]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci-mem.c
xhci: xhci-mem: off by one in xhci_stream_id_to_ring()
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32 {
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36
37 seg = kzalloc(sizeof *seg, flags);
38 if (!seg)
39 return NULL;
40
41 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
42 if (!seg->trbs) {
43 kfree(seg);
44 return NULL;
45 }
46
47 if (max_packet) {
48 seg->bounce_buf = kzalloc(max_packet, flags);
49 if (!seg->bounce_buf) {
50 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51 kfree(seg);
52 return NULL;
53 }
54 }
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
59 }
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 if (seg->trbs) {
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 kfree(seg->bounce_buf);
73 kfree(seg);
74 }
75
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
78 {
79 struct xhci_segment *seg;
80
81 seg = first->next;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
85 seg = next;
86 }
87 xhci_segment_free(xhci, first);
88 }
89
90 /*
91 * Make the prev segment point to the next segment.
92 *
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
96 */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 u32 val;
101
102 if (!prev || !next)
103 return;
104 prev->next = next;
105 if (type != TYPE_EVENT) {
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
108
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
113 /* Always set the chain bit with 0.95 hardware */
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 val |= TRB_CHAIN;
119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 }
121 }
122
123 /*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
130 {
131 struct xhci_segment *next;
132
133 if (!ring || !first || !last)
134 return;
135
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
148 }
149 }
150
151 /*
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
157 *
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
160 * have segments of size 1KB, that are always 1KB aligned. A segment may
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
164 *
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
168 *
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
171 *
172 * Caveats for the radix tree:
173 *
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
181 */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 struct xhci_ring *ring,
184 struct xhci_segment *seg,
185 gfp_t mem_flags)
186 {
187 unsigned long key;
188 int ret;
189
190 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map, key))
193 return 0;
194
195 ret = radix_tree_maybe_preload(mem_flags);
196 if (ret)
197 return ret;
198 ret = radix_tree_insert(trb_address_map,
199 key, ring);
200 radix_tree_preload_end();
201 return ret;
202 }
203
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 struct xhci_segment *seg)
206 {
207 unsigned long key;
208
209 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 if (radix_tree_lookup(trb_address_map, key))
211 radix_tree_delete(trb_address_map, key);
212 }
213
214 static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root *trb_address_map,
216 struct xhci_ring *ring,
217 struct xhci_segment *first_seg,
218 struct xhci_segment *last_seg,
219 gfp_t mem_flags)
220 {
221 struct xhci_segment *seg;
222 struct xhci_segment *failed_seg;
223 int ret;
224
225 if (WARN_ON_ONCE(trb_address_map == NULL))
226 return 0;
227
228 seg = first_seg;
229 do {
230 ret = xhci_insert_segment_mapping(trb_address_map,
231 ring, seg, mem_flags);
232 if (ret)
233 goto remove_streams;
234 if (seg == last_seg)
235 return 0;
236 seg = seg->next;
237 } while (seg != first_seg);
238
239 return 0;
240
241 remove_streams:
242 failed_seg = seg;
243 seg = first_seg;
244 do {
245 xhci_remove_segment_mapping(trb_address_map, seg);
246 if (seg == failed_seg)
247 return ret;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return ret;
252 }
253
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 struct xhci_segment *seg;
257
258 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 return;
260
261 seg = ring->first_seg;
262 do {
263 xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 seg = seg->next;
265 } while (seg != ring->first_seg);
266 }
267
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 ring->first_seg, ring->last_seg, mem_flags);
272 }
273
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 if (!ring)
278 return;
279
280 trace_xhci_ring_free(ring);
281
282 if (ring->first_seg) {
283 if (ring->type == TYPE_STREAM)
284 xhci_remove_stream_mapping(ring);
285 xhci_free_segments_for_ring(xhci, ring->first_seg);
286 }
287
288 kfree(ring);
289 }
290
291 static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 unsigned int cycle_state)
293 {
294 /* The ring is empty, so the enqueue pointer == dequeue pointer */
295 ring->enqueue = ring->first_seg->trbs;
296 ring->enq_seg = ring->first_seg;
297 ring->dequeue = ring->enqueue;
298 ring->deq_seg = ring->first_seg;
299 /* The ring is initialized to 0. The producer must write 1 to the cycle
300 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
301 * compare CCS to the cycle bit to check ownership, so CCS = 1.
302 *
303 * New rings are initialized with cycle state equal to 1; if we are
304 * handling ring expansion, set the cycle state equal to the old ring.
305 */
306 ring->cycle_state = cycle_state;
307
308 /*
309 * Each segment has a link TRB, and leave an extra TRB for SW
310 * accounting purpose
311 */
312 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
313 }
314
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 struct xhci_segment **first, struct xhci_segment **last,
318 unsigned int num_segs, unsigned int cycle_state,
319 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
320 {
321 struct xhci_segment *prev;
322
323 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
324 if (!prev)
325 return -ENOMEM;
326 num_segs--;
327
328 *first = prev;
329 while (num_segs > 0) {
330 struct xhci_segment *next;
331
332 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
333 if (!next) {
334 prev = *first;
335 while (prev) {
336 next = prev->next;
337 xhci_segment_free(xhci, prev);
338 prev = next;
339 }
340 return -ENOMEM;
341 }
342 xhci_link_segments(xhci, prev, next, type);
343
344 prev = next;
345 num_segs--;
346 }
347 xhci_link_segments(xhci, prev, *first, type);
348 *last = prev;
349
350 return 0;
351 }
352
353 /**
354 * Create a new ring with zero or more segments.
355 *
356 * Link each segment together into a ring.
357 * Set the end flag and the cycle toggle bit on the last segment.
358 * See section 4.9.1 and figures 15 and 16.
359 */
360 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361 unsigned int num_segs, unsigned int cycle_state,
362 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
363 {
364 struct xhci_ring *ring;
365 int ret;
366
367 ring = kzalloc(sizeof *(ring), flags);
368 if (!ring)
369 return NULL;
370
371 ring->num_segs = num_segs;
372 ring->bounce_buf_len = max_packet;
373 INIT_LIST_HEAD(&ring->td_list);
374 ring->type = type;
375 if (num_segs == 0)
376 return ring;
377
378 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 &ring->last_seg, num_segs, cycle_state, type,
380 max_packet, flags);
381 if (ret)
382 goto fail;
383
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 cpu_to_le32(LINK_TOGGLE);
389 }
390 xhci_initialize_ring_info(ring, cycle_state);
391 trace_xhci_ring_alloc(ring);
392 return ring;
393
394 fail:
395 kfree(ring);
396 return NULL;
397 }
398
399 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400 struct xhci_virt_device *virt_dev,
401 unsigned int ep_index)
402 {
403 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404 virt_dev->eps[ep_index].ring = NULL;
405 }
406
407 /*
408 * Expand an existing ring.
409 * Allocate a new ring which has same segment numbers and link the two rings.
410 */
411 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 unsigned int num_trbs, gfp_t flags)
413 {
414 struct xhci_segment *first;
415 struct xhci_segment *last;
416 unsigned int num_segs;
417 unsigned int num_segs_needed;
418 int ret;
419
420 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 (TRBS_PER_SEGMENT - 1);
422
423 /* Allocate number of segments we needed, or double the ring size */
424 num_segs = ring->num_segs > num_segs_needed ?
425 ring->num_segs : num_segs_needed;
426
427 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428 num_segs, ring->cycle_state, ring->type,
429 ring->bounce_buf_len, flags);
430 if (ret)
431 return -ENOMEM;
432
433 if (ring->type == TYPE_STREAM)
434 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 ring, first, last, flags);
436 if (ret) {
437 struct xhci_segment *next;
438 do {
439 next = first->next;
440 xhci_segment_free(xhci, first);
441 if (first == last)
442 break;
443 first = next;
444 } while (true);
445 return ret;
446 }
447
448 xhci_link_rings(xhci, ring, first, last, num_segs);
449 trace_xhci_ring_expansion(ring);
450 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 "ring expansion succeed, now has %d segments",
452 ring->num_segs);
453
454 return 0;
455 }
456
457 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458 int type, gfp_t flags)
459 {
460 struct xhci_container_ctx *ctx;
461
462 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463 return NULL;
464
465 ctx = kzalloc(sizeof(*ctx), flags);
466 if (!ctx)
467 return NULL;
468
469 ctx->type = type;
470 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 if (type == XHCI_CTX_TYPE_INPUT)
472 ctx->size += CTX_SIZE(xhci->hcc_params);
473
474 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
475 if (!ctx->bytes) {
476 kfree(ctx);
477 return NULL;
478 }
479 return ctx;
480 }
481
482 void xhci_free_container_ctx(struct xhci_hcd *xhci,
483 struct xhci_container_ctx *ctx)
484 {
485 if (!ctx)
486 return;
487 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488 kfree(ctx);
489 }
490
491 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492 struct xhci_container_ctx *ctx)
493 {
494 if (ctx->type != XHCI_CTX_TYPE_INPUT)
495 return NULL;
496
497 return (struct xhci_input_control_ctx *)ctx->bytes;
498 }
499
500 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 struct xhci_container_ctx *ctx)
502 {
503 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 return (struct xhci_slot_ctx *)ctx->bytes;
505
506 return (struct xhci_slot_ctx *)
507 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
508 }
509
510 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 struct xhci_container_ctx *ctx,
512 unsigned int ep_index)
513 {
514 /* increment ep index by offset of start of ep ctx array */
515 ep_index++;
516 if (ctx->type == XHCI_CTX_TYPE_INPUT)
517 ep_index++;
518
519 return (struct xhci_ep_ctx *)
520 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521 }
522
523
524 /***************** Streams structures manipulation *************************/
525
526 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527 unsigned int num_stream_ctxs,
528 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529 {
530 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
532
533 if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 dma_free_coherent(dev, size,
535 stream_ctx, dma);
536 else if (size <= SMALL_STREAM_ARRAY_SIZE)
537 return dma_pool_free(xhci->small_streams_pool,
538 stream_ctx, dma);
539 else
540 return dma_pool_free(xhci->medium_streams_pool,
541 stream_ctx, dma);
542 }
543
544 /*
545 * The stream context array for each endpoint with bulk streams enabled can
546 * vary in size, based on:
547 * - how many streams the endpoint supports,
548 * - the maximum primary stream array size the host controller supports,
549 * - and how many streams the device driver asks for.
