]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/usb/host/xhci-ring.c
Merge 4.14-rc6 into usb-next
[mirror_ubuntu-kernels.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73
74 /*
75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76 * address of the TRB.
77 */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 union xhci_trb *trb)
80 {
81 unsigned long segment_offset;
82
83 if (!seg || !trb || trb < seg->trbs)
84 return 0;
85 /* offset in TRBs */
86 segment_offset = trb - seg->trbs;
87 if (segment_offset >= TRBS_PER_SEGMENT)
88 return 0;
89 return seg->dma + (segment_offset * sizeof(*trb));
90 }
91
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 struct urb_priv *urb_priv = td->urb->hcpriv;
121
122 return urb_priv->num_tds_done == urb_priv->num_tds;
123 }
124
125 static void inc_td_cnt(struct urb *urb)
126 {
127 struct urb_priv *urb_priv = urb->hcpriv;
128
129 urb_priv->num_tds_done++;
130 }
131
132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
133 {
134 if (trb_is_link(trb)) {
135 /* unchain chained link TRBs */
136 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
137 } else {
138 trb->generic.field[0] = 0;
139 trb->generic.field[1] = 0;
140 trb->generic.field[2] = 0;
141 /* Preserve only the cycle bit of this TRB */
142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
144 }
145 }
146
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148 * TRB is in a new segment. This does not skip over link TRBs, and it does not
149 * effect the ring dequeue or enqueue pointers.
150 */
151 static void next_trb(struct xhci_hcd *xhci,
152 struct xhci_ring *ring,
153 struct xhci_segment **seg,
154 union xhci_trb **trb)
155 {
156 if (trb_is_link(*trb)) {
157 *seg = (*seg)->next;
158 *trb = ((*seg)->trbs);
159 } else {
160 (*trb)++;
161 }
162 }
163
164 /*
165 * See Cycle bit rules. SW is the consumer for the event ring only.
166 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
167 */
168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
169 {
170 /* event ring doesn't have link trbs, check for last trb */
171 if (ring->type == TYPE_EVENT) {
172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
173 ring->dequeue++;
174 goto out;
175 }
176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
177 ring->cycle_state ^= 1;
178 ring->deq_seg = ring->deq_seg->next;
179 ring->dequeue = ring->deq_seg->trbs;
180 goto out;
181 }
182
183 /* All other rings have link trbs */
184 if (!trb_is_link(ring->dequeue)) {
185 ring->dequeue++;
186 ring->num_trbs_free++;
187 }
188 while (trb_is_link(ring->dequeue)) {
189 ring->deq_seg = ring->deq_seg->next;
190 ring->dequeue = ring->deq_seg->trbs;
191 }
192
193 out:
194 trace_xhci_inc_deq(ring);
195
196 return;
197 }
198
199 /*
200 * See Cycle bit rules. SW is the consumer for the event ring only.
201 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
202 *
203 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
204 * chain bit is set), then set the chain bit in all the following link TRBs.
205 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
206 * have their chain bit cleared (so that each Link TRB is a separate TD).
207 *
208 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
209 * set, but other sections talk about dealing with the chain bit set. This was
210 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
211 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
212 *
213 * @more_trbs_coming: Will you enqueue more TRBs before calling
214 * prepare_transfer()?
215 */
216 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
217 bool more_trbs_coming)
218 {
219 u32 chain;
220 union xhci_trb *next;
221
222 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
223 /* If this is not event ring, there is one less usable TRB */
224 if (!trb_is_link(ring->enqueue))
225 ring->num_trbs_free--;
226 next = ++(ring->enqueue);
227
228 /* Update the dequeue pointer further if that was a link TRB */
229 while (trb_is_link(next)) {
230
231 /*
232 * If the caller doesn't plan on enqueueing more TDs before
233 * ringing the doorbell, then we don't want to give the link TRB
234 * to the hardware just yet. We'll give the link TRB back in
235 * prepare_ring() just before we enqueue the TD at the top of
236 * the ring.
237 */
238 if (!chain && !more_trbs_coming)
239 break;
240
241 /* If we're not dealing with 0.95 hardware or isoc rings on
242 * AMD 0.96 host, carry over the chain bit of the previous TRB
243 * (which may mean the chain bit is cleared).
244 */
245 if (!(ring->type == TYPE_ISOC &&
246 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
247 !xhci_link_trb_quirk(xhci)) {
248 next->link.control &= cpu_to_le32(~TRB_CHAIN);
249 next->link.control |= cpu_to_le32(chain);
250 }
251 /* Give this link TRB to the hardware */
252 wmb();
253 next->link.control ^= cpu_to_le32(TRB_CYCLE);
254
255 /* Toggle the cycle bit after the last ring segment. */
256 if (link_trb_toggles_cycle(next))
257 ring->cycle_state ^= 1;
258
259 ring->enq_seg = ring->enq_seg->next;
260 ring->enqueue = ring->enq_seg->trbs;
261 next = ring->enqueue;
262 }
263
264 trace_xhci_inc_enq(ring);
265 }
266
267 /*
268 * Check to see if there's room to enqueue num_trbs on the ring and make sure
269 * enqueue pointer will not advance into dequeue segment. See rules above.
270 */
271 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
272 unsigned int num_trbs)
273 {
274 int num_trbs_in_deq_seg;
275
276 if (ring->num_trbs_free < num_trbs)
277 return 0;
278
279 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
280 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
281 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
282 return 0;
283 }
284
285 return 1;
286 }
287
288 /* Ring the host controller doorbell after placing a command on the ring */
289 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
290 {
291 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
292 return;
293
294 xhci_dbg(xhci, "// Ding dong!\n");
295 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
296 /* Flush PCI posted writes */
297 readl(&xhci->dba->doorbell[0]);
298 }
299
300 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
301 {
302 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
303 }
304
305 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
306 {
307 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
308 cmd_list);
309 }
310
311 /*
312 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
313 * If there are other commands waiting then restart the ring and kick the timer.
314 * This must be called with command ring stopped and xhci->lock held.
315 */
316 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
317 struct xhci_command *cur_cmd)
318 {
319 struct xhci_command *i_cmd;
320
321 /* Turn all aborted commands in list to no-ops, then restart */
322 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
323
324 if (i_cmd->status != COMP_COMMAND_ABORTED)
325 continue;
326
327 i_cmd->status = COMP_COMMAND_RING_STOPPED;
328
329 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
330 i_cmd->command_trb);
331
332 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
333
334 /*
335 * caller waiting for completion is called when command
336 * completion event is received for these no-op commands
337 */
338 }
339
340 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
341
342 /* ring command ring doorbell to restart the command ring */
343 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
344 !(xhci->xhc_state & XHCI_STATE_DYING)) {
345 xhci->current_cmd = cur_cmd;
346 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
347 xhci_ring_cmd_db(xhci);
348 }
349 }
350
351 /* Must be called with xhci->lock held, releases and aquires lock back */
352 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
353 {
354 u64 temp_64;
355 int ret;
356
357 xhci_dbg(xhci, "Abort command ring\n");
358
359 reinit_completion(&xhci->cmd_ring_stop_completion);
360
361 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
362 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
363 &xhci->op_regs->cmd_ring);
364
365 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
366 * completion of the Command Abort operation. If CRR is not negated in 5
367 * seconds then driver handles it as if host died (-ENODEV).
368 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
369 * and try to recover a -ETIMEDOUT with a host controller reset.
370 */
371 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
372 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
373 if (ret < 0) {
374 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
375 xhci_halt(xhci);
376 xhci_hc_died(xhci);
377 return ret;
378 }
379 /*
380 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
381 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
382 * but the completion event in never sent. Wait 2 secs (arbitrary
383 * number) to handle those cases after negation of CMD_RING_RUNNING.
384 */
385 spin_unlock_irqrestore(&xhci->lock, flags);
386 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
387 msecs_to_jiffies(2000));
388 spin_lock_irqsave(&xhci->lock, flags);
389 if (!ret) {
390 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
391 xhci_cleanup_command_queue(xhci);
392 } else {
393 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
394 }
395 return 0;
396 }
397
398 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
399 unsigned int slot_id,
400 unsigned int ep_index,
401 unsigned int stream_id)
402 {
403 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
404 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
405 unsigned int ep_state = ep->ep_state;
406
407 /* Don't ring the doorbell for this endpoint if there are pending
408 * cancellations because we don't want to interrupt processing.
409 * We don't want to restart any stream rings if there's a set dequeue
410 * pointer command pending because the device can choose to start any
411 * stream once the endpoint is on the HW schedule.
412 */
413 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
414 (ep_state & EP_HALTED))
415 return;
416 writel(DB_VALUE(ep_index, stream_id), db_addr);
417 /* The CPU has better things to do at this point than wait for a
418 * write-posting flush. It'll get there soon enough.
419 */
420 }
421
422 /* Ring the doorbell for any rings with pending URBs */
423 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
424 unsigned int slot_id,
425 unsigned int ep_index)
426 {
427 unsigned int stream_id;
428 struct xhci_virt_ep *ep;
429
430 ep = &xhci->devs[slot_id]->eps[ep_index];
431
432 /* A ring has pending URBs if its TD list is not empty */
433 if (!(ep->ep_state & EP_HAS_STREAMS)) {
434 if (ep->ring && !(list_empty(&ep->ring->td_list)))
435 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
436 return;
437 }
438
439 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
440 stream_id++) {
441 struct xhci_stream_info *stream_info = ep->stream_info;
442 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
443 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
444 stream_id);
445 }
446 }
447
448 /* Get the right ring for the given slot_id, ep_index and stream_id.
449 * If the endpoint supports streams, boundary check the URB's stream ID.
450 * If the endpoint doesn't support streams, return the singular endpoint ring.
451 */
452 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
453 unsigned int slot_id, unsigned int ep_index,
454 unsigned int stream_id)
455 {
456 struct xhci_virt_ep *ep;
457
458 ep = &xhci->devs[slot_id]->eps[ep_index];
459 /* Common case: no streams */
460 if (!(ep->ep_state & EP_HAS_STREAMS))
461 return ep->ring;
462
463 if (stream_id == 0) {
464 xhci_warn(xhci,
465 "WARN: Slot ID %u, ep index %u has streams, "
466 "but URB has no stream ID.\n",
467 slot_id, ep_index);
468 return NULL;
469 }
470
471 if (stream_id < ep->stream_info->num_streams)
472 return ep->stream_info->stream_rings[stream_id];
473
474 xhci_warn(xhci,
475 "WARN: Slot ID %u, ep index %u has "
476 "stream IDs 1 to %u allocated, "
477 "but stream ID %u is requested.\n",
478 slot_id, ep_index,
479 ep->stream_info->num_streams - 1,
480 stream_id);
481 return NULL;
482 }
483
484
485 /*
486 * Get the hw dequeue pointer xHC stopped on, either directly from the
487 * endpoint context, or if streams are in use from the stream context.
488 * The returned hw_dequeue contains the lowest four bits with cycle state
489 * and possbile stream context type.
490 */
491 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
492 unsigned int ep_index, unsigned int stream_id)
493 {
494 struct xhci_ep_ctx *ep_ctx;
495 struct xhci_stream_ctx *st_ctx;
496 struct xhci_virt_ep *ep;
497
498 ep = &vdev->eps[ep_index];
499
500 if (ep->ep_state & EP_HAS_STREAMS) {
501 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
502 return le64_to_cpu(st_ctx->stream_ring);
503 }
504 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
505 return le64_to_cpu(ep_ctx->deq);
506 }
507
508 /*
509 * Move the xHC's endpoint ring dequeue pointer past cur_td.
510 * Record the new state of the xHC's endpoint ring dequeue segment,
511 * dequeue pointer, stream id, and new consumer cycle state in state.
512 * Update our internal representation of the ring's dequeue pointer.
513 *
514 * We do this in three jumps:
515 * - First we update our new ring state to be the same as when the xHC stopped.
516 * - Then we traverse the ring to find the segment that contains
517 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
518 * any link TRBs with the toggle cycle bit set.
519 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
520 * if we've moved it past a link TRB with the toggle cycle bit set.
521 *
522 * Some of the uses of xhci_generic_trb are grotty, but if they're done
523 * with correct __le32 accesses they should work fine. Only users of this are
524 * in here.
525 */
526 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
527 unsigned int slot_id, unsigned int ep_index,
528 unsigned int stream_id, struct xhci_td *cur_td,
529 struct xhci_dequeue_state *state)
530 {
531 struct xhci_virt_device *dev = xhci->devs[slot_id];
532 struct xhci_virt_ep *ep = &dev->eps[ep_index];
533 struct xhci_ring *ep_ring;
534 struct xhci_segment *new_seg;
535 union xhci_trb *new_deq;
536 dma_addr_t addr;
537 u64 hw_dequeue;
538 bool cycle_found = false;
539 bool td_last_trb_found = false;
540
541 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
542 ep_index, stream_id);
543 if (!ep_ring) {
544 xhci_warn(xhci, "WARN can't find new dequeue state "
545 "for invalid stream ID %u.\n",
546 stream_id);
547 return;
548 }
549 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
550 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
551 "Finding endpoint context");
552
553 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
554 new_seg = ep_ring->deq_seg;
555 new_deq = ep_ring->dequeue;
556 state->new_cycle_state = hw_dequeue & 0x1;
557 state->stream_id = stream_id;
558
559 /*
560 * We want to find the pointer, segment and cycle state of the new trb
561 * (the one after current TD's last_trb). We know the cycle state at
562 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
563 * found.
