]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/usb/host/xhci-mem.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32 {
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36
37 seg = kzalloc(sizeof *seg, flags);
38 if (!seg)
39 return NULL;
40
41 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
42 if (!seg->trbs) {
43 kfree(seg);
44 return NULL;
45 }
46
47 if (max_packet) {
48 seg->bounce_buf = kzalloc(max_packet, flags);
49 if (!seg->bounce_buf) {
50 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51 kfree(seg);
52 return NULL;
53 }
54 }
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
59 }
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 if (seg->trbs) {
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 kfree(seg->bounce_buf);
73 kfree(seg);
74 }
75
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
78 {
79 struct xhci_segment *seg;
80
81 seg = first->next;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
85 seg = next;
86 }
87 xhci_segment_free(xhci, first);
88 }
89
90 /*
91 * Make the prev segment point to the next segment.
92 *
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
96 */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 u32 val;
101
102 if (!prev || !next)
103 return;
104 prev->next = next;
105 if (type != TYPE_EVENT) {
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
108
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
113 /* Always set the chain bit with 0.95 hardware */
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 val |= TRB_CHAIN;
119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 }
121 }
122
123 /*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
130 {
131 struct xhci_segment *next;
132
133 if (!ring || !first || !last)
134 return;
135
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
148 }
149 }
150
151 /*
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
157 *
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
160 * have segments of size 1KB, that are always 1KB aligned. A segment may
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
164 *
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
168 *
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
171 *
172 * Caveats for the radix tree:
173 *
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
181 */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 struct xhci_ring *ring,
184 struct xhci_segment *seg,
185 gfp_t mem_flags)
186 {
187 unsigned long key;
188 int ret;
189
190 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map, key))
193 return 0;
194
195 ret = radix_tree_maybe_preload(mem_flags);
196 if (ret)
197 return ret;
198 ret = radix_tree_insert(trb_address_map,
199 key, ring);
200 radix_tree_preload_end();
201 return ret;
202 }
203
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 struct xhci_segment *seg)
206 {
207 unsigned long key;
208
209 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 if (radix_tree_lookup(trb_address_map, key))
211 radix_tree_delete(trb_address_map, key);
212 }
213
214 static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root *trb_address_map,
216 struct xhci_ring *ring,
217 struct xhci_segment *first_seg,
218 struct xhci_segment *last_seg,
219 gfp_t mem_flags)
220 {
221 struct xhci_segment *seg;
222 struct xhci_segment *failed_seg;
223 int ret;
224
225 if (WARN_ON_ONCE(trb_address_map == NULL))
226 return 0;
227
228 seg = first_seg;
229 do {
230 ret = xhci_insert_segment_mapping(trb_address_map,
231 ring, seg, mem_flags);
232 if (ret)
233 goto remove_streams;
234 if (seg == last_seg)
235 return 0;
236 seg = seg->next;
237 } while (seg != first_seg);
238
239 return 0;
240
241 remove_streams:
242 failed_seg = seg;
243 seg = first_seg;
244 do {
245 xhci_remove_segment_mapping(trb_address_map, seg);
246 if (seg == failed_seg)
247 return ret;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return ret;
252 }
253
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 struct xhci_segment *seg;
257
258 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 return;
260
261 seg = ring->first_seg;
262 do {
263 xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 seg = seg->next;
265 } while (seg != ring->first_seg);
266 }
267
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 ring->first_seg, ring->last_seg, mem_flags);
272 }
273
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 if (!ring)
278 return;
279
280 trace_xhci_ring_free(ring);
281
282 if (ring->first_seg) {
283 if (ring->type == TYPE_STREAM)
284 xhci_remove_stream_mapping(ring);
285 xhci_free_segments_for_ring(xhci, ring->first_seg);
286 }
287
288 kfree(ring);
289 }
290
291 static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 unsigned int cycle_state)
293 {
294 /* The ring is empty, so the enqueue pointer == dequeue pointer */
295 ring->enqueue = ring->first_seg->trbs;
296 ring->enq_seg = ring->first_seg;
297 ring->dequeue = ring->enqueue;
298 ring->deq_seg = ring->first_seg;
299 /* The ring is initialized to 0. The producer must write 1 to the cycle
300 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
301 * compare CCS to the cycle bit to check ownership, so CCS = 1.
302 *
303 * New rings are initialized with cycle state equal to 1; if we are
304 * handling ring expansion, set the cycle state equal to the old ring.
305 */
306 ring->cycle_state = cycle_state;
307
308 /*
309 * Each segment has a link TRB, and leave an extra TRB for SW
310 * accounting purpose
311 */
312 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
313 }
314
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 struct xhci_segment **first, struct xhci_segment **last,
318 unsigned int num_segs, unsigned int cycle_state,
319 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
320 {
321 struct xhci_segment *prev;
322
323 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
324 if (!prev)
325 return -ENOMEM;
326 num_segs--;
327
328 *first = prev;
329 while (num_segs > 0) {
330 struct xhci_segment *next;
331
332 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
333 if (!next) {
334 prev = *first;
335 while (prev) {
336 next = prev->next;
337 xhci_segment_free(xhci, prev);
338 prev = next;
339 }
340 return -ENOMEM;
341 }
342 xhci_link_segments(xhci, prev, next, type);
343
344 prev = next;
345 num_segs--;
346 }
347 xhci_link_segments(xhci, prev, *first, type);
348 *last = prev;
349
350 return 0;
351 }
352
353 /**
354 * Create a new ring with zero or more segments.
355 *
356 * Link each segment together into a ring.
357 * Set the end flag and the cycle toggle bit on the last segment.
358 * See section 4.9.1 and figures 15 and 16.
359 */
360 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361 unsigned int num_segs, unsigned int cycle_state,
362 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
363 {
364 struct xhci_ring *ring;
365 int ret;
366
367 ring = kzalloc(sizeof *(ring), flags);
368 if (!ring)
369 return NULL;
370
371 ring->num_segs = num_segs;
372 ring->bounce_buf_len = max_packet;
373 INIT_LIST_HEAD(&ring->td_list);
374 ring->type = type;
375 if (num_segs == 0)
376 return ring;
377
378 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 &ring->last_seg, num_segs, cycle_state, type,
380 max_packet, flags);
381 if (ret)
382 goto fail;
383
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 cpu_to_le32(LINK_TOGGLE);
389 }
390 xhci_initialize_ring_info(ring, cycle_state);
391 trace_xhci_ring_alloc(ring);
392 return ring;
393
394 fail:
395 kfree(ring);
396 return NULL;
397 }
398
399 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400 struct xhci_virt_device *virt_dev,
401 unsigned int ep_index)
402 {
403 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404 virt_dev->eps[ep_index].ring = NULL;
405 }
406
407 /*
408 * Expand an existing ring.
409 * Allocate a new ring which has same segment numbers and link the two rings.
410 */
411 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 unsigned int num_trbs, gfp_t flags)
413 {
414 struct xhci_segment *first;
415 struct xhci_segment *last;
416 unsigned int num_segs;
417 unsigned int num_segs_needed;
418 int ret;
419
420 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 (TRBS_PER_SEGMENT - 1);
422
423 /* Allocate number of segments we needed, or double the ring size */
424 num_segs = ring->num_segs > num_segs_needed ?
425 ring->num_segs : num_segs_needed;
426
427 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428 num_segs, ring->cycle_state, ring->type,
429 ring->bounce_buf_len, flags);
430 if (ret)
431 return -ENOMEM;
432
433 if (ring->type == TYPE_STREAM)
434 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 ring, first, last, flags);
436 if (ret) {
437 struct xhci_segment *next;
438 do {
439 next = first->next;
440 xhci_segment_free(xhci, first);
441 if (first == last)
442 break;
443 first = next;
444 } while (true);
445 return ret;
446 }
447
448 xhci_link_rings(xhci, ring, first, last, num_segs);
449 trace_xhci_ring_expansion(ring);
450 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 "ring expansion succeed, now has %d segments",
452 ring->num_segs);
453
454 return 0;
455 }
456
457 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458 int type, gfp_t flags)
459 {
460 struct xhci_container_ctx *ctx;
461
462 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463 return NULL;
464
465 ctx = kzalloc(sizeof(*ctx), flags);
466 if (!ctx)
467 return NULL;
468
469 ctx->type = type;
470 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 if (type == XHCI_CTX_TYPE_INPUT)
472 ctx->size += CTX_SIZE(xhci->hcc_params);
473
474 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
475 if (!ctx->bytes) {
476 kfree(ctx);
477 return NULL;
478 }
479 return ctx;
480 }
481
482 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
483 struct xhci_container_ctx *ctx)
484 {
485 if (!ctx)
486 return;
487 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488 kfree(ctx);
489 }
490
491 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492 struct xhci_container_ctx *ctx)
493 {
494 if (ctx->type != XHCI_CTX_TYPE_INPUT)
495 return NULL;
496
497 return (struct xhci_input_control_ctx *)ctx->bytes;
498 }
499
500 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 struct xhci_container_ctx *ctx)
502 {
503 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 return (struct xhci_slot_ctx *)ctx->bytes;
505
506 return (struct xhci_slot_ctx *)
507 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
508 }
509
510 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 struct xhci_container_ctx *ctx,
512 unsigned int ep_index)
513 {
514 /* increment ep index by offset of start of ep ctx array */
515 ep_index++;
516 if (ctx->type == XHCI_CTX_TYPE_INPUT)
517 ep_index++;
518
519 return (struct xhci_ep_ctx *)
520 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521 }
522
523
524 /***************** Streams structures manipulation *************************/
525
526 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527 unsigned int num_stream_ctxs,
528 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529 {
530 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
532
533 if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 dma_free_coherent(dev, size,
535 stream_ctx, dma);
536 else if (size <= SMALL_STREAM_ARRAY_SIZE)
537 return dma_pool_free(xhci->small_streams_pool,
538 stream_ctx, dma);
539 else
540 return dma_pool_free(xhci->medium_streams_pool,
541 stream_ctx, dma);
542 }
543
544 /*
545 * The stream context array for each endpoint with bulk streams enabled can
546 * vary in size, based on:
547 * - how many streams the endpoint supports,
548 * - the maximum primary stream array size the host controller supports,
549 * - and how many streams the device driver asks for.
