]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci-mem.c
1db4fea8c1704e62cdc33ddfeacc353f70273a09
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26
27 #include "xhci.h"
28
29 /*
30 * Allocates a generic ring segment from the ring pool, sets the dma address,
31 * initializes the segment to zero, and sets the private next pointer to NULL.
32 *
33 * Section 4.11.1.1:
34 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35 */
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 {
38 struct xhci_segment *seg;
39 dma_addr_t dma;
40
41 seg = kzalloc(sizeof *seg, flags);
42 if (!seg)
43 return 0;
44 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
45
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
50 }
51 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52 seg->trbs, (unsigned long long)dma);
53
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
57
58 return seg;
59 }
60
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62 {
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67 seg->trbs, (unsigned long long)seg->dma);
68 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69 seg->trbs = NULL;
70 }
71 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72 kfree(seg);
73 }
74
75 /*
76 * Make the prev segment point to the next segment.
77 *
78 * Change the last TRB in the prev segment to be a Link TRB which points to the
79 * DMA address of the next segment. The caller needs to set any Link TRB
80 * related flags, such as End TRB, Toggle Cycle, and no snoop.
81 */
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83 struct xhci_segment *next, bool link_trbs)
84 {
85 u32 val;
86
87 if (!prev || !next)
88 return;
89 prev->next = next;
90 if (link_trbs) {
91 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
92
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95 val &= ~TRB_TYPE_BITMASK;
96 val |= TRB_TYPE(TRB_LINK);
97 /* Always set the chain bit with 0.95 hardware */
98 if (xhci_link_trb_quirk(xhci))
99 val |= TRB_CHAIN;
100 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
101 }
102 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
103 (unsigned long long)prev->dma,
104 (unsigned long long)next->dma);
105 }
106
107 /* XXX: Do we need the hcd structure in all these functions? */
108 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
109 {
110 struct xhci_segment *seg;
111 struct xhci_segment *first_seg;
112
113 if (!ring || !ring->first_seg)
114 return;
115 first_seg = ring->first_seg;
116 seg = first_seg->next;
117 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
118 while (seg != first_seg) {
119 struct xhci_segment *next = seg->next;
120 xhci_segment_free(xhci, seg);
121 seg = next;
122 }
123 xhci_segment_free(xhci, first_seg);
124 ring->first_seg = NULL;
125 kfree(ring);
126 }
127
128 /**
129 * Create a new ring with zero or more segments.
130 *
131 * Link each segment together into a ring.
132 * Set the end flag and the cycle toggle bit on the last segment.
133 * See section 4.9.1 and figures 15 and 16.
134 */
135 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
136 unsigned int num_segs, bool link_trbs, gfp_t flags)
137 {
138 struct xhci_ring *ring;
139 struct xhci_segment *prev;
140
141 ring = kzalloc(sizeof *(ring), flags);
142 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
143 if (!ring)
144 return 0;
145
146 INIT_LIST_HEAD(&ring->td_list);
147 if (num_segs == 0)
148 return ring;
149
150 ring->first_seg = xhci_segment_alloc(xhci, flags);
151 if (!ring->first_seg)
152 goto fail;
153 num_segs--;
154
155 prev = ring->first_seg;
156 while (num_segs > 0) {
157 struct xhci_segment *next;
158
159 next = xhci_segment_alloc(xhci, flags);
160 if (!next)
161 goto fail;
162 xhci_link_segments(xhci, prev, next, link_trbs);
163
164 prev = next;
165 num_segs--;
166 }
167 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
168
169 if (link_trbs) {
170 /* See section 4.9.2.1 and 6.4.4.1 */
171 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
172 xhci_dbg(xhci, "Wrote link toggle flag to"
173 " segment %p (virtual), 0x%llx (DMA)\n",
174 prev, (unsigned long long)prev->dma);
175 }
176 /* The ring is empty, so the enqueue pointer == dequeue pointer */
177 ring->enqueue = ring->first_seg->trbs;
178 ring->enq_seg = ring->first_seg;
179 ring->dequeue = ring->enqueue;
180 ring->deq_seg = ring->first_seg;
181 /* The ring is initialized to 0. The producer must write 1 to the cycle
182 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
183 * compare CCS to the cycle bit to check ownership, so CCS = 1.
