]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/usb/host/xhci-mem.c
0b61b77dd26f20443a24462073d01b0f1a1e8faa
[mirror_ubuntu-hirsute-kernel.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32 {
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36
37 seg = kzalloc(sizeof *seg, flags);
38 if (!seg)
39 return NULL;
40
41 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
42 if (!seg->trbs) {
43 kfree(seg);
44 return NULL;
45 }
46
47 if (max_packet) {
48 seg->bounce_buf = kzalloc(max_packet, flags);
49 if (!seg->bounce_buf) {
50 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51 kfree(seg);
52 return NULL;
53 }
54 }
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
59 }
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 if (seg->trbs) {
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 kfree(seg->bounce_buf);
73 kfree(seg);
74 }
75
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
78 {
79 struct xhci_segment *seg;
80
81 seg = first->next;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
85 seg = next;
86 }
87 xhci_segment_free(xhci, first);
88 }
89
90 /*
91 * Make the prev segment point to the next segment.
92 *
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
96 */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 u32 val;
101
102 if (!prev || !next)
103 return;
104 prev->next = next;
105 if (type != TYPE_EVENT) {
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
108
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
113 /* Always set the chain bit with 0.95 hardware */
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 val |= TRB_CHAIN;
119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 }
121 }
122
123 /*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
130 {
131 struct xhci_segment *next;
132
133 if (!ring || !first || !last)
134 return;
135
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
148 }
149 }
150
151 /*
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
157 *
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
160 * have segments of size 1KB, that are always 1KB aligned. A segment may
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
164 *
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
168 *
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
171 *
172 * Caveats for the radix tree:
173 *
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
181 */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 struct xhci_ring *ring,
184 struct xhci_segment *seg,
185 gfp_t mem_flags)
186 {
187 unsigned long key;
188 int ret;
189
190 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map, key))
193 return 0;
194
195 ret = radix_tree_maybe_preload(mem_flags);
196 if (ret)
197 return ret;
198 ret = radix_tree_insert(trb_address_map,
199 key, ring);
200 radix_tree_preload_end();
201 return ret;
202 }
203
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 struct xhci_segment *seg)
206 {
207 unsigned long key;
208
209 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 if (radix_tree_lookup(trb_address_map, key))
211 radix_tree_delete(trb_address_map, key);
212 }
213
214 static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root *trb_address_map,
216 struct xhci_ring *ring,
217 struct xhci_segment *first_seg,
218 struct xhci_segment *last_seg,
219 gfp_t mem_flags)
220 {
221 struct xhci_segment *seg;
222 struct xhci_segment *failed_seg;
223 int ret;
224
225 if (WARN_ON_ONCE(trb_address_map == NULL))
226 return 0;
227
228 seg = first_seg;
229 do {
230 ret = xhci_insert_segment_mapping(trb_address_map,
231 ring, seg, mem_flags);
232 if (ret)
233 goto remove_streams;
234 if (seg == last_seg)
235 return 0;
236 seg = seg->next;
237 } while (seg != first_seg);
238
239 return 0;
240
241 remove_streams:
242 failed_seg = seg;
243 seg = first_seg;
244 do {
245 xhci_remove_segment_mapping(trb_address_map, seg);
246 if (seg == failed_seg)
247 return ret;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return ret;
252 }
253
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 struct xhci_segment *seg;
257
258 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 return;
260
261 seg = ring->first_seg;
262 do {
263 xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 seg = seg->next;
265 } while (seg != ring->first_seg);
266 }
267
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 ring->first_seg, ring->last_seg, mem_flags);
272 }
273
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 if (!ring)
278 return;
279
280 trace_xhci_ring_free(ring);
281
282 if (ring->first_seg) {
283 if (ring->type == TYPE_STREAM)
284 xhci_remove_stream_mapping(ring);
285 xhci_free_segments_for_ring(xhci, ring->first_seg);
286 }
287
288 kfree(ring);
289 }
290
291 static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 unsigned int cycle_state)
293 {
294 /* The ring is empty, so the enqueue pointer == dequeue pointer */
295 ring->enqueue = ring->first_seg->trbs;
296 ring->enq_seg = ring->first_seg;
297 ring->dequeue = ring->enqueue;
298 ring->deq_seg = ring->first_seg;
299 /* The ring is initialized to 0. The producer must write 1 to the cycle
300 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
301 * compare CCS to the cycle bit to check ownership, so CCS = 1.
302 *
303 * New rings are initialized with cycle state equal to 1; if we are
304 * handling ring expansion, set the cycle state equal to the old ring.
305 */
306 ring->cycle_state = cycle_state;
307
308 /*
309 * Each segment has a link TRB, and leave an extra TRB for SW
310 * accounting purpose
311 */
312 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
313 }
314
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 struct xhci_segment **first, struct xhci_segment **last,
318 unsigned int num_segs, unsigned int cycle_state,
319 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
320 {
321 struct xhci_segment *prev;
322
323 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
324 if (!prev)
325 return -ENOMEM;
326 num_segs--;
327
328 *first = prev;
329 while (num_segs > 0) {
330 struct xhci_segment *next;
331
332 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
333 if (!next) {
334 prev = *first;
335 while (prev) {
336 next = prev->next;
337 xhci_segment_free(xhci, prev);
338 prev = next;
339 }
340 return -ENOMEM;
341 }
342 xhci_link_segments(xhci, prev, next, type);
343
344 prev = next;
345 num_segs--;
346 }
347 xhci_link_segments(xhci, prev, *first, type);
348 *last = prev;
349
350 return 0;
351 }
352
353 /**
354 * Create a new ring with zero or more segments.
355 *
356 * Link each segment together into a ring.
357 * Set the end flag and the cycle toggle bit on the last segment.
358 * See section 4.9.1 and figures 15 and 16.
359 */
360 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361 unsigned int num_segs, unsigned int cycle_state,
362 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
363 {
364 struct xhci_ring *ring;
365 int ret;
366
367 ring = kzalloc(sizeof *(ring), flags);
368 if (!ring)
369 return NULL;
370
371 ring->num_segs = num_segs;
372 ring->bounce_buf_len = max_packet;
373 INIT_LIST_HEAD(&ring->td_list);
374 ring->type = type;
375 if (num_segs == 0)
376 return ring;
377
378 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 &ring->last_seg, num_segs, cycle_state, type,
380 max_packet, flags);
381 if (ret)
382 goto fail;
383
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 cpu_to_le32(LINK_TOGGLE);
389 }
390 xhci_initialize_ring_info(ring, cycle_state);
391 trace_xhci_ring_alloc(ring);
392 return ring;
393
394 fail:
395 kfree(ring);
396 return NULL;
397 }
398
399 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400 struct xhci_virt_device *virt_dev,
401 unsigned int ep_index)
402 {
403 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404 virt_dev->eps[ep_index].ring = NULL;
405 }
406
407 /*
408 * Expand an existing ring.
409 * Allocate a new ring which has same segment numbers and link the two rings.
410 */
411 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 unsigned int num_trbs, gfp_t flags)
413 {
414 struct xhci_segment *first;
415 struct xhci_segment *last;
416 unsigned int num_segs;
417 unsigned int num_segs_needed;
418 int ret;
419
420 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 (TRBS_PER_SEGMENT - 1);
422
423 /* Allocate number of segments we needed, or double the ring size */
424 num_segs = ring->num_segs > num_segs_needed ?