550 *
551 * The stream context array must be a power of 2, and can be as small as
552 * 64 bytes or as large as 1MB.
553 */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 unsigned int num_stream_ctxs, dma_addr_t *dma,
556 gfp_t mem_flags)
557 {
558 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560
561 if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 return dma_alloc_coherent(dev, size,
563 dma, mem_flags);
564 else if (size <= SMALL_STREAM_ARRAY_SIZE)
565 return dma_pool_alloc(xhci->small_streams_pool,
566 mem_flags, dma);
567 else
568 return dma_pool_alloc(xhci->medium_streams_pool,
569 mem_flags, dma);
570 }
571
572 struct xhci_ring *xhci_dma_to_transfer_ring(
573 struct xhci_virt_ep *ep,
574 u64 address)
575 {
576 if (ep->ep_state & EP_HAS_STREAMS)
577 return radix_tree_lookup(&ep->stream_info->trb_address_map,
578 address >> TRB_SEGMENT_SHIFT);
579 return ep->ring;
580 }
581
582 struct xhci_ring *xhci_stream_id_to_ring(
583 struct xhci_virt_device *dev,
584 unsigned int ep_index,
585 unsigned int stream_id)
586 {
587 struct xhci_virt_ep *ep = &dev->eps[ep_index];
588
589 if (stream_id == 0)
590 return ep->ring;
591 if (!ep->stream_info)
592 return NULL;
593
594 if (stream_id > ep->stream_info->num_streams)
595 return NULL;
596 return ep->stream_info->stream_rings[stream_id];
597 }
598
599 /*
600 * Change an endpoint's internal structure so it supports stream IDs. The
601 * number of requested streams includes stream 0, which cannot be used by device
602 * drivers.
603 *
604 * The number of stream contexts in the stream context array may be bigger than
605 * the number of streams the driver wants to use. This is because the number of
606 * stream context array entries must be a power of two.
607 */
608 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 unsigned int num_stream_ctxs,
610 unsigned int num_streams,
611 unsigned int max_packet, gfp_t mem_flags)
612 {
613 struct xhci_stream_info *stream_info;
614 u32 cur_stream;
615 struct xhci_ring *cur_ring;
616 u64 addr;
617 int ret;
618
619 xhci_dbg(xhci, "Allocating %u streams and %u "
620 "stream context array entries.\n",
621 num_streams, num_stream_ctxs);
622 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624 return NULL;
625 }
626 xhci->cmd_ring_reserved_trbs++;
627
628 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629 if (!stream_info)
630 goto cleanup_trbs;
631
632 stream_info->num_streams = num_streams;
633 stream_info->num_stream_ctxs = num_stream_ctxs;
634
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info->stream_rings = kzalloc(
637 sizeof(struct xhci_ring *)*num_streams,
638 mem_flags);
639 if (!stream_info->stream_rings)
640 goto cleanup_info;
641
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 num_stream_ctxs, &stream_info->ctx_array_dma,
645 mem_flags);
646 if (!stream_info->stream_ctx_array)
647 goto cleanup_ctx;
648 memset(stream_info->stream_ctx_array, 0,
649 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650
651 /* Allocate everything needed to free the stream rings later */
652 stream_info->free_streams_command =
653 xhci_alloc_command(xhci, true, true, mem_flags);
654 if (!stream_info->free_streams_command)
655 goto cleanup_ctx;
656
657 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
662 */
663
664 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 stream_info->stream_rings[cur_stream] =
666 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 mem_flags);
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream, (unsigned long long) addr);
681
682 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 if (ret) {
684 xhci_ring_free(xhci, cur_ring);
685 stream_info->stream_rings[cur_stream] = NULL;
686 goto cleanup_rings;
687 }
688 }
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
694 */
695
696 return stream_info;
697
698 cleanup_rings:
699 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 cur_ring = stream_info->stream_rings[cur_stream];
701 if (cur_ring) {
702 xhci_ring_free(xhci, cur_ring);
703 stream_info->stream_rings[cur_stream] = NULL;
704 }
705 }
706 xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708 kfree(stream_info->stream_rings);
709 cleanup_info:
710 kfree(stream_info);
711 cleanup_trbs:
712 xhci->cmd_ring_reserved_trbs--;
713 return NULL;
714 }
715 /*
716 * Sets the MaxPStreams field and the Linear Stream Array field.
717 * Sets the dequeue pointer to the stream context array.
718 */
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 struct xhci_ep_ctx *ep_ctx,
721 struct xhci_stream_info *stream_info)
722 {
723 u32 max_primary_streams;
724 /* MaxPStreams is the number of stream context array entries, not the
725 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
726 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727 */
728 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
730 "Setting number of stream ctx array entries to %u",
731 1 << (max_primary_streams + 1));
732 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 | EP_HAS_LSA);
735 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
736 }
737
738 /*
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
742 */
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744 struct xhci_virt_ep *ep)
745 {
746 dma_addr_t addr;
747 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
750 }
751
752 /* Frees all stream contexts associated with the endpoint,
753 *
754 * Caller should fix the endpoint context streams fields.
755 */
756 void xhci_free_stream_info(struct xhci_hcd *xhci,
757 struct xhci_stream_info *stream_info)
758 {
759 int cur_stream;
760 struct xhci_ring *cur_ring;
761
762 if (!stream_info)
763 return;
764
765 for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 cur_stream++) {
767 cur_ring = stream_info->stream_rings[cur_stream];
768 if (cur_ring) {
769 xhci_ring_free(xhci, cur_ring);
770 stream_info->stream_rings[cur_stream] = NULL;
771 }
772 }
773 xhci_free_command(xhci, stream_info->free_streams_command);
774 xhci->cmd_ring_reserved_trbs--;
775 if (stream_info->stream_ctx_array)
776 xhci_free_stream_ctx(xhci,
777 stream_info->num_stream_ctxs,
778 stream_info->stream_ctx_array,
779 stream_info->ctx_array_dma);
780
781 kfree(stream_info->stream_rings);
782 kfree(stream_info);
783 }
784
785
786 /***************** Device context manipulation *************************/
787
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 struct xhci_virt_ep *ep)
790 {
791 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792 0);
793 ep->xhci = xhci;
794 }
795
796 static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 struct xhci_virt_device *virt_dev,
798 int slot_id)
799 {
800 struct list_head *tt_list_head;
801 struct xhci_tt_bw_info *tt_info, *next;
802 bool slot_found = false;
803
804 /* If the device never made it past the Set Address stage,
805 * it may not have the real_port set correctly.
806 */
807 if (virt_dev->real_port == 0 ||
808 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 xhci_dbg(xhci, "Bad real port.\n");
810 return;
811 }
812
813 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 /* Multi-TT hubs will have more than one entry */
816 if (tt_info->slot_id == slot_id) {
817 slot_found = true;
818 list_del(&tt_info->tt_list);
819 kfree(tt_info);
820 } else if (slot_found) {
821 break;
822 }
823 }
824 }
825
826 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 struct xhci_virt_device *virt_dev,
828 struct usb_device *hdev,
829 struct usb_tt *tt, gfp_t mem_flags)
830 {
831 struct xhci_tt_bw_info *tt_info;
832 unsigned int num_ports;
833 int i, j;
834
835 if (!tt->multi)
836 num_ports = 1;
837 else
838 num_ports = hdev->maxchild;
839
840 for (i = 0; i < num_ports; i++, tt_info++) {
841 struct xhci_interval_bw_table *bw_table;
842
843 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844 if (!tt_info)
845 goto free_tts;
846 INIT_LIST_HEAD(&tt_info->tt_list);
847 list_add(&tt_info->tt_list,
848 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849 tt_info->slot_id = virt_dev->udev->slot_id;
850 if (tt->multi)
851 tt_info->ttport = i+1;
852 bw_table = &tt_info->bw_table;
853 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 }
856 return 0;
857
858 free_tts:
859 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 return -ENOMEM;
861 }
862
863
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865 * Should be called with xhci->lock held if there is any chance the TT lists
866 * will be manipulated by the configure endpoint, allocate device, or update
867 * hub functions while this function is removing the TT entries from the list.