550 *
551 * The stream context array must be a power of 2, and can be as small as
552 * 64 bytes or as large as 1MB.
553 */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 unsigned int num_stream_ctxs, dma_addr_t *dma,
556 gfp_t mem_flags)
557 {
558 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560
561 if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 return dma_alloc_coherent(dev, size,
563 dma, mem_flags);
564 else if (size <= SMALL_STREAM_ARRAY_SIZE)
565 return dma_pool_alloc(xhci->small_streams_pool,
566 mem_flags, dma);
567 else
568 return dma_pool_alloc(xhci->medium_streams_pool,
569 mem_flags, dma);
570 }
571
572 struct xhci_ring *xhci_dma_to_transfer_ring(
573 struct xhci_virt_ep *ep,
574 u64 address)
575 {
576 if (ep->ep_state & EP_HAS_STREAMS)
577 return radix_tree_lookup(&ep->stream_info->trb_address_map,
578 address >> TRB_SEGMENT_SHIFT);
579 return ep->ring;
580 }
581
582 struct xhci_ring *xhci_stream_id_to_ring(
583 struct xhci_virt_device *dev,
584 unsigned int ep_index,
585 unsigned int stream_id)
586 {
587 struct xhci_virt_ep *ep = &dev->eps[ep_index];
588
589 if (stream_id == 0)
590 return ep->ring;
591 if (!ep->stream_info)
592 return NULL;
593
594 if (stream_id >= ep->stream_info->num_streams)
595 return NULL;
596 return ep->stream_info->stream_rings[stream_id];
597 }
598
599 /*
600 * Change an endpoint's internal structure so it supports stream IDs. The
601 * number of requested streams includes stream 0, which cannot be used by device
602 * drivers.
603 *
604 * The number of stream contexts in the stream context array may be bigger than
605 * the number of streams the driver wants to use. This is because the number of
606 * stream context array entries must be a power of two.
607 */
608 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 unsigned int num_stream_ctxs,
610 unsigned int num_streams,
611 unsigned int max_packet, gfp_t mem_flags)
612 {
613 struct xhci_stream_info *stream_info;
614 u32 cur_stream;
615 struct xhci_ring *cur_ring;
616 u64 addr;
617 int ret;
618
619 xhci_dbg(xhci, "Allocating %u streams and %u "
620 "stream context array entries.\n",
621 num_streams, num_stream_ctxs);
622 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624 return NULL;
625 }
626 xhci->cmd_ring_reserved_trbs++;
627
628 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629 if (!stream_info)
630 goto cleanup_trbs;
631
632 stream_info->num_streams = num_streams;
633 stream_info->num_stream_ctxs = num_stream_ctxs;
634
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info->stream_rings = kzalloc(
637 sizeof(struct xhci_ring *)*num_streams,
638 mem_flags);
639 if (!stream_info->stream_rings)
640 goto cleanup_info;
641
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 num_stream_ctxs, &stream_info->ctx_array_dma,
645 mem_flags);
646 if (!stream_info->stream_ctx_array)
647 goto cleanup_ctx;
648 memset(stream_info->stream_ctx_array, 0,
649 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650
651 /* Allocate everything needed to free the stream rings later */
652 stream_info->free_streams_command =
653 xhci_alloc_command(xhci, true, true, mem_flags);
654 if (!stream_info->free_streams_command)
655 goto cleanup_ctx;
656
657 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
662 */
663
664 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 stream_info->stream_rings[cur_stream] =
666 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 mem_flags);
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream, (unsigned long long) addr);
681
682 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 if (ret) {
684 xhci_ring_free(xhci, cur_ring);
685 stream_info->stream_rings[cur_stream] = NULL;
686 goto cleanup_rings;
687 }
688 }
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
694 */
695
696 return stream_info;
697
698 cleanup_rings:
699 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 cur_ring = stream_info->stream_rings[cur_stream];
701 if (cur_ring) {
702 xhci_ring_free(xhci, cur_ring);
703 stream_info->stream_rings[cur_stream] = NULL;
704 }
705 }
706 xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708 kfree(stream_info->stream_rings);
709 cleanup_info:
710 kfree(stream_info);
711 cleanup_trbs:
712 xhci->cmd_ring_reserved_trbs--;
713 return NULL;
714 }
715 /*
716 * Sets the MaxPStreams field and the Linear Stream Array field.
717 * Sets the dequeue pointer to the stream context array.
718 */
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 struct xhci_ep_ctx *ep_ctx,
721 struct xhci_stream_info *stream_info)
722 {
723 u32 max_primary_streams;
724 /* MaxPStreams is the number of stream context array entries, not the
725 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
726 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727 */
728 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
730 "Setting number of stream ctx array entries to %u",
731 1 << (max_primary_streams + 1));
732 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 | EP_HAS_LSA);
735 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
736 }
737
738 /*
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
742 */
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744 struct xhci_virt_ep *ep)
745 {
746 dma_addr_t addr;
747 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
750 }
751
752 /* Frees all stream contexts associated with the endpoint,
753 *
754 * Caller should fix the endpoint context streams fields.
755 */
756 void xhci_free_stream_info(struct xhci_hcd *xhci,
757 struct xhci_stream_info *stream_info)
758 {
759 int cur_stream;
760 struct xhci_ring *cur_ring;
761
762 if (!stream_info)
763 return;
764
765 for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 cur_stream++) {
767 cur_ring = stream_info->stream_rings[cur_stream];
768 if (cur_ring) {
769 xhci_ring_free(xhci, cur_ring);
770 stream_info->stream_rings[cur_stream] = NULL;
771 }
772 }
773 xhci_free_command(xhci, stream_info->free_streams_command);
774 xhci->cmd_ring_reserved_trbs--;
775 if (stream_info->stream_ctx_array)
776 xhci_free_stream_ctx(xhci,
777 stream_info->num_stream_ctxs,
778 stream_info->stream_ctx_array,
779 stream_info->ctx_array_dma);
780
781 kfree(stream_info->stream_rings);
782 kfree(stream_info);
783 }
784
785
786 /***************** Device context manipulation *************************/
787
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 struct xhci_virt_ep *ep)
790 {
791 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792 0);
793 ep->xhci = xhci;
794 }
795
796 static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 struct xhci_virt_device *virt_dev,
798 int slot_id)
799 {
800 struct list_head *tt_list_head;
801 struct xhci_tt_bw_info *tt_info, *next;
802 bool slot_found = false;
803
804 /* If the device never made it past the Set Address stage,
805 * it may not have the real_port set correctly.
806 */
807 if (virt_dev->real_port == 0 ||
808 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 xhci_dbg(xhci, "Bad real port.\n");
810 return;
811 }
812
813 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 /* Multi-TT hubs will have more than one entry */
816 if (tt_info->slot_id == slot_id) {
817 slot_found = true;
818 list_del(&tt_info->tt_list);
819 kfree(tt_info);
820 } else if (slot_found) {
821 break;
822 }
823 }
824 }
825
826 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 struct xhci_virt_device *virt_dev,
828 struct usb_device *hdev,
829 struct usb_tt *tt, gfp_t mem_flags)
830 {
831 struct xhci_tt_bw_info *tt_info;
832 unsigned int num_ports;
833 int i, j;
834
835 if (!tt->multi)
836 num_ports = 1;
837 else
838 num_ports = hdev->maxchild;
839
840 for (i = 0; i < num_ports; i++, tt_info++) {
841 struct xhci_interval_bw_table *bw_table;
842
843 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844 if (!tt_info)
845 goto free_tts;
846 INIT_LIST_HEAD(&tt_info->tt_list);
847 list_add(&tt_info->tt_list,
848 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849 tt_info->slot_id = virt_dev->udev->slot_id;
850 if (tt->multi)
851 tt_info->ttport = i+1;
852 bw_table = &tt_info->bw_table;
853 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 }
856 return 0;
857
858 free_tts:
859 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 return -ENOMEM;
861 }
862
863
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865 * Should be called with xhci->lock held if there is any chance the TT lists
866 * will be manipulated by the configure endpoint, allocate device, or update
867 * hub functions while this function is removing the TT entries from the list.
