]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/usb/host/xhci-mem.c
Merge branch 'pm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspe...
[mirror_ubuntu-kernels.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
51 }
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
74 }
75
76 /*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85 {
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.
93 segment_ptr = cpu_to_le64(next->dma);
94
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci))
101 val |= TRB_CHAIN;
102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103 }
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
107 }
108
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 {
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
114
115 if (!ring || !ring->first_seg)
116 return;
117 first_seg = ring->first_seg;
118 seg = first_seg->next;
119 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
120 while (seg != first_seg) {
121 struct xhci_segment *next = seg->next;
122 xhci_segment_free(xhci, seg);
123 seg = next;
124 }
125 xhci_segment_free(xhci, first_seg);
126 ring->first_seg = NULL;
127 kfree(ring);
128 }
129
130 static void xhci_initialize_ring_info(struct xhci_ring *ring)
131 {
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring->enqueue = ring->first_seg->trbs;
134 ring->enq_seg = ring->first_seg;
135 ring->dequeue = ring->enqueue;
136 ring->deq_seg = ring->first_seg;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 */
141 ring->cycle_state = 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring->enq_updates = 0;
144 ring->deq_updates = 0;
145 }
146
147 /**
148 * Create a new ring with zero or more segments.
149 *
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
153 */
154 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155 unsigned int num_segs, bool link_trbs, gfp_t flags)
156 {
157 struct xhci_ring *ring;
158 struct xhci_segment *prev;
159
160 ring = kzalloc(sizeof *(ring), flags);
161 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
162 if (!ring)
163 return NULL;
164
165 INIT_LIST_HEAD(&ring->td_list);
166 if (num_segs == 0)
167 return ring;
168
169 ring->first_seg = xhci_segment_alloc(xhci, flags);
170 if (!ring->first_seg)
171 goto fail;
172 num_segs--;
173
174 prev = ring->first_seg;
175 while (num_segs > 0) {
176 struct xhci_segment *next;
177
178 next = xhci_segment_alloc(xhci, flags);
179 if (!next)
180 goto fail;
181 xhci_link_segments(xhci, prev, next, link_trbs);
182
183 prev = next;
184 num_segs--;
185 }
186 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187
188 if (link_trbs) {
189 /* See section 4.9.2.1 and 6.4.4.1 */
190 prev->trbs[TRBS_PER_SEGMENT-1].link.
191 control |= cpu_to_le32(LINK_TOGGLE);
192 xhci_dbg(xhci, "Wrote link toggle flag to"
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev, (unsigned long long)prev->dma);
195 }
196 xhci_initialize_ring_info(ring);
197 return ring;
198
199 fail:
200 xhci_ring_free(xhci, ring);
201 return NULL;
202 }
203
204 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205 struct xhci_virt_device *virt_dev,
206 unsigned int ep_index)
207 {
208 int rings_cached;
209
210 rings_cached = virt_dev->num_rings_cached;
211 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 virt_dev->num_rings_cached++;
215 xhci_dbg(xhci, "Cached old ring, "
216 "%d ring%s cached\n",
217 virt_dev->num_rings_cached,
218 (virt_dev->num_rings_cached > 1) ? "s" : "");
219 } else {
220 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
221 xhci_dbg(xhci, "Ring cache full (%d rings), "
222 "freeing ring\n",
223 virt_dev->num_rings_cached);
224 }
225 virt_dev->eps[ep_index].ring = NULL;
226 }
227
228 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229 * pointers to the beginning of the ring.
230 */
231 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
232 struct xhci_ring *ring)
233 {
234 struct xhci_segment *seg = ring->first_seg;
235 do {
236 memset(seg->trbs, 0,
237 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
238 /* All endpoint rings have link TRBs */
239 xhci_link_segments(xhci, seg, seg->next, 1);
240 seg = seg->next;
241 } while (seg != ring->first_seg);
242 xhci_initialize_ring_info(ring);
243 /* td list should be empty since all URBs have been cancelled,
244 * but just in case...
245 */
246 INIT_LIST_HEAD(&ring->td_list);
247 }
248
249 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250
251 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
252 int type, gfp_t flags)
253 {
254 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
255 if (!ctx)
256 return NULL;
257
258 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
259 ctx->type = type;
260 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
261 if (type == XHCI_CTX_TYPE_INPUT)
262 ctx->size += CTX_SIZE(xhci->hcc_params);
263
264 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
265 memset(ctx->bytes, 0, ctx->size);
266 return ctx;
267 }
268
269 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
270 struct xhci_container_ctx *ctx)
271 {
272 if (!ctx)
273 return;
274 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
275 kfree(ctx);
276 }
277
278 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
279 struct xhci_container_ctx *ctx)
280 {
281 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
282 return (struct xhci_input_control_ctx *)ctx->bytes;
283 }
284
285 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
286 struct xhci_container_ctx *ctx)
287 {
288 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
289 return (struct xhci_slot_ctx *)ctx->bytes;
290
291 return (struct xhci_slot_ctx *)
292 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
293 }
294
295 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
296 struct xhci_container_ctx *ctx,
297 unsigned int ep_index)
298 {
299 /* increment ep index by offset of start of ep ctx array */
300 ep_index++;
301 if (ctx->type == XHCI_CTX_TYPE_INPUT)
302 ep_index++;
303
304 return (struct xhci_ep_ctx *)
305 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
306 }
307
308
309 /***************** Streams structures manipulation *************************/
310
311 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
312 unsigned int num_stream_ctxs,
313 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
314 {
315 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
316
317 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
318 pci_free_consistent(pdev,
319 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
320 stream_ctx, dma);
321 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
322 return dma_pool_free(xhci->small_streams_pool,
323 stream_ctx, dma);
324 else
325 return dma_pool_free(xhci->medium_streams_pool,
326 stream_ctx, dma);
327 }
328
329 /*
330 * The stream context array for each endpoint with bulk streams enabled can
331 * vary in size, based on:
332 * - how many streams the endpoint supports,
333 * - the maximum primary stream array size the host controller supports,
334 * - and how many streams the device driver asks for.
335 *
336 * The stream context array must be a power of 2, and can be as small as
337 * 64 bytes or as large as 1MB.
338 */
339 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
340 unsigned int num_stream_ctxs, dma_addr_t *dma,
341 gfp_t mem_flags)
342 {
343 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344
345 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
346 return pci_alloc_consistent(pdev,
347 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
348 dma);
349 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
350 return dma_pool_alloc(xhci->small_streams_pool,
351 mem_flags, dma);
352 else
353 return dma_pool_alloc(xhci->medium_streams_pool,
354 mem_flags, dma);
355 }
356
357 struct xhci_ring *xhci_dma_to_transfer_ring(
358 struct xhci_virt_ep *ep,
359 u64 address)
360 {
361 if (ep->ep_state & EP_HAS_STREAMS)
362 return radix_tree_lookup(&ep->stream_info->trb_address_map,
363 address >> SEGMENT_SHIFT);
364 return ep->ring;
365 }
366
367 /* Only use this when you know stream_info is valid */
368 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369 static struct xhci_ring *dma_to_stream_ring(
370 struct xhci_stream_info *stream_info,
371 u64 address)
372 {
373 return radix_tree_lookup(&stream_info->trb_address_map,
374 address >> SEGMENT_SHIFT);
375 }
376 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
377
378 struct xhci_ring *xhci_stream_id_to_ring(
379 struct xhci_virt_device *dev,
380 unsigned int ep_index,
381 unsigned int stream_id)
382 {
383 struct xhci_virt_ep *ep = &dev->eps[ep_index];
384
385 if (stream_id == 0)
386 return ep->ring;
387 if (!ep->stream_info)
388 return NULL;
389
390 if (stream_id > ep->stream_info->num_streams)
391 return NULL;
392 return ep->stream_info->stream_rings[stream_id];
393 }
394
395 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
397 unsigned int num_streams,
398 struct xhci_stream_info *stream_info)
399 {
400 u32 cur_stream;
401 struct xhci_ring *cur_ring;
402 u64 addr;
403
404 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
405 struct xhci_ring *mapped_ring;
406 int trb_size = sizeof(union xhci_trb);
407
408 cur_ring = stream_info->stream_rings[cur_stream];
409 for (addr = cur_ring->first_seg->dma;
410 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
411 addr += trb_size) {
412 mapped_ring = dma_to_stream_ring(stream_info, addr);
413 if (cur_ring != mapped_ring) {
414 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
415 "didn't map to stream ID %u; "
416 "mapped to ring %p\n",
417 (unsigned long long) addr,
418 cur_stream,
419 mapped_ring);
420 return -EINVAL;
421 }
422 }
423 /* One TRB after the end of the ring segment shouldn't return a
424 * pointer to the current ring (although it may be a part of a
425 * different ring).