184 */
185 ring->cycle_state = 1;
186
187 return ring;
188
189 fail:
190 xhci_ring_free(xhci, ring);
191 return 0;
192 }
193
194 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
195
196 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
197 int type, gfp_t flags)
198 {
199 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
200 if (!ctx)
201 return NULL;
202
203 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
204 ctx->type = type;
205 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
206 if (type == XHCI_CTX_TYPE_INPUT)
207 ctx->size += CTX_SIZE(xhci->hcc_params);
208
209 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
210 memset(ctx->bytes, 0, ctx->size);
211 return ctx;
212 }
213
214 void xhci_free_container_ctx(struct xhci_hcd *xhci,
215 struct xhci_container_ctx *ctx)
216 {
217 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
218 kfree(ctx);
219 }
220
221 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
222 struct xhci_container_ctx *ctx)
223 {
224 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
225 return (struct xhci_input_control_ctx *)ctx->bytes;
226 }
227
228 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
229 struct xhci_container_ctx *ctx)
230 {
231 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
232 return (struct xhci_slot_ctx *)ctx->bytes;
233
234 return (struct xhci_slot_ctx *)
235 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
236 }
237
238 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
239 struct xhci_container_ctx *ctx,
240 unsigned int ep_index)
241 {
242 /* increment ep index by offset of start of ep ctx array */
243 ep_index++;
244 if (ctx->type == XHCI_CTX_TYPE_INPUT)
245 ep_index++;
246
247 return (struct xhci_ep_ctx *)
248 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
249 }
250
251 /* All the xhci_tds in the ring's TD list should be freed at this point */
252 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
253 {
254 struct xhci_virt_device *dev;
255 int i;
256
257 /* Slot ID 0 is reserved */
258 if (slot_id == 0 || !xhci->devs[slot_id])
259 return;
260
261 dev = xhci->devs[slot_id];
262 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
263 if (!dev)
264 return;
265
266 for (i = 0; i < 31; ++i)
267 if (dev->eps[i].ring)
268 xhci_ring_free(xhci, dev->eps[i].ring);
269
270 if (dev->in_ctx)
271 xhci_free_container_ctx(xhci, dev->in_ctx);
272 if (dev->out_ctx)
273 xhci_free_container_ctx(xhci, dev->out_ctx);
274
275 kfree(xhci->devs[slot_id]);
276 xhci->devs[slot_id] = 0;
277 }
278
279 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
280 struct usb_device *udev, gfp_t flags)
281 {
282 struct xhci_virt_device *dev;
283 int i;
284
285 /* Slot ID 0 is reserved */
286 if (slot_id == 0 || xhci->devs[slot_id]) {
287 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
288 return 0;
289 }
290
291 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
292 if (!xhci->devs[slot_id])
293 return 0;
294 dev = xhci->devs[slot_id];
295
296 /* Allocate the (output) device context that will be used in the HC. */
297 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
298 if (!dev->out_ctx)
299 goto fail;
300
301 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
302 (unsigned long long)dev->out_ctx->dma);
303
304 /* Allocate the (input) device context for address device command */
305 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
306 if (!dev->in_ctx)
307 goto fail;
308
309 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
310 (unsigned long long)dev->in_ctx->dma);
311
312 /* Initialize the cancellation list for each endpoint */
313 for (i = 0; i < 31; i++)
314 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
315
316 /* Allocate endpoint 0 ring */
317 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
318 if (!dev->eps[0].ring)
319 goto fail;
320
321 init_completion(&dev->cmd_completion);
322 INIT_LIST_HEAD(&dev->cmd_list);
323
324 /* Point to output device context in dcbaa. */
325 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
326 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
327 slot_id,
328 &xhci->dcbaa->dev_context_ptrs[slot_id],
329 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
330
331 return 1;
332 fail:
333 xhci_free_virt_device(xhci, slot_id);
334 return 0;
335 }
336
337 /* Setup an xHCI virtual device for a Set Address command */
338 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
339 {
