984 qh_get(qh);
1985
1986 /* update per-qh bandwidth for usbfs */
1987 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1988 ? ((qh->usecs + qh->c_usecs) / qh->period)
1989 : (qh->usecs * 8);
1990
1991 /* maybe enable periodic schedule processing */
1992 if (!oxu->periodic_sched++)
1993 return enable_periodic(oxu);
1994
1995 return 0;
1996 }
1997
1998 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1999 {
2000 unsigned i;
2001 unsigned period;
2002
2003 /* FIXME:
2004 * IF this isn't high speed
2005 * and this qh is active in the current uframe
2006 * (and overlay token SplitXstate is false?)
2007 * THEN
2008 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2009 */
2010
2011 /* high bandwidth, or otherwise part of every microframe */
2012 period = qh->period;
2013 if (period == 0)
2014 period = 1;
2015
2016 for (i = qh->start; i < oxu->periodic_size; i += period)
2017 periodic_unlink(oxu, i, qh);
2018
2019 /* update per-qh bandwidth for usbfs */
2020 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2021 ? ((qh->usecs + qh->c_usecs) / qh->period)
2022 : (qh->usecs * 8);
2023
2024 dev_dbg(&qh->dev->dev,
2025 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2026 qh->period,
2027 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2028 qh, qh->start, qh->usecs, qh->c_usecs);
2029
2030 /* qh->qh_next still "live" to HC */
2031 qh->qh_state = QH_STATE_UNLINK;
2032 qh->qh_next.ptr = NULL;
2033 qh_put(qh);
2034
2035 /* maybe turn off periodic schedule */
2036 oxu->periodic_sched--;
2037 if (!oxu->periodic_sched)
2038 (void) disable_periodic(oxu);
2039 }
2040
2041 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2042 {
2043 unsigned wait;
2044
2045 qh_unlink_periodic(oxu, qh);
2046
2047 /* simple/paranoid: always delay, expecting the HC needs to read
2048 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2049 * expect hub_wq to clean up after any CSPLITs we won't issue.
2050 * active high speed queues may need bigger delays...
2051 */
2052 if (list_empty(&qh->qtd_list)
2053 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2054 wait = 2;
2055 else
2056 wait = 55; /* worst case: 3 * 1024 */
2057
2058 udelay(wait);
2059 qh->qh_state = QH_STATE_IDLE;
2060 qh->hw_next = EHCI_LIST_END;
2061 wmb();
2062 }
2063
2064 static int check_period(struct oxu_hcd *oxu,
2065 unsigned frame, unsigned uframe,
2066 unsigned period, unsigned usecs)
2067 {
2068 int claimed;
2069
2070 /* complete split running into next frame?
2071 * given FSTN support, we could sometimes check...
2072 */
2073 if (uframe >= 8)
2074 return 0;
2075
2076 /*
2077 * 80% periodic == 100 usec/uframe available
2078 * convert "usecs we need" to "max already claimed"
2079 */
2080 usecs = 100 - usecs;
2081
2082 /* we "know" 2 and 4 uframe intervals were rejected; so
2083 * for period 0, check _every_ microframe in the schedule.
2084 */
2085 if (unlikely(period == 0)) {
2086 do {
2087 for (uframe = 0; uframe < 7; uframe++) {
2088 claimed = periodic_usecs(oxu, frame, uframe);
2089 if (claimed > usecs)
2090 return 0;
2091 }
2092 } while ((frame += 1) < oxu->periodic_size);
2093
2094 /* just check the specified uframe, at that period */
2095 } else {
2096 do {
2097 claimed = periodic_usecs(oxu, frame, uframe);
2098 if (claimed > usecs)
2099 return 0;
2100 } while ((frame += period) < oxu->periodic_size);
2101 }
2102
2103 return 1;
2104 }
2105
2106 static int check_intr_schedule(struct oxu_hcd *oxu,
2107 unsigned frame, unsigned uframe,
2108 const struct ehci_qh *qh, __le32 *c_maskp)
2109 {
2110 int retval = -ENOSPC;
2111
2112 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2113 goto done;
2114
2115 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2116 goto done;
2117 if (!qh->c_usecs) {
2118 retval = 0;
2119 *c_maskp = 0;
2120 goto done;
2121 }
2122
2123 done:
2124 return retval;
2125 }
2126
2127 /* "first fit" scheduling policy used the first time through,
2128 * or when the previous schedule slot can't be re-used.
2129 */
2130 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2131 {
2132 int status;
2133 unsigned uframe;
2134 __le32 c_mask;
2135 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2136
2137 qh_refresh(oxu, qh);
2138 qh->hw_next = EHCI_LIST_END;
2139 frame = qh->start;
2140
2141 /* reuse the previous schedule slots, if we can */
2142 if (frame < qh->period) {
2143 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2144 status = check_intr_schedule(oxu, frame, --uframe,
2145 qh, &c_mask);
2146 } else {
2147 uframe = 0;
2148 c_mask = 0;
2149 status = -ENOSPC;
2150 }
2151
2152 /* else scan the schedule to find a group of slots such that all
2153 * uframes have enough periodic bandwidth available.
2154 */
2155 if (status) {
2156 /* "normal" case, uframing flexible except with splits */
2157 if (qh->period) {
2158 frame = qh->period - 1;
2159 do {
2160 for (uframe = 0; uframe < 8; uframe++) {
2161 status = check_intr_schedule(oxu,
2162 frame, uframe, qh,
2163 &c_mask);
2164 if (status == 0)
2165 break;
2166 }
2167 } while (status && frame--);
2168
2169 /* qh->period == 0 means every uframe */
2170 } else {
2171 frame = 0;
2172 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2173 }
2174 if (status)
2175 goto done;
2176 qh->start = frame;
2177
2178 /* reset S-frame and (maybe) C-frame masks */
2179 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2180 qh->hw_info2 |= qh->period
2181 ? cpu_to_le32(1 << uframe)
2182 : cpu_to_le32(QH_SMASK);
2183 qh->hw_info2 |= c_mask;
2184 } else
2185 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2186
2187 /* stuff into the periodic schedule */
2188 status = qh_link_periodic(oxu, qh);
2189 done:
2190 return status;
2191 }
2192
2193 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2194 struct list_head *qtd_list, gfp_t mem_flags)
2195 {
2196 unsigned epnum;
2197 unsigned long flags;
2198 struct ehci_qh *qh;
2199 int status = 0;
2200 struct list_head empty;
2201
2202 /* get endpoint and transfer/schedule data */
2203 epnum = urb->ep->desc.bEndpointAddress;
2204
2205 spin_lock_irqsave(&oxu->lock, flags);
2206
2207 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2208 status = -ESHUTDOWN;
2209 goto done;
2210 }
2211
2212 /* get qh and force any scheduling errors */
2213 INIT_LIST_HEAD(&empty);
2214 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2215 if (qh == NULL) {
2216 status = -ENOMEM;
2217 goto done;
2218 }
2219 if (qh->qh_state == QH_STATE_IDLE) {
2220 status = qh_schedule(oxu, qh);
2221 if (status != 0)
2222 goto done;
2223 }
2224
2225 /* then queue the urb's tds to the qh */
2226 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2227 BUG_ON(qh == NULL);
2228
2229 /* ... update usbfs periodic stats */
2230 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2231
2232 done:
2233 spin_unlock_irqrestore(&oxu->lock, flags);
2234 if (status)
2235 qtd_list_free(oxu, urb, qtd_list);
2236
2237 return status;
2238 }
2239
2240 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2241 gfp_t mem_flags)
2242 {
2243 oxu_dbg(oxu, "iso support is missing!\n");
2244 return -ENOSYS;
2245 }
2246
2247 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2248 gfp_t mem_flags)
2249 {
2250 oxu_dbg(oxu, "split iso support is missing!\n");
2251 return -ENOSYS;
2252 }
2253
2254 static void scan_periodic(struct oxu_hcd *oxu)
2255 {
2256 unsigned frame, clock, now_uframe, mod;
2257 unsigned modified;
2258
2259 mod = oxu->periodic_size << 3;
2260
2261 /*
2262 * When running, scan from last scan point up to "now"
2263 * else clean up by scanning everything that's left.