564 */
565 do {
566 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
567 == (dma_addr_t)(hw_dequeue & ~0xf)) {
568 cycle_found = true;
569 if (td_last_trb_found)
570 break;
571 }
572 if (new_deq == cur_td->last_trb)
573 td_last_trb_found = true;
574
575 if (cycle_found && trb_is_link(new_deq) &&
576 link_trb_toggles_cycle(new_deq))
577 state->new_cycle_state ^= 0x1;
578
579 next_trb(xhci, ep_ring, &new_seg, &new_deq);
580
581 /* Search wrapped around, bail out */
582 if (new_deq == ep->ring->dequeue) {
583 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
584 state->new_deq_seg = NULL;
585 state->new_deq_ptr = NULL;
586 return;
587 }
588
589 } while (!cycle_found || !td_last_trb_found);
590
591 state->new_deq_seg = new_seg;
592 state->new_deq_ptr = new_deq;
593
594 /* Don't update the ring cycle state for the producer (us). */
595 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
596 "Cycle state = 0x%x", state->new_cycle_state);
597
598 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
599 "New dequeue segment = %p (virtual)",
600 state->new_deq_seg);
601 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
602 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
603 "New dequeue pointer = 0x%llx (DMA)",
604 (unsigned long long) addr);
605 }
606
607 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
608 * (The last TRB actually points to the ring enqueue pointer, which is not part
609 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
610 */
611 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
612 struct xhci_td *td, bool flip_cycle)
613 {
614 struct xhci_segment *seg = td->start_seg;
615 union xhci_trb *trb = td->first_trb;
616
617 while (1) {
618 trb_to_noop(trb, TRB_TR_NOOP);
619
620 /* flip cycle if asked to */
621 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
622 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
623
624 if (trb == td->last_trb)
625 break;
626
627 next_trb(xhci, ep_ring, &seg, &trb);
628 }
629 }
630
631 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
632 struct xhci_virt_ep *ep)
633 {
634 ep->ep_state &= ~EP_STOP_CMD_PENDING;
635 /* Can't del_timer_sync in interrupt */
636 del_timer(&ep->stop_cmd_timer);
637 }
638
639 /*
640 * Must be called with xhci->lock held in interrupt context,
641 * releases and re-acquires xhci->lock
642 */
643 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
644 struct xhci_td *cur_td, int status)
645 {
646 struct urb *urb = cur_td->urb;
647 struct urb_priv *urb_priv = urb->hcpriv;
648 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
649
650 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
651 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
652 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
653 if (xhci->quirks & XHCI_AMD_PLL_FIX)
654 usb_amd_quirk_pll_enable();
655 }
656 }
657 xhci_urb_free_priv(urb_priv);
658 usb_hcd_unlink_urb_from_ep(hcd, urb);
659 spin_unlock(&xhci->lock);
660 trace_xhci_urb_giveback(urb);
661 usb_hcd_giveback_urb(hcd, urb, status);
662 spin_lock(&xhci->lock);
663 }
664
665 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
666 struct xhci_ring *ring, struct xhci_td *td)
667 {
668 struct device *dev = xhci_to_hcd(xhci)->self.controller;
669 struct xhci_segment *seg = td->bounce_seg;
670 struct urb *urb = td->urb;
671
672 if (!ring || !seg || !urb)
673 return;
674
675 if (usb_urb_dir_out(urb)) {
676 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
677 DMA_TO_DEVICE);
678 return;
679 }
680
681 /* for in tranfers we need to copy the data from bounce to sg */
682 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
683 seg->bounce_len, seg->bounce_offs);
684 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
685 DMA_FROM_DEVICE);
686 seg->bounce_len = 0;
687 seg->bounce_offs = 0;
688 }
689
690 /*
691 * When we get a command completion for a Stop Endpoint Command, we need to
692 * unlink any cancelled TDs from the ring. There are two ways to do that:
693 *
694 * 1. If the HW was in the middle of processing the TD that needs to be
695 * cancelled, then we must move the ring's dequeue pointer past the last TRB
696 * in the TD with a Set Dequeue Pointer Command.
697 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
698 * bit cleared) so that the HW will skip over them.
699 */
700 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
701 union xhci_trb *trb, struct xhci_event_cmd *event)
702 {
703 unsigned int ep_index;
704 struct xhci_ring *ep_ring;
705 struct xhci_virt_ep *ep;
706 struct xhci_td *cur_td = NULL;
707 struct xhci_td *last_unlinked_td;
708 struct xhci_ep_ctx *ep_ctx;
709 struct xhci_virt_device *vdev;
710 u64 hw_deq;
711 struct xhci_dequeue_state deq_state;
712
713 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
714 if (!xhci->devs[slot_id])
715 xhci_warn(xhci, "Stop endpoint command "
716 "completion for disabled slot %u\n",
717 slot_id);
718 return;
719 }
720
721 memset(&deq_state, 0, sizeof(deq_state));
722 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
723
724 vdev = xhci->devs[slot_id];
725 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
726 trace_xhci_handle_cmd_stop_ep(ep_ctx);
727
728 ep = &xhci->devs[slot_id]->eps[ep_index];
729 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
730 struct xhci_td, cancelled_td_list);
731
732 if (list_empty(&ep->cancelled_td_list)) {
733 xhci_stop_watchdog_timer_in_irq(xhci, ep);
734 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
735 return;
736 }
737
738 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
739 * We have the xHCI lock, so nothing can modify this list until we drop
740 * it. We're also in the event handler, so we can't get re-interrupted
741 * if another Stop Endpoint command completes
742 */
743 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
744 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
745 "Removing canceled TD starting at 0x%llx (dma).",
746 (unsigned long long)xhci_trb_virt_to_dma(
747 cur_td->start_seg, cur_td->first_trb));
748 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
749 if (!ep_ring) {
750 /* This shouldn't happen unless a driver is mucking
751 * with the stream ID after submission. This will
752 * leave the TD on the hardware ring, and the hardware
753 * will try to execute it, and may access a buffer
754 * that has already been freed. In the best case, the
755 * hardware will execute it, and the event handler will
756 * ignore the completion event for that TD, since it was
757 * removed from the td_list for that endpoint. In
758 * short, don't muck with the stream ID after
759 * submission.
760 */
761 xhci_warn(xhci, "WARN Cancelled URB %p "
762 "has invalid stream ID %u.\n",
763 cur_td->urb,
764 cur_td->urb->stream_id);
765 goto remove_finished_td;
766 }
767 /*
768 * If we stopped on the TD we need to cancel, then we have to
769 * move the xHC endpoint ring dequeue pointer past this TD.
770 */
771 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
772 cur_td->urb->stream_id);
773 hw_deq &= ~0xf;
774
775 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
776 cur_td->last_trb, hw_deq, false)) {
777 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
778 cur_td->urb->stream_id,
779 cur_td, &deq_state);
780 } else {
781 td_to_noop(xhci, ep_ring, cur_td, false);
782 }
783
784 remove_finished_td:
785 /*
786 * The event handler won't see a completion for this TD anymore,
787 * so remove it from the endpoint ring's TD list. Keep it in
788 * the cancelled TD list for URB completion later.
789 */
790 list_del_init(&cur_td->td_list);
791 }
792
793 xhci_stop_watchdog_timer_in_irq(xhci, ep);
794
795 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
796 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
797 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
798 &deq_state);
799 xhci_ring_cmd_db(xhci);
800 } else {
801 /* Otherwise ring the doorbell(s) to restart queued transfers */
802 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
803 }
804
805 /*
806 * Drop the lock and complete the URBs in the cancelled TD list.
807 * New TDs to be cancelled might be added to the end of the list before
808 * we can complete all the URBs for the TDs we already unlinked.
809 * So stop when we've completed the URB for the last TD we unlinked.
810 */
811 do {
812 cur_td = list_first_entry(&ep->cancelled_td_list,
813 struct xhci_td, cancelled_td_list);
814 list_del_init(&cur_td->cancelled_td_list);
815
816 /* Clean up the cancelled URB */
817 /* Doesn't matter what we pass for status, since the core will
818 * just overwrite it (because the URB has been unlinked).
819 */
820 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
821 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
822 inc_td_cnt(cur_td->urb);
823 if (last_td_in_urb(cur_td))
824 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
825
826 /* Stop processing the cancelled list if the watchdog timer is
827 * running.
828 */
829 if (xhci->xhc_state & XHCI_STATE_DYING)
830 return;
831 } while (cur_td != last_unlinked_td);
832
833 /* Return to the event handler with xhci->lock re-acquired */
834 }
835
836 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
837 {
838 struct xhci_td *cur_td;
839 struct xhci_td *tmp;
840
841 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
842 list_del_init(&cur_td->td_list);
843
844 if (!list_empty(&cur_td->cancelled_td_list))
845 list_del_init(&cur_td->cancelled_td_list);
846
847 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
848
849 inc_td_cnt(cur_td->urb);
850 if (last_td_in_urb(cur_td))
851 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
852 }
853 }
854
855 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
856 int slot_id, int ep_index)
857 {
858 struct xhci_td *cur_td;
859 struct xhci_td *tmp;
860 struct xhci_virt_ep *ep;
861 struct xhci_ring *ring;
862
863 ep = &xhci->devs[slot_id]->eps[ep_index];
864 if ((ep->ep_state & EP_HAS_STREAMS) ||
865 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
866 int stream_id;
867
868 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
869 stream_id++) {
870 ring = ep->stream_info->stream_rings[stream_id];
871 if (!ring)
872 continue;
873
874 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
875 "Killing URBs for slot ID %u, ep index %u, stream %u",
876 slot_id, ep_index, stream_id);
877 xhci_kill_ring_urbs(xhci, ring);
878 }
879 } else {
880 ring = ep->ring;
881 if (!ring)
882 return;
883 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
884 "Killing URBs for slot ID %u, ep index %u",
885 slot_id, ep_index);
886 xhci_kill_ring_urbs(xhci, ring);
887 }
888
889 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
890 cancelled_td_list) {
891 list_del_init(&cur_td->cancelled_td_list);
892 inc_td_cnt(cur_td->urb);
893
894 if (last_td_in_urb(cur_td))
895 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
896 }
897 }
898
899 /*
900 * host controller died, register read returns 0xffffffff
901 * Complete pending commands, mark them ABORTED.
902 * URBs need to be given back as usb core might be waiting with device locks
903 * held for the URBs to finish during device disconnect, blocking host remove.
904 *
905 * Call with xhci->lock held.
906 * lock is relased and re-acquired while giving back urb.
907 */
908 void xhci_hc_died(struct xhci_hcd *xhci)
909 {
910 int i, j;
911
912 if (xhci->xhc_state & XHCI_STATE_DYING)
913 return;
914
915 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
916 xhci->xhc_state |= XHCI_STATE_DYING;
917
918 xhci_cleanup_command_queue(xhci);
919
920 /* return any pending urbs, remove may be waiting for them */
921 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
922 if (!xhci->devs[i])
923 continue;
924 for (j = 0; j < 31; j++)
925 xhci_kill_endpoint_urbs(xhci, i, j);
926 }
927
928 /* inform usb core hc died if PCI remove isn't already handling it */
929 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
930 usb_hc_died(xhci_to_hcd(xhci));
931 }
932
933 /* Watchdog timer function for when a stop endpoint command fails to complete.
934 * In this case, we assume the host controller is broken or dying or dead. The
935 * host may still be completing some other events, so we have to be careful to
936 * let the event ring handler and the URB dequeueing/enqueueing functions know
937 * through xhci->state.
938 *
939 * The timer may also fire if the host takes a very long time to respond to the
940 * command, and the stop endpoint command completion handler cannot delete the
941 * timer before the timer function is called. Another endpoint cancellation may
942 * sneak in before the timer function can grab the lock, and that may queue
943 * another stop endpoint command and add the timer back. So we cannot use a
944 * simple flag to say whether there is a pending stop endpoint command for a
945 * particular endpoint.
946 *
947 * Instead we use a combination of that flag and checking if a new timer is
948 * pending.
949 */
950 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
951 {
952 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
953 struct xhci_hcd *xhci = ep->xhci;
954 unsigned long flags;
955
956 spin_lock_irqsave(&xhci->lock, flags);
957
958 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
959 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
960 timer_pending(&ep->stop_cmd_timer)) {
961 spin_unlock_irqrestore(&xhci->lock, flags);
962 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
963 return;
964 }
965
966 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
967 ep->ep_state &= ~EP_STOP_CMD_PENDING;
968
969 xhci_halt(xhci);
970
971 /*
972 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
973 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
974 * and try to recover a -ETIMEDOUT with a host controller reset
975 */
976 xhci_hc_died(xhci);
977
978 spin_unlock_irqrestore(&xhci->lock, flags);
979 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
980 "xHCI host controller is dead.");
981 }
982
983 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
984 struct xhci_virt_device *dev,
985 struct xhci_ring *ep_ring,
986 unsigned int ep_index)
987 {
988 union xhci_trb *dequeue_temp;
989 int num_trbs_free_temp;
990 bool revert = false;
991
992 num_trbs_free_temp = ep_ring->num_trbs_free;
993 dequeue_temp = ep_ring->dequeue;
994
995 /* If we get two back-to-back stalls, and the first stalled transfer
996 * ends just before a link TRB, the dequeue pointer will be left on
997 * the link TRB by the code in the while loop. So we have to update
998 * the dequeue pointer one segment further, or we'll jump off
999 * the segment into la-la-land.
1000 */
1001 if (trb_is_link(ep_ring->dequeue)) {
1002 ep_ring->deq_seg = ep_ring->deq_seg->next;
1003 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1004 }
1005
1006 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1007 /* We have more usable TRBs */
1008 ep_ring->num_trbs_free++;
1009 ep_ring->dequeue++;
1010 if (trb_is_link(ep_ring->dequeue)) {
1011 if (ep_ring->dequeue ==
1012 dev->eps[ep_index].queued_deq_ptr)
1013 break;
1014 ep_ring->deq_seg = ep_ring->deq_seg->next;
1015 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1016 }
1017 if (ep_ring->dequeue == dequeue_temp) {
1018 revert = true;
1019 break;
1020 }
1021 }
1022
1023 if (revert) {
1024 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1025 ep_ring->num_trbs_free = num_trbs_free_temp;
1026 }
1027 }
1028
1029 /*
1030 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1031 * we need to clear the set deq pending flag in the endpoint ring state, so that
1032 * the TD queueing code can ring the doorbell again. We also need to ring the
1033 * endpoint doorbell to restart the ring, but only if there aren't more
1034 * cancellations pending.
1035 */
1036 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1037 union xhci_trb *trb, u32 cmd_comp_code)
1038 {
1039 unsigned int ep_index;
1040 unsigned int stream_id;
1041 struct xhci_ring *ep_ring;
1042 struct xhci_virt_device *dev;
1043 struct xhci_virt_ep *ep;
1044 struct xhci_ep_ctx *ep_ctx;
1045 struct xhci_slot_ctx *slot_ctx;
1046
1047 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1048 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1049 dev = xhci->devs[slot_id];
1050 ep = &dev->eps[ep_index];
1051
1052 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1053 if (!ep_ring) {
1054 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1055 stream_id);
1056 /* XXX: Harmless??? */
1057 goto cleanup;
1058 }
1059
1060 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1061 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1062 trace_xhci_handle_cmd_set_deq(slot_ctx);
1063 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1064
1065 if (cmd_comp_code != COMP_SUCCESS) {
1066 unsigned int ep_state;
1067 unsigned int slot_state;
1068
1069 switch (cmd_comp_code) {
1070 case COMP_TRB_ERROR:
1071 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1072 break;
1073 case COMP_CONTEXT_STATE_ERROR:
1074 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1075 ep_state = GET_EP_CTX_STATE(ep_ctx);
1076 slot_state = le32_to_cpu(slot_ctx->dev_state);
1077 slot_state = GET_SLOT_STATE(slot_state);
1078 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1079 "Slot state = %u, EP state = %u",
1080 slot_state, ep_state);
1081 break;
1082 case COMP_SLOT_NOT_ENABLED_ERROR:
1083 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1084 slot_id);
1085 break;
1086 default:
1087 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1088 cmd_comp_code);
1089 break;
1090 }
1091 /* OK what do we do now? The endpoint state is hosed, and we
1092 * should never get to this point if the synchronization between
1093 * queueing, and endpoint state are correct. This might happen
1094 * if the device gets disconnected after we've finished
1095 * cancelling URBs, which might not be an error...
1096 */
1097 } else {
1098 u64 deq;
1099 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1100 if (ep->ep_state & EP_HAS_STREAMS) {
1101 struct xhci_stream_ctx *ctx =
1102 &ep->stream_info->stream_ctx_array[stream_id];
1103 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1104 } else {
1105 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1106 }
1107 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1108 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1109 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1110 ep->queued_deq_ptr) == deq) {
1111 /* Update the ring's dequeue segment and dequeue pointer
1112 * to reflect the new position.