868 */
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870 {
871 struct xhci_virt_device *dev;
872 int i;
873 int old_active_eps = 0;
874
875 /* Slot ID 0 is reserved */
876 if (slot_id == 0 || !xhci->devs[slot_id])
877 return;
878
879 dev = xhci->devs[slot_id];
880
881 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
882 if (!dev)
883 return;
884
885 trace_xhci_free_virt_device(dev);
886
887 if (dev->tt_info)
888 old_active_eps = dev->tt_info->active_eps;
889
890 for (i = 0; i < 31; i++) {
891 if (dev->eps[i].ring)
892 xhci_ring_free(xhci, dev->eps[i].ring);
893 if (dev->eps[i].stream_info)
894 xhci_free_stream_info(xhci,
895 dev->eps[i].stream_info);
896 /* Endpoints on the TT/root port lists should have been removed
897 * when usb_disable_device() was called for the device.
898 * We can't drop them anyway, because the udev might have gone
899 * away by this point, and we can't tell what speed it was.
900 */
901 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 xhci_warn(xhci, "Slot %u endpoint %u "
903 "not removed from BW list!\n",
904 slot_id, i);
905 }
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910
911 if (dev->in_ctx)
912 xhci_free_container_ctx(xhci, dev->in_ctx);
913 if (dev->out_ctx)
914 xhci_free_container_ctx(xhci, dev->out_ctx);
915
916 if (dev->udev && dev->udev->slot_id)
917 dev->udev->slot_id = 0;
918 kfree(xhci->devs[slot_id]);
919 xhci->devs[slot_id] = NULL;
920 }
921
922 /*
923 * Free a virt_device structure.
924 * If the virt_device added a tt_info (a hub) and has children pointing to
925 * that tt_info, then free the child first. Recursive.
926 * We can't rely on udev at this point to find child-parent relationships.
927 */
928 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
929 {
930 struct xhci_virt_device *vdev;
931 struct list_head *tt_list_head;
932 struct xhci_tt_bw_info *tt_info, *next;
933 int i;
934
935 vdev = xhci->devs[slot_id];
936 if (!vdev)
937 return;
938
939 if (vdev->real_port == 0 ||
940 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941 xhci_dbg(xhci, "Bad vdev->real_port.\n");
942 goto out;
943 }
944
945 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947 /* is this a hub device that added a tt_info to the tts list */
948 if (tt_info->slot_id == slot_id) {
949 /* are any devices using this tt_info? */
950 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951 vdev = xhci->devs[i];
952 if (vdev && (vdev->tt_info == tt_info))
953 xhci_free_virt_devices_depth_first(
954 xhci, i);
955 }
956 }
957 }
958 out:
959 /* we are now at a leaf device */
960 xhci_debugfs_remove_slot(xhci, slot_id);
961 xhci_free_virt_device(xhci, slot_id);
962 }
963
964 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965 struct usb_device *udev, gfp_t flags)
966 {
967 struct xhci_virt_device *dev;
968 int i;
969
970 /* Slot ID 0 is reserved */
971 if (slot_id == 0 || xhci->devs[slot_id]) {
972 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
973 return 0;
974 }
975
976 dev = kzalloc(sizeof(*dev), flags);
977 if (!dev)
978 return 0;
979
980 /* Allocate the (output) device context that will be used in the HC. */
981 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
982 if (!dev->out_ctx)
983 goto fail;
984
985 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
986 (unsigned long long)dev->out_ctx->dma);
987
988 /* Allocate the (input) device context for address device command */
989 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
990 if (!dev->in_ctx)
991 goto fail;
992
993 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
994 (unsigned long long)dev->in_ctx->dma);
995
996 /* Initialize the cancellation list and watchdog timers for each ep */
997 for (i = 0; i < 31; i++) {
998 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
999 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1000 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1001 }
1002
1003 /* Allocate endpoint 0 ring */
1004 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1005 if (!dev->eps[0].ring)
1006 goto fail;
1007
1008 dev->udev = udev;
1009
1010 /* Point to output device context in dcbaa. */
1011 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1012 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1013 slot_id,
1014 &xhci->dcbaa->dev_context_ptrs[slot_id],
1015 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1016
1017 trace_xhci_alloc_virt_device(dev);
1018
1019 xhci->devs[slot_id] = dev;
1020
1021 return 1;
1022 fail:
1023
1024 if (dev->in_ctx)
1025 xhci_free_container_ctx(xhci, dev->in_ctx);
1026 if (dev->out_ctx)
1027 xhci_free_container_ctx(xhci, dev->out_ctx);
1028 kfree(dev);
1029
1030 return 0;
1031 }
1032
1033 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1034 struct usb_device *udev)
1035 {
1036 struct xhci_virt_device *virt_dev;
1037 struct xhci_ep_ctx *ep0_ctx;
1038 struct xhci_ring *ep_ring;
1039
1040 virt_dev = xhci->devs[udev->slot_id];
1041 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1042 ep_ring = virt_dev->eps[0].ring;
1043 /*
1044 * FIXME we don't keep track of the dequeue pointer very well after a
1045 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1046 * host to our enqueue pointer. This should only be called after a
1047 * configured device has reset, so all control transfers should have
1048 * been completed or cancelled before the reset.
1049 */
1050 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1051 ep_ring->enqueue)
1052 | ep_ring->cycle_state);
1053 }
1054
1055 /*
1056 * The xHCI roothub may have ports of differing speeds in any order in the port
1057 * status registers. xhci->port_array provides an array of the port speed for
1058 * each offset into the port status registers.
1059 *
1060 * The xHCI hardware wants to know the roothub port number that the USB device
1061 * is attached to (or the roothub port its ancestor hub is attached to). All we
1062 * know is the index of that port under either the USB 2.0 or the USB 3.0
1063 * roothub, but that doesn't give us the real index into the HW port status
1064 * registers. Call xhci_find_raw_port_number() to get real index.
1065 */
1066 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1067 struct usb_device *udev)
1068 {
1069 struct usb_device *top_dev;
1070 struct usb_hcd *hcd;
1071
1072 if (udev->speed >= USB_SPEED_SUPER)
1073 hcd = xhci->shared_hcd;
1074 else
1075 hcd = xhci->main_hcd;
1076
1077 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1078 top_dev = top_dev->parent)
1079 /* Found device below root hub */;
1080
1081 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1082 }
1083
1084 /* Setup an xHCI virtual device for a Set Address command */
1085 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1086 {
1087 struct xhci_virt_device *dev;
1088 struct xhci_ep_ctx *ep0_ctx;
1089 struct xhci_slot_ctx *slot_ctx;
1090 u32 port_num;
1091 u32 max_packets;
1092 struct usb_device *top_dev;
1093
1094 dev = xhci->devs[udev->slot_id];
1095 /* Slot ID 0 is reserved */
1096 if (udev->slot_id == 0 || !dev) {
1097 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1098 udev->slot_id);
1099 return -EINVAL;
1100 }
1101 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1102 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1103
1104 /* 3) Only the control endpoint is valid - one endpoint context */
1105 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1106 switch (udev->speed) {
1107 case USB_SPEED_SUPER_PLUS:
1108 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1109 max_packets = MAX_PACKET(512);
1110 break;
1111 case USB_SPEED_SUPER:
1112 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1113 max_packets = MAX_PACKET(512);
1114 break;
1115 case USB_SPEED_HIGH:
1116 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1117 max_packets = MAX_PACKET(64);
1118 break;
1119 /* USB core guesses at a 64-byte max packet first for FS devices */
1120 case USB_SPEED_FULL:
1121 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1122 max_packets = MAX_PACKET(64);
1123 break;
1124 case USB_SPEED_LOW:
1125 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1126 max_packets = MAX_PACKET(8);
1127 break;
1128 case USB_SPEED_WIRELESS:
1129 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1130 return -EINVAL;
1131 break;
1132 default:
1133 /* Speed was set earlier, this shouldn't happen. */
1134 return -EINVAL;
1135 }
1136 /* Find the root hub port this device is under */
1137 port_num = xhci_find_real_port_number(xhci, udev);
1138 if (!port_num)
1139 return -EINVAL;
1140 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1141 /* Set the port number in the virtual_device to the faked port number */
1142 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1143 top_dev = top_dev->parent)
1144 /* Found device below root hub */;
1145 dev->fake_port = top_dev->portnum;
1146 dev->real_port = port_num;
1147 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1148 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1149
1150 /* Find the right bandwidth table that this device will be a part of.