868 */
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870 {
871 struct xhci_virt_device *dev;
872 int i;
873 int old_active_eps = 0;
874
875 /* Slot ID 0 is reserved */
876 if (slot_id == 0 || !xhci->devs[slot_id])
877 return;
878
879 dev = xhci->devs[slot_id];
880
881 trace_xhci_free_virt_device(dev);
882
883 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
884 if (!dev)
885 return;
886
887 if (dev->tt_info)
888 old_active_eps = dev->tt_info->active_eps;
889
890 for (i = 0; i < 31; i++) {
891 if (dev->eps[i].ring)
892 xhci_ring_free(xhci, dev->eps[i].ring);
893 if (dev->eps[i].stream_info)
894 xhci_free_stream_info(xhci,
895 dev->eps[i].stream_info);
896 /* Endpoints on the TT/root port lists should have been removed
897 * when usb_disable_device() was called for the device.
898 * We can't drop them anyway, because the udev might have gone
899 * away by this point, and we can't tell what speed it was.
900 */
901 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 xhci_warn(xhci, "Slot %u endpoint %u "
903 "not removed from BW list!\n",
904 slot_id, i);
905 }
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910
911 if (dev->in_ctx)
912 xhci_free_container_ctx(xhci, dev->in_ctx);
913 if (dev->out_ctx)
914 xhci_free_container_ctx(xhci, dev->out_ctx);
915
916 kfree(xhci->devs[slot_id]);
917 xhci->devs[slot_id] = NULL;
918 }
919
920 /*
921 * Free a virt_device structure.
922 * If the virt_device added a tt_info (a hub) and has children pointing to
923 * that tt_info, then free the child first. Recursive.
924 * We can't rely on udev at this point to find child-parent relationships.
925 */
926 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
927 {
928 struct xhci_virt_device *vdev;
929 struct list_head *tt_list_head;
930 struct xhci_tt_bw_info *tt_info, *next;
931 int i;
932
933 vdev = xhci->devs[slot_id];
934 if (!vdev)
935 return;
936
937 if (vdev->real_port == 0 ||
938 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
939 xhci_dbg(xhci, "Bad vdev->real_port.\n");
940 goto out;
941 }
942
943 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
944 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
945 /* is this a hub device that added a tt_info to the tts list */
946 if (tt_info->slot_id == slot_id) {
947 /* are any devices using this tt_info? */
948 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
949 vdev = xhci->devs[i];
950 if (vdev && (vdev->tt_info == tt_info))
951 xhci_free_virt_devices_depth_first(
952 xhci, i);
953 }
954 }
955 }
956 out:
957 /* we are now at a leaf device */
958 xhci_debugfs_remove_slot(xhci, slot_id);
959 xhci_free_virt_device(xhci, slot_id);
960 }
961
962 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
963 struct usb_device *udev, gfp_t flags)
964 {
965 struct xhci_virt_device *dev;
966 int i;
967
968 /* Slot ID 0 is reserved */
969 if (slot_id == 0 || xhci->devs[slot_id]) {
970 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
971 return 0;
972 }
973
974 dev = kzalloc(sizeof(*dev), flags);
975 if (!dev)
976 return 0;
977
978 /* Allocate the (output) device context that will be used in the HC. */
979 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
980 if (!dev->out_ctx)
981 goto fail;
982
983 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
984 (unsigned long long)dev->out_ctx->dma);
985
986 /* Allocate the (input) device context for address device command */
987 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
988 if (!dev->in_ctx)
989 goto fail;
990
991 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
992 (unsigned long long)dev->in_ctx->dma);
993
994 /* Initialize the cancellation list and watchdog timers for each ep */
995 for (i = 0; i < 31; i++) {
996 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
997 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
998 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
999 }
1000
1001 /* Allocate endpoint 0 ring */
1002 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1003 if (!dev->eps[0].ring)
1004 goto fail;
1005
1006 dev->udev = udev;
1007
1008 /* Point to output device context in dcbaa. */
1009 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1010 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1011 slot_id,
1012 &xhci->dcbaa->dev_context_ptrs[slot_id],
1013 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1014
1015 trace_xhci_alloc_virt_device(dev);
1016
1017 xhci->devs[slot_id] = dev;
1018
1019 return 1;
1020 fail:
1021
1022 if (dev->in_ctx)
1023 xhci_free_container_ctx(xhci, dev->in_ctx);
1024 if (dev->out_ctx)
1025 xhci_free_container_ctx(xhci, dev->out_ctx);
1026 kfree(dev);
1027
1028 return 0;
1029 }
1030
1031 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1032 struct usb_device *udev)
1033 {
1034 struct xhci_virt_device *virt_dev;
1035 struct xhci_ep_ctx *ep0_ctx;
1036 struct xhci_ring *ep_ring;
1037
1038 virt_dev = xhci->devs[udev->slot_id];
1039 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1040 ep_ring = virt_dev->eps[0].ring;
1041 /*
1042 * FIXME we don't keep track of the dequeue pointer very well after a
1043 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1044 * host to our enqueue pointer. This should only be called after a
1045 * configured device has reset, so all control transfers should have
1046 * been completed or cancelled before the reset.
1047 */
1048 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1049 ep_ring->enqueue)
1050 | ep_ring->cycle_state);
1051 }
1052
1053 /*
1054 * The xHCI roothub may have ports of differing speeds in any order in the port
1055 * status registers. xhci->port_array provides an array of the port speed for
1056 * each offset into the port status registers.
1057 *
1058 * The xHCI hardware wants to know the roothub port number that the USB device
1059 * is attached to (or the roothub port its ancestor hub is attached to). All we
1060 * know is the index of that port under either the USB 2.0 or the USB 3.0
1061 * roothub, but that doesn't give us the real index into the HW port status
1062 * registers. Call xhci_find_raw_port_number() to get real index.
1063 */
1064 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1065 struct usb_device *udev)
1066 {
1067 struct usb_device *top_dev;
1068 struct usb_hcd *hcd;
1069
1070 if (udev->speed >= USB_SPEED_SUPER)
1071 hcd = xhci->shared_hcd;
1072 else
1073 hcd = xhci->main_hcd;
1074
1075 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1076 top_dev = top_dev->parent)
1077 /* Found device below root hub */;
1078
1079 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1080 }
1081
1082 /* Setup an xHCI virtual device for a Set Address command */
1083 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1084 {
1085 struct xhci_virt_device *dev;
1086 struct xhci_ep_ctx *ep0_ctx;
1087 struct xhci_slot_ctx *slot_ctx;
1088 u32 port_num;
1089 u32 max_packets;
1090 struct usb_device *top_dev;
1091
1092 dev = xhci->devs[udev->slot_id];
1093 /* Slot ID 0 is reserved */
1094 if (udev->slot_id == 0 || !dev) {
1095 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1096 udev->slot_id);
1097 return -EINVAL;
1098 }
1099 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1100 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1101
1102 /* 3) Only the control endpoint is valid - one endpoint context */
1103 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1104 switch (udev->speed) {
1105 case USB_SPEED_SUPER_PLUS:
1106 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1107 max_packets = MAX_PACKET(512);
1108 break;
1109 case USB_SPEED_SUPER:
1110 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1111 max_packets = MAX_PACKET(512);
1112 break;
1113 case USB_SPEED_HIGH:
1114 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1115 max_packets = MAX_PACKET(64);
1116 break;
1117 /* USB core guesses at a 64-byte max packet first for FS devices */
1118 case USB_SPEED_FULL:
1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1120 max_packets = MAX_PACKET(64);
1121 break;
1122 case USB_SPEED_LOW:
1123 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1124 max_packets = MAX_PACKET(8);
1125 break;
1126 case USB_SPEED_WIRELESS:
1127 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1128 return -EINVAL;
1129 break;
1130 default:
1131 /* Speed was set earlier, this shouldn't happen. */
1132 return -EINVAL;
1133 }
1134 /* Find the root hub port this device is under */
1135 port_num = xhci_find_real_port_number(xhci, udev);
1136 if (!port_num)
1137 return -EINVAL;
1138 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1139 /* Set the port number in the virtual_device to the faked port number */
1140 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1141 top_dev = top_dev->parent)
1142 /* Found device below root hub */;
1143 dev->fake_port = top_dev->portnum;
1144 dev->real_port = port_num;
1145 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1146 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1147
1148 /* Find the right bandwidth table that this device will be a part of.