1113 */
1114 update_ring_for_set_deq_completion(xhci, dev,
1115 ep_ring, ep_index);
1116 } else {
1117 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1118 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1119 ep->queued_deq_seg, ep->queued_deq_ptr);
1120 }
1121 }
1122
1123 cleanup:
1124 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1125 dev->eps[ep_index].queued_deq_seg = NULL;
1126 dev->eps[ep_index].queued_deq_ptr = NULL;
1127 /* Restart any rings with pending URBs */
1128 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1129 }
1130
1131 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1132 union xhci_trb *trb, u32 cmd_comp_code)
1133 {
1134 struct xhci_virt_device *vdev;
1135 struct xhci_ep_ctx *ep_ctx;
1136 unsigned int ep_index;
1137
1138 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1139 vdev = xhci->devs[slot_id];
1140 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1141 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1142
1143 /* This command will only fail if the endpoint wasn't halted,
1144 * but we don't care.
1145 */
1146 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1147 "Ignoring reset ep completion code of %u", cmd_comp_code);
1148
1149 /* HW with the reset endpoint quirk needs to have a configure endpoint
1150 * command complete before the endpoint can be used. Queue that here
1151 * because the HW can't handle two commands being queued in a row.
1152 */
1153 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1154 struct xhci_command *command;
1155
1156 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1157 if (!command)
1158 return;
1159
1160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1161 "Queueing configure endpoint command");
1162 xhci_queue_configure_endpoint(xhci, command,
1163 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1164 false);
1165 xhci_ring_cmd_db(xhci);
1166 } else {
1167 /* Clear our internal halted state */
1168 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1169 }
1170 }
1171
1172 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1173 struct xhci_command *command, u32 cmd_comp_code)
1174 {
1175 if (cmd_comp_code == COMP_SUCCESS)
1176 command->slot_id = slot_id;
1177 else
1178 command->slot_id = 0;
1179 }
1180
1181 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1182 {
1183 struct xhci_virt_device *virt_dev;
1184 struct xhci_slot_ctx *slot_ctx;
1185
1186 virt_dev = xhci->devs[slot_id];
1187 if (!virt_dev)
1188 return;
1189
1190 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1191 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1192
1193 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1194 /* Delete default control endpoint resources */
1195 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1196 xhci_free_virt_device(xhci, slot_id);
1197 }
1198
1199 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1200 struct xhci_event_cmd *event, u32 cmd_comp_code)
1201 {
1202 struct xhci_virt_device *virt_dev;
1203 struct xhci_input_control_ctx *ctrl_ctx;
1204 struct xhci_ep_ctx *ep_ctx;
1205 unsigned int ep_index;
1206 unsigned int ep_state;
1207 u32 add_flags, drop_flags;
1208
1209 /*
1210 * Configure endpoint commands can come from the USB core
1211 * configuration or alt setting changes, or because the HW
1212 * needed an extra configure endpoint command after a reset
1213 * endpoint command or streams were being configured.
1214 * If the command was for a halted endpoint, the xHCI driver
1215 * is not waiting on the configure endpoint command.
1216 */
1217 virt_dev = xhci->devs[slot_id];
1218 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1219 if (!ctrl_ctx) {
1220 xhci_warn(xhci, "Could not get input context, bad type.\n");
1221 return;
1222 }
1223
1224 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1225 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1226 /* Input ctx add_flags are the endpoint index plus one */
1227 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1228
1229 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1230 trace_xhci_handle_cmd_config_ep(ep_ctx);
1231
1232 /* A usb_set_interface() call directly after clearing a halted
1233 * condition may race on this quirky hardware. Not worth
1234 * worrying about, since this is prototype hardware. Not sure
1235 * if this will work for streams, but streams support was
1236 * untested on this prototype.
1237 */
1238 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1239 ep_index != (unsigned int) -1 &&
1240 add_flags - SLOT_FLAG == drop_flags) {
1241 ep_state = virt_dev->eps[ep_index].ep_state;
1242 if (!(ep_state & EP_HALTED))
1243 return;
1244 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1245 "Completed config ep cmd - "
1246 "last ep index = %d, state = %d",
1247 ep_index, ep_state);
1248 /* Clear internal halted state and restart ring(s) */
1249 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1250 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1251 return;
1252 }
1253 return;
1254 }
1255
1256 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1257 {
1258 struct xhci_virt_device *vdev;
1259 struct xhci_slot_ctx *slot_ctx;
1260
1261 vdev = xhci->devs[slot_id];
1262 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1263 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1264 }
1265
1266 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1267 struct xhci_event_cmd *event)
1268 {
1269 struct xhci_virt_device *vdev;
1270 struct xhci_slot_ctx *slot_ctx;
1271
1272 vdev = xhci->devs[slot_id];
1273 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1274 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1275
1276 xhci_dbg(xhci, "Completed reset device command.\n");
1277 if (!xhci->devs[slot_id])
1278 xhci_warn(xhci, "Reset device command completion "
1279 "for disabled slot %u\n", slot_id);
1280 }
1281
1282 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1283 struct xhci_event_cmd *event)
1284 {
1285 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1286 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1287 return;
1288 }
1289 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1290 "NEC firmware version %2x.%02x",
1291 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1292 NEC_FW_MINOR(le32_to_cpu(event->status)));
1293 }
1294
1295 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1296 {
1297 list_del(&cmd->cmd_list);
1298
1299 if (cmd->completion) {
1300 cmd->status = status;
1301 complete(cmd->completion);
1302 } else {
1303 kfree(cmd);
1304 }
1305 }
1306
1307 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1308 {
1309 struct xhci_command *cur_cmd, *tmp_cmd;
1310 xhci->current_cmd = NULL;
1311 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1312 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1313 }
1314
1315 void xhci_handle_command_timeout(struct work_struct *work)
1316 {
1317 struct xhci_hcd *xhci;
1318 unsigned long flags;
1319 u64 hw_ring_state;
1320
1321 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1322
1323 spin_lock_irqsave(&xhci->lock, flags);
1324
1325 /*
1326 * If timeout work is pending, or current_cmd is NULL, it means we
1327 * raced with command completion. Command is handled so just return.
1328 */
1329 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1330 spin_unlock_irqrestore(&xhci->lock, flags);
1331 return;
1332 }
1333 /* mark this command to be cancelled */
1334 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1335
1336 /* Make sure command ring is running before aborting it */
1337 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1338 if (hw_ring_state == ~(u64)0) {
1339 xhci_hc_died(xhci);
1340 goto time_out_completed;
1341 }
1342
1343 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1344 (hw_ring_state & CMD_RING_RUNNING)) {
1345 /* Prevent new doorbell, and start command abort */
1346 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1347 xhci_dbg(xhci, "Command timeout\n");
1348 xhci_abort_cmd_ring(xhci, flags);
1349 goto time_out_completed;
1350 }
1351
1352 /* host removed. Bail out */
1353 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1354 xhci_dbg(xhci, "host removed, ring start fail?\n");
1355 xhci_cleanup_command_queue(xhci);
1356
1357 goto time_out_completed;
1358 }
1359
1360 /* command timeout on stopped ring, ring can't be aborted */
1361 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1362 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1363
1364 time_out_completed:
1365 spin_unlock_irqrestore(&xhci->lock, flags);
1366 return;
1367 }
1368
1369 static void handle_cmd_completion(struct xhci_hcd *xhci,
1370 struct xhci_event_cmd *event)
1371 {
1372 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1373 u64 cmd_dma;
1374 dma_addr_t cmd_dequeue_dma;
1375 u32 cmd_comp_code;
1376 union xhci_trb *cmd_trb;
1377 struct xhci_command *cmd;
1378 u32 cmd_type;
1379
1380 cmd_dma = le64_to_cpu(event->cmd_trb);
1381 cmd_trb = xhci->cmd_ring->dequeue;
1382
1383 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1384
1385 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1386 cmd_trb);
1387 /*
1388 * Check whether the completion event is for our internal kept
1389 * command.
1390 */
1391 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1392 xhci_warn(xhci,
1393 "ERROR mismatched command completion event\n");
1394 return;
1395 }
1396
1397 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1398
1399 cancel_delayed_work(&xhci->cmd_timer);
1400
1401 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1402
1403 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1404 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1405 complete_all(&xhci->cmd_ring_stop_completion);
1406 return;
1407 }
1408
1409 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1410 xhci_err(xhci,
1411 "Command completion event does not match command\n");
1412 return;
1413 }
1414
1415 /*
1416 * Host aborted the command ring, check if the current command was
1417 * supposed to be aborted, otherwise continue normally.
1418 * The command ring is stopped now, but the xHC will issue a Command
1419 * Ring Stopped event which will cause us to restart it.
1420 */
1421 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1422 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1423 if (cmd->status == COMP_COMMAND_ABORTED) {
1424 if (xhci->current_cmd == cmd)
1425 xhci->current_cmd = NULL;
1426 goto event_handled;
1427 }
1428 }
1429
1430 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1431 switch (cmd_type) {
1432 case TRB_ENABLE_SLOT:
1433 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1434 break;
1435 case TRB_DISABLE_SLOT:
1436 xhci_handle_cmd_disable_slot(xhci, slot_id);
1437 break;
1438 case TRB_CONFIG_EP:
1439 if (!cmd->completion)
1440 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1441 cmd_comp_code);
1442 break;
1443 case TRB_EVAL_CONTEXT:
1444 break;
1445 case TRB_ADDR_DEV:
1446 xhci_handle_cmd_addr_dev(xhci, slot_id);
1447 break;
1448 case TRB_STOP_RING:
1449 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1450 le32_to_cpu(cmd_trb->generic.field[3])));
1451 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1452 break;
1453 case TRB_SET_DEQ:
1454 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1455 le32_to_cpu(cmd_trb->generic.field[3])));
1456 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1457 break;
1458 case TRB_CMD_NOOP:
1459 /* Is this an aborted command turned to NO-OP? */
1460 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1461 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1462 break;
1463 case TRB_RESET_EP:
1464 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1465 le32_to_cpu(cmd_trb->generic.field[3])));
1466 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1467 break;
1468 case TRB_RESET_DEV:
1469 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1470 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1471 */
1472 slot_id = TRB_TO_SLOT_ID(
1473 le32_to_cpu(cmd_trb->generic.field[3]));
1474 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1475 break;
1476 case TRB_NEC_GET_FW:
1477 xhci_handle_cmd_nec_get_fw(xhci, event);
1478 break;
1479 default:
1480 /* Skip over unknown commands on the event ring */
1481 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1482 break;
1483 }
1484
1485 /* restart timer if this wasn't the last command */
1486 if (!list_is_singular(&xhci->cmd_list)) {
1487 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1488 struct xhci_command, cmd_list);
1489 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1490 } else if (xhci->current_cmd == cmd) {
1491 xhci->current_cmd = NULL;
1492 }
1493
1494 event_handled:
1495 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1496
1497 inc_deq(xhci, xhci->cmd_ring);
1498 }
1499
1500 static void handle_vendor_event(struct xhci_hcd *xhci,
1501 union xhci_trb *event)
1502 {
1503 u32 trb_type;
1504
1505 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1506 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1507 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1508 handle_cmd_completion(xhci, &event->event_cmd);
1509 }
1510
1511 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1512 * port registers -- USB 3.0 and USB 2.0).
1513 *
1514 * Returns a zero-based port number, which is suitable for indexing into each of
1515 * the split roothubs' port arrays and bus state arrays.
1516 * Add one to it in order to call xhci_find_slot_id_by_port.
1517 */
1518 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1519 struct xhci_hcd *xhci, u32 port_id)
1520 {
1521 unsigned int i;
1522 unsigned int num_similar_speed_ports = 0;
1523
1524 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1525 * and usb2_ports are 0-based indexes. Count the number of similar
1526 * speed ports, up to 1 port before this port.
1527 */
1528 for (i = 0; i < (port_id - 1); i++) {
1529 u8 port_speed = xhci->port_array[i];
1530
1531 /*
1532 * Skip ports that don't have known speeds, or have duplicate
1533 * Extended Capabilities port speed entries.
1534 */
1535 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1536 continue;
1537
1538 /*
1539 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1540 * 1.1 ports are under the USB 2.0 hub. If the port speed
1541 * matches the device speed, it's a similar speed port.
1542 */
1543 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1544 num_similar_speed_ports++;
1545 }
1546 return num_similar_speed_ports;
1547 }
1548
1549 static void handle_device_notification(struct xhci_hcd *xhci,
1550 union xhci_trb *event)
1551 {
1552 u32 slot_id;
1553 struct usb_device *udev;
1554
1555 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1556 if (!xhci->devs[slot_id]) {
1557 xhci_warn(xhci, "Device Notification event for "
1558 "unused slot %u\n", slot_id);
1559 return;
1560 }
1561
1562 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1563 slot_id);
1564 udev = xhci->devs[slot_id]->udev;
1565 if (udev && udev->parent)
1566 usb_wakeup_notification(udev->parent, udev->portnum);
1567 }
1568
1569 static void handle_port_status(struct xhci_hcd *xhci,
1570 union xhci_trb *event)
1571 {
1572 struct usb_hcd *hcd;
1573 u32 port_id;
1574 u32 portsc, cmd_reg;
1575 int max_ports;
1576 int slot_id;
1577 unsigned int faked_port_index;
1578 u8 major_revision;
1579 struct xhci_bus_state *bus_state;
1580 __le32 __iomem **port_array;
1581 bool bogus_port_status = false;
1582
1583 /* Port status change events always have a successful completion code */
1584 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1585 xhci_warn(xhci,
1586 "WARN: xHC returned failed port status event\n");
1587
1588 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1589 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1590
1591 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1592 if ((port_id <= 0) || (port_id > max_ports)) {
1593 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1594 inc_deq(xhci, xhci->event_ring);
1595 return;
1596 }
1597
1598 /* Figure out which usb_hcd this port is attached to:
1599 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1600 */
1601 major_revision = xhci->port_array[port_id - 1];
1602
1603 /* Find the right roothub. */
1604 hcd = xhci_to_hcd(xhci);
1605 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1606 hcd = xhci->shared_hcd;
1607
1608 if (major_revision == 0) {
1609 xhci_warn(xhci, "Event for port %u not in "
1610 "Extended Capabilities, ignoring.\n",
1611 port_id);
1612 bogus_port_status = true;
1613 goto cleanup;
1614 }
1615 if (major_revision == DUPLICATE_ENTRY) {
1616 xhci_warn(xhci, "Event for port %u duplicated in"
1617 "Extended Capabilities, ignoring.\n",
1618 port_id);
1619 bogus_port_status = true;
1620 goto cleanup;
1621 }
1622
1623 /*
1624 * Hardware port IDs reported by a Port Status Change Event include USB
1625 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1626 * resume event, but we first need to translate the hardware port ID
1627 * into the index into the ports on the correct split roothub, and the
1628 * correct bus_state structure.