426 */
427 mapped_ring = dma_to_stream_ring(stream_info, addr);
428 if (mapped_ring != cur_ring) {
429 /* One TRB before should also fail */
430 addr = cur_ring->first_seg->dma - trb_size;
431 mapped_ring = dma_to_stream_ring(stream_info, addr);
432 }
433 if (mapped_ring == cur_ring) {
434 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
435 "mapped to valid stream ID %u; "
436 "mapped ring = %p\n",
437 (unsigned long long) addr,
438 cur_stream,
439 mapped_ring);
440 return -EINVAL;
441 }
442 }
443 return 0;
444 }
445 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
446
447 /*
448 * Change an endpoint's internal structure so it supports stream IDs. The
449 * number of requested streams includes stream 0, which cannot be used by device
450 * drivers.
451 *
452 * The number of stream contexts in the stream context array may be bigger than
453 * the number of streams the driver wants to use. This is because the number of
454 * stream context array entries must be a power of two.
455 *
456 * We need a radix tree for mapping physical addresses of TRBs to which stream
457 * ID they belong to. We need to do this because the host controller won't tell
458 * us which stream ring the TRB came from. We could store the stream ID in an
459 * event data TRB, but that doesn't help us for the cancellation case, since the
460 * endpoint may stop before it reaches that event data TRB.
461 *
462 * The radix tree maps the upper portion of the TRB DMA address to a ring
463 * segment that has the same upper portion of DMA addresses. For example, say I
464 * have segments of size 1KB, that are always 64-byte aligned. A segment may
465 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
466 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
467 * pass the radix tree a key to get the right stream ID:
468 *
469 * 0x10c90fff >> 10 = 0x43243
470 * 0x10c912c0 >> 10 = 0x43244
471 * 0x10c91400 >> 10 = 0x43245
472 *
473 * Obviously, only those TRBs with DMA addresses that are within the segment
474 * will make the radix tree return the stream ID for that ring.
475 *
476 * Caveats for the radix tree:
477 *
478 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
483 * extended systems (where the DMA address can be bigger than 32-bits),
484 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
485 */
486 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
487 unsigned int num_stream_ctxs,
488 unsigned int num_streams, gfp_t mem_flags)
489 {
490 struct xhci_stream_info *stream_info;
491 u32 cur_stream;
492 struct xhci_ring *cur_ring;
493 unsigned long key;
494 u64 addr;
495 int ret;
496
497 xhci_dbg(xhci, "Allocating %u streams and %u "
498 "stream context array entries.\n",
499 num_streams, num_stream_ctxs);
500 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
501 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
502 return NULL;
503 }
504 xhci->cmd_ring_reserved_trbs++;
505
506 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
507 if (!stream_info)
508 goto cleanup_trbs;
509
510 stream_info->num_streams = num_streams;
511 stream_info->num_stream_ctxs = num_stream_ctxs;
512
513 /* Initialize the array of virtual pointers to stream rings. */
514 stream_info->stream_rings = kzalloc(
515 sizeof(struct xhci_ring *)*num_streams,
516 mem_flags);
517 if (!stream_info->stream_rings)
518 goto cleanup_info;
519
520 /* Initialize the array of DMA addresses for stream rings for the HW. */
521 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
522 num_stream_ctxs, &stream_info->ctx_array_dma,
523 mem_flags);
524 if (!stream_info->stream_ctx_array)
525 goto cleanup_ctx;
526 memset(stream_info->stream_ctx_array, 0,
527 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
528
529 /* Allocate everything needed to free the stream rings later */
530 stream_info->free_streams_command =
531 xhci_alloc_command(xhci, true, true, mem_flags);
532 if (!stream_info->free_streams_command)
533 goto cleanup_ctx;
534
535 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
536
537 /* Allocate rings for all the streams that the driver will use,
538 * and add their segment DMA addresses to the radix tree.
539 * Stream 0 is reserved.
540 */
541 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
542 stream_info->stream_rings[cur_stream] =
543 xhci_ring_alloc(xhci, 1, true, mem_flags);
544 cur_ring = stream_info->stream_rings[cur_stream];
545 if (!cur_ring)
546 goto cleanup_rings;
547 cur_ring->stream_id = cur_stream;
548 /* Set deq ptr, cycle bit, and stream context type */
549 addr = cur_ring->first_seg->dma |
550 SCT_FOR_CTX(SCT_PRI_TR) |
551 cur_ring->cycle_state;
552 stream_info->stream_ctx_array[cur_stream].
553 stream_ring = cpu_to_le64(addr);
554 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
555 cur_stream, (unsigned long long) addr);
556
557 key = (unsigned long)
558 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
559 ret = radix_tree_insert(&stream_info->trb_address_map,
560 key, cur_ring);
561 if (ret) {
562 xhci_ring_free(xhci, cur_ring);
563 stream_info->stream_rings[cur_stream] = NULL;
564 goto cleanup_rings;
565 }
566 }
567 /* Leave the other unused stream ring pointers in the stream context
568 * array initialized to zero. This will cause the xHC to give us an
569 * error if the device asks for a stream ID we don't have setup (if it
570 * was any other way, the host controller would assume the ring is
571 * "empty" and wait forever for data to be queued to that stream ID).
572 */
573 #if XHCI_DEBUG
574 /* Do a little test on the radix tree to make sure it returns the
575 * correct values.
576 */
577 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
578 goto cleanup_rings;
579 #endif
580
581 return stream_info;
582
583 cleanup_rings:
584 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
585 cur_ring = stream_info->stream_rings[cur_stream];
586 if (cur_ring) {
587 addr = cur_ring->first_seg->dma;
588 radix_tree_delete(&stream_info->trb_address_map,
589 addr >> SEGMENT_SHIFT);
590 xhci_ring_free(xhci, cur_ring);
591 stream_info->stream_rings[cur_stream] = NULL;
592 }
593 }
594 xhci_free_command(xhci, stream_info->free_streams_command);
595 cleanup_ctx:
596 kfree(stream_info->stream_rings);
597 cleanup_info:
598 kfree(stream_info);
599 cleanup_trbs:
600 xhci->cmd_ring_reserved_trbs--;
601 return NULL;
602 }
603 /*
604 * Sets the MaxPStreams field and the Linear Stream Array field.
605 * Sets the dequeue pointer to the stream context array.