425 ring->num_segs : num_segs_needed;
426
427 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428 num_segs, ring->cycle_state, ring->type,
429 ring->bounce_buf_len, flags);
430 if (ret)
431 return -ENOMEM;
432
433 if (ring->type == TYPE_STREAM)
434 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 ring, first, last, flags);
436 if (ret) {
437 struct xhci_segment *next;
438 do {
439 next = first->next;
440 xhci_segment_free(xhci, first);
441 if (first == last)
442 break;
443 first = next;
444 } while (true);
445 return ret;
446 }
447
448 xhci_link_rings(xhci, ring, first, last, num_segs);
449 trace_xhci_ring_expansion(ring);
450 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 "ring expansion succeed, now has %d segments",
452 ring->num_segs);
453
454 return 0;
455 }
456
457 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458 int type, gfp_t flags)
459 {
460 struct xhci_container_ctx *ctx;
461
462 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463 return NULL;
464
465 ctx = kzalloc(sizeof(*ctx), flags);
466 if (!ctx)
467 return NULL;
468
469 ctx->type = type;
470 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 if (type == XHCI_CTX_TYPE_INPUT)
472 ctx->size += CTX_SIZE(xhci->hcc_params);
473
474 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
475 if (!ctx->bytes) {
476 kfree(ctx);
477 return NULL;
478 }
479 return ctx;
480 }
481
482 void xhci_free_container_ctx(struct xhci_hcd *xhci,
483 struct xhci_container_ctx *ctx)
484 {
485 if (!ctx)
486 return;
487 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488 kfree(ctx);
489 }
490
491 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492 struct xhci_container_ctx *ctx)
493 {
494 if (ctx->type != XHCI_CTX_TYPE_INPUT)
495 return NULL;
496
497 return (struct xhci_input_control_ctx *)ctx->bytes;
498 }
499
500 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 struct xhci_container_ctx *ctx)
502 {
503 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 return (struct xhci_slot_ctx *)ctx->bytes;
505
506 return (struct xhci_slot_ctx *)
507 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
508 }
509
510 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 struct xhci_container_ctx *ctx,
512 unsigned int ep_index)
513 {
514 /* increment ep index by offset of start of ep ctx array */
515 ep_index++;
516 if (ctx->type == XHCI_CTX_TYPE_INPUT)
517 ep_index++;
518
519 return (struct xhci_ep_ctx *)
520 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521 }
522
523
524 /***************** Streams structures manipulation *************************/
525
526 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527 unsigned int num_stream_ctxs,
528 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529 {
530 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
532
533 if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 dma_free_coherent(dev, size,
535 stream_ctx, dma);
536 else if (size <= SMALL_STREAM_ARRAY_SIZE)
537 return dma_pool_free(xhci->small_streams_pool,
538 stream_ctx, dma);
539 else
540 return dma_pool_free(xhci->medium_streams_pool,
541 stream_ctx, dma);
542 }
543
544 /*
545 * The stream context array for each endpoint with bulk streams enabled can
546 * vary in size, based on:
547 * - how many streams the endpoint supports,
548 * - the maximum primary stream array size the host controller supports,
549 * - and how many streams the device driver asks for.
550 *
551 * The stream context array must be a power of 2, and can be as small as
552 * 64 bytes or as large as 1MB.
553 */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 unsigned int num_stream_ctxs, dma_addr_t *dma,
556 gfp_t mem_flags)
557 {
558 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560
561 if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 return dma_alloc_coherent(dev, size,
563 dma, mem_flags);
564 else if (size <= SMALL_STREAM_ARRAY_SIZE)
565 return dma_pool_alloc(xhci->small_streams_pool,
566 mem_flags, dma);
567 else
568 return dma_pool_alloc(xhci->medium_streams_pool,
569 mem_flags, dma);
570 }
571
572 struct xhci_ring *xhci_dma_to_transfer_ring(
573 struct xhci_virt_ep *ep,
574 u64 address)
575 {
576 if (ep->ep_state & EP_HAS_STREAMS)
577 return radix_tree_lookup(&ep->stream_info->trb_address_map,
578 address >> TRB_SEGMENT_SHIFT);
579 return ep->ring;
580 }
581
582 struct xhci_ring *xhci_stream_id_to_ring(
583 struct xhci_virt_device *dev,
584 unsigned int ep_index,
585 unsigned int stream_id)
586 {
587 struct xhci_virt_ep *ep = &dev->eps[ep_index];
588
589 if (stream_id == 0)
590 return ep->ring;
591 if (!ep->stream_info)
592 return NULL;
593
594 if (stream_id > ep->stream_info->num_streams)
595 return NULL;
596 return ep->stream_info->stream_rings[stream_id];
597 }
598
599 /*
600 * Change an endpoint's internal structure so it supports stream IDs. The
601 * number of requested streams includes stream 0, which cannot be used by device
602 * drivers.
603 *
604 * The number of stream contexts in the stream context array may be bigger than
605 * the number of streams the driver wants to use. This is because the number of
606 * stream context array entries must be a power of two.
607 */
608 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 unsigned int num_stream_ctxs,
610 unsigned int num_streams,
611 unsigned int max_packet, gfp_t mem_flags)
612 {
613 struct xhci_stream_info *stream_info;
614 u32 cur_stream;
615 struct xhci_ring *cur_ring;
616 u64 addr;
617 int ret;
618
619 xhci_dbg(xhci, "Allocating %u streams and %u "
620 "stream context array entries.\n",
621 num_streams, num_stream_ctxs);
622 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624 return NULL;
625 }
626 xhci->cmd_ring_reserved_trbs++;
627
628 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629 if (!stream_info)
630 goto cleanup_trbs;
631
632 stream_info->num_streams = num_streams;
633 stream_info->num_stream_ctxs = num_stream_ctxs;
634
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info->stream_rings = kzalloc(
637 sizeof(struct xhci_ring *)*num_streams,
638 mem_flags);
639 if (!stream_info->stream_rings)
640 goto cleanup_info;
641
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 num_stream_ctxs, &stream_info->ctx_array_dma,
645 mem_flags);
646 if (!stream_info->stream_ctx_array)
647 goto cleanup_ctx;
648 memset(stream_info->stream_ctx_array, 0,
649 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650
651 /* Allocate everything needed to free the stream rings later */
652 stream_info->free_streams_command =
653 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
654 if (!stream_info->free_streams_command)
655 goto cleanup_ctx;
656
657 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
662 */
663
664 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 stream_info->stream_rings[cur_stream] =
666 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 mem_flags);
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream, (unsigned long long) addr);
681
682 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 if (ret) {
684 xhci_ring_free(xhci, cur_ring);
685 stream_info->stream_rings[cur_stream] = NULL;
686 goto cleanup_rings;
687 }
688 }
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
694 */
695
696 return stream_info;
697
698 cleanup_rings:
699 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 cur_ring = stream_info->stream_rings[cur_stream];
701 if (cur_ring) {
702 xhci_ring_free(xhci, cur_ring);
703 stream_info->stream_rings[cur_stream] = NULL;
704 }
705 }
706 xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708 kfree(stream_info->stream_rings);
709 cleanup_info:
710 kfree(stream_info);
711 cleanup_trbs:
712 xhci->cmd_ring_reserved_trbs--;
713 return NULL;
714 }
715 /*
716 * Sets the MaxPStreams field and the Linear Stream Array field.
717 * Sets the dequeue pointer to the stream context array.
718 */
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 struct xhci_ep_ctx *ep_ctx,
721 struct xhci_stream_info *stream_info)
722 {
723 u32 max_primary_streams;
724 /* MaxPStreams is the number of stream context array entries, not the
725 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
726 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727 */
728 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
730 "Setting number of stream ctx array entries to %u",
731 1 << (max_primary_streams + 1));
732 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 | EP_HAS_LSA);
735 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
736 }
737
738 /*
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
742 */
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744 struct xhci_virt_ep *ep)
745 {
746 dma_addr_t addr;
747 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
750 }
751
752 /* Frees all stream contexts associated with the endpoint,
753 *
754 * Caller should fix the endpoint context streams fields.
755 */
756 void xhci_free_stream_info(struct xhci_hcd *xhci,
757 struct xhci_stream_info *stream_info)
758 {
759 int cur_stream;
760 struct xhci_ring *cur_ring;
761
762 if (!stream_info)
763 return;
764
765 for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 cur_stream++) {
767 cur_ring = stream_info->stream_rings[cur_stream];
768 if (cur_ring) {
769 xhci_ring_free(xhci, cur_ring);
770 stream_info->stream_rings[cur_stream] = NULL;
771 }
772 }
773 xhci_free_command(xhci, stream_info->free_streams_command);
774 xhci->cmd_ring_reserved_trbs--;
775 if (stream_info->stream_ctx_array)
776 xhci_free_stream_ctx(xhci,
777 stream_info->num_stream_ctxs,
778 stream_info->stream_ctx_array,
779 stream_info->ctx_array_dma);
780
781 kfree(stream_info->stream_rings);
782 kfree(stream_info);
783 }
784
785
786 /***************** Device context manipulation *************************/
787
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 struct xhci_virt_ep *ep)
790 {
791 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792 0);
793 ep->xhci = xhci;
794 }
795
796 static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 struct xhci_virt_device *virt_dev,
798 int slot_id)
799 {
800 struct list_head *tt_list_head;
801 struct xhci_tt_bw_info *tt_info, *next;
802 bool slot_found = false;
803
804 /* If the device never made it past the Set Address stage,
805 * it may not have the real_port set correctly.
