]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/usb/host/xhci-ring.c
tracing: Fix compile error when static ftrace is enabled
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
147 {
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
150
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
154 */
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
162 }
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
166 }
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
168 }
169
170 /*
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
173 *
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
178 *
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
183 *
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
186 */
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming, bool isoc)
189 {
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
193
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
196
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
200 */
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
204 /*
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
211 */
212 if (!chain && !more_trbs_coming)
213 break;
214
215 /* If we're not dealing with 0.95 hardware or
216 * isoc rings on AMD 0.96 host,
217 * carry over the chain bit of the previous TRB
218 * (which may mean the chain bit is cleared).
219 */
220 if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST))
221 && !xhci_link_trb_quirk(xhci)) {
222 next->link.control &=
223 cpu_to_le32(~TRB_CHAIN);
224 next->link.control |=
225 cpu_to_le32(chain);
226 }
227 /* Give this link TRB to the hardware */
228 wmb();
229 next->link.control ^= cpu_to_le32(TRB_CYCLE);
230 }
231 /* Toggle the cycle bit after the last ring segment. */
232 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
233 ring->cycle_state = (ring->cycle_state ? 0 : 1);
234 if (!in_interrupt())
235 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
236 ring,
237 (unsigned int) ring->cycle_state);
238 }
239 }
240 ring->enq_seg = ring->enq_seg->next;
241 ring->enqueue = ring->enq_seg->trbs;
242 next = ring->enqueue;
243 }
244 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
245 }
246
247 /*
248 * Check to see if there's room to enqueue num_trbs on the ring. See rules
249 * above.
250 * FIXME: this would be simpler and faster if we just kept track of the number
251 * of free TRBs in a ring.
252 */
253 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
254 unsigned int num_trbs)
255 {
256 int i;
257 union xhci_trb *enq = ring->enqueue;
258 struct xhci_segment *enq_seg = ring->enq_seg;
259 struct xhci_segment *cur_seg;
260 unsigned int left_on_ring;
261
262 /* If we are currently pointing to a link TRB, advance the
263 * enqueue pointer before checking for space */
264 while (last_trb(xhci, ring, enq_seg, enq)) {
265 enq_seg = enq_seg->next;
266 enq = enq_seg->trbs;
267 }
268
269 /* Check if ring is empty */
270 if (enq == ring->dequeue) {
271 /* Can't use link trbs */
272 left_on_ring = TRBS_PER_SEGMENT - 1;
273 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
274 cur_seg = cur_seg->next)
275 left_on_ring += TRBS_PER_SEGMENT - 1;
276
277 /* Always need one TRB free in the ring. */
278 left_on_ring -= 1;
279 if (num_trbs > left_on_ring) {
280 xhci_warn(xhci, "Not enough room on ring; "
281 "need %u TRBs, %u TRBs left\n",
282 num_trbs, left_on_ring);
283 return 0;
284 }
285 return 1;
286 }
287 /* Make sure there's an extra empty TRB available */
288 for (i = 0; i <= num_trbs; ++i) {
289 if (enq == ring->dequeue)
290 return 0;
291 enq++;
292 while (last_trb(xhci, ring, enq_seg, enq)) {
293 enq_seg = enq_seg->next;
294 enq = enq_seg->trbs;
295 }
296 }
297 return 1;
298 }
299
300 /* Ring the host controller doorbell after placing a command on the ring */
301 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
302 {
303 xhci_dbg(xhci, "// Ding dong!\n");
304 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
305 /* Flush PCI posted writes */
306 xhci_readl(xhci, &xhci->dba->doorbell[0]);
307 }
308
309 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
310 unsigned int slot_id,
311 unsigned int ep_index,
312 unsigned int stream_id)
313 {
314 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
315 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
316 unsigned int ep_state = ep->ep_state;
317
318 /* Don't ring the doorbell for this endpoint if there are pending
319 * cancellations because we don't want to interrupt processing.
320 * We don't want to restart any stream rings if there's a set dequeue
321 * pointer command pending because the device can choose to start any
322 * stream once the endpoint is on the HW schedule.
323 * FIXME - check all the stream rings for pending cancellations.
324 */
325 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
326 (ep_state & EP_HALTED))
327 return;
328 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
329 /* The CPU has better things to do at this point than wait for a
330 * write-posting flush. It'll get there soon enough.
331 */
332 }
333
334 /* Ring the doorbell for any rings with pending URBs */
335 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
336 unsigned int slot_id,
337 unsigned int ep_index)
338 {
339 unsigned int stream_id;
340 struct xhci_virt_ep *ep;
341
342 ep = &xhci->devs[slot_id]->eps[ep_index];
343
344 /* A ring has pending URBs if its TD list is not empty */
345 if (!(ep->ep_state & EP_HAS_STREAMS)) {
346 if (!(list_empty(&ep->ring->td_list)))
347 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
348 return;
349 }
350
351 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
352 stream_id++) {
353 struct xhci_stream_info *stream_info = ep->stream_info;
354 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
356 stream_id);
357 }
358 }
359
360 /*
361 * Find the segment that trb is in. Start searching in start_seg.
362 * If we must move past a segment that has a link TRB with a toggle cycle state
363 * bit set, then we will toggle the value pointed at by cycle_state.
364 */
365 static struct xhci_segment *find_trb_seg(
366 struct xhci_segment *start_seg,
367 union xhci_trb *trb, int *cycle_state)
368 {
369 struct xhci_segment *cur_seg = start_seg;
370 struct xhci_generic_trb *generic_trb;
371
372 while (cur_seg->trbs > trb ||
373 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
374 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
375 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
376 *cycle_state ^= 0x1;
377 cur_seg = cur_seg->next;
378 if (cur_seg == start_seg)
379 /* Looped over the entire list. Oops! */
380 return NULL;
381 }
382 return cur_seg;
383 }
384
385
386 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
387 unsigned int slot_id, unsigned int ep_index,
388 unsigned int stream_id)
389 {
390 struct xhci_virt_ep *ep;
391
392 ep = &xhci->devs[slot_id]->eps[ep_index];
393 /* Common case: no streams */
394 if (!(ep->ep_state & EP_HAS_STREAMS))
395 return ep->ring;
396
397 if (stream_id == 0) {
398 xhci_warn(xhci,
399 "WARN: Slot ID %u, ep index %u has streams, "
400 "but URB has no stream ID.\n",
401 slot_id, ep_index);
402 return NULL;
403 }
404
405 if (stream_id < ep->stream_info->num_streams)
406 return ep->stream_info->stream_rings[stream_id];
407
408 xhci_warn(xhci,
409 "WARN: Slot ID %u, ep index %u has "
410 "stream IDs 1 to %u allocated, "
411 "but stream ID %u is requested.\n",
412 slot_id, ep_index,
413 ep->stream_info->num_streams - 1,
414 stream_id);
415 return NULL;
416 }
417
418 /* Get the right ring for the given URB.
419 * If the endpoint supports streams, boundary check the URB's stream ID.
420 * If the endpoint doesn't support streams, return the singular endpoint ring.
421 */
422 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
423 struct urb *urb)
424 {
425 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
426 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
427 }
428
429 /*
430 * Move the xHC's endpoint ring dequeue pointer past cur_td.
431 * Record the new state of the xHC's endpoint ring dequeue segment,
432 * dequeue pointer, and new consumer cycle state in state.
433 * Update our internal representation of the ring's dequeue pointer.
434 *
435 * We do this in three jumps:
436 * - First we update our new ring state to be the same as when the xHC stopped.
437 * - Then we traverse the ring to find the segment that contains
438 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
439 * any link TRBs with the toggle cycle bit set.
440 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
441 * if we've moved it past a link TRB with the toggle cycle bit set.
442 *
443 * Some of the uses of xhci_generic_trb are grotty, but if they're done
444 * with correct __le32 accesses they should work fine. Only users of this are
445 * in here.
446 */
447 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
448 unsigned int slot_id, unsigned int ep_index,
449 unsigned int stream_id, struct xhci_td *cur_td,
450 struct xhci_dequeue_state *state)
451 {
452 struct xhci_virt_device *dev = xhci->devs[slot_id];
453 struct xhci_ring *ep_ring;
454 struct xhci_generic_trb *trb;
455 struct xhci_ep_ctx *ep_ctx;
456 dma_addr_t addr;
457
458 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
459 ep_index, stream_id);
460 if (!ep_ring) {
461 xhci_warn(xhci, "WARN can't find new dequeue state "
462 "for invalid stream ID %u.\n",
463 stream_id);
464 return;
465 }
466 state->new_cycle_state = 0;
467 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
468 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
469 dev->eps[ep_index].stopped_trb,
470 &state->new_cycle_state);
471 if (!state->new_deq_seg) {
472 WARN_ON(1);
473 return;
474 }
475
476 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
477 xhci_dbg(xhci, "Finding endpoint context\n");
478 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
479 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
480
481 state->new_deq_ptr = cur_td->last_trb;
482 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
483 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
484 state->new_deq_ptr,
485 &state->new_cycle_state);
486 if (!state->new_deq_seg) {
487 WARN_ON(1);
488 return;
489 }
490
491 trb = &state->new_deq_ptr->generic;
492 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
493 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
494 state->new_cycle_state ^= 0x1;
495 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
496
497 /*
498 * If there is only one segment in a ring, find_trb_seg()'s while loop
499 * will not run, and it will return before it has a chance to see if it
500 * needs to toggle the cycle bit. It can't tell if the stalled transfer
501 * ended just before the link TRB on a one-segment ring, or if the TD
502 * wrapped around the top of the ring, because it doesn't have the TD in
503 * question. Look for the one-segment case where stalled TRB's address
504 * is greater than the new dequeue pointer address.
505 */
506 if (ep_ring->first_seg == ep_ring->first_seg->next &&
507 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
508 state->new_cycle_state ^= 0x1;
509 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
510
511 /* Don't update the ring cycle state for the producer (us). */
512 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
513 state->new_deq_seg);
514 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
515 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
516 (unsigned long long) addr);
517 }
518
519 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
520 * (The last TRB actually points to the ring enqueue pointer, which is not part
521 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
522 */
523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
524 struct xhci_td *cur_td, bool flip_cycle)
525 {
526 struct xhci_segment *cur_seg;
527 union xhci_trb *cur_trb;
528
529 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
530 true;
531 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
532 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
533 /* Unchain any chained Link TRBs, but
534 * leave the pointers intact.
535 */
536 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
537 /* Flip the cycle bit (link TRBs can't be the first
538 * or last TRB).
539 */
540 if (flip_cycle)
541 cur_trb->generic.field[3] ^=
542 cpu_to_le32(TRB_CYCLE);
543 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
544 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
545 "in seg %p (0x%llx dma)\n",
546 cur_trb,
547 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
548 cur_seg,
549 (unsigned long long)cur_seg->dma);
550 } else {
551 cur_trb->generic.field[0] = 0;
552 cur_trb->generic.field[1] = 0;
553 cur_trb->generic.field[2] = 0;
554 /* Preserve only the cycle bit of this TRB */
555 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
556 /* Flip the cycle bit except on the first or last TRB */
557 if (flip_cycle && cur_trb != cur_td->first_trb &&
558 cur_trb != cur_td->last_trb)
559 cur_trb->generic.field[3] ^=
560 cpu_to_le32(TRB_CYCLE);
561 cur_trb->generic.field[3] |= cpu_to_le32(
562 TRB_TYPE(TRB_TR_NOOP));
563 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
564 "in seg %p (0x%llx dma)\n",
565 cur_trb,
566 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
567 cur_seg,
568 (unsigned long long)cur_seg->dma);
569 }
570 if (cur_trb == cur_td->last_trb)
571 break;
572 }
573 }
574
575 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
576 unsigned int ep_index, unsigned int stream_id,
577 struct xhci_segment *deq_seg,
578 union xhci_trb *deq_ptr, u32 cycle_state);
579
580 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
581 unsigned int slot_id, unsigned int ep_index,
582 unsigned int stream_id,
583 struct xhci_dequeue_state *deq_state)
584 {
585 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
586
587 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
588 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
589 deq_state->new_deq_seg,
590 (unsigned long long)deq_state->new_deq_seg->dma,
591 deq_state->new_deq_ptr,
592 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
593 deq_state->new_cycle_state);
594 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
595 deq_state->new_deq_seg,
596 deq_state->new_deq_ptr,
597 (u32) deq_state->new_cycle_state);
598 /* Stop the TD queueing code from ringing the doorbell until
599 * this command completes. The HC won't set the dequeue pointer
600 * if the ring is running, and ringing the doorbell starts the
601 * ring running.
602 */
603 ep->ep_state |= SET_DEQ_PENDING;
604 }
605
606 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
607 struct xhci_virt_ep *ep)
608 {
609 ep->ep_state &= ~EP_HALT_PENDING;
610 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
611 * timer is running on another CPU, we don't decrement stop_cmds_pending
612 * (since we didn't successfully stop the watchdog timer).
613 */
614 if (del_timer(&ep->stop_cmd_timer))
615 ep->stop_cmds_pending--;
616 }
617
618 /* Must be called with xhci->lock held in interrupt context */
619 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
620 struct xhci_td *cur_td, int status, char *adjective)
621 {
622 struct usb_hcd *hcd;
623 struct urb *urb;
624 struct urb_priv *urb_priv;
625
626 urb = cur_td->urb;
627 urb_priv = urb->hcpriv;
628 urb_priv->td_cnt++;
629 hcd = bus_to_hcd(urb->dev->bus);
630
631 /* Only giveback urb when this is the last td in urb */
632 if (urb_priv->td_cnt == urb_priv->length) {
633 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
634 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
635 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
636 if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 usb_amd_quirk_pll_enable();
638 }
639 }
640 usb_hcd_unlink_urb_from_ep(hcd, urb);
641
642 spin_unlock(&xhci->lock);
643 usb_hcd_giveback_urb(hcd, urb, status);
644 xhci_urb_free_priv(xhci, urb_priv);
645 spin_lock(&xhci->lock);
646 }
647 }
648
649 /*
650 * When we get a command completion for a Stop Endpoint Command, we need to
651 * unlink any cancelled TDs from the ring. There are two ways to do that:
652 *
653 * 1. If the HW was in the middle of processing the TD that needs to be
654 * cancelled, then we must move the ring's dequeue pointer past the last TRB
655 * in the TD with a Set Dequeue Pointer Command.