340 struct xhci_virt_device *dev;
341 struct xhci_ep_ctx *ep0_ctx;
342 struct usb_device *top_dev;
343 struct xhci_slot_ctx *slot_ctx;
344 struct xhci_input_control_ctx *ctrl_ctx;
345
346 dev = xhci->devs[udev->slot_id];
347 /* Slot ID 0 is reserved */
348 if (udev->slot_id == 0 || !dev) {
349 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
350 udev->slot_id);
351 return -EINVAL;
352 }
353 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
354 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
355 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
356
357 /* 2) New slot context and endpoint 0 context are valid*/
358 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
359
360 /* 3) Only the control endpoint is valid - one endpoint context */
361 slot_ctx->dev_info |= LAST_CTX(1);
362
363 slot_ctx->dev_info |= (u32) udev->route;
364 switch (udev->speed) {
365 case USB_SPEED_SUPER:
366 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
367 break;
368 case USB_SPEED_HIGH:
369 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
370 break;
371 case USB_SPEED_FULL:
372 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
373 break;
374 case USB_SPEED_LOW:
375 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
376 break;
377 case USB_SPEED_VARIABLE:
378 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
379 return -EINVAL;
380 break;
381 default:
382 /* Speed was set earlier, this shouldn't happen. */
383 BUG();
384 }
385 /* Find the root hub port this device is under */
386 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
387 top_dev = top_dev->parent)
388 /* Found device below root hub */;
389 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
390 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
391
392 /* Is this a LS/FS device under a HS hub? */
393 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
394 udev->tt) {
395 slot_ctx->tt_info = udev->tt->hub->slot_id;
396 slot_ctx->tt_info |= udev->ttport << 8;
397 if (udev->tt->multi)
398 slot_ctx->dev_info |= DEV_MTT;
399 }
400 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
401 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
402
403 /* Step 4 - ring already allocated */
404 /* Step 5 */
405 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
406 /*
407 * XXX: Not sure about wireless USB devices.
408 */
409 switch (udev->speed) {
410 case USB_SPEED_SUPER:
411 ep0_ctx->ep_info2 |= MAX_PACKET(512);
412 break;
413 case USB_SPEED_HIGH:
414 /* USB core guesses at a 64-byte max packet first for FS devices */
415 case USB_SPEED_FULL:
416 ep0_ctx->ep_info2 |= MAX_PACKET(64);
417 break;
418 case USB_SPEED_LOW:
419 ep0_ctx->ep_info2 |= MAX_PACKET(8);
420 break;
421 case USB_SPEED_VARIABLE:
422 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
423 return -EINVAL;
424 break;
425 default:
426 /* New speed? */
427 BUG();
428 }
429 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
430 ep0_ctx->ep_info2 |= MAX_BURST(0);
431 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
432
433 ep0_ctx->deq =
434 dev->eps[0].ring->first_seg->dma;
435 ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
436
437 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
438
439 return 0;
440 }
441
442 /* Return the polling or NAK interval.
443 *
444 * The polling interval is expressed in "microframes". If xHCI's Interval field
445 * is set to N, it will service the endpoint every 2^(Interval)*125us.
446 *
447 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
448 * is set to 0.
449 */
450 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
451 struct usb_host_endpoint *ep)
452 {
453 unsigned int interval = 0;
454
455 switch (udev->speed) {
456 case USB_SPEED_HIGH:
457 /* Max NAK rate */
458 if (usb_endpoint_xfer_control(&ep->desc) ||
459 usb_endpoint_xfer_bulk(&ep->desc))
460 interval = ep->desc.bInterval;
461 /* Fall through - SS and HS isoc/int have same decoding */
462 case USB_SPEED_SUPER:
463 if (usb_endpoint_xfer_int(&ep->desc) ||
464 usb_endpoint_xfer_isoc(&ep->desc)) {
465 if (ep->desc.bInterval == 0)
466 interval = 0;
467 else
468 interval = ep->desc.bInterval - 1;
469 if (interval > 15)
470 interval = 15;
471 if (interval != ep->desc.bInterval + 1)
472 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
473 ep->desc.bEndpointAddress, 1 << interval);
474 }
475 break;
476 /* Convert bInterval (in 1-255 frames) to microframes and round down to
477 * nearest power of 2.