1629 */
1630 bus_state = &xhci->bus_state[hcd_index(hcd)];
1631 if (hcd->speed >= HCD_USB3)
1632 port_array = xhci->usb3_ports;
1633 else
1634 port_array = xhci->usb2_ports;
1635 /* Find the faked port hub number */
1636 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1637 port_id);
1638 portsc = readl(port_array[faked_port_index]);
1639
1640 trace_xhci_handle_port_status(faked_port_index, portsc);
1641
1642 if (hcd->state == HC_STATE_SUSPENDED) {
1643 xhci_dbg(xhci, "resume root hub\n");
1644 usb_hcd_resume_root_hub(hcd);
1645 }
1646
1647 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
1648 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1649
1650 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1651 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1652
1653 cmd_reg = readl(&xhci->op_regs->command);
1654 if (!(cmd_reg & CMD_RUN)) {
1655 xhci_warn(xhci, "xHC is not running.\n");
1656 goto cleanup;
1657 }
1658
1659 if (DEV_SUPERSPEED_ANY(portsc)) {
1660 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1661 /* Set a flag to say the port signaled remote wakeup,
1662 * so we can tell the difference between the end of
1663 * device and host initiated resume.
1664 */
1665 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1666 xhci_test_and_clear_bit(xhci, port_array,
1667 faked_port_index, PORT_PLC);
1668 xhci_set_link_state(xhci, port_array, faked_port_index,
1669 XDEV_U0);
1670 /* Need to wait until the next link state change
1671 * indicates the device is actually in U0.
1672 */
1673 bogus_port_status = true;
1674 goto cleanup;
1675 } else if (!test_bit(faked_port_index,
1676 &bus_state->resuming_ports)) {
1677 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1678 bus_state->resume_done[faked_port_index] = jiffies +
1679 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1680 set_bit(faked_port_index, &bus_state->resuming_ports);
1681 /* Do the rest in GetPortStatus after resume time delay.
1682 * Avoid polling roothub status before that so that a
1683 * usb device auto-resume latency around ~40ms.
1684 */
1685 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1686 mod_timer(&hcd->rh_timer,
1687 bus_state->resume_done[faked_port_index]);
1688 bogus_port_status = true;
1689 }
1690 }
1691
1692 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
1693 DEV_SUPERSPEED_ANY(portsc)) {
1694 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1695 /* We've just brought the device into U0 through either the
1696 * Resume state after a device remote wakeup, or through the
1697 * U3Exit state after a host-initiated resume. If it's a device
1698 * initiated remote wake, don't pass up the link state change,
1699 * so the roothub behavior is consistent with external
1700 * USB 3.0 hub behavior.
1701 */
1702 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1703 faked_port_index + 1);
1704 if (slot_id && xhci->devs[slot_id])
1705 xhci_ring_device(xhci, slot_id);
1706 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1707 bus_state->port_remote_wakeup &=
1708 ~(1 << faked_port_index);
1709 xhci_test_and_clear_bit(xhci, port_array,
1710 faked_port_index, PORT_PLC);
1711 usb_wakeup_notification(hcd->self.root_hub,
1712 faked_port_index + 1);
1713 bogus_port_status = true;
1714 goto cleanup;
1715 }
1716 }
1717
1718 /*
1719 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1720 * RExit to a disconnect state). If so, let the the driver know it's
1721 * out of the RExit state.
1722 */
1723 if (!DEV_SUPERSPEED_ANY(portsc) &&
1724 test_and_clear_bit(faked_port_index,
1725 &bus_state->rexit_ports)) {
1726 complete(&bus_state->rexit_done[faked_port_index]);
1727 bogus_port_status = true;
1728 goto cleanup;
1729 }
1730
1731 if (hcd->speed < HCD_USB3)
1732 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1733 PORT_PLC);
1734
1735 cleanup:
1736 /* Update event ring dequeue pointer before dropping the lock */
1737 inc_deq(xhci, xhci->event_ring);
1738
1739 /* Don't make the USB core poll the roothub if we got a bad port status
1740 * change event. Besides, at that point we can't tell which roothub
1741 * (USB 2.0 or USB 3.0) to kick.
1742 */
1743 if (bogus_port_status)
1744 return;
1745
1746 /*
1747 * xHCI port-status-change events occur when the "or" of all the
1748 * status-change bits in the portsc register changes from 0 to 1.
1749 * New status changes won't cause an event if any other change
1750 * bits are still set. When an event occurs, switch over to
1751 * polling to avoid losing status changes.
1752 */
1753 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1754 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1755 spin_unlock(&xhci->lock);
1756 /* Pass this up to the core */
1757 usb_hcd_poll_rh_status(hcd);
1758 spin_lock(&xhci->lock);
1759 }
1760
1761 /*
1762 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1763 * at end_trb, which may be in another segment. If the suspect DMA address is a
1764 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1765 * returns 0.
1766 */
1767 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1768 struct xhci_segment *start_seg,
1769 union xhci_trb *start_trb,
1770 union xhci_trb *end_trb,
1771 dma_addr_t suspect_dma,
1772 bool debug)
1773 {
1774 dma_addr_t start_dma;
1775 dma_addr_t end_seg_dma;
1776 dma_addr_t end_trb_dma;
1777 struct xhci_segment *cur_seg;
1778
1779 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1780 cur_seg = start_seg;
1781
1782 do {
1783 if (start_dma == 0)
1784 return NULL;
1785 /* We may get an event for a Link TRB in the middle of a TD */
1786 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1787 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1788 /* If the end TRB isn't in this segment, this is set to 0 */
1789 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1790
1791 if (debug)
1792 xhci_warn(xhci,
1793 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1794 (unsigned long long)suspect_dma,
1795 (unsigned long long)start_dma,
1796 (unsigned long long)end_trb_dma,
1797 (unsigned long long)cur_seg->dma,
1798 (unsigned long long)end_seg_dma);
1799
1800 if (end_trb_dma > 0) {
1801 /* The end TRB is in this segment, so suspect should be here */
1802 if (start_dma <= end_trb_dma) {
1803 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1804 return cur_seg;
1805 } else {
1806 /* Case for one segment with
1807 * a TD wrapped around to the top
1808 */
1809 if ((suspect_dma >= start_dma &&
1810 suspect_dma <= end_seg_dma) ||
1811 (suspect_dma >= cur_seg->dma &&
1812 suspect_dma <= end_trb_dma))
1813 return cur_seg;
1814 }
1815 return NULL;
1816 } else {
1817 /* Might still be somewhere in this segment */
1818 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1819 return cur_seg;
1820 }
1821 cur_seg = cur_seg->next;
1822 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1823 } while (cur_seg != start_seg);
1824
1825 return NULL;
1826 }
1827
1828 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1829 unsigned int slot_id, unsigned int ep_index,
1830 unsigned int stream_id,
1831 struct xhci_td *td, union xhci_trb *ep_trb,
1832 enum xhci_ep_reset_type reset_type)
1833 {
1834 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1835 struct xhci_command *command;
1836 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1837 if (!command)
1838 return;
1839
1840 ep->ep_state |= EP_HALTED;
1841
1842 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1843
1844 if (reset_type == EP_HARD_RESET)
1845 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1846
1847 xhci_ring_cmd_db(xhci);
1848 }
1849
1850 /* Check if an error has halted the endpoint ring. The class driver will
1851 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1852 * However, a babble and other errors also halt the endpoint ring, and the class
1853 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1854 * Ring Dequeue Pointer command manually.
1855 */
1856 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1857 struct xhci_ep_ctx *ep_ctx,
1858 unsigned int trb_comp_code)
1859 {
1860 /* TRB completion codes that may require a manual halt cleanup */
1861 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1862 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1863 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1864 /* The 0.95 spec says a babbling control endpoint
1865 * is not halted. The 0.96 spec says it is. Some HW
1866 * claims to be 0.95 compliant, but it halts the control
1867 * endpoint anyway. Check if a babble halted the
1868 * endpoint.
1869 */
1870 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1871 return 1;
1872
1873 return 0;
1874 }
1875
1876 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1877 {
1878 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1879 /* Vendor defined "informational" completion code,
1880 * treat as not-an-error.
1881 */
1882 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1883 trb_comp_code);
1884 xhci_dbg(xhci, "Treating code as success.\n");
1885 return 1;
1886 }
1887 return 0;
1888 }
1889
1890 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1891 struct xhci_ring *ep_ring, int *status)
1892 {
1893 struct urb_priv *urb_priv;
1894 struct urb *urb = NULL;
1895
1896 /* Clean up the endpoint's TD list */
1897 urb = td->urb;
1898 urb_priv = urb->hcpriv;
1899
1900 /* if a bounce buffer was used to align this td then unmap it */
1901 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1902
1903 /* Do one last check of the actual transfer length.
1904 * If the host controller said we transferred more data than the buffer
1905 * length, urb->actual_length will be a very big number (since it's
1906 * unsigned). Play it safe and say we didn't transfer anything.
1907 */
1908 if (urb->actual_length > urb->transfer_buffer_length) {
1909 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1910 urb->transfer_buffer_length, urb->actual_length);
1911 urb->actual_length = 0;
1912 *status = 0;
1913 }
1914 list_del_init(&td->td_list);
1915 /* Was this TD slated to be cancelled but completed anyway? */
1916 if (!list_empty(&td->cancelled_td_list))
1917 list_del_init(&td->cancelled_td_list);
1918
1919 inc_td_cnt(urb);
1920 /* Giveback the urb when all the tds are completed */
1921 if (last_td_in_urb(td)) {
1922 if ((urb->actual_length != urb->transfer_buffer_length &&
1923 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1924 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1925 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1926 urb, urb->actual_length,
1927 urb->transfer_buffer_length, *status);
1928
1929 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1930 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1931 *status = 0;
1932 xhci_giveback_urb_in_irq(xhci, td, *status);
1933 }
1934
1935 return 0;
1936 }
1937
1938 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1939 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1940 struct xhci_virt_ep *ep, int *status)
1941 {
1942 struct xhci_virt_device *xdev;
1943 struct xhci_ep_ctx *ep_ctx;
1944 struct xhci_ring *ep_ring;
1945 unsigned int slot_id;
1946 u32 trb_comp_code;
1947 int ep_index;
1948
1949 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1950 xdev = xhci->devs[slot_id];
1951 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1952 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1953 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1954 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1955
1956 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1957 trb_comp_code == COMP_STOPPED ||
1958 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1959 /* The Endpoint Stop Command completion will take care of any
1960 * stopped TDs. A stopped TD may be restarted, so don't update
1961 * the ring dequeue pointer or take this TD off any lists yet.
1962 */
1963 return 0;
1964 }
1965 if (trb_comp_code == COMP_STALL_ERROR ||
1966 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1967 trb_comp_code)) {
1968 /* Issue a reset endpoint command to clear the host side
1969 * halt, followed by a set dequeue command to move the
1970 * dequeue pointer past the TD.
1971 * The class driver clears the device side halt later.
1972 */
1973 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1974 ep_ring->stream_id, td, ep_trb,
1975 EP_HARD_RESET);
1976 } else {
1977 /* Update ring dequeue pointer */
1978 while (ep_ring->dequeue != td->last_trb)
1979 inc_deq(xhci, ep_ring);
1980 inc_deq(xhci, ep_ring);
1981 }
1982
1983 return xhci_td_cleanup(xhci, td, ep_ring, status);
1984 }
1985
1986 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1987 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1988 union xhci_trb *stop_trb)
1989 {
1990 u32 sum;
1991 union xhci_trb *trb = ring->dequeue;
1992 struct xhci_segment *seg = ring->deq_seg;
1993
1994 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1995 if (!trb_is_noop(trb) && !trb_is_link(trb))
1996 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1997 }
1998 return sum;
1999 }
2000
2001 /*
2002 * Process control tds, update urb status and actual_length.
2003 */
2004 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2005 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2006 struct xhci_virt_ep *ep, int *status)
2007 {
2008 struct xhci_virt_device *xdev;
2009 struct xhci_ring *ep_ring;
2010 unsigned int slot_id;
2011 int ep_index;
2012 struct xhci_ep_ctx *ep_ctx;
2013 u32 trb_comp_code;
2014 u32 remaining, requested;
2015 u32 trb_type;
2016
2017 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2018 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2019 xdev = xhci->devs[slot_id];
2020 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2021 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2022 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2023 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2024 requested = td->urb->transfer_buffer_length;
2025 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2026
2027 switch (trb_comp_code) {
2028 case COMP_SUCCESS:
2029 if (trb_type != TRB_STATUS) {
2030 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2031 (trb_type == TRB_DATA) ? "data" : "setup");
2032 *status = -ESHUTDOWN;
2033 break;
2034 }
2035 *status = 0;
2036 break;
2037 case COMP_SHORT_PACKET:
2038 *status = 0;
2039 break;
2040 case COMP_STOPPED_SHORT_PACKET:
2041 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2042 td->urb->actual_length = remaining;
2043 else
2044 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2045 goto finish_td;
2046 case COMP_STOPPED:
2047 switch (trb_type) {
2048 case TRB_SETUP:
2049 td->urb->actual_length = 0;
2050 goto finish_td;
2051 case TRB_DATA:
2052 case TRB_NORMAL:
2053 td->urb->actual_length = requested - remaining;
2054 goto finish_td;
2055 case TRB_STATUS:
2056 td->urb->actual_length = requested;
2057 goto finish_td;
2058 default:
2059 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2060 trb_type);
2061 goto finish_td;
2062 }
2063 case COMP_STOPPED_LENGTH_INVALID:
2064 goto finish_td;
2065 default:
2066 if (!xhci_requires_manual_halt_cleanup(xhci,
2067 ep_ctx, trb_comp_code))
2068 break;
2069 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2070 trb_comp_code, ep_index);
2071 /* else fall through */
2072 case COMP_STALL_ERROR:
2073 /* Did we transfer part of the data (middle) phase? */
2074 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2075 td->urb->actual_length = requested - remaining;
2076 else if (!td->urb_length_set)
2077 td->urb->actual_length = 0;
2078 goto finish_td;
2079 }
2080
2081 /* stopped at setup stage, no data transferred */
2082 if (trb_type == TRB_SETUP)
2083 goto finish_td;
2084
2085 /*
2086 * if on data stage then update the actual_length of the URB and flag it
2087 * as set, so it won't be overwritten in the event for the last TRB.
2088 */
2089 if (trb_type == TRB_DATA ||
2090 trb_type == TRB_NORMAL) {
2091 td->urb_length_set = true;
2092 td->urb->actual_length = requested - remaining;
2093 xhci_dbg(xhci, "Waiting for status stage event\n");
2094 return 0;
2095 }
2096
2097 /* at status stage */
2098 if (!td->urb_length_set)
2099 td->urb->actual_length = requested;
2100
2101 finish_td:
2102 return finish_td(xhci, td, ep_trb, event, ep, status);
2103 }
2104
2105 /*
2106 * Process isochronous tds, update urb packet status and actual_length.