1149 * If this is a full speed device attached directly to a root port (or a
1150 * decendent of one), it counts as a primary bandwidth domain, not a
1151 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1152 * will never be created for the HS root hub.
1153 */
1154 if (!udev->tt || !udev->tt->hub->parent) {
1155 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1156 } else {
1157 struct xhci_root_port_bw_info *rh_bw;
1158 struct xhci_tt_bw_info *tt_bw;
1159
1160 rh_bw = &xhci->rh_bw[port_num - 1];
1161 /* Find the right TT. */
1162 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1163 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1164 continue;
1165
1166 if (!dev->udev->tt->multi ||
1167 (udev->tt->multi &&
1168 tt_bw->ttport == dev->udev->ttport)) {
1169 dev->bw_table = &tt_bw->bw_table;
1170 dev->tt_info = tt_bw;
1171 break;
1172 }
1173 }
1174 if (!dev->tt_info)
1175 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1176 }
1177
1178 /* Is this a LS/FS device under an external HS hub? */
1179 if (udev->tt && udev->tt->hub->parent) {
1180 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1181 (udev->ttport << 8));
1182 if (udev->tt->multi)
1183 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1184 }
1185 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1186 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1187
1188 /* Step 4 - ring already allocated */
1189 /* Step 5 */
1190 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1191
1192 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1193 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1194 max_packets);
1195
1196 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1197 dev->eps[0].ring->cycle_state);
1198
1199 trace_xhci_setup_addressable_virt_device(dev);
1200
1201 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1202
1203 return 0;
1204 }
1205
1206 /*
1207 * Convert interval expressed as 2^(bInterval - 1) == interval into
1208 * straight exponent value 2^n == interval.
1209 *
1210 */
1211 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1212 struct usb_host_endpoint *ep)
1213 {
1214 unsigned int interval;
1215
1216 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1217 if (interval != ep->desc.bInterval - 1)
1218 dev_warn(&udev->dev,
1219 "ep %#x - rounding interval to %d %sframes\n",
1220 ep->desc.bEndpointAddress,
1221 1 << interval,
1222 udev->speed == USB_SPEED_FULL ? "" : "micro");
1223
1224 if (udev->speed == USB_SPEED_FULL) {
1225 /*
1226 * Full speed isoc endpoints specify interval in frames,
1227 * not microframes. We are using microframes everywhere,
1228 * so adjust accordingly.
1229 */
1230 interval += 3; /* 1 frame = 2^3 uframes */
1231 }
1232
1233 return interval;
1234 }
1235
1236 /*
1237 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1238 * microframes, rounded down to nearest power of 2.
1239 */
1240 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1241 struct usb_host_endpoint *ep, unsigned int desc_interval,
1242 unsigned int min_exponent, unsigned int max_exponent)
1243 {
1244 unsigned int interval;
1245
1246 interval = fls(desc_interval) - 1;
1247 interval = clamp_val(interval, min_exponent, max_exponent);
1248 if ((1 << interval) != desc_interval)
1249 dev_dbg(&udev->dev,
1250 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1251 ep->desc.bEndpointAddress,
1252 1 << interval,
1253 desc_interval);
1254
1255 return interval;
1256 }
1257
1258 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1259 struct usb_host_endpoint *ep)
1260 {
1261 if (ep->desc.bInterval == 0)
1262 return 0;
1263 return xhci_microframes_to_exponent(udev, ep,
1264 ep->desc.bInterval, 0, 15);
1265 }
1266
1267
1268 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1269 struct usb_host_endpoint *ep)
1270 {
1271 return xhci_microframes_to_exponent(udev, ep,
1272 ep->desc.bInterval * 8, 3, 10);
1273 }
1274
1275 /* Return the polling or NAK interval.
1276 *
1277 * The polling interval is expressed in "microframes". If xHCI's Interval field
1278 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1279 *
1280 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1281 * is set to 0.
1282 */
1283 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1284 struct usb_host_endpoint *ep)
1285 {
1286 unsigned int interval = 0;
1287
1288 switch (udev->speed) {
1289 case USB_SPEED_HIGH:
1290 /* Max NAK rate */
1291 if (usb_endpoint_xfer_control(&ep->desc) ||
1292 usb_endpoint_xfer_bulk(&ep->desc)) {
1293 interval = xhci_parse_microframe_interval(udev, ep);
1294 break;
1295 }
1296 /* Fall through - SS and HS isoc/int have same decoding */
1297
1298 case USB_SPEED_SUPER_PLUS:
1299 case USB_SPEED_SUPER:
1300 if (usb_endpoint_xfer_int(&ep->desc) ||
1301 usb_endpoint_xfer_isoc(&ep->desc)) {
1302 interval = xhci_parse_exponent_interval(udev, ep);
1303 }
1304 break;
1305
1306 case USB_SPEED_FULL:
1307 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1308 interval = xhci_parse_exponent_interval(udev, ep);
1309 break;
1310 }
1311 /*
1312 * Fall through for interrupt endpoint interval decoding
1313 * since it uses the same rules as low speed interrupt
1314 * endpoints.
1315 */
1316 /* fall through */
1317
1318 case USB_SPEED_LOW:
1319 if (usb_endpoint_xfer_int(&ep->desc) ||
1320 usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322 interval = xhci_parse_frame_interval(udev, ep);
1323 }
1324 break;
1325
1326 default:
1327 BUG();
1328 }
1329 return interval;
1330 }
1331
1332 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1336 */
1337 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338 struct usb_host_endpoint *ep)
1339 {
1340 if (udev->speed < USB_SPEED_SUPER ||
1341 !usb_endpoint_xfer_isoc(&ep->desc))
1342 return 0;
1343 return ep->ss_ep_comp.bmAttributes;
1344 }
1345
1346 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1347 struct usb_host_endpoint *ep)
1348 {
1349 /* Super speed and Plus have max burst in ep companion desc */
1350 if (udev->speed >= USB_SPEED_SUPER)
1351 return ep->ss_ep_comp.bMaxBurst;
1352
1353 if (udev->speed == USB_SPEED_HIGH &&
1354 (usb_endpoint_xfer_isoc(&ep->desc) ||
1355 usb_endpoint_xfer_int(&ep->desc)))
1356 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1357
1358 return 0;
1359 }
1360
1361 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1362 {
1363 int in;
1364
1365 in = usb_endpoint_dir_in(&ep->desc);
1366
1367 switch (usb_endpoint_type(&ep->desc)) {
1368 case USB_ENDPOINT_XFER_CONTROL:
1369 return CTRL_EP;
1370 case USB_ENDPOINT_XFER_BULK:
1371 return in ? BULK_IN_EP : BULK_OUT_EP;
1372 case USB_ENDPOINT_XFER_ISOC:
1373 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1374 case USB_ENDPOINT_XFER_INT:
1375 return in ? INT_IN_EP : INT_OUT_EP;
1376 }
1377 return 0;
1378 }
1379
1380 /* Return the maximum endpoint service interval time (ESIT) payload.
1381 * Basically, this is the maxpacket size, multiplied by the burst size
1382 * and mult size.
1383 */
1384 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1385 struct usb_host_endpoint *ep)
1386 {
1387 int max_burst;
1388 int max_packet;
1389
1390 /* Only applies for interrupt or isochronous endpoints */
1391 if (usb_endpoint_xfer_control(&ep->desc) ||
1392 usb_endpoint_xfer_bulk(&ep->desc))
1393 return 0;
1394
1395 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1396 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1397 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1398 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1399 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1400 else if (udev->speed >= USB_SPEED_SUPER)
1401 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1402
1403 max_packet = usb_endpoint_maxp(&ep->desc);
1404 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1405 /* A 0 in max burst means 1 transfer per ESIT */
1406 return max_packet * max_burst;
1407 }
1408
1409 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1410 * Drivers will have to call usb_alloc_streams() to do that.
1411 */
1412 int xhci_endpoint_init(struct xhci_hcd *xhci,
1413 struct xhci_virt_device *virt_dev,
1414 struct usb_device *udev,
1415 struct usb_host_endpoint *ep,
1416 gfp_t mem_flags)
1417 {
1418 unsigned int ep_index;
1419 struct xhci_ep_ctx *ep_ctx;
1420 struct xhci_ring *ep_ring;
1421 unsigned int max_packet;
1422 enum xhci_ring_type ring_type;
1423 u32 max_esit_payload;
1424 u32 endpoint_type;
1425 unsigned int max_burst;
1426 unsigned int interval;
1427 unsigned int mult;
1428 unsigned int avg_trb_len;
1429 unsigned int err_count = 0;
1430
1431 ep_index = xhci_get_endpoint_index(&ep->desc);
1432 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1433
1434 endpoint_type = xhci_get_endpoint_type(ep);
1435 if (!endpoint_type)
1436 return -EINVAL;
1437
1438 ring_type = usb_endpoint_type(&ep->desc);
1439
1440 /*
1441 * Get values to fill the endpoint context, mostly from ep descriptor.