656 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
657 * bit cleared) so that the HW will skip over them.
658 */
659 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
660 union xhci_trb *trb, struct xhci_event_cmd *event)
661 {
662 unsigned int slot_id;
663 unsigned int ep_index;
664 struct xhci_virt_device *virt_dev;
665 struct xhci_ring *ep_ring;
666 struct xhci_virt_ep *ep;
667 struct list_head *entry;
668 struct xhci_td *cur_td = NULL;
669 struct xhci_td *last_unlinked_td;
670
671 struct xhci_dequeue_state deq_state;
672
673 if (unlikely(TRB_TO_SUSPEND_PORT(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
675 slot_id = TRB_TO_SLOT_ID(
676 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
677 virt_dev = xhci->devs[slot_id];
678 if (virt_dev)
679 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
680 event);
681 else
682 xhci_warn(xhci, "Stop endpoint command "
683 "completion for disabled slot %u\n",
684 slot_id);
685 return;
686 }
687
688 memset(&deq_state, 0, sizeof(deq_state));
689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
690 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
691 ep = &xhci->devs[slot_id]->eps[ep_index];
692
693 if (list_empty(&ep->cancelled_td_list)) {
694 xhci_stop_watchdog_timer_in_irq(xhci, ep);
695 ep->stopped_td = NULL;
696 ep->stopped_trb = NULL;
697 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
698 return;
699 }
700
701 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
702 * We have the xHCI lock, so nothing can modify this list until we drop
703 * it. We're also in the event handler, so we can't get re-interrupted
704 * if another Stop Endpoint command completes
705 */
706 list_for_each(entry, &ep->cancelled_td_list) {
707 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
708 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
709 cur_td->first_trb,
710 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
711 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
712 if (!ep_ring) {
713 /* This shouldn't happen unless a driver is mucking
714 * with the stream ID after submission. This will
715 * leave the TD on the hardware ring, and the hardware
716 * will try to execute it, and may access a buffer
717 * that has already been freed. In the best case, the
718 * hardware will execute it, and the event handler will
719 * ignore the completion event for that TD, since it was
720 * removed from the td_list for that endpoint. In
721 * short, don't muck with the stream ID after
722 * submission.
723 */
724 xhci_warn(xhci, "WARN Cancelled URB %p "
725 "has invalid stream ID %u.\n",
726 cur_td->urb,
727 cur_td->urb->stream_id);
728 goto remove_finished_td;
729 }
730 /*
731 * If we stopped on the TD we need to cancel, then we have to
732 * move the xHC endpoint ring dequeue pointer past this TD.
733 */
734 if (cur_td == ep->stopped_td)
735 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
736 cur_td->urb->stream_id,
737 cur_td, &deq_state);
738 else
739 td_to_noop(xhci, ep_ring, cur_td, false);
740 remove_finished_td:
741 /*
742 * The event handler won't see a completion for this TD anymore,
743 * so remove it from the endpoint ring's TD list. Keep it in
744 * the cancelled TD list for URB completion later.
745 */
746 list_del_init(&cur_td->td_list);
747 }
748 last_unlinked_td = cur_td;
749 xhci_stop_watchdog_timer_in_irq(xhci, ep);
750
751 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
752 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
753 xhci_queue_new_dequeue_state(xhci,
754 slot_id, ep_index,
755 ep->stopped_td->urb->stream_id,
756 &deq_state);
757 xhci_ring_cmd_db(xhci);
758 } else {
759 /* Otherwise ring the doorbell(s) to restart queued transfers */
760 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
761 }
762 ep->stopped_td = NULL;
763 ep->stopped_trb = NULL;
764
765 /*
766 * Drop the lock and complete the URBs in the cancelled TD list.
767 * New TDs to be cancelled might be added to the end of the list before
768 * we can complete all the URBs for the TDs we already unlinked.
769 * So stop when we've completed the URB for the last TD we unlinked.
770 */
771 do {
772 cur_td = list_entry(ep->cancelled_td_list.next,
773 struct xhci_td, cancelled_td_list);
774 list_del_init(&cur_td->cancelled_td_list);
775
776 /* Clean up the cancelled URB */
777 /* Doesn't matter what we pass for status, since the core will
778 * just overwrite it (because the URB has been unlinked).
779 */
780 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
781
782 /* Stop processing the cancelled list if the watchdog timer is
783 * running.
784 */
785 if (xhci->xhc_state & XHCI_STATE_DYING)
786 return;
787 } while (cur_td != last_unlinked_td);
788
789 /* Return to the event handler with xhci->lock re-acquired */
790 }
791
792 /* Watchdog timer function for when a stop endpoint command fails to complete.
793 * In this case, we assume the host controller is broken or dying or dead. The
794 * host may still be completing some other events, so we have to be careful to
795 * let the event ring handler and the URB dequeueing/enqueueing functions know
796 * through xhci->state.
797 *
798 * The timer may also fire if the host takes a very long time to respond to the
799 * command, and the stop endpoint command completion handler cannot delete the
800 * timer before the timer function is called. Another endpoint cancellation may
801 * sneak in before the timer function can grab the lock, and that may queue
802 * another stop endpoint command and add the timer back. So we cannot use a
803 * simple flag to say whether there is a pending stop endpoint command for a
804 * particular endpoint.
805 *
806 * Instead we use a combination of that flag and a counter for the number of
807 * pending stop endpoint commands. If the timer is the tail end of the last
808 * stop endpoint command, and the endpoint's command is still pending, we assume
809 * the host is dying.
810 */
811 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
812 {
813 struct xhci_hcd *xhci;
814 struct xhci_virt_ep *ep;
815 struct xhci_virt_ep *temp_ep;
816 struct xhci_ring *ring;
817 struct xhci_td *cur_td;
818 int ret, i, j;
819
820 ep = (struct xhci_virt_ep *) arg;
821 xhci = ep->xhci;
822
823 spin_lock(&xhci->lock);
824
825 ep->stop_cmds_pending--;
826 if (xhci->xhc_state & XHCI_STATE_DYING) {
827 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
828 "xHCI as DYING, exiting.\n");
829 spin_unlock(&xhci->lock);
830 return;
831 }
832 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
833 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
834 "exiting.\n");
835 spin_unlock(&xhci->lock);
836 return;
837 }
838
839 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
840 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
841 /* Oops, HC is dead or dying or at least not responding to the stop
842 * endpoint command.
843 */
844 xhci->xhc_state |= XHCI_STATE_DYING;
845 /* Disable interrupts from the host controller and start halting it */
846 xhci_quiesce(xhci);
847 spin_unlock(&xhci->lock);
848
849 ret = xhci_halt(xhci);
850
851 spin_lock(&xhci->lock);
852 if (ret < 0) {
853 /* This is bad; the host is not responding to commands and it's
854 * not allowing itself to be halted. At least interrupts are
855 * disabled. If we call usb_hc_died(), it will attempt to
856 * disconnect all device drivers under this host. Those
857 * disconnect() methods will wait for all URBs to be unlinked,
858 * so we must complete them.
859 */
860 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
861 xhci_warn(xhci, "Completing active URBs anyway.\n");
862 /* We could turn all TDs on the rings to no-ops. This won't
863 * help if the host has cached part of the ring, and is slow if
864 * we want to preserve the cycle bit. Skip it and hope the host
865 * doesn't touch the memory.
866 */
867 }
868 for (i = 0; i < MAX_HC_SLOTS; i++) {
869 if (!xhci->devs[i])
870 continue;
871 for (j = 0; j < 31; j++) {
872 temp_ep = &xhci->devs[i]->eps[j];
873 ring = temp_ep->ring;
874 if (!ring)
875 continue;
876 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
877 "ep index %u\n", i, j);
878 while (!list_empty(&ring->td_list)) {
879 cur_td = list_first_entry(&ring->td_list,
880 struct xhci_td,
881 td_list);
882 list_del_init(&cur_td->td_list);
883 if (!list_empty(&cur_td->cancelled_td_list))
884 list_del_init(&cur_td->cancelled_td_list);
885 xhci_giveback_urb_in_irq(xhci, cur_td,
886 -ESHUTDOWN, "killed");
887 }
888 while (!list_empty(&temp_ep->cancelled_td_list)) {
889 cur_td = list_first_entry(
890 &temp_ep->cancelled_td_list,
891 struct xhci_td,
892 cancelled_td_list);
893 list_del_init(&cur_td->cancelled_td_list);
894 xhci_giveback_urb_in_irq(xhci, cur_td,
895 -ESHUTDOWN, "killed");
896 }
897 }
898 }
899 spin_unlock(&xhci->lock);
900 xhci_dbg(xhci, "Calling usb_hc_died()\n");
901 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
902 xhci_dbg(xhci, "xHCI host controller is dead.\n");
903 }
904
905 /*
906 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
907 * we need to clear the set deq pending flag in the endpoint ring state, so that
908 * the TD queueing code can ring the doorbell again. We also need to ring the
909 * endpoint doorbell to restart the ring, but only if there aren't more
910 * cancellations pending.
911 */
912 static void handle_set_deq_completion(struct xhci_hcd *xhci,
913 struct xhci_event_cmd *event,
914 union xhci_trb *trb)
915 {
916 unsigned int slot_id;
917 unsigned int ep_index;
918 unsigned int stream_id;
919 struct xhci_ring *ep_ring;
920 struct xhci_virt_device *dev;
921 struct xhci_ep_ctx *ep_ctx;
922 struct xhci_slot_ctx *slot_ctx;
923
924 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
925 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
926 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
927 dev = xhci->devs[slot_id];
928
929 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
930 if (!ep_ring) {
931 xhci_warn(xhci, "WARN Set TR deq ptr command for "
932 "freed stream ID %u\n",
933 stream_id);
934 /* XXX: Harmless??? */
935 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
936 return;
937 }
938
939 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
940 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
941
942 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
943 unsigned int ep_state;
944 unsigned int slot_state;
945
946 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
947 case COMP_TRB_ERR:
948 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
949 "of stream ID configuration\n");
950 break;
951 case COMP_CTX_STATE:
952 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
953 "to incorrect slot or ep state.\n");
954 ep_state = le32_to_cpu(ep_ctx->ep_info);
955 ep_state &= EP_STATE_MASK;
956 slot_state = le32_to_cpu(slot_ctx->dev_state);
957 slot_state = GET_SLOT_STATE(slot_state);
958 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
959 slot_state, ep_state);
960 break;
961 case COMP_EBADSLT:
962 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
963 "slot %u was not enabled.\n", slot_id);
964 break;
965 default:
966 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
967 "completion code of %u.\n",
968 GET_COMP_CODE(le32_to_cpu(event->status)));
969 break;
970 }
971 /* OK what do we do now? The endpoint state is hosed, and we
972 * should never get to this point if the synchronization between
973 * queueing, and endpoint state are correct. This might happen
974 * if the device gets disconnected after we've finished
975 * cancelling URBs, which might not be an error...
976 */
977 } else {
978 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
979 le64_to_cpu(ep_ctx->deq));
980 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
981 dev->eps[ep_index].queued_deq_ptr) ==
982 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
983 /* Update the ring's dequeue segment and dequeue pointer
984 * to reflect the new position.
985 */
986 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
987 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
988 } else {
989 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
990 "Ptr command & xHCI internal state.\n");
991 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
992 dev->eps[ep_index].queued_deq_seg,
993 dev->eps[ep_index].queued_deq_ptr);
994 }
995 }
996
997 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
998 dev->eps[ep_index].queued_deq_seg = NULL;
999 dev->eps[ep_index].queued_deq_ptr = NULL;
1000 /* Restart any rings with pending URBs */
1001 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1002 }
1003
1004 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1005 struct xhci_event_cmd *event,
1006 union xhci_trb *trb)
1007 {
1008 int slot_id;
1009 unsigned int ep_index;
1010
1011 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1012 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1013 /* This command will only fail if the endpoint wasn't halted,
1014 * but we don't care.
1015 */
1016 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1017 GET_COMP_CODE(le32_to_cpu(event->status)));
1018
1019 /* HW with the reset endpoint quirk needs to have a configure endpoint
1020 * command complete before the endpoint can be used. Queue that here
1021 * because the HW can't handle two commands being queued in a row.
1022 */
1023 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1024 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1025 xhci_queue_configure_endpoint(xhci,
1026 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1027 false);
1028 xhci_ring_cmd_db(xhci);
1029 } else {
1030 /* Clear our internal halted state and restart the ring(s) */
1031 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1032 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1033 }
1034 }
1035
1036 /* Check to see if a command in the device's command queue matches this one.
1037 * Signal the completion or free the command, and return 1. Return 0 if the
1038 * completed command isn't at the head of the command list.