606 */
607 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
608 struct xhci_ep_ctx *ep_ctx,
609 struct xhci_stream_info *stream_info)
610 {
611 u32 max_primary_streams;
612 /* MaxPStreams is the number of stream context array entries, not the
613 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
614 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
615 */
616 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
617 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
618 1 << (max_primary_streams + 1));
619 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
620 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
621 | EP_HAS_LSA);
622 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
623 }
624
625 /*
626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628 * not at the beginning of the ring).
629 */
630 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
631 struct xhci_ep_ctx *ep_ctx,
632 struct xhci_virt_ep *ep)
633 {
634 dma_addr_t addr;
635 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
636 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
637 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
638 }
639
640 /* Frees all stream contexts associated with the endpoint,
641 *
642 * Caller should fix the endpoint context streams fields.
643 */
644 void xhci_free_stream_info(struct xhci_hcd *xhci,
645 struct xhci_stream_info *stream_info)
646 {
647 int cur_stream;
648 struct xhci_ring *cur_ring;
649 dma_addr_t addr;
650
651 if (!stream_info)
652 return;
653
654 for (cur_stream = 1; cur_stream < stream_info->num_streams;
655 cur_stream++) {
656 cur_ring = stream_info->stream_rings[cur_stream];
657 if (cur_ring) {
658 addr = cur_ring->first_seg->dma;
659 radix_tree_delete(&stream_info->trb_address_map,
660 addr >> SEGMENT_SHIFT);
661 xhci_ring_free(xhci, cur_ring);
662 stream_info->stream_rings[cur_stream] = NULL;
663 }
664 }
665 xhci_free_command(xhci, stream_info->free_streams_command);
666 xhci->cmd_ring_reserved_trbs--;
667 if (stream_info->stream_ctx_array)
668 xhci_free_stream_ctx(xhci,
669 stream_info->num_stream_ctxs,
670 stream_info->stream_ctx_array,
671 stream_info->ctx_array_dma);
672
673 if (stream_info)
674 kfree(stream_info->stream_rings);
675 kfree(stream_info);
676 }
677
678
679 /***************** Device context manipulation *************************/
680
681 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
682 struct xhci_virt_ep *ep)
683 {
684 init_timer(&ep->stop_cmd_timer);
685 ep->stop_cmd_timer.data = (unsigned long) ep;
686 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
687 ep->xhci = xhci;
688 }
689
690 /* All the xhci_tds in the ring's TD list should be freed at this point */
691 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
692 {
693 struct xhci_virt_device *dev;
694 int i;
695
696 /* Slot ID 0 is reserved */
697 if (slot_id == 0 || !xhci->devs[slot_id])
698 return;
699
700 dev = xhci->devs[slot_id];
701 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
702 if (!dev)
703 return;
704
705 for (i = 0; i < 31; ++i) {
706 if (dev->eps[i].ring)
707 xhci_ring_free(xhci, dev->eps[i].ring);
708 if (dev->eps[i].stream_info)
709 xhci_free_stream_info(xhci,
710 dev->eps[i].stream_info);
711 }
712
713 if (dev->ring_cache) {
714 for (i = 0; i < dev->num_rings_cached; i++)
715 xhci_ring_free(xhci, dev->ring_cache[i]);
716 kfree(dev->ring_cache);
717 }
718
719 if (dev->in_ctx)
720 xhci_free_container_ctx(xhci, dev->in_ctx);
721 if (dev->out_ctx)
722 xhci_free_container_ctx(xhci, dev->out_ctx);
723
724 kfree(xhci->devs[slot_id]);
725 xhci->devs[slot_id] = NULL;
726 }
727
728 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
729 struct usb_device *udev, gfp_t flags)
730 {
731 struct xhci_virt_device *dev;
732 int i;
733
734 /* Slot ID 0 is reserved */
735 if (slot_id == 0 || xhci->devs[slot_id]) {
736 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
737 return 0;
738 }
739
740 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
741 if (!xhci->devs[slot_id])
742 return 0;
743 dev = xhci->devs[slot_id];
744
745 /* Allocate the (output) device context that will be used in the HC. */
746 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
747 if (!dev->out_ctx)
748 goto fail;
749
750 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
751 (unsigned long long)dev->out_ctx->dma);
752
753 /* Allocate the (input) device context for address device command */
754 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
755 if (!dev->in_ctx)
756 goto fail;
757
758 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
759 (unsigned long long)dev->in_ctx->dma);
760
761 /* Initialize the cancellation list and watchdog timers for each ep */
762 for (i = 0; i < 31; i++) {
763 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
764 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
765 }
766
767 /* Allocate endpoint 0 ring */
768 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
769 if (!dev->eps[0].ring)
770 goto fail;
771
772 /* Allocate pointers to the ring cache */
773 dev->ring_cache = kzalloc(
774 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
775 flags);
776 if (!dev->ring_cache)
777 goto fail;
778 dev->num_rings_cached = 0;
779
780 init_completion(&dev->cmd_completion);
781 INIT_LIST_HEAD(&dev->cmd_list);
782 dev->udev = udev;
783
784 /* Point to output device context in dcbaa. */
785 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
786 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
787 slot_id,
788 &xhci->dcbaa->dev_context_ptrs[slot_id],
789 (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
790
791 return 1;
792 fail:
793 xhci_free_virt_device(xhci, slot_id);
794 return 0;
795 }
796
797 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
798 struct usb_device *udev)
799 {
800 struct xhci_virt_device *virt_dev;
801 struct xhci_ep_ctx *ep0_ctx;
802 struct xhci_ring *ep_ring;
803
804 virt_dev = xhci->devs[udev->slot_id];
805 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
806 ep_ring = virt_dev->eps[0].ring;
807 /*
808 * FIXME we don't keep track of the dequeue pointer very well after a
809 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
810 * host to our enqueue pointer. This should only be called after a
811 * configured device has reset, so all control transfers should have
812 * been completed or cancelled before the reset.
813 */
814 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
815 ep_ring->enqueue)
816 | ep_ring->cycle_state);
817 }
818
819 /*
820 * The xHCI roothub may have ports of differing speeds in any order in the port
821 * status registers. xhci->port_array provides an array of the port speed for
822 * each offset into the port status registers.
823 *
824 * The xHCI hardware wants to know the roothub port number that the USB device
825 * is attached to (or the roothub port its ancestor hub is attached to). All we
826 * know is the index of that port under either the USB 2.0 or the USB 3.0
827 * roothub, but that doesn't give us the real index into the HW port status
828 * registers. Scan through the xHCI roothub port array, looking for the Nth
829 * entry of the correct port speed. Return the port number of that entry.
830 */
831 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
832 struct usb_device *udev)
833 {
834 struct usb_device *top_dev;
835 unsigned int num_similar_speed_ports;
836 unsigned int faked_port_num;
837 int i;
838
839 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
840 top_dev = top_dev->parent)
841 /* Found device below root hub */;
842 faked_port_num = top_dev->portnum;
843 for (i = 0, num_similar_speed_ports = 0;
844 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
845 u8 port_speed = xhci->port_array[i];
846
847 /*
848 * Skip ports that don't have known speeds, or have duplicate
849 * Extended Capabilities port speed entries.
850 */
851 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
852 continue;
853
854 /*
855 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
856 * 1.1 ports are under the USB 2.0 hub. If the port speed
857 * matches the device speed, it's a similar speed port.
