]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/usb/host/xhci-ring.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73
74 /*
75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76 * address of the TRB.
77 */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 union xhci_trb *trb)
80 {
81 unsigned long segment_offset;
82
83 if (!seg || !trb || trb < seg->trbs)
84 return 0;
85 /* offset in TRBs */
86 segment_offset = trb - seg->trbs;
87 if (segment_offset >= TRBS_PER_SEGMENT)
88 return 0;
89 return seg->dma + (segment_offset * sizeof(*trb));
90 }
91
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 struct urb_priv *urb_priv = td->urb->hcpriv;
121
122 return urb_priv->num_tds_done == urb_priv->num_tds;
123 }
124
125 static void inc_td_cnt(struct urb *urb)
126 {
127 struct urb_priv *urb_priv = urb->hcpriv;
128
129 urb_priv->num_tds_done++;
130 }
131
132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
133 {
134 if (trb_is_link(trb)) {
135 /* unchain chained link TRBs */
136 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
137 } else {
138 trb->generic.field[0] = 0;
139 trb->generic.field[1] = 0;
140 trb->generic.field[2] = 0;
141 /* Preserve only the cycle bit of this TRB */
142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
144 }
145 }
146
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148 * TRB is in a new segment. This does not skip over link TRBs, and it does not
149 * effect the ring dequeue or enqueue pointers.
150 */
151 static void next_trb(struct xhci_hcd *xhci,
152 struct xhci_ring *ring,
153 struct xhci_segment **seg,
154 union xhci_trb **trb)
155 {
156 if (trb_is_link(*trb)) {
157 *seg = (*seg)->next;
158 *trb = ((*seg)->trbs);
159 } else {
160 (*trb)++;
161 }
162 }
163
164 /*
165 * See Cycle bit rules. SW is the consumer for the event ring only.
166 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
167 */
168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
169 {
170 /* event ring doesn't have link trbs, check for last trb */
171 if (ring->type == TYPE_EVENT) {
172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
173 ring->dequeue++;
174 return;
175 }
176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
177 ring->cycle_state ^= 1;
178 ring->deq_seg = ring->deq_seg->next;
179 ring->dequeue = ring->deq_seg->trbs;
180 return;
181 }
182
183 /* All other rings have link trbs */
184 if (!trb_is_link(ring->dequeue)) {
185 ring->dequeue++;
186 ring->num_trbs_free++;
187 }
188 while (trb_is_link(ring->dequeue)) {
189 ring->deq_seg = ring->deq_seg->next;
190 ring->dequeue = ring->deq_seg->trbs;
191 }
192
193 trace_xhci_inc_deq(ring);
194
195 return;
196 }
197
198 /*
199 * See Cycle bit rules. SW is the consumer for the event ring only.
200 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
201 *
202 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
203 * chain bit is set), then set the chain bit in all the following link TRBs.
204 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
205 * have their chain bit cleared (so that each Link TRB is a separate TD).
206 *
207 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
208 * set, but other sections talk about dealing with the chain bit set. This was
209 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
210 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
211 *
212 * @more_trbs_coming: Will you enqueue more TRBs before calling
213 * prepare_transfer()?
214 */
215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
216 bool more_trbs_coming)
217 {
218 u32 chain;
219 union xhci_trb *next;
220
221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
222 /* If this is not event ring, there is one less usable TRB */
223 if (!trb_is_link(ring->enqueue))
224 ring->num_trbs_free--;
225 next = ++(ring->enqueue);
226
227 /* Update the dequeue pointer further if that was a link TRB */
228 while (trb_is_link(next)) {
229
230 /*
231 * If the caller doesn't plan on enqueueing more TDs before
232 * ringing the doorbell, then we don't want to give the link TRB
233 * to the hardware just yet. We'll give the link TRB back in
234 * prepare_ring() just before we enqueue the TD at the top of
235 * the ring.
236 */
237 if (!chain && !more_trbs_coming)
238 break;
239
240 /* If we're not dealing with 0.95 hardware or isoc rings on
241 * AMD 0.96 host, carry over the chain bit of the previous TRB
242 * (which may mean the chain bit is cleared).
243 */
244 if (!(ring->type == TYPE_ISOC &&
245 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
246 !xhci_link_trb_quirk(xhci)) {
247 next->link.control &= cpu_to_le32(~TRB_CHAIN);
248 next->link.control |= cpu_to_le32(chain);
249 }
250 /* Give this link TRB to the hardware */
251 wmb();
252 next->link.control ^= cpu_to_le32(TRB_CYCLE);
253
254 /* Toggle the cycle bit after the last ring segment. */
255 if (link_trb_toggles_cycle(next))
256 ring->cycle_state ^= 1;
257
258 ring->enq_seg = ring->enq_seg->next;
259 ring->enqueue = ring->enq_seg->trbs;
260 next = ring->enqueue;
261 }
262
263 trace_xhci_inc_enq(ring);
264 }
265
266 /*
267 * Check to see if there's room to enqueue num_trbs on the ring and make sure
268 * enqueue pointer will not advance into dequeue segment. See rules above.
269 */
270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
271 unsigned int num_trbs)
272 {
273 int num_trbs_in_deq_seg;
274
275 if (ring->num_trbs_free < num_trbs)
276 return 0;
277
278 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
279 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
280 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
281 return 0;
282 }
283
284 return 1;
285 }
286
287 /* Ring the host controller doorbell after placing a command on the ring */
288 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
289 {
290 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
291 return;
292
293 xhci_dbg(xhci, "// Ding dong!\n");
294 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
295 /* Flush PCI posted writes */
296 readl(&xhci->dba->doorbell[0]);
297 }
298
299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
300 {
301 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
302 }
303
304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
305 {
306 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
307 cmd_list);
308 }
309
310 /*
311 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
312 * If there are other commands waiting then restart the ring and kick the timer.
313 * This must be called with command ring stopped and xhci->lock held.
314 */
315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
316 struct xhci_command *cur_cmd)
317 {
318 struct xhci_command *i_cmd;
319
320 /* Turn all aborted commands in list to no-ops, then restart */
321 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
322
323 if (i_cmd->status != COMP_COMMAND_ABORTED)
324 continue;
325
326 i_cmd->status = COMP_COMMAND_RING_STOPPED;
327
328 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
329 i_cmd->command_trb);
330
331 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
332
333 /*
334 * caller waiting for completion is called when command
335 * completion event is received for these no-op commands
336 */
337 }
338
339 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
340
341 /* ring command ring doorbell to restart the command ring */
342 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
343 !(xhci->xhc_state & XHCI_STATE_DYING)) {
344 xhci->current_cmd = cur_cmd;
345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
346 xhci_ring_cmd_db(xhci);
347 }
348 }
349
350 /* Must be called with xhci->lock held, releases and aquires lock back */
351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
352 {
353 u64 temp_64;
354 int ret;
355
356 xhci_dbg(xhci, "Abort command ring\n");
357
358 reinit_completion(&xhci->cmd_ring_stop_completion);
359
360 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
361 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
362 &xhci->op_regs->cmd_ring);
363
364 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
365 * completion of the Command Abort operation. If CRR is not negated in 5
366 * seconds then driver handles it as if host died (-ENODEV).