1039 */
1040 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1041 struct xhci_virt_device *virt_dev,
1042 struct xhci_event_cmd *event)
1043 {
1044 struct xhci_command *command;
1045
1046 if (list_empty(&virt_dev->cmd_list))
1047 return 0;
1048
1049 command = list_entry(virt_dev->cmd_list.next,
1050 struct xhci_command, cmd_list);
1051 if (xhci->cmd_ring->dequeue != command->command_trb)
1052 return 0;
1053
1054 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1055 list_del(&command->cmd_list);
1056 if (command->completion)
1057 complete(command->completion);
1058 else
1059 xhci_free_command(xhci, command);
1060 return 1;
1061 }
1062
1063 static void handle_cmd_completion(struct xhci_hcd *xhci,
1064 struct xhci_event_cmd *event)
1065 {
1066 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1067 u64 cmd_dma;
1068 dma_addr_t cmd_dequeue_dma;
1069 struct xhci_input_control_ctx *ctrl_ctx;
1070 struct xhci_virt_device *virt_dev;
1071 unsigned int ep_index;
1072 struct xhci_ring *ep_ring;
1073 unsigned int ep_state;
1074
1075 cmd_dma = le64_to_cpu(event->cmd_trb);
1076 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1077 xhci->cmd_ring->dequeue);
1078 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1079 if (cmd_dequeue_dma == 0) {
1080 xhci->error_bitmask |= 1 << 4;
1081 return;
1082 }
1083 /* Does the DMA address match our internal dequeue pointer address? */
1084 if (cmd_dma != (u64) cmd_dequeue_dma) {
1085 xhci->error_bitmask |= 1 << 5;
1086 return;
1087 }
1088 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1089 & TRB_TYPE_BITMASK) {
1090 case TRB_TYPE(TRB_ENABLE_SLOT):
1091 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1092 xhci->slot_id = slot_id;
1093 else
1094 xhci->slot_id = 0;
1095 complete(&xhci->addr_dev);
1096 break;
1097 case TRB_TYPE(TRB_DISABLE_SLOT):
1098 if (xhci->devs[slot_id]) {
1099 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1100 /* Delete default control endpoint resources */
1101 xhci_free_device_endpoint_resources(xhci,
1102 xhci->devs[slot_id], true);
1103 xhci_free_virt_device(xhci, slot_id);
1104 }
1105 break;
1106 case TRB_TYPE(TRB_CONFIG_EP):
1107 virt_dev = xhci->devs[slot_id];
1108 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1109 break;
1110 /*
1111 * Configure endpoint commands can come from the USB core
1112 * configuration or alt setting changes, or because the HW
1113 * needed an extra configure endpoint command after a reset
1114 * endpoint command or streams were being configured.
1115 * If the command was for a halted endpoint, the xHCI driver
1116 * is not waiting on the configure endpoint command.
1117 */
1118 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1119 virt_dev->in_ctx);
1120 /* Input ctx add_flags are the endpoint index plus one */
1121 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1122 /* A usb_set_interface() call directly after clearing a halted
1123 * condition may race on this quirky hardware. Not worth
1124 * worrying about, since this is prototype hardware. Not sure
1125 * if this will work for streams, but streams support was
1126 * untested on this prototype.
1127 */
1128 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1129 ep_index != (unsigned int) -1 &&
1130 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1131 le32_to_cpu(ctrl_ctx->drop_flags)) {
1132 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1133 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1134 if (!(ep_state & EP_HALTED))
1135 goto bandwidth_change;
1136 xhci_dbg(xhci, "Completed config ep cmd - "
1137 "last ep index = %d, state = %d\n",
1138 ep_index, ep_state);
1139 /* Clear internal halted state and restart ring(s) */
1140 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1141 ~EP_HALTED;
1142 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1143 break;
1144 }
1145 bandwidth_change:
1146 xhci_dbg(xhci, "Completed config ep cmd\n");
1147 xhci->devs[slot_id]->cmd_status =
1148 GET_COMP_CODE(le32_to_cpu(event->status));
1149 complete(&xhci->devs[slot_id]->cmd_completion);
1150 break;
1151 case TRB_TYPE(TRB_EVAL_CONTEXT):
1152 virt_dev = xhci->devs[slot_id];
1153 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1154 break;
1155 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1156 complete(&xhci->devs[slot_id]->cmd_completion);
1157 break;
1158 case TRB_TYPE(TRB_ADDR_DEV):
1159 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1160 complete(&xhci->addr_dev);
1161 break;
1162 case TRB_TYPE(TRB_STOP_RING):
1163 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1164 break;
1165 case TRB_TYPE(TRB_SET_DEQ):
1166 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1167 break;
1168 case TRB_TYPE(TRB_CMD_NOOP):
1169 break;
1170 case TRB_TYPE(TRB_RESET_EP):
1171 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1172 break;
1173 case TRB_TYPE(TRB_RESET_DEV):
1174 xhci_dbg(xhci, "Completed reset device command.\n");
1175 slot_id = TRB_TO_SLOT_ID(
1176 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1177 virt_dev = xhci->devs[slot_id];
1178 if (virt_dev)
1179 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1180 else
1181 xhci_warn(xhci, "Reset device command completion "
1182 "for disabled slot %u\n", slot_id);
1183 break;
1184 case TRB_TYPE(TRB_NEC_GET_FW):
1185 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1186 xhci->error_bitmask |= 1 << 6;
1187 break;
1188 }
1189 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1190 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1191 NEC_FW_MINOR(le32_to_cpu(event->status)));
1192 break;
1193 default:
1194 /* Skip over unknown commands on the event ring */
1195 xhci->error_bitmask |= 1 << 6;
1196 break;
1197 }
1198 inc_deq(xhci, xhci->cmd_ring, false);
1199 }
1200
1201 static void handle_vendor_event(struct xhci_hcd *xhci,
1202 union xhci_trb *event)
1203 {
1204 u32 trb_type;
1205
1206 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1207 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1208 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1209 handle_cmd_completion(xhci, &event->event_cmd);
1210 }
1211
1212 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1213 * port registers -- USB 3.0 and USB 2.0).
1214 *
1215 * Returns a zero-based port number, which is suitable for indexing into each of
1216 * the split roothubs' port arrays and bus state arrays.
1217 */
1218 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1219 struct xhci_hcd *xhci, u32 port_id)
1220 {
1221 unsigned int i;
1222 unsigned int num_similar_speed_ports = 0;
1223
1224 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1225 * and usb2_ports are 0-based indexes. Count the number of similar
1226 * speed ports, up to 1 port before this port.
1227 */
1228 for (i = 0; i < (port_id - 1); i++) {
1229 u8 port_speed = xhci->port_array[i];
1230
1231 /*
1232 * Skip ports that don't have known speeds, or have duplicate
1233 * Extended Capabilities port speed entries.
1234 */
1235 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1236 continue;
1237
1238 /*
1239 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1240 * 1.1 ports are under the USB 2.0 hub. If the port speed
1241 * matches the device speed, it's a similar speed port.
1242 */
1243 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1244 num_similar_speed_ports++;
1245 }
1246 return num_similar_speed_ports;
1247 }
1248
1249 static void handle_port_status(struct xhci_hcd *xhci,
1250 union xhci_trb *event)
1251 {
1252 struct usb_hcd *hcd;
1253 u32 port_id;
1254 u32 temp, temp1;
1255 int max_ports;
1256 int slot_id;
1257 unsigned int faked_port_index;
1258 u8 major_revision;
1259 struct xhci_bus_state *bus_state;
1260 __le32 __iomem **port_array;
1261 bool bogus_port_status = false;
1262
1263 /* Port status change events always have a successful completion code */
1264 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1265 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1266 xhci->error_bitmask |= 1 << 8;
1267 }
1268 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1269 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1270
1271 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1272 if ((port_id <= 0) || (port_id > max_ports)) {
1273 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1274 bogus_port_status = true;
1275 goto cleanup;
1276 }
1277
1278 /* Figure out which usb_hcd this port is attached to:
1279 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1280 */
1281 major_revision = xhci->port_array[port_id - 1];
1282 if (major_revision == 0) {
1283 xhci_warn(xhci, "Event for port %u not in "
1284 "Extended Capabilities, ignoring.\n",
1285 port_id);
1286 bogus_port_status = true;
1287 goto cleanup;
1288 }
1289 if (major_revision == DUPLICATE_ENTRY) {
1290 xhci_warn(xhci, "Event for port %u duplicated in"
1291 "Extended Capabilities, ignoring.\n",
1292 port_id);
1293 bogus_port_status = true;
1294 goto cleanup;
1295 }
1296
1297 /*
1298 * Hardware port IDs reported by a Port Status Change Event include USB
1299 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1300 * resume event, but we first need to translate the hardware port ID
1301 * into the index into the ports on the correct split roothub, and the
1302 * correct bus_state structure.
1303 */
1304 /* Find the right roothub. */
1305 hcd = xhci_to_hcd(xhci);
1306 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1307 hcd = xhci->shared_hcd;
1308 bus_state = &xhci->bus_state[hcd_index(hcd)];
1309 if (hcd->speed == HCD_USB3)
1310 port_array = xhci->usb3_ports;
1311 else
1312 port_array = xhci->usb2_ports;
1313 /* Find the faked port hub number */
1314 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1315 port_id);
1316
1317 temp = xhci_readl(xhci, port_array[faked_port_index]);
1318 if (hcd->state == HC_STATE_SUSPENDED) {
1319 xhci_dbg(xhci, "resume root hub\n");
1320 usb_hcd_resume_root_hub(hcd);
1321 }
1322
1323 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1324 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1325
1326 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1327 if (!(temp1 & CMD_RUN)) {
1328 xhci_warn(xhci, "xHC is not running.\n");
1329 goto cleanup;
1330 }
1331
1332 if (DEV_SUPERSPEED(temp)) {
1333 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1334 xhci_set_link_state(xhci, port_array, faked_port_index,
1335 XDEV_U0);
1336 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1337 faked_port_index);
1338 if (!slot_id) {
1339 xhci_dbg(xhci, "slot_id is zero\n");
1340 goto cleanup;
1341 }
1342 xhci_ring_device(xhci, slot_id);
1343 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1344 /* Clear PORT_PLC */
1345 xhci_test_and_clear_bit(xhci, port_array,
1346 faked_port_index, PORT_PLC);
1347 } else {
1348 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1349 bus_state->resume_done[faked_port_index] = jiffies +
1350 msecs_to_jiffies(20);
1351 mod_timer(&hcd->rh_timer,
1352 bus_state->resume_done[faked_port_index]);
1353 /* Do the rest in GetPortStatus */
1354 }
1355 }
1356
1357 if (hcd->speed != HCD_USB3)
1358 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1359 PORT_PLC);
1360
1361 cleanup:
1362 /* Update event ring dequeue pointer before dropping the lock */
1363 inc_deq(xhci, xhci->event_ring, true);
1364
1365 /* Don't make the USB core poll the roothub if we got a bad port status
1366 * change event. Besides, at that point we can't tell which roothub
1367 * (USB 2.0 or USB 3.0) to kick.
1368 */
1369 if (bogus_port_status)
1370 return;
1371
1372 spin_unlock(&xhci->lock);
1373 /* Pass this up to the core */
1374 usb_hcd_poll_rh_status(hcd);
1375 spin_lock(&xhci->lock);
1376 }
1377
1378 /*
1379 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1380 * at end_trb, which may be in another segment. If the suspect DMA address is a
1381 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1382 * returns 0.
1383 */
1384 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1385 union xhci_trb *start_trb,
1386 union xhci_trb *end_trb,
1387 dma_addr_t suspect_dma)
1388 {
1389 dma_addr_t start_dma;
1390 dma_addr_t end_seg_dma;
1391 dma_addr_t end_trb_dma;
1392 struct xhci_segment *cur_seg;
1393
1394 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1395 cur_seg = start_seg;
1396
1397 do {
1398 if (start_dma == 0)
1399 return NULL;
1400 /* We may get an event for a Link TRB in the middle of a TD */
1401 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1402 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1403 /* If the end TRB isn't in this segment, this is set to 0 */
1404 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1405
1406 if (end_trb_dma > 0) {
1407 /* The end TRB is in this segment, so suspect should be here */
1408 if (start_dma <= end_trb_dma) {
1409 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1410 return cur_seg;
1411 } else {
1412 /* Case for one segment with
1413 * a TD wrapped around to the top
1414 */
1415 if ((suspect_dma >= start_dma &&
1416 suspect_dma <= end_seg_dma) ||
1417 (suspect_dma >= cur_seg->dma &&
1418 suspect_dma <= end_trb_dma))
1419 return cur_seg;
1420 }
1421 return NULL;
1422 } else {
1423 /* Might still be somewhere in this segment */
1424 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1425 return cur_seg;
1426 }
1427 cur_seg = cur_seg->next;
1428 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1429 } while (cur_seg != start_seg);
1430
1431 return NULL;
1432 }
1433
1434 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1435 unsigned int slot_id, unsigned int ep_index,
1436 unsigned int stream_id,
1437 struct xhci_td *td, union xhci_trb *event_trb)
1438 {
1439 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1440 ep->ep_state |= EP_HALTED;
1441 ep->stopped_td = td;
1442 ep->stopped_trb = event_trb;
1443 ep->stopped_stream = stream_id;
1444
1445 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1446 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1447
1448 ep->stopped_td = NULL;
1449 ep->stopped_trb = NULL;
1450 ep->stopped_stream = 0;
1451
1452 xhci_ring_cmd_db(xhci);
1453 }
1454
1455 /* Check if an error has halted the endpoint ring. The class driver will
1456 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1457 * However, a babble and other errors also halt the endpoint ring, and the class
1458 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1459 * Ring Dequeue Pointer command manually.
1460 */
1461 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1462 struct xhci_ep_ctx *ep_ctx,
1463 unsigned int trb_comp_code)
1464 {
1465 /* TRB completion codes that may require a manual halt cleanup */
1466 if (trb_comp_code == COMP_TX_ERR ||
1467 trb_comp_code == COMP_BABBLE ||
1468 trb_comp_code == COMP_SPLIT_ERR)
1469 /* The 0.96 spec says a babbling control endpoint
1470 * is not halted. The 0.96 spec says it is. Some HW
1471 * claims to be 0.95 compliant, but it halts the control
1472 * endpoint anyway. Check if a babble halted the
1473 * endpoint.