858 */
859 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
860 num_similar_speed_ports++;
861 if (num_similar_speed_ports == faked_port_num)
862 /* Roothub ports are numbered from 1 to N */
863 return i+1;
864 }
865 return 0;
866 }
867
868 /* Setup an xHCI virtual device for a Set Address command */
869 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
870 {
871 struct xhci_virt_device *dev;
872 struct xhci_ep_ctx *ep0_ctx;
873 struct xhci_slot_ctx *slot_ctx;
874 struct xhci_input_control_ctx *ctrl_ctx;
875 u32 port_num;
876 struct usb_device *top_dev;
877
878 dev = xhci->devs[udev->slot_id];
879 /* Slot ID 0 is reserved */
880 if (udev->slot_id == 0 || !dev) {
881 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
882 udev->slot_id);
883 return -EINVAL;
884 }
885 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
886 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
887 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
888
889 /* 2) New slot context and endpoint 0 context are valid*/
890 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
891
892 /* 3) Only the control endpoint is valid - one endpoint context */
893 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | (u32) udev->route);
894 switch (udev->speed) {
895 case USB_SPEED_SUPER:
896 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_SS);
897 break;
898 case USB_SPEED_HIGH:
899 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_HS);
900 break;
901 case USB_SPEED_FULL:
902 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_FS);
903 break;
904 case USB_SPEED_LOW:
905 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_LS);
906 break;
907 case USB_SPEED_WIRELESS:
908 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909 return -EINVAL;
910 break;
911 default:
912 /* Speed was set earlier, this shouldn't happen. */
913 BUG();
914 }
915 /* Find the root hub port this device is under */
916 port_num = xhci_find_real_port_number(xhci, udev);
917 if (!port_num)
918 return -EINVAL;
919 slot_ctx->dev_info2 |= cpu_to_le32((u32) ROOT_HUB_PORT(port_num));
920 /* Set the port number in the virtual_device to the faked port number */
921 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922 top_dev = top_dev->parent)
923 /* Found device below root hub */;
924 dev->port = top_dev->portnum;
925 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927
928 /* Is this a LS/FS device under an external HS hub? */
929 if (udev->tt && udev->tt->hub->parent) {
930 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
931 (udev->ttport << 8));
932 if (udev->tt->multi)
933 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
934 }
935 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937
938 /* Step 4 - ring already allocated */
939 /* Step 5 */
940 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
941 /*
942 * XXX: Not sure about wireless USB devices.
943 */
944 switch (udev->speed) {
945 case USB_SPEED_SUPER:
946 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
947 break;
948 case USB_SPEED_HIGH:
949 /* USB core guesses at a 64-byte max packet first for FS devices */
950 case USB_SPEED_FULL:
951 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
952 break;
953 case USB_SPEED_LOW:
954 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
955 break;
956 case USB_SPEED_WIRELESS:
957 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958 return -EINVAL;
959 break;
960 default:
961 /* New speed? */
962 BUG();
963 }
964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
966
967 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
968 dev->eps[0].ring->cycle_state);
969
970 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
971
972 return 0;
973 }
974
975 /*
976 * Convert interval expressed as 2^(bInterval - 1) == interval into
977 * straight exponent value 2^n == interval.
978 *
979 */
980 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
981 struct usb_host_endpoint *ep)
982 {
983 unsigned int interval;
984
985 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
986 if (interval != ep->desc.bInterval - 1)
987 dev_warn(&udev->dev,
988 "ep %#x - rounding interval to %d %sframes\n",
989 ep->desc.bEndpointAddress,
990 1 << interval,
991 udev->speed == USB_SPEED_FULL ? "" : "micro");
992
993 if (udev->speed == USB_SPEED_FULL) {
994 /*
995 * Full speed isoc endpoints specify interval in frames,
996 * not microframes. We are using microframes everywhere,
997 * so adjust accordingly.
998 */
999 interval += 3; /* 1 frame = 2^3 uframes */
1000 }
1001
1002 return interval;
1003 }
1004
1005 /*
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1008 */
1009 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010 struct usb_host_endpoint *ep)
1011 {
1012 unsigned int interval;
1013
1014 interval = fls(8 * ep->desc.bInterval) - 1;
1015 interval = clamp_val(interval, 3, 10);
1016 if ((1 << interval) != 8 * ep->desc.bInterval)
1017 dev_warn(&udev->dev,
1018 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019 ep->desc.bEndpointAddress,
1020 1 << interval,
1021 8 * ep->desc.bInterval);
1022
1023 return interval;
1024 }
1025
1026 /* Return the polling or NAK interval.
1027 *
1028 * The polling interval is expressed in "microframes". If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 *
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032 * is set to 0.
1033 */
1034 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035 struct usb_host_endpoint *ep)
1036 {
1037 unsigned int interval = 0;
1038
1039 switch (udev->speed) {
1040 case USB_SPEED_HIGH:
1041 /* Max NAK rate */
1042 if (usb_endpoint_xfer_control(&ep->desc) ||
1043 usb_endpoint_xfer_bulk(&ep->desc)) {
1044 interval = ep->desc.bInterval;
1045 break;
1046 }
1047 /* Fall through - SS and HS isoc/int have same decoding */
1048
1049 case USB_SPEED_SUPER:
1050 if (usb_endpoint_xfer_int(&ep->desc) ||
1051 usb_endpoint_xfer_isoc(&ep->desc)) {
1052 interval = xhci_parse_exponent_interval(udev, ep);
1053 }
1054 break;
1055
1056 case USB_SPEED_FULL:
1057 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058 interval = xhci_parse_exponent_interval(udev, ep);
1059 break;
1060 }
1061 /*
1062 * Fall through for interrupt endpoint interval decoding
1063 * since it uses the same rules as low speed interrupt
1064 * endpoints.
1065 */
1066
1067 case USB_SPEED_LOW:
1068 if (usb_endpoint_xfer_int(&ep->desc) ||
1069 usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071 interval = xhci_parse_frame_interval(udev, ep);
1072 }
1073 break;
1074
1075 default:
1076 BUG();
1077 }
1078 return EP_INTERVAL(interval);
1079 }
1080
1081 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1085 */
1086 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087 struct usb_host_endpoint *ep)
1088 {
1089 if (udev->speed != USB_SPEED_SUPER ||
1090 !usb_endpoint_xfer_isoc(&ep->desc))
1091 return 0;
1092 return ep->ss_ep_comp.bmAttributes;
1093 }
1094
1095 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096 struct usb_host_endpoint *ep)
1097 {
1098 int in;
1099 u32 type;
1100
1101 in = usb_endpoint_dir_in(&ep->desc);
1102 if (usb_endpoint_xfer_control(&ep->desc)) {
1103 type = EP_TYPE(CTRL_EP);
1104 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105 if (in)
1106 type = EP_TYPE(BULK_IN_EP);
1107 else
1108 type = EP_TYPE(BULK_OUT_EP);
1109 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110 if (in)
1111 type = EP_TYPE(ISOC_IN_EP);
1112 else
1113 type = EP_TYPE(ISOC_OUT_EP);
1114 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1115 if (in)
1116 type = EP_TYPE(INT_IN_EP);
1117 else
1118 type = EP_TYPE(INT_OUT_EP);
1119 } else {
1120 BUG();
1121 }
1122 return type;
1123 }
1124
1125 /* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1127 * and mult size.