806 */
807 if (virt_dev->real_port == 0 ||
808 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 xhci_dbg(xhci, "Bad real port.\n");
810 return;
811 }
812
813 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 /* Multi-TT hubs will have more than one entry */
816 if (tt_info->slot_id == slot_id) {
817 slot_found = true;
818 list_del(&tt_info->tt_list);
819 kfree(tt_info);
820 } else if (slot_found) {
821 break;
822 }
823 }
824 }
825
826 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 struct xhci_virt_device *virt_dev,
828 struct usb_device *hdev,
829 struct usb_tt *tt, gfp_t mem_flags)
830 {
831 struct xhci_tt_bw_info *tt_info;
832 unsigned int num_ports;
833 int i, j;
834
835 if (!tt->multi)
836 num_ports = 1;
837 else
838 num_ports = hdev->maxchild;
839
840 for (i = 0; i < num_ports; i++, tt_info++) {
841 struct xhci_interval_bw_table *bw_table;
842
843 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844 if (!tt_info)
845 goto free_tts;
846 INIT_LIST_HEAD(&tt_info->tt_list);
847 list_add(&tt_info->tt_list,
848 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849 tt_info->slot_id = virt_dev->udev->slot_id;
850 if (tt->multi)
851 tt_info->ttport = i+1;
852 bw_table = &tt_info->bw_table;
853 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 }
856 return 0;
857
858 free_tts:
859 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 return -ENOMEM;
861 }
862
863
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865 * Should be called with xhci->lock held if there is any chance the TT lists
866 * will be manipulated by the configure endpoint, allocate device, or update
867 * hub functions while this function is removing the TT entries from the list.
868 */
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870 {
871 struct xhci_virt_device *dev;
872 int i;
873 int old_active_eps = 0;
874
875 /* Slot ID 0 is reserved */
876 if (slot_id == 0 || !xhci->devs[slot_id])
877 return;
878
879 dev = xhci->devs[slot_id];
880
881 trace_xhci_free_virt_device(dev);
882
883 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
884 if (!dev)
885 return;
886
887 if (dev->tt_info)
888 old_active_eps = dev->tt_info->active_eps;
889
890 for (i = 0; i < 31; i++) {
891 if (dev->eps[i].ring)
892 xhci_ring_free(xhci, dev->eps[i].ring);
893 if (dev->eps[i].stream_info)
894 xhci_free_stream_info(xhci,
895 dev->eps[i].stream_info);
896 /* Endpoints on the TT/root port lists should have been removed
897 * when usb_disable_device() was called for the device.
898 * We can't drop them anyway, because the udev might have gone
899 * away by this point, and we can't tell what speed it was.
900 */
901 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 xhci_warn(xhci, "Slot %u endpoint %u "
903 "not removed from BW list!\n",
904 slot_id, i);
905 }
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910
911 if (dev->in_ctx)
912 xhci_free_container_ctx(xhci, dev->in_ctx);
913 if (dev->out_ctx)
914 xhci_free_container_ctx(xhci, dev->out_ctx);
915
916 if (dev->udev && dev->udev->slot_id)
917 dev->udev->slot_id = 0;
918 kfree(xhci->devs[slot_id]);
919 xhci->devs[slot_id] = NULL;
920 }
921
922 /*
923 * Free a virt_device structure.
924 * If the virt_device added a tt_info (a hub) and has children pointing to
925 * that tt_info, then free the child first. Recursive.
926 * We can't rely on udev at this point to find child-parent relationships.
927 */
928 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
929 {
930 struct xhci_virt_device *vdev;
931 struct list_head *tt_list_head;
932 struct xhci_tt_bw_info *tt_info, *next;
933 int i;
934
935 vdev = xhci->devs[slot_id];
936 if (!vdev)
937 return;
938
939 if (vdev->real_port == 0 ||
940 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941 xhci_dbg(xhci, "Bad vdev->real_port.\n");
942 goto out;
943 }
944
945 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947 /* is this a hub device that added a tt_info to the tts list */
948 if (tt_info->slot_id == slot_id) {
949 /* are any devices using this tt_info? */
950 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951 vdev = xhci->devs[i];
952 if (vdev && (vdev->tt_info == tt_info))
953 xhci_free_virt_devices_depth_first(
954 xhci, i);
955 }
956 }
957 }
958 out:
959 /* we are now at a leaf device */
960 xhci_debugfs_remove_slot(xhci, slot_id);
961 xhci_free_virt_device(xhci, slot_id);
962 }
963
964 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965 struct usb_device *udev, gfp_t flags)
966 {
967 struct xhci_virt_device *dev;
968 int i;
969
970 /* Slot ID 0 is reserved */
971 if (slot_id == 0 || xhci->devs[slot_id]) {
972 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
973 return 0;
974 }
975
976 dev = kzalloc(sizeof(*dev), flags);
977 if (!dev)
978 return 0;
979
980 /* Allocate the (output) device context that will be used in the HC. */
981 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
982 if (!dev->out_ctx)
983 goto fail;
984
985 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
986 (unsigned long long)dev->out_ctx->dma);
987
988 /* Allocate the (input) device context for address device command */
989 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
990 if (!dev->in_ctx)
991 goto fail;
992
993 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
994 (unsigned long long)dev->in_ctx->dma);
995
996 /* Initialize the cancellation list and watchdog timers for each ep */
997 for (i = 0; i < 31; i++) {
998 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
999 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1000 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1001 }
1002
1003 /* Allocate endpoint 0 ring */
1004 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1005 if (!dev->eps[0].ring)
1006 goto fail;
1007
1008 dev->udev = udev;
1009
1010 /* Point to output device context in dcbaa. */
1011 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1012 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1013 slot_id,
1014 &xhci->dcbaa->dev_context_ptrs[slot_id],
1015 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1016
1017 trace_xhci_alloc_virt_device(dev);
1018
1019 xhci->devs[slot_id] = dev;
1020
1021 return 1;
1022 fail:
1023
1024 if (dev->in_ctx)
1025 xhci_free_container_ctx(xhci, dev->in_ctx);
1026 if (dev->out_ctx)
1027 xhci_free_container_ctx(xhci, dev->out_ctx);
1028 kfree(dev);
1029
1030 return 0;
1031 }
1032
1033 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1034 struct usb_device *udev)
1035 {
1036 struct xhci_virt_device *virt_dev;
1037 struct xhci_ep_ctx *ep0_ctx;
1038 struct xhci_ring *ep_ring;
1039
1040 virt_dev = xhci->devs[udev->slot_id];
1041 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1042 ep_ring = virt_dev->eps[0].ring;
1043 /*
1044 * FIXME we don't keep track of the dequeue pointer very well after a
1045 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1046 * host to our enqueue pointer. This should only be called after a
1047 * configured device has reset, so all control transfers should have
1048 * been completed or cancelled before the reset.
1049 */
1050 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1051 ep_ring->enqueue)
1052 | ep_ring->cycle_state);
1053 }
1054
1055 /*
1056 * The xHCI roothub may have ports of differing speeds in any order in the port
1057 * status registers.
1058 *
1059 * The xHCI hardware wants to know the roothub port number that the USB device
1060 * is attached to (or the roothub port its ancestor hub is attached to). All we
1061 * know is the index of that port under either the USB 2.0 or the USB 3.0
1062 * roothub, but that doesn't give us the real index into the HW port status
1063 * registers. Call xhci_find_raw_port_number() to get real index.
1064 */
1065 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1066 struct usb_device *udev)
1067 {
1068 struct usb_device *top_dev;
1069 struct usb_hcd *hcd;
1070
1071 if (udev->speed >= USB_SPEED_SUPER)
1072 hcd = xhci->shared_hcd;
1073 else
1074 hcd = xhci->main_hcd;
1075
1076 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1077 top_dev = top_dev->parent)
1078 /* Found device below root hub */;
1079
1080 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1081 }
1082
1083 /* Setup an xHCI virtual device for a Set Address command */
1084 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1085 {
1086 struct xhci_virt_device *dev;
1087 struct xhci_ep_ctx *ep0_ctx;
1088 struct xhci_slot_ctx *slot_ctx;
1089 u32 port_num;
1090 u32 max_packets;
1091 struct usb_device *top_dev;
1092
1093 dev = xhci->devs[udev->slot_id];
1094 /* Slot ID 0 is reserved */
1095 if (udev->slot_id == 0 || !dev) {
1096 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1097 udev->slot_id);
1098 return -EINVAL;
1099 }
1100 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1101 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1102
1103 /* 3) Only the control endpoint is valid - one endpoint context */
1104 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1105 switch (udev->speed) {
1106 case USB_SPEED_SUPER_PLUS:
1107 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1108 max_packets = MAX_PACKET(512);
1109 break;
1110 case USB_SPEED_SUPER:
1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1112 max_packets = MAX_PACKET(512);
1113 break;
1114 case USB_SPEED_HIGH:
1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1116 max_packets = MAX_PACKET(64);
1117 break;
1118 /* USB core guesses at a 64-byte max packet first for FS devices */
1119 case USB_SPEED_FULL:
1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1121 max_packets = MAX_PACKET(64);
1122 break;
1123 case USB_SPEED_LOW:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1125 max_packets = MAX_PACKET(8);
1126 break;
1127 case USB_SPEED_WIRELESS:
1128 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1129 return -EINVAL;
1130 break;
1131 default:
1132 /* Speed was set earlier, this shouldn't happen. */
1133 return -EINVAL;
1134 }
1135 /* Find the root hub port this device is under */
1136 port_num = xhci_find_real_port_number(xhci, udev);
1137 if (!port_num)
1138 return -EINVAL;
1139 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1140 /* Set the port number in the virtual_device to the faked port number */
1141 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1142 top_dev = top_dev->parent)
1143 /* Found device below root hub */;
1144 dev->fake_port = top_dev->portnum;
1145 dev->real_port = port_num;
1146 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1147 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1148
1149 /* Find the right bandwidth table that this device will be a part of.