2264 * Touches as few pages as possible: cache-friendly.
2265 */
2266 now_uframe = oxu->next_uframe;
2267 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2268 clock = readl(&oxu->regs->frame_index);
2269 else
2270 clock = now_uframe + mod - 1;
2271 clock %= mod;
2272
2273 for (;;) {
2274 union ehci_shadow q, *q_p;
2275 __le32 type, *hw_p;
2276 unsigned uframes;
2277
2278 /* don't scan past the live uframe */
2279 frame = now_uframe >> 3;
2280 if (frame == (clock >> 3))
2281 uframes = now_uframe & 0x07;
2282 else {
2283 /* safe to scan the whole frame at once */
2284 now_uframe |= 0x07;
2285 uframes = 8;
2286 }
2287
2288 restart:
2289 /* scan each element in frame's queue for completions */
2290 q_p = &oxu->pshadow[frame];
2291 hw_p = &oxu->periodic[frame];
2292 q.ptr = q_p->ptr;
2293 type = Q_NEXT_TYPE(*hw_p);
2294 modified = 0;
2295
2296 while (q.ptr != NULL) {
2297 union ehci_shadow temp;
2298 int live;
2299
2300 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2301 switch (type) {
2302 case Q_TYPE_QH:
2303 /* handle any completions */
2304 temp.qh = qh_get(q.qh);
2305 type = Q_NEXT_TYPE(q.qh->hw_next);
2306 q = q.qh->qh_next;
2307 modified = qh_completions(oxu, temp.qh);
2308 if (unlikely(list_empty(&temp.qh->qtd_list)))
2309 intr_deschedule(oxu, temp.qh);
2310 qh_put(temp.qh);
2311 break;
2312 default:
2313 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2314 type, frame, q.ptr);
2315 q.ptr = NULL;
2316 }
2317
2318 /* assume completion callbacks modify the queue */
2319 if (unlikely(modified))
2320 goto restart;
2321 }
2322
2323 /* Stop when we catch up to the HC */
2324
2325 /* FIXME: this assumes we won't get lapped when
2326 * latencies climb; that should be rare, but...
2327 * detect it, and just go all the way around.
2328 * FLR might help detect this case, so long as latencies
2329 * don't exceed periodic_size msec (default 1.024 sec).
2330 */
2331
2332 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2333
2334 if (now_uframe == clock) {
2335 unsigned now;
2336
2337 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2338 break;
2339 oxu->next_uframe = now_uframe;
2340 now = readl(&oxu->regs->frame_index) % mod;
2341 if (now_uframe == now)
2342 break;
2343
2344 /* rescan the rest of this frame, then ... */
2345 clock = now;
2346 } else {
2347 now_uframe++;
2348 now_uframe %= mod;
2349 }
2350 }
2351 }
2352
2353 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2354 * The firmware seems to think that powering off is a wakeup event!
2355 * This routine turns off remote wakeup and everything else, on all ports.
2356 */
2357 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2358 {
2359 int port = HCS_N_PORTS(oxu->hcs_params);
2360
2361 while (port--)
2362 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2363 }
2364
2365 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2366 {
2367 unsigned port;
2368
2369 if (!HCS_PPC(oxu->hcs_params))
2370 return;
2371
2372 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2373 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2374 (void) oxu_hub_control(oxu_to_hcd(oxu),
2375 is_on ? SetPortFeature : ClearPortFeature,
2376 USB_PORT_FEAT_POWER,
2377 port--, NULL, 0);
2378 msleep(20);
2379 }
2380
2381 /* Called from some interrupts, timers, and so on.
2382 * It calls driver completion functions, after dropping oxu->lock.
2383 */
2384 static void ehci_work(struct oxu_hcd *oxu)
2385 {
2386 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2387 if (oxu->reclaim_ready)
2388 end_unlink_async(oxu);
2389
2390 /* another CPU may drop oxu->lock during a schedule scan while
2391 * it reports urb completions. this flag guards against bogus
2392 * attempts at re-entrant schedule scanning.
2393 */
2394 if (oxu->scanning)
2395 return;
2396 oxu->scanning = 1;
2397 scan_async(oxu);
2398 if (oxu->next_uframe != -1)
2399 scan_periodic(oxu);
2400 oxu->scanning = 0;
2401
2402 /* the IO watchdog guards against hardware or driver bugs that
2403 * misplace IRQs, and should let us run completely without IRQs.
2404 * such lossage has been observed on both VT6202 and VT8235.
2405 */
2406 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2407 (oxu->async->qh_next.ptr != NULL ||
2408 oxu->periodic_sched != 0))
2409 timer_action(oxu, TIMER_IO_WATCHDOG);
2410 }
2411
2412 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2413 {
2414 /* if we need to use IAA and it's busy, defer */
2415 if (qh->qh_state == QH_STATE_LINKED
2416 && oxu->reclaim
2417 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2418 struct ehci_qh *last;
2419
2420 for (last = oxu->reclaim;
2421 last->reclaim;
2422 last = last->reclaim)
2423 continue;
2424 qh->qh_state = QH_STATE_UNLINK_WAIT;
2425 last->reclaim = qh;
2426
2427 /* bypass IAA if the hc can't care */
2428 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2429 end_unlink_async(oxu);
2430
2431 /* something else might have unlinked the qh by now */
2432 if (qh->qh_state == QH_STATE_LINKED)
2433 start_unlink_async(oxu, qh);
2434 }
2435
2436 /*
2437 * USB host controller methods
2438 */
2439
2440 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2441 {
2442 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2443 u32 status, pcd_status = 0;
2444 int bh;
2445
2446 spin_lock(&oxu->lock);
2447
2448 status = readl(&oxu->regs->status);
2449
2450 /* e.g. cardbus physical eject */
2451 if (status == ~(u32) 0) {
2452 oxu_dbg(oxu, "device removed\n");
2453 goto dead;
2454 }
2455
2456 /* Shared IRQ? */
2457 status &= INTR_MASK;
2458 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2459 spin_unlock(&oxu->lock);
2460 return IRQ_NONE;
2461 }
2462
2463 /* clear (just) interrupts */
2464 writel(status, &oxu->regs->status);
2465 readl(&oxu->regs->command); /* unblock posted write */
2466 bh = 0;
2467
2468 #ifdef OXU_VERBOSE_DEBUG
2469 /* unrequested/ignored: Frame List Rollover */
2470 dbg_status(oxu, "irq", status);
2471 #endif
2472
2473 /* INT, ERR, and IAA interrupt rates can be throttled */
2474
2475 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2476 if (likely((status & (STS_INT|STS_ERR)) != 0))
2477 bh = 1;
2478
2479 /* complete the unlinking of some qh [4.15.2.3] */
2480 if (status & STS_IAA) {
2481 oxu->reclaim_ready = 1;
2482 bh = 1;
2483 }
2484
2485 /* remote wakeup [4.3.1] */
2486 if (status & STS_PCD) {
2487 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2488 pcd_status = status;
2489
2490 /* resume root hub? */
2491 if (!(readl(&oxu->regs->command) & CMD_RUN))
2492 usb_hcd_resume_root_hub(hcd);
2493
2494 while (i--) {
2495 int pstatus = readl(&oxu->regs->port_status[i]);
2496
2497 if (pstatus & PORT_OWNER)
2498 continue;
2499 if (!(pstatus & PORT_RESUME)
2500 || oxu->reset_done[i] != 0)
2501 continue;
2502
2503 /* start USB_RESUME_TIMEOUT resume signaling from this
2504 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2505 * stop that signaling.