1151 * If this is a full speed device attached directly to a root port (or a
1152 * decendent of one), it counts as a primary bandwidth domain, not a
1153 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1154 * will never be created for the HS root hub.
1155 */
1156 if (!udev->tt || !udev->tt->hub->parent) {
1157 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1158 } else {
1159 struct xhci_root_port_bw_info *rh_bw;
1160 struct xhci_tt_bw_info *tt_bw;
1161
1162 rh_bw = &xhci->rh_bw[port_num - 1];
1163 /* Find the right TT. */
1164 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1165 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1166 continue;
1167
1168 if (!dev->udev->tt->multi ||
1169 (udev->tt->multi &&
1170 tt_bw->ttport == dev->udev->ttport)) {
1171 dev->bw_table = &tt_bw->bw_table;
1172 dev->tt_info = tt_bw;
1173 break;
1174 }
1175 }
1176 if (!dev->tt_info)
1177 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1178 }
1179
1180 /* Is this a LS/FS device under an external HS hub? */
1181 if (udev->tt && udev->tt->hub->parent) {
1182 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1183 (udev->ttport << 8));
1184 if (udev->tt->multi)
1185 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1186 }
1187 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1188 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1189
1190 /* Step 4 - ring already allocated */
1191 /* Step 5 */
1192 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1193
1194 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1195 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1196 max_packets);
1197
1198 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1199 dev->eps[0].ring->cycle_state);
1200
1201 trace_xhci_setup_addressable_virt_device(dev);
1202
1203 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * Convert interval expressed as 2^(bInterval - 1) == interval into
1210 * straight exponent value 2^n == interval.
1211 *
1212 */
1213 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214 struct usb_host_endpoint *ep)
1215 {
1216 unsigned int interval;
1217
1218 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219 if (interval != ep->desc.bInterval - 1)
1220 dev_warn(&udev->dev,
1221 "ep %#x - rounding interval to %d %sframes\n",
1222 ep->desc.bEndpointAddress,
1223 1 << interval,
1224 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225
1226 if (udev->speed == USB_SPEED_FULL) {
1227 /*
1228 * Full speed isoc endpoints specify interval in frames,
1229 * not microframes. We are using microframes everywhere,
1230 * so adjust accordingly.
1231 */
1232 interval += 3; /* 1 frame = 2^3 uframes */
1233 }
1234
1235 return interval;
1236 }
1237
1238 /*
1239 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240 * microframes, rounded down to nearest power of 2.
1241 */
1242 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243 struct usb_host_endpoint *ep, unsigned int desc_interval,
1244 unsigned int min_exponent, unsigned int max_exponent)
1245 {
1246 unsigned int interval;
1247
1248 interval = fls(desc_interval) - 1;
1249 interval = clamp_val(interval, min_exponent, max_exponent);
1250 if ((1 << interval) != desc_interval)
1251 dev_dbg(&udev->dev,
1252 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253 ep->desc.bEndpointAddress,
1254 1 << interval,
1255 desc_interval);
1256
1257 return interval;
1258 }
1259
1260 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261 struct usb_host_endpoint *ep)
1262 {
1263 if (ep->desc.bInterval == 0)
1264 return 0;
1265 return xhci_microframes_to_exponent(udev, ep,
1266 ep->desc.bInterval, 0, 15);
1267 }
1268
1269
1270 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271 struct usb_host_endpoint *ep)
1272 {
1273 return xhci_microframes_to_exponent(udev, ep,
1274 ep->desc.bInterval * 8, 3, 10);
1275 }
1276
1277 /* Return the polling or NAK interval.
1278 *
1279 * The polling interval is expressed in "microframes". If xHCI's Interval field
1280 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 *
1282 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 * is set to 0.
1284 */
1285 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286 struct usb_host_endpoint *ep)
1287 {
1288 unsigned int interval = 0;
1289
1290 switch (udev->speed) {
1291 case USB_SPEED_HIGH:
1292 /* Max NAK rate */
1293 if (usb_endpoint_xfer_control(&ep->desc) ||
1294 usb_endpoint_xfer_bulk(&ep->desc)) {
1295 interval = xhci_parse_microframe_interval(udev, ep);
1296 break;
1297 }
1298 /* Fall through - SS and HS isoc/int have same decoding */
1299
1300 case USB_SPEED_SUPER_PLUS:
1301 case USB_SPEED_SUPER:
1302 if (usb_endpoint_xfer_int(&ep->desc) ||
1303 usb_endpoint_xfer_isoc(&ep->desc)) {
1304 interval = xhci_parse_exponent_interval(udev, ep);
1305 }
1306 break;
1307
1308 case USB_SPEED_FULL:
1309 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1310 interval = xhci_parse_exponent_interval(udev, ep);
1311 break;
1312 }
1313 /*
1314 * Fall through for interrupt endpoint interval decoding
1315 * since it uses the same rules as low speed interrupt
1316 * endpoints.
1317 */
1318 /* fall through */
1319
1320 case USB_SPEED_LOW:
1321 if (usb_endpoint_xfer_int(&ep->desc) ||
1322 usb_endpoint_xfer_isoc(&ep->desc)) {
1323
1324 interval = xhci_parse_frame_interval(udev, ep);
1325 }
1326 break;
1327
1328 default:
1329 BUG();
1330 }
1331 return interval;
1332 }
1333
1334 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1335 * High speed endpoint descriptors can define "the number of additional
1336 * transaction opportunities per microframe", but that goes in the Max Burst
1337 * endpoint context field.
1338 */
1339 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1340 struct usb_host_endpoint *ep)
1341 {
1342 if (udev->speed < USB_SPEED_SUPER ||
1343 !usb_endpoint_xfer_isoc(&ep->desc))
1344 return 0;
1345 return ep->ss_ep_comp.bmAttributes;
1346 }
1347
1348 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1349 struct usb_host_endpoint *ep)
1350 {
1351 /* Super speed and Plus have max burst in ep companion desc */
1352 if (udev->speed >= USB_SPEED_SUPER)
1353 return ep->ss_ep_comp.bMaxBurst;
1354
1355 if (udev->speed == USB_SPEED_HIGH &&
1356 (usb_endpoint_xfer_isoc(&ep->desc) ||
1357 usb_endpoint_xfer_int(&ep->desc)))
1358 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1359
1360 return 0;
1361 }
1362
1363 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1364 {
1365 int in;
1366
1367 in = usb_endpoint_dir_in(&ep->desc);
1368
1369 switch (usb_endpoint_type(&ep->desc)) {
1370 case USB_ENDPOINT_XFER_CONTROL:
1371 return CTRL_EP;
1372 case USB_ENDPOINT_XFER_BULK:
1373 return in ? BULK_IN_EP : BULK_OUT_EP;
1374 case USB_ENDPOINT_XFER_ISOC:
1375 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1376 case USB_ENDPOINT_XFER_INT:
1377 return in ? INT_IN_EP : INT_OUT_EP;
1378 }
1379 return 0;
1380 }
1381
1382 /* Return the maximum endpoint service interval time (ESIT) payload.
1383 * Basically, this is the maxpacket size, multiplied by the burst size
1384 * and mult size.
1385 */
1386 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1387 struct usb_host_endpoint *ep)
1388 {
1389 int max_burst;
1390 int max_packet;
1391
1392 /* Only applies for interrupt or isochronous endpoints */
1393 if (usb_endpoint_xfer_control(&ep->desc) ||
1394 usb_endpoint_xfer_bulk(&ep->desc))
1395 return 0;
1396
1397 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1398 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1399 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1400 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1401 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1402 else if (udev->speed >= USB_SPEED_SUPER)
1403 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1404
1405 max_packet = usb_endpoint_maxp(&ep->desc);
1406 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1407 /* A 0 in max burst means 1 transfer per ESIT */
1408 return max_packet * max_burst;
1409 }
1410
1411 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1412 * Drivers will have to call usb_alloc_streams() to do that.