1150 * If this is a full speed device attached directly to a root port (or a
1151 * decendent of one), it counts as a primary bandwidth domain, not a
1152 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1153 * will never be created for the HS root hub.
1154 */
1155 if (!udev->tt || !udev->tt->hub->parent) {
1156 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1157 } else {
1158 struct xhci_root_port_bw_info *rh_bw;
1159 struct xhci_tt_bw_info *tt_bw;
1160
1161 rh_bw = &xhci->rh_bw[port_num - 1];
1162 /* Find the right TT. */
1163 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1164 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1165 continue;
1166
1167 if (!dev->udev->tt->multi ||
1168 (udev->tt->multi &&
1169 tt_bw->ttport == dev->udev->ttport)) {
1170 dev->bw_table = &tt_bw->bw_table;
1171 dev->tt_info = tt_bw;
1172 break;
1173 }
1174 }
1175 if (!dev->tt_info)
1176 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1177 }
1178
1179 /* Is this a LS/FS device under an external HS hub? */
1180 if (udev->tt && udev->tt->hub->parent) {
1181 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1182 (udev->ttport << 8));
1183 if (udev->tt->multi)
1184 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1185 }
1186 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1187 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1188
1189 /* Step 4 - ring already allocated */
1190 /* Step 5 */
1191 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1192
1193 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1194 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1195 max_packets);
1196
1197 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1198 dev->eps[0].ring->cycle_state);
1199
1200 trace_xhci_setup_addressable_virt_device(dev);
1201
1202 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203
1204 return 0;
1205 }
1206
1207 /*
1208 * Convert interval expressed as 2^(bInterval - 1) == interval into
1209 * straight exponent value 2^n == interval.
1210 *
1211 */
1212 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213 struct usb_host_endpoint *ep)
1214 {
1215 unsigned int interval;
1216
1217 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218 if (interval != ep->desc.bInterval - 1)
1219 dev_warn(&udev->dev,
1220 "ep %#x - rounding interval to %d %sframes\n",
1221 ep->desc.bEndpointAddress,
1222 1 << interval,
1223 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224
1225 if (udev->speed == USB_SPEED_FULL) {
1226 /*
1227 * Full speed isoc endpoints specify interval in frames,
1228 * not microframes. We are using microframes everywhere,
1229 * so adjust accordingly.
1230 */
1231 interval += 3; /* 1 frame = 2^3 uframes */
1232 }
1233
1234 return interval;
1235 }
1236
1237 /*
1238 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239 * microframes, rounded down to nearest power of 2.
1240 */
1241 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242 struct usb_host_endpoint *ep, unsigned int desc_interval,
1243 unsigned int min_exponent, unsigned int max_exponent)
1244 {
1245 unsigned int interval;
1246
1247 interval = fls(desc_interval) - 1;
1248 interval = clamp_val(interval, min_exponent, max_exponent);
1249 if ((1 << interval) != desc_interval)
1250 dev_dbg(&udev->dev,
1251 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252 ep->desc.bEndpointAddress,
1253 1 << interval,
1254 desc_interval);
1255
1256 return interval;
1257 }
1258
1259 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260 struct usb_host_endpoint *ep)
1261 {
1262 if (ep->desc.bInterval == 0)
1263 return 0;
1264 return xhci_microframes_to_exponent(udev, ep,
1265 ep->desc.bInterval, 0, 15);
1266 }
1267
1268
1269 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270 struct usb_host_endpoint *ep)
1271 {
1272 return xhci_microframes_to_exponent(udev, ep,
1273 ep->desc.bInterval * 8, 3, 10);
1274 }
1275
1276 /* Return the polling or NAK interval.
1277 *
1278 * The polling interval is expressed in "microframes". If xHCI's Interval field
1279 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280 *
1281 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282 * is set to 0.
1283 */
1284 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285 struct usb_host_endpoint *ep)
1286 {
1287 unsigned int interval = 0;
1288
1289 switch (udev->speed) {
1290 case USB_SPEED_HIGH:
1291 /* Max NAK rate */
1292 if (usb_endpoint_xfer_control(&ep->desc) ||
1293 usb_endpoint_xfer_bulk(&ep->desc)) {
1294 interval = xhci_parse_microframe_interval(udev, ep);
1295 break;
1296 }
1297 /* Fall through - SS and HS isoc/int have same decoding */
1298
1299 case USB_SPEED_SUPER_PLUS:
1300 case USB_SPEED_SUPER:
1301 if (usb_endpoint_xfer_int(&ep->desc) ||
1302 usb_endpoint_xfer_isoc(&ep->desc)) {
1303 interval = xhci_parse_exponent_interval(udev, ep);
1304 }
1305 break;
1306
1307 case USB_SPEED_FULL:
1308 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309 interval = xhci_parse_exponent_interval(udev, ep);
1310 break;
1311 }
1312 /*
1313 * Fall through for interrupt endpoint interval decoding
1314 * since it uses the same rules as low speed interrupt
1315 * endpoints.
1316 */
1317 /* fall through */
1318
1319 case USB_SPEED_LOW:
1320 if (usb_endpoint_xfer_int(&ep->desc) ||
1321 usb_endpoint_xfer_isoc(&ep->desc)) {
1322
1323 interval = xhci_parse_frame_interval(udev, ep);
1324 }
1325 break;
1326
1327 default:
1328 BUG();
1329 }
1330 return interval;
1331 }
1332
1333 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1334 * High speed endpoint descriptors can define "the number of additional
1335 * transaction opportunities per microframe", but that goes in the Max Burst
1336 * endpoint context field.
1337 */
1338 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1339 struct usb_host_endpoint *ep)
1340 {
1341 if (udev->speed < USB_SPEED_SUPER ||
1342 !usb_endpoint_xfer_isoc(&ep->desc))
1343 return 0;
1344 return ep->ss_ep_comp.bmAttributes;
1345 }
1346
1347 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1348 struct usb_host_endpoint *ep)
1349 {
1350 /* Super speed and Plus have max burst in ep companion desc */
1351 if (udev->speed >= USB_SPEED_SUPER)
1352 return ep->ss_ep_comp.bMaxBurst;
1353
1354 if (udev->speed == USB_SPEED_HIGH &&
1355 (usb_endpoint_xfer_isoc(&ep->desc) ||
1356 usb_endpoint_xfer_int(&ep->desc)))
1357 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1358
1359 return 0;
1360 }
1361
1362 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1363 {
1364 int in;
1365
1366 in = usb_endpoint_dir_in(&ep->desc);
1367
1368 switch (usb_endpoint_type(&ep->desc)) {
1369 case USB_ENDPOINT_XFER_CONTROL:
1370 return CTRL_EP;
1371 case USB_ENDPOINT_XFER_BULK:
1372 return in ? BULK_IN_EP : BULK_OUT_EP;
1373 case USB_ENDPOINT_XFER_ISOC:
1374 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1375 case USB_ENDPOINT_XFER_INT:
1376 return in ? INT_IN_EP : INT_OUT_EP;
1377 }
1378 return 0;
1379 }
1380
1381 /* Return the maximum endpoint service interval time (ESIT) payload.
1382 * Basically, this is the maxpacket size, multiplied by the burst size
1383 * and mult size.
1384 */
1385 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1386 struct usb_host_endpoint *ep)
1387 {
1388 int max_burst;
1389 int max_packet;
1390
1391 /* Only applies for interrupt or isochronous endpoints */
1392 if (usb_endpoint_xfer_control(&ep->desc) ||
1393 usb_endpoint_xfer_bulk(&ep->desc))
1394 return 0;
1395
1396 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1397 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1398 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1399 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1400 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1401 else if (udev->speed >= USB_SPEED_SUPER)
1402 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1403
1404 max_packet = usb_endpoint_maxp(&ep->desc);
1405 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1406 /* A 0 in max burst means 1 transfer per ESIT */
1407 return max_packet * max_burst;
1408 }
1409
1410 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1411 * Drivers will have to call usb_alloc_streams() to do that.