2506 */
2507 oxu->reset_done[i] = jiffies +
2508 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2509 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2510 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2511 }
2512 }
2513
2514 /* PCI errors [4.15.2.4] */
2515 if (unlikely((status & STS_FATAL) != 0)) {
2516 /* bogus "fatal" IRQs appear on some chips... why? */
2517 status = readl(&oxu->regs->status);
2518 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2519 dbg_status(oxu, "fatal", status);
2520 if (status & STS_HALT) {
2521 oxu_err(oxu, "fatal error\n");
2522 dead:
2523 ehci_reset(oxu);
2524 writel(0, &oxu->regs->configured_flag);
2525 usb_hc_died(hcd);
2526 /* generic layer kills/unlinks all urbs, then
2527 * uses oxu_stop to clean up the rest
2528 */
2529 bh = 1;
2530 }
2531 }
2532
2533 if (bh)
2534 ehci_work(oxu);
2535 spin_unlock(&oxu->lock);
2536 if (pcd_status & STS_PCD)
2537 usb_hcd_poll_rh_status(hcd);
2538 return IRQ_HANDLED;
2539 }
2540
2541 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2542 {
2543 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2544 int ret = IRQ_HANDLED;
2545
2546 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2547 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2548
2549 /* Disable all interrupt */
2550 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2551
2552 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2553 (!oxu->is_otg && (status & OXU_USBSPHI)))
2554 oxu210_hcd_irq(hcd);
2555 else
2556 ret = IRQ_NONE;
2557
2558 /* Enable all interrupt back */
2559 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2560
2561 return ret;
2562 }
2563
2564 static void oxu_watchdog(unsigned long param)
2565 {
2566 struct oxu_hcd *oxu = (struct oxu_hcd *) param;
2567 unsigned long flags;
2568
2569 spin_lock_irqsave(&oxu->lock, flags);
2570
2571 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2572 if (oxu->reclaim) {
2573 u32 status = readl(&oxu->regs->status);
2574 if (status & STS_IAA) {
2575 oxu_vdbg(oxu, "lost IAA\n");
2576 writel(STS_IAA, &oxu->regs->status);
2577 oxu->reclaim_ready = 1;
2578 }
2579 }
2580
2581 /* stop async processing after it's idled a bit */
2582 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2583 start_unlink_async(oxu, oxu->async);
2584
2585 /* oxu could run by timer, without IRQs ... */
2586 ehci_work(oxu);
2587
2588 spin_unlock_irqrestore(&oxu->lock, flags);
2589 }
2590
2591 /* One-time init, only for memory state.
2592 */
2593 static int oxu_hcd_init(struct usb_hcd *hcd)
2594 {
2595 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2596 u32 temp;
2597 int retval;
2598 u32 hcc_params;
2599
2600 spin_lock_init(&oxu->lock);
2601
2602 setup_timer(&oxu->watchdog, oxu_watchdog, (unsigned long)oxu);
2603
2604 /*
2605 * hw default: 1K periodic list heads, one per frame.
2606 * periodic_size can shrink by USBCMD update if hcc_params allows.
2607 */
2608 oxu->periodic_size = DEFAULT_I_TDPS;
2609 retval = ehci_mem_init(oxu, GFP_KERNEL);
2610 if (retval < 0)
2611 return retval;
2612
2613 /* controllers may cache some of the periodic schedule ... */
2614 hcc_params = readl(&oxu->caps->hcc_params);
2615 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
2616 oxu->i_thresh = 8;
2617 else /* N microframes cached */
2618 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2619
2620 oxu->reclaim = NULL;
2621 oxu->reclaim_ready = 0;
2622 oxu->next_uframe = -1;
2623
2624 /*
2625 * dedicate a qh for the async ring head, since we couldn't unlink
2626 * a 'real' qh without stopping the async schedule [4.8]. use it
2627 * as the 'reclamation list head' too.
2628 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2629 * from automatically advancing to the next td after short reads.
2630 */
2631 oxu->async->qh_next.qh = NULL;
2632 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2633 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2634 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2635 oxu->async->hw_qtd_next = EHCI_LIST_END;
2636 oxu->async->qh_state = QH_STATE_LINKED;
2637 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2638
2639 /* clear interrupt enables, set irq latency */
2640 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2641 log2_irq_thresh = 0;
2642 temp = 1 << (16 + log2_irq_thresh);
2643 if (HCC_CANPARK(hcc_params)) {
2644 /* HW default park == 3, on hardware that supports it (like
2645 * NVidia and ALI silicon), maximizes throughput on the async
2646 * schedule by avoiding QH fetches between transfers.
2647 *
2648 * With fast usb storage devices and NForce2, "park" seems to
2649 * make problems: throughput reduction (!), data errors...
2650 */
2651 if (park) {
2652 park = min(park, (unsigned) 3);
2653 temp |= CMD_PARK;
2654 temp |= park << 8;
2655 }
2656 oxu_dbg(oxu, "park %d\n", park);
2657 }
2658 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2659 /* periodic schedule size can be smaller than default */
2660 temp &= ~(3 << 2);
2661 temp |= (EHCI_TUNE_FLS << 2);
2662 }
2663 oxu->command = temp;
2664
2665 return 0;
2666 }
2667
2668 /* Called during probe() after chip reset completes.
2669 */
2670 static int oxu_reset(struct usb_hcd *hcd)
2671 {
2672 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2673
2674 spin_lock_init(&oxu->mem_lock);
2675 INIT_LIST_HEAD(&oxu->urb_list);
2676 oxu->urb_len = 0;
2677
2678 /* FIMXE */
2679 hcd->self.controller->dma_mask = NULL;
2680
2681 if (oxu->is_otg) {
2682 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2683 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2684 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2685
2686 oxu->mem = hcd->regs + OXU_SPH_MEM;
2687 } else {
2688 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2689 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2690 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2691
2692 oxu->mem = hcd->regs + OXU_OTG_MEM;
2693 }
2694
2695 oxu->hcs_params = readl(&oxu->caps->hcs_params);
2696 oxu->sbrn = 0x20;
2697
2698 return oxu_hcd_init(hcd);
2699 }
2700
2701 static int oxu_run(struct usb_hcd *hcd)
2702 {
2703 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2704 int retval;
2705 u32 temp, hcc_params;
2706
2707 hcd->uses_new_polling = 1;
2708
2709 /* EHCI spec section 4.1 */
2710 retval = ehci_reset(oxu);
2711 if (retval != 0) {
2712 ehci_mem_cleanup(oxu);
2713 return retval;
2714 }
2715 writel(oxu->periodic_dma, &oxu->regs->frame_list);
2716 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2717
2718 /* hcc_params controls whether oxu->regs->segment must (!!!)
2719 * be used; it constrains QH/ITD/SITD and QTD locations.
2720 * pci_pool consistent memory always uses segment zero.
2721 * streaming mappings for I/O buffers, like pci_map_single(),
2722 * can return segments above 4GB, if the device allows.
2723 *
2724 * NOTE: the dma mask is visible through dev->dma_mask, so
2725 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2726 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2727 * host side drivers though.