1442 * The average TRB buffer lengt for bulk endpoints is unclear as we
1443 * have no clue on scatter gather list entry size. For Isoc and Int,
1444 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1445 */
1446 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1447 interval = xhci_get_endpoint_interval(udev, ep);
1448
1449 /* Periodic endpoint bInterval limit quirk */
1450 if (usb_endpoint_xfer_int(&ep->desc) ||
1451 usb_endpoint_xfer_isoc(&ep->desc)) {
1452 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1453 udev->speed >= USB_SPEED_HIGH &&
1454 interval >= 7) {
1455 interval = 6;
1456 }
1457 }
1458
1459 mult = xhci_get_endpoint_mult(udev, ep);
1460 max_packet = usb_endpoint_maxp(&ep->desc);
1461 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1462 avg_trb_len = max_esit_payload;
1463
1464 /* FIXME dig Mult and streams info out of ep companion desc */
1465
1466 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1467 if (!usb_endpoint_xfer_isoc(&ep->desc))
1468 err_count = 3;
1469 /* Some devices get this wrong */
1470 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1471 max_packet = 512;
1472 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1473 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1474 avg_trb_len = 8;
1475 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1476 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1477 mult = 0;
1478
1479 /* Set up the endpoint ring */
1480 virt_dev->eps[ep_index].new_ring =
1481 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1482 if (!virt_dev->eps[ep_index].new_ring)
1483 return -ENOMEM;
1484
1485 virt_dev->eps[ep_index].skip = false;
1486 ep_ring = virt_dev->eps[ep_index].new_ring;
1487
1488 /* Fill the endpoint context */
1489 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1490 EP_INTERVAL(interval) |
1491 EP_MULT(mult));
1492 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1493 MAX_PACKET(max_packet) |
1494 MAX_BURST(max_burst) |
1495 ERROR_COUNT(err_count));
1496 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1497 ep_ring->cycle_state);
1498
1499 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1500 EP_AVG_TRB_LENGTH(avg_trb_len));
1501
1502 return 0;
1503 }
1504
1505 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1506 struct xhci_virt_device *virt_dev,
1507 struct usb_host_endpoint *ep)
1508 {
1509 unsigned int ep_index;
1510 struct xhci_ep_ctx *ep_ctx;
1511
1512 ep_index = xhci_get_endpoint_index(&ep->desc);
1513 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1514
1515 ep_ctx->ep_info = 0;
1516 ep_ctx->ep_info2 = 0;
1517 ep_ctx->deq = 0;
1518 ep_ctx->tx_info = 0;
1519 /* Don't free the endpoint ring until the set interface or configuration
1520 * request succeeds.
1521 */
1522 }
1523
1524 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1525 {
1526 bw_info->ep_interval = 0;
1527 bw_info->mult = 0;
1528 bw_info->num_packets = 0;
1529 bw_info->max_packet_size = 0;
1530 bw_info->type = 0;
1531 bw_info->max_esit_payload = 0;
1532 }
1533
1534 void xhci_update_bw_info(struct xhci_hcd *xhci,
1535 struct xhci_container_ctx *in_ctx,
1536 struct xhci_input_control_ctx *ctrl_ctx,
1537 struct xhci_virt_device *virt_dev)
1538 {
1539 struct xhci_bw_info *bw_info;
1540 struct xhci_ep_ctx *ep_ctx;
1541 unsigned int ep_type;
1542 int i;
1543
1544 for (i = 1; i < 31; i++) {
1545 bw_info = &virt_dev->eps[i].bw_info;
1546
1547 /* We can't tell what endpoint type is being dropped, but
1548 * unconditionally clearing the bandwidth info for non-periodic
1549 * endpoints should be harmless because the info will never be
1550 * set in the first place.
1551 */
1552 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1553 /* Dropped endpoint */
1554 xhci_clear_endpoint_bw_info(bw_info);
1555 continue;
1556 }
1557
1558 if (EP_IS_ADDED(ctrl_ctx, i)) {
1559 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1560 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1561
1562 /* Ignore non-periodic endpoints */
1563 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1564 ep_type != ISOC_IN_EP &&
1565 ep_type != INT_IN_EP)
1566 continue;
1567
1568 /* Added or changed endpoint */
1569 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1570 le32_to_cpu(ep_ctx->ep_info));
1571 /* Number of packets and mult are zero-based in the
1572 * input context, but we want one-based for the
1573 * interval table.
1574 */
1575 bw_info->mult = CTX_TO_EP_MULT(
1576 le32_to_cpu(ep_ctx->ep_info)) + 1;
1577 bw_info->num_packets = CTX_TO_MAX_BURST(
1578 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1579 bw_info->max_packet_size = MAX_PACKET_DECODED(
1580 le32_to_cpu(ep_ctx->ep_info2));
1581 bw_info->type = ep_type;
1582 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1583 le32_to_cpu(ep_ctx->tx_info));
1584 }
1585 }
1586 }
1587
1588 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1589 * Useful when you want to change one particular aspect of the endpoint and then
1590 * issue a configure endpoint command.
1591 */
1592 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1593 struct xhci_container_ctx *in_ctx,
1594 struct xhci_container_ctx *out_ctx,
1595 unsigned int ep_index)
1596 {
1597 struct xhci_ep_ctx *out_ep_ctx;
1598 struct xhci_ep_ctx *in_ep_ctx;
1599
1600 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1601 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1602
1603 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1604 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1605 in_ep_ctx->deq = out_ep_ctx->deq;
1606 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1607 }
1608
1609 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1610 * Useful when you want to change one particular aspect of the endpoint and then
1611 * issue a configure endpoint command. Only the context entries field matters,
1612 * but we'll copy the whole thing anyway.
1613 */
1614 void xhci_slot_copy(struct xhci_hcd *xhci,
1615 struct xhci_container_ctx *in_ctx,
1616 struct xhci_container_ctx *out_ctx)
1617 {
1618 struct xhci_slot_ctx *in_slot_ctx;
1619 struct xhci_slot_ctx *out_slot_ctx;
1620
1621 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1622 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1623
1624 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1625 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1626 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1627 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1628 }
1629
1630 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1631 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1632 {
1633 int i;
1634 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1635 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1636
1637 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1638 "Allocating %d scratchpad buffers", num_sp);
1639
1640 if (!num_sp)
1641 return 0;
1642
1643 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1644 if (!xhci->scratchpad)
1645 goto fail_sp;
1646
1647 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1648 num_sp * sizeof(u64),
1649 &xhci->scratchpad->sp_dma, flags);
1650 if (!xhci->scratchpad->sp_array)
1651 goto fail_sp2;
1652
1653 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1654 if (!xhci->scratchpad->sp_buffers)
1655 goto fail_sp3;
1656
1657 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1658 for (i = 0; i < num_sp; i++) {
1659 dma_addr_t dma;
1660 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1661 flags);
1662 if (!buf)
1663 goto fail_sp4;
1664
1665 xhci->scratchpad->sp_array[i] = dma;
1666 xhci->scratchpad->sp_buffers[i] = buf;
1667 }
1668
1669 return 0;
1670
1671 fail_sp4:
1672 for (i = i - 1; i >= 0; i--) {
1673 dma_free_coherent(dev, xhci->page_size,
1674 xhci->scratchpad->sp_buffers[i],
1675 xhci->scratchpad->sp_array[i]);
1676 }
1677
1678 kfree(xhci->scratchpad->sp_buffers);
1679
1680 fail_sp3:
1681 dma_free_coherent(dev, num_sp * sizeof(u64),
1682 xhci->scratchpad->sp_array,
1683 xhci->scratchpad->sp_dma);
1684
1685 fail_sp2:
1686 kfree(xhci->scratchpad);
1687 xhci->scratchpad = NULL;
1688
1689 fail_sp:
1690 return -ENOMEM;
1691 }
1692
1693 static void scratchpad_free(struct xhci_hcd *xhci)
1694 {
1695 int num_sp;
1696 int i;
1697 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1698
1699 if (!xhci->scratchpad)
1700 return;
1701
1702 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704 for (i = 0; i < num_sp; i++) {
1705 dma_free_coherent(dev, xhci->page_size,
1706 xhci->scratchpad->sp_buffers[i],
1707 xhci->scratchpad->sp_array[i]);
1708 }
1709 kfree(xhci->scratchpad->sp_buffers);
1710 dma_free_coherent(dev, num_sp * sizeof(u64),
1711 xhci->scratchpad->sp_array,
1712 xhci->scratchpad->sp_dma);
1713 kfree(xhci->scratchpad);
1714 xhci->scratchpad = NULL;
1715 }
1716
1717 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1718 bool allocate_in_ctx, bool allocate_completion,
1719 gfp_t mem_flags)
1720 {
1721 struct xhci_command *command;
1722
1723 command = kzalloc(sizeof(*command), mem_flags);
1724 if (!command)
1725 return NULL;
1726
1727 if (allocate_in_ctx) {
1728 command->in_ctx =
1729 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1730 mem_flags);
1731 if (!command->in_ctx) {
1732 kfree(command);
1733 return NULL;
1734 }
1735 }
1736
1737 if (allocate_completion) {
1738 command->completion =
1739 kzalloc(sizeof(struct completion), mem_flags);
1740 if (!command->completion) {
1741 xhci_free_container_ctx(xhci, command->in_ctx);
1742 kfree(command);
1743 return NULL;
1744 }
1745 init_completion(command->completion);
1746 }
1747
1748 command->status = 0;
1749 INIT_LIST_HEAD(&command->cmd_list);
1750 return command;
1751 }
1752
1753 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1754 {
1755 kfree(urb_priv);