1128 */
1129 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130 struct usb_device *udev,
1131 struct usb_host_endpoint *ep)
1132 {
1133 int max_burst;
1134 int max_packet;
1135
1136 /* Only applies for interrupt or isochronous endpoints */
1137 if (usb_endpoint_xfer_control(&ep->desc) ||
1138 usb_endpoint_xfer_bulk(&ep->desc))
1139 return 0;
1140
1141 if (udev->speed == USB_SPEED_SUPER)
1142 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146 /* A 0 in max burst means 1 transfer per ESIT */
1147 return max_packet * (max_burst + 1);
1148 }
1149
1150 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1152 */
1153 int xhci_endpoint_init(struct xhci_hcd *xhci,
1154 struct xhci_virt_device *virt_dev,
1155 struct usb_device *udev,
1156 struct usb_host_endpoint *ep,
1157 gfp_t mem_flags)
1158 {
1159 unsigned int ep_index;
1160 struct xhci_ep_ctx *ep_ctx;
1161 struct xhci_ring *ep_ring;
1162 unsigned int max_packet;
1163 unsigned int max_burst;
1164 u32 max_esit_payload;
1165
1166 ep_index = xhci_get_endpoint_index(&ep->desc);
1167 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
1169 /* Set up the endpoint ring */
1170 /*
1171 * Isochronous endpoint ring needs bigger size because one isoc URB
1172 * carries multiple packets and it will insert multiple tds to the
1173 * ring.
1174 * This should be replaced with dynamic ring resizing in the future.
1175 */
1176 if (usb_endpoint_xfer_isoc(&ep->desc))
1177 virt_dev->eps[ep_index].new_ring =
1178 xhci_ring_alloc(xhci, 8, true, mem_flags);
1179 else
1180 virt_dev->eps[ep_index].new_ring =
1181 xhci_ring_alloc(xhci, 1, true, mem_flags);
1182 if (!virt_dev->eps[ep_index].new_ring) {
1183 /* Attempt to use the ring cache */
1184 if (virt_dev->num_rings_cached == 0)
1185 return -ENOMEM;
1186 virt_dev->eps[ep_index].new_ring =
1187 virt_dev->ring_cache[virt_dev->num_rings_cached];
1188 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189 virt_dev->num_rings_cached--;
1190 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1191 }
1192 virt_dev->eps[ep_index].skip = false;
1193 ep_ring = virt_dev->eps[ep_index].new_ring;
1194 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198
1199 /* FIXME dig Mult and streams info out of ep companion desc */
1200
1201 /* Allow 3 retries for everything but isoc;
1202 * CErr shall be set to 0 for Isoch endpoints.
1203 */
1204 if (!usb_endpoint_xfer_isoc(&ep->desc))
1205 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206 else
1207 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208
1209 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210
1211 /* Set the max packet size and max burst */
1212 switch (udev->speed) {
1213 case USB_SPEED_SUPER:
1214 max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216 /* dig out max burst from ep companion desc */
1217 max_packet = ep->ss_ep_comp.bMaxBurst;
1218 if (!max_packet)
1219 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1220 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1221 break;
1222 case USB_SPEED_HIGH:
1223 /* bits 11:12 specify the number of additional transaction
1224 * opportunities per microframe (USB 2.0, section 9.6.6)
1225 */
1226 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1227 usb_endpoint_xfer_int(&ep->desc)) {
1228 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1229 & 0x1800) >> 11;
1230 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1231 }
1232 /* Fall through */
1233 case USB_SPEED_FULL:
1234 case USB_SPEED_LOW:
1235 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1236 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1237 break;
1238 default:
1239 BUG();
1240 }
1241 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1242 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1243
1244 /*
1245 * XXX no idea how to calculate the average TRB buffer length for bulk
1246 * endpoints, as the driver gives us no clue how big each scatter gather
1247 * list entry (or buffer) is going to be.
1248 *
1249 * For isochronous and interrupt endpoints, we set it to the max
1250 * available, until we have new API in the USB core to allow drivers to
1251 * declare how much bandwidth they actually need.
1252 *
1253 * Normally, it would be calculated by taking the total of the buffer
1254 * lengths in the TD and then dividing by the number of TRBs in a TD,
1255 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1256 * use Event Data TRBs, and we don't chain in a link TRB on short
1257 * transfers, we're basically dividing by 1.
1258 *
1259 * xHCI 1.0 specification indicates that the Average TRB Length should
1260 * be set to 8 for control endpoints.
1261 */
1262 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1263 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1264 else
1265 ep_ctx->tx_info |=
1266 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1267
1268 /* FIXME Debug endpoint context */
1269 return 0;
1270 }
1271
1272 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1273 struct xhci_virt_device *virt_dev,
1274 struct usb_host_endpoint *ep)
1275 {
1276 unsigned int ep_index;
1277 struct xhci_ep_ctx *ep_ctx;
1278
1279 ep_index = xhci_get_endpoint_index(&ep->desc);
1280 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1281
1282 ep_ctx->ep_info = 0;
1283 ep_ctx->ep_info2 = 0;
1284 ep_ctx->deq = 0;
1285 ep_ctx->tx_info = 0;
1286 /* Don't free the endpoint ring until the set interface or configuration
1287 * request succeeds.
1288 */
1289 }
1290
1291 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1292 * Useful when you want to change one particular aspect of the endpoint and then
1293 * issue a configure endpoint command.
1294 */
1295 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1296 struct xhci_container_ctx *in_ctx,
1297 struct xhci_container_ctx *out_ctx,
1298 unsigned int ep_index)
1299 {
1300 struct xhci_ep_ctx *out_ep_ctx;
1301 struct xhci_ep_ctx *in_ep_ctx;
1302
1303 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1304 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1305
1306 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1307 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1308 in_ep_ctx->deq = out_ep_ctx->deq;
1309 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1310 }
1311
1312 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1313 * Useful when you want to change one particular aspect of the endpoint and then
1314 * issue a configure endpoint command. Only the context entries field matters,
1315 * but we'll copy the whole thing anyway.
1316 */
1317 void xhci_slot_copy(struct xhci_hcd *xhci,
1318 struct xhci_container_ctx *in_ctx,
1319 struct xhci_container_ctx *out_ctx)
1320 {
1321 struct xhci_slot_ctx *in_slot_ctx;
1322 struct xhci_slot_ctx *out_slot_ctx;
1323
1324 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1325 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1326
1327 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1328 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1329 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1330 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1331 }
1332
1333 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1334 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1335 {
1336 int i;
1337 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1338 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1339
1340 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1341
1342 if (!num_sp)
1343 return 0;
1344
1345 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1346 if (!xhci->scratchpad)
1347 goto fail_sp;
1348
1349 xhci->scratchpad->sp_array =
1350 pci_alloc_consistent(to_pci_dev(dev),
1351 num_sp * sizeof(u64),
1352 &xhci->scratchpad->sp_dma);
1353 if (!xhci->scratchpad->sp_array)
1354 goto fail_sp2;
1355
1356 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1357 if (!xhci->scratchpad->sp_buffers)
1358 goto fail_sp3;
1359
1360 xhci->scratchpad->sp_dma_buffers =
1361 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1362
1363 if (!xhci->scratchpad->sp_dma_buffers)