1413 */
1414 int xhci_endpoint_init(struct xhci_hcd *xhci,
1415 struct xhci_virt_device *virt_dev,
1416 struct usb_device *udev,
1417 struct usb_host_endpoint *ep,
1418 gfp_t mem_flags)
1419 {
1420 unsigned int ep_index;
1421 struct xhci_ep_ctx *ep_ctx;
1422 struct xhci_ring *ep_ring;
1423 unsigned int max_packet;
1424 enum xhci_ring_type ring_type;
1425 u32 max_esit_payload;
1426 u32 endpoint_type;
1427 unsigned int max_burst;
1428 unsigned int interval;
1429 unsigned int mult;
1430 unsigned int avg_trb_len;
1431 unsigned int err_count = 0;
1432
1433 ep_index = xhci_get_endpoint_index(&ep->desc);
1434 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1435
1436 endpoint_type = xhci_get_endpoint_type(ep);
1437 if (!endpoint_type)
1438 return -EINVAL;
1439
1440 ring_type = usb_endpoint_type(&ep->desc);
1441
1442 /*
1443 * Get values to fill the endpoint context, mostly from ep descriptor.
1444 * The average TRB buffer lengt for bulk endpoints is unclear as we
1445 * have no clue on scatter gather list entry size. For Isoc and Int,
1446 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1447 */
1448 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1449 interval = xhci_get_endpoint_interval(udev, ep);
1450
1451 /* Periodic endpoint bInterval limit quirk */
1452 if (usb_endpoint_xfer_int(&ep->desc) ||
1453 usb_endpoint_xfer_isoc(&ep->desc)) {
1454 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1455 udev->speed >= USB_SPEED_HIGH &&
1456 interval >= 7) {
1457 interval = 6;
1458 }
1459 }
1460
1461 mult = xhci_get_endpoint_mult(udev, ep);
1462 max_packet = usb_endpoint_maxp(&ep->desc);
1463 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1464 avg_trb_len = max_esit_payload;
1465
1466 /* FIXME dig Mult and streams info out of ep companion desc */
1467
1468 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1469 if (!usb_endpoint_xfer_isoc(&ep->desc))
1470 err_count = 3;
1471 /* Some devices get this wrong */
1472 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1473 max_packet = 512;
1474 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1475 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1476 avg_trb_len = 8;
1477 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1478 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1479 mult = 0;
1480
1481 /* Set up the endpoint ring */
1482 virt_dev->eps[ep_index].new_ring =
1483 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1484 if (!virt_dev->eps[ep_index].new_ring)
1485 return -ENOMEM;
1486
1487 virt_dev->eps[ep_index].skip = false;
1488 ep_ring = virt_dev->eps[ep_index].new_ring;
1489
1490 /* Fill the endpoint context */
1491 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1492 EP_INTERVAL(interval) |
1493 EP_MULT(mult));
1494 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1495 MAX_PACKET(max_packet) |
1496 MAX_BURST(max_burst) |
1497 ERROR_COUNT(err_count));
1498 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1499 ep_ring->cycle_state);
1500
1501 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1502 EP_AVG_TRB_LENGTH(avg_trb_len));
1503
1504 return 0;
1505 }
1506
1507 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1508 struct xhci_virt_device *virt_dev,
1509 struct usb_host_endpoint *ep)
1510 {
1511 unsigned int ep_index;
1512 struct xhci_ep_ctx *ep_ctx;
1513
1514 ep_index = xhci_get_endpoint_index(&ep->desc);
1515 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1516
1517 ep_ctx->ep_info = 0;
1518 ep_ctx->ep_info2 = 0;
1519 ep_ctx->deq = 0;
1520 ep_ctx->tx_info = 0;
1521 /* Don't free the endpoint ring until the set interface or configuration
1522 * request succeeds.
1523 */
1524 }
1525
1526 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1527 {
1528 bw_info->ep_interval = 0;
1529 bw_info->mult = 0;
1530 bw_info->num_packets = 0;
1531 bw_info->max_packet_size = 0;
1532 bw_info->type = 0;
1533 bw_info->max_esit_payload = 0;
1534 }
1535
1536 void xhci_update_bw_info(struct xhci_hcd *xhci,
1537 struct xhci_container_ctx *in_ctx,
1538 struct xhci_input_control_ctx *ctrl_ctx,
1539 struct xhci_virt_device *virt_dev)
1540 {
1541 struct xhci_bw_info *bw_info;
1542 struct xhci_ep_ctx *ep_ctx;
1543 unsigned int ep_type;
1544 int i;
1545
1546 for (i = 1; i < 31; i++) {
1547 bw_info = &virt_dev->eps[i].bw_info;
1548
1549 /* We can't tell what endpoint type is being dropped, but
1550 * unconditionally clearing the bandwidth info for non-periodic
1551 * endpoints should be harmless because the info will never be
1552 * set in the first place.
1553 */
1554 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1555 /* Dropped endpoint */
1556 xhci_clear_endpoint_bw_info(bw_info);
1557 continue;
1558 }
1559
1560 if (EP_IS_ADDED(ctrl_ctx, i)) {
1561 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1562 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1563
1564 /* Ignore non-periodic endpoints */
1565 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1566 ep_type != ISOC_IN_EP &&
1567 ep_type != INT_IN_EP)
1568 continue;
1569
1570 /* Added or changed endpoint */
1571 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1572 le32_to_cpu(ep_ctx->ep_info));
1573 /* Number of packets and mult are zero-based in the
1574 * input context, but we want one-based for the
1575 * interval table.
1576 */
1577 bw_info->mult = CTX_TO_EP_MULT(
1578 le32_to_cpu(ep_ctx->ep_info)) + 1;
1579 bw_info->num_packets = CTX_TO_MAX_BURST(
1580 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1581 bw_info->max_packet_size = MAX_PACKET_DECODED(
1582 le32_to_cpu(ep_ctx->ep_info2));
1583 bw_info->type = ep_type;
1584 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1585 le32_to_cpu(ep_ctx->tx_info));
1586 }
1587 }
1588 }
1589
1590 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1591 * Useful when you want to change one particular aspect of the endpoint and then
1592 * issue a configure endpoint command.
1593 */
1594 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1595 struct xhci_container_ctx *in_ctx,
1596 struct xhci_container_ctx *out_ctx,
1597 unsigned int ep_index)
1598 {
1599 struct xhci_ep_ctx *out_ep_ctx;
1600 struct xhci_ep_ctx *in_ep_ctx;
1601
1602 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1604
1605 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1606 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1607 in_ep_ctx->deq = out_ep_ctx->deq;
1608 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1609 }
1610
1611 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command. Only the context entries field matters,
1614 * but we'll copy the whole thing anyway.
1615 */
1616 void xhci_slot_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx)
1619 {
1620 struct xhci_slot_ctx *in_slot_ctx;
1621 struct xhci_slot_ctx *out_slot_ctx;
1622
1623 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1624 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1625
1626 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1630 }
1631
1632 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1634 {
1635 int i;
1636 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1638
1639 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1640 "Allocating %d scratchpad buffers", num_sp);
1641
1642 if (!num_sp)
1643 return 0;
1644
1645 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1646 if (!xhci->scratchpad)
1647 goto fail_sp;
1648
1649 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1650 num_sp * sizeof(u64),
1651 &xhci->scratchpad->sp_dma, flags);
1652 if (!xhci->scratchpad->sp_array)
1653 goto fail_sp2;
1654
1655 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1656 if (!xhci->scratchpad->sp_buffers)
1657 goto fail_sp3;
1658
1659 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1660 for (i = 0; i < num_sp; i++) {
1661 dma_addr_t dma;
1662 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1663 flags);
1664 if (!buf)
1665 goto fail_sp4;
1666
1667 xhci->scratchpad->sp_array[i] = dma;
1668 xhci->scratchpad->sp_buffers[i] = buf;
1669 }
1670
1671 return 0;
1672
1673 fail_sp4:
1674 for (i = i - 1; i >= 0; i--) {
1675 dma_free_coherent(dev, xhci->page_size,
1676 xhci->scratchpad->sp_buffers[i],
1677 xhci->scratchpad->sp_array[i]);
1678 }
1679
1680 kfree(xhci->scratchpad->sp_buffers);
1681
1682 fail_sp3:
1683 dma_free_coherent(dev, num_sp * sizeof(u64),
1684 xhci->scratchpad->sp_array,
1685 xhci->scratchpad->sp_dma);
1686
1687 fail_sp2:
1688 kfree(xhci->scratchpad);
1689 xhci->scratchpad = NULL;
1690
1691 fail_sp:
1692 return -ENOMEM;
1693 }
1694
1695 static void scratchpad_free(struct xhci_hcd *xhci)
1696 {
1697 int num_sp;
1698 int i;
1699 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1700
1701 if (!xhci->scratchpad)
1702 return;
1703
1704 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1705
1706 for (i = 0; i < num_sp; i++) {
1707 dma_free_coherent(dev, xhci->page_size,
1708 xhci->scratchpad->sp_buffers[i],
1709 xhci->scratchpad->sp_array[i]);
1710 }
1711 kfree(xhci->scratchpad->sp_buffers);
1712 dma_free_coherent(dev, num_sp * sizeof(u64),
1713 xhci->scratchpad->sp_array,
1714 xhci->scratchpad->sp_dma);
1715 kfree(xhci->scratchpad);
1716 xhci->scratchpad = NULL;
1717 }
1718
1719 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1720 bool allocate_in_ctx, bool allocate_completion,
1721 gfp_t mem_flags)
1722 {
1723 struct xhci_command *command;
1724
1725 command = kzalloc(sizeof(*command), mem_flags);
1726 if (!command)
1727 return NULL;
1728
1729 if (allocate_in_ctx) {
1730 command->in_ctx =
1731 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1732 mem_flags);
1733 if (!command->in_ctx) {
1734 kfree(command);
1735 return NULL;
1736 }
1737 }
1738
1739 if (allocate_completion) {
1740 command->completion =
1741 kzalloc(sizeof(struct completion), mem_flags);
1742 if (!command->completion) {
1743 xhci_free_container_ctx(xhci, command->in_ctx);
1744 kfree(command);
1745 return NULL;
1746 }
1747 init_completion(command->completion);
1748 }
1749
1750 command->status = 0;
1751 INIT_LIST_HEAD(&command->cmd_list);
1752 return command;
1753 }
1754
1755 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1756 {
1757 kfree(urb_priv);
1758 }
1759
1760 void xhci_free_command(struct xhci_hcd *xhci,
1761 struct xhci_command *command)
1762 {
1763 xhci_free_container_ctx(xhci,
1764 command->in_ctx);
1765 kfree(command->completion);
1766 kfree(command);
1767 }
1768
1769 int xhci_alloc_erst(struct xhci_hcd *xhci,