1474 */
1475 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1476 cpu_to_le32(EP_STATE_HALTED))
1477 return 1;
1478
1479 return 0;
1480 }
1481
1482 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1483 {
1484 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1485 /* Vendor defined "informational" completion code,
1486 * treat as not-an-error.
1487 */
1488 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1489 trb_comp_code);
1490 xhci_dbg(xhci, "Treating code as success.\n");
1491 return 1;
1492 }
1493 return 0;
1494 }
1495
1496 /*
1497 * Finish the td processing, remove the td from td list;
1498 * Return 1 if the urb can be given back.
1499 */
1500 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1501 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1502 struct xhci_virt_ep *ep, int *status, bool skip)
1503 {
1504 struct xhci_virt_device *xdev;
1505 struct xhci_ring *ep_ring;
1506 unsigned int slot_id;
1507 int ep_index;
1508 struct urb *urb = NULL;
1509 struct xhci_ep_ctx *ep_ctx;
1510 int ret = 0;
1511 struct urb_priv *urb_priv;
1512 u32 trb_comp_code;
1513
1514 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1515 xdev = xhci->devs[slot_id];
1516 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1517 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1518 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1519 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1520
1521 if (skip)
1522 goto td_cleanup;
1523
1524 if (trb_comp_code == COMP_STOP_INVAL ||
1525 trb_comp_code == COMP_STOP) {
1526 /* The Endpoint Stop Command completion will take care of any
1527 * stopped TDs. A stopped TD may be restarted, so don't update
1528 * the ring dequeue pointer or take this TD off any lists yet.
1529 */
1530 ep->stopped_td = td;
1531 ep->stopped_trb = event_trb;
1532 return 0;
1533 } else {
1534 if (trb_comp_code == COMP_STALL) {
1535 /* The transfer is completed from the driver's
1536 * perspective, but we need to issue a set dequeue
1537 * command for this stalled endpoint to move the dequeue
1538 * pointer past the TD. We can't do that here because
1539 * the halt condition must be cleared first. Let the
1540 * USB class driver clear the stall later.
1541 */
1542 ep->stopped_td = td;
1543 ep->stopped_trb = event_trb;
1544 ep->stopped_stream = ep_ring->stream_id;
1545 } else if (xhci_requires_manual_halt_cleanup(xhci,
1546 ep_ctx, trb_comp_code)) {
1547 /* Other types of errors halt the endpoint, but the
1548 * class driver doesn't call usb_reset_endpoint() unless
1549 * the error is -EPIPE. Clear the halted status in the
1550 * xHCI hardware manually.
1551 */
1552 xhci_cleanup_halted_endpoint(xhci,
1553 slot_id, ep_index, ep_ring->stream_id,
1554 td, event_trb);
1555 } else {
1556 /* Update ring dequeue pointer */
1557 while (ep_ring->dequeue != td->last_trb)
1558 inc_deq(xhci, ep_ring, false);
1559 inc_deq(xhci, ep_ring, false);
1560 }
1561
1562 td_cleanup:
1563 /* Clean up the endpoint's TD list */
1564 urb = td->urb;
1565 urb_priv = urb->hcpriv;
1566
1567 /* Do one last check of the actual transfer length.
1568 * If the host controller said we transferred more data than
1569 * the buffer length, urb->actual_length will be a very big
1570 * number (since it's unsigned). Play it safe and say we didn't
1571 * transfer anything.
1572 */
1573 if (urb->actual_length > urb->transfer_buffer_length) {
1574 xhci_warn(xhci, "URB transfer length is wrong, "
1575 "xHC issue? req. len = %u, "
1576 "act. len = %u\n",
1577 urb->transfer_buffer_length,
1578 urb->actual_length);
1579 urb->actual_length = 0;
1580 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1581 *status = -EREMOTEIO;
1582 else
1583 *status = 0;
1584 }
1585 list_del_init(&td->td_list);
1586 /* Was this TD slated to be cancelled but completed anyway? */
1587 if (!list_empty(&td->cancelled_td_list))
1588 list_del_init(&td->cancelled_td_list);
1589
1590 urb_priv->td_cnt++;
1591 /* Giveback the urb when all the tds are completed */
1592 if (urb_priv->td_cnt == urb_priv->length) {
1593 ret = 1;
1594 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1595 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1596 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1597 == 0) {
1598 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1599 usb_amd_quirk_pll_enable();
1600 }
1601 }
1602 }
1603 }
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * Process control tds, update urb status and actual_length.
1610 */
1611 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1612 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1613 struct xhci_virt_ep *ep, int *status)
1614 {
1615 struct xhci_virt_device *xdev;
1616 struct xhci_ring *ep_ring;
1617 unsigned int slot_id;
1618 int ep_index;
1619 struct xhci_ep_ctx *ep_ctx;
1620 u32 trb_comp_code;
1621
1622 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1623 xdev = xhci->devs[slot_id];
1624 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1625 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1626 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1627 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1628
1629 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1630 switch (trb_comp_code) {
1631 case COMP_SUCCESS:
1632 if (event_trb == ep_ring->dequeue) {
1633 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1634 "without IOC set??\n");
1635 *status = -ESHUTDOWN;
1636 } else if (event_trb != td->last_trb) {
1637 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1638 "without IOC set??\n");
1639 *status = -ESHUTDOWN;
1640 } else {
1641 *status = 0;
1642 }
1643 break;
1644 case COMP_SHORT_TX:
1645 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1646 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1647 *status = -EREMOTEIO;
1648 else
1649 *status = 0;
1650 break;
1651 case COMP_STOP_INVAL:
1652 case COMP_STOP:
1653 return finish_td(xhci, td, event_trb, event, ep, status, false);
1654 default:
1655 if (!xhci_requires_manual_halt_cleanup(xhci,
1656 ep_ctx, trb_comp_code))
1657 break;
1658 xhci_dbg(xhci, "TRB error code %u, "
1659 "halted endpoint index = %u\n",
1660 trb_comp_code, ep_index);
1661 /* else fall through */
1662 case COMP_STALL:
1663 /* Did we transfer part of the data (middle) phase? */
1664 if (event_trb != ep_ring->dequeue &&
1665 event_trb != td->last_trb)
1666 td->urb->actual_length =
1667 td->urb->transfer_buffer_length
1668 - TRB_LEN(le32_to_cpu(event->transfer_len));
1669 else
1670 td->urb->actual_length = 0;
1671
1672 xhci_cleanup_halted_endpoint(xhci,
1673 slot_id, ep_index, 0, td, event_trb);
1674 return finish_td(xhci, td, event_trb, event, ep, status, true);
1675 }
1676 /*
1677 * Did we transfer any data, despite the errors that might have
1678 * happened? I.e. did we get past the setup stage?
1679 */
1680 if (event_trb != ep_ring->dequeue) {
1681 /* The event was for the status stage */
1682 if (event_trb == td->last_trb) {
1683 if (td->urb->actual_length != 0) {
1684 /* Don't overwrite a previously set error code
1685 */
1686 if ((*status == -EINPROGRESS || *status == 0) &&
1687 (td->urb->transfer_flags
1688 & URB_SHORT_NOT_OK))
1689 /* Did we already see a short data
1690 * stage? */
1691 *status = -EREMOTEIO;
1692 } else {
1693 td->urb->actual_length =
1694 td->urb->transfer_buffer_length;
1695 }
1696 } else {
1697 /* Maybe the event was for the data stage? */
1698 td->urb->actual_length =
1699 td->urb->transfer_buffer_length -
1700 TRB_LEN(le32_to_cpu(event->transfer_len));
1701 xhci_dbg(xhci, "Waiting for status "
1702 "stage event\n");
1703 return 0;
1704 }
1705 }
1706
1707 return finish_td(xhci, td, event_trb, event, ep, status, false);
1708 }
1709
1710 /*
1711 * Process isochronous tds, update urb packet status and actual_length.
1712 */
1713 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1714 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1715 struct xhci_virt_ep *ep, int *status)
1716 {
1717 struct xhci_ring *ep_ring;
1718 struct urb_priv *urb_priv;
1719 int idx;
1720 int len = 0;
1721 union xhci_trb *cur_trb;
1722 struct xhci_segment *cur_seg;
1723 struct usb_iso_packet_descriptor *frame;
1724 u32 trb_comp_code;
1725 bool skip_td = false;
1726
1727 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1728 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1729 urb_priv = td->urb->hcpriv;
1730 idx = urb_priv->td_cnt;
1731 frame = &td->urb->iso_frame_desc[idx];
1732
1733 /* handle completion code */
1734 switch (trb_comp_code) {
1735 case COMP_SUCCESS:
1736 frame->status = 0;
1737 break;
1738 case COMP_SHORT_TX:
1739 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1740 -EREMOTEIO : 0;
1741 break;
1742 case COMP_BW_OVER:
1743 frame->status = -ECOMM;
1744 skip_td = true;
1745 break;
1746 case COMP_BUFF_OVER:
1747 case COMP_BABBLE:
1748 frame->status = -EOVERFLOW;
1749 skip_td = true;
1750 break;
1751 case COMP_DEV_ERR:
1752 case COMP_STALL:
1753 frame->status = -EPROTO;
1754 skip_td = true;
1755 break;
1756 case COMP_STOP:
1757 case COMP_STOP_INVAL:
1758 break;
1759 default:
1760 frame->status = -1;
1761 break;
1762 }
1763
1764 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1765 frame->actual_length = frame->length;
1766 td->urb->actual_length += frame->length;
1767 } else {
1768 for (cur_trb = ep_ring->dequeue,
1769 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1770 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1771 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1772 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1773 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1774 }
1775 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1776 TRB_LEN(le32_to_cpu(event->transfer_len));
1777
1778 if (trb_comp_code != COMP_STOP_INVAL) {
1779 frame->actual_length = len;
1780 td->urb->actual_length += len;
1781 }
1782 }
1783
1784 return finish_td(xhci, td, event_trb, event, ep, status, false);
1785 }
1786
1787 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1788 struct xhci_transfer_event *event,
1789 struct xhci_virt_ep *ep, int *status)
1790 {
1791 struct xhci_ring *ep_ring;
1792 struct urb_priv *urb_priv;
1793 struct usb_iso_packet_descriptor *frame;
1794 int idx;
1795
1796 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1797 urb_priv = td->urb->hcpriv;
1798 idx = urb_priv->td_cnt;
1799 frame = &td->urb->iso_frame_desc[idx];
1800
1801 /* The transfer is partly done. */
1802 frame->status = -EXDEV;
1803
1804 /* calc actual length */
1805 frame->actual_length = 0;
1806
1807 /* Update ring dequeue pointer */
1808 while (ep_ring->dequeue != td->last_trb)
1809 inc_deq(xhci, ep_ring, false);
1810 inc_deq(xhci, ep_ring, false);
1811
1812 return finish_td(xhci, td, NULL, event, ep, status, true);
1813 }
1814
1815 /*
1816 * Process bulk and interrupt tds, update urb status and actual_length.
1817 */
1818 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1819 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1820 struct xhci_virt_ep *ep, int *status)
1821 {
1822 struct xhci_ring *ep_ring;
1823 union xhci_trb *cur_trb;
1824 struct xhci_segment *cur_seg;
1825 u32 trb_comp_code;
1826
1827 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1828 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1829
1830 switch (trb_comp_code) {
1831 case COMP_SUCCESS:
1832 /* Double check that the HW transferred everything. */
1833 if (event_trb != td->last_trb) {
1834 xhci_warn(xhci, "WARN Successful completion "
1835 "on short TX\n");
1836 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1837 *status = -EREMOTEIO;
1838 else
1839 *status = 0;
1840 } else {
1841 *status = 0;
1842 }
1843 break;
1844 case COMP_SHORT_TX:
1845 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1846 *status = -EREMOTEIO;
1847 else
1848 *status = 0;
1849 break;
1850 default:
1851 /* Others already handled above */
1852 break;
1853 }
1854 if (trb_comp_code == COMP_SHORT_TX)
1855 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1856 "%d bytes untransferred\n",
1857 td->urb->ep->desc.bEndpointAddress,
1858 td->urb->transfer_buffer_length,
1859 TRB_LEN(le32_to_cpu(event->transfer_len)));
1860 /* Fast path - was this the last TRB in the TD for this URB? */
1861 if (event_trb == td->last_trb) {
1862 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1863 td->urb->actual_length =
1864 td->urb->transfer_buffer_length -
1865 TRB_LEN(le32_to_cpu(event->transfer_len));
1866 if (td->urb->transfer_buffer_length <
1867 td->urb->actual_length) {
1868 xhci_warn(xhci, "HC gave bad length "
1869 "of %d bytes left\n",
1870 TRB_LEN(le32_to_cpu(event->transfer_len)));
1871 td->urb->actual_length = 0;
1872 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1873 *status = -EREMOTEIO;
1874 else
1875 *status = 0;
1876 }
1877 /* Don't overwrite a previously set error code */
1878 if (*status == -EINPROGRESS) {
1879 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1880 *status = -EREMOTEIO;
1881 else
1882 *status = 0;
1883 }
1884 } else {
1885 td->urb->actual_length =
1886 td->urb->transfer_buffer_length;
1887 /* Ignore a short packet completion if the
1888 * untransferred length was zero.
1889 */
1890 if (*status == -EREMOTEIO)
1891 *status = 0;
1892 }
1893 } else {
1894 /* Slow path - walk the list, starting from the dequeue
1895 * pointer, to get the actual length transferred.