478 */
479 case USB_SPEED_FULL:
480 case USB_SPEED_LOW:
481 if (usb_endpoint_xfer_int(&ep->desc) ||
482 usb_endpoint_xfer_isoc(&ep->desc)) {
483 interval = fls(8*ep->desc.bInterval) - 1;
484 if (interval > 10)
485 interval = 10;
486 if (interval < 3)
487 interval = 3;
488 if ((1 << interval) != 8*ep->desc.bInterval)
489 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
490 ep->desc.bEndpointAddress, 1 << interval);
491 }
492 break;
493 default:
494 BUG();
495 }
496 return EP_INTERVAL(interval);
497 }
498
499 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
500 struct usb_host_endpoint *ep)
501 {
502 int in;
503 u32 type;
504
505 in = usb_endpoint_dir_in(&ep->desc);
506 if (usb_endpoint_xfer_control(&ep->desc)) {
507 type = EP_TYPE(CTRL_EP);
508 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
509 if (in)
510 type = EP_TYPE(BULK_IN_EP);
511 else
512 type = EP_TYPE(BULK_OUT_EP);
513 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
514 if (in)
515 type = EP_TYPE(ISOC_IN_EP);
516 else
517 type = EP_TYPE(ISOC_OUT_EP);
518 } else if (usb_endpoint_xfer_int(&ep->desc)) {
519 if (in)
520 type = EP_TYPE(INT_IN_EP);
521 else
522 type = EP_TYPE(INT_OUT_EP);
523 } else {
524 BUG();
525 }
526 return type;
527 }
528
529 int xhci_endpoint_init(struct xhci_hcd *xhci,
530 struct xhci_virt_device *virt_dev,
531 struct usb_device *udev,
532 struct usb_host_endpoint *ep,
533 gfp_t mem_flags)
534 {
535 unsigned int ep_index;
536 struct xhci_ep_ctx *ep_ctx;
537 struct xhci_ring *ep_ring;
538 unsigned int max_packet;
539 unsigned int max_burst;
540
541 ep_index = xhci_get_endpoint_index(&ep->desc);
542 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
543
544 /* Set up the endpoint ring */
545 virt_dev->eps[ep_index].new_ring =
546 xhci_ring_alloc(xhci, 1, true, mem_flags);
547 if (!virt_dev->eps[ep_index].new_ring)
548 return -ENOMEM;
549 ep_ring = virt_dev->eps[ep_index].new_ring;
550 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
551
552 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
553
554 /* FIXME dig Mult and streams info out of ep companion desc */
555
556 /* Allow 3 retries for everything but isoc;
557 * error count = 0 means infinite retries.
558 */
559 if (!usb_endpoint_xfer_isoc(&ep->desc))
560 ep_ctx->ep_info2 = ERROR_COUNT(3);
561 else
562 ep_ctx->ep_info2 = ERROR_COUNT(1);
563
564 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
565
566 /* Set the max packet size and max burst */
567 switch (udev->speed) {
568 case USB_SPEED_SUPER:
569 max_packet = ep->desc.wMaxPacketSize;
570 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
571 /* dig out max burst from ep companion desc */
572 if (!ep->ss_ep_comp) {
573 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
574 max_packet = 0;
575 } else {
576 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
577 }
578 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
579 break;
580 case USB_SPEED_HIGH:
581 /* bits 11:12 specify the number of additional transaction
582 * opportunities per microframe (USB 2.0, section 9.6.6)
583 */
584 if (usb_endpoint_xfer_isoc(&ep->desc) ||
585 usb_endpoint_xfer_int(&ep->desc)) {
586 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
587 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
588 }
589 /* Fall through */
590 case USB_SPEED_FULL:
591 case USB_SPEED_LOW:
592 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
593 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
594 break;
595 default:
596 BUG();
597 }
598 /* FIXME Debug endpoint context */
599 return 0;
600 }
601
602 void xhci_endpoint_zero(struct xhci_hcd *xhci,
603 struct xhci_virt_device *virt_dev,
604 struct usb_host_endpoint *ep)
605 {
606 unsigned int ep_index;
607 struct xhci_ep_ctx *ep_ctx;
608
609 ep_index = xhci_get_endpoint_index(&ep->desc);
610 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
611
612 ep_ctx->ep_info = 0;
613 ep_ctx->ep_info2 = 0;
614 ep_ctx->deq = 0;
615 ep_ctx->tx_info = 0;
616 /* Don't free the endpoint ring until the set interface or configuration
617 * request succeeds.