1412 */
1413 int xhci_endpoint_init(struct xhci_hcd *xhci,
1414 struct xhci_virt_device *virt_dev,
1415 struct usb_device *udev,
1416 struct usb_host_endpoint *ep,
1417 gfp_t mem_flags)
1418 {
1419 unsigned int ep_index;
1420 struct xhci_ep_ctx *ep_ctx;
1421 struct xhci_ring *ep_ring;
1422 unsigned int max_packet;
1423 enum xhci_ring_type ring_type;
1424 u32 max_esit_payload;
1425 u32 endpoint_type;
1426 unsigned int max_burst;
1427 unsigned int interval;
1428 unsigned int mult;
1429 unsigned int avg_trb_len;
1430 unsigned int err_count = 0;
1431
1432 ep_index = xhci_get_endpoint_index(&ep->desc);
1433 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1434
1435 endpoint_type = xhci_get_endpoint_type(ep);
1436 if (!endpoint_type)
1437 return -EINVAL;
1438
1439 ring_type = usb_endpoint_type(&ep->desc);
1440
1441 /*
1442 * Get values to fill the endpoint context, mostly from ep descriptor.
1443 * The average TRB buffer lengt for bulk endpoints is unclear as we
1444 * have no clue on scatter gather list entry size. For Isoc and Int,
1445 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1446 */
1447 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1448 interval = xhci_get_endpoint_interval(udev, ep);
1449
1450 /* Periodic endpoint bInterval limit quirk */
1451 if (usb_endpoint_xfer_int(&ep->desc) ||
1452 usb_endpoint_xfer_isoc(&ep->desc)) {
1453 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1454 udev->speed >= USB_SPEED_HIGH &&
1455 interval >= 7) {
1456 interval = 6;
1457 }
1458 }
1459
1460 mult = xhci_get_endpoint_mult(udev, ep);
1461 max_packet = usb_endpoint_maxp(&ep->desc);
1462 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1463 avg_trb_len = max_esit_payload;
1464
1465 /* FIXME dig Mult and streams info out of ep companion desc */
1466
1467 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1468 if (!usb_endpoint_xfer_isoc(&ep->desc))
1469 err_count = 3;
1470 /* Some devices get this wrong */
1471 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1472 max_packet = 512;
1473 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1474 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1475 avg_trb_len = 8;
1476 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1477 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1478 mult = 0;
1479
1480 /* Set up the endpoint ring */
1481 virt_dev->eps[ep_index].new_ring =
1482 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1483 if (!virt_dev->eps[ep_index].new_ring)
1484 return -ENOMEM;
1485
1486 virt_dev->eps[ep_index].skip = false;
1487 ep_ring = virt_dev->eps[ep_index].new_ring;
1488
1489 /* Fill the endpoint context */
1490 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1491 EP_INTERVAL(interval) |
1492 EP_MULT(mult));
1493 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1494 MAX_PACKET(max_packet) |
1495 MAX_BURST(max_burst) |
1496 ERROR_COUNT(err_count));
1497 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1498 ep_ring->cycle_state);
1499
1500 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1501 EP_AVG_TRB_LENGTH(avg_trb_len));
1502
1503 return 0;
1504 }
1505
1506 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1507 struct xhci_virt_device *virt_dev,
1508 struct usb_host_endpoint *ep)
1509 {
1510 unsigned int ep_index;
1511 struct xhci_ep_ctx *ep_ctx;
1512
1513 ep_index = xhci_get_endpoint_index(&ep->desc);
1514 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1515
1516 ep_ctx->ep_info = 0;
1517 ep_ctx->ep_info2 = 0;
1518 ep_ctx->deq = 0;
1519 ep_ctx->tx_info = 0;
1520 /* Don't free the endpoint ring until the set interface or configuration
1521 * request succeeds.
1522 */
1523 }
1524
1525 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1526 {
1527 bw_info->ep_interval = 0;
1528 bw_info->mult = 0;
1529 bw_info->num_packets = 0;
1530 bw_info->max_packet_size = 0;
1531 bw_info->type = 0;
1532 bw_info->max_esit_payload = 0;
1533 }
1534
1535 void xhci_update_bw_info(struct xhci_hcd *xhci,
1536 struct xhci_container_ctx *in_ctx,
1537 struct xhci_input_control_ctx *ctrl_ctx,
1538 struct xhci_virt_device *virt_dev)
1539 {
1540 struct xhci_bw_info *bw_info;
1541 struct xhci_ep_ctx *ep_ctx;
1542 unsigned int ep_type;
1543 int i;
1544
1545 for (i = 1; i < 31; i++) {
1546 bw_info = &virt_dev->eps[i].bw_info;
1547
1548 /* We can't tell what endpoint type is being dropped, but
1549 * unconditionally clearing the bandwidth info for non-periodic
1550 * endpoints should be harmless because the info will never be
1551 * set in the first place.
1552 */
1553 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1554 /* Dropped endpoint */
1555 xhci_clear_endpoint_bw_info(bw_info);
1556 continue;
1557 }
1558
1559 if (EP_IS_ADDED(ctrl_ctx, i)) {
1560 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1561 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1562
1563 /* Ignore non-periodic endpoints */
1564 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1565 ep_type != ISOC_IN_EP &&
1566 ep_type != INT_IN_EP)
1567 continue;
1568
1569 /* Added or changed endpoint */
1570 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1571 le32_to_cpu(ep_ctx->ep_info));
1572 /* Number of packets and mult are zero-based in the
1573 * input context, but we want one-based for the
1574 * interval table.
1575 */
1576 bw_info->mult = CTX_TO_EP_MULT(
1577 le32_to_cpu(ep_ctx->ep_info)) + 1;
1578 bw_info->num_packets = CTX_TO_MAX_BURST(
1579 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1580 bw_info->max_packet_size = MAX_PACKET_DECODED(
1581 le32_to_cpu(ep_ctx->ep_info2));
1582 bw_info->type = ep_type;
1583 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1584 le32_to_cpu(ep_ctx->tx_info));
1585 }
1586 }
1587 }
1588
1589 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1590 * Useful when you want to change one particular aspect of the endpoint and then
1591 * issue a configure endpoint command.
1592 */
1593 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1594 struct xhci_container_ctx *in_ctx,
1595 struct xhci_container_ctx *out_ctx,
1596 unsigned int ep_index)
1597 {
1598 struct xhci_ep_ctx *out_ep_ctx;
1599 struct xhci_ep_ctx *in_ep_ctx;
1600
1601 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1602 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1603
1604 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1605 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1606 in_ep_ctx->deq = out_ep_ctx->deq;
1607 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1608 }
1609
1610 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1611 * Useful when you want to change one particular aspect of the endpoint and then
1612 * issue a configure endpoint command. Only the context entries field matters,
1613 * but we'll copy the whole thing anyway.