1896 */
1897 td->urb->actual_length = 0;
1898 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1899 cur_trb != event_trb;
1900 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1901 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1902 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1903 td->urb->actual_length +=
1904 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1905 }
1906 /* If the ring didn't stop on a Link or No-op TRB, add
1907 * in the actual bytes transferred from the Normal TRB
1908 */
1909 if (trb_comp_code != COMP_STOP_INVAL)
1910 td->urb->actual_length +=
1911 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1912 TRB_LEN(le32_to_cpu(event->transfer_len));
1913 }
1914
1915 return finish_td(xhci, td, event_trb, event, ep, status, false);
1916 }
1917
1918 /*
1919 * If this function returns an error condition, it means it got a Transfer
1920 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1921 * At this point, the host controller is probably hosed and should be reset.
1922 */
1923 static int handle_tx_event(struct xhci_hcd *xhci,
1924 struct xhci_transfer_event *event)
1925 {
1926 struct xhci_virt_device *xdev;
1927 struct xhci_virt_ep *ep;
1928 struct xhci_ring *ep_ring;
1929 unsigned int slot_id;
1930 int ep_index;
1931 struct xhci_td *td = NULL;
1932 dma_addr_t event_dma;
1933 struct xhci_segment *event_seg;
1934 union xhci_trb *event_trb;
1935 struct urb *urb = NULL;
1936 int status = -EINPROGRESS;
1937 struct urb_priv *urb_priv;
1938 struct xhci_ep_ctx *ep_ctx;
1939 struct list_head *tmp;
1940 u32 trb_comp_code;
1941 int ret = 0;
1942 int td_num = 0;
1943
1944 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1945 xdev = xhci->devs[slot_id];
1946 if (!xdev) {
1947 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1948 return -ENODEV;
1949 }
1950
1951 /* Endpoint ID is 1 based, our index is zero based */
1952 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1953 ep = &xdev->eps[ep_index];
1954 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1955 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1956 if (!ep_ring ||
1957 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1958 EP_STATE_DISABLED) {
1959 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1960 "or incorrect stream ring\n");
1961 return -ENODEV;
1962 }
1963
1964 /* Count current td numbers if ep->skip is set */
1965 if (ep->skip) {
1966 list_for_each(tmp, &ep_ring->td_list)
1967 td_num++;
1968 }
1969
1970 event_dma = le64_to_cpu(event->buffer);
1971 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1972 /* Look for common error cases */
1973 switch (trb_comp_code) {
1974 /* Skip codes that require special handling depending on
1975 * transfer type
1976 */
1977 case COMP_SUCCESS:
1978 case COMP_SHORT_TX:
1979 break;
1980 case COMP_STOP:
1981 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1982 break;
1983 case COMP_STOP_INVAL:
1984 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1985 break;
1986 case COMP_STALL:
1987 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1988 ep->ep_state |= EP_HALTED;
1989 status = -EPIPE;
1990 break;
1991 case COMP_TRB_ERR:
1992 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1993 status = -EILSEQ;
1994 break;
1995 case COMP_SPLIT_ERR:
1996 case COMP_TX_ERR:
1997 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1998 status = -EPROTO;
1999 break;
2000 case COMP_BABBLE:
2001 xhci_warn(xhci, "WARN: babble error on endpoint\n");
2002 status = -EOVERFLOW;
2003 break;
2004 case COMP_DB_ERR:
2005 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2006 status = -ENOSR;
2007 break;
2008 case COMP_BW_OVER:
2009 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2010 break;
2011 case COMP_BUFF_OVER:
2012 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2013 break;
2014 case COMP_UNDERRUN:
2015 /*
2016 * When the Isoch ring is empty, the xHC will generate
2017 * a Ring Overrun Event for IN Isoch endpoint or Ring
2018 * Underrun Event for OUT Isoch endpoint.
2019 */
2020 xhci_dbg(xhci, "underrun event on endpoint\n");
2021 if (!list_empty(&ep_ring->td_list))
2022 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2023 "still with TDs queued?\n",
2024 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2025 ep_index);
2026 goto cleanup;
2027 case COMP_OVERRUN:
2028 xhci_dbg(xhci, "overrun event on endpoint\n");
2029 if (!list_empty(&ep_ring->td_list))
2030 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2031 "still with TDs queued?\n",
2032 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2033 ep_index);
2034 goto cleanup;
2035 case COMP_DEV_ERR:
2036 xhci_warn(xhci, "WARN: detect an incompatible device");
2037 status = -EPROTO;
2038 break;
2039 case COMP_MISSED_INT:
2040 /*
2041 * When encounter missed service error, one or more isoc tds
2042 * may be missed by xHC.
2043 * Set skip flag of the ep_ring; Complete the missed tds as
2044 * short transfer when process the ep_ring next time.
2045 */
2046 ep->skip = true;
2047 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2048 goto cleanup;
2049 default:
2050 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2051 status = 0;
2052 break;
2053 }
2054 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2055 "busted\n");
2056 goto cleanup;
2057 }
2058
2059 do {
2060 /* This TRB should be in the TD at the head of this ring's
2061 * TD list.
2062 */
2063 if (list_empty(&ep_ring->td_list)) {
2064 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2065 "with no TDs queued?\n",
2066 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2067 ep_index);
2068 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2069 (le32_to_cpu(event->flags) &
2070 TRB_TYPE_BITMASK)>>10);
2071 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2072 if (ep->skip) {
2073 ep->skip = false;
2074 xhci_dbg(xhci, "td_list is empty while skip "
2075 "flag set. Clear skip flag.\n");
2076 }
2077 ret = 0;
2078 goto cleanup;
2079 }
2080
2081 /* We've skipped all the TDs on the ep ring when ep->skip set */
2082 if (ep->skip && td_num == 0) {
2083 ep->skip = false;
2084 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2085 "Clear skip flag.\n");
2086 ret = 0;
2087 goto cleanup;
2088 }
2089
2090 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2091 if (ep->skip)
2092 td_num--;
2093
2094 /* Is this a TRB in the currently executing TD? */
2095 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2096 td->last_trb, event_dma);
2097
2098 /*
2099 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2100 * is not in the current TD pointed by ep_ring->dequeue because
2101 * that the hardware dequeue pointer still at the previous TRB
2102 * of the current TD. The previous TRB maybe a Link TD or the
2103 * last TRB of the previous TD. The command completion handle
2104 * will take care the rest.
2105 */
2106 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2107 ret = 0;
2108 goto cleanup;
2109 }
2110
2111 if (!event_seg) {
2112 if (!ep->skip ||
2113 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2114 /* Some host controllers give a spurious
2115 * successful event after a short transfer.
2116 * Ignore it.
2117 */
2118 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2119 ep_ring->last_td_was_short) {
2120 ep_ring->last_td_was_short = false;
2121 ret = 0;
2122 goto cleanup;
2123 }
2124 /* HC is busted, give up! */
2125 xhci_err(xhci,
2126 "ERROR Transfer event TRB DMA ptr not "
2127 "part of current TD\n");
2128 return -ESHUTDOWN;
2129 }
2130
2131 ret = skip_isoc_td(xhci, td, event, ep, &status);
2132 goto cleanup;
2133 }
2134 if (trb_comp_code == COMP_SHORT_TX)
2135 ep_ring->last_td_was_short = true;
2136 else
2137 ep_ring->last_td_was_short = false;
2138
2139 if (ep->skip) {
2140 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2141 ep->skip = false;
2142 }
2143
2144 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2145 sizeof(*event_trb)];
2146 /*
2147 * No-op TRB should not trigger interrupts.
2148 * If event_trb is a no-op TRB, it means the
2149 * corresponding TD has been cancelled. Just ignore
2150 * the TD.
2151 */
2152 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2153 xhci_dbg(xhci,
2154 "event_trb is a no-op TRB. Skip it\n");
2155 goto cleanup;
2156 }
2157
2158 /* Now update the urb's actual_length and give back to
2159 * the core
2160 */
2161 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2162 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2163 &status);
2164 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2165 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2166 &status);
2167 else
2168 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2169 ep, &status);
2170
2171 cleanup:
2172 /*
2173 * Do not update event ring dequeue pointer if ep->skip is set.
2174 * Will roll back to continue process missed tds.
2175 */
2176 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2177 inc_deq(xhci, xhci->event_ring, true);
2178 }
2179
2180 if (ret) {
2181 urb = td->urb;
2182 urb_priv = urb->hcpriv;
2183 /* Leave the TD around for the reset endpoint function
2184 * to use(but only if it's not a control endpoint,
2185 * since we already queued the Set TR dequeue pointer
2186 * command for stalled control endpoints).
2187 */
2188 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2189 (trb_comp_code != COMP_STALL &&
2190 trb_comp_code != COMP_BABBLE))
2191 xhci_urb_free_priv(xhci, urb_priv);
2192
2193 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2194 if ((urb->actual_length != urb->transfer_buffer_length &&
2195 (urb->transfer_flags &
2196 URB_SHORT_NOT_OK)) ||
2197 (status != 0 &&
2198 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2199 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2200 "expected = %x, status = %d\n",
2201 urb, urb->actual_length,
2202 urb->transfer_buffer_length,
2203 status);
2204 spin_unlock(&xhci->lock);
2205 /* EHCI, UHCI, and OHCI always unconditionally set the
2206 * urb->status of an isochronous endpoint to 0.
2207 */
2208 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2209 status = 0;
2210 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2211 spin_lock(&xhci->lock);
2212 }
2213
2214 /*
2215 * If ep->skip is set, it means there are missed tds on the
2216 * endpoint ring need to take care of.
2217 * Process them as short transfer until reach the td pointed by
2218 * the event.
2219 */
2220 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2221
2222 return 0;
2223 }
2224
2225 /*
2226 * This function handles all OS-owned events on the event ring. It may drop
2227 * xhci->lock between event processing (e.g. to pass up port status changes).
2228 * Returns >0 for "possibly more events to process" (caller should call again),
2229 * otherwise 0 if done. In future, <0 returns should indicate error code.
2230 */
2231 static int xhci_handle_event(struct xhci_hcd *xhci)
2232 {
2233 union xhci_trb *event;
2234 int update_ptrs = 1;
2235 int ret;
2236
2237 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2238 xhci->error_bitmask |= 1 << 1;
2239 return 0;
2240 }
2241
2242 event = xhci->event_ring->dequeue;
2243 /* Does the HC or OS own the TRB? */
2244 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2245 xhci->event_ring->cycle_state) {
2246 xhci->error_bitmask |= 1 << 2;
2247 return 0;
2248 }
2249
2250 /*
2251 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2252 * speculative reads of the event's flags/data below.
2253 */
2254 rmb();
2255 /* FIXME: Handle more event types. */
2256 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2257 case TRB_TYPE(TRB_COMPLETION):
2258 handle_cmd_completion(xhci, &event->event_cmd);
2259 break;
2260 case TRB_TYPE(TRB_PORT_STATUS):
2261 handle_port_status(xhci, event);
2262 update_ptrs = 0;
2263 break;
2264 case TRB_TYPE(TRB_TRANSFER):
2265 ret = handle_tx_event(xhci, &event->trans_event);
2266 if (ret < 0)
2267 xhci->error_bitmask |= 1 << 9;
2268 else
2269 update_ptrs = 0;
2270 break;
2271 default:
2272 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2273 TRB_TYPE(48))
2274 handle_vendor_event(xhci, event);
2275 else
2276 xhci->error_bitmask |= 1 << 3;
2277 }
2278 /* Any of the above functions may drop and re-acquire the lock, so check
2279 * to make sure a watchdog timer didn't mark the host as non-responsive.
2280 */
2281 if (xhci->xhc_state & XHCI_STATE_DYING) {
2282 xhci_dbg(xhci, "xHCI host dying, returning from "
2283 "event handler.\n");
2284 return 0;
2285 }
2286
2287 if (update_ptrs)
2288 /* Update SW event ring dequeue pointer */
2289 inc_deq(xhci, xhci->event_ring, true);
2290
2291 /* Are there more items on the event ring? Caller will call us again to
2292 * check.
2293 */
2294 return 1;
2295 }
2296
2297 /*
2298 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2299 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2300 * indicators of an event TRB error, but we check the status *first* to be safe.
2301 */
2302 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2303 {
2304 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2305 u32 status;
2306 union xhci_trb *trb;
2307 u64 temp_64;
2308 union xhci_trb *event_ring_deq;
2309 dma_addr_t deq;
2310
2311 spin_lock(&xhci->lock);
2312 trb = xhci->event_ring->dequeue;
2313 /* Check if the xHC generated the interrupt, or the irq is shared */
2314 status = xhci_readl(xhci, &xhci->op_regs->status);
2315 if (status == 0xffffffff)
2316 goto hw_died;
2317
2318 if (!(status & STS_EINT)) {
2319 spin_unlock(&xhci->lock);
2320 return IRQ_NONE;
2321 }
2322 if (status & STS_FATAL) {
2323 xhci_warn(xhci, "WARNING: Host System Error\n");
2324 xhci_halt(xhci);
2325 hw_died:
2326 spin_unlock(&xhci->lock);
2327 return -ESHUTDOWN;
2328 }
2329
2330 /*
2331 * Clear the op reg interrupt status first,
2332 * so we can receive interrupts from other MSI-X interrupters.
2333 * Write 1 to clear the interrupt status.
2334 */
2335 status |= STS_EINT;
2336 xhci_writel(xhci, status, &xhci->op_regs->status);
2337 /* FIXME when MSI-X is supported and there are multiple vectors */
2338 /* Clear the MSI-X event interrupt status */
2339
2340 if (hcd->irq != -1) {
2341 u32 irq_pending;
2342 /* Acknowledge the PCI interrupt */
2343 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2344 irq_pending |= 0x3;
2345 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2346 }
2347
2348 if (xhci->xhc_state & XHCI_STATE_DYING) {
2349 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2350 "Shouldn't IRQs be disabled?\n");
2351 /* Clear the event handler busy flag (RW1C);
2352 * the event ring should be empty.