367 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
368 * and try to recover a -ETIMEDOUT with a host controller reset.
369 */
370 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
371 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
372 if (ret < 0) {
373 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
374 xhci_halt(xhci);
375 xhci_hc_died(xhci);
376 return ret;
377 }
378 /*
379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
381 * but the completion event in never sent. Wait 2 secs (arbitrary
382 * number) to handle those cases after negation of CMD_RING_RUNNING.
383 */
384 spin_unlock_irqrestore(&xhci->lock, flags);
385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
386 msecs_to_jiffies(2000));
387 spin_lock_irqsave(&xhci->lock, flags);
388 if (!ret) {
389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
390 xhci_cleanup_command_queue(xhci);
391 } else {
392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
393 }
394 return 0;
395 }
396
397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
398 unsigned int slot_id,
399 unsigned int ep_index,
400 unsigned int stream_id)
401 {
402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
404 unsigned int ep_state = ep->ep_state;
405
406 /* Don't ring the doorbell for this endpoint if there are pending
407 * cancellations because we don't want to interrupt processing.
408 * We don't want to restart any stream rings if there's a set dequeue
409 * pointer command pending because the device can choose to start any
410 * stream once the endpoint is on the HW schedule.
411 */
412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
413 (ep_state & EP_HALTED))
414 return;
415 writel(DB_VALUE(ep_index, stream_id), db_addr);
416 /* The CPU has better things to do at this point than wait for a
417 * write-posting flush. It'll get there soon enough.
418 */
419 }
420
421 /* Ring the doorbell for any rings with pending URBs */
422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
423 unsigned int slot_id,
424 unsigned int ep_index)
425 {
426 unsigned int stream_id;
427 struct xhci_virt_ep *ep;
428
429 ep = &xhci->devs[slot_id]->eps[ep_index];
430
431 /* A ring has pending URBs if its TD list is not empty */
432 if (!(ep->ep_state & EP_HAS_STREAMS)) {
433 if (ep->ring && !(list_empty(&ep->ring->td_list)))
434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
435 return;
436 }
437
438 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
439 stream_id++) {
440 struct xhci_stream_info *stream_info = ep->stream_info;
441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
443 stream_id);
444 }
445 }
446
447 /* Get the right ring for the given slot_id, ep_index and stream_id.
448 * If the endpoint supports streams, boundary check the URB's stream ID.
449 * If the endpoint doesn't support streams, return the singular endpoint ring.
450 */
451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
452 unsigned int slot_id, unsigned int ep_index,
453 unsigned int stream_id)
454 {
455 struct xhci_virt_ep *ep;
456
457 ep = &xhci->devs[slot_id]->eps[ep_index];
458 /* Common case: no streams */
459 if (!(ep->ep_state & EP_HAS_STREAMS))
460 return ep->ring;
461
462 if (stream_id == 0) {
463 xhci_warn(xhci,
464 "WARN: Slot ID %u, ep index %u has streams, "
465 "but URB has no stream ID.\n",
466 slot_id, ep_index);
467 return NULL;
468 }
469
470 if (stream_id < ep->stream_info->num_streams)
471 return ep->stream_info->stream_rings[stream_id];
472
473 xhci_warn(xhci,
474 "WARN: Slot ID %u, ep index %u has "
475 "stream IDs 1 to %u allocated, "
476 "but stream ID %u is requested.\n",
477 slot_id, ep_index,
478 ep->stream_info->num_streams - 1,
479 stream_id);
480 return NULL;
481 }
482
483
484 /*
485 * Get the hw dequeue pointer xHC stopped on, either directly from the
486 * endpoint context, or if streams are in use from the stream context.
487 * The returned hw_dequeue contains the lowest four bits with cycle state
488 * and possbile stream context type.
489 */
490 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
491 unsigned int ep_index, unsigned int stream_id)
492 {
493 struct xhci_ep_ctx *ep_ctx;
494 struct xhci_stream_ctx *st_ctx;
495 struct xhci_virt_ep *ep;
496
497 ep = &vdev->eps[ep_index];
498
499 if (ep->ep_state & EP_HAS_STREAMS) {
500 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
501 return le64_to_cpu(st_ctx->stream_ring);
502 }
503 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
504 return le64_to_cpu(ep_ctx->deq);
505 }
506
507 /*
508 * Move the xHC's endpoint ring dequeue pointer past cur_td.
509 * Record the new state of the xHC's endpoint ring dequeue segment,
510 * dequeue pointer, stream id, and new consumer cycle state in state.
511 * Update our internal representation of the ring's dequeue pointer.
512 *
513 * We do this in three jumps:
514 * - First we update our new ring state to be the same as when the xHC stopped.
515 * - Then we traverse the ring to find the segment that contains
516 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
517 * any link TRBs with the toggle cycle bit set.
518 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
519 * if we've moved it past a link TRB with the toggle cycle bit set.
520 *
521 * Some of the uses of xhci_generic_trb are grotty, but if they're done
522 * with correct __le32 accesses they should work fine. Only users of this are
523 * in here.
524 */
525 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
526 unsigned int slot_id, unsigned int ep_index,
527 unsigned int stream_id, struct xhci_td *cur_td,
528 struct xhci_dequeue_state *state)
529 {
530 struct xhci_virt_device *dev = xhci->devs[slot_id];
531 struct xhci_virt_ep *ep = &dev->eps[ep_index];
532 struct xhci_ring *ep_ring;
533 struct xhci_segment *new_seg;
534 union xhci_trb *new_deq;
535 dma_addr_t addr;
536 u64 hw_dequeue;
537 bool cycle_found = false;
538 bool td_last_trb_found = false;
539
540 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
541 ep_index, stream_id);
542 if (!ep_ring) {
543 xhci_warn(xhci, "WARN can't find new dequeue state "
544 "for invalid stream ID %u.\n",
545 stream_id);
546 return;
547 }
548 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
550 "Finding endpoint context");
551
552 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
553 new_seg = ep_ring->deq_seg;
554 new_deq = ep_ring->dequeue;
555 state->new_cycle_state = hw_dequeue & 0x1;
556 state->stream_id = stream_id;
557
558 /*
559 * We want to find the pointer, segment and cycle state of the new trb
560 * (the one after current TD's last_trb). We know the cycle state at
561 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
562 * found.