1364 goto fail_sp4;
1365
1366 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1367 for (i = 0; i < num_sp; i++) {
1368 dma_addr_t dma;
1369 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1370 xhci->page_size, &dma);
1371 if (!buf)
1372 goto fail_sp5;
1373
1374 xhci->scratchpad->sp_array[i] = dma;
1375 xhci->scratchpad->sp_buffers[i] = buf;
1376 xhci->scratchpad->sp_dma_buffers[i] = dma;
1377 }
1378
1379 return 0;
1380
1381 fail_sp5:
1382 for (i = i - 1; i >= 0; i--) {
1383 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1384 xhci->scratchpad->sp_buffers[i],
1385 xhci->scratchpad->sp_dma_buffers[i]);
1386 }
1387 kfree(xhci->scratchpad->sp_dma_buffers);
1388
1389 fail_sp4:
1390 kfree(xhci->scratchpad->sp_buffers);
1391
1392 fail_sp3:
1393 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1394 xhci->scratchpad->sp_array,
1395 xhci->scratchpad->sp_dma);
1396
1397 fail_sp2:
1398 kfree(xhci->scratchpad);
1399 xhci->scratchpad = NULL;
1400
1401 fail_sp:
1402 return -ENOMEM;
1403 }
1404
1405 static void scratchpad_free(struct xhci_hcd *xhci)
1406 {
1407 int num_sp;
1408 int i;
1409 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1410
1411 if (!xhci->scratchpad)
1412 return;
1413
1414 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1415
1416 for (i = 0; i < num_sp; i++) {
1417 pci_free_consistent(pdev, xhci->page_size,
1418 xhci->scratchpad->sp_buffers[i],
1419 xhci->scratchpad->sp_dma_buffers[i]);
1420 }
1421 kfree(xhci->scratchpad->sp_dma_buffers);
1422 kfree(xhci->scratchpad->sp_buffers);
1423 pci_free_consistent(pdev, num_sp * sizeof(u64),
1424 xhci->scratchpad->sp_array,
1425 xhci->scratchpad->sp_dma);
1426 kfree(xhci->scratchpad);
1427 xhci->scratchpad = NULL;
1428 }
1429
1430 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1431 bool allocate_in_ctx, bool allocate_completion,
1432 gfp_t mem_flags)
1433 {
1434 struct xhci_command *command;
1435
1436 command = kzalloc(sizeof(*command), mem_flags);
1437 if (!command)
1438 return NULL;
1439
1440 if (allocate_in_ctx) {
1441 command->in_ctx =
1442 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1443 mem_flags);
1444 if (!command->in_ctx) {
1445 kfree(command);
1446 return NULL;
1447 }
1448 }
1449
1450 if (allocate_completion) {
1451 command->completion =
1452 kzalloc(sizeof(struct completion), mem_flags);
1453 if (!command->completion) {
1454 xhci_free_container_ctx(xhci, command->in_ctx);
1455 kfree(command);
1456 return NULL;
1457 }
1458 init_completion(command->completion);
1459 }
1460
1461 command->status = 0;
1462 INIT_LIST_HEAD(&command->cmd_list);
1463 return command;
1464 }
1465
1466 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1467 {
1468 int last;
1469
1470 if (!urb_priv)
1471 return;
1472
1473 last = urb_priv->length - 1;
1474 if (last >= 0) {
1475 int i;
1476 for (i = 0; i <= last; i++)
1477 kfree(urb_priv->td[i]);
1478 }
1479 kfree(urb_priv);
1480 }
1481
1482 void xhci_free_command(struct xhci_hcd *xhci,
1483 struct xhci_command *command)
1484 {
1485 xhci_free_container_ctx(xhci,
1486 command->in_ctx);
1487 kfree(command->completion);
1488 kfree(command);
1489 }
1490
1491 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1492 {
1493 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1494 int size;
1495 int i;
1496
1497 /* Free the Event Ring Segment Table and the actual Event Ring */
1498 if (xhci->ir_set) {
1499 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1500 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1501 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1502 }
1503 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1504 if (xhci->erst.entries)
1505 pci_free_consistent(pdev, size,
1506 xhci->erst.entries, xhci->erst.erst_dma_addr);
1507 xhci->erst.entries = NULL;
1508 xhci_dbg(xhci, "Freed ERST\n");
1509 if (xhci->event_ring)
1510 xhci_ring_free(xhci, xhci->event_ring);
1511 xhci->event_ring = NULL;
1512 xhci_dbg(xhci, "Freed event ring\n");
1513
1514 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1515 if (xhci->cmd_ring)
1516 xhci_ring_free(xhci, xhci->cmd_ring);
1517 xhci->cmd_ring = NULL;
1518 xhci_dbg(xhci, "Freed command ring\n");
1519
1520 for (i = 1; i < MAX_HC_SLOTS; ++i)
1521 xhci_free_virt_device(xhci, i);
1522
1523 if (xhci->segment_pool)
1524 dma_pool_destroy(xhci->segment_pool);
1525 xhci->segment_pool = NULL;
1526 xhci_dbg(xhci, "Freed segment pool\n");
1527
1528 if (xhci->device_pool)
1529 dma_pool_destroy(xhci->device_pool);
1530 xhci->device_pool = NULL;
1531 xhci_dbg(xhci, "Freed device context pool\n");
1532
1533 if (xhci->small_streams_pool)
1534 dma_pool_destroy(xhci->small_streams_pool);
1535 xhci->small_streams_pool = NULL;
1536 xhci_dbg(xhci, "Freed small stream array pool\n");
1537
1538 if (xhci->medium_streams_pool)
1539 dma_pool_destroy(xhci->medium_streams_pool);
1540 xhci->medium_streams_pool = NULL;
1541 xhci_dbg(xhci, "Freed medium stream array pool\n");
1542
1543 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1544 if (xhci->dcbaa)
1545 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1546 xhci->dcbaa, xhci->dcbaa->dma);
1547 xhci->dcbaa = NULL;
1548
1549 scratchpad_free(xhci);
1550
1551 xhci->num_usb2_ports = 0;
1552 xhci->num_usb3_ports = 0;
1553 kfree(xhci->usb2_ports);
1554 kfree(xhci->usb3_ports);
1555 kfree(xhci->port_array);
1556
1557 xhci->page_size = 0;
1558 xhci->page_shift = 0;
1559 xhci->bus_state[0].bus_suspended = 0;
1560 xhci->bus_state[1].bus_suspended = 0;
1561 }
1562
1563 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1564 struct xhci_segment *input_seg,
1565 union xhci_trb *start_trb,
1566 union xhci_trb *end_trb,
1567 dma_addr_t input_dma,
1568 struct xhci_segment *result_seg,
1569 char *test_name, int test_number)
1570 {
1571 unsigned long long start_dma;
1572 unsigned long long end_dma;
1573 struct xhci_segment *seg;
1574
1575 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1576 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1577
1578 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1579 if (seg != result_seg) {
1580 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1581 test_name, test_number);
1582 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1583 "input DMA 0x%llx\n",
1584 input_seg,
1585 (unsigned long long) input_dma);
1586 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1587 "ending TRB %p (0x%llx DMA)\n",
1588 start_trb, start_dma,
1589 end_trb, end_dma);
1590 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1591 result_seg, seg);
1592 return -1;
1593 }
1594 return 0;
1595 }
1596
1597 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1598 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1599 {
1600 struct {
1601 dma_addr_t input_dma;
1602 struct xhci_segment *result_seg;
1603 } simple_test_vector [] = {
1604 /* A zeroed DMA field should fail */
1605 { 0, NULL },
1606 /* One TRB before the ring start should fail */
1607 { xhci->event_ring->first_seg->dma - 16, NULL },
1608 /* One byte before the ring start should fail */
1609 { xhci->event_ring->first_seg->dma - 1, NULL },
1610 /* Starting TRB should succeed */
1611 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1612 /* Ending TRB should succeed */
1613 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1614 xhci->event_ring->first_seg },
1615 /* One byte after the ring end should fail */
1616 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1617 /* One TRB after the ring end should fail */
1618 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1619 /* An address of all ones should fail */
1620 { (dma_addr_t) (~0), NULL },
1621 };
1622 struct {
1623 struct xhci_segment *input_seg;
1624 union xhci_trb *start_trb;
1625 union xhci_trb *end_trb;
1626 dma_addr_t input_dma;
1627 struct xhci_segment *result_seg;
1628 } complex_test_vector [] = {
1629 /* Test feeding a valid DMA address from a different ring */
1630 { .input_seg = xhci->event_ring->first_seg,
1631 .start_trb = xhci->event_ring->first_seg->trbs,
1632 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1633 .input_dma = xhci->cmd_ring->first_seg->dma,