2353 */
2354 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2355 xhci_write_64(xhci, temp_64 | ERST_EHB,
2356 &xhci->ir_set->erst_dequeue);
2357 spin_unlock(&xhci->lock);
2358
2359 return IRQ_HANDLED;
2360 }
2361
2362 event_ring_deq = xhci->event_ring->dequeue;
2363 /* FIXME this should be a delayed service routine
2364 * that clears the EHB.
2365 */
2366 while (xhci_handle_event(xhci) > 0) {}
2367
2368 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2369 /* If necessary, update the HW's version of the event ring deq ptr. */
2370 if (event_ring_deq != xhci->event_ring->dequeue) {
2371 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2372 xhci->event_ring->dequeue);
2373 if (deq == 0)
2374 xhci_warn(xhci, "WARN something wrong with SW event "
2375 "ring dequeue ptr.\n");
2376 /* Update HC event ring dequeue pointer */
2377 temp_64 &= ERST_PTR_MASK;
2378 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2379 }
2380
2381 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2382 temp_64 |= ERST_EHB;
2383 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2384
2385 spin_unlock(&xhci->lock);
2386
2387 return IRQ_HANDLED;
2388 }
2389
2390 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2391 {
2392 irqreturn_t ret;
2393 struct xhci_hcd *xhci;
2394
2395 xhci = hcd_to_xhci(hcd);
2396 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2397 if (xhci->shared_hcd)
2398 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2399
2400 ret = xhci_irq(hcd);
2401
2402 return ret;
2403 }
2404
2405 /**** Endpoint Ring Operations ****/
2406
2407 /*
2408 * Generic function for queueing a TRB on a ring.
2409 * The caller must have checked to make sure there's room on the ring.
2410 *
2411 * @more_trbs_coming: Will you enqueue more TRBs before calling
2412 * prepare_transfer()?
2413 */
2414 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2415 bool consumer, bool more_trbs_coming, bool isoc,
2416 u32 field1, u32 field2, u32 field3, u32 field4)
2417 {
2418 struct xhci_generic_trb *trb;
2419
2420 trb = &ring->enqueue->generic;
2421 trb->field[0] = cpu_to_le32(field1);
2422 trb->field[1] = cpu_to_le32(field2);
2423 trb->field[2] = cpu_to_le32(field3);
2424 trb->field[3] = cpu_to_le32(field4);
2425 inc_enq(xhci, ring, consumer, more_trbs_coming, isoc);
2426 }
2427
2428 /*
2429 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2430 * FIXME allocate segments if the ring is full.
2431 */
2432 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2433 u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags)
2434 {
2435 /* Make sure the endpoint has been added to xHC schedule */
2436 switch (ep_state) {
2437 case EP_STATE_DISABLED:
2438 /*
2439 * USB core changed config/interfaces without notifying us,
2440 * or hardware is reporting the wrong state.
2441 */
2442 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2443 return -ENOENT;
2444 case EP_STATE_ERROR:
2445 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2446 /* FIXME event handling code for error needs to clear it */
2447 /* XXX not sure if this should be -ENOENT or not */
2448 return -EINVAL;
2449 case EP_STATE_HALTED:
2450 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2451 case EP_STATE_STOPPED:
2452 case EP_STATE_RUNNING:
2453 break;
2454 default:
2455 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2456 /*
2457 * FIXME issue Configure Endpoint command to try to get the HC
2458 * back into a known state.
2459 */
2460 return -EINVAL;
2461 }
2462 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2463 /* FIXME allocate more room */
2464 xhci_err(xhci, "ERROR no room on ep ring\n");
2465 return -ENOMEM;
2466 }
2467
2468 if (enqueue_is_link_trb(ep_ring)) {
2469 struct xhci_ring *ring = ep_ring;
2470 union xhci_trb *next;
2471
2472 next = ring->enqueue;
2473
2474 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2475 /* If we're not dealing with 0.95 hardware or isoc rings
2476 * on AMD 0.96 host, clear the chain bit.
2477 */
2478 if (!xhci_link_trb_quirk(xhci) && !(isoc &&
2479 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2480 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2481 else
2482 next->link.control |= cpu_to_le32(TRB_CHAIN);
2483
2484 wmb();
2485 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2486
2487 /* Toggle the cycle bit after the last ring segment. */
2488 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2489 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2490 if (!in_interrupt()) {
2491 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2492 "state for ring %p = %i\n",
2493 ring, (unsigned int)ring->cycle_state);
2494 }
2495 }
2496 ring->enq_seg = ring->enq_seg->next;
2497 ring->enqueue = ring->enq_seg->trbs;
2498 next = ring->enqueue;
2499 }
2500 }
2501
2502 return 0;
2503 }
2504
2505 static int prepare_transfer(struct xhci_hcd *xhci,
2506 struct xhci_virt_device *xdev,
2507 unsigned int ep_index,
2508 unsigned int stream_id,
2509 unsigned int num_trbs,
2510 struct urb *urb,
2511 unsigned int td_index,
2512 bool isoc,
2513 gfp_t mem_flags)
2514 {
2515 int ret;
2516 struct urb_priv *urb_priv;
2517 struct xhci_td *td;
2518 struct xhci_ring *ep_ring;
2519 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2520
2521 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2522 if (!ep_ring) {
2523 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2524 stream_id);
2525 return -EINVAL;
2526 }
2527
2528 ret = prepare_ring(xhci, ep_ring,
2529 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2530 num_trbs, isoc, mem_flags);
2531 if (ret)
2532 return ret;
2533
2534 urb_priv = urb->hcpriv;
2535 td = urb_priv->td[td_index];
2536
2537 INIT_LIST_HEAD(&td->td_list);
2538 INIT_LIST_HEAD(&td->cancelled_td_list);
2539
2540 if (td_index == 0) {
2541 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2542 if (unlikely(ret))
2543 return ret;
2544 }
2545
2546 td->urb = urb;
2547 /* Add this TD to the tail of the endpoint ring's TD list */
2548 list_add_tail(&td->td_list, &ep_ring->td_list);
2549 td->start_seg = ep_ring->enq_seg;
2550 td->first_trb = ep_ring->enqueue;
2551
2552 urb_priv->td[td_index] = td;
2553
2554 return 0;
2555 }
2556
2557 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2558 {
2559 int num_sgs, num_trbs, running_total, temp, i;
2560 struct scatterlist *sg;
2561
2562 sg = NULL;
2563 num_sgs = urb->num_sgs;
2564 temp = urb->transfer_buffer_length;
2565
2566 xhci_dbg(xhci, "count sg list trbs: \n");
2567 num_trbs = 0;
2568 for_each_sg(urb->sg, sg, num_sgs, i) {
2569 unsigned int previous_total_trbs = num_trbs;
2570 unsigned int len = sg_dma_len(sg);
2571
2572 /* Scatter gather list entries may cross 64KB boundaries */
2573 running_total = TRB_MAX_BUFF_SIZE -
2574 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2575 running_total &= TRB_MAX_BUFF_SIZE - 1;
2576 if (running_total != 0)
2577 num_trbs++;
2578
2579 /* How many more 64KB chunks to transfer, how many more TRBs? */
2580 while (running_total < sg_dma_len(sg) && running_total < temp) {
2581 num_trbs++;
2582 running_total += TRB_MAX_BUFF_SIZE;
2583 }
2584 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2585 i, (unsigned long long)sg_dma_address(sg),
2586 len, len, num_trbs - previous_total_trbs);
2587
2588 len = min_t(int, len, temp);
2589 temp -= len;
2590 if (temp == 0)
2591 break;
2592 }
2593 xhci_dbg(xhci, "\n");
2594 if (!in_interrupt())
2595 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2596 "num_trbs = %d\n",
2597 urb->ep->desc.bEndpointAddress,
2598 urb->transfer_buffer_length,
2599 num_trbs);
2600 return num_trbs;
2601 }
2602
2603 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2604 {
2605 if (num_trbs != 0)
2606 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2607 "TRBs, %d left\n", __func__,
2608 urb->ep->desc.bEndpointAddress, num_trbs);
2609 if (running_total != urb->transfer_buffer_length)
2610 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2611 "queued %#x (%d), asked for %#x (%d)\n",
2612 __func__,
2613 urb->ep->desc.bEndpointAddress,
2614 running_total, running_total,
2615 urb->transfer_buffer_length,
2616 urb->transfer_buffer_length);
2617 }
2618
2619 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2620 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2621 struct xhci_generic_trb *start_trb)
2622 {
2623 /*
2624 * Pass all the TRBs to the hardware at once and make sure this write
2625 * isn't reordered.
2626 */
2627 wmb();
2628 if (start_cycle)
2629 start_trb->field[3] |= cpu_to_le32(start_cycle);
2630 else
2631 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2632 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2633 }
2634
2635 /*
2636 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2637 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2638 * (comprised of sg list entries) can take several service intervals to
2639 * transmit.
2640 */
2641 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2642 struct urb *urb, int slot_id, unsigned int ep_index)
2643 {
2644 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2645 xhci->devs[slot_id]->out_ctx, ep_index);
2646 int xhci_interval;
2647 int ep_interval;
2648
2649 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2650 ep_interval = urb->interval;
2651 /* Convert to microframes */
2652 if (urb->dev->speed == USB_SPEED_LOW ||
2653 urb->dev->speed == USB_SPEED_FULL)
2654 ep_interval *= 8;
2655 /* FIXME change this to a warning and a suggestion to use the new API
2656 * to set the polling interval (once the API is added).
2657 */
2658 if (xhci_interval != ep_interval) {
2659 if (printk_ratelimit())
2660 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2661 " (%d microframe%s) than xHCI "
2662 "(%d microframe%s)\n",
2663 ep_interval,
2664 ep_interval == 1 ? "" : "s",
2665 xhci_interval,
2666 xhci_interval == 1 ? "" : "s");
2667 urb->interval = xhci_interval;
2668 /* Convert back to frames for LS/FS devices */
2669 if (urb->dev->speed == USB_SPEED_LOW ||
2670 urb->dev->speed == USB_SPEED_FULL)
2671 urb->interval /= 8;
2672 }
2673 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2674 }
2675
2676 /*
2677 * The TD size is the number of bytes remaining in the TD (including this TRB),
2678 * right shifted by 10.
2679 * It must fit in bits 21:17, so it can't be bigger than 31.
2680 */
2681 static u32 xhci_td_remainder(unsigned int remainder)
2682 {
2683 u32 max = (1 << (21 - 17 + 1)) - 1;
2684
2685 if ((remainder >> 10) >= max)
2686 return max << 17;
2687 else
2688 return (remainder >> 10) << 17;
2689 }
2690
2691 /*
2692 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2693 * the TD (*not* including this TRB).
2694 *
2695 * Total TD packet count = total_packet_count =
2696 * roundup(TD size in bytes / wMaxPacketSize)
2697 *
2698 * Packets transferred up to and including this TRB = packets_transferred =
2699 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2700 *
2701 * TD size = total_packet_count - packets_transferred
2702 *
2703 * It must fit in bits 21:17, so it can't be bigger than 31.
2704 */
2705
2706 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2707 unsigned int total_packet_count, struct urb *urb)
2708 {
2709 int packets_transferred;
2710
2711 /* One TRB with a zero-length data packet. */
2712 if (running_total == 0 && trb_buff_len == 0)
2713 return 0;
2714
2715 /* All the TRB queueing functions don't count the current TRB in
2716 * running_total.
2717 */
2718 packets_transferred = (running_total + trb_buff_len) /
2719 usb_endpoint_maxp(&urb->ep->desc);
2720
2721 return xhci_td_remainder(total_packet_count - packets_transferred);
2722 }
2723
2724 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2725 struct urb *urb, int slot_id, unsigned int ep_index)
2726 {
2727 struct xhci_ring *ep_ring;
2728 unsigned int num_trbs;
2729 struct urb_priv *urb_priv;
2730 struct xhci_td *td;
2731 struct scatterlist *sg;
2732 int num_sgs;
2733 int trb_buff_len, this_sg_len, running_total;
2734 unsigned int total_packet_count;
2735 bool first_trb;
2736 u64 addr;
2737 bool more_trbs_coming;
2738
2739 struct xhci_generic_trb *start_trb;
2740 int start_cycle;
2741
2742 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2743 if (!ep_ring)
2744 return -EINVAL;
2745
2746 num_trbs = count_sg_trbs_needed(xhci, urb);
2747 num_sgs = urb->num_sgs;
2748 total_packet_count = roundup(urb->transfer_buffer_length,
2749 usb_endpoint_maxp(&urb->ep->desc));
2750
2751 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2752 ep_index, urb->stream_id,
2753 num_trbs, urb, 0, false, mem_flags);
2754 if (trb_buff_len < 0)
2755 return trb_buff_len;
2756
2757 urb_priv = urb->hcpriv;
2758 td = urb_priv->td[0];
2759
2760 /*
2761 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2762 * until we've finished creating all the other TRBs. The ring's cycle
2763 * state may change as we enqueue the other TRBs, so save it too.
2764 */
2765 start_trb = &ep_ring->enqueue->generic;
2766 start_cycle = ep_ring->cycle_state;
2767
2768 running_total = 0;
2769 /*
2770 * How much data is in the first TRB?
2771 *
2772 * There are three forces at work for TRB buffer pointers and lengths:
2773 * 1. We don't want to walk off the end of this sg-list entry buffer.