618 */
619 }
620
621 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
622 * Useful when you want to change one particular aspect of the endpoint and then
623 * issue a configure endpoint command.
624 */
625 void xhci_endpoint_copy(struct xhci_hcd *xhci,
626 struct xhci_container_ctx *in_ctx,
627 struct xhci_container_ctx *out_ctx,
628 unsigned int ep_index)
629 {
630 struct xhci_ep_ctx *out_ep_ctx;
631 struct xhci_ep_ctx *in_ep_ctx;
632
633 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
634 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
635
636 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
637 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
638 in_ep_ctx->deq = out_ep_ctx->deq;
639 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
640 }
641
642 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
643 * Useful when you want to change one particular aspect of the endpoint and then
644 * issue a configure endpoint command. Only the context entries field matters,
645 * but we'll copy the whole thing anyway.
646 */
647 void xhci_slot_copy(struct xhci_hcd *xhci,
648 struct xhci_container_ctx *in_ctx,
649 struct xhci_container_ctx *out_ctx)
650 {
651 struct xhci_slot_ctx *in_slot_ctx;
652 struct xhci_slot_ctx *out_slot_ctx;
653
654 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
655 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
656
657 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
658 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
659 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
660 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
661 }
662
663 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
664 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
665 {
666 int i;
667 struct device *dev = xhci_to_hcd(xhci)->self.controller;
668 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
669
670 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
671
672 if (!num_sp)
673 return 0;
674
675 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
676 if (!xhci->scratchpad)
677 goto fail_sp;
678
679 xhci->scratchpad->sp_array =
680 pci_alloc_consistent(to_pci_dev(dev),
681 num_sp * sizeof(u64),
682 &xhci->scratchpad->sp_dma);
683 if (!xhci->scratchpad->sp_array)
684 goto fail_sp2;
685
686 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
687 if (!xhci->scratchpad->sp_buffers)
688 goto fail_sp3;
689
690 xhci->scratchpad->sp_dma_buffers =
691 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
692
693 if (!xhci->scratchpad->sp_dma_buffers)
694 goto fail_sp4;
695
696 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
697 for (i = 0; i < num_sp; i++) {
698 dma_addr_t dma;
699 void *buf = pci_alloc_consistent(to_pci_dev(dev),
700 xhci->page_size, &dma);
701 if (!buf)
702 goto fail_sp5;
703
704 xhci->scratchpad->sp_array[i] = dma;
705 xhci->scratchpad->sp_buffers[i] = buf;
706 xhci->scratchpad->sp_dma_buffers[i] = dma;
707 }
708
709 return 0;
710
711 fail_sp5:
712 for (i = i - 1; i >= 0; i--) {
713 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
714 xhci->scratchpad->sp_buffers[i],
715 xhci->scratchpad->sp_dma_buffers[i]);
716 }
717 kfree(xhci->scratchpad->sp_dma_buffers);
718
719 fail_sp4:
720 kfree(xhci->scratchpad->sp_buffers);
721
722 fail_sp3:
723 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
724 xhci->scratchpad->sp_array,
725 xhci->scratchpad->sp_dma);
726
727 fail_sp2:
728 kfree(xhci->scratchpad);
729 xhci->scratchpad = NULL;
730
731 fail_sp:
732 return -ENOMEM;
733 }
734
735 static void scratchpad_free(struct xhci_hcd *xhci)
736 {
737 int num_sp;
738 int i;
739 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
740
741 if (!xhci->scratchpad)
742 return;
743
744 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
745
746 for (i = 0; i < num_sp; i++) {
747 pci_free_consistent(pdev, xhci->page_size,