563 */
564 do {
565 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
566 == (dma_addr_t)(hw_dequeue & ~0xf)) {
567 cycle_found = true;
568 if (td_last_trb_found)
569 break;
570 }
571 if (new_deq == cur_td->last_trb)
572 td_last_trb_found = true;
573
574 if (cycle_found && trb_is_link(new_deq) &&
575 link_trb_toggles_cycle(new_deq))
576 state->new_cycle_state ^= 0x1;
577
578 next_trb(xhci, ep_ring, &new_seg, &new_deq);
579
580 /* Search wrapped around, bail out */
581 if (new_deq == ep->ring->dequeue) {
582 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
583 state->new_deq_seg = NULL;
584 state->new_deq_ptr = NULL;
585 return;
586 }
587
588 } while (!cycle_found || !td_last_trb_found);
589
590 state->new_deq_seg = new_seg;
591 state->new_deq_ptr = new_deq;
592
593 /* Don't update the ring cycle state for the producer (us). */
594 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
595 "Cycle state = 0x%x", state->new_cycle_state);
596
597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
598 "New dequeue segment = %p (virtual)",
599 state->new_deq_seg);
600 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
601 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
602 "New dequeue pointer = 0x%llx (DMA)",
603 (unsigned long long) addr);
604 }
605
606 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
607 * (The last TRB actually points to the ring enqueue pointer, which is not part
608 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
609 */
610 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
611 struct xhci_td *td, bool flip_cycle)
612 {
613 struct xhci_segment *seg = td->start_seg;
614 union xhci_trb *trb = td->first_trb;
615
616 while (1) {
617 trb_to_noop(trb, TRB_TR_NOOP);
618
619 /* flip cycle if asked to */
620 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
621 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
622
623 if (trb == td->last_trb)
624 break;
625
626 next_trb(xhci, ep_ring, &seg, &trb);
627 }
628 }
629
630 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
631 struct xhci_virt_ep *ep)
632 {
633 ep->ep_state &= ~EP_STOP_CMD_PENDING;
634 /* Can't del_timer_sync in interrupt */
635 del_timer(&ep->stop_cmd_timer);
636 }
637
638 /*
639 * Must be called with xhci->lock held in interrupt context,
640 * releases and re-acquires xhci->lock
641 */
642 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
643 struct xhci_td *cur_td, int status)
644 {
645 struct urb *urb = cur_td->urb;
646 struct urb_priv *urb_priv = urb->hcpriv;
647 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
648
649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
650 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
651 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
652 if (xhci->quirks & XHCI_AMD_PLL_FIX)
653 usb_amd_quirk_pll_enable();
654 }
655 }
656 xhci_urb_free_priv(urb_priv);
657 usb_hcd_unlink_urb_from_ep(hcd, urb);
658 spin_unlock(&xhci->lock);
659 trace_xhci_urb_giveback(urb);
660 usb_hcd_giveback_urb(hcd, urb, status);
661 spin_lock(&xhci->lock);
662 }
663
664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
665 struct xhci_ring *ring, struct xhci_td *td)
666 {
667 struct device *dev = xhci_to_hcd(xhci)->self.controller;
668 struct xhci_segment *seg = td->bounce_seg;
669 struct urb *urb = td->urb;
670
671 if (!ring || !seg || !urb)
672 return;
673
674 if (usb_urb_dir_out(urb)) {
675 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
676 DMA_TO_DEVICE);
677 return;
678 }
679
680 /* for in tranfers we need to copy the data from bounce to sg */
681 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
682 seg->bounce_len, seg->bounce_offs);
683 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
684 DMA_FROM_DEVICE);
685 seg->bounce_len = 0;
686 seg->bounce_offs = 0;
687 }
688
689 /*
690 * When we get a command completion for a Stop Endpoint Command, we need to
691 * unlink any cancelled TDs from the ring. There are two ways to do that:
692 *
693 * 1. If the HW was in the middle of processing the TD that needs to be
694 * cancelled, then we must move the ring's dequeue pointer past the last TRB
695 * in the TD with a Set Dequeue Pointer Command.
696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
697 * bit cleared) so that the HW will skip over them.
698 */
699 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
700 union xhci_trb *trb, struct xhci_event_cmd *event)
701 {
702 unsigned int ep_index;
703 struct xhci_ring *ep_ring;
704 struct xhci_virt_ep *ep;
705 struct xhci_td *cur_td = NULL;
706 struct xhci_td *last_unlinked_td;
707 struct xhci_ep_ctx *ep_ctx;
708 struct xhci_virt_device *vdev;
709 u64 hw_deq;
710 struct xhci_dequeue_state deq_state;
711
712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
713 if (!xhci->devs[slot_id])
714 xhci_warn(xhci, "Stop endpoint command "
715 "completion for disabled slot %u\n",
716 slot_id);
717 return;
718 }
719
720 memset(&deq_state, 0, sizeof(deq_state));
721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
722
723 vdev = xhci->devs[slot_id];
724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
725 trace_xhci_handle_cmd_stop_ep(ep_ctx);
726
727 ep = &xhci->devs[slot_id]->eps[ep_index];
728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
729 struct xhci_td, cancelled_td_list);
730
731 if (list_empty(&ep->cancelled_td_list)) {
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
734 return;
735 }
736
737 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
738 * We have the xHCI lock, so nothing can modify this list until we drop
739 * it. We're also in the event handler, so we can't get re-interrupted
740 * if another Stop Endpoint command completes
741 */
742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
744 "Removing canceled TD starting at 0x%llx (dma).",
745 (unsigned long long)xhci_trb_virt_to_dma(
746 cur_td->start_seg, cur_td->first_trb));
747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
748 if (!ep_ring) {
749 /* This shouldn't happen unless a driver is mucking
750 * with the stream ID after submission. This will
751 * leave the TD on the hardware ring, and the hardware
752 * will try to execute it, and may access a buffer
753 * that has already been freed. In the best case, the
754 * hardware will execute it, and the event handler will
755 * ignore the completion event for that TD, since it was
756 * removed from the td_list for that endpoint. In
757 * short, don't muck with the stream ID after
758 * submission.
759 */
760 xhci_warn(xhci, "WARN Cancelled URB %p "
761 "has invalid stream ID %u.\n",
762 cur_td->urb,
763 cur_td->urb->stream_id);
764 goto remove_finished_td;
765 }
766 /*
767 * If we stopped on the TD we need to cancel, then we have to
768 * move the xHC endpoint ring dequeue pointer past this TD.
769 */
770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
771 cur_td->urb->stream_id);
772 hw_deq &= ~0xf;
773
774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
775 cur_td->last_trb, hw_deq, false)) {
776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
777 cur_td->urb->stream_id,
778 cur_td, &deq_state);
779 } else {
780 td_to_noop(xhci, ep_ring, cur_td, false);
781 }
782
783 remove_finished_td:
784 /*
785 * The event handler won't see a completion for this TD anymore,
786 * so remove it from the endpoint ring's TD list. Keep it in
787 * the cancelled TD list for URB completion later.