1756 }
1757
1758 void xhci_free_command(struct xhci_hcd *xhci,
1759 struct xhci_command *command)
1760 {
1761 xhci_free_container_ctx(xhci,
1762 command->in_ctx);
1763 kfree(command->completion);
1764 kfree(command);
1765 }
1766
1767 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1768 {
1769 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1770 int size;
1771 int i, j, num_ports;
1772
1773 cancel_delayed_work_sync(&xhci->cmd_timer);
1774
1775 /* Free the Event Ring Segment Table and the actual Event Ring */
1776 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1777 if (xhci->erst.entries)
1778 dma_free_coherent(dev, size,
1779 xhci->erst.entries, xhci->erst.erst_dma_addr);
1780 xhci->erst.entries = NULL;
1781 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1782 if (xhci->event_ring)
1783 xhci_ring_free(xhci, xhci->event_ring);
1784 xhci->event_ring = NULL;
1785 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1786
1787 if (xhci->lpm_command)
1788 xhci_free_command(xhci, xhci->lpm_command);
1789 xhci->lpm_command = NULL;
1790 if (xhci->cmd_ring)
1791 xhci_ring_free(xhci, xhci->cmd_ring);
1792 xhci->cmd_ring = NULL;
1793 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1794 xhci_cleanup_command_queue(xhci);
1795
1796 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1797 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1798 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1799 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1800 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1801 while (!list_empty(ep))
1802 list_del_init(ep->next);
1803 }
1804 }
1805
1806 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1807 xhci_free_virt_devices_depth_first(xhci, i);
1808
1809 dma_pool_destroy(xhci->segment_pool);
1810 xhci->segment_pool = NULL;
1811 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1812
1813 dma_pool_destroy(xhci->device_pool);
1814 xhci->device_pool = NULL;
1815 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1816
1817 dma_pool_destroy(xhci->small_streams_pool);
1818 xhci->small_streams_pool = NULL;
1819 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1820 "Freed small stream array pool");
1821
1822 dma_pool_destroy(xhci->medium_streams_pool);
1823 xhci->medium_streams_pool = NULL;
1824 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1825 "Freed medium stream array pool");
1826
1827 if (xhci->dcbaa)
1828 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1829 xhci->dcbaa, xhci->dcbaa->dma);
1830 xhci->dcbaa = NULL;
1831
1832 scratchpad_free(xhci);
1833
1834 if (!xhci->rh_bw)
1835 goto no_bw;
1836
1837 for (i = 0; i < num_ports; i++) {
1838 struct xhci_tt_bw_info *tt, *n;
1839 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1840 list_del(&tt->tt_list);
1841 kfree(tt);
1842 }
1843 }
1844
1845 no_bw:
1846 xhci->cmd_ring_reserved_trbs = 0;
1847 xhci->num_usb2_ports = 0;
1848 xhci->num_usb3_ports = 0;
1849 xhci->num_active_eps = 0;
1850 kfree(xhci->usb2_ports);
1851 kfree(xhci->usb3_ports);
1852 kfree(xhci->port_array);
1853 kfree(xhci->rh_bw);
1854 kfree(xhci->ext_caps);
1855
1856 xhci->usb2_ports = NULL;
1857 xhci->usb3_ports = NULL;
1858 xhci->port_array = NULL;
1859 xhci->rh_bw = NULL;
1860 xhci->ext_caps = NULL;
1861
1862 xhci->page_size = 0;
1863 xhci->page_shift = 0;
1864 xhci->bus_state[0].bus_suspended = 0;
1865 xhci->bus_state[1].bus_suspended = 0;
1866 }
1867
1868 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1869 struct xhci_segment *input_seg,
1870 union xhci_trb *start_trb,
1871 union xhci_trb *end_trb,
1872 dma_addr_t input_dma,
1873 struct xhci_segment *result_seg,
1874 char *test_name, int test_number)
1875 {
1876 unsigned long long start_dma;
1877 unsigned long long end_dma;
1878 struct xhci_segment *seg;
1879
1880 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1881 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1882
1883 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1884 if (seg != result_seg) {
1885 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1886 test_name, test_number);
1887 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1888 "input DMA 0x%llx\n",
1889 input_seg,
1890 (unsigned long long) input_dma);
1891 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1892 "ending TRB %p (0x%llx DMA)\n",
1893 start_trb, start_dma,
1894 end_trb, end_dma);
1895 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1896 result_seg, seg);
1897 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1898 true);
1899 return -1;
1900 }
1901 return 0;
1902 }
1903
1904 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1905 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1906 {
1907 struct {
1908 dma_addr_t input_dma;
1909 struct xhci_segment *result_seg;
1910 } simple_test_vector [] = {
1911 /* A zeroed DMA field should fail */
1912 { 0, NULL },
1913 /* One TRB before the ring start should fail */
1914 { xhci->event_ring->first_seg->dma - 16, NULL },
1915 /* One byte before the ring start should fail */
1916 { xhci->event_ring->first_seg->dma - 1, NULL },
1917 /* Starting TRB should succeed */
1918 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1919 /* Ending TRB should succeed */
1920 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1921 xhci->event_ring->first_seg },
1922 /* One byte after the ring end should fail */
1923 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1924 /* One TRB after the ring end should fail */
1925 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1926 /* An address of all ones should fail */
1927 { (dma_addr_t) (~0), NULL },
1928 };
1929 struct {
1930 struct xhci_segment *input_seg;
1931 union xhci_trb *start_trb;
1932 union xhci_trb *end_trb;
1933 dma_addr_t input_dma;
1934 struct xhci_segment *result_seg;
1935 } complex_test_vector [] = {
1936 /* Test feeding a valid DMA address from a different ring */
1937 { .input_seg = xhci->event_ring->first_seg,
1938 .start_trb = xhci->event_ring->first_seg->trbs,
1939 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1940 .input_dma = xhci->cmd_ring->first_seg->dma,
1941 .result_seg = NULL,
1942 },
1943 /* Test feeding a valid end TRB from a different ring */
1944 { .input_seg = xhci->event_ring->first_seg,
1945 .start_trb = xhci->event_ring->first_seg->trbs,
1946 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1947 .input_dma = xhci->cmd_ring->first_seg->dma,
1948 .result_seg = NULL,
1949 },
1950 /* Test feeding a valid start and end TRB from a different ring */
1951 { .input_seg = xhci->event_ring->first_seg,
1952 .start_trb = xhci->cmd_ring->first_seg->trbs,
1953 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1954 .input_dma = xhci->cmd_ring->first_seg->dma,
1955 .result_seg = NULL,
1956 },
1957 /* TRB in this ring, but after this TD */
1958 { .input_seg = xhci->event_ring->first_seg,
1959 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1960 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1961 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1962 .result_seg = NULL,
1963 },
1964 /* TRB in this ring, but before this TD */
1965 { .input_seg = xhci->event_ring->first_seg,
1966 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1967 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1968 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1969 .result_seg = NULL,
1970 },
1971 /* TRB in this ring, but after this wrapped TD */
1972 { .input_seg = xhci->event_ring->first_seg,
1973 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1974 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1975 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1976 .result_seg = NULL,
1977 },
1978 /* TRB in this ring, but before this wrapped TD */
1979 { .input_seg = xhci->event_ring->first_seg,
1980 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1981 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1982 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1983 .result_seg = NULL,
1984 },
1985 /* TRB not in this ring, and we have a wrapped TD */
1986 { .input_seg = xhci->event_ring->first_seg,
1987 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1988 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1989 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1990 .result_seg = NULL,
1991 },
1992 };
1993
1994 unsigned int num_tests;
1995 int i, ret;
1996
1997 num_tests = ARRAY_SIZE(simple_test_vector);
1998 for (i = 0; i < num_tests; i++) {
1999 ret = xhci_test_trb_in_td(xhci,
2000 xhci->event_ring->first_seg,
2001 xhci->event_ring->first_seg->trbs,
2002 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2003 simple_test_vector[i].input_dma,
2004 simple_test_vector[i].result_seg,
2005 "Simple", i);
2006 if (ret < 0)
2007 return ret;
2008 }
2009
2010 num_tests = ARRAY_SIZE(complex_test_vector);
2011 for (i = 0; i < num_tests; i++) {
2012 ret = xhci_test_trb_in_td(xhci,
2013 complex_test_vector[i].input_seg,
2014 complex_test_vector[i].start_trb,
2015 complex_test_vector[i].end_trb,
2016 complex_test_vector[i].input_dma,
2017 complex_test_vector[i].result_seg,
2018 "Complex", i);
2019 if (ret < 0)
2020 return ret;
2021 }
2022 xhci_dbg(xhci, "TRB math tests passed.\n");
2023 return 0;
2024 }
2025
2026 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2027 {
2028 u64 temp;
2029 dma_addr_t deq;
2030
2031 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2032 xhci->event_ring->dequeue);
2033 if (deq == 0 && !in_interrupt())
2034 xhci_warn(xhci, "WARN something wrong with SW event ring "
2035 "dequeue ptr.\n");
2036 /* Update HC event ring dequeue pointer */
2037 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2038 temp &= ERST_PTR_MASK;
2039 /* Don't clear the EHB bit (which is RW1C) because
2040 * there might be more events to service.