2728 */
2729 hcc_params = readl(&oxu->caps->hcc_params);
2730 if (HCC_64BIT_ADDR(hcc_params))
2731 writel(0, &oxu->regs->segment);
2732
2733 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2734 CMD_ASE | CMD_RESET);
2735 oxu->command |= CMD_RUN;
2736 writel(oxu->command, &oxu->regs->command);
2737 dbg_cmd(oxu, "init", oxu->command);
2738
2739 /*
2740 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2741 * are explicitly handed to companion controller(s), so no TT is
2742 * involved with the root hub. (Except where one is integrated,
2743 * and there's no companion controller unless maybe for USB OTG.)
2744 */
2745 hcd->state = HC_STATE_RUNNING;
2746 writel(FLAG_CF, &oxu->regs->configured_flag);
2747 readl(&oxu->regs->command); /* unblock posted writes */
2748
2749 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2750 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2751 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2752 temp >> 8, temp & 0xff, DRIVER_VERSION,
2753 ignore_oc ? ", overcurrent ignored" : "");
2754
2755 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2756
2757 return 0;
2758 }
2759
2760 static void oxu_stop(struct usb_hcd *hcd)
2761 {
2762 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2763
2764 /* Turn off port power on all root hub ports. */
2765 ehci_port_power(oxu, 0);
2766
2767 /* no more interrupts ... */
2768 del_timer_sync(&oxu->watchdog);
2769
2770 spin_lock_irq(&oxu->lock);
2771 if (HC_IS_RUNNING(hcd->state))
2772 ehci_quiesce(oxu);
2773
2774 ehci_reset(oxu);
2775 writel(0, &oxu->regs->intr_enable);
2776 spin_unlock_irq(&oxu->lock);
2777
2778 /* let companion controllers work when we aren't */
2779 writel(0, &oxu->regs->configured_flag);
2780
2781 /* root hub is shut down separately (first, when possible) */
2782 spin_lock_irq(&oxu->lock);
2783 if (oxu->async)
2784 ehci_work(oxu);
2785 spin_unlock_irq(&oxu->lock);
2786 ehci_mem_cleanup(oxu);
2787
2788 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2789 }
2790
2791 /* Kick in for silicon on any bus (not just pci, etc).
2792 * This forcibly disables dma and IRQs, helping kexec and other cases
2793 * where the next system software may expect clean state.
2794 */
2795 static void oxu_shutdown(struct usb_hcd *hcd)
2796 {
2797 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2798
2799 (void) ehci_halt(oxu);
2800 ehci_turn_off_all_ports(oxu);
2801
2802 /* make BIOS/etc use companion controller during reboot */
2803 writel(0, &oxu->regs->configured_flag);
2804
2805 /* unblock posted writes */
2806 readl(&oxu->regs->configured_flag);
2807 }
2808
2809 /* Non-error returns are a promise to giveback() the urb later
2810 * we drop ownership so next owner (or urb unlink) can get it
2811 *
2812 * urb + dev is in hcd.self.controller.urb_list
2813 * we're queueing TDs onto software and hardware lists
2814 *
2815 * hcd-specific init for hcpriv hasn't been done yet
2816 *
2817 * NOTE: control, bulk, and interrupt share the same code to append TDs
2818 * to a (possibly active) QH, and the same QH scanning code.
2819 */
2820 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2821 gfp_t mem_flags)
2822 {
2823 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2824 struct list_head qtd_list;
2825
2826 INIT_LIST_HEAD(&qtd_list);
2827
2828 switch (usb_pipetype(urb->pipe)) {
2829 case PIPE_CONTROL:
2830 case PIPE_BULK:
2831 default:
2832 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2833 return -ENOMEM;
2834 return submit_async(oxu, urb, &qtd_list, mem_flags);
2835
2836 case PIPE_INTERRUPT:
2837 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2838 return -ENOMEM;
2839 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2840
2841 case PIPE_ISOCHRONOUS:
2842 if (urb->dev->speed == USB_SPEED_HIGH)
2843 return itd_submit(oxu, urb, mem_flags);
2844 else
2845 return sitd_submit(oxu, urb, mem_flags);
2846 }
2847 }
2848
2849 /* This function is responsible for breaking URBs with big data size
2850 * into smaller size and processing small urbs in sequence.
2851 */
2852 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2853 gfp_t mem_flags)
2854 {
2855 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2856 int num, rem;
2857 int transfer_buffer_length;
2858 void *transfer_buffer;
2859 struct urb *murb;
2860 int i, ret;
2861
2862 /* If not bulk pipe just enqueue the URB */
2863 if (!usb_pipebulk(urb->pipe))
2864 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2865
2866 /* Otherwise we should verify the USB transfer buffer size! */
2867 transfer_buffer = urb->transfer_buffer;
2868 transfer_buffer_length = urb->transfer_buffer_length;
2869
2870 num = urb->transfer_buffer_length / 4096;
2871 rem = urb->transfer_buffer_length % 4096;
2872 if (rem != 0)
2873 num++;
2874
2875 /* If URB is smaller than 4096 bytes just enqueue it! */
2876 if (num == 1)
2877 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2878
2879 /* Ok, we have more job to do! :) */
2880
2881 for (i = 0; i < num - 1; i++) {
2882 /* Get free micro URB poll till a free urb is received */
2883
2884 do {
2885 murb = (struct urb *) oxu_murb_alloc(oxu);
2886 if (!murb)
2887 schedule();
2888 } while (!murb);
2889
2890 /* Coping the urb */
2891 memcpy(murb, urb, sizeof(struct urb));
2892
2893 murb->transfer_buffer_length = 4096;
2894 murb->transfer_buffer = transfer_buffer + i * 4096;
2895
2896 /* Null pointer for the encodes that this is a micro urb */
2897 murb->complete = NULL;
2898
2899 ((struct oxu_murb *) murb)->main = urb;
2900 ((struct oxu_murb *) murb)->last = 0;
2901
2902 /* This loop is to guarantee urb to be processed when there's
2903 * not enough resources at a particular time by retrying.
2904 */
2905 do {
2906 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2907 if (ret)
2908 schedule();
2909 } while (ret);
2910 }
2911
2912 /* Last urb requires special handling */
2913
2914 /* Get free micro URB poll till a free urb is received */
2915 do {
2916 murb = (struct urb *) oxu_murb_alloc(oxu);
2917 if (!murb)
2918 schedule();
2919 } while (!murb);
2920
2921 /* Coping the urb */
2922 memcpy(murb, urb, sizeof(struct urb));
2923
2924 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2925 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2926
2927 /* Null pointer for the encodes that this is a micro urb */
2928 murb->complete = NULL;
2929
2930 ((struct oxu_murb *) murb)->main = urb;
2931 ((struct oxu_murb *) murb)->last = 1;
2932
2933 do {
2934 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2935 if (ret)
2936 schedule();
2937 } while (ret);
2938
2939 return ret;
2940 }
2941
2942 /* Remove from hardware lists.