1770 struct xhci_ring *evt_ring,
1771 struct xhci_erst *erst,
1772 gfp_t flags)
1773 {
1774 size_t size;
1775 unsigned int val;
1776 struct xhci_segment *seg;
1777 struct xhci_erst_entry *entry;
1778
1779 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1780 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1781 size,
1782 &erst->erst_dma_addr,
1783 flags);
1784 if (!erst->entries)
1785 return -ENOMEM;
1786
1787 memset(erst->entries, 0, size);
1788 erst->num_entries = evt_ring->num_segs;
1789
1790 seg = evt_ring->first_seg;
1791 for (val = 0; val < evt_ring->num_segs; val++) {
1792 entry = &erst->entries[val];
1793 entry->seg_addr = cpu_to_le64(seg->dma);
1794 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1795 entry->rsvd = 0;
1796 seg = seg->next;
1797 }
1798
1799 return 0;
1800 }
1801
1802 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1803 {
1804 size_t size;
1805 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1806
1807 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1808 if (erst->entries)
1809 dma_free_coherent(dev, size,
1810 erst->entries,
1811 erst->erst_dma_addr);
1812 erst->entries = NULL;
1813 }
1814
1815 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1816 {
1817 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1818 int i, j, num_ports;
1819
1820 cancel_delayed_work_sync(&xhci->cmd_timer);
1821
1822 xhci_free_erst(xhci, &xhci->erst);
1823
1824 if (xhci->event_ring)
1825 xhci_ring_free(xhci, xhci->event_ring);
1826 xhci->event_ring = NULL;
1827 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1828
1829 if (xhci->lpm_command)
1830 xhci_free_command(xhci, xhci->lpm_command);
1831 xhci->lpm_command = NULL;
1832 if (xhci->cmd_ring)
1833 xhci_ring_free(xhci, xhci->cmd_ring);
1834 xhci->cmd_ring = NULL;
1835 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1836 xhci_cleanup_command_queue(xhci);
1837
1838 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1839 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1840 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1841 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1842 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1843 while (!list_empty(ep))
1844 list_del_init(ep->next);
1845 }
1846 }
1847
1848 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1849 xhci_free_virt_devices_depth_first(xhci, i);
1850
1851 dma_pool_destroy(xhci->segment_pool);
1852 xhci->segment_pool = NULL;
1853 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1854
1855 dma_pool_destroy(xhci->device_pool);
1856 xhci->device_pool = NULL;
1857 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1858
1859 dma_pool_destroy(xhci->small_streams_pool);
1860 xhci->small_streams_pool = NULL;
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1862 "Freed small stream array pool");
1863
1864 dma_pool_destroy(xhci->medium_streams_pool);
1865 xhci->medium_streams_pool = NULL;
1866 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1867 "Freed medium stream array pool");
1868
1869 if (xhci->dcbaa)
1870 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1871 xhci->dcbaa, xhci->dcbaa->dma);
1872 xhci->dcbaa = NULL;
1873
1874 scratchpad_free(xhci);
1875
1876 if (!xhci->rh_bw)
1877 goto no_bw;
1878
1879 for (i = 0; i < num_ports; i++) {
1880 struct xhci_tt_bw_info *tt, *n;
1881 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1882 list_del(&tt->tt_list);
1883 kfree(tt);
1884 }
1885 }
1886
1887 no_bw:
1888 xhci->cmd_ring_reserved_trbs = 0;
1889 xhci->num_usb2_ports = 0;
1890 xhci->num_usb3_ports = 0;
1891 xhci->num_active_eps = 0;
1892 kfree(xhci->usb2_ports);
1893 kfree(xhci->usb3_ports);
1894 kfree(xhci->port_array);
1895 kfree(xhci->rh_bw);
1896 kfree(xhci->ext_caps);
1897
1898 xhci->usb2_ports = NULL;
1899 xhci->usb3_ports = NULL;
1900 xhci->port_array = NULL;
1901 xhci->rh_bw = NULL;
1902 xhci->ext_caps = NULL;
1903
1904 xhci->page_size = 0;
1905 xhci->page_shift = 0;
1906 xhci->bus_state[0].bus_suspended = 0;
1907 xhci->bus_state[1].bus_suspended = 0;
1908 }
1909
1910 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1911 struct xhci_segment *input_seg,
1912 union xhci_trb *start_trb,
1913 union xhci_trb *end_trb,
1914 dma_addr_t input_dma,
1915 struct xhci_segment *result_seg,
1916 char *test_name, int test_number)
1917 {
1918 unsigned long long start_dma;
1919 unsigned long long end_dma;
1920 struct xhci_segment *seg;
1921
1922 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1923 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1924
1925 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1926 if (seg != result_seg) {
1927 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1928 test_name, test_number);
1929 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1930 "input DMA 0x%llx\n",
1931 input_seg,
1932 (unsigned long long) input_dma);
1933 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1934 "ending TRB %p (0x%llx DMA)\n",
1935 start_trb, start_dma,
1936 end_trb, end_dma);
1937 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1938 result_seg, seg);
1939 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1940 true);
1941 return -1;
1942 }
1943 return 0;
1944 }
1945
1946 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1947 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1948 {
1949 struct {
1950 dma_addr_t input_dma;
1951 struct xhci_segment *result_seg;
1952 } simple_test_vector [] = {
1953 /* A zeroed DMA field should fail */
1954 { 0, NULL },
1955 /* One TRB before the ring start should fail */
1956 { xhci->event_ring->first_seg->dma - 16, NULL },
1957 /* One byte before the ring start should fail */
1958 { xhci->event_ring->first_seg->dma - 1, NULL },
1959 /* Starting TRB should succeed */
1960 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1961 /* Ending TRB should succeed */
1962 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1963 xhci->event_ring->first_seg },
1964 /* One byte after the ring end should fail */
1965 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1966 /* One TRB after the ring end should fail */
1967 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1968 /* An address of all ones should fail */
1969 { (dma_addr_t) (~0), NULL },
1970 };
1971 struct {
1972 struct xhci_segment *input_seg;
1973 union xhci_trb *start_trb;
1974 union xhci_trb *end_trb;
1975 dma_addr_t input_dma;
1976 struct xhci_segment *result_seg;
1977 } complex_test_vector [] = {
1978 /* Test feeding a valid DMA address from a different ring */
1979 { .input_seg = xhci->event_ring->first_seg,
1980 .start_trb = xhci->event_ring->first_seg->trbs,
1981 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1982 .input_dma = xhci->cmd_ring->first_seg->dma,
1983 .result_seg = NULL,
1984 },
1985 /* Test feeding a valid end TRB from a different ring */
1986 { .input_seg = xhci->event_ring->first_seg,
1987 .start_trb = xhci->event_ring->first_seg->trbs,
1988 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1989 .input_dma = xhci->cmd_ring->first_seg->dma,
1990 .result_seg = NULL,
1991 },
1992 /* Test feeding a valid start and end TRB from a different ring */
1993 { .input_seg = xhci->event_ring->first_seg,
1994 .start_trb = xhci->cmd_ring->first_seg->trbs,
1995 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1996 .input_dma = xhci->cmd_ring->first_seg->dma,
1997 .result_seg = NULL,
1998 },
1999 /* TRB in this ring, but after this TD */
2000 { .input_seg = xhci->event_ring->first_seg,
2001 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2002 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2003 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2004 .result_seg = NULL,
2005 },
2006 /* TRB in this ring, but before this TD */
2007 { .input_seg = xhci->event_ring->first_seg,
2008 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2009 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2010 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2011 .result_seg = NULL,
2012 },
2013 /* TRB in this ring, but after this wrapped TD */
2014 { .input_seg = xhci->event_ring->first_seg,
2015 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2016 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2017 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2018 .result_seg = NULL,
2019 },
2020 /* TRB in this ring, but before this wrapped TD */
2021 { .input_seg = xhci->event_ring->first_seg,
2022 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2023 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2024 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2025 .result_seg = NULL,
2026 },
2027 /* TRB not in this ring, and we have a wrapped TD */
2028 { .input_seg = xhci->event_ring->first_seg,
2029 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2030 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2031 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2032 .result_seg = NULL,
2033 },
2034 };
2035
2036 unsigned int num_tests;
2037 int i, ret;
2038
2039 num_tests = ARRAY_SIZE(simple_test_vector);
2040 for (i = 0; i < num_tests; i++) {
2041 ret = xhci_test_trb_in_td(xhci,
2042 xhci->event_ring->first_seg,
2043 xhci->event_ring->first_seg->trbs,
2044 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2045 simple_test_vector[i].input_dma,
2046 simple_test_vector[i].result_seg,
2047 "Simple", i);
2048 if (ret < 0)
2049 return ret;
2050 }
2051
2052 num_tests = ARRAY_SIZE(complex_test_vector);
2053 for (i = 0; i < num_tests; i++) {
2054 ret = xhci_test_trb_in_td(xhci,
2055 complex_test_vector[i].input_seg,
2056 complex_test_vector[i].start_trb,
2057 complex_test_vector[i].end_trb,
2058 complex_test_vector[i].input_dma,
2059 complex_test_vector[i].result_seg,
2060 "Complex", i);
2061 if (ret < 0)
2062 return ret;
2063 }
2064 xhci_dbg(xhci, "TRB math tests passed.\n");
2065 return 0;
2066 }
2067
2068 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2069 {
2070 u64 temp;
2071 dma_addr_t deq;
2072
2073 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2074 xhci->event_ring->dequeue);
2075 if (deq == 0 && !in_interrupt())
2076 xhci_warn(xhci, "WARN something wrong with SW event ring "
2077 "dequeue ptr.\n");
2078 /* Update HC event ring dequeue pointer */
2079 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2080 temp &= ERST_PTR_MASK;
2081 /* Don't clear the EHB bit (which is RW1C) because
2082 * there might be more events to service.