788 */
789 list_del_init(&cur_td->td_list);
790 }
791
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793
794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
797 &deq_state);
798 xhci_ring_cmd_db(xhci);
799 } else {
800 /* Otherwise ring the doorbell(s) to restart queued transfers */
801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
802 }
803
804 /*
805 * Drop the lock and complete the URBs in the cancelled TD list.
806 * New TDs to be cancelled might be added to the end of the list before
807 * we can complete all the URBs for the TDs we already unlinked.
808 * So stop when we've completed the URB for the last TD we unlinked.
809 */
810 do {
811 cur_td = list_first_entry(&ep->cancelled_td_list,
812 struct xhci_td, cancelled_td_list);
813 list_del_init(&cur_td->cancelled_td_list);
814
815 /* Clean up the cancelled URB */
816 /* Doesn't matter what we pass for status, since the core will
817 * just overwrite it (because the URB has been unlinked).
818 */
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
821 inc_td_cnt(cur_td->urb);
822 if (last_td_in_urb(cur_td))
823 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
824
825 /* Stop processing the cancelled list if the watchdog timer is
826 * running.
827 */
828 if (xhci->xhc_state & XHCI_STATE_DYING)
829 return;
830 } while (cur_td != last_unlinked_td);
831
832 /* Return to the event handler with xhci->lock re-acquired */
833 }
834
835 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
836 {
837 struct xhci_td *cur_td;
838 struct xhci_td *tmp;
839
840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
841 list_del_init(&cur_td->td_list);
842
843 if (!list_empty(&cur_td->cancelled_td_list))
844 list_del_init(&cur_td->cancelled_td_list);
845
846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
847
848 inc_td_cnt(cur_td->urb);
849 if (last_td_in_urb(cur_td))
850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
851 }
852 }
853
854 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
855 int slot_id, int ep_index)
856 {
857 struct xhci_td *cur_td;
858 struct xhci_td *tmp;
859 struct xhci_virt_ep *ep;
860 struct xhci_ring *ring;
861
862 ep = &xhci->devs[slot_id]->eps[ep_index];
863 if ((ep->ep_state & EP_HAS_STREAMS) ||
864 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
865 int stream_id;
866
867 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
868 stream_id++) {
869 ring = ep->stream_info->stream_rings[stream_id];
870 if (!ring)
871 continue;
872
873 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
874 "Killing URBs for slot ID %u, ep index %u, stream %u",
875 slot_id, ep_index, stream_id);
876 xhci_kill_ring_urbs(xhci, ring);
877 }
878 } else {
879 ring = ep->ring;
880 if (!ring)
881 return;
882 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
883 "Killing URBs for slot ID %u, ep index %u",
884 slot_id, ep_index);
885 xhci_kill_ring_urbs(xhci, ring);
886 }
887
888 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
889 cancelled_td_list) {
890 list_del_init(&cur_td->cancelled_td_list);
891 inc_td_cnt(cur_td->urb);
892
893 if (last_td_in_urb(cur_td))
894 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
895 }
896 }
897
898 /*
899 * host controller died, register read returns 0xffffffff
900 * Complete pending commands, mark them ABORTED.
901 * URBs need to be given back as usb core might be waiting with device locks
902 * held for the URBs to finish during device disconnect, blocking host remove.
903 *
904 * Call with xhci->lock held.
905 * lock is relased and re-acquired while giving back urb.
906 */
907 void xhci_hc_died(struct xhci_hcd *xhci)
908 {
909 int i, j;
910
911 if (xhci->xhc_state & XHCI_STATE_DYING)
912 return;
913
914 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
915 xhci->xhc_state |= XHCI_STATE_DYING;
916
917 xhci_cleanup_command_queue(xhci);
918
919 /* return any pending urbs, remove may be waiting for them */
920 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
921 if (!xhci->devs[i])
922 continue;
923 for (j = 0; j < 31; j++)
924 xhci_kill_endpoint_urbs(xhci, i, j);
925 }
926
927 /* inform usb core hc died if PCI remove isn't already handling it */
928 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
929 usb_hc_died(xhci_to_hcd(xhci));
930 }
931
932 /* Watchdog timer function for when a stop endpoint command fails to complete.
933 * In this case, we assume the host controller is broken or dying or dead. The
934 * host may still be completing some other events, so we have to be careful to
935 * let the event ring handler and the URB dequeueing/enqueueing functions know
936 * through xhci->state.
937 *
938 * The timer may also fire if the host takes a very long time to respond to the
939 * command, and the stop endpoint command completion handler cannot delete the
940 * timer before the timer function is called. Another endpoint cancellation may
941 * sneak in before the timer function can grab the lock, and that may queue
942 * another stop endpoint command and add the timer back. So we cannot use a
943 * simple flag to say whether there is a pending stop endpoint command for a
944 * particular endpoint.
945 *
946 * Instead we use a combination of that flag and checking if a new timer is
947 * pending.
948 */
949 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
950 {
951 struct xhci_hcd *xhci;
952 struct xhci_virt_ep *ep;
953 unsigned long flags;
954
955 ep = (struct xhci_virt_ep *) arg;
956 xhci = ep->xhci;
957
958 spin_lock_irqsave(&xhci->lock, flags);
959
960 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
961 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
962 timer_pending(&ep->stop_cmd_timer)) {
963 spin_unlock_irqrestore(&xhci->lock, flags);
964 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
965 return;
966 }
967
968 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
969 ep->ep_state &= ~EP_STOP_CMD_PENDING;
970
971 xhci_halt(xhci);
972
973 /*
974 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
975 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
976 * and try to recover a -ETIMEDOUT with a host controller reset
977 */
978 xhci_hc_died(xhci);
979
980 spin_unlock_irqrestore(&xhci->lock, flags);
981 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
982 "xHCI host controller is dead.");
983 }
984
985 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
986 struct xhci_virt_device *dev,
987 struct xhci_ring *ep_ring,
988 unsigned int ep_index)
989 {
990 union xhci_trb *dequeue_temp;
991 int num_trbs_free_temp;
992 bool revert = false;
993
994 num_trbs_free_temp = ep_ring->num_trbs_free;
995 dequeue_temp = ep_ring->dequeue;
996
997 /* If we get two back-to-back stalls, and the first stalled transfer
998 * ends just before a link TRB, the dequeue pointer will be left on
999 * the link TRB by the code in the while loop. So we have to update
1000 * the dequeue pointer one segment further, or we'll jump off
1001 * the segment into la-la-land.