2943 * Completions normally happen asynchronously
2944 */
2945 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2946 {
2947 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2948 struct ehci_qh *qh;
2949 unsigned long flags;
2950
2951 spin_lock_irqsave(&oxu->lock, flags);
2952 switch (usb_pipetype(urb->pipe)) {
2953 case PIPE_CONTROL:
2954 case PIPE_BULK:
2955 default:
2956 qh = (struct ehci_qh *) urb->hcpriv;
2957 if (!qh)
2958 break;
2959 unlink_async(oxu, qh);
2960 break;
2961
2962 case PIPE_INTERRUPT:
2963 qh = (struct ehci_qh *) urb->hcpriv;
2964 if (!qh)
2965 break;
2966 switch (qh->qh_state) {
2967 case QH_STATE_LINKED:
2968 intr_deschedule(oxu, qh);
2969 /* FALL THROUGH */
2970 case QH_STATE_IDLE:
2971 qh_completions(oxu, qh);
2972 break;
2973 default:
2974 oxu_dbg(oxu, "bogus qh %p state %d\n",
2975 qh, qh->qh_state);
2976 goto done;
2977 }
2978
2979 /* reschedule QH iff another request is queued */
2980 if (!list_empty(&qh->qtd_list)
2981 && HC_IS_RUNNING(hcd->state)) {
2982 int status;
2983
2984 status = qh_schedule(oxu, qh);
2985 spin_unlock_irqrestore(&oxu->lock, flags);
2986
2987 if (status != 0) {
2988 /* shouldn't happen often, but ...
2989 * FIXME kill those tds' urbs
2990 */
2991 dev_err(hcd->self.controller,
2992 "can't reschedule qh %p, err %d\n", qh,
2993 status);
2994 }
2995 return status;
2996 }
2997 break;
2998 }
2999 done:
3000 spin_unlock_irqrestore(&oxu->lock, flags);
3001 return 0;
3002 }
3003
3004 /* Bulk qh holds the data toggle */
3005 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3006 struct usb_host_endpoint *ep)
3007 {
3008 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3009 unsigned long flags;
3010 struct ehci_qh *qh, *tmp;
3011
3012 /* ASSERT: any requests/urbs are being unlinked */
3013 /* ASSERT: nobody can be submitting urbs for this any more */
3014
3015 rescan:
3016 spin_lock_irqsave(&oxu->lock, flags);
3017 qh = ep->hcpriv;
3018 if (!qh)
3019 goto done;
3020
3021 /* endpoints can be iso streams. for now, we don't
3022 * accelerate iso completions ... so spin a while.
3023 */
3024 if (qh->hw_info1 == 0) {
3025 oxu_vdbg(oxu, "iso delay\n");
3026 goto idle_timeout;
3027 }
3028
3029 if (!HC_IS_RUNNING(hcd->state))
3030 qh->qh_state = QH_STATE_IDLE;
3031 switch (qh->qh_state) {
3032 case QH_STATE_LINKED:
3033 for (tmp = oxu->async->qh_next.qh;
3034 tmp && tmp != qh;
3035 tmp = tmp->qh_next.qh)
3036 continue;
3037 /* periodic qh self-unlinks on empty */
3038 if (!tmp)
3039 goto nogood;
3040 unlink_async(oxu, qh);
3041 /* FALL THROUGH */
3042 case QH_STATE_UNLINK: /* wait for hw to finish? */
3043 idle_timeout:
3044 spin_unlock_irqrestore(&oxu->lock, flags);
3045 schedule_timeout_uninterruptible(1);
3046 goto rescan;
3047 case QH_STATE_IDLE: /* fully unlinked */
3048 if (list_empty(&qh->qtd_list)) {
3049 qh_put(qh);
3050 break;
3051 }
3052 /* else FALL THROUGH */
3053 default:
3054 nogood:
3055 /* caller was supposed to have unlinked any requests;
3056 * that's not our job. just leak this memory.
3057 */
3058 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3059 qh, ep->desc.bEndpointAddress, qh->qh_state,
3060 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3061 break;
3062 }
3063 ep->hcpriv = NULL;
3064 done:
3065 spin_unlock_irqrestore(&oxu->lock, flags);
3066 }
3067
3068 static int oxu_get_frame(struct usb_hcd *hcd)
3069 {
3070 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3071
3072 return (readl(&oxu->regs->frame_index) >> 3) %
3073 oxu->periodic_size;
3074 }
3075
3076 /* Build "status change" packet (one or two bytes) from HC registers */
3077 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3078 {
3079 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3080 u32 temp, mask, status = 0;
3081 int ports, i, retval = 1;
3082 unsigned long flags;
3083
3084 /* if !PM, root hub timers won't get shut down ... */
3085 if (!HC_IS_RUNNING(hcd->state))
3086 return 0;
3087
3088 /* init status to no-changes */
3089 buf[0] = 0;
3090 ports = HCS_N_PORTS(oxu->hcs_params);
3091 if (ports > 7) {
3092 buf[1] = 0;
3093 retval++;
3094 }
3095
3096 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3097 * causing massive log spam unless we completely ignore them. It
3098 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3099 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3100 * PORT_POWER; that's surprising, but maybe within-spec.
3101 */
3102 if (!ignore_oc)
3103 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3104 else
3105 mask = PORT_CSC | PORT_PEC;
3106
3107 /* no hub change reports (bit 0) for now (power, ...) */
3108
3109 /* port N changes (bit N)? */
3110 spin_lock_irqsave(&oxu->lock, flags);
3111 for (i = 0; i < ports; i++) {
3112 temp = readl(&oxu->regs->port_status[i]);
3113
3114 /*
3115 * Return status information even for ports with OWNER set.
3116 * Otherwise hub_wq wouldn't see the disconnect event when a
3117 * high-speed device is switched over to the companion
3118 * controller by the user.
3119 */
3120
3121 if (!(temp & PORT_CONNECT))
3122 oxu->reset_done[i] = 0;
3123 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3124 time_after_eq(jiffies, oxu->reset_done[i]))) {
3125 if (i < 7)
3126 buf[0] |= 1 << (i + 1);
3127 else
3128 buf[1] |= 1 << (i - 7);
3129 status = STS_PCD;
3130 }
3131 }
3132 /* FIXME autosuspend idle root hubs */
3133 spin_unlock_irqrestore(&oxu->lock, flags);
3134 return status ? retval : 0;
3135 }
3136
3137 /* Returns the speed of a device attached to a port on the root hub. */
3138 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3139 unsigned int portsc)
3140 {
3141 switch ((portsc >> 26) & 3) {
3142 case 0:
3143 return 0;
3144 case 1:
3145 return USB_PORT_STAT_LOW_SPEED;
3146 case 2:
3147 default:
3148 return USB_PORT_STAT_HIGH_SPEED;
3149 }
3150 }
3151
3152 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3153 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3154 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3155 {
3156 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3157 int ports = HCS_N_PORTS(oxu->hcs_params);
3158 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3159 u32 temp, status;
3160 unsigned long flags;
3161 int retval = 0;
3162 unsigned selector;
3163
3164 /*
3165 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3166 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3167 * (track current state ourselves) ... blink for diagnostics,
3168 * power, "this is the one", etc. EHCI spec supports this.
3169 */
3170
3171 spin_lock_irqsave(&oxu->lock, flags);
3172 switch (typeReq) {
3173 case ClearHubFeature:
3174 switch (wValue) {
3175 case C_HUB_LOCAL_POWER:
3176 case C_HUB_OVER_CURRENT:
3177 /* no hub-wide feature/status flags */
3178 break;
3179 default:
3180 goto error;
3181 }
3182 break;
3183 case ClearPortFeature:
3184 if (!wIndex || wIndex > ports)
3185 goto error;
3186 wIndex--;
3187 temp = readl(status_reg);
3188
3189 /*
3190 * Even if OWNER is set, so the port is owned by the
3191 * companion controller, hub_wq needs to be able to clear
3192 * the port-change status bits (especially
3193 * USB_PORT_STAT_C_CONNECTION).