2041 */
2042 temp &= ~ERST_EHB;
2043 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2044 "// Write event ring dequeue pointer, "
2045 "preserving EHB bit");
2046 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2047 &xhci->ir_set->erst_dequeue);
2048 }
2049
2050 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2051 __le32 __iomem *addr, int max_caps)
2052 {
2053 u32 temp, port_offset, port_count;
2054 int i;
2055 u8 major_revision, minor_revision;
2056 struct xhci_hub *rhub;
2057
2058 temp = readl(addr);
2059 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2060 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2061
2062 if (major_revision == 0x03) {
2063 rhub = &xhci->usb3_rhub;
2064 } else if (major_revision <= 0x02) {
2065 rhub = &xhci->usb2_rhub;
2066 } else {
2067 xhci_warn(xhci, "Ignoring unknown port speed, "
2068 "Ext Cap %p, revision = 0x%x\n",
2069 addr, major_revision);
2070 /* Ignoring port protocol we can't understand. FIXME */
2071 return;
2072 }
2073 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2074
2075 if (rhub->min_rev < minor_revision)
2076 rhub->min_rev = minor_revision;
2077
2078 /* Port offset and count in the third dword, see section 7.2 */
2079 temp = readl(addr + 2);
2080 port_offset = XHCI_EXT_PORT_OFF(temp);
2081 port_count = XHCI_EXT_PORT_COUNT(temp);
2082 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2083 "Ext Cap %p, port offset = %u, "
2084 "count = %u, revision = 0x%x",
2085 addr, port_offset, port_count, major_revision);
2086 /* Port count includes the current port offset */
2087 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2088 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2089 return;
2090
2091 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2092 if (rhub->psi_count) {
2093 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2094 GFP_KERNEL);
2095 if (!rhub->psi)
2096 rhub->psi_count = 0;
2097
2098 rhub->psi_uid_count++;
2099 for (i = 0; i < rhub->psi_count; i++) {
2100 rhub->psi[i] = readl(addr + 4 + i);
2101
2102 /* count unique ID values, two consecutive entries can
2103 * have the same ID if link is assymetric
2104 */
2105 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2106 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2107 rhub->psi_uid_count++;
2108
2109 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2110 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2111 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2112 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2113 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2114 XHCI_EXT_PORT_LP(rhub->psi[i]),
2115 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2116 }
2117 }
2118 /* cache usb2 port capabilities */
2119 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2120 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2121
2122 /* Check the host's USB2 LPM capability */
2123 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2124 (temp & XHCI_L1C)) {
2125 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2126 "xHCI 0.96: support USB2 software lpm");
2127 xhci->sw_lpm_support = 1;
2128 }
2129
2130 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2131 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2132 "xHCI 1.0: support USB2 software lpm");
2133 xhci->sw_lpm_support = 1;
2134 if (temp & XHCI_HLC) {
2135 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2136 "xHCI 1.0: support USB2 hardware lpm");
2137 xhci->hw_lpm_support = 1;
2138 }
2139 }
2140
2141 port_offset--;
2142 for (i = port_offset; i < (port_offset + port_count); i++) {
2143 /* Duplicate entry. Ignore the port if the revisions differ. */
2144 if (xhci->port_array[i] != 0) {
2145 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2146 " port %u\n", addr, i);
2147 xhci_warn(xhci, "Port was marked as USB %u, "
2148 "duplicated as USB %u\n",
2149 xhci->port_array[i], major_revision);
2150 /* Only adjust the roothub port counts if we haven't
2151 * found a similar duplicate.
2152 */
2153 if (xhci->port_array[i] != major_revision &&
2154 xhci->port_array[i] != DUPLICATE_ENTRY) {
2155 if (xhci->port_array[i] == 0x03)
2156 xhci->num_usb3_ports--;
2157 else
2158 xhci->num_usb2_ports--;
2159 xhci->port_array[i] = DUPLICATE_ENTRY;
2160 }
2161 /* FIXME: Should we disable the port? */
2162 continue;
2163 }
2164 xhci->port_array[i] = major_revision;
2165 if (major_revision == 0x03)
2166 xhci->num_usb3_ports++;
2167 else
2168 xhci->num_usb2_ports++;
2169 }
2170 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2171 }
2172
2173 /*
2174 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2175 * specify what speeds each port is supposed to be. We can't count on the port
2176 * speed bits in the PORTSC register being correct until a device is connected,
2177 * but we need to set up the two fake roothubs with the correct number of USB
2178 * 3.0 and USB 2.0 ports at host controller initialization time.
2179 */
2180 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2181 {
2182 void __iomem *base;
2183 u32 offset;
2184 unsigned int num_ports;
2185 int i, j, port_index;
2186 int cap_count = 0;
2187 u32 cap_start;
2188
2189 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2190 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2191 if (!xhci->port_array)
2192 return -ENOMEM;
2193
2194 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2195 if (!xhci->rh_bw)
2196 return -ENOMEM;
2197 for (i = 0; i < num_ports; i++) {
2198 struct xhci_interval_bw_table *bw_table;
2199
2200 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2201 bw_table = &xhci->rh_bw[i].bw_table;
2202 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2203 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2204 }
2205 base = &xhci->cap_regs->hc_capbase;
2206
2207 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2208 if (!cap_start) {
2209 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2210 return -ENODEV;
2211 }
2212
2213 offset = cap_start;
2214 /* count extended protocol capability entries for later caching */
2215 while (offset) {
2216 cap_count++;
2217 offset = xhci_find_next_ext_cap(base, offset,
2218 XHCI_EXT_CAPS_PROTOCOL);
2219 }
2220
2221 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2222 if (!xhci->ext_caps)
2223 return -ENOMEM;
2224
2225 offset = cap_start;
2226
2227 while (offset) {
2228 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2229 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2230 break;
2231 offset = xhci_find_next_ext_cap(base, offset,
2232 XHCI_EXT_CAPS_PROTOCOL);
2233 }
2234
2235 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2236 xhci_warn(xhci, "No ports on the roothubs?\n");
2237 return -ENODEV;
2238 }
2239 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2240 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2241 xhci->num_usb2_ports, xhci->num_usb3_ports);
2242
2243 /* Place limits on the number of roothub ports so that the hub
2244 * descriptors aren't longer than the USB core will allocate.
2245 */
2246 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2247 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2248 "Limiting USB 3.0 roothub ports to %u.",
2249 USB_SS_MAXPORTS);
2250 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2251 }
2252 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2253 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2254 "Limiting USB 2.0 roothub ports to %u.",
2255 USB_MAXCHILDREN);
2256 xhci->num_usb2_ports = USB_MAXCHILDREN;
2257 }
2258
2259 /*
2260 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2261 * Not sure how the USB core will handle a hub with no ports...