1002 */
1003 if (trb_is_link(ep_ring->dequeue)) {
1004 ep_ring->deq_seg = ep_ring->deq_seg->next;
1005 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1006 }
1007
1008 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1009 /* We have more usable TRBs */
1010 ep_ring->num_trbs_free++;
1011 ep_ring->dequeue++;
1012 if (trb_is_link(ep_ring->dequeue)) {
1013 if (ep_ring->dequeue ==
1014 dev->eps[ep_index].queued_deq_ptr)
1015 break;
1016 ep_ring->deq_seg = ep_ring->deq_seg->next;
1017 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1018 }
1019 if (ep_ring->dequeue == dequeue_temp) {
1020 revert = true;
1021 break;
1022 }
1023 }
1024
1025 if (revert) {
1026 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1027 ep_ring->num_trbs_free = num_trbs_free_temp;
1028 }
1029 }
1030
1031 /*
1032 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1033 * we need to clear the set deq pending flag in the endpoint ring state, so that
1034 * the TD queueing code can ring the doorbell again. We also need to ring the
1035 * endpoint doorbell to restart the ring, but only if there aren't more
1036 * cancellations pending.
1037 */
1038 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1039 union xhci_trb *trb, u32 cmd_comp_code)
1040 {
1041 unsigned int ep_index;
1042 unsigned int stream_id;
1043 struct xhci_ring *ep_ring;
1044 struct xhci_virt_device *dev;
1045 struct xhci_virt_ep *ep;
1046 struct xhci_ep_ctx *ep_ctx;
1047 struct xhci_slot_ctx *slot_ctx;
1048
1049 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1050 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1051 dev = xhci->devs[slot_id];
1052 ep = &dev->eps[ep_index];
1053
1054 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1055 if (!ep_ring) {
1056 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1057 stream_id);
1058 /* XXX: Harmless??? */
1059 goto cleanup;
1060 }
1061
1062 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1063 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1064 trace_xhci_handle_cmd_set_deq(slot_ctx);
1065 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1066
1067 if (cmd_comp_code != COMP_SUCCESS) {
1068 unsigned int ep_state;
1069 unsigned int slot_state;
1070
1071 switch (cmd_comp_code) {
1072 case COMP_TRB_ERROR:
1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1074 break;
1075 case COMP_CONTEXT_STATE_ERROR:
1076 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1077 ep_state = GET_EP_CTX_STATE(ep_ctx);
1078 slot_state = le32_to_cpu(slot_ctx->dev_state);
1079 slot_state = GET_SLOT_STATE(slot_state);
1080 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1081 "Slot state = %u, EP state = %u",
1082 slot_state, ep_state);
1083 break;
1084 case COMP_SLOT_NOT_ENABLED_ERROR:
1085 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1086 slot_id);
1087 break;
1088 default:
1089 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1090 cmd_comp_code);
1091 break;
1092 }
1093 /* OK what do we do now? The endpoint state is hosed, and we
1094 * should never get to this point if the synchronization between
1095 * queueing, and endpoint state are correct. This might happen
1096 * if the device gets disconnected after we've finished
1097 * cancelling URBs, which might not be an error...
1098 */
1099 } else {
1100 u64 deq;
1101 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1102 if (ep->ep_state & EP_HAS_STREAMS) {
1103 struct xhci_stream_ctx *ctx =
1104 &ep->stream_info->stream_ctx_array[stream_id];
1105 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1106 } else {
1107 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1108 }
1109 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1110 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1111 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1112 ep->queued_deq_ptr) == deq) {
1113 /* Update the ring's dequeue segment and dequeue pointer
1114 * to reflect the new position.
1115 */
1116 update_ring_for_set_deq_completion(xhci, dev,
1117 ep_ring, ep_index);
1118 } else {
1119 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1120 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1121 ep->queued_deq_seg, ep->queued_deq_ptr);
1122 }
1123 }
1124
1125 cleanup:
1126 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1127 dev->eps[ep_index].queued_deq_seg = NULL;
1128 dev->eps[ep_index].queued_deq_ptr = NULL;
1129 /* Restart any rings with pending URBs */
1130 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1131 }
1132
1133 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1134 union xhci_trb *trb, u32 cmd_comp_code)
1135 {
1136 struct xhci_virt_device *vdev;
1137 struct xhci_ep_ctx *ep_ctx;
1138 unsigned int ep_index;
1139
1140 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1141 vdev = xhci->devs[slot_id];
1142 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1143 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1144
1145 /* This command will only fail if the endpoint wasn't halted,
1146 * but we don't care.
1147 */
1148 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1149 "Ignoring reset ep completion code of %u", cmd_comp_code);
1150
1151 /* HW with the reset endpoint quirk needs to have a configure endpoint
1152 * command complete before the endpoint can be used. Queue that here
1153 * because the HW can't handle two commands being queued in a row.
1154 */
1155 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1156 struct xhci_command *command;
1157
1158 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1159 if (!command)
1160 return;
1161
1162 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1163 "Queueing configure endpoint command");
1164 xhci_queue_configure_endpoint(xhci, command,
1165 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1166 false);
1167 xhci_ring_cmd_db(xhci);
1168 } else {
1169 /* Clear our internal halted state */
1170 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1171 }
1172 }
1173
1174 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1175 struct xhci_command *command, u32 cmd_comp_code)
1176 {
1177 if (cmd_comp_code == COMP_SUCCESS)
1178 command->slot_id = slot_id;
1179 else
1180 command->slot_id = 0;
1181 }
1182
1183 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1184 {
1185 struct xhci_virt_device *virt_dev;
1186 struct xhci_slot_ctx *slot_ctx;
1187
1188 virt_dev = xhci->devs[slot_id];
1189 if (!virt_dev)
1190 return;
1191
1192 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1193 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1194
1195 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1196 /* Delete default control endpoint resources */
1197 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1198 xhci_free_virt_device(xhci, slot_id);
1199 }
1200
1201 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1202 struct xhci_event_cmd *event, u32 cmd_comp_code)
1203 {
1204 struct xhci_virt_device *virt_dev;
1205 struct xhci_input_control_ctx *ctrl_ctx;
1206 struct xhci_ep_ctx *ep_ctx;
1207 unsigned int ep_index;
1208 unsigned int ep_state;
1209 u32 add_flags, drop_flags;
1210
1211 /*
1212 * Configure endpoint commands can come from the USB core
1213 * configuration or alt setting changes, or because the HW
1214 * needed an extra configure endpoint command after a reset
1215 * endpoint command or streams were being configured.
1216 * If the command was for a halted endpoint, the xHCI driver
1217 * is not waiting on the configure endpoint command.
1218 */
1219 virt_dev = xhci->devs[slot_id];
1220 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1221 if (!ctrl_ctx) {
1222 xhci_warn(xhci, "Could not get input context, bad type.\n");
1223 return;
1224 }
1225
1226 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1227 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1228 /* Input ctx add_flags are the endpoint index plus one */
1229 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1230
1231 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1232 trace_xhci_handle_cmd_config_ep(ep_ctx);
1233
1234 /* A usb_set_interface() call directly after clearing a halted
1235 * condition may race on this quirky hardware. Not worth
1236 * worrying about, since this is prototype hardware. Not sure
1237 * if this will work for streams, but streams support was
1238 * untested on this prototype.