2774 * 2. The transfer length that the driver requested may be smaller than
2775 * the amount of memory allocated for this scatter-gather list.
2776 * 3. TRBs buffers can't cross 64KB boundaries.
2777 */
2778 sg = urb->sg;
2779 addr = (u64) sg_dma_address(sg);
2780 this_sg_len = sg_dma_len(sg);
2781 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2782 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2783 if (trb_buff_len > urb->transfer_buffer_length)
2784 trb_buff_len = urb->transfer_buffer_length;
2785 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2786 trb_buff_len);
2787
2788 first_trb = true;
2789 /* Queue the first TRB, even if it's zero-length */
2790 do {
2791 u32 field = 0;
2792 u32 length_field = 0;
2793 u32 remainder = 0;
2794
2795 /* Don't change the cycle bit of the first TRB until later */
2796 if (first_trb) {
2797 first_trb = false;
2798 if (start_cycle == 0)
2799 field |= 0x1;
2800 } else
2801 field |= ep_ring->cycle_state;
2802
2803 /* Chain all the TRBs together; clear the chain bit in the last
2804 * TRB to indicate it's the last TRB in the chain.
2805 */
2806 if (num_trbs > 1) {
2807 field |= TRB_CHAIN;
2808 } else {
2809 /* FIXME - add check for ZERO_PACKET flag before this */
2810 td->last_trb = ep_ring->enqueue;
2811 field |= TRB_IOC;
2812 }
2813
2814 /* Only set interrupt on short packet for IN endpoints */
2815 if (usb_urb_dir_in(urb))
2816 field |= TRB_ISP;
2817
2818 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2819 "64KB boundary at %#x, end dma = %#x\n",
2820 (unsigned int) addr, trb_buff_len, trb_buff_len,
2821 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2822 (unsigned int) addr + trb_buff_len);
2823 if (TRB_MAX_BUFF_SIZE -
2824 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2825 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2826 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2827 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2828 (unsigned int) addr + trb_buff_len);
2829 }
2830
2831 /* Set the TRB length, TD size, and interrupter fields. */
2832 if (xhci->hci_version < 0x100) {
2833 remainder = xhci_td_remainder(
2834 urb->transfer_buffer_length -
2835 running_total);
2836 } else {
2837 remainder = xhci_v1_0_td_remainder(running_total,
2838 trb_buff_len, total_packet_count, urb);
2839 }
2840 length_field = TRB_LEN(trb_buff_len) |
2841 remainder |
2842 TRB_INTR_TARGET(0);
2843
2844 if (num_trbs > 1)
2845 more_trbs_coming = true;
2846 else
2847 more_trbs_coming = false;
2848 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
2849 lower_32_bits(addr),
2850 upper_32_bits(addr),
2851 length_field,
2852 field | TRB_TYPE(TRB_NORMAL));
2853 --num_trbs;
2854 running_total += trb_buff_len;
2855
2856 /* Calculate length for next transfer --
2857 * Are we done queueing all the TRBs for this sg entry?
2858 */
2859 this_sg_len -= trb_buff_len;
2860 if (this_sg_len == 0) {
2861 --num_sgs;
2862 if (num_sgs == 0)
2863 break;
2864 sg = sg_next(sg);
2865 addr = (u64) sg_dma_address(sg);
2866 this_sg_len = sg_dma_len(sg);
2867 } else {
2868 addr += trb_buff_len;
2869 }
2870
2871 trb_buff_len = TRB_MAX_BUFF_SIZE -
2872 (addr & (TRB_MAX_BUFF_SIZE - 1));
2873 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2874 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2875 trb_buff_len =
2876 urb->transfer_buffer_length - running_total;
2877 } while (running_total < urb->transfer_buffer_length);
2878
2879 check_trb_math(urb, num_trbs, running_total);
2880 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2881 start_cycle, start_trb);
2882 return 0;
2883 }
2884
2885 /* This is very similar to what ehci-q.c qtd_fill() does */
2886 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2887 struct urb *urb, int slot_id, unsigned int ep_index)
2888 {
2889 struct xhci_ring *ep_ring;
2890 struct urb_priv *urb_priv;
2891 struct xhci_td *td;
2892 int num_trbs;
2893 struct xhci_generic_trb *start_trb;
2894 bool first_trb;
2895 bool more_trbs_coming;
2896 int start_cycle;
2897 u32 field, length_field;
2898
2899 int running_total, trb_buff_len, ret;
2900 unsigned int total_packet_count;
2901 u64 addr;
2902
2903 if (urb->num_sgs)
2904 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2905
2906 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2907 if (!ep_ring)
2908 return -EINVAL;
2909
2910 num_trbs = 0;
2911 /* How much data is (potentially) left before the 64KB boundary? */
2912 running_total = TRB_MAX_BUFF_SIZE -
2913 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2914 running_total &= TRB_MAX_BUFF_SIZE - 1;
2915
2916 /* If there's some data on this 64KB chunk, or we have to send a
2917 * zero-length transfer, we need at least one TRB
2918 */
2919 if (running_total != 0 || urb->transfer_buffer_length == 0)
2920 num_trbs++;
2921 /* How many more 64KB chunks to transfer, how many more TRBs? */
2922 while (running_total < urb->transfer_buffer_length) {
2923 num_trbs++;
2924 running_total += TRB_MAX_BUFF_SIZE;
2925 }
2926 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2927
2928 if (!in_interrupt())
2929 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2930 "addr = %#llx, num_trbs = %d\n",
2931 urb->ep->desc.bEndpointAddress,
2932 urb->transfer_buffer_length,
2933 urb->transfer_buffer_length,
2934 (unsigned long long)urb->transfer_dma,
2935 num_trbs);
2936
2937 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2938 ep_index, urb->stream_id,
2939 num_trbs, urb, 0, false, mem_flags);
2940 if (ret < 0)
2941 return ret;
2942
2943 urb_priv = urb->hcpriv;
2944 td = urb_priv->td[0];
2945
2946 /*
2947 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2948 * until we've finished creating all the other TRBs. The ring's cycle
2949 * state may change as we enqueue the other TRBs, so save it too.
2950 */
2951 start_trb = &ep_ring->enqueue->generic;
2952 start_cycle = ep_ring->cycle_state;
2953
2954 running_total = 0;
2955 total_packet_count = roundup(urb->transfer_buffer_length,
2956 usb_endpoint_maxp(&urb->ep->desc));
2957 /* How much data is in the first TRB? */
2958 addr = (u64) urb->transfer_dma;
2959 trb_buff_len = TRB_MAX_BUFF_SIZE -
2960 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2961 if (trb_buff_len > urb->transfer_buffer_length)
2962 trb_buff_len = urb->transfer_buffer_length;
2963
2964 first_trb = true;
2965
2966 /* Queue the first TRB, even if it's zero-length */
2967 do {
2968 u32 remainder = 0;
2969 field = 0;
2970
2971 /* Don't change the cycle bit of the first TRB until later */
2972 if (first_trb) {
2973 first_trb = false;
2974 if (start_cycle == 0)
2975 field |= 0x1;
2976 } else
2977 field |= ep_ring->cycle_state;
2978
2979 /* Chain all the TRBs together; clear the chain bit in the last
2980 * TRB to indicate it's the last TRB in the chain.
2981 */
2982 if (num_trbs > 1) {
2983 field |= TRB_CHAIN;
2984 } else {
2985 /* FIXME - add check for ZERO_PACKET flag before this */
2986 td->last_trb = ep_ring->enqueue;
2987 field |= TRB_IOC;
2988 }
2989
2990 /* Only set interrupt on short packet for IN endpoints */
2991 if (usb_urb_dir_in(urb))
2992 field |= TRB_ISP;
2993
2994 /* Set the TRB length, TD size, and interrupter fields. */
2995 if (xhci->hci_version < 0x100) {
2996 remainder = xhci_td_remainder(
2997 urb->transfer_buffer_length -
2998 running_total);
2999 } else {
3000 remainder = xhci_v1_0_td_remainder(running_total,
3001 trb_buff_len, total_packet_count, urb);
3002 }
3003 length_field = TRB_LEN(trb_buff_len) |
3004 remainder |
3005 TRB_INTR_TARGET(0);
3006
3007 if (num_trbs > 1)
3008 more_trbs_coming = true;
3009 else
3010 more_trbs_coming = false;
3011 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
3012 lower_32_bits(addr),
3013 upper_32_bits(addr),
3014 length_field,
3015 field | TRB_TYPE(TRB_NORMAL));
3016 --num_trbs;
3017 running_total += trb_buff_len;
3018
3019 /* Calculate length for next transfer */
3020 addr += trb_buff_len;
3021 trb_buff_len = urb->transfer_buffer_length - running_total;
3022 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3023 trb_buff_len = TRB_MAX_BUFF_SIZE;
3024 } while (running_total < urb->transfer_buffer_length);
3025
3026 check_trb_math(urb, num_trbs, running_total);
3027 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3028 start_cycle, start_trb);
3029 return 0;
3030 }
3031
3032 /* Caller must have locked xhci->lock */
3033 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3034 struct urb *urb, int slot_id, unsigned int ep_index)
3035 {
3036 struct xhci_ring *ep_ring;
3037 int num_trbs;
3038 int ret;
3039 struct usb_ctrlrequest *setup;
3040 struct xhci_generic_trb *start_trb;
3041 int start_cycle;
3042 u32 field, length_field;
3043 struct urb_priv *urb_priv;
3044 struct xhci_td *td;
3045
3046 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3047 if (!ep_ring)
3048 return -EINVAL;
3049
3050 /*
3051 * Need to copy setup packet into setup TRB, so we can't use the setup
3052 * DMA address.
3053 */
3054 if (!urb->setup_packet)
3055 return -EINVAL;
3056
3057 if (!in_interrupt())
3058 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3059 slot_id, ep_index);
3060 /* 1 TRB for setup, 1 for status */
3061 num_trbs = 2;
3062 /*
3063 * Don't need to check if we need additional event data and normal TRBs,
3064 * since data in control transfers will never get bigger than 16MB
3065 * XXX: can we get a buffer that crosses 64KB boundaries?
3066 */
3067 if (urb->transfer_buffer_length > 0)
3068 num_trbs++;
3069 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3070 ep_index, urb->stream_id,
3071 num_trbs, urb, 0, false, mem_flags);
3072 if (ret < 0)
3073 return ret;
3074
3075 urb_priv = urb->hcpriv;
3076 td = urb_priv->td[0];
3077
3078 /*
3079 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3080 * until we've finished creating all the other TRBs. The ring's cycle
3081 * state may change as we enqueue the other TRBs, so save it too.
3082 */
3083 start_trb = &ep_ring->enqueue->generic;
3084 start_cycle = ep_ring->cycle_state;
3085
3086 /* Queue setup TRB - see section 6.4.1.2.1 */
3087 /* FIXME better way to translate setup_packet into two u32 fields? */
3088 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3089 field = 0;
3090 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3091 if (start_cycle == 0)
3092 field |= 0x1;
3093
3094 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3095 if (xhci->hci_version == 0x100) {
3096 if (urb->transfer_buffer_length > 0) {
3097 if (setup->bRequestType & USB_DIR_IN)
3098 field |= TRB_TX_TYPE(TRB_DATA_IN);
3099 else
3100 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3101 }
3102 }
3103
3104 queue_trb(xhci, ep_ring, false, true, false,
3105 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3106 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3107 TRB_LEN(8) | TRB_INTR_TARGET(0),
3108 /* Immediate data in pointer */
3109 field);
3110
3111 /* If there's data, queue data TRBs */
3112 /* Only set interrupt on short packet for IN endpoints */
3113 if (usb_urb_dir_in(urb))
3114 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3115 else
3116 field = TRB_TYPE(TRB_DATA);
3117
3118 length_field = TRB_LEN(urb->transfer_buffer_length) |
3119 xhci_td_remainder(urb->transfer_buffer_length) |
3120 TRB_INTR_TARGET(0);
3121 if (urb->transfer_buffer_length > 0) {
3122 if (setup->bRequestType & USB_DIR_IN)
3123 field |= TRB_DIR_IN;
3124 queue_trb(xhci, ep_ring, false, true, false,
3125 lower_32_bits(urb->transfer_dma),
3126 upper_32_bits(urb->transfer_dma),
3127 length_field,
3128 field | ep_ring->cycle_state);
3129 }
3130
3131 /* Save the DMA address of the last TRB in the TD */
3132 td->last_trb = ep_ring->enqueue;
3133
3134 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3135 /* If the device sent data, the status stage is an OUT transfer */
3136 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3137 field = 0;
3138 else
3139 field = TRB_DIR_IN;
3140 queue_trb(xhci, ep_ring, false, false, false,
3141 0,
3142 0,
3143 TRB_INTR_TARGET(0),
3144 /* Event on completion */
3145 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3146
3147 giveback_first_trb(xhci, slot_id, ep_index, 0,
3148 start_cycle, start_trb);
3149 return 0;
3150 }
3151
3152 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3153 struct urb *urb, int i)
3154 {
3155 int num_trbs = 0;
3156 u64 addr, td_len;
3157
3158 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3159 td_len = urb->iso_frame_desc[i].length;
3160
3161 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3162 TRB_MAX_BUFF_SIZE);
3163 if (num_trbs == 0)
3164 num_trbs++;
3165
3166 return num_trbs;
3167 }
3168
3169 /*
3170 * The transfer burst count field of the isochronous TRB defines the number of
3171 * bursts that are required to move all packets in this TD. Only SuperSpeed
3172 * devices can burst up to bMaxBurst number of packets per service interval.
3173 * This field is zero based, meaning a value of zero in the field means one
3174 * burst. Basically, for everything but SuperSpeed devices, this field will be
3175 * zero. Only xHCI 1.0 host controllers support this field.