2262 */
2263 if (xhci->num_usb2_ports) {
2264 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2265 xhci->num_usb2_ports, flags);
2266 if (!xhci->usb2_ports)
2267 return -ENOMEM;
2268
2269 port_index = 0;
2270 for (i = 0; i < num_ports; i++) {
2271 if (xhci->port_array[i] == 0x03 ||
2272 xhci->port_array[i] == 0 ||
2273 xhci->port_array[i] == DUPLICATE_ENTRY)
2274 continue;
2275
2276 xhci->usb2_ports[port_index] =
2277 &xhci->op_regs->port_status_base +
2278 NUM_PORT_REGS*i;
2279 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2280 "USB 2.0 port at index %u, "
2281 "addr = %p", i,
2282 xhci->usb2_ports[port_index]);
2283 port_index++;
2284 if (port_index == xhci->num_usb2_ports)
2285 break;
2286 }
2287 }
2288 if (xhci->num_usb3_ports) {
2289 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2290 xhci->num_usb3_ports, flags);
2291 if (!xhci->usb3_ports)
2292 return -ENOMEM;
2293
2294 port_index = 0;
2295 for (i = 0; i < num_ports; i++)
2296 if (xhci->port_array[i] == 0x03) {
2297 xhci->usb3_ports[port_index] =
2298 &xhci->op_regs->port_status_base +
2299 NUM_PORT_REGS*i;
2300 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2301 "USB 3.0 port at index %u, "
2302 "addr = %p", i,
2303 xhci->usb3_ports[port_index]);
2304 port_index++;
2305 if (port_index == xhci->num_usb3_ports)
2306 break;
2307 }
2308 }
2309 return 0;
2310 }
2311
2312 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2313 {
2314 dma_addr_t dma;
2315 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2316 unsigned int val, val2;
2317 u64 val_64;
2318 struct xhci_segment *seg;
2319 u32 page_size, temp;
2320 int i;
2321
2322 INIT_LIST_HEAD(&xhci->cmd_list);
2323
2324 /* init command timeout work */
2325 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2326 init_completion(&xhci->cmd_ring_stop_completion);
2327
2328 page_size = readl(&xhci->op_regs->page_size);
2329 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2330 "Supported page size register = 0x%x", page_size);
2331 for (i = 0; i < 16; i++) {
2332 if ((0x1 & page_size) != 0)
2333 break;
2334 page_size = page_size >> 1;
2335 }
2336 if (i < 16)
2337 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338 "Supported page size of %iK", (1 << (i+12)) / 1024);
2339 else
2340 xhci_warn(xhci, "WARN: no supported page size\n");
2341 /* Use 4K pages, since that's common and the minimum the HC supports */
2342 xhci->page_shift = 12;
2343 xhci->page_size = 1 << xhci->page_shift;
2344 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345 "HCD page size set to %iK", xhci->page_size / 1024);
2346
2347 /*
2348 * Program the Number of Device Slots Enabled field in the CONFIG
2349 * register with the max value of slots the HC can handle.
2350 */
2351 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2352 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2353 "// xHC can handle at most %d device slots.", val);
2354 val2 = readl(&xhci->op_regs->config_reg);
2355 val |= (val2 & ~HCS_SLOTS_MASK);
2356 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357 "// Setting Max device slots reg = 0x%x.", val);
2358 writel(val, &xhci->op_regs->config_reg);
2359
2360 /*
2361 * xHCI section 5.4.6 - doorbell array must be
2362 * "physically contiguous and 64-byte (cache line) aligned".
2363 */
2364 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2365 flags);
2366 if (!xhci->dcbaa)
2367 goto fail;
2368 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2369 xhci->dcbaa->dma = dma;
2370 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2372 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2373 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2374
2375 /*
2376 * Initialize the ring segment pool. The ring must be a contiguous
2377 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2378 * however, the command ring segment needs 64-byte aligned segments
2379 * and our use of dma addresses in the trb_address_map radix tree needs
2380 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2381 */
2382 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2384
2385 /* See Table 46 and Note on Figure 55 */
2386 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387 2112, 64, xhci->page_size);
2388 if (!xhci->segment_pool || !xhci->device_pool)
2389 goto fail;
2390
2391 /* Linear stream context arrays don't have any boundary restrictions,
2392 * and only need to be 16-byte aligned.
2393 */
2394 xhci->small_streams_pool =
2395 dma_pool_create("xHCI 256 byte stream ctx arrays",
2396 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397 xhci->medium_streams_pool =
2398 dma_pool_create("xHCI 1KB stream ctx arrays",
2399 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401 * will be allocated with dma_alloc_coherent()
2402 */
2403
2404 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405 goto fail;
2406
2407 /* Set up the command ring to have one segments for now. */
2408 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2409 if (!xhci->cmd_ring)
2410 goto fail;
2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 "Allocated command ring at %p", xhci->cmd_ring);
2413 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2414 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2415
2416 /* Set the address in the Command Ring Control register */
2417 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420 xhci->cmd_ring->cycle_state;
2421 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422 "// Setting command ring address to 0x%016llx", val_64);
2423 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2424 xhci_dbg_cmd_ptrs(xhci);
2425
2426 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2427 if (!xhci->lpm_command)
2428 goto fail;
2429
2430 /* Reserve one command ring TRB for disabling LPM.
2431 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2432 * disabling LPM, we only need to reserve one TRB for all devices.
2433 */
2434 xhci->cmd_ring_reserved_trbs++;
2435
2436 val = readl(&xhci->cap_regs->db_off);
2437 val &= DBOFF_MASK;
2438 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439 "// Doorbell array is located at offset 0x%x"
2440 " from cap regs base addr", val);
2441 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2442 xhci_dbg_regs(xhci);
2443 xhci_print_run_regs(xhci);
2444 /* Set ir_set to interrupt register set 0 */
2445 xhci->ir_set = &xhci->run_regs->ir_set[0];
2446
2447 /*
2448 * Event ring setup: Allocate a normal ring, but also setup
2449 * the event ring segment table (ERST). Section 4.9.3.
2450 */
2451 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2452 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2453 0, flags);
2454 if (!xhci->event_ring)
2455 goto fail;
2456 if (xhci_check_trb_in_td_math(xhci) < 0)
2457 goto fail;
2458
2459 xhci->erst.entries = dma_alloc_coherent(dev,
2460 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2461 flags);
2462 if (!xhci->erst.entries)
2463 goto fail;
2464 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465 "// Allocated event ring segment table at 0x%llx",
2466 (unsigned long long)dma);
2467
2468 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2469 xhci->erst.num_entries = ERST_NUM_SEGS;
2470 xhci->erst.erst_dma_addr = dma;
2471 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2473 xhci->erst.num_entries,
2474 xhci->erst.entries,
2475 (unsigned long long)xhci->erst.erst_dma_addr);
2476
2477 /* set ring base address and size for each segment table entry */
2478 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2479 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2480 entry->seg_addr = cpu_to_le64(seg->dma);
2481 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2482 entry->rsvd = 0;
2483 seg = seg->next;
2484 }
2485
2486 /* set ERST count with the number of entries in the segment table */
2487 val = readl(&xhci->ir_set->erst_size);
2488 val &= ERST_SIZE_MASK;
2489 val |= ERST_NUM_SEGS;
2490 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2491 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2492 val);
2493 writel(val, &xhci->ir_set->erst_size);
2494
2495 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496 "// Set ERST entries to point to event ring.");
2497 /* set the segment table base address */
2498 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499 "// Set ERST base address for ir_set 0 = 0x%llx",
2500 (unsigned long long)xhci->erst.erst_dma_addr);
2501 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2502 val_64 &= ERST_PTR_MASK;
2503 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2504 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2505
2506 /* Set the event ring dequeue address */
2507 xhci_set_hc_event_deq(xhci);
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509 "Wrote ERST address to ir_set 0.");
2510 xhci_print_ir_set(xhci, 0);
2511
2512 /*
2513 * XXX: Might need to set the Interrupter Moderation Register to
2514 * something other than the default (~1ms minimum between interrupts).
2515 * See section 5.5.1.2.
2516 */
2517 for (i = 0; i < MAX_HC_SLOTS; i++)
2518 xhci->devs[i] = NULL;
2519 for (i = 0; i < USB_MAXCHILDREN; i++) {
2520 xhci->bus_state[0].resume_done[i] = 0;
2521 xhci->bus_state[1].resume_done[i] = 0;
2522 /* Only the USB 2.0 completions will ever be used. */
2523 init_completion(&xhci->bus_state[1].rexit_done[i]);
2524 }
2525
2526 if (scratchpad_alloc(xhci, flags))
2527 goto fail;
2528 if (xhci_setup_port_arrays(xhci, flags))
2529 goto fail;
2530
2531 /* Enable USB 3.0 device notifications for function remote wake, which
2532 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2533 * U3 (device suspend).
2534 */
2535 temp = readl(&xhci->op_regs->dev_notification);
2536 temp &= ~DEV_NOTE_MASK;
2537 temp |= DEV_NOTE_FWAKE;
2538 writel(temp, &xhci->op_regs->dev_notification);
2539
2540 return 0;
2541
2542 fail:
2543 xhci_halt(xhci);
2544 xhci_reset(xhci);
2545 xhci_mem_cleanup(xhci);
2546 return -ENOMEM;
2547 }