1239 */
1240 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1241 ep_index != (unsigned int) -1 &&
1242 add_flags - SLOT_FLAG == drop_flags) {
1243 ep_state = virt_dev->eps[ep_index].ep_state;
1244 if (!(ep_state & EP_HALTED))
1245 return;
1246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1247 "Completed config ep cmd - "
1248 "last ep index = %d, state = %d",
1249 ep_index, ep_state);
1250 /* Clear internal halted state and restart ring(s) */
1251 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1252 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1253 return;
1254 }
1255 return;
1256 }
1257
1258 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1259 {
1260 struct xhci_virt_device *vdev;
1261 struct xhci_slot_ctx *slot_ctx;
1262
1263 vdev = xhci->devs[slot_id];
1264 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1265 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1266 }
1267
1268 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1269 struct xhci_event_cmd *event)
1270 {
1271 struct xhci_virt_device *vdev;
1272 struct xhci_slot_ctx *slot_ctx;
1273
1274 vdev = xhci->devs[slot_id];
1275 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1276 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1277
1278 xhci_dbg(xhci, "Completed reset device command.\n");
1279 if (!xhci->devs[slot_id])
1280 xhci_warn(xhci, "Reset device command completion "
1281 "for disabled slot %u\n", slot_id);
1282 }
1283
1284 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1285 struct xhci_event_cmd *event)
1286 {
1287 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1288 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1289 return;
1290 }
1291 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1292 "NEC firmware version %2x.%02x",
1293 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1294 NEC_FW_MINOR(le32_to_cpu(event->status)));
1295 }
1296
1297 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1298 {
1299 list_del(&cmd->cmd_list);
1300
1301 if (cmd->completion) {
1302 cmd->status = status;
1303 complete(cmd->completion);
1304 } else {
1305 kfree(cmd);
1306 }
1307 }
1308
1309 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1310 {
1311 struct xhci_command *cur_cmd, *tmp_cmd;
1312 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1313 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1314 }
1315
1316 void xhci_handle_command_timeout(struct work_struct *work)
1317 {
1318 struct xhci_hcd *xhci;
1319 unsigned long flags;
1320 u64 hw_ring_state;
1321
1322 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1323
1324 spin_lock_irqsave(&xhci->lock, flags);
1325
1326 /*
1327 * If timeout work is pending, or current_cmd is NULL, it means we
1328 * raced with command completion. Command is handled so just return.
1329 */
1330 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1331 spin_unlock_irqrestore(&xhci->lock, flags);
1332 return;
1333 }
1334 /* mark this command to be cancelled */
1335 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1336
1337 /* Make sure command ring is running before aborting it */
1338 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1339 if (hw_ring_state == ~(u64)0) {
1340 xhci_hc_died(xhci);
1341 goto time_out_completed;
1342 }
1343
1344 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1345 (hw_ring_state & CMD_RING_RUNNING)) {
1346 /* Prevent new doorbell, and start command abort */
1347 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1348 xhci_dbg(xhci, "Command timeout\n");
1349 xhci_abort_cmd_ring(xhci, flags);
1350 goto time_out_completed;
1351 }
1352
1353 /* host removed. Bail out */
1354 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1355 xhci_dbg(xhci, "host removed, ring start fail?\n");
1356 xhci_cleanup_command_queue(xhci);
1357
1358 goto time_out_completed;
1359 }
1360
1361 /* command timeout on stopped ring, ring can't be aborted */
1362 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1363 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1364
1365 time_out_completed:
1366 spin_unlock_irqrestore(&xhci->lock, flags);
1367 return;
1368 }
1369
1370 static void handle_cmd_completion(struct xhci_hcd *xhci,
1371 struct xhci_event_cmd *event)
1372 {
1373 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1374 u64 cmd_dma;
1375 dma_addr_t cmd_dequeue_dma;
1376 u32 cmd_comp_code;
1377 union xhci_trb *cmd_trb;
1378 struct xhci_command *cmd;
1379 u32 cmd_type;
1380
1381 cmd_dma = le64_to_cpu(event->cmd_trb);
1382 cmd_trb = xhci->cmd_ring->dequeue;
1383
1384 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1385
1386 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1387 cmd_trb);
1388 /*
1389 * Check whether the completion event is for our internal kept
1390 * command.
1391 */
1392 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1393 xhci_warn(xhci,
1394 "ERROR mismatched command completion event\n");
1395 return;
1396 }
1397
1398 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1399
1400 cancel_delayed_work(&xhci->cmd_timer);
1401
1402 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1403
1404 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1405 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1406 complete_all(&xhci->cmd_ring_stop_completion);
1407 return;
1408 }
1409
1410 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1411 xhci_err(xhci,
1412 "Command completion event does not match command\n");
1413 return;
1414 }
1415
1416 /*
1417 * Host aborted the command ring, check if the current command was
1418 * supposed to be aborted, otherwise continue normally.
1419 * The command ring is stopped now, but the xHC will issue a Command
1420 * Ring Stopped event which will cause us to restart it.
1421 */
1422 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1423 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1424 if (cmd->status == COMP_COMMAND_ABORTED) {
1425 if (xhci->current_cmd == cmd)
1426 xhci->current_cmd = NULL;
1427 goto event_handled;
1428 }
1429 }
1430
1431 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1432 switch (cmd_type) {
1433 case TRB_ENABLE_SLOT:
1434 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1435 break;
1436 case TRB_DISABLE_SLOT:
1437 xhci_handle_cmd_disable_slot(xhci, slot_id);
1438 break;
1439 case TRB_CONFIG_EP:
1440 if (!cmd->completion)
1441 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1442 cmd_comp_code);
1443 break;
1444 case TRB_EVAL_CONTEXT:
1445 break;
1446 case TRB_ADDR_DEV:
1447 xhci_handle_cmd_addr_dev(xhci, slot_id);
1448 break;
1449 case TRB_STOP_RING:
1450 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1451 le32_to_cpu(cmd_trb->generic.field[3])));
1452 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1453 break;
1454 case TRB_SET_DEQ:
1455 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1456 le32_to_cpu(cmd_trb->generic.field[3])));
1457 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1458 break;
1459 case TRB_CMD_NOOP:
1460 /* Is this an aborted command turned to NO-OP? */
1461 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1462 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1463 break;
1464 case TRB_RESET_EP:
1465 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1466 le32_to_cpu(cmd_trb->generic.field[3])));
1467 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1468 break;
1469 case TRB_RESET_DEV:
1470 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1471 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1472 */
1473 slot_id = TRB_TO_SLOT_ID(
1474 le32_to_cpu(cmd_trb->generic.field[3]));
1475 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1476 break;
1477 case TRB_NEC_GET_FW:
1478 xhci_handle_cmd_nec_get_fw(xhci, event);
1479 break;
1480 default:
1481 /* Skip over unknown commands on the event ring */
1482 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1483 break;
1484 }
1485
1486 /* restart timer if this wasn't the last command */
1487 if (!list_is_singular(&xhci->cmd_list)) {
1488 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1489 struct xhci_command, cmd_list);
1490 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1491 } else if (xhci->current_cmd == cmd) {
1492 xhci->current_cmd = NULL;
1493 }
1494
1495 event_handled:
1496 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1497
1498 inc_deq(xhci, xhci->cmd_ring);
1499 }
1500
1501 static void handle_vendor_event(struct xhci_hcd *xhci,
1502 union xhci_trb *event)
1503 {
1504 u32 trb_type;
1505
1506 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1507 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1508 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1509 handle_cmd_completion(xhci, &event->event_cmd);
1510 }
1511
1512 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1513 * port registers -- USB 3.0 and USB 2.0).