2083 */
2084 temp &= ~ERST_EHB;
2085 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2086 "// Write event ring dequeue pointer, "
2087 "preserving EHB bit");
2088 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2089 &xhci->ir_set->erst_dequeue);
2090 }
2091
2092 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2093 __le32 __iomem *addr, int max_caps)
2094 {
2095 u32 temp, port_offset, port_count;
2096 int i;
2097 u8 major_revision, minor_revision;
2098 struct xhci_hub *rhub;
2099
2100 temp = readl(addr);
2101 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2102 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2103
2104 if (major_revision == 0x03) {
2105 rhub = &xhci->usb3_rhub;
2106 } else if (major_revision <= 0x02) {
2107 rhub = &xhci->usb2_rhub;
2108 } else {
2109 xhci_warn(xhci, "Ignoring unknown port speed, "
2110 "Ext Cap %p, revision = 0x%x\n",
2111 addr, major_revision);
2112 /* Ignoring port protocol we can't understand. FIXME */
2113 return;
2114 }
2115 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2116
2117 if (rhub->min_rev < minor_revision)
2118 rhub->min_rev = minor_revision;
2119
2120 /* Port offset and count in the third dword, see section 7.2 */
2121 temp = readl(addr + 2);
2122 port_offset = XHCI_EXT_PORT_OFF(temp);
2123 port_count = XHCI_EXT_PORT_COUNT(temp);
2124 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2125 "Ext Cap %p, port offset = %u, "
2126 "count = %u, revision = 0x%x",
2127 addr, port_offset, port_count, major_revision);
2128 /* Port count includes the current port offset */
2129 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2130 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2131 return;
2132
2133 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2134 if (rhub->psi_count) {
2135 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2136 GFP_KERNEL);
2137 if (!rhub->psi)
2138 rhub->psi_count = 0;
2139
2140 rhub->psi_uid_count++;
2141 for (i = 0; i < rhub->psi_count; i++) {
2142 rhub->psi[i] = readl(addr + 4 + i);
2143
2144 /* count unique ID values, two consecutive entries can
2145 * have the same ID if link is assymetric
2146 */
2147 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2148 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2149 rhub->psi_uid_count++;
2150
2151 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2152 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2153 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2154 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2155 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2156 XHCI_EXT_PORT_LP(rhub->psi[i]),
2157 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2158 }
2159 }
2160 /* cache usb2 port capabilities */
2161 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2162 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2163
2164 /* Check the host's USB2 LPM capability */
2165 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2166 (temp & XHCI_L1C)) {
2167 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2168 "xHCI 0.96: support USB2 software lpm");
2169 xhci->sw_lpm_support = 1;
2170 }
2171
2172 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2173 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2174 "xHCI 1.0: support USB2 software lpm");
2175 xhci->sw_lpm_support = 1;
2176 if (temp & XHCI_HLC) {
2177 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2178 "xHCI 1.0: support USB2 hardware lpm");
2179 xhci->hw_lpm_support = 1;
2180 }
2181 }
2182
2183 port_offset--;
2184 for (i = port_offset; i < (port_offset + port_count); i++) {
2185 /* Duplicate entry. Ignore the port if the revisions differ. */
2186 if (xhci->port_array[i] != 0) {
2187 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2188 " port %u\n", addr, i);
2189 xhci_warn(xhci, "Port was marked as USB %u, "
2190 "duplicated as USB %u\n",
2191 xhci->port_array[i], major_revision);
2192 /* Only adjust the roothub port counts if we haven't
2193 * found a similar duplicate.
2194 */
2195 if (xhci->port_array[i] != major_revision &&
2196 xhci->port_array[i] != DUPLICATE_ENTRY) {
2197 if (xhci->port_array[i] == 0x03)
2198 xhci->num_usb3_ports--;
2199 else
2200 xhci->num_usb2_ports--;
2201 xhci->port_array[i] = DUPLICATE_ENTRY;
2202 }
2203 /* FIXME: Should we disable the port? */
2204 continue;
2205 }
2206 xhci->port_array[i] = major_revision;
2207 if (major_revision == 0x03)
2208 xhci->num_usb3_ports++;
2209 else
2210 xhci->num_usb2_ports++;
2211 }
2212 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2213 }
2214
2215 /*
2216 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2217 * specify what speeds each port is supposed to be. We can't count on the port
2218 * speed bits in the PORTSC register being correct until a device is connected,
2219 * but we need to set up the two fake roothubs with the correct number of USB
2220 * 3.0 and USB 2.0 ports at host controller initialization time.
2221 */
2222 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2223 {
2224 void __iomem *base;
2225 u32 offset;
2226 unsigned int num_ports;
2227 int i, j, port_index;
2228 int cap_count = 0;
2229 u32 cap_start;
2230
2231 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2232 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2233 if (!xhci->port_array)
2234 return -ENOMEM;
2235
2236 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2237 if (!xhci->rh_bw)
2238 return -ENOMEM;
2239 for (i = 0; i < num_ports; i++) {
2240 struct xhci_interval_bw_table *bw_table;
2241
2242 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2243 bw_table = &xhci->rh_bw[i].bw_table;
2244 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2245 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2246 }
2247 base = &xhci->cap_regs->hc_capbase;
2248
2249 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2250 if (!cap_start) {
2251 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2252 return -ENODEV;
2253 }
2254
2255 offset = cap_start;
2256 /* count extended protocol capability entries for later caching */
2257 while (offset) {
2258 cap_count++;
2259 offset = xhci_find_next_ext_cap(base, offset,
2260 XHCI_EXT_CAPS_PROTOCOL);
2261 }
2262
2263 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2264 if (!xhci->ext_caps)
2265 return -ENOMEM;
2266
2267 offset = cap_start;
2268
2269 while (offset) {
2270 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2271 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2272 break;
2273 offset = xhci_find_next_ext_cap(base, offset,
2274 XHCI_EXT_CAPS_PROTOCOL);
2275 }
2276
2277 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2278 xhci_warn(xhci, "No ports on the roothubs?\n");
2279 return -ENODEV;
2280 }
2281 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2282 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2283 xhci->num_usb2_ports, xhci->num_usb3_ports);
2284
2285 /* Place limits on the number of roothub ports so that the hub
2286 * descriptors aren't longer than the USB core will allocate.