1634 .result_seg = NULL,
1635 },
1636 /* Test feeding a valid end TRB from a different ring */
1637 { .input_seg = xhci->event_ring->first_seg,
1638 .start_trb = xhci->event_ring->first_seg->trbs,
1639 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1640 .input_dma = xhci->cmd_ring->first_seg->dma,
1641 .result_seg = NULL,
1642 },
1643 /* Test feeding a valid start and end TRB from a different ring */
1644 { .input_seg = xhci->event_ring->first_seg,
1645 .start_trb = xhci->cmd_ring->first_seg->trbs,
1646 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1647 .input_dma = xhci->cmd_ring->first_seg->dma,
1648 .result_seg = NULL,
1649 },
1650 /* TRB in this ring, but after this TD */
1651 { .input_seg = xhci->event_ring->first_seg,
1652 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1653 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1654 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1655 .result_seg = NULL,
1656 },
1657 /* TRB in this ring, but before this TD */
1658 { .input_seg = xhci->event_ring->first_seg,
1659 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1660 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1661 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1662 .result_seg = NULL,
1663 },
1664 /* TRB in this ring, but after this wrapped TD */
1665 { .input_seg = xhci->event_ring->first_seg,
1666 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1667 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1668 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1669 .result_seg = NULL,
1670 },
1671 /* TRB in this ring, but before this wrapped TD */
1672 { .input_seg = xhci->event_ring->first_seg,
1673 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1674 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1675 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1676 .result_seg = NULL,
1677 },
1678 /* TRB not in this ring, and we have a wrapped TD */
1679 { .input_seg = xhci->event_ring->first_seg,
1680 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1681 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1682 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1683 .result_seg = NULL,
1684 },
1685 };
1686
1687 unsigned int num_tests;
1688 int i, ret;
1689
1690 num_tests = ARRAY_SIZE(simple_test_vector);
1691 for (i = 0; i < num_tests; i++) {
1692 ret = xhci_test_trb_in_td(xhci,
1693 xhci->event_ring->first_seg,
1694 xhci->event_ring->first_seg->trbs,
1695 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1696 simple_test_vector[i].input_dma,
1697 simple_test_vector[i].result_seg,
1698 "Simple", i);
1699 if (ret < 0)
1700 return ret;
1701 }
1702
1703 num_tests = ARRAY_SIZE(complex_test_vector);
1704 for (i = 0; i < num_tests; i++) {
1705 ret = xhci_test_trb_in_td(xhci,
1706 complex_test_vector[i].input_seg,
1707 complex_test_vector[i].start_trb,
1708 complex_test_vector[i].end_trb,
1709 complex_test_vector[i].input_dma,
1710 complex_test_vector[i].result_seg,
1711 "Complex", i);
1712 if (ret < 0)
1713 return ret;
1714 }
1715 xhci_dbg(xhci, "TRB math tests passed.\n");
1716 return 0;
1717 }
1718
1719 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1720 {
1721 u64 temp;
1722 dma_addr_t deq;
1723
1724 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1725 xhci->event_ring->dequeue);
1726 if (deq == 0 && !in_interrupt())
1727 xhci_warn(xhci, "WARN something wrong with SW event ring "
1728 "dequeue ptr.\n");
1729 /* Update HC event ring dequeue pointer */
1730 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1731 temp &= ERST_PTR_MASK;
1732 /* Don't clear the EHB bit (which is RW1C) because
1733 * there might be more events to service.
1734 */
1735 temp &= ~ERST_EHB;
1736 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1737 "preserving EHB bit\n");
1738 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1739 &xhci->ir_set->erst_dequeue);
1740 }
1741
1742 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1743 __le32 __iomem *addr, u8 major_revision)
1744 {
1745 u32 temp, port_offset, port_count;
1746 int i;
1747
1748 if (major_revision > 0x03) {
1749 xhci_warn(xhci, "Ignoring unknown port speed, "
1750 "Ext Cap %p, revision = 0x%x\n",
1751 addr, major_revision);
1752 /* Ignoring port protocol we can't understand. FIXME */
1753 return;
1754 }
1755
1756 /* Port offset and count in the third dword, see section 7.2 */
1757 temp = xhci_readl(xhci, addr + 2);
1758 port_offset = XHCI_EXT_PORT_OFF(temp);
1759 port_count = XHCI_EXT_PORT_COUNT(temp);
1760 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1761 "count = %u, revision = 0x%x\n",
1762 addr, port_offset, port_count, major_revision);
1763 /* Port count includes the current port offset */
1764 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1765 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1766 return;
1767 port_offset--;
1768 for (i = port_offset; i < (port_offset + port_count); i++) {
1769 /* Duplicate entry. Ignore the port if the revisions differ. */
1770 if (xhci->port_array[i] != 0) {
1771 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1772 " port %u\n", addr, i);
1773 xhci_warn(xhci, "Port was marked as USB %u, "
1774 "duplicated as USB %u\n",
1775 xhci->port_array[i], major_revision);
1776 /* Only adjust the roothub port counts if we haven't
1777 * found a similar duplicate.
1778 */
1779 if (xhci->port_array[i] != major_revision &&
1780 xhci->port_array[i] != DUPLICATE_ENTRY) {
1781 if (xhci->port_array[i] == 0x03)
1782 xhci->num_usb3_ports--;
1783 else
1784 xhci->num_usb2_ports--;
1785 xhci->port_array[i] = DUPLICATE_ENTRY;
1786 }
1787 /* FIXME: Should we disable the port? */
1788 continue;
1789 }
1790 xhci->port_array[i] = major_revision;
1791 if (major_revision == 0x03)
1792 xhci->num_usb3_ports++;
1793 else
1794 xhci->num_usb2_ports++;
1795 }
1796 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1797 }
1798
1799 /*
1800 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1801 * specify what speeds each port is supposed to be. We can't count on the port
1802 * speed bits in the PORTSC register being correct until a device is connected,
1803 * but we need to set up the two fake roothubs with the correct number of USB
1804 * 3.0 and USB 2.0 ports at host controller initialization time.
1805 */
1806 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1807 {
1808 __le32 __iomem *addr;
1809 u32 offset;
1810 unsigned int num_ports;
1811 int i, port_index;
1812
1813 addr = &xhci->cap_regs->hcc_params;
1814 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1815 if (offset == 0) {
1816 xhci_err(xhci, "No Extended Capability registers, "
1817 "unable to set up roothub.\n");
1818 return -ENODEV;
1819 }
1820
1821 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1822 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1823 if (!xhci->port_array)
1824 return -ENOMEM;
1825
1826 /*
1827 * For whatever reason, the first capability offset is from the
1828 * capability register base, not from the HCCPARAMS register.
1829 * See section 5.3.6 for offset calculation.
1830 */
1831 addr = &xhci->cap_regs->hc_capbase + offset;
1832 while (1) {
1833 u32 cap_id;
1834
1835 cap_id = xhci_readl(xhci, addr);
1836 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1837 xhci_add_in_port(xhci, num_ports, addr,
1838 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1839 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1840 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1841 == num_ports)
1842 break;
1843 /*
1844 * Once you're into the Extended Capabilities, the offset is
1845 * always relative to the register holding the offset.
1846 */
1847 addr += offset;
1848 }
1849
1850 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1851 xhci_warn(xhci, "No ports on the roothubs?\n");
1852 return -ENODEV;
1853 }
1854 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1855 xhci->num_usb2_ports, xhci->num_usb3_ports);
1856
1857 /* Place limits on the number of roothub ports so that the hub
1858 * descriptors aren't longer than the USB core will allocate.