1514 *
1515 * Returns a zero-based port number, which is suitable for indexing into each of
1516 * the split roothubs' port arrays and bus state arrays.
1517 * Add one to it in order to call xhci_find_slot_id_by_port.
1518 */
1519 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1520 struct xhci_hcd *xhci, u32 port_id)
1521 {
1522 unsigned int i;
1523 unsigned int num_similar_speed_ports = 0;
1524
1525 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1526 * and usb2_ports are 0-based indexes. Count the number of similar
1527 * speed ports, up to 1 port before this port.
1528 */
1529 for (i = 0; i < (port_id - 1); i++) {
1530 u8 port_speed = xhci->port_array[i];
1531
1532 /*
1533 * Skip ports that don't have known speeds, or have duplicate
1534 * Extended Capabilities port speed entries.
1535 */
1536 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1537 continue;
1538
1539 /*
1540 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1541 * 1.1 ports are under the USB 2.0 hub. If the port speed
1542 * matches the device speed, it's a similar speed port.
1543 */
1544 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1545 num_similar_speed_ports++;
1546 }
1547 return num_similar_speed_ports;
1548 }
1549
1550 static void handle_device_notification(struct xhci_hcd *xhci,
1551 union xhci_trb *event)
1552 {
1553 u32 slot_id;
1554 struct usb_device *udev;
1555
1556 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1557 if (!xhci->devs[slot_id]) {
1558 xhci_warn(xhci, "Device Notification event for "
1559 "unused slot %u\n", slot_id);
1560 return;
1561 }
1562
1563 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1564 slot_id);
1565 udev = xhci->devs[slot_id]->udev;
1566 if (udev && udev->parent)
1567 usb_wakeup_notification(udev->parent, udev->portnum);
1568 }
1569
1570 static void handle_port_status(struct xhci_hcd *xhci,
1571 union xhci_trb *event)
1572 {
1573 struct usb_hcd *hcd;
1574 u32 port_id;
1575 u32 portsc, cmd_reg;
1576 int max_ports;
1577 int slot_id;
1578 unsigned int faked_port_index;
1579 u8 major_revision;
1580 struct xhci_bus_state *bus_state;
1581 __le32 __iomem **port_array;
1582 bool bogus_port_status = false;
1583
1584 /* Port status change events always have a successful completion code */
1585 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1586 xhci_warn(xhci,
1587 "WARN: xHC returned failed port status event\n");
1588
1589 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1590 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1591
1592 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1593 if ((port_id <= 0) || (port_id > max_ports)) {
1594 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1595 inc_deq(xhci, xhci->event_ring);
1596 return;
1597 }
1598
1599 /* Figure out which usb_hcd this port is attached to:
1600 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1601 */
1602 major_revision = xhci->port_array[port_id - 1];
1603
1604 /* Find the right roothub. */
1605 hcd = xhci_to_hcd(xhci);
1606 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1607 hcd = xhci->shared_hcd;
1608
1609 if (major_revision == 0) {
1610 xhci_warn(xhci, "Event for port %u not in "
1611 "Extended Capabilities, ignoring.\n",
1612 port_id);
1613 bogus_port_status = true;
1614 goto cleanup;
1615 }
1616 if (major_revision == DUPLICATE_ENTRY) {
1617 xhci_warn(xhci, "Event for port %u duplicated in"
1618 "Extended Capabilities, ignoring.\n",
1619 port_id);
1620 bogus_port_status = true;
1621 goto cleanup;
1622 }
1623
1624 /*
1625 * Hardware port IDs reported by a Port Status Change Event include USB
1626 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1627 * resume event, but we first need to translate the hardware port ID
1628 * into the index into the ports on the correct split roothub, and the
1629 * correct bus_state structure.
1630 */
1631 bus_state = &xhci->bus_state[hcd_index(hcd)];
1632 if (hcd->speed >= HCD_USB3)
1633 port_array = xhci->usb3_ports;
1634 else
1635 port_array = xhci->usb2_ports;
1636 /* Find the faked port hub number */
1637 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1638 port_id);
1639 portsc = readl(port_array[faked_port_index]);
1640
1641 trace_xhci_handle_port_status(faked_port_index, portsc);
1642
1643 if (hcd->state == HC_STATE_SUSPENDED) {
1644 xhci_dbg(xhci, "resume root hub\n");
1645 usb_hcd_resume_root_hub(hcd);
1646 }
1647
1648 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
1649 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1650
1651 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1652 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1653
1654 cmd_reg = readl(&xhci->op_regs->command);
1655 if (!(cmd_reg & CMD_RUN)) {
1656 xhci_warn(xhci, "xHC is not running.\n");
1657 goto cleanup;
1658 }
1659
1660 if (DEV_SUPERSPEED_ANY(portsc)) {
1661 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1662 /* Set a flag to say the port signaled remote wakeup,
1663 * so we can tell the difference between the end of
1664 * device and host initiated resume.
1665 */
1666 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1667 xhci_test_and_clear_bit(xhci, port_array,
1668 faked_port_index, PORT_PLC);
1669 xhci_set_link_state(xhci, port_array, faked_port_index,
1670 XDEV_U0);
1671 /* Need to wait until the next link state change
1672 * indicates the device is actually in U0.
1673 */
1674 bogus_port_status = true;
1675 goto cleanup;
1676 } else if (!test_bit(faked_port_index,
1677 &bus_state->resuming_ports)) {
1678 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1679 bus_state->resume_done[faked_port_index] = jiffies +
1680 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1681 set_bit(faked_port_index, &bus_state->resuming_ports);
1682 mod_timer(&hcd->rh_timer,
1683 bus_state->resume_done[faked_port_index]);
1684 /* Do the rest in GetPortStatus */
1685 }
1686 }
1687
1688 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
1689 DEV_SUPERSPEED_ANY(portsc)) {
1690 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1691 /* We've just brought the device into U0 through either the
1692 * Resume state after a device remote wakeup, or through the
1693 * U3Exit state after a host-initiated resume. If it's a device
1694 * initiated remote wake, don't pass up the link state change,
1695 * so the roothub behavior is consistent with external
1696 * USB 3.0 hub behavior.