3194 */
3195
3196 switch (wValue) {
3197 case USB_PORT_FEAT_ENABLE:
3198 writel(temp & ~PORT_PE, status_reg);
3199 break;
3200 case USB_PORT_FEAT_C_ENABLE:
3201 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3202 break;
3203 case USB_PORT_FEAT_SUSPEND:
3204 if (temp & PORT_RESET)
3205 goto error;
3206 if (temp & PORT_SUSPEND) {
3207 if ((temp & PORT_PE) == 0)
3208 goto error;
3209 /* resume signaling for 20 msec */
3210 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3211 writel(temp | PORT_RESUME, status_reg);
3212 oxu->reset_done[wIndex] = jiffies
3213 + msecs_to_jiffies(20);
3214 }
3215 break;
3216 case USB_PORT_FEAT_C_SUSPEND:
3217 /* we auto-clear this feature */
3218 break;
3219 case USB_PORT_FEAT_POWER:
3220 if (HCS_PPC(oxu->hcs_params))
3221 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3222 status_reg);
3223 break;
3224 case USB_PORT_FEAT_C_CONNECTION:
3225 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3226 break;
3227 case USB_PORT_FEAT_C_OVER_CURRENT:
3228 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3229 break;
3230 case USB_PORT_FEAT_C_RESET:
3231 /* GetPortStatus clears reset */
3232 break;
3233 default:
3234 goto error;
3235 }
3236 readl(&oxu->regs->command); /* unblock posted write */
3237 break;
3238 case GetHubDescriptor:
3239 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3240 buf);
3241 break;
3242 case GetHubStatus:
3243 /* no hub-wide feature/status flags */
3244 memset(buf, 0, 4);
3245 break;
3246 case GetPortStatus:
3247 if (!wIndex || wIndex > ports)
3248 goto error;
3249 wIndex--;
3250 status = 0;
3251 temp = readl(status_reg);
3252
3253 /* wPortChange bits */
3254 if (temp & PORT_CSC)
3255 status |= USB_PORT_STAT_C_CONNECTION << 16;
3256 if (temp & PORT_PEC)
3257 status |= USB_PORT_STAT_C_ENABLE << 16;
3258 if ((temp & PORT_OCC) && !ignore_oc)
3259 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3260
3261 /* whoever resumes must GetPortStatus to complete it!! */
3262 if (temp & PORT_RESUME) {
3263
3264 /* Remote Wakeup received? */
3265 if (!oxu->reset_done[wIndex]) {
3266 /* resume signaling for 20 msec */
3267 oxu->reset_done[wIndex] = jiffies
3268 + msecs_to_jiffies(20);
3269 /* check the port again */
3270 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3271 oxu->reset_done[wIndex]);
3272 }
3273
3274 /* resume completed? */
3275 else if (time_after_eq(jiffies,
3276 oxu->reset_done[wIndex])) {
3277 status |= USB_PORT_STAT_C_SUSPEND << 16;
3278 oxu->reset_done[wIndex] = 0;
3279
3280 /* stop resume signaling */
3281 temp = readl(status_reg);
3282 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3283 status_reg);
3284 retval = handshake(oxu, status_reg,
3285 PORT_RESUME, 0, 2000 /* 2msec */);
3286 if (retval != 0) {
3287 oxu_err(oxu,
3288 "port %d resume error %d\n",
3289 wIndex + 1, retval);
3290 goto error;
3291 }
3292 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3293 }
3294 }
3295
3296 /* whoever resets must GetPortStatus to complete it!! */
3297 if ((temp & PORT_RESET)
3298 && time_after_eq(jiffies,
3299 oxu->reset_done[wIndex])) {
3300 status |= USB_PORT_STAT_C_RESET << 16;
3301 oxu->reset_done[wIndex] = 0;
3302
3303 /* force reset to complete */
3304 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3305 status_reg);
3306 /* REVISIT: some hardware needs 550+ usec to clear
3307 * this bit; seems too long to spin routinely...
3308 */
3309 retval = handshake(oxu, status_reg,
3310 PORT_RESET, 0, 750);
3311 if (retval != 0) {
3312 oxu_err(oxu, "port %d reset error %d\n",
3313 wIndex + 1, retval);
3314 goto error;
3315 }
3316
3317 /* see what we found out */
3318 temp = check_reset_complete(oxu, wIndex, status_reg,
3319 readl(status_reg));
3320 }
3321
3322 /* transfer dedicated ports to the companion hc */
3323 if ((temp & PORT_CONNECT) &&
3324 test_bit(wIndex, &oxu->companion_ports)) {
3325 temp &= ~PORT_RWC_BITS;
3326 temp |= PORT_OWNER;
3327 writel(temp, status_reg);
3328 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3329 temp = readl(status_reg);
3330 }
3331
3332 /*
3333 * Even if OWNER is set, there's no harm letting hub_wq
3334 * see the wPortStatus values (they should all be 0 except
3335 * for PORT_POWER anyway).
3336 */
3337
3338 if (temp & PORT_CONNECT) {
3339 status |= USB_PORT_STAT_CONNECTION;
3340 /* status may be from integrated TT */
3341 status |= oxu_port_speed(oxu, temp);
3342 }
3343 if (temp & PORT_PE)
3344 status |= USB_PORT_STAT_ENABLE;
3345 if (temp & (PORT_SUSPEND|PORT_RESUME))
3346 status |= USB_PORT_STAT_SUSPEND;
3347 if (temp & PORT_OC)
3348 status |= USB_PORT_STAT_OVERCURRENT;
3349 if (temp & PORT_RESET)
3350 status |= USB_PORT_STAT_RESET;
3351 if (temp & PORT_POWER)
3352 status |= USB_PORT_STAT_POWER;
3353
3354 #ifndef OXU_VERBOSE_DEBUG
3355 if (status & ~0xffff) /* only if wPortChange is interesting */
3356 #endif
3357 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3358 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3359 break;
3360 case SetHubFeature:
3361 switch (wValue) {
3362 case C_HUB_LOCAL_POWER:
3363 case C_HUB_OVER_CURRENT:
3364 /* no hub-wide feature/status flags */
3365 break;
3366 default:
3367 goto error;
3368 }
3369 break;
3370 case SetPortFeature:
3371 selector = wIndex >> 8;
3372 wIndex &= 0xff;
3373 if (!wIndex || wIndex > ports)
3374 goto error;
3375 wIndex--;
3376 temp = readl(status_reg);
3377 if (temp & PORT_OWNER)
3378 break;
3379
3380 temp &= ~PORT_RWC_BITS;
3381 switch (wValue) {
3382 case USB_PORT_FEAT_SUSPEND:
3383 if ((temp & PORT_PE) == 0
3384 || (temp & PORT_RESET) != 0)
3385 goto error;
3386 if (device_may_wakeup(&hcd->self.root_hub->dev))
3387 temp |= PORT_WAKE_BITS;
3388 writel(temp | PORT_SUSPEND, status_reg);
3389 break;
3390 case USB_PORT_FEAT_POWER:
3391 if (HCS_PPC(oxu->hcs_params))
3392 writel(temp | PORT_POWER, status_reg);
3393 break;
3394 case USB_PORT_FEAT_RESET:
3395 if (temp & PORT_RESUME)
3396 goto error;
3397 /* line status bits may report this as low speed,
3398 * which can be fine if this root hub has a
3399 * transaction translator built in.