1859 */
1860 if (xhci->num_usb3_ports > 15) {
1861 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1862 xhci->num_usb3_ports = 15;
1863 }
1864 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1865 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1866 USB_MAXCHILDREN);
1867 xhci->num_usb2_ports = USB_MAXCHILDREN;
1868 }
1869
1870 /*
1871 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1872 * Not sure how the USB core will handle a hub with no ports...
1873 */
1874 if (xhci->num_usb2_ports) {
1875 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1876 xhci->num_usb2_ports, flags);
1877 if (!xhci->usb2_ports)
1878 return -ENOMEM;
1879
1880 port_index = 0;
1881 for (i = 0; i < num_ports; i++) {
1882 if (xhci->port_array[i] == 0x03 ||
1883 xhci->port_array[i] == 0 ||
1884 xhci->port_array[i] == DUPLICATE_ENTRY)
1885 continue;
1886
1887 xhci->usb2_ports[port_index] =
1888 &xhci->op_regs->port_status_base +
1889 NUM_PORT_REGS*i;
1890 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1891 "addr = %p\n", i,
1892 xhci->usb2_ports[port_index]);
1893 port_index++;
1894 if (port_index == xhci->num_usb2_ports)
1895 break;
1896 }
1897 }
1898 if (xhci->num_usb3_ports) {
1899 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1900 xhci->num_usb3_ports, flags);
1901 if (!xhci->usb3_ports)
1902 return -ENOMEM;
1903
1904 port_index = 0;
1905 for (i = 0; i < num_ports; i++)
1906 if (xhci->port_array[i] == 0x03) {
1907 xhci->usb3_ports[port_index] =
1908 &xhci->op_regs->port_status_base +
1909 NUM_PORT_REGS*i;
1910 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1911 "addr = %p\n", i,
1912 xhci->usb3_ports[port_index]);
1913 port_index++;
1914 if (port_index == xhci->num_usb3_ports)
1915 break;
1916 }
1917 }
1918 return 0;
1919 }
1920
1921 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1922 {
1923 dma_addr_t dma;
1924 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1925 unsigned int val, val2;
1926 u64 val_64;
1927 struct xhci_segment *seg;
1928 u32 page_size;
1929 int i;
1930
1931 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1932 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1933 for (i = 0; i < 16; i++) {
1934 if ((0x1 & page_size) != 0)
1935 break;
1936 page_size = page_size >> 1;
1937 }
1938 if (i < 16)
1939 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1940 else
1941 xhci_warn(xhci, "WARN: no supported page size\n");
1942 /* Use 4K pages, since that's common and the minimum the HC supports */
1943 xhci->page_shift = 12;
1944 xhci->page_size = 1 << xhci->page_shift;
1945 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1946
1947 /*
1948 * Program the Number of Device Slots Enabled field in the CONFIG
1949 * register with the max value of slots the HC can handle.
1950 */
1951 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1952 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1953 (unsigned int) val);
1954 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1955 val |= (val2 & ~HCS_SLOTS_MASK);
1956 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1957 (unsigned int) val);
1958 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1959
1960 /*
1961 * Section 5.4.8 - doorbell array must be
1962 * "physically contiguous and 64-byte (cache line) aligned".
1963 */
1964 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1965 sizeof(*xhci->dcbaa), &dma);
1966 if (!xhci->dcbaa)
1967 goto fail;
1968 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1969 xhci->dcbaa->dma = dma;
1970 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1971 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1972 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1973
1974 /*
1975 * Initialize the ring segment pool. The ring must be a contiguous
1976 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1977 * however, the command ring segment needs 64-byte aligned segments,
1978 * so we pick the greater alignment need.
1979 */
1980 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1981 SEGMENT_SIZE, 64, xhci->page_size);
1982
1983 /* See Table 46 and Note on Figure 55 */
1984 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1985 2112, 64, xhci->page_size);
1986 if (!xhci->segment_pool || !xhci->device_pool)
1987 goto fail;
1988
1989 /* Linear stream context arrays don't have any boundary restrictions,
1990 * and only need to be 16-byte aligned.
1991 */
1992 xhci->small_streams_pool =
1993 dma_pool_create("xHCI 256 byte stream ctx arrays",
1994 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1995 xhci->medium_streams_pool =
1996 dma_pool_create("xHCI 1KB stream ctx arrays",
1997 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1998 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1999 * will be allocated with pci_alloc_consistent()
2000 */
2001
2002 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2003 goto fail;
2004
2005 /* Set up the command ring to have one segments for now. */
2006 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2007 if (!xhci->cmd_ring)
2008 goto fail;
2009 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2010 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2011 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2012
2013 /* Set the address in the Command Ring Control register */
2014 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2015 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2016 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2017 xhci->cmd_ring->cycle_state;
2018 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2019 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2020 xhci_dbg_cmd_ptrs(xhci);
2021
2022 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2023 val &= DBOFF_MASK;
2024 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2025 " from cap regs base addr\n", val);
2026 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2027 xhci_dbg_regs(xhci);
2028 xhci_print_run_regs(xhci);
2029 /* Set ir_set to interrupt register set 0 */
2030 xhci->ir_set = &xhci->run_regs->ir_set[0];
2031
2032 /*
2033 * Event ring setup: Allocate a normal ring, but also setup
2034 * the event ring segment table (ERST). Section 4.9.3.
2035 */
2036 xhci_dbg(xhci, "// Allocating event ring\n");
2037 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2038 if (!xhci->event_ring)
2039 goto fail;
2040 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2041 goto fail;
2042
2043 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2044 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2045 if (!xhci->erst.entries)
2046 goto fail;
2047 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2048 (unsigned long long)dma);
2049
2050 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2051 xhci->erst.num_entries = ERST_NUM_SEGS;
2052 xhci->erst.erst_dma_addr = dma;
2053 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2054 xhci->erst.num_entries,
2055 xhci->erst.entries,
2056 (unsigned long long)xhci->erst.erst_dma_addr);
2057
2058 /* set ring base address and size for each segment table entry */
2059 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2060 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2061 entry->seg_addr = cpu_to_le64(seg->dma);
2062 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2063 entry->rsvd = 0;
2064 seg = seg->next;
2065 }
2066
2067 /* set ERST count with the number of entries in the segment table */
2068 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2069 val &= ERST_SIZE_MASK;
2070 val |= ERST_NUM_SEGS;
2071 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2072 val);
2073 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2074
2075 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2076 /* set the segment table base address */
2077 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2078 (unsigned long long)xhci->erst.erst_dma_addr);
2079 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2080 val_64 &= ERST_PTR_MASK;
2081 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2082 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2083
2084 /* Set the event ring dequeue address */
2085 xhci_set_hc_event_deq(xhci);
2086 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2087 xhci_print_ir_set(xhci, 0);
2088
2089 /*
2090 * XXX: Might need to set the Interrupter Moderation Register to
2091 * something other than the default (~1ms minimum between interrupts).
2092 * See section 5.5.1.2.
2093 */
2094 init_completion(&xhci->addr_dev);
2095 for (i = 0; i < MAX_HC_SLOTS; ++i)
2096 xhci->devs[i] = NULL;
2097 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2098 xhci->bus_state[0].resume_done[i] = 0;
2099 xhci->bus_state[1].resume_done[i] = 0;
2100 }
2101
2102 if (scratchpad_alloc(xhci, flags))
2103 goto fail;
2104 if (xhci_setup_port_arrays(xhci, flags))
2105 goto fail;
2106
2107 return 0;
2108
2109 fail:
2110 xhci_warn(xhci, "Couldn't initialize memory\n");
2111 xhci_mem_cleanup(xhci);
2112 return -ENOMEM;
2113 }