3176 */
3177 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3178 struct usb_device *udev,
3179 struct urb *urb, unsigned int total_packet_count)
3180 {
3181 unsigned int max_burst;
3182
3183 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3184 return 0;
3185
3186 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3187 return roundup(total_packet_count, max_burst + 1) - 1;
3188 }
3189
3190 /*
3191 * Returns the number of packets in the last "burst" of packets. This field is
3192 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3193 * the last burst packet count is equal to the total number of packets in the
3194 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3195 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3196 * contain 1 to (bMaxBurst + 1) packets.
3197 */
3198 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3199 struct usb_device *udev,
3200 struct urb *urb, unsigned int total_packet_count)
3201 {
3202 unsigned int max_burst;
3203 unsigned int residue;
3204
3205 if (xhci->hci_version < 0x100)
3206 return 0;
3207
3208 switch (udev->speed) {
3209 case USB_SPEED_SUPER:
3210 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3211 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3212 residue = total_packet_count % (max_burst + 1);
3213 /* If residue is zero, the last burst contains (max_burst + 1)
3214 * number of packets, but the TLBPC field is zero-based.
3215 */
3216 if (residue == 0)
3217 return max_burst;
3218 return residue - 1;
3219 default:
3220 if (total_packet_count == 0)
3221 return 0;
3222 return total_packet_count - 1;
3223 }
3224 }
3225
3226 /* This is for isoc transfer */
3227 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3228 struct urb *urb, int slot_id, unsigned int ep_index)
3229 {
3230 struct xhci_ring *ep_ring;
3231 struct urb_priv *urb_priv;
3232 struct xhci_td *td;
3233 int num_tds, trbs_per_td;
3234 struct xhci_generic_trb *start_trb;
3235 bool first_trb;
3236 int start_cycle;
3237 u32 field, length_field;
3238 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3239 u64 start_addr, addr;
3240 int i, j;
3241 bool more_trbs_coming;
3242
3243 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3244
3245 num_tds = urb->number_of_packets;
3246 if (num_tds < 1) {
3247 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3248 return -EINVAL;
3249 }
3250
3251 if (!in_interrupt())
3252 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3253 " addr = %#llx, num_tds = %d\n",
3254 urb->ep->desc.bEndpointAddress,
3255 urb->transfer_buffer_length,
3256 urb->transfer_buffer_length,
3257 (unsigned long long)urb->transfer_dma,
3258 num_tds);
3259
3260 start_addr = (u64) urb->transfer_dma;
3261 start_trb = &ep_ring->enqueue->generic;
3262 start_cycle = ep_ring->cycle_state;
3263
3264 urb_priv = urb->hcpriv;
3265 /* Queue the first TRB, even if it's zero-length */
3266 for (i = 0; i < num_tds; i++) {
3267 unsigned int total_packet_count;
3268 unsigned int burst_count;
3269 unsigned int residue;
3270
3271 first_trb = true;
3272 running_total = 0;
3273 addr = start_addr + urb->iso_frame_desc[i].offset;
3274 td_len = urb->iso_frame_desc[i].length;
3275 td_remain_len = td_len;
3276 total_packet_count = roundup(td_len,
3277 usb_endpoint_maxp(&urb->ep->desc));
3278 /* A zero-length transfer still involves at least one packet. */
3279 if (total_packet_count == 0)
3280 total_packet_count++;
3281 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3282 total_packet_count);
3283 residue = xhci_get_last_burst_packet_count(xhci,
3284 urb->dev, urb, total_packet_count);
3285
3286 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3287
3288 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3289 urb->stream_id, trbs_per_td, urb, i, true,
3290 mem_flags);
3291 if (ret < 0) {
3292 if (i == 0)
3293 return ret;
3294 goto cleanup;
3295 }
3296
3297 td = urb_priv->td[i];
3298 for (j = 0; j < trbs_per_td; j++) {
3299 u32 remainder = 0;
3300 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3301
3302 if (first_trb) {
3303 /* Queue the isoc TRB */
3304 field |= TRB_TYPE(TRB_ISOC);
3305 /* Assume URB_ISO_ASAP is set */
3306 field |= TRB_SIA;
3307 if (i == 0) {
3308 if (start_cycle == 0)
3309 field |= 0x1;
3310 } else
3311 field |= ep_ring->cycle_state;
3312 first_trb = false;
3313 } else {
3314 /* Queue other normal TRBs */
3315 field |= TRB_TYPE(TRB_NORMAL);
3316 field |= ep_ring->cycle_state;
3317 }
3318
3319 /* Only set interrupt on short packet for IN EPs */
3320 if (usb_urb_dir_in(urb))
3321 field |= TRB_ISP;
3322
3323 /* Chain all the TRBs together; clear the chain bit in
3324 * the last TRB to indicate it's the last TRB in the
3325 * chain.
3326 */
3327 if (j < trbs_per_td - 1) {
3328 field |= TRB_CHAIN;
3329 more_trbs_coming = true;
3330 } else {
3331 td->last_trb = ep_ring->enqueue;
3332 field |= TRB_IOC;
3333 if (xhci->hci_version == 0x100) {
3334 /* Set BEI bit except for the last td */
3335 if (i < num_tds - 1)
3336 field |= TRB_BEI;
3337 }
3338 more_trbs_coming = false;
3339 }
3340
3341 /* Calculate TRB length */
3342 trb_buff_len = TRB_MAX_BUFF_SIZE -
3343 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3344 if (trb_buff_len > td_remain_len)
3345 trb_buff_len = td_remain_len;
3346
3347 /* Set the TRB length, TD size, & interrupter fields. */
3348 if (xhci->hci_version < 0x100) {
3349 remainder = xhci_td_remainder(
3350 td_len - running_total);
3351 } else {
3352 remainder = xhci_v1_0_td_remainder(
3353 running_total, trb_buff_len,
3354 total_packet_count, urb);
3355 }
3356 length_field = TRB_LEN(trb_buff_len) |
3357 remainder |
3358 TRB_INTR_TARGET(0);
3359
3360 queue_trb(xhci, ep_ring, false, more_trbs_coming, true,
3361 lower_32_bits(addr),
3362 upper_32_bits(addr),
3363 length_field,
3364 field);
3365 running_total += trb_buff_len;
3366
3367 addr += trb_buff_len;
3368 td_remain_len -= trb_buff_len;
3369 }
3370
3371 /* Check TD length */
3372 if (running_total != td_len) {
3373 xhci_err(xhci, "ISOC TD length unmatch\n");
3374 return -EINVAL;
3375 }
3376 }
3377
3378 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3379 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3380 usb_amd_quirk_pll_disable();
3381 }
3382 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3383
3384 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3385 start_cycle, start_trb);
3386 return 0;
3387 cleanup:
3388 /* Clean up a partially enqueued isoc transfer. */
3389
3390 for (i--; i >= 0; i--)
3391 list_del_init(&urb_priv->td[i]->td_list);
3392
3393 /* Use the first TD as a temporary variable to turn the TDs we've queued
3394 * into No-ops with a software-owned cycle bit. That way the hardware
3395 * won't accidentally start executing bogus TDs when we partially
3396 * overwrite them. td->first_trb and td->start_seg are already set.
3397 */
3398 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3399 /* Every TRB except the first & last will have its cycle bit flipped. */
3400 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3401
3402 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3403 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3404 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3405 ep_ring->cycle_state = start_cycle;
3406 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3407 return ret;
3408 }
3409
3410 /*
3411 * Check transfer ring to guarantee there is enough room for the urb.
3412 * Update ISO URB start_frame and interval.
3413 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3414 * update the urb->start_frame by now.
3415 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3416 */
3417 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3418 struct urb *urb, int slot_id, unsigned int ep_index)
3419 {
3420 struct xhci_virt_device *xdev;
3421 struct xhci_ring *ep_ring;
3422 struct xhci_ep_ctx *ep_ctx;
3423 int start_frame;
3424 int xhci_interval;
3425 int ep_interval;
3426 int num_tds, num_trbs, i;
3427 int ret;
3428
3429 xdev = xhci->devs[slot_id];
3430 ep_ring = xdev->eps[ep_index].ring;
3431 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3432
3433 num_trbs = 0;
3434 num_tds = urb->number_of_packets;
3435 for (i = 0; i < num_tds; i++)
3436 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3437
3438 /* Check the ring to guarantee there is enough room for the whole urb.
3439 * Do not insert any td of the urb to the ring if the check failed.
3440 */
3441 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3442 num_trbs, true, mem_flags);
3443 if (ret)
3444 return ret;
3445
3446 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3447 start_frame &= 0x3fff;
3448
3449 urb->start_frame = start_frame;
3450 if (urb->dev->speed == USB_SPEED_LOW ||
3451 urb->dev->speed == USB_SPEED_FULL)
3452 urb->start_frame >>= 3;
3453
3454 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3455 ep_interval = urb->interval;
3456 /* Convert to microframes */
3457 if (urb->dev->speed == USB_SPEED_LOW ||
3458 urb->dev->speed == USB_SPEED_FULL)
3459 ep_interval *= 8;
3460 /* FIXME change this to a warning and a suggestion to use the new API
3461 * to set the polling interval (once the API is added).
3462 */
3463 if (xhci_interval != ep_interval) {
3464 if (printk_ratelimit())
3465 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3466 " (%d microframe%s) than xHCI "
3467 "(%d microframe%s)\n",
3468 ep_interval,
3469 ep_interval == 1 ? "" : "s",
3470 xhci_interval,
3471 xhci_interval == 1 ? "" : "s");
3472 urb->interval = xhci_interval;
3473 /* Convert back to frames for LS/FS devices */
3474 if (urb->dev->speed == USB_SPEED_LOW ||
3475 urb->dev->speed == USB_SPEED_FULL)
3476 urb->interval /= 8;
3477 }
3478 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3479 }
3480
3481 /**** Command Ring Operations ****/
3482
3483 /* Generic function for queueing a command TRB on the command ring.
3484 * Check to make sure there's room on the command ring for one command TRB.
3485 * Also check that there's room reserved for commands that must not fail.
3486 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3487 * then only check for the number of reserved spots.
3488 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3489 * because the command event handler may want to resubmit a failed command.
3490 */
3491 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3492 u32 field3, u32 field4, bool command_must_succeed)
3493 {
3494 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3495 int ret;
3496
3497 if (!command_must_succeed)
3498 reserved_trbs++;
3499
3500 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3501 reserved_trbs, false, GFP_ATOMIC);
3502 if (ret < 0) {
3503 xhci_err(xhci, "ERR: No room for command on command ring\n");
3504 if (command_must_succeed)
3505 xhci_err(xhci, "ERR: Reserved TRB counting for "
3506 "unfailable commands failed.\n");
3507 return ret;
3508 }
3509 queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2,
3510 field3, field4 | xhci->cmd_ring->cycle_state);
3511 return 0;
3512 }
3513
3514 /* Queue a slot enable or disable request on the command ring */
3515 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3516 {
3517 return queue_command(xhci, 0, 0, 0,
3518 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3519 }
3520
3521 /* Queue an address device command TRB */
3522 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3523 u32 slot_id)
3524 {
3525 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3526 upper_32_bits(in_ctx_ptr), 0,
3527 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3528 false);
3529 }
3530
3531 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3532 u32 field1, u32 field2, u32 field3, u32 field4)
3533 {
3534 return queue_command(xhci, field1, field2, field3, field4, false);
3535 }
3536
3537 /* Queue a reset device command TRB */
3538 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3539 {
3540 return queue_command(xhci, 0, 0, 0,
3541 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3542 false);
3543 }
3544
3545 /* Queue a configure endpoint command TRB */
3546 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3547 u32 slot_id, bool command_must_succeed)
3548 {
3549 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3550 upper_32_bits(in_ctx_ptr), 0,
3551 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3552 command_must_succeed);
3553 }
3554
3555 /* Queue an evaluate context command TRB */
3556 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3557 u32 slot_id)
3558 {
3559 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3560 upper_32_bits(in_ctx_ptr), 0,
3561 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3562 false);
3563 }
3564
3565 /*
3566 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3567 * activity on an endpoint that is about to be suspended.
3568 */
3569 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3570 unsigned int ep_index, int suspend)
3571 {
3572 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3573 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3574 u32 type = TRB_TYPE(TRB_STOP_RING);
3575 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3576
3577 return queue_command(xhci, 0, 0, 0,
3578 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3579 }
3580
3581 /* Set Transfer Ring Dequeue Pointer command.
3582 * This should not be used for endpoints that have streams enabled.
3583 */
3584 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3585 unsigned int ep_index, unsigned int stream_id,
3586 struct xhci_segment *deq_seg,
3587 union xhci_trb *deq_ptr, u32 cycle_state)
3588 {
3589 dma_addr_t addr;
3590 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3591 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3592 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3593 u32 type = TRB_TYPE(TRB_SET_DEQ);
3594 struct xhci_virt_ep *ep;
3595
3596 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3597 if (addr == 0) {
3598 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3599 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3600 deq_seg, deq_ptr);
3601 return 0;
3602 }
3603 ep = &xhci->devs[slot_id]->eps[ep_index];
3604 if ((ep->ep_state & SET_DEQ_PENDING)) {
3605 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3606 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3607 return 0;
3608 }
3609 ep->queued_deq_seg = deq_seg;
3610 ep->queued_deq_ptr = deq_ptr;
3611 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3612 upper_32_bits(addr), trb_stream_id,
3613 trb_slot_id | trb_ep_index | type, false);
3614 }
3615
3616 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3617 unsigned int ep_index)
3618 {
3619 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3620 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3621 u32 type = TRB_TYPE(TRB_RESET_EP);
3622
3623 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3624 false);
3625 }