3400 */
3401 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3402 temp |= PORT_RESET;
3403 temp &= ~PORT_PE;
3404
3405 /*
3406 * caller must wait, then call GetPortStatus
3407 * usb 2.0 spec says 50 ms resets on root
3408 */
3409 oxu->reset_done[wIndex] = jiffies
3410 + msecs_to_jiffies(50);
3411 writel(temp, status_reg);
3412 break;
3413
3414 /* For downstream facing ports (these): one hub port is put
3415 * into test mode according to USB2 11.24.2.13, then the hub
3416 * must be reset (which for root hub now means rmmod+modprobe,
3417 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3418 * about the EHCI-specific stuff.
3419 */
3420 case USB_PORT_FEAT_TEST:
3421 if (!selector || selector > 5)
3422 goto error;
3423 ehci_quiesce(oxu);
3424 ehci_halt(oxu);
3425 temp |= selector << 16;
3426 writel(temp, status_reg);
3427 break;
3428
3429 default:
3430 goto error;
3431 }
3432 readl(&oxu->regs->command); /* unblock posted writes */
3433 break;
3434
3435 default:
3436 error:
3437 /* "stall" on error */
3438 retval = -EPIPE;
3439 }
3440 spin_unlock_irqrestore(&oxu->lock, flags);
3441 return retval;
3442 }
3443
3444 #ifdef CONFIG_PM
3445
3446 static int oxu_bus_suspend(struct usb_hcd *hcd)
3447 {
3448 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3449 int port;
3450 int mask;
3451
3452 oxu_dbg(oxu, "suspend root hub\n");
3453
3454 if (time_before(jiffies, oxu->next_statechange))
3455 msleep(5);
3456
3457 port = HCS_N_PORTS(oxu->hcs_params);
3458 spin_lock_irq(&oxu->lock);
3459
3460 /* stop schedules, clean any completed work */
3461 if (HC_IS_RUNNING(hcd->state)) {
3462 ehci_quiesce(oxu);
3463 hcd->state = HC_STATE_QUIESCING;
3464 }
3465 oxu->command = readl(&oxu->regs->command);
3466 if (oxu->reclaim)
3467 oxu->reclaim_ready = 1;
3468 ehci_work(oxu);
3469
3470 /* Unlike other USB host controller types, EHCI doesn't have
3471 * any notion of "global" or bus-wide suspend. The driver has
3472 * to manually suspend all the active unsuspended ports, and
3473 * then manually resume them in the bus_resume() routine.
3474 */
3475 oxu->bus_suspended = 0;
3476 while (port--) {
3477 u32 __iomem *reg = &oxu->regs->port_status[port];
3478 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3479 u32 t2 = t1;
3480
3481 /* keep track of which ports we suspend */
3482 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3483 !(t1 & PORT_SUSPEND)) {
3484 t2 |= PORT_SUSPEND;
3485 set_bit(port, &oxu->bus_suspended);
3486 }
3487
3488 /* enable remote wakeup on all ports */
3489 if (device_may_wakeup(&hcd->self.root_hub->dev))
3490 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3491 else
3492 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3493
3494 if (t1 != t2) {
3495 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3496 port + 1, t1, t2);
3497 writel(t2, reg);
3498 }
3499 }
3500
3501 /* turn off now-idle HC */
3502 del_timer_sync(&oxu->watchdog);
3503 ehci_halt(oxu);
3504 hcd->state = HC_STATE_SUSPENDED;
3505
3506 /* allow remote wakeup */
3507 mask = INTR_MASK;
3508 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3509 mask &= ~STS_PCD;
3510 writel(mask, &oxu->regs->intr_enable);
3511 readl(&oxu->regs->intr_enable);
3512
3513 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3514 spin_unlock_irq(&oxu->lock);
3515 return 0;
3516 }
3517
3518 /* Caller has locked the root hub, and should reset/reinit on error */
3519 static int oxu_bus_resume(struct usb_hcd *hcd)
3520 {
3521 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3522 u32 temp;
3523 int i;
3524
3525 if (time_before(jiffies, oxu->next_statechange))
3526 msleep(5);
3527 spin_lock_irq(&oxu->lock);
3528
3529 /* Ideally and we've got a real resume here, and no port's power
3530 * was lost. (For PCI, that means Vaux was maintained.) But we
3531 * could instead be restoring a swsusp snapshot -- so that BIOS was
3532 * the last user of the controller, not reset/pm hardware keeping
3533 * state we gave to it.
3534 */
3535 temp = readl(&oxu->regs->intr_enable);
3536 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3537
3538 /* at least some APM implementations will try to deliver
3539 * IRQs right away, so delay them until we're ready.
3540 */
3541 writel(0, &oxu->regs->intr_enable);
3542
3543 /* re-init operational registers */
3544 writel(0, &oxu->regs->segment);
3545 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3546 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3547
3548 /* restore CMD_RUN, framelist size, and irq threshold */
3549 writel(oxu->command, &oxu->regs->command);
3550
3551 /* Some controller/firmware combinations need a delay during which
3552 * they set up the port statuses. See Bugzilla #8190. */
3553 mdelay(8);
3554
3555 /* manually resume the ports we suspended during bus_suspend() */
3556 i = HCS_N_PORTS(oxu->hcs_params);
3557 while (i--) {
3558 temp = readl(&oxu->regs->port_status[i]);
3559 temp &= ~(PORT_RWC_BITS
3560 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3561 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3562 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3563 temp |= PORT_RESUME;
3564 }
3565 writel(temp, &oxu->regs->port_status[i]);
3566 }
3567 i = HCS_N_PORTS(oxu->hcs_params);
3568 mdelay(20);
3569 while (i--) {
3570 temp = readl(&oxu->regs->port_status[i]);
3571 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3572 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3573 writel(temp, &oxu->regs->port_status[i]);
3574 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3575 }
3576 }
3577 (void) readl(&oxu->regs->command);
3578
3579 /* maybe re-activate the schedule(s) */
3580 temp = 0;
3581 if (oxu->async->qh_next.qh)
3582 temp |= CMD_ASE;
3583 if (oxu->periodic_sched)
3584 temp |= CMD_PSE;
3585 if (temp) {
3586 oxu->command |= temp;
3587 writel(oxu->command, &oxu->regs->command);
3588 }
3589
3590 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3591 hcd->state = HC_STATE_RUNNING;
3592
3593 /* Now we can safely re-enable irqs */
3594 writel(INTR_MASK, &oxu->regs->intr_enable);
3595
3596 spin_unlock_irq(&oxu->lock);
3597 return 0;
3598 }
3599
3600 #else
3601
3602 static int oxu_bus_suspend(struct usb_hcd *hcd)
3603 {
3604 return 0;
3605 }
3606
3607 static int oxu_bus_resume(struct usb_hcd *hcd)
3608 {
3609 return 0;
3610 }
3611
3612 #endif /* CONFIG_PM */
3613
3614 static const struct hc_driver oxu_hc_driver = {
3615 .description = "oxu210hp_hcd",
3616 .product_desc = "oxu210hp HCD",
3617 .hcd_priv_size = sizeof(struct oxu_hcd),
3618
3619 /*
3620 * Generic hardware linkage
3621 */
3622 .irq = oxu_irq,
3623 .flags = HCD_MEMORY | HCD_USB2,
3624
3625 /*
3626 * Basic lifecycle operations
3627 */
3628 .reset = oxu_reset,
3629 .start = oxu_run,
3630 .stop = oxu_stop,
3631 .shutdown = oxu_shutdown,
3632
3633 /*
3634 * Managing i/o requests and associated device resources
3635 */
3636 .urb_enqueue = oxu_urb_enqueue,
3637 .urb_dequeue = oxu_urb_dequeue,
3638 .endpoint_disable = oxu_endpoint_disable,
3639
3640 /*
3641 * Scheduling support
3642 */
3643 .get_frame_number = oxu_get_frame,
3644
3645 /*
3646 * Root hub support
3647 */
3648 .hub_status_data = oxu_hub_status_data,
3649 .hub_control = oxu_hub_control,
3650 .bus_suspend = oxu_bus_suspend,
3651 .bus_resume = oxu_bus_resume,
3652 };
3653
3654 /*
3655 * Module stuff
3656 */
3657
3658 static void oxu_configuration(struct platform_device *pdev, void *base)
3659 {
3660 u32 tmp;
3661
3662 /* Initialize top level registers.