2107 */
2108 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2109 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2110 struct xhci_virt_ep *ep, int *status)
2111 {
2112 struct xhci_ring *ep_ring;
2113 struct urb_priv *urb_priv;
2114 int idx;
2115 struct usb_iso_packet_descriptor *frame;
2116 u32 trb_comp_code;
2117 bool sum_trbs_for_length = false;
2118 u32 remaining, requested, ep_trb_len;
2119 int short_framestatus;
2120
2121 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2122 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2123 urb_priv = td->urb->hcpriv;
2124 idx = urb_priv->num_tds_done;
2125 frame = &td->urb->iso_frame_desc[idx];
2126 requested = frame->length;
2127 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2128 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2129 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2130 -EREMOTEIO : 0;
2131
2132 /* handle completion code */
2133 switch (trb_comp_code) {
2134 case COMP_SUCCESS:
2135 if (remaining) {
2136 frame->status = short_framestatus;
2137 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2138 sum_trbs_for_length = true;
2139 break;
2140 }
2141 frame->status = 0;
2142 break;
2143 case COMP_SHORT_PACKET:
2144 frame->status = short_framestatus;
2145 sum_trbs_for_length = true;
2146 break;
2147 case COMP_BANDWIDTH_OVERRUN_ERROR:
2148 frame->status = -ECOMM;
2149 break;
2150 case COMP_ISOCH_BUFFER_OVERRUN:
2151 case COMP_BABBLE_DETECTED_ERROR:
2152 frame->status = -EOVERFLOW;
2153 break;
2154 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2155 case COMP_STALL_ERROR:
2156 frame->status = -EPROTO;
2157 break;
2158 case COMP_USB_TRANSACTION_ERROR:
2159 frame->status = -EPROTO;
2160 if (ep_trb != td->last_trb)
2161 return 0;
2162 break;
2163 case COMP_STOPPED:
2164 sum_trbs_for_length = true;
2165 break;
2166 case COMP_STOPPED_SHORT_PACKET:
2167 /* field normally containing residue now contains tranferred */
2168 frame->status = short_framestatus;
2169 requested = remaining;
2170 break;
2171 case COMP_STOPPED_LENGTH_INVALID:
2172 requested = 0;
2173 remaining = 0;
2174 break;
2175 default:
2176 sum_trbs_for_length = true;
2177 frame->status = -1;
2178 break;
2179 }
2180
2181 if (sum_trbs_for_length)
2182 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2183 ep_trb_len - remaining;
2184 else
2185 frame->actual_length = requested;
2186
2187 td->urb->actual_length += frame->actual_length;
2188
2189 return finish_td(xhci, td, ep_trb, event, ep, status);
2190 }
2191
2192 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2193 struct xhci_transfer_event *event,
2194 struct xhci_virt_ep *ep, int *status)
2195 {
2196 struct xhci_ring *ep_ring;
2197 struct urb_priv *urb_priv;
2198 struct usb_iso_packet_descriptor *frame;
2199 int idx;
2200
2201 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2202 urb_priv = td->urb->hcpriv;
2203 idx = urb_priv->num_tds_done;
2204 frame = &td->urb->iso_frame_desc[idx];
2205
2206 /* The transfer is partly done. */
2207 frame->status = -EXDEV;
2208
2209 /* calc actual length */
2210 frame->actual_length = 0;
2211
2212 /* Update ring dequeue pointer */
2213 while (ep_ring->dequeue != td->last_trb)
2214 inc_deq(xhci, ep_ring);
2215 inc_deq(xhci, ep_ring);
2216
2217 return xhci_td_cleanup(xhci, td, ep_ring, status);
2218 }
2219
2220 /*
2221 * Process bulk and interrupt tds, update urb status and actual_length.
2222 */
2223 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2224 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2225 struct xhci_virt_ep *ep, int *status)
2226 {
2227 struct xhci_ring *ep_ring;
2228 u32 trb_comp_code;
2229 u32 remaining, requested, ep_trb_len;
2230
2231 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2232 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2233 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2234 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2235 requested = td->urb->transfer_buffer_length;
2236
2237 switch (trb_comp_code) {
2238 case COMP_SUCCESS:
2239 /* handle success with untransferred data as short packet */
2240 if (ep_trb != td->last_trb || remaining) {
2241 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2242 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2243 td->urb->ep->desc.bEndpointAddress,
2244 requested, remaining);
2245 }
2246 *status = 0;
2247 break;
2248 case COMP_SHORT_PACKET:
2249 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2250 td->urb->ep->desc.bEndpointAddress,
2251 requested, remaining);
2252 *status = 0;
2253 break;
2254 case COMP_STOPPED_SHORT_PACKET:
2255 td->urb->actual_length = remaining;
2256 goto finish_td;
2257 case COMP_STOPPED_LENGTH_INVALID:
2258 /* stopped on ep trb with invalid length, exclude it */
2259 ep_trb_len = 0;
2260 remaining = 0;
2261 break;
2262 default:
2263 /* do nothing */
2264 break;
2265 }
2266
2267 if (ep_trb == td->last_trb)
2268 td->urb->actual_length = requested - remaining;
2269 else
2270 td->urb->actual_length =
2271 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2272 ep_trb_len - remaining;
2273 finish_td:
2274 if (remaining > requested) {
2275 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2276 remaining);
2277 td->urb->actual_length = 0;
2278 }
2279 return finish_td(xhci, td, ep_trb, event, ep, status);
2280 }
2281
2282 /*
2283 * If this function returns an error condition, it means it got a Transfer
2284 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2285 * At this point, the host controller is probably hosed and should be reset.
2286 */
2287 static int handle_tx_event(struct xhci_hcd *xhci,
2288 struct xhci_transfer_event *event)
2289 {
2290 struct xhci_virt_device *xdev;
2291 struct xhci_virt_ep *ep;
2292 struct xhci_ring *ep_ring;
2293 unsigned int slot_id;
2294 int ep_index;
2295 struct xhci_td *td = NULL;
2296 dma_addr_t ep_trb_dma;
2297 struct xhci_segment *ep_seg;
2298 union xhci_trb *ep_trb;
2299 int status = -EINPROGRESS;
2300 struct xhci_ep_ctx *ep_ctx;
2301 struct list_head *tmp;
2302 u32 trb_comp_code;
2303 int td_num = 0;
2304 bool handling_skipped_tds = false;
2305
2306 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2307 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2308 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2309 ep_trb_dma = le64_to_cpu(event->buffer);
2310
2311 xdev = xhci->devs[slot_id];
2312 if (!xdev) {
2313 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2314 slot_id);
2315 goto err_out;
2316 }
2317
2318 ep = &xdev->eps[ep_index];
2319 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2320 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2321
2322 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2323 xhci_err(xhci,
2324 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2325 slot_id, ep_index);
2326 goto err_out;
2327 }
2328
2329 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2330 if (!ep_ring) {
2331 switch (trb_comp_code) {
2332 case COMP_STALL_ERROR:
2333 case COMP_USB_TRANSACTION_ERROR:
2334 case COMP_INVALID_STREAM_TYPE_ERROR:
2335 case COMP_INVALID_STREAM_ID_ERROR:
2336 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2337 NULL, NULL, EP_SOFT_RESET);
2338 goto cleanup;
2339 case COMP_RING_UNDERRUN:
2340 case COMP_RING_OVERRUN:
2341 goto cleanup;
2342 default:
2343 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2344 slot_id, ep_index);
2345 goto err_out;
2346 }
2347 }
2348
2349 /* Count current td numbers if ep->skip is set */
2350 if (ep->skip) {
2351 list_for_each(tmp, &ep_ring->td_list)
2352 td_num++;
2353 }
2354
2355 /* Look for common error cases */
2356 switch (trb_comp_code) {
2357 /* Skip codes that require special handling depending on
2358 * transfer type
2359 */
2360 case COMP_SUCCESS:
2361 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2362 break;
2363 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2364 trb_comp_code = COMP_SHORT_PACKET;
2365 else
2366 xhci_warn_ratelimited(xhci,
2367 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2368 slot_id, ep_index);
2369 case COMP_SHORT_PACKET:
2370 break;
2371 /* Completion codes for endpoint stopped state */
2372 case COMP_STOPPED:
2373 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2374 slot_id, ep_index);
2375 break;
2376 case COMP_STOPPED_LENGTH_INVALID:
2377 xhci_dbg(xhci,
2378 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2379 slot_id, ep_index);
2380 break;
2381 case COMP_STOPPED_SHORT_PACKET:
2382 xhci_dbg(xhci,
2383 "Stopped with short packet transfer detected for slot %u ep %u\n",
2384 slot_id, ep_index);
2385 break;
2386 /* Completion codes for endpoint halted state */
2387 case COMP_STALL_ERROR:
2388 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2389 ep_index);
2390 ep->ep_state |= EP_HALTED;
2391 status = -EPIPE;
2392 break;
2393 case COMP_SPLIT_TRANSACTION_ERROR:
2394 case COMP_USB_TRANSACTION_ERROR:
2395 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2396 slot_id, ep_index);
2397 status = -EPROTO;
2398 break;
2399 case COMP_BABBLE_DETECTED_ERROR:
2400 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2401 slot_id, ep_index);
2402 status = -EOVERFLOW;
2403 break;
2404 /* Completion codes for endpoint error state */
2405 case COMP_TRB_ERROR:
2406 xhci_warn(xhci,
2407 "WARN: TRB error for slot %u ep %u on endpoint\n",
2408 slot_id, ep_index);
2409 status = -EILSEQ;
2410 break;
2411 /* completion codes not indicating endpoint state change */
2412 case COMP_DATA_BUFFER_ERROR:
2413 xhci_warn(xhci,
2414 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2415 slot_id, ep_index);
2416 status = -ENOSR;
2417 break;
2418 case COMP_BANDWIDTH_OVERRUN_ERROR:
2419 xhci_warn(xhci,
2420 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2421 slot_id, ep_index);
2422 break;
2423 case COMP_ISOCH_BUFFER_OVERRUN:
2424 xhci_warn(xhci,
2425 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2426 slot_id, ep_index);
2427 break;
2428 case COMP_RING_UNDERRUN:
2429 /*
2430 * When the Isoch ring is empty, the xHC will generate
2431 * a Ring Overrun Event for IN Isoch endpoint or Ring
2432 * Underrun Event for OUT Isoch endpoint.
2433 */
2434 xhci_dbg(xhci, "underrun event on endpoint\n");
2435 if (!list_empty(&ep_ring->td_list))
2436 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2437 "still with TDs queued?\n",
2438 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2439 ep_index);
2440 goto cleanup;
2441 case COMP_RING_OVERRUN:
2442 xhci_dbg(xhci, "overrun event on endpoint\n");
2443 if (!list_empty(&ep_ring->td_list))
2444 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2445 "still with TDs queued?\n",
2446 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2447 ep_index);
2448 goto cleanup;
2449 case COMP_MISSED_SERVICE_ERROR:
2450 /*
2451 * When encounter missed service error, one or more isoc tds
2452 * may be missed by xHC.
2453 * Set skip flag of the ep_ring; Complete the missed tds as
2454 * short transfer when process the ep_ring next time.
2455 */
2456 ep->skip = true;
2457 xhci_dbg(xhci,
2458 "Miss service interval error for slot %u ep %u, set skip flag\n",
2459 slot_id, ep_index);
2460 goto cleanup;
2461 case COMP_NO_PING_RESPONSE_ERROR:
2462 ep->skip = true;
2463 xhci_dbg(xhci,
2464 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2465 slot_id, ep_index);
2466 goto cleanup;
2467
2468 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2469 /* needs disable slot command to recover */
2470 xhci_warn(xhci,
2471 "WARN: detect an incompatible device for slot %u ep %u",
2472 slot_id, ep_index);
2473 status = -EPROTO;
2474 break;
2475 default:
2476 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2477 status = 0;
2478 break;
2479 }
2480 xhci_warn(xhci,
2481 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2482 trb_comp_code, slot_id, ep_index);
2483 goto cleanup;
2484 }
2485
2486 do {
2487 /* This TRB should be in the TD at the head of this ring's
2488 * TD list.
2489 */
2490 if (list_empty(&ep_ring->td_list)) {
2491 /*
2492 * A stopped endpoint may generate an extra completion
2493 * event if the device was suspended. Don't print
2494 * warnings.
2495 */
2496 if (!(trb_comp_code == COMP_STOPPED ||
2497 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2498 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2499 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2500 ep_index);
2501 }
2502 if (ep->skip) {
2503 ep->skip = false;
2504 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2505 slot_id, ep_index);
2506 }
2507 goto cleanup;
2508 }
2509
2510 /* We've skipped all the TDs on the ep ring when ep->skip set */
2511 if (ep->skip && td_num == 0) {
2512 ep->skip = false;
2513 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2514 slot_id, ep_index);
2515 goto cleanup;
2516 }
2517
2518 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2519 td_list);
2520 if (ep->skip)
2521 td_num--;
2522
2523 /* Is this a TRB in the currently executing TD? */
2524 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2525 td->last_trb, ep_trb_dma, false);
2526
2527 /*
2528 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2529 * is not in the current TD pointed by ep_ring->dequeue because
2530 * that the hardware dequeue pointer still at the previous TRB
2531 * of the current TD. The previous TRB maybe a Link TD or the
2532 * last TRB of the previous TD. The command completion handle
2533 * will take care the rest.
2534 */
2535 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2536 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2537 goto cleanup;
2538 }
2539
2540 if (!ep_seg) {
2541 if (!ep->skip ||
2542 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2543 /* Some host controllers give a spurious
2544 * successful event after a short transfer.
2545 * Ignore it.
2546 */
2547 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2548 ep_ring->last_td_was_short) {
2549 ep_ring->last_td_was_short = false;
2550 goto cleanup;
2551 }
2552 /* HC is busted, give up! */
2553 xhci_err(xhci,
2554 "ERROR Transfer event TRB DMA ptr not "
2555 "part of current TD ep_index %d "
2556 "comp_code %u\n", ep_index,
2557 trb_comp_code);
2558 trb_in_td(xhci, ep_ring->deq_seg,
2559 ep_ring->dequeue, td->last_trb,
2560 ep_trb_dma, true);
2561 return -ESHUTDOWN;
2562 }
2563
2564 skip_isoc_td(xhci, td, event, ep, &status);
2565 goto cleanup;
2566 }
2567 if (trb_comp_code == COMP_SHORT_PACKET)
2568 ep_ring->last_td_was_short = true;
2569 else
2570 ep_ring->last_td_was_short = false;
2571
2572 if (ep->skip) {
2573 xhci_dbg(xhci,
2574 "Found td. Clear skip flag for slot %u ep %u.\n",
2575 slot_id, ep_index);
2576 ep->skip = false;
2577 }
2578
2579 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2580 sizeof(*ep_trb)];
2581
2582 trace_xhci_handle_transfer(ep_ring,
2583 (struct xhci_generic_trb *) ep_trb);
2584
2585 /*
2586 * No-op TRB could trigger interrupts in a case where
2587 * a URB was killed and a STALL_ERROR happens right
2588 * after the endpoint ring stopped. Reset the halted
2589 * endpoint. Otherwise, the endpoint remains stalled
2590 * indefinitely.
2591 */
2592 if (trb_is_noop(ep_trb)) {
2593 if (trb_comp_code == COMP_STALL_ERROR ||
2594 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2595 trb_comp_code))
2596 xhci_cleanup_halted_endpoint(xhci, slot_id,
2597 ep_index,
2598 ep_ring->stream_id,
2599 td, ep_trb,
2600 EP_HARD_RESET);
2601 goto cleanup;
2602 }
2603
2604 /* update the urb's actual_length and give back to the core */
2605 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2606 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2607 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2608 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2609 else
2610 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2611 &status);
2612 cleanup:
2613 handling_skipped_tds = ep->skip &&
2614 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2615 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2616
2617 /*
2618 * Do not update event ring dequeue pointer if we're in a loop
2619 * processing missed tds.
2620 */
2621 if (!handling_skipped_tds)
2622 inc_deq(xhci, xhci->event_ring);
2623
2624 /*
2625 * If ep->skip is set, it means there are missed tds on the
2626 * endpoint ring need to take care of.