1614 */
1615 void xhci_slot_copy(struct xhci_hcd *xhci,
1616 struct xhci_container_ctx *in_ctx,
1617 struct xhci_container_ctx *out_ctx)
1618 {
1619 struct xhci_slot_ctx *in_slot_ctx;
1620 struct xhci_slot_ctx *out_slot_ctx;
1621
1622 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1624
1625 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1626 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1627 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1628 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1629 }
1630
1631 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1632 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1633 {
1634 int i;
1635 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1636 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1637
1638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1639 "Allocating %d scratchpad buffers", num_sp);
1640
1641 if (!num_sp)
1642 return 0;
1643
1644 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1645 if (!xhci->scratchpad)
1646 goto fail_sp;
1647
1648 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1649 num_sp * sizeof(u64),
1650 &xhci->scratchpad->sp_dma, flags);
1651 if (!xhci->scratchpad->sp_array)
1652 goto fail_sp2;
1653
1654 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1655 if (!xhci->scratchpad->sp_buffers)
1656 goto fail_sp3;
1657
1658 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1659 for (i = 0; i < num_sp; i++) {
1660 dma_addr_t dma;
1661 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1662 flags);
1663 if (!buf)
1664 goto fail_sp4;
1665
1666 xhci->scratchpad->sp_array[i] = dma;
1667 xhci->scratchpad->sp_buffers[i] = buf;
1668 }
1669
1670 return 0;
1671
1672 fail_sp4:
1673 for (i = i - 1; i >= 0; i--) {
1674 dma_free_coherent(dev, xhci->page_size,
1675 xhci->scratchpad->sp_buffers[i],
1676 xhci->scratchpad->sp_array[i]);
1677 }
1678
1679 kfree(xhci->scratchpad->sp_buffers);
1680
1681 fail_sp3:
1682 dma_free_coherent(dev, num_sp * sizeof(u64),
1683 xhci->scratchpad->sp_array,
1684 xhci->scratchpad->sp_dma);
1685
1686 fail_sp2:
1687 kfree(xhci->scratchpad);
1688 xhci->scratchpad = NULL;
1689
1690 fail_sp:
1691 return -ENOMEM;
1692 }
1693
1694 static void scratchpad_free(struct xhci_hcd *xhci)
1695 {
1696 int num_sp;
1697 int i;
1698 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1699
1700 if (!xhci->scratchpad)
1701 return;
1702
1703 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1704
1705 for (i = 0; i < num_sp; i++) {
1706 dma_free_coherent(dev, xhci->page_size,
1707 xhci->scratchpad->sp_buffers[i],
1708 xhci->scratchpad->sp_array[i]);
1709 }
1710 kfree(xhci->scratchpad->sp_buffers);
1711 dma_free_coherent(dev, num_sp * sizeof(u64),
1712 xhci->scratchpad->sp_array,
1713 xhci->scratchpad->sp_dma);
1714 kfree(xhci->scratchpad);
1715 xhci->scratchpad = NULL;
1716 }
1717
1718 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1719 bool allocate_completion, gfp_t mem_flags)
1720 {
1721 struct xhci_command *command;
1722
1723 command = kzalloc(sizeof(*command), mem_flags);
1724 if (!command)
1725 return NULL;
1726
1727 if (allocate_completion) {
1728 command->completion =
1729 kzalloc(sizeof(struct completion), mem_flags);
1730 if (!command->completion) {
1731 kfree(command);
1732 return NULL;
1733 }
1734 init_completion(command->completion);
1735 }
1736
1737 command->status = 0;
1738 INIT_LIST_HEAD(&command->cmd_list);
1739 return command;
1740 }
1741
1742 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1743 bool allocate_completion, gfp_t mem_flags)
1744 {
1745 struct xhci_command *command;
1746
1747 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1748 if (!command)
1749 return NULL;
1750
1751 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1752 mem_flags);
1753 if (!command->in_ctx) {
1754 kfree(command->completion);
1755 kfree(command);
1756 return NULL;
1757 }
1758 return command;
1759 }
1760
1761 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1762 {
1763 kfree(urb_priv);
1764 }
1765
1766 void xhci_free_command(struct xhci_hcd *xhci,
1767 struct xhci_command *command)
1768 {
1769 xhci_free_container_ctx(xhci,
1770 command->in_ctx);
1771 kfree(command->completion);
1772 kfree(command);
1773 }
1774
1775 int xhci_alloc_erst(struct xhci_hcd *xhci,
1776 struct xhci_ring *evt_ring,
1777 struct xhci_erst *erst,
1778 gfp_t flags)
1779 {
1780 size_t size;
1781 unsigned int val;
1782 struct xhci_segment *seg;
1783 struct xhci_erst_entry *entry;
1784
1785 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1786 erst->entries = dma_zalloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1787 size, &erst->erst_dma_addr, flags);
1788 if (!erst->entries)
1789 return -ENOMEM;
1790
1791 erst->num_entries = evt_ring->num_segs;
1792
1793 seg = evt_ring->first_seg;
1794 for (val = 0; val < evt_ring->num_segs; val++) {
1795 entry = &erst->entries[val];
1796 entry->seg_addr = cpu_to_le64(seg->dma);
1797 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1798 entry->rsvd = 0;
1799 seg = seg->next;
1800 }
1801
1802 return 0;
1803 }
1804
1805 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1806 {
1807 size_t size;
1808 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1809
1810 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1811 if (erst->entries)
1812 dma_free_coherent(dev, size,
1813 erst->entries,
1814 erst->erst_dma_addr);
1815 erst->entries = NULL;
1816 }
1817
1818 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1819 {
1820 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1821 int i, j, num_ports;
1822
1823 cancel_delayed_work_sync(&xhci->cmd_timer);
1824
1825 xhci_free_erst(xhci, &xhci->erst);
1826
1827 if (xhci->event_ring)
1828 xhci_ring_free(xhci, xhci->event_ring);
1829 xhci->event_ring = NULL;
1830 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1831
1832 if (xhci->lpm_command)
1833 xhci_free_command(xhci, xhci->lpm_command);
1834 xhci->lpm_command = NULL;
1835 if (xhci->cmd_ring)
1836 xhci_ring_free(xhci, xhci->cmd_ring);
1837 xhci->cmd_ring = NULL;
1838 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1839 xhci_cleanup_command_queue(xhci);
1840
1841 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1842 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1843 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1844 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1845 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1846 while (!list_empty(ep))
1847 list_del_init(ep->next);
1848 }
1849 }
1850
1851 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1852 xhci_free_virt_devices_depth_first(xhci, i);
1853
1854 dma_pool_destroy(xhci->segment_pool);
1855 xhci->segment_pool = NULL;
1856 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1857
1858 dma_pool_destroy(xhci->device_pool);
1859 xhci->device_pool = NULL;
1860 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1861
1862 dma_pool_destroy(xhci->small_streams_pool);
1863 xhci->small_streams_pool = NULL;
1864 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1865 "Freed small stream array pool");
1866
1867 dma_pool_destroy(xhci->medium_streams_pool);
1868 xhci->medium_streams_pool = NULL;
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1870 "Freed medium stream array pool");
1871
1872 if (xhci->dcbaa)
1873 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1874 xhci->dcbaa, xhci->dcbaa->dma);
1875 xhci->dcbaa = NULL;
1876
1877 scratchpad_free(xhci);
1878
1879 if (!xhci->rh_bw)
1880 goto no_bw;
1881
1882 for (i = 0; i < num_ports; i++) {
1883 struct xhci_tt_bw_info *tt, *n;
1884 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1885 list_del(&tt->tt_list);
1886 kfree(tt);
1887 }
1888 }
1889
1890 no_bw:
1891 xhci->cmd_ring_reserved_trbs = 0;
1892 xhci->usb2_rhub.num_ports = 0;
1893 xhci->usb3_rhub.num_ports = 0;
1894 xhci->num_active_eps = 0;
1895 kfree(xhci->usb2_rhub.ports);
1896 kfree(xhci->usb3_rhub.ports);
1897 kfree(xhci->hw_ports);
1898 kfree(xhci->rh_bw);
1899 kfree(xhci->ext_caps);
1900
1901 xhci->usb2_rhub.ports = NULL;
1902 xhci->usb3_rhub.ports = NULL;
1903 xhci->hw_ports = NULL;
1904 xhci->rh_bw = NULL;
1905 xhci->ext_caps = NULL;
1906
1907 xhci->page_size = 0;
1908 xhci->page_shift = 0;
1909 xhci->bus_state[0].bus_suspended = 0;
1910 xhci->bus_state[1].bus_suspended = 0;
1911 }
1912
1913 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1914 struct xhci_segment *input_seg,
1915 union xhci_trb *start_trb,
1916 union xhci_trb *end_trb,
1917 dma_addr_t input_dma,
1918 struct xhci_segment *result_seg,
1919 char *test_name, int test_number)
1920 {
1921 unsigned long long start_dma;
1922 unsigned long long end_dma;
1923 struct xhci_segment *seg;
1924
1925 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1926 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1927
1928 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1929 if (seg != result_seg) {
1930 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1931 test_name, test_number);
1932 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1933 "input DMA 0x%llx\n",
1934 input_seg,
1935 (unsigned long long) input_dma);
1936 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1937 "ending TRB %p (0x%llx DMA)\n",
1938 start_trb, start_dma,
1939 end_trb, end_dma);
1940 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1941 result_seg, seg);
1942 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1943 true);
1944 return -1;
1945 }
1946 return 0;
1947 }
1948
1949 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1950 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1951 {
1952 struct {
1953 dma_addr_t input_dma;
1954 struct xhci_segment *result_seg;
1955 } simple_test_vector [] = {
1956 /* A zeroed DMA field should fail */
1957 { 0, NULL },
1958 /* One TRB before the ring start should fail */
1959 { xhci->event_ring->first_seg->dma - 16, NULL },
1960 /* One byte before the ring start should fail */
1961 { xhci->event_ring->first_seg->dma - 1, NULL },
1962 /* Starting TRB should succeed */