3663 * First write ever
3664 */
3665 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3666 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3667 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3668
3669 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3670 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3671
3672 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3673 OXU_COMPARATOR | OXU_ASO_OP);
3674
3675 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3676 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3677
3678 /* Clear all top interrupt enable */
3679 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3680
3681 /* Clear all top interrupt status */
3682 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3683
3684 /* Enable all needed top interrupt except OTG SPH core */
3685 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3686 }
3687
3688 static int oxu_verify_id(struct platform_device *pdev, void *base)
3689 {
3690 u32 id;
3691 static const char * const bo[] = {
3692 "reserved",
3693 "128-pin LQFP",
3694 "84-pin TFBGA",
3695 "reserved",
3696 };
3697
3698 /* Read controller signature register to find a match */
3699 id = oxu_readl(base, OXU_DEVICEID);
3700 dev_info(&pdev->dev, "device ID %x\n", id);
3701 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3702 return -1;
3703
3704 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3705 id >> OXU_REV_SHIFT,
3706 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3707 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3708 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3709
3710 return 0;
3711 }
3712
3713 static const struct hc_driver oxu_hc_driver;
3714 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3715 unsigned long memstart, unsigned long memlen,
3716 void *base, int irq, int otg)
3717 {
3718 struct device *dev = &pdev->dev;
3719
3720 struct usb_hcd *hcd;
3721 struct oxu_hcd *oxu;
3722 int ret;
3723
3724 /* Set endian mode and host mode */
3725 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3726 OXU_USBMODE,
3727 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3728
3729 hcd = usb_create_hcd(&oxu_hc_driver, dev,
3730 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3731 if (!hcd)
3732 return ERR_PTR(-ENOMEM);
3733
3734 hcd->rsrc_start = memstart;
3735 hcd->rsrc_len = memlen;
3736 hcd->regs = base;
3737 hcd->irq = irq;
3738 hcd->state = HC_STATE_HALT;
3739
3740 oxu = hcd_to_oxu(hcd);
3741 oxu->is_otg = otg;
3742
3743 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3744 if (ret < 0)
3745 return ERR_PTR(ret);
3746
3747 device_wakeup_enable(hcd->self.controller);
3748 return hcd;
3749 }
3750
3751 static int oxu_init(struct platform_device *pdev,
3752 unsigned long memstart, unsigned long memlen,
3753 void *base, int irq)
3754 {
3755 struct oxu_info *info = platform_get_drvdata(pdev);
3756 struct usb_hcd *hcd;
3757 int ret;
3758
3759 /* First time configuration at start up */
3760 oxu_configuration(pdev, base);
3761
3762 ret = oxu_verify_id(pdev, base);
3763 if (ret) {
3764 dev_err(&pdev->dev, "no devices found!\n");
3765 return -ENODEV;
3766 }
3767
3768 /* Create the OTG controller */
3769 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3770 if (IS_ERR(hcd)) {
3771 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3772 ret = PTR_ERR(hcd);
3773 goto error_create_otg;
3774 }
3775 info->hcd[0] = hcd;
3776
3777 /* Create the SPH host controller */
3778 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3779 if (IS_ERR(hcd)) {
3780 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3781 ret = PTR_ERR(hcd);
3782 goto error_create_sph;
3783 }
3784 info->hcd[1] = hcd;
3785
3786 oxu_writel(base, OXU_CHIPIRQEN_SET,
3787 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3788
3789 return 0;
3790
3791 error_create_sph:
3792 usb_remove_hcd(info->hcd[0]);
3793 usb_put_hcd(info->hcd[0]);
3794
3795 error_create_otg:
3796 return ret;
3797 }
3798
3799 static int oxu_drv_probe(struct platform_device *pdev)
3800 {
3801 struct resource *res;
3802 void *base;
3803 unsigned long memstart, memlen;
3804 int irq, ret;
3805 struct oxu_info *info;
3806
3807 if (usb_disabled())
3808 return -ENODEV;
3809
3810 /*
3811 * Get the platform resources
3812 */
3813 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3814 if (!res) {
3815 dev_err(&pdev->dev,
3816 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3817 return -ENODEV;
3818 }
3819 irq = res->start;
3820 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3821
3822 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3823 base = devm_ioremap_resource(&pdev->dev, res);
3824 if (IS_ERR(base)) {
3825 ret = PTR_ERR(base);
3826 goto error;
3827 }
3828 memstart = res->start;
3829 memlen = resource_size(res);
3830
3831 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3832 if (ret) {
3833 dev_err(&pdev->dev, "error setting irq type\n");
3834 ret = -EFAULT;
3835 goto error;
3836 }
3837
3838 /* Allocate a driver data struct to hold useful info for both
3839 * SPH & OTG devices
3840 */
3841 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
3842 if (!info) {
3843 ret = -EFAULT;
3844 goto error;
3845 }
3846 platform_set_drvdata(pdev, info);
3847
3848 ret = oxu_init(pdev, memstart, memlen, base, irq);
3849 if (ret < 0) {
3850 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3851 goto error;
3852 }
3853
3854 dev_info(&pdev->dev, "devices enabled and running\n");
3855 platform_set_drvdata(pdev, info);
3856
3857 return 0;
3858
3859 error:
3860 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3861 return ret;
3862 }
3863
3864 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3865 {
3866 usb_remove_hcd(hcd);
3867 usb_put_hcd(hcd);
3868 }
3869
3870 static int oxu_drv_remove(struct platform_device *pdev)
3871 {
3872 struct oxu_info *info = platform_get_drvdata(pdev);
3873
3874 oxu_remove(pdev, info->hcd[0]);
3875 oxu_remove(pdev, info->hcd[1]);
3876
3877 return 0;
3878 }
3879
3880 static void oxu_drv_shutdown(struct platform_device *pdev)
3881 {
3882 oxu_drv_remove(pdev);
3883 }
3884
3885 #if 0
3886 /* FIXME: TODO */
3887 static int oxu_drv_suspend(struct device *dev)
3888 {
3889 struct platform_device *pdev = to_platform_device(dev);
3890 struct usb_hcd *hcd = dev_get_drvdata(dev);
3891
3892 return 0;
3893 }
3894
3895 static int oxu_drv_resume(struct device *dev)
3896 {
3897 struct platform_device *pdev = to_platform_device(dev);
3898 struct usb_hcd *hcd = dev_get_drvdata(dev);
3899
3900 return 0;
3901 }
3902 #else
3903 #define oxu_drv_suspend NULL
3904 #define oxu_drv_resume NULL
3905 #endif
3906
3907 static struct platform_driver oxu_driver = {
3908 .probe = oxu_drv_probe,
3909 .remove = oxu_drv_remove,
3910 .shutdown = oxu_drv_shutdown,
3911 .suspend = oxu_drv_suspend,
3912 .resume = oxu_drv_resume,
3913 .driver = {
3914 .name = "oxu210hp-hcd",
3915 .bus = &platform_bus_type
3916 }
3917 };
3918
3919 module_platform_driver(oxu_driver);
3920
3921 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3922 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3923 MODULE_LICENSE("GPL");