2627 * Process them as short transfer until reach the td pointed by
2628 * the event.
2629 */
2630 } while (handling_skipped_tds);
2631
2632 return 0;
2633
2634 err_out:
2635 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2636 (unsigned long long) xhci_trb_virt_to_dma(
2637 xhci->event_ring->deq_seg,
2638 xhci->event_ring->dequeue),
2639 lower_32_bits(le64_to_cpu(event->buffer)),
2640 upper_32_bits(le64_to_cpu(event->buffer)),
2641 le32_to_cpu(event->transfer_len),
2642 le32_to_cpu(event->flags));
2643 return -ENODEV;
2644 }
2645
2646 /*
2647 * This function handles all OS-owned events on the event ring. It may drop
2648 * xhci->lock between event processing (e.g. to pass up port status changes).
2649 * Returns >0 for "possibly more events to process" (caller should call again),
2650 * otherwise 0 if done. In future, <0 returns should indicate error code.
2651 */
2652 static int xhci_handle_event(struct xhci_hcd *xhci)
2653 {
2654 union xhci_trb *event;
2655 int update_ptrs = 1;
2656 int ret;
2657
2658 /* Event ring hasn't been allocated yet. */
2659 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2660 xhci_err(xhci, "ERROR event ring not ready\n");
2661 return -ENOMEM;
2662 }
2663
2664 event = xhci->event_ring->dequeue;
2665 /* Does the HC or OS own the TRB? */
2666 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2667 xhci->event_ring->cycle_state)
2668 return 0;
2669
2670 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2671
2672 /*
2673 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2674 * speculative reads of the event's flags/data below.
2675 */
2676 rmb();
2677 /* FIXME: Handle more event types. */
2678 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2679 case TRB_TYPE(TRB_COMPLETION):
2680 handle_cmd_completion(xhci, &event->event_cmd);
2681 break;
2682 case TRB_TYPE(TRB_PORT_STATUS):
2683 handle_port_status(xhci, event);
2684 update_ptrs = 0;
2685 break;
2686 case TRB_TYPE(TRB_TRANSFER):
2687 ret = handle_tx_event(xhci, &event->trans_event);
2688 if (ret >= 0)
2689 update_ptrs = 0;
2690 break;
2691 case TRB_TYPE(TRB_DEV_NOTE):
2692 handle_device_notification(xhci, event);
2693 break;
2694 default:
2695 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2696 TRB_TYPE(48))
2697 handle_vendor_event(xhci, event);
2698 else
2699 xhci_warn(xhci, "ERROR unknown event type %d\n",
2700 TRB_FIELD_TO_TYPE(
2701 le32_to_cpu(event->event_cmd.flags)));
2702 }
2703 /* Any of the above functions may drop and re-acquire the lock, so check
2704 * to make sure a watchdog timer didn't mark the host as non-responsive.
2705 */
2706 if (xhci->xhc_state & XHCI_STATE_DYING) {
2707 xhci_dbg(xhci, "xHCI host dying, returning from "
2708 "event handler.\n");
2709 return 0;
2710 }
2711
2712 if (update_ptrs)
2713 /* Update SW event ring dequeue pointer */
2714 inc_deq(xhci, xhci->event_ring);
2715
2716 /* Are there more items on the event ring? Caller will call us again to
2717 * check.
2718 */
2719 return 1;
2720 }
2721
2722 /*
2723 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2724 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2725 * indicators of an event TRB error, but we check the status *first* to be safe.
2726 */
2727 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2728 {
2729 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2730 union xhci_trb *event_ring_deq;
2731 irqreturn_t ret = IRQ_NONE;
2732 unsigned long flags;
2733 dma_addr_t deq;
2734 u64 temp_64;
2735 u32 status;
2736
2737 spin_lock_irqsave(&xhci->lock, flags);
2738 /* Check if the xHC generated the interrupt, or the irq is shared */
2739 status = readl(&xhci->op_regs->status);
2740 if (status == ~(u32)0) {
2741 xhci_hc_died(xhci);
2742 ret = IRQ_HANDLED;
2743 goto out;
2744 }
2745
2746 if (!(status & STS_EINT))
2747 goto out;
2748
2749 if (status & STS_FATAL) {
2750 xhci_warn(xhci, "WARNING: Host System Error\n");
2751 xhci_halt(xhci);
2752 ret = IRQ_HANDLED;
2753 goto out;
2754 }
2755
2756 /*
2757 * Clear the op reg interrupt status first,
2758 * so we can receive interrupts from other MSI-X interrupters.
2759 * Write 1 to clear the interrupt status.
2760 */
2761 status |= STS_EINT;
2762 writel(status, &xhci->op_regs->status);
2763
2764 if (!hcd->msi_enabled) {
2765 u32 irq_pending;
2766 irq_pending = readl(&xhci->ir_set->irq_pending);
2767 irq_pending |= IMAN_IP;
2768 writel(irq_pending, &xhci->ir_set->irq_pending);
2769 }
2770
2771 if (xhci->xhc_state & XHCI_STATE_DYING ||
2772 xhci->xhc_state & XHCI_STATE_HALTED) {
2773 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2774 "Shouldn't IRQs be disabled?\n");
2775 /* Clear the event handler busy flag (RW1C);
2776 * the event ring should be empty.
2777 */
2778 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2779 xhci_write_64(xhci, temp_64 | ERST_EHB,
2780 &xhci->ir_set->erst_dequeue);
2781 ret = IRQ_HANDLED;
2782 goto out;
2783 }
2784
2785 event_ring_deq = xhci->event_ring->dequeue;
2786 /* FIXME this should be a delayed service routine
2787 * that clears the EHB.
2788 */
2789 while (xhci_handle_event(xhci) > 0) {}
2790
2791 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2792 /* If necessary, update the HW's version of the event ring deq ptr. */
2793 if (event_ring_deq != xhci->event_ring->dequeue) {
2794 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2795 xhci->event_ring->dequeue);
2796 if (deq == 0)
2797 xhci_warn(xhci, "WARN something wrong with SW event "
2798 "ring dequeue ptr.\n");
2799 /* Update HC event ring dequeue pointer */
2800 temp_64 &= ERST_PTR_MASK;
2801 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2802 }
2803
2804 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2805 temp_64 |= ERST_EHB;
2806 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2807 ret = IRQ_HANDLED;
2808
2809 out:
2810 spin_unlock_irqrestore(&xhci->lock, flags);
2811
2812 return ret;
2813 }
2814
2815 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2816 {
2817 return xhci_irq(hcd);
2818 }
2819
2820 /**** Endpoint Ring Operations ****/
2821
2822 /*
2823 * Generic function for queueing a TRB on a ring.
2824 * The caller must have checked to make sure there's room on the ring.
2825 *
2826 * @more_trbs_coming: Will you enqueue more TRBs before calling
2827 * prepare_transfer()?
2828 */
2829 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2830 bool more_trbs_coming,
2831 u32 field1, u32 field2, u32 field3, u32 field4)
2832 {
2833 struct xhci_generic_trb *trb;
2834
2835 trb = &ring->enqueue->generic;
2836 trb->field[0] = cpu_to_le32(field1);
2837 trb->field[1] = cpu_to_le32(field2);
2838 trb->field[2] = cpu_to_le32(field3);
2839 trb->field[3] = cpu_to_le32(field4);
2840
2841 trace_xhci_queue_trb(ring, trb);
2842
2843 inc_enq(xhci, ring, more_trbs_coming);
2844 }
2845
2846 /*
2847 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2848 * FIXME allocate segments if the ring is full.
2849 */
2850 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2851 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2852 {
2853 unsigned int num_trbs_needed;
2854
2855 /* Make sure the endpoint has been added to xHC schedule */
2856 switch (ep_state) {
2857 case EP_STATE_DISABLED:
2858 /*
2859 * USB core changed config/interfaces without notifying us,
2860 * or hardware is reporting the wrong state.
2861 */
2862 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2863 return -ENOENT;
2864 case EP_STATE_ERROR:
2865 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2866 /* FIXME event handling code for error needs to clear it */
2867 /* XXX not sure if this should be -ENOENT or not */
2868 return -EINVAL;
2869 case EP_STATE_HALTED:
2870 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2871 case EP_STATE_STOPPED:
2872 case EP_STATE_RUNNING:
2873 break;
2874 default:
2875 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2876 /*
2877 * FIXME issue Configure Endpoint command to try to get the HC
2878 * back into a known state.
2879 */
2880 return -EINVAL;
2881 }
2882
2883 while (1) {
2884 if (room_on_ring(xhci, ep_ring, num_trbs))
2885 break;
2886
2887 if (ep_ring == xhci->cmd_ring) {
2888 xhci_err(xhci, "Do not support expand command ring\n");
2889 return -ENOMEM;
2890 }
2891
2892 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2893 "ERROR no room on ep ring, try ring expansion");
2894 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2895 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2896 mem_flags)) {
2897 xhci_err(xhci, "Ring expansion failed\n");
2898 return -ENOMEM;
2899 }
2900 }
2901
2902 while (trb_is_link(ep_ring->enqueue)) {
2903 /* If we're not dealing with 0.95 hardware or isoc rings
2904 * on AMD 0.96 host, clear the chain bit.
2905 */
2906 if (!xhci_link_trb_quirk(xhci) &&
2907 !(ep_ring->type == TYPE_ISOC &&
2908 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2909 ep_ring->enqueue->link.control &=
2910 cpu_to_le32(~TRB_CHAIN);
2911 else
2912 ep_ring->enqueue->link.control |=
2913 cpu_to_le32(TRB_CHAIN);
2914
2915 wmb();
2916 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2917
2918 /* Toggle the cycle bit after the last ring segment. */
2919 if (link_trb_toggles_cycle(ep_ring->enqueue))
2920 ep_ring->cycle_state ^= 1;
2921
2922 ep_ring->enq_seg = ep_ring->enq_seg->next;
2923 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2924 }
2925 return 0;
2926 }
2927
2928 static int prepare_transfer(struct xhci_hcd *xhci,
2929 struct xhci_virt_device *xdev,
2930 unsigned int ep_index,
2931 unsigned int stream_id,
2932 unsigned int num_trbs,
2933 struct urb *urb,
2934 unsigned int td_index,
2935 gfp_t mem_flags)
2936 {
2937 int ret;
2938 struct urb_priv *urb_priv;
2939 struct xhci_td *td;
2940 struct xhci_ring *ep_ring;
2941 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2942
2943 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2944 if (!ep_ring) {
2945 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2946 stream_id);
2947 return -EINVAL;
2948 }
2949
2950 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2951 num_trbs, mem_flags);
2952 if (ret)
2953 return ret;
2954
2955 urb_priv = urb->hcpriv;
2956 td = &urb_priv->td[td_index];
2957
2958 INIT_LIST_HEAD(&td->td_list);
2959 INIT_LIST_HEAD(&td->cancelled_td_list);
2960
2961 if (td_index == 0) {
2962 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2963 if (unlikely(ret))
2964 return ret;
2965 }
2966
2967 td->urb = urb;
2968 /* Add this TD to the tail of the endpoint ring's TD list */
2969 list_add_tail(&td->td_list, &ep_ring->td_list);
2970 td->start_seg = ep_ring->enq_seg;
2971 td->first_trb = ep_ring->enqueue;
2972
2973 return 0;
2974 }
2975
2976 static unsigned int count_trbs(u64 addr, u64 len)
2977 {
2978 unsigned int num_trbs;
2979
2980 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2981 TRB_MAX_BUFF_SIZE);
2982 if (num_trbs == 0)
2983 num_trbs++;
2984
2985 return num_trbs;
2986 }
2987
2988 static inline unsigned int count_trbs_needed(struct urb *urb)
2989 {
2990 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2991 }
2992
2993 static unsigned int count_sg_trbs_needed(struct urb *urb)
2994 {
2995 struct scatterlist *sg;
2996 unsigned int i, len, full_len, num_trbs = 0;
2997
2998 full_len = urb->transfer_buffer_length;
2999
3000 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3001 len = sg_dma_len(sg);
3002 num_trbs += count_trbs(sg_dma_address(sg), len);
3003 len = min_t(unsigned int, len, full_len);
3004 full_len -= len;
3005 if (full_len == 0)
3006 break;
3007 }
3008
3009 return num_trbs;
3010 }
3011
3012 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3013 {
3014 u64 addr, len;
3015
3016 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3017 len = urb->iso_frame_desc[i].length;
3018
3019 return count_trbs(addr, len);
3020 }
3021
3022 static void check_trb_math(struct urb *urb, int running_total)
3023 {
3024 if (unlikely(running_total != urb->transfer_buffer_length))
3025 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3026 "queued %#x (%d), asked for %#x (%d)\n",
3027 __func__,
3028 urb->ep->desc.bEndpointAddress,
3029 running_total, running_total,
3030 urb->transfer_buffer_length,
3031 urb->transfer_buffer_length);
3032 }
3033
3034 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3035 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3036 struct xhci_generic_trb *start_trb)
3037 {
3038 /*
3039 * Pass all the TRBs to the hardware at once and make sure this write
3040 * isn't reordered.
3041 */
3042 wmb();
3043 if (start_cycle)
3044 start_trb->field[3] |= cpu_to_le32(start_cycle);
3045 else
3046 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3047 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3048 }
3049
3050 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3051 struct xhci_ep_ctx *ep_ctx)
3052 {
3053 int xhci_interval;
3054 int ep_interval;
3055
3056 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3057 ep_interval = urb->interval;
3058
3059 /* Convert to microframes */
3060 if (urb->dev->speed == USB_SPEED_LOW ||
3061 urb->dev->speed == USB_SPEED_FULL)
3062 ep_interval *= 8;
3063
3064 /* FIXME change this to a warning and a suggestion to use the new API
3065 * to set the polling interval (once the API is added).
3066 */
3067 if (xhci_interval != ep_interval) {
3068 dev_dbg_ratelimited(&urb->dev->dev,
3069 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3070 ep_interval, ep_interval == 1 ? "" : "s",
3071 xhci_interval, xhci_interval == 1 ? "" : "s");
3072 urb->interval = xhci_interval;
3073 /* Convert back to frames for LS/FS devices */
3074 if (urb->dev->speed == USB_SPEED_LOW ||
3075 urb->dev->speed == USB_SPEED_FULL)
3076 urb->interval /= 8;
3077 }
3078 }
3079
3080 /*
3081 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3082 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3083 * (comprised of sg list entries) can take several service intervals to
3084 * transmit.
3085 */
3086 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3087 struct urb *urb, int slot_id, unsigned int ep_index)
3088 {
3089 struct xhci_ep_ctx *ep_ctx;
3090
3091 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3092 check_interval(xhci, urb, ep_ctx);
3093
3094 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3095 }
3096
3097 /*
3098 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3099 * packets remaining in the TD (*not* including this TRB).
3100 *
3101 * Total TD packet count = total_packet_count =
3102 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3103 *
3104 * Packets transferred up to and including this TRB = packets_transferred =
3105 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3106 *
3107 * TD size = total_packet_count - packets_transferred
3108 *
3109 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3110 * including this TRB, right shifted by 10
3111 *
3112 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3113 * This is taken care of in the TRB_TD_SIZE() macro
3114 *
3115 * The last TRB in a TD must have the TD size set to zero.