1963 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1964 /* Ending TRB should succeed */
1965 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1966 xhci->event_ring->first_seg },
1967 /* One byte after the ring end should fail */
1968 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1969 /* One TRB after the ring end should fail */
1970 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1971 /* An address of all ones should fail */
1972 { (dma_addr_t) (~0), NULL },
1973 };
1974 struct {
1975 struct xhci_segment *input_seg;
1976 union xhci_trb *start_trb;
1977 union xhci_trb *end_trb;
1978 dma_addr_t input_dma;
1979 struct xhci_segment *result_seg;
1980 } complex_test_vector [] = {
1981 /* Test feeding a valid DMA address from a different ring */
1982 { .input_seg = xhci->event_ring->first_seg,
1983 .start_trb = xhci->event_ring->first_seg->trbs,
1984 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1985 .input_dma = xhci->cmd_ring->first_seg->dma,
1986 .result_seg = NULL,
1987 },
1988 /* Test feeding a valid end TRB from a different ring */
1989 { .input_seg = xhci->event_ring->first_seg,
1990 .start_trb = xhci->event_ring->first_seg->trbs,
1991 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1992 .input_dma = xhci->cmd_ring->first_seg->dma,
1993 .result_seg = NULL,
1994 },
1995 /* Test feeding a valid start and end TRB from a different ring */
1996 { .input_seg = xhci->event_ring->first_seg,
1997 .start_trb = xhci->cmd_ring->first_seg->trbs,
1998 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1999 .input_dma = xhci->cmd_ring->first_seg->dma,
2000 .result_seg = NULL,
2001 },
2002 /* TRB in this ring, but after this TD */
2003 { .input_seg = xhci->event_ring->first_seg,
2004 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2005 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2006 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2007 .result_seg = NULL,
2008 },
2009 /* TRB in this ring, but before this TD */
2010 { .input_seg = xhci->event_ring->first_seg,
2011 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2012 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2013 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2014 .result_seg = NULL,
2015 },
2016 /* TRB in this ring, but after this wrapped TD */
2017 { .input_seg = xhci->event_ring->first_seg,
2018 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2019 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2020 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2021 .result_seg = NULL,
2022 },
2023 /* TRB in this ring, but before this wrapped TD */
2024 { .input_seg = xhci->event_ring->first_seg,
2025 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2026 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2027 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2028 .result_seg = NULL,
2029 },
2030 /* TRB not in this ring, and we have a wrapped TD */
2031 { .input_seg = xhci->event_ring->first_seg,
2032 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2033 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2034 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2035 .result_seg = NULL,
2036 },
2037 };
2038
2039 unsigned int num_tests;
2040 int i, ret;
2041
2042 num_tests = ARRAY_SIZE(simple_test_vector);
2043 for (i = 0; i < num_tests; i++) {
2044 ret = xhci_test_trb_in_td(xhci,
2045 xhci->event_ring->first_seg,
2046 xhci->event_ring->first_seg->trbs,
2047 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2048 simple_test_vector[i].input_dma,
2049 simple_test_vector[i].result_seg,
2050 "Simple", i);
2051 if (ret < 0)
2052 return ret;
2053 }
2054
2055 num_tests = ARRAY_SIZE(complex_test_vector);
2056 for (i = 0; i < num_tests; i++) {
2057 ret = xhci_test_trb_in_td(xhci,
2058 complex_test_vector[i].input_seg,
2059 complex_test_vector[i].start_trb,
2060 complex_test_vector[i].end_trb,
2061 complex_test_vector[i].input_dma,
2062 complex_test_vector[i].result_seg,
2063 "Complex", i);
2064 if (ret < 0)
2065 return ret;
2066 }
2067 xhci_dbg(xhci, "TRB math tests passed.\n");
2068 return 0;
2069 }
2070
2071 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2072 {
2073 u64 temp;
2074 dma_addr_t deq;
2075
2076 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2077 xhci->event_ring->dequeue);
2078 if (deq == 0 && !in_interrupt())
2079 xhci_warn(xhci, "WARN something wrong with SW event ring "
2080 "dequeue ptr.\n");
2081 /* Update HC event ring dequeue pointer */
2082 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2083 temp &= ERST_PTR_MASK;
2084 /* Don't clear the EHB bit (which is RW1C) because
2085 * there might be more events to service.
2086 */
2087 temp &= ~ERST_EHB;
2088 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2089 "// Write event ring dequeue pointer, "
2090 "preserving EHB bit");
2091 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2092 &xhci->ir_set->erst_dequeue);
2093 }
2094
2095 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2096 __le32 __iomem *addr, int max_caps)
2097 {
2098 u32 temp, port_offset, port_count;
2099 int i;
2100 u8 major_revision, minor_revision;
2101 struct xhci_hub *rhub;
2102
2103 temp = readl(addr);
2104 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2105 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2106
2107 if (major_revision == 0x03) {
2108 rhub = &xhci->usb3_rhub;
2109 } else if (major_revision <= 0x02) {
2110 rhub = &xhci->usb2_rhub;
2111 } else {
2112 xhci_warn(xhci, "Ignoring unknown port speed, "
2113 "Ext Cap %p, revision = 0x%x\n",
2114 addr, major_revision);
2115 /* Ignoring port protocol we can't understand. FIXME */
2116 return;
2117 }
2118 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2119
2120 if (rhub->min_rev < minor_revision)
2121 rhub->min_rev = minor_revision;
2122
2123 /* Port offset and count in the third dword, see section 7.2 */
2124 temp = readl(addr + 2);
2125 port_offset = XHCI_EXT_PORT_OFF(temp);
2126 port_count = XHCI_EXT_PORT_COUNT(temp);
2127 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2128 "Ext Cap %p, port offset = %u, "
2129 "count = %u, revision = 0x%x",
2130 addr, port_offset, port_count, major_revision);
2131 /* Port count includes the current port offset */
2132 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2133 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2134 return;
2135
2136 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2137 if (rhub->psi_count) {
2138 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2139 GFP_KERNEL);
2140 if (!rhub->psi)
2141 rhub->psi_count = 0;
2142
2143 rhub->psi_uid_count++;
2144 for (i = 0; i < rhub->psi_count; i++) {
2145 rhub->psi[i] = readl(addr + 4 + i);
2146
2147 /* count unique ID values, two consecutive entries can
2148 * have the same ID if link is assymetric
2149 */
2150 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2151 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2152 rhub->psi_uid_count++;
2153
2154 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2155 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2156 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2157 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2158 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2159 XHCI_EXT_PORT_LP(rhub->psi[i]),
2160 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2161 }
2162 }
2163 /* cache usb2 port capabilities */
2164 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2165 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2166
2167 /* Check the host's USB2 LPM capability */
2168 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2169 (temp & XHCI_L1C)) {
2170 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2171 "xHCI 0.96: support USB2 software lpm");
2172 xhci->sw_lpm_support = 1;
2173 }
2174
2175 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2176 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2177 "xHCI 1.0: support USB2 software lpm");
2178 xhci->sw_lpm_support = 1;
2179 if (temp & XHCI_HLC) {
2180 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2181 "xHCI 1.0: support USB2 hardware lpm");
2182 xhci->hw_lpm_support = 1;
2183 }
2184 }
2185
2186 port_offset--;
2187 for (i = port_offset; i < (port_offset + port_count); i++) {
2188 struct xhci_port *hw_port = &xhci->hw_ports[i];
2189 /* Duplicate entry. Ignore the port if the revisions differ. */
2190 if (hw_port->rhub) {
2191 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2192 " port %u\n", addr, i);
2193 xhci_warn(xhci, "Port was marked as USB %u, "
2194 "duplicated as USB %u\n",
2195 hw_port->rhub->maj_rev, major_revision);
2196 /* Only adjust the roothub port counts if we haven't
2197 * found a similar duplicate.
2198 */
2199 if (hw_port->rhub != rhub &&
2200 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2201 hw_port->rhub->num_ports--;
2202 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2203 }
2204 continue;
2205 }
2206 hw_port->rhub = rhub;
2207 rhub->num_ports++;
2208 }
2209 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2210 }
2211
2212 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2213 struct xhci_hub *rhub, gfp_t flags)
2214 {
2215 int port_index = 0;
2216 int i;
2217
2218 if (!rhub->num_ports)
2219 return;
2220 rhub->ports = kcalloc(rhub->num_ports, sizeof(rhub->ports), flags);
2221 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2222 if (xhci->hw_ports[i].rhub != rhub ||
2223 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2224 continue;
2225 xhci->hw_ports[i].hcd_portnum = port_index;
2226 rhub->ports[port_index] = &xhci->hw_ports[i];
2227 port_index++;
2228 if (port_index == rhub->num_ports)
2229 break;
2230 }
2231 }
2232
2233 /*
2234 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2235 * specify what speeds each port is supposed to be. We can't count on the port
2236 * speed bits in the PORTSC register being correct until a device is connected,
2237 * but we need to set up the two fake roothubs with the correct number of USB
2238 * 3.0 and USB 2.0 ports at host controller initialization time.