748 xhci->scratchpad->sp_buffers[i],
749 xhci->scratchpad->sp_dma_buffers[i]);
750 }
751 kfree(xhci->scratchpad->sp_dma_buffers);
752 kfree(xhci->scratchpad->sp_buffers);
753 pci_free_consistent(pdev, num_sp * sizeof(u64),
754 xhci->scratchpad->sp_array,
755 xhci->scratchpad->sp_dma);
756 kfree(xhci->scratchpad);
757 xhci->scratchpad = NULL;
758 }
759
760 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
761 bool allocate_completion, gfp_t mem_flags)
762 {
763 struct xhci_command *command;
764
765 command = kzalloc(sizeof(*command), mem_flags);
766 if (!command)
767 return NULL;
768
769 command->in_ctx =
770 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags);
771 if (!command->in_ctx)
772 return NULL;
773
774 if (allocate_completion) {
775 command->completion =
776 kzalloc(sizeof(struct completion), mem_flags);
777 if (!command->completion) {
778 xhci_free_container_ctx(xhci, command->in_ctx);
779 return NULL;
780 }
781 init_completion(command->completion);
782 }
783
784 command->status = 0;
785 INIT_LIST_HEAD(&command->cmd_list);
786 return command;
787 }
788
789 void xhci_free_command(struct xhci_hcd *xhci,
790 struct xhci_command *command)
791 {
792 xhci_free_container_ctx(xhci,
793 command->in_ctx);
794 kfree(command->completion);
795 kfree(command);
796 }
797
798 void xhci_mem_cleanup(struct xhci_hcd *xhci)
799 {
800 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
801 int size;
802 int i;
803
804 /* Free the Event Ring Segment Table and the actual Event Ring */
805 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
806 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
807 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
808 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
809 if (xhci->erst.entries)
810 pci_free_consistent(pdev, size,
811 xhci->erst.entries, xhci->erst.erst_dma_addr);
812 xhci->erst.entries = NULL;
813 xhci_dbg(xhci, "Freed ERST\n");
814 if (xhci->event_ring)
815 xhci_ring_free(xhci, xhci->event_ring);
816 xhci->event_ring = NULL;
817 xhci_dbg(xhci, "Freed event ring\n");
818
819 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
820 if (xhci->cmd_ring)
821 xhci_ring_free(xhci, xhci->cmd_ring);
822 xhci->cmd_ring = NULL;
823 xhci_dbg(xhci, "Freed command ring\n");
824
825 for (i = 1; i < MAX_HC_SLOTS; ++i)
826 xhci_free_virt_device(xhci, i);
827
828 if (xhci->segment_pool)
829 dma_pool_destroy(xhci->segment_pool);
830 xhci->segment_pool = NULL;
831 xhci_dbg(xhci, "Freed segment pool\n");
832
833 if (xhci->device_pool)
834 dma_pool_destroy(xhci->device_pool);
835 xhci->device_pool = NULL;
836 xhci_dbg(xhci, "Freed device context pool\n");
837
838 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
839 if (xhci->dcbaa)
840 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
841 xhci->dcbaa, xhci->dcbaa->dma);
842 xhci->dcbaa = NULL;
843
844 xhci->page_size = 0;
845 xhci->page_shift = 0;
846 scratchpad_free(xhci);
847 }
848
849 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
850 {
851 dma_addr_t dma;
852 struct device *dev = xhci_to_hcd(xhci)->self.controller;
853 unsigned int val, val2;
854 u64 val_64;
855 struct xhci_segment *seg;
856 u32 page_size;
857 int i;
858
859 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
860 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
861 for (i = 0; i < 16; i++) {
862 if ((0x1 & page_size) != 0)
863 break;
864 page_size = page_size >> 1;
865 }
866 if (i < 16)
867 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
868 else
869 xhci_warn(xhci, "WARN: no supported page size\n");
870 /* Use 4K pages, since that's common and the minimum the HC supports */
871 xhci->page_shift = 12;
872 xhci->page_size = 1 << xhci->page_shift;
873 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
874
875 /*
876 * Program the Number of Device Slots Enabled field in the CONFIG
877 * register with the max value of slots the HC can handle.