3116 */
3117 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3118 int trb_buff_len, unsigned int td_total_len,
3119 struct urb *urb, bool more_trbs_coming)
3120 {
3121 u32 maxp, total_packet_count;
3122
3123 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3124 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3125 return ((td_total_len - transferred) >> 10);
3126
3127 /* One TRB with a zero-length data packet. */
3128 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3129 trb_buff_len == td_total_len)
3130 return 0;
3131
3132 /* for MTK xHCI, TD size doesn't include this TRB */
3133 if (xhci->quirks & XHCI_MTK_HOST)
3134 trb_buff_len = 0;
3135
3136 maxp = usb_endpoint_maxp(&urb->ep->desc);
3137 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3138
3139 /* Queueing functions don't count the current TRB into transferred */
3140 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3141 }
3142
3143
3144 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3145 u32 *trb_buff_len, struct xhci_segment *seg)
3146 {
3147 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3148 unsigned int unalign;
3149 unsigned int max_pkt;
3150 u32 new_buff_len;
3151
3152 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3153 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3154
3155 /* we got lucky, last normal TRB data on segment is packet aligned */
3156 if (unalign == 0)
3157 return 0;
3158
3159 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3160 unalign, *trb_buff_len);
3161
3162 /* is the last nornal TRB alignable by splitting it */
3163 if (*trb_buff_len > unalign) {
3164 *trb_buff_len -= unalign;
3165 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3166 return 0;
3167 }
3168
3169 /*
3170 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3171 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3172 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3173 */
3174 new_buff_len = max_pkt - (enqd_len % max_pkt);
3175
3176 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3177 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3178
3179 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3180 if (usb_urb_dir_out(urb)) {
3181 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3182 seg->bounce_buf, new_buff_len, enqd_len);
3183 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3184 max_pkt, DMA_TO_DEVICE);
3185 } else {
3186 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3187 max_pkt, DMA_FROM_DEVICE);
3188 }
3189
3190 if (dma_mapping_error(dev, seg->bounce_dma)) {
3191 /* try without aligning. Some host controllers survive */
3192 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3193 return 0;
3194 }
3195 *trb_buff_len = new_buff_len;
3196 seg->bounce_len = new_buff_len;
3197 seg->bounce_offs = enqd_len;
3198
3199 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3200
3201 return 1;
3202 }
3203
3204 /* This is very similar to what ehci-q.c qtd_fill() does */
3205 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3206 struct urb *urb, int slot_id, unsigned int ep_index)
3207 {
3208 struct xhci_ring *ring;
3209 struct urb_priv *urb_priv;
3210 struct xhci_td *td;
3211 struct xhci_generic_trb *start_trb;
3212 struct scatterlist *sg = NULL;
3213 bool more_trbs_coming = true;
3214 bool need_zero_pkt = false;
3215 bool first_trb = true;
3216 unsigned int num_trbs;
3217 unsigned int start_cycle, num_sgs = 0;
3218 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3219 int sent_len, ret;
3220 u32 field, length_field, remainder;
3221 u64 addr, send_addr;
3222
3223 ring = xhci_urb_to_transfer_ring(xhci, urb);
3224 if (!ring)
3225 return -EINVAL;
3226
3227 full_len = urb->transfer_buffer_length;
3228 /* If we have scatter/gather list, we use it. */
3229 if (urb->num_sgs) {
3230 num_sgs = urb->num_mapped_sgs;
3231 sg = urb->sg;
3232 addr = (u64) sg_dma_address(sg);
3233 block_len = sg_dma_len(sg);
3234 num_trbs = count_sg_trbs_needed(urb);
3235 } else {
3236 num_trbs = count_trbs_needed(urb);
3237 addr = (u64) urb->transfer_dma;
3238 block_len = full_len;
3239 }
3240 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3241 ep_index, urb->stream_id,
3242 num_trbs, urb, 0, mem_flags);
3243 if (unlikely(ret < 0))
3244 return ret;
3245
3246 urb_priv = urb->hcpriv;
3247
3248 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3249 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3250 need_zero_pkt = true;
3251
3252 td = &urb_priv->td[0];
3253
3254 /*
3255 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3256 * until we've finished creating all the other TRBs. The ring's cycle
3257 * state may change as we enqueue the other TRBs, so save it too.
3258 */
3259 start_trb = &ring->enqueue->generic;
3260 start_cycle = ring->cycle_state;
3261 send_addr = addr;
3262
3263 /* Queue the TRBs, even if they are zero-length */
3264 for (enqd_len = 0; first_trb || enqd_len < full_len;
3265 enqd_len += trb_buff_len) {
3266 field = TRB_TYPE(TRB_NORMAL);
3267
3268 /* TRB buffer should not cross 64KB boundaries */
3269 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3270 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3271
3272 if (enqd_len + trb_buff_len > full_len)
3273 trb_buff_len = full_len - enqd_len;
3274
3275 /* Don't change the cycle bit of the first TRB until later */
3276 if (first_trb) {
3277 first_trb = false;
3278 if (start_cycle == 0)
3279 field |= TRB_CYCLE;
3280 } else
3281 field |= ring->cycle_state;
3282
3283 /* Chain all the TRBs together; clear the chain bit in the last
3284 * TRB to indicate it's the last TRB in the chain.
3285 */
3286 if (enqd_len + trb_buff_len < full_len) {
3287 field |= TRB_CHAIN;
3288 if (trb_is_link(ring->enqueue + 1)) {
3289 if (xhci_align_td(xhci, urb, enqd_len,
3290 &trb_buff_len,
3291 ring->enq_seg)) {
3292 send_addr = ring->enq_seg->bounce_dma;
3293 /* assuming TD won't span 2 segs */
3294 td->bounce_seg = ring->enq_seg;
3295 }
3296 }
3297 }
3298 if (enqd_len + trb_buff_len >= full_len) {
3299 field &= ~TRB_CHAIN;
3300 field |= TRB_IOC;
3301 more_trbs_coming = false;
3302 td->last_trb = ring->enqueue;
3303 }
3304
3305 /* Only set interrupt on short packet for IN endpoints */
3306 if (usb_urb_dir_in(urb))
3307 field |= TRB_ISP;
3308
3309 /* Set the TRB length, TD size, and interrupter fields. */
3310 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3311 full_len, urb, more_trbs_coming);
3312
3313 length_field = TRB_LEN(trb_buff_len) |
3314 TRB_TD_SIZE(remainder) |
3315 TRB_INTR_TARGET(0);
3316
3317 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3318 lower_32_bits(send_addr),
3319 upper_32_bits(send_addr),
3320 length_field,
3321 field);
3322
3323 addr += trb_buff_len;
3324 sent_len = trb_buff_len;
3325
3326 while (sg && sent_len >= block_len) {
3327 /* New sg entry */
3328 --num_sgs;
3329 sent_len -= block_len;
3330 if (num_sgs != 0) {
3331 sg = sg_next(sg);
3332 block_len = sg_dma_len(sg);
3333 addr = (u64) sg_dma_address(sg);
3334 addr += sent_len;
3335 }
3336 }
3337 block_len -= sent_len;
3338 send_addr = addr;
3339 }
3340
3341 if (need_zero_pkt) {
3342 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3343 ep_index, urb->stream_id,
3344 1, urb, 1, mem_flags);
3345 urb_priv->td[1].last_trb = ring->enqueue;
3346 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3347 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3348 }
3349
3350 check_trb_math(urb, enqd_len);
3351 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3352 start_cycle, start_trb);
3353 return 0;
3354 }
3355
3356 /* Caller must have locked xhci->lock */
3357 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3358 struct urb *urb, int slot_id, unsigned int ep_index)
3359 {
3360 struct xhci_ring *ep_ring;
3361 int num_trbs;
3362 int ret;
3363 struct usb_ctrlrequest *setup;
3364 struct xhci_generic_trb *start_trb;
3365 int start_cycle;
3366 u32 field;
3367 struct urb_priv *urb_priv;
3368 struct xhci_td *td;
3369
3370 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3371 if (!ep_ring)
3372 return -EINVAL;
3373
3374 /*
3375 * Need to copy setup packet into setup TRB, so we can't use the setup
3376 * DMA address.
3377 */
3378 if (!urb->setup_packet)
3379 return -EINVAL;
3380
3381 /* 1 TRB for setup, 1 for status */
3382 num_trbs = 2;
3383 /*
3384 * Don't need to check if we need additional event data and normal TRBs,
3385 * since data in control transfers will never get bigger than 16MB
3386 * XXX: can we get a buffer that crosses 64KB boundaries?
3387 */
3388 if (urb->transfer_buffer_length > 0)
3389 num_trbs++;
3390 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3391 ep_index, urb->stream_id,
3392 num_trbs, urb, 0, mem_flags);
3393 if (ret < 0)
3394 return ret;
3395
3396 urb_priv = urb->hcpriv;
3397 td = &urb_priv->td[0];
3398
3399 /*
3400 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3401 * until we've finished creating all the other TRBs. The ring's cycle
3402 * state may change as we enqueue the other TRBs, so save it too.
3403 */
3404 start_trb = &ep_ring->enqueue->generic;
3405 start_cycle = ep_ring->cycle_state;
3406
3407 /* Queue setup TRB - see section 6.4.1.2.1 */
3408 /* FIXME better way to translate setup_packet into two u32 fields? */
3409 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3410 field = 0;
3411 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3412 if (start_cycle == 0)
3413 field |= 0x1;
3414
3415 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3416 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3417 if (urb->transfer_buffer_length > 0) {
3418 if (setup->bRequestType & USB_DIR_IN)
3419 field |= TRB_TX_TYPE(TRB_DATA_IN);
3420 else
3421 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3422 }
3423 }
3424
3425 queue_trb(xhci, ep_ring, true,
3426 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3427 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3428 TRB_LEN(8) | TRB_INTR_TARGET(0),
3429 /* Immediate data in pointer */
3430 field);
3431
3432 /* If there's data, queue data TRBs */
3433 /* Only set interrupt on short packet for IN endpoints */
3434 if (usb_urb_dir_in(urb))
3435 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3436 else
3437 field = TRB_TYPE(TRB_DATA);
3438
3439 if (urb->transfer_buffer_length > 0) {
3440 u32 length_field, remainder;
3441
3442 remainder = xhci_td_remainder(xhci, 0,
3443 urb->transfer_buffer_length,
3444 urb->transfer_buffer_length,
3445 urb, 1);
3446 length_field = TRB_LEN(urb->transfer_buffer_length) |
3447 TRB_TD_SIZE(remainder) |
3448 TRB_INTR_TARGET(0);
3449 if (setup->bRequestType & USB_DIR_IN)
3450 field |= TRB_DIR_IN;
3451 queue_trb(xhci, ep_ring, true,
3452 lower_32_bits(urb->transfer_dma),
3453 upper_32_bits(urb->transfer_dma),
3454 length_field,
3455 field | ep_ring->cycle_state);
3456 }
3457
3458 /* Save the DMA address of the last TRB in the TD */
3459 td->last_trb = ep_ring->enqueue;
3460
3461 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3462 /* If the device sent data, the status stage is an OUT transfer */
3463 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3464 field = 0;
3465 else
3466 field = TRB_DIR_IN;
3467 queue_trb(xhci, ep_ring, false,
3468 0,
3469 0,
3470 TRB_INTR_TARGET(0),
3471 /* Event on completion */
3472 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3473
3474 giveback_first_trb(xhci, slot_id, ep_index, 0,
3475 start_cycle, start_trb);
3476 return 0;
3477 }
3478
3479 /*
3480 * The transfer burst count field of the isochronous TRB defines the number of
3481 * bursts that are required to move all packets in this TD. Only SuperSpeed
3482 * devices can burst up to bMaxBurst number of packets per service interval.
3483 * This field is zero based, meaning a value of zero in the field means one
3484 * burst. Basically, for everything but SuperSpeed devices, this field will be
3485 * zero. Only xHCI 1.0 host controllers support this field.
3486 */
3487 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3488 struct urb *urb, unsigned int total_packet_count)
3489 {
3490 unsigned int max_burst;
3491
3492 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3493 return 0;
3494
3495 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3496 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3497 }
3498
3499 /*
3500 * Returns the number of packets in the last "burst" of packets. This field is
3501 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3502 * the last burst packet count is equal to the total number of packets in the
3503 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3504 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3505 * contain 1 to (bMaxBurst + 1) packets.
3506 */
3507 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3508 struct urb *urb, unsigned int total_packet_count)
3509 {
3510 unsigned int max_burst;
3511 unsigned int residue;
3512
3513 if (xhci->hci_version < 0x100)
3514 return 0;
3515
3516 if (urb->dev->speed >= USB_SPEED_SUPER) {
3517 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3518 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3519 residue = total_packet_count % (max_burst + 1);
3520 /* If residue is zero, the last burst contains (max_burst + 1)
3521 * number of packets, but the TLBPC field is zero-based.
3522 */
3523 if (residue == 0)
3524 return max_burst;
3525 return residue - 1;
3526 }
3527 if (total_packet_count == 0)
3528 return 0;
3529 return total_packet_count - 1;
3530 }
3531
3532 /*
3533 * Calculates Frame ID field of the isochronous TRB identifies the
3534 * target frame that the Interval associated with this Isochronous
3535 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3536 *
3537 * Returns actual frame id on success, negative value on error.
3538 */
3539 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3540 struct urb *urb, int index)
3541 {
3542 int start_frame, ist, ret = 0;
3543 int start_frame_id, end_frame_id, current_frame_id;
3544
3545 if (urb->dev->speed == USB_SPEED_LOW ||
3546 urb->dev->speed == USB_SPEED_FULL)
3547 start_frame = urb->start_frame + index * urb->interval;
3548 else
3549 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3550
3551 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3552 *
3553 * If bit [3] of IST is cleared to '0', software can add a TRB no
3554 * later than IST[2:0] Microframes before that TRB is scheduled to
3555 * be executed.
3556 * If bit [3] of IST is set to '1', software can add a TRB no later
3557 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3558 */
3559 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3560 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3561 ist <<= 3;
3562
3563 /* Software shall not schedule an Isoch TD with a Frame ID value that
3564 * is less than the Start Frame ID or greater than the End Frame ID,
3565 * where:
3566 *
3567 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3568 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3569 *
3570 * Both the End Frame ID and Start Frame ID values are calculated
3571 * in microframes. When software determines the valid Frame ID value;
3572 * The End Frame ID value should be rounded down to the nearest Frame
3573 * boundary, and the Start Frame ID value should be rounded up to the
3574 * nearest Frame boundary.