2287 */
2288 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2289 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2290 "Limiting USB 3.0 roothub ports to %u.",
2291 USB_SS_MAXPORTS);
2292 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2293 }
2294 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2295 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2296 "Limiting USB 2.0 roothub ports to %u.",
2297 USB_MAXCHILDREN);
2298 xhci->num_usb2_ports = USB_MAXCHILDREN;
2299 }
2300
2301 /*
2302 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2303 * Not sure how the USB core will handle a hub with no ports...
2304 */
2305 if (xhci->num_usb2_ports) {
2306 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2307 xhci->num_usb2_ports, flags);
2308 if (!xhci->usb2_ports)
2309 return -ENOMEM;
2310
2311 port_index = 0;
2312 for (i = 0; i < num_ports; i++) {
2313 if (xhci->port_array[i] == 0x03 ||
2314 xhci->port_array[i] == 0 ||
2315 xhci->port_array[i] == DUPLICATE_ENTRY)
2316 continue;
2317
2318 xhci->usb2_ports[port_index] =
2319 &xhci->op_regs->port_status_base +
2320 NUM_PORT_REGS*i;
2321 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2322 "USB 2.0 port at index %u, "
2323 "addr = %p", i,
2324 xhci->usb2_ports[port_index]);
2325 port_index++;
2326 if (port_index == xhci->num_usb2_ports)
2327 break;
2328 }
2329 }
2330 if (xhci->num_usb3_ports) {
2331 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2332 xhci->num_usb3_ports, flags);
2333 if (!xhci->usb3_ports)
2334 return -ENOMEM;
2335
2336 port_index = 0;
2337 for (i = 0; i < num_ports; i++)
2338 if (xhci->port_array[i] == 0x03) {
2339 xhci->usb3_ports[port_index] =
2340 &xhci->op_regs->port_status_base +
2341 NUM_PORT_REGS*i;
2342 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2343 "USB 3.0 port at index %u, "
2344 "addr = %p", i,
2345 xhci->usb3_ports[port_index]);
2346 port_index++;
2347 if (port_index == xhci->num_usb3_ports)
2348 break;
2349 }
2350 }
2351 return 0;
2352 }
2353
2354 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2355 {
2356 dma_addr_t dma;
2357 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2358 unsigned int val, val2;
2359 u64 val_64;
2360 u32 page_size, temp;
2361 int i, ret;
2362
2363 INIT_LIST_HEAD(&xhci->cmd_list);
2364
2365 /* init command timeout work */
2366 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2367 init_completion(&xhci->cmd_ring_stop_completion);
2368
2369 page_size = readl(&xhci->op_regs->page_size);
2370 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371 "Supported page size register = 0x%x", page_size);
2372 for (i = 0; i < 16; i++) {
2373 if ((0x1 & page_size) != 0)
2374 break;
2375 page_size = page_size >> 1;
2376 }
2377 if (i < 16)
2378 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379 "Supported page size of %iK", (1 << (i+12)) / 1024);
2380 else
2381 xhci_warn(xhci, "WARN: no supported page size\n");
2382 /* Use 4K pages, since that's common and the minimum the HC supports */
2383 xhci->page_shift = 12;
2384 xhci->page_size = 1 << xhci->page_shift;
2385 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2386 "HCD page size set to %iK", xhci->page_size / 1024);
2387
2388 /*
2389 * Program the Number of Device Slots Enabled field in the CONFIG
2390 * register with the max value of slots the HC can handle.
2391 */
2392 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2393 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2394 "// xHC can handle at most %d device slots.", val);
2395 val2 = readl(&xhci->op_regs->config_reg);
2396 val |= (val2 & ~HCS_SLOTS_MASK);
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 "// Setting Max device slots reg = 0x%x.", val);
2399 writel(val, &xhci->op_regs->config_reg);
2400
2401 /*
2402 * xHCI section 5.4.6 - doorbell array must be
2403 * "physically contiguous and 64-byte (cache line) aligned".
2404 */
2405 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2406 flags);
2407 if (!xhci->dcbaa)
2408 goto fail;
2409 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2410 xhci->dcbaa->dma = dma;
2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2413 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2414 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2415
2416 /*
2417 * Initialize the ring segment pool. The ring must be a contiguous
2418 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2419 * however, the command ring segment needs 64-byte aligned segments
2420 * and our use of dma addresses in the trb_address_map radix tree needs
2421 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2422 */
2423 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2424 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2425
2426 /* See Table 46 and Note on Figure 55 */
2427 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2428 2112, 64, xhci->page_size);
2429 if (!xhci->segment_pool || !xhci->device_pool)
2430 goto fail;
2431
2432 /* Linear stream context arrays don't have any boundary restrictions,
2433 * and only need to be 16-byte aligned.
2434 */
2435 xhci->small_streams_pool =
2436 dma_pool_create("xHCI 256 byte stream ctx arrays",
2437 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2438 xhci->medium_streams_pool =
2439 dma_pool_create("xHCI 1KB stream ctx arrays",
2440 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2441 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2442 * will be allocated with dma_alloc_coherent()
2443 */
2444
2445 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2446 goto fail;
2447
2448 /* Set up the command ring to have one segments for now. */
2449 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2450 if (!xhci->cmd_ring)
2451 goto fail;
2452 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2453 "Allocated command ring at %p", xhci->cmd_ring);
2454 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2455 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2456
2457 /* Set the address in the Command Ring Control register */
2458 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2459 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2460 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2461 xhci->cmd_ring->cycle_state;
2462 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463 "// Setting command ring address to 0x%016llx", val_64);
2464 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2465 xhci_dbg_cmd_ptrs(xhci);
2466
2467 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2468 if (!xhci->lpm_command)
2469 goto fail;
2470
2471 /* Reserve one command ring TRB for disabling LPM.
2472 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2473 * disabling LPM, we only need to reserve one TRB for all devices.
2474 */
2475 xhci->cmd_ring_reserved_trbs++;
2476
2477 val = readl(&xhci->cap_regs->db_off);
2478 val &= DBOFF_MASK;
2479 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2480 "// Doorbell array is located at offset 0x%x"
2481 " from cap regs base addr", val);
2482 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2483 xhci_dbg_regs(xhci);
2484 xhci_print_run_regs(xhci);
2485 /* Set ir_set to interrupt register set 0 */
2486 xhci->ir_set = &xhci->run_regs->ir_set[0];
2487
2488 /*
2489 * Event ring setup: Allocate a normal ring, but also setup
2490 * the event ring segment table (ERST). Section 4.9.3.
2491 */
2492 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2493 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2494 0, flags);
2495 if (!xhci->event_ring)
2496 goto fail;
2497 if (xhci_check_trb_in_td_math(xhci) < 0)
2498 goto fail;
2499
2500 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2501 if (ret)
2502 goto fail;
2503
2504 /* set ERST count with the number of entries in the segment table */
2505 val = readl(&xhci->ir_set->erst_size);
2506 val &= ERST_SIZE_MASK;
2507 val |= ERST_NUM_SEGS;
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2510 val);
2511 writel(val, &xhci->ir_set->erst_size);
2512
2513 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2514 "// Set ERST entries to point to event ring.");
2515 /* set the segment table base address */
2516 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517 "// Set ERST base address for ir_set 0 = 0x%llx",
2518 (unsigned long long)xhci->erst.erst_dma_addr);
2519 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2520 val_64 &= ERST_PTR_MASK;
2521 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2522 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2523
2524 /* Set the event ring dequeue address */
2525 xhci_set_hc_event_deq(xhci);
2526 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527 "Wrote ERST address to ir_set 0.");
2528 xhci_print_ir_set(xhci, 0);
2529
2530 /*
2531 * XXX: Might need to set the Interrupter Moderation Register to
2532 * something other than the default (~1ms minimum between interrupts).
2533 * See section 5.5.1.2.
2534 */
2535 for (i = 0; i < MAX_HC_SLOTS; i++)
2536 xhci->devs[i] = NULL;
2537 for (i = 0; i < USB_MAXCHILDREN; i++) {
2538 xhci->bus_state[0].resume_done[i] = 0;
2539 xhci->bus_state[1].resume_done[i] = 0;
2540 /* Only the USB 2.0 completions will ever be used. */
2541 init_completion(&xhci->bus_state[1].rexit_done[i]);
2542 }
2543
2544 if (scratchpad_alloc(xhci, flags))
2545 goto fail;
2546 if (xhci_setup_port_arrays(xhci, flags))
2547 goto fail;
2548
2549 /* Enable USB 3.0 device notifications for function remote wake, which
2550 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2551 * U3 (device suspend).
2552 */
2553 temp = readl(&xhci->op_regs->dev_notification);
2554 temp &= ~DEV_NOTE_MASK;
2555 temp |= DEV_NOTE_FWAKE;
2556 writel(temp, &xhci->op_regs->dev_notification);
2557
2558 return 0;
2559
2560 fail:
2561 xhci_halt(xhci);
2562 xhci_reset(xhci);
2563 xhci_mem_cleanup(xhci);
2564 return -ENOMEM;
2565 }