878 */
879 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
880 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
881 (unsigned int) val);
882 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
883 val |= (val2 & ~HCS_SLOTS_MASK);
884 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
885 (unsigned int) val);
886 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
887
888 /*
889 * Section 5.4.8 - doorbell array must be
890 * "physically contiguous and 64-byte (cache line) aligned".
891 */
892 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
893 sizeof(*xhci->dcbaa), &dma);
894 if (!xhci->dcbaa)
895 goto fail;
896 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
897 xhci->dcbaa->dma = dma;
898 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
899 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
900 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
901
902 /*
903 * Initialize the ring segment pool. The ring must be a contiguous
904 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
905 * however, the command ring segment needs 64-byte aligned segments,
906 * so we pick the greater alignment need.
907 */
908 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
909 SEGMENT_SIZE, 64, xhci->page_size);
910
911 /* See Table 46 and Note on Figure 55 */
912 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
913 2112, 64, xhci->page_size);
914 if (!xhci->segment_pool || !xhci->device_pool)
915 goto fail;
916
917 /* Set up the command ring to have one segments for now. */
918 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
919 if (!xhci->cmd_ring)
920 goto fail;
921 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
922 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
923 (unsigned long long)xhci->cmd_ring->first_seg->dma);
924
925 /* Set the address in the Command Ring Control register */
926 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
927 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
928 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
929 xhci->cmd_ring->cycle_state;
930 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
931 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
932 xhci_dbg_cmd_ptrs(xhci);
933
934 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
935 val &= DBOFF_MASK;
936 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
937 " from cap regs base addr\n", val);
938 xhci->dba = (void *) xhci->cap_regs + val;
939 xhci_dbg_regs(xhci);
940 xhci_print_run_regs(xhci);
941 /* Set ir_set to interrupt register set 0 */
942 xhci->ir_set = (void *) xhci->run_regs->ir_set;
943
944 /*
945 * Event ring setup: Allocate a normal ring, but also setup
946 * the event ring segment table (ERST). Section 4.9.3.
947 */
948 xhci_dbg(xhci, "// Allocating event ring\n");
949 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
950 if (!xhci->event_ring)
951 goto fail;
952
953 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
954 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
955 if (!xhci->erst.entries)
956 goto fail;
957 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
958 (unsigned long long)dma);
959
960 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
961 xhci->erst.num_entries = ERST_NUM_SEGS;
962 xhci->erst.erst_dma_addr = dma;
963 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
964 xhci->erst.num_entries,
965 xhci->erst.entries,
966 (unsigned long long)xhci->erst.erst_dma_addr);
967
968 /* set ring base address and size for each segment table entry */
969 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
970 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
971 entry->seg_addr = seg->dma;
972 entry->seg_size = TRBS_PER_SEGMENT;
973 entry->rsvd = 0;
974 seg = seg->next;
975 }
976
977 /* set ERST count with the number of entries in the segment table */
978 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
979 val &= ERST_SIZE_MASK;
980 val |= ERST_NUM_SEGS;
981 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
982 val);
983 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
984
985 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
986 /* set the segment table base address */
987 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
988 (unsigned long long)xhci->erst.erst_dma_addr);
989 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
990 val_64 &= ERST_PTR_MASK;
991 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
992 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
993
994 /* Set the event ring dequeue address */
995 xhci_set_hc_event_deq(xhci);
996 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
997 xhci_print_ir_set(xhci, xhci->ir_set, 0);
998
999 /*
1000 * XXX: Might need to set the Interrupter Moderation Register to
1001 * something other than the default (~1ms minimum between interrupts).
1002 * See section 5.5.1.2.
1003 */
1004 init_completion(&xhci->addr_dev);
1005 for (i = 0; i < MAX_HC_SLOTS; ++i)
1006 xhci->devs[i] = 0;
1007
1008 if (scratchpad_alloc(xhci, flags))
1009 goto fail;
1010
1011 return 0;
1012
1013 fail:
1014 xhci_warn(xhci, "Couldn't initialize memory\n");
1015 xhci_mem_cleanup(xhci);
1016 return -ENOMEM;
1017 }