3575 */
3576 current_frame_id = readl(&xhci->run_regs->microframe_index);
3577 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3578 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3579
3580 start_frame &= 0x7ff;
3581 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3582 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3583
3584 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3585 __func__, index, readl(&xhci->run_regs->microframe_index),
3586 start_frame_id, end_frame_id, start_frame);
3587
3588 if (start_frame_id < end_frame_id) {
3589 if (start_frame > end_frame_id ||
3590 start_frame < start_frame_id)
3591 ret = -EINVAL;
3592 } else if (start_frame_id > end_frame_id) {
3593 if ((start_frame > end_frame_id &&
3594 start_frame < start_frame_id))
3595 ret = -EINVAL;
3596 } else {
3597 ret = -EINVAL;
3598 }
3599
3600 if (index == 0) {
3601 if (ret == -EINVAL || start_frame == start_frame_id) {
3602 start_frame = start_frame_id + 1;
3603 if (urb->dev->speed == USB_SPEED_LOW ||
3604 urb->dev->speed == USB_SPEED_FULL)
3605 urb->start_frame = start_frame;
3606 else
3607 urb->start_frame = start_frame << 3;
3608 ret = 0;
3609 }
3610 }
3611
3612 if (ret) {
3613 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3614 start_frame, current_frame_id, index,
3615 start_frame_id, end_frame_id);
3616 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3617 return ret;
3618 }
3619
3620 return start_frame;
3621 }
3622
3623 /* This is for isoc transfer */
3624 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3625 struct urb *urb, int slot_id, unsigned int ep_index)
3626 {
3627 struct xhci_ring *ep_ring;
3628 struct urb_priv *urb_priv;
3629 struct xhci_td *td;
3630 int num_tds, trbs_per_td;
3631 struct xhci_generic_trb *start_trb;
3632 bool first_trb;
3633 int start_cycle;
3634 u32 field, length_field;
3635 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3636 u64 start_addr, addr;
3637 int i, j;
3638 bool more_trbs_coming;
3639 struct xhci_virt_ep *xep;
3640 int frame_id;
3641
3642 xep = &xhci->devs[slot_id]->eps[ep_index];
3643 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3644
3645 num_tds = urb->number_of_packets;
3646 if (num_tds < 1) {
3647 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3648 return -EINVAL;
3649 }
3650 start_addr = (u64) urb->transfer_dma;
3651 start_trb = &ep_ring->enqueue->generic;
3652 start_cycle = ep_ring->cycle_state;
3653
3654 urb_priv = urb->hcpriv;
3655 /* Queue the TRBs for each TD, even if they are zero-length */
3656 for (i = 0; i < num_tds; i++) {
3657 unsigned int total_pkt_count, max_pkt;
3658 unsigned int burst_count, last_burst_pkt_count;
3659 u32 sia_frame_id;
3660
3661 first_trb = true;
3662 running_total = 0;
3663 addr = start_addr + urb->iso_frame_desc[i].offset;
3664 td_len = urb->iso_frame_desc[i].length;
3665 td_remain_len = td_len;
3666 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3667 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3668
3669 /* A zero-length transfer still involves at least one packet. */
3670 if (total_pkt_count == 0)
3671 total_pkt_count++;
3672 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3673 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3674 urb, total_pkt_count);
3675
3676 trbs_per_td = count_isoc_trbs_needed(urb, i);
3677
3678 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3679 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3680 if (ret < 0) {
3681 if (i == 0)
3682 return ret;
3683 goto cleanup;
3684 }
3685 td = &urb_priv->td[i];
3686
3687 /* use SIA as default, if frame id is used overwrite it */
3688 sia_frame_id = TRB_SIA;
3689 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3690 HCC_CFC(xhci->hcc_params)) {
3691 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3692 if (frame_id >= 0)
3693 sia_frame_id = TRB_FRAME_ID(frame_id);
3694 }
3695 /*
3696 * Set isoc specific data for the first TRB in a TD.
3697 * Prevent HW from getting the TRBs by keeping the cycle state
3698 * inverted in the first TDs isoc TRB.
3699 */
3700 field = TRB_TYPE(TRB_ISOC) |
3701 TRB_TLBPC(last_burst_pkt_count) |
3702 sia_frame_id |
3703 (i ? ep_ring->cycle_state : !start_cycle);
3704
3705 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3706 if (!xep->use_extended_tbc)
3707 field |= TRB_TBC(burst_count);
3708
3709 /* fill the rest of the TRB fields, and remaining normal TRBs */
3710 for (j = 0; j < trbs_per_td; j++) {
3711 u32 remainder = 0;
3712
3713 /* only first TRB is isoc, overwrite otherwise */
3714 if (!first_trb)
3715 field = TRB_TYPE(TRB_NORMAL) |
3716 ep_ring->cycle_state;
3717
3718 /* Only set interrupt on short packet for IN EPs */
3719 if (usb_urb_dir_in(urb))
3720 field |= TRB_ISP;
3721
3722 /* Set the chain bit for all except the last TRB */
3723 if (j < trbs_per_td - 1) {
3724 more_trbs_coming = true;
3725 field |= TRB_CHAIN;
3726 } else {
3727 more_trbs_coming = false;
3728 td->last_trb = ep_ring->enqueue;
3729 field |= TRB_IOC;
3730 /* set BEI, except for the last TD */
3731 if (xhci->hci_version >= 0x100 &&
3732 !(xhci->quirks & XHCI_AVOID_BEI) &&
3733 i < num_tds - 1)
3734 field |= TRB_BEI;
3735 }
3736 /* Calculate TRB length */
3737 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3738 if (trb_buff_len > td_remain_len)
3739 trb_buff_len = td_remain_len;
3740
3741 /* Set the TRB length, TD size, & interrupter fields. */
3742 remainder = xhci_td_remainder(xhci, running_total,
3743 trb_buff_len, td_len,
3744 urb, more_trbs_coming);
3745
3746 length_field = TRB_LEN(trb_buff_len) |
3747 TRB_INTR_TARGET(0);
3748
3749 /* xhci 1.1 with ETE uses TD Size field for TBC */
3750 if (first_trb && xep->use_extended_tbc)
3751 length_field |= TRB_TD_SIZE_TBC(burst_count);
3752 else
3753 length_field |= TRB_TD_SIZE(remainder);
3754 first_trb = false;
3755
3756 queue_trb(xhci, ep_ring, more_trbs_coming,
3757 lower_32_bits(addr),
3758 upper_32_bits(addr),
3759 length_field,
3760 field);
3761 running_total += trb_buff_len;
3762
3763 addr += trb_buff_len;
3764 td_remain_len -= trb_buff_len;
3765 }
3766
3767 /* Check TD length */
3768 if (running_total != td_len) {
3769 xhci_err(xhci, "ISOC TD length unmatch\n");
3770 ret = -EINVAL;
3771 goto cleanup;
3772 }
3773 }
3774
3775 /* store the next frame id */
3776 if (HCC_CFC(xhci->hcc_params))
3777 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3778
3779 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3780 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3781 usb_amd_quirk_pll_disable();
3782 }
3783 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3784
3785 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3786 start_cycle, start_trb);
3787 return 0;
3788 cleanup:
3789 /* Clean up a partially enqueued isoc transfer. */
3790
3791 for (i--; i >= 0; i--)
3792 list_del_init(&urb_priv->td[i].td_list);
3793
3794 /* Use the first TD as a temporary variable to turn the TDs we've queued
3795 * into No-ops with a software-owned cycle bit. That way the hardware
3796 * won't accidentally start executing bogus TDs when we partially
3797 * overwrite them. td->first_trb and td->start_seg are already set.
3798 */
3799 urb_priv->td[0].last_trb = ep_ring->enqueue;
3800 /* Every TRB except the first & last will have its cycle bit flipped. */
3801 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3802
3803 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3804 ep_ring->enqueue = urb_priv->td[0].first_trb;
3805 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3806 ep_ring->cycle_state = start_cycle;
3807 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3808 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3809 return ret;
3810 }
3811
3812 /*
3813 * Check transfer ring to guarantee there is enough room for the urb.
3814 * Update ISO URB start_frame and interval.
3815 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3816 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3817 * Contiguous Frame ID is not supported by HC.
3818 */
3819 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3820 struct urb *urb, int slot_id, unsigned int ep_index)
3821 {
3822 struct xhci_virt_device *xdev;
3823 struct xhci_ring *ep_ring;
3824 struct xhci_ep_ctx *ep_ctx;
3825 int start_frame;
3826 int num_tds, num_trbs, i;
3827 int ret;
3828 struct xhci_virt_ep *xep;
3829 int ist;
3830
3831 xdev = xhci->devs[slot_id];
3832 xep = &xhci->devs[slot_id]->eps[ep_index];
3833 ep_ring = xdev->eps[ep_index].ring;
3834 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3835
3836 num_trbs = 0;
3837 num_tds = urb->number_of_packets;
3838 for (i = 0; i < num_tds; i++)
3839 num_trbs += count_isoc_trbs_needed(urb, i);
3840
3841 /* Check the ring to guarantee there is enough room for the whole urb.
3842 * Do not insert any td of the urb to the ring if the check failed.
3843 */
3844 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3845 num_trbs, mem_flags);
3846 if (ret)
3847 return ret;
3848
3849 /*
3850 * Check interval value. This should be done before we start to
3851 * calculate the start frame value.
3852 */
3853 check_interval(xhci, urb, ep_ctx);
3854
3855 /* Calculate the start frame and put it in urb->start_frame. */
3856 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3857 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3858 urb->start_frame = xep->next_frame_id;
3859 goto skip_start_over;
3860 }
3861 }
3862
3863 start_frame = readl(&xhci->run_regs->microframe_index);
3864 start_frame &= 0x3fff;
3865 /*
3866 * Round up to the next frame and consider the time before trb really
3867 * gets scheduled by hardare.
3868 */
3869 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3870 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3871 ist <<= 3;
3872 start_frame += ist + XHCI_CFC_DELAY;
3873 start_frame = roundup(start_frame, 8);
3874
3875 /*
3876 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3877 * is greate than 8 microframes.
3878 */
3879 if (urb->dev->speed == USB_SPEED_LOW ||
3880 urb->dev->speed == USB_SPEED_FULL) {
3881 start_frame = roundup(start_frame, urb->interval << 3);
3882 urb->start_frame = start_frame >> 3;
3883 } else {
3884 start_frame = roundup(start_frame, urb->interval);
3885 urb->start_frame = start_frame;
3886 }
3887
3888 skip_start_over:
3889 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3890
3891 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3892 }
3893
3894 /**** Command Ring Operations ****/
3895
3896 /* Generic function for queueing a command TRB on the command ring.
3897 * Check to make sure there's room on the command ring for one command TRB.
3898 * Also check that there's room reserved for commands that must not fail.
3899 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3900 * then only check for the number of reserved spots.
3901 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3902 * because the command event handler may want to resubmit a failed command.
3903 */
3904 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3905 u32 field1, u32 field2,
3906 u32 field3, u32 field4, bool command_must_succeed)
3907 {
3908 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3909 int ret;
3910
3911 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3912 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3913 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3914 return -ESHUTDOWN;
3915 }
3916
3917 if (!command_must_succeed)
3918 reserved_trbs++;
3919
3920 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3921 reserved_trbs, GFP_ATOMIC);
3922 if (ret < 0) {
3923 xhci_err(xhci, "ERR: No room for command on command ring\n");
3924 if (command_must_succeed)
3925 xhci_err(xhci, "ERR: Reserved TRB counting for "
3926 "unfailable commands failed.\n");
3927 return ret;
3928 }
3929
3930 cmd->command_trb = xhci->cmd_ring->enqueue;
3931
3932 /* if there are no other commands queued we start the timeout timer */
3933 if (list_empty(&xhci->cmd_list)) {
3934 xhci->current_cmd = cmd;
3935 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3936 }
3937
3938 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3939
3940 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3941 field4 | xhci->cmd_ring->cycle_state);
3942 return 0;
3943 }
3944
3945 /* Queue a slot enable or disable request on the command ring */
3946 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3947 u32 trb_type, u32 slot_id)
3948 {
3949 return queue_command(xhci, cmd, 0, 0, 0,
3950 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3951 }
3952
3953 /* Queue an address device command TRB */
3954 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3955 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3956 {
3957 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3958 upper_32_bits(in_ctx_ptr), 0,
3959 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3960 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3961 }
3962
3963 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3964 u32 field1, u32 field2, u32 field3, u32 field4)
3965 {
3966 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3967 }
3968
3969 /* Queue a reset device command TRB */
3970 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3971 u32 slot_id)
3972 {
3973 return queue_command(xhci, cmd, 0, 0, 0,
3974 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3975 false);
3976 }
3977
3978 /* Queue a configure endpoint command TRB */
3979 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3980 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3981 u32 slot_id, bool command_must_succeed)
3982 {
3983 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3984 upper_32_bits(in_ctx_ptr), 0,
3985 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3986 command_must_succeed);
3987 }
3988
3989 /* Queue an evaluate context command TRB */
3990 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3991 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3992 {
3993 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3994 upper_32_bits(in_ctx_ptr), 0,
3995 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3996 command_must_succeed);
3997 }
3998
3999 /*
4000 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4001 * activity on an endpoint that is about to be suspended.
4002 */
4003 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4004 int slot_id, unsigned int ep_index, int suspend)
4005 {
4006 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4007 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4008 u32 type = TRB_TYPE(TRB_STOP_RING);
4009 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4010
4011 return queue_command(xhci, cmd, 0, 0, 0,
4012 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4013 }
4014
4015 /* Set Transfer Ring Dequeue Pointer command */
4016 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4017 unsigned int slot_id, unsigned int ep_index,
4018 struct xhci_dequeue_state *deq_state)
4019 {
4020 dma_addr_t addr;
4021 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4022 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4023 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4024 u32 trb_sct = 0;
4025 u32 type = TRB_TYPE(TRB_SET_DEQ);
4026 struct xhci_virt_ep *ep;
4027 struct xhci_command *cmd;
4028 int ret;
4029
4030 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4031 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4032 deq_state->new_deq_seg,
4033 (unsigned long long)deq_state->new_deq_seg->dma,
4034 deq_state->new_deq_ptr,
4035 (unsigned long long)xhci_trb_virt_to_dma(
4036 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4037 deq_state->new_cycle_state);
4038
4039 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4040 deq_state->new_deq_ptr);
4041 if (addr == 0) {
4042 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4043 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4044 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4045 return;
4046 }
4047 ep = &xhci->devs[slot_id]->eps[ep_index];
4048 if ((ep->ep_state & SET_DEQ_PENDING)) {
4049 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4050 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4051 return;
4052 }
4053
4054 /* This function gets called from contexts where it cannot sleep */
4055 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4056 if (!cmd)
4057 return;
4058
4059 ep->queued_deq_seg = deq_state->new_deq_seg;
4060 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4061 if (deq_state->stream_id)
4062 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4063 ret = queue_command(xhci, cmd,
4064 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4065 upper_32_bits(addr), trb_stream_id,
4066 trb_slot_id | trb_ep_index | type, false);
4067 if (ret < 0) {
4068 xhci_free_command(xhci, cmd);
4069 return;
4070 }
4071
4072 /* Stop the TD queueing code from ringing the doorbell until
4073 * this command completes. The HC won't set the dequeue pointer
4074 * if the ring is running, and ringing the doorbell starts the
4075 * ring running.
4076 */
4077 ep->ep_state |= SET_DEQ_PENDING;
4078 }
4079
4080 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4081 int slot_id, unsigned int ep_index,
4082 enum xhci_ep_reset_type reset_type)
4083 {
4084 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4085 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4086 u32 type = TRB_TYPE(TRB_RESET_EP);
4087
4088 if (reset_type == EP_SOFT_RESET)
4089 type |= TRB_TSP;
4090
4091 return queue_command(xhci, cmd, 0, 0, 0,
4092 trb_slot_id | trb_ep_index | type, false);
4093 }