2239 */
2240 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2241 {
2242 void __iomem *base;
2243 u32 offset;
2244 unsigned int num_ports;
2245 int i, j;
2246 int cap_count = 0;
2247 u32 cap_start;
2248
2249 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2250 xhci->hw_ports = kcalloc(num_ports, sizeof(*xhci->hw_ports), flags);
2251 if (!xhci->hw_ports)
2252 return -ENOMEM;
2253
2254 for (i = 0; i < num_ports; i++) {
2255 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2256 NUM_PORT_REGS * i;
2257 xhci->hw_ports[i].hw_portnum = i;
2258 }
2259
2260 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2261 if (!xhci->rh_bw)
2262 return -ENOMEM;
2263 for (i = 0; i < num_ports; i++) {
2264 struct xhci_interval_bw_table *bw_table;
2265
2266 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2267 bw_table = &xhci->rh_bw[i].bw_table;
2268 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2269 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2270 }
2271 base = &xhci->cap_regs->hc_capbase;
2272
2273 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2274 if (!cap_start) {
2275 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2276 return -ENODEV;
2277 }
2278
2279 offset = cap_start;
2280 /* count extended protocol capability entries for later caching */
2281 while (offset) {
2282 cap_count++;
2283 offset = xhci_find_next_ext_cap(base, offset,
2284 XHCI_EXT_CAPS_PROTOCOL);
2285 }
2286
2287 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2288 if (!xhci->ext_caps)
2289 return -ENOMEM;
2290
2291 offset = cap_start;
2292
2293 while (offset) {
2294 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2295 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2296 num_ports)
2297 break;
2298 offset = xhci_find_next_ext_cap(base, offset,
2299 XHCI_EXT_CAPS_PROTOCOL);
2300 }
2301 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2302 xhci_warn(xhci, "No ports on the roothubs?\n");
2303 return -ENODEV;
2304 }
2305 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2306 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2307 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2308
2309 /* Place limits on the number of roothub ports so that the hub
2310 * descriptors aren't longer than the USB core will allocate.
2311 */
2312 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2313 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2314 "Limiting USB 3.0 roothub ports to %u.",
2315 USB_SS_MAXPORTS);
2316 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2317 }
2318 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2319 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2320 "Limiting USB 2.0 roothub ports to %u.",
2321 USB_MAXCHILDREN);
2322 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2323 }
2324
2325 /*
2326 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2327 * Not sure how the USB core will handle a hub with no ports...
2328 */
2329
2330 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2331 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2332
2333 return 0;
2334 }
2335
2336 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2337 {
2338 dma_addr_t dma;
2339 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2340 unsigned int val, val2;
2341 u64 val_64;
2342 u32 page_size, temp;
2343 int i, ret;
2344
2345 INIT_LIST_HEAD(&xhci->cmd_list);
2346
2347 /* init command timeout work */
2348 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2349 init_completion(&xhci->cmd_ring_stop_completion);
2350
2351 page_size = readl(&xhci->op_regs->page_size);
2352 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2353 "Supported page size register = 0x%x", page_size);
2354 for (i = 0; i < 16; i++) {
2355 if ((0x1 & page_size) != 0)
2356 break;
2357 page_size = page_size >> 1;
2358 }
2359 if (i < 16)
2360 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361 "Supported page size of %iK", (1 << (i+12)) / 1024);
2362 else
2363 xhci_warn(xhci, "WARN: no supported page size\n");
2364 /* Use 4K pages, since that's common and the minimum the HC supports */
2365 xhci->page_shift = 12;
2366 xhci->page_size = 1 << xhci->page_shift;
2367 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2368 "HCD page size set to %iK", xhci->page_size / 1024);
2369
2370 /*
2371 * Program the Number of Device Slots Enabled field in the CONFIG
2372 * register with the max value of slots the HC can handle.
2373 */
2374 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2375 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2376 "// xHC can handle at most %d device slots.", val);
2377 val2 = readl(&xhci->op_regs->config_reg);
2378 val |= (val2 & ~HCS_SLOTS_MASK);
2379 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2380 "// Setting Max device slots reg = 0x%x.", val);
2381 writel(val, &xhci->op_regs->config_reg);
2382
2383 /*
2384 * xHCI section 5.4.6 - doorbell array must be
2385 * "physically contiguous and 64-byte (cache line) aligned".
2386 */
2387 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2388 flags);
2389 if (!xhci->dcbaa)
2390 goto fail;
2391 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2392 xhci->dcbaa->dma = dma;
2393 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2394 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2395 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2396 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2397
2398 /*
2399 * Initialize the ring segment pool. The ring must be a contiguous
2400 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2401 * however, the command ring segment needs 64-byte aligned segments
2402 * and our use of dma addresses in the trb_address_map radix tree needs
2403 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2404 */
2405 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2406 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2407
2408 /* See Table 46 and Note on Figure 55 */
2409 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2410 2112, 64, xhci->page_size);
2411 if (!xhci->segment_pool || !xhci->device_pool)
2412 goto fail;
2413
2414 /* Linear stream context arrays don't have any boundary restrictions,
2415 * and only need to be 16-byte aligned.
2416 */
2417 xhci->small_streams_pool =
2418 dma_pool_create("xHCI 256 byte stream ctx arrays",
2419 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2420 xhci->medium_streams_pool =
2421 dma_pool_create("xHCI 1KB stream ctx arrays",
2422 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2423 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2424 * will be allocated with dma_alloc_coherent()
2425 */
2426
2427 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2428 goto fail;
2429
2430 /* Set up the command ring to have one segments for now. */
2431 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2432 if (!xhci->cmd_ring)
2433 goto fail;
2434 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435 "Allocated command ring at %p", xhci->cmd_ring);
2436 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2437 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2438
2439 /* Set the address in the Command Ring Control register */
2440 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2441 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2442 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2443 xhci->cmd_ring->cycle_state;
2444 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2445 "// Setting command ring address to 0x%016llx", val_64);
2446 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2447
2448 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2449 if (!xhci->lpm_command)
2450 goto fail;
2451
2452 /* Reserve one command ring TRB for disabling LPM.
2453 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2454 * disabling LPM, we only need to reserve one TRB for all devices.
2455 */
2456 xhci->cmd_ring_reserved_trbs++;
2457
2458 val = readl(&xhci->cap_regs->db_off);
2459 val &= DBOFF_MASK;
2460 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2461 "// Doorbell array is located at offset 0x%x"
2462 " from cap regs base addr", val);
2463 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2464 /* Set ir_set to interrupt register set 0 */
2465 xhci->ir_set = &xhci->run_regs->ir_set[0];
2466
2467 /*
2468 * Event ring setup: Allocate a normal ring, but also setup
2469 * the event ring segment table (ERST). Section 4.9.3.
2470 */
2471 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2472 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2473 0, flags);
2474 if (!xhci->event_ring)
2475 goto fail;
2476 if (xhci_check_trb_in_td_math(xhci) < 0)
2477 goto fail;
2478
2479 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2480 if (ret)
2481 goto fail;
2482
2483 /* set ERST count with the number of entries in the segment table */
2484 val = readl(&xhci->ir_set->erst_size);
2485 val &= ERST_SIZE_MASK;
2486 val |= ERST_NUM_SEGS;
2487 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2488 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2489 val);
2490 writel(val, &xhci->ir_set->erst_size);
2491
2492 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2493 "// Set ERST entries to point to event ring.");
2494 /* set the segment table base address */
2495 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496 "// Set ERST base address for ir_set 0 = 0x%llx",
2497 (unsigned long long)xhci->erst.erst_dma_addr);
2498 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2499 val_64 &= ERST_PTR_MASK;
2500 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2501 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2502
2503 /* Set the event ring dequeue address */
2504 xhci_set_hc_event_deq(xhci);
2505 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2506 "Wrote ERST address to ir_set 0.");
2507
2508 /*
2509 * XXX: Might need to set the Interrupter Moderation Register to
2510 * something other than the default (~1ms minimum between interrupts).
2511 * See section 5.5.1.2.
2512 */
2513 for (i = 0; i < MAX_HC_SLOTS; i++)
2514 xhci->devs[i] = NULL;
2515 for (i = 0; i < USB_MAXCHILDREN; i++) {
2516 xhci->bus_state[0].resume_done[i] = 0;
2517 xhci->bus_state[1].resume_done[i] = 0;
2518 /* Only the USB 2.0 completions will ever be used. */
2519 init_completion(&xhci->bus_state[1].rexit_done[i]);
2520 }
2521
2522 if (scratchpad_alloc(xhci, flags))
2523 goto fail;
2524 if (xhci_setup_port_arrays(xhci, flags))
2525 goto fail;
2526
2527 /* Enable USB 3.0 device notifications for function remote wake, which
2528 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2529 * U3 (device suspend).
2530 */
2531 temp = readl(&xhci->op_regs->dev_notification);
2532 temp &= ~DEV_NOTE_MASK;
2533 temp |= DEV_NOTE_FWAKE;
2534 writel(temp, &xhci->op_regs->dev_notification);
2535
2536 return 0;
2537
2538 fail:
2539 xhci_halt(xhci);
2540 xhci_reset(xhci);
2541 xhci_mem_cleanup(xhci);
2542 return -ENOMEM;
2543 }