1697 */
1698 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1699 faked_port_index + 1);
1700 if (slot_id && xhci->devs[slot_id])
1701 xhci_ring_device(xhci, slot_id);
1702 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1703 bus_state->port_remote_wakeup &=
1704 ~(1 << faked_port_index);
1705 xhci_test_and_clear_bit(xhci, port_array,
1706 faked_port_index, PORT_PLC);
1707 usb_wakeup_notification(hcd->self.root_hub,
1708 faked_port_index + 1);
1709 bogus_port_status = true;
1710 goto cleanup;
1711 }
1712 }
1713
1714 /*
1715 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1716 * RExit to a disconnect state). If so, let the the driver know it's
1717 * out of the RExit state.
1718 */
1719 if (!DEV_SUPERSPEED_ANY(portsc) &&
1720 test_and_clear_bit(faked_port_index,
1721 &bus_state->rexit_ports)) {
1722 complete(&bus_state->rexit_done[faked_port_index]);
1723 bogus_port_status = true;
1724 goto cleanup;
1725 }
1726
1727 if (hcd->speed < HCD_USB3)
1728 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1729 PORT_PLC);
1730
1731 cleanup:
1732 /* Update event ring dequeue pointer before dropping the lock */
1733 inc_deq(xhci, xhci->event_ring);
1734
1735 /* Don't make the USB core poll the roothub if we got a bad port status
1736 * change event. Besides, at that point we can't tell which roothub
1737 * (USB 2.0 or USB 3.0) to kick.
1738 */
1739 if (bogus_port_status)
1740 return;
1741
1742 /*
1743 * xHCI port-status-change events occur when the "or" of all the
1744 * status-change bits in the portsc register changes from 0 to 1.
1745 * New status changes won't cause an event if any other change
1746 * bits are still set. When an event occurs, switch over to
1747 * polling to avoid losing status changes.
1748 */
1749 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1750 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1751 spin_unlock(&xhci->lock);
1752 /* Pass this up to the core */
1753 usb_hcd_poll_rh_status(hcd);
1754 spin_lock(&xhci->lock);
1755 }
1756
1757 /*
1758 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1759 * at end_trb, which may be in another segment. If the suspect DMA address is a
1760 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1761 * returns 0.
1762 */
1763 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1764 struct xhci_segment *start_seg,
1765 union xhci_trb *start_trb,
1766 union xhci_trb *end_trb,
1767 dma_addr_t suspect_dma,
1768 bool debug)
1769 {
1770 dma_addr_t start_dma;
1771 dma_addr_t end_seg_dma;
1772 dma_addr_t end_trb_dma;
1773 struct xhci_segment *cur_seg;
1774
1775 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1776 cur_seg = start_seg;
1777
1778 do {
1779 if (start_dma == 0)
1780 return NULL;
1781 /* We may get an event for a Link TRB in the middle of a TD */
1782 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1783 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1784 /* If the end TRB isn't in this segment, this is set to 0 */
1785 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1786
1787 if (debug)
1788 xhci_warn(xhci,
1789 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1790 (unsigned long long)suspect_dma,
1791 (unsigned long long)start_dma,
1792 (unsigned long long)end_trb_dma,
1793 (unsigned long long)cur_seg->dma,
1794 (unsigned long long)end_seg_dma);
1795
1796 if (end_trb_dma > 0) {
1797 /* The end TRB is in this segment, so suspect should be here */
1798 if (start_dma <= end_trb_dma) {
1799 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1800 return cur_seg;
1801 } else {
1802 /* Case for one segment with
1803 * a TD wrapped around to the top
1804 */
1805 if ((suspect_dma >= start_dma &&
1806 suspect_dma <= end_seg_dma) ||
1807 (suspect_dma >= cur_seg->dma &&
1808 suspect_dma <= end_trb_dma))
1809 return cur_seg;
1810 }
1811 return NULL;
1812 } else {
1813 /* Might still be somewhere in this segment */
1814 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1815 return cur_seg;
1816 }
1817 cur_seg = cur_seg->next;
1818 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1819 } while (cur_seg != start_seg);
1820
1821 return NULL;
1822 }
1823
1824 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1825 unsigned int slot_id, unsigned int ep_index,
1826 unsigned int stream_id,
1827 struct xhci_td *td, union xhci_trb *ep_trb,
1828 enum xhci_ep_reset_type reset_type)
1829 {
1830 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1831 struct xhci_command *command;
1832 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1833 if (!command)
1834 return;
1835
1836 ep->ep_state |= EP_HALTED;
1837
1838 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1839
1840 if (reset_type == EP_HARD_RESET)
1841 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1842
1843 xhci_ring_cmd_db(xhci);
1844 }
1845
1846 /* Check if an error has halted the endpoint ring. The class driver will
1847 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1848 * However, a babble and other errors also halt the endpoint ring, and the class
1849 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1850 * Ring Dequeue Pointer command manually.
1851 */
1852 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1853 struct xhci_ep_ctx *ep_ctx,
1854 unsigned int trb_comp_code)
1855 {
1856 /* TRB completion codes that may require a manual halt cleanup */
1857 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1858 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1859 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1860 /* The 0.95 spec says a babbling control endpoint
1861 * is not halted. The 0.96 spec says it is. Some HW
1862 * claims to be 0.95 compliant, but it halts the control
1863 * endpoint anyway. Check if a babble halted the
1864 * endpoint.
1865 */
1866 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1867 return 1;
1868
1869 return 0;
1870 }
1871
1872 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1873 {
1874 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1875 /* Vendor defined "informational" completion code,
1876 * treat as not-an-error.
1877 */
1878 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1879 trb_comp_code);
1880 xhci_dbg(xhci, "Treating code as success.\n");
1881 return 1;
1882 }
1883 return 0;
1884 }
1885
1886 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1887 struct xhci_ring *ep_ring, int *status)
1888 {
1889 struct urb_priv *urb_priv;
1890 struct urb *urb = NULL;
1891
1892 /* Clean up the endpoint's TD list */
1893 urb = td->urb;
1894 urb_priv = urb->hcpriv;
1895
1896 /* if a bounce buffer was used to align this td then unmap it */
1897 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1898
1899 /* Do one last check of the actual transfer length.
1900 * If the host controller said we transferred more data than the buffer
1901 * length, urb->actual_length will be a very big number (since it's
1902 * unsigned). Play it safe and say we didn't transfer anything.
1903 */
1904 if (urb->actual_length > urb->transfer_buffer_length) {
1905 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1906 urb->transfer_buffer_length, urb->actual_length);
1907 urb->actual_length = 0;
1908 *status = 0;
1909 }
1910 list_del_init(&td->td_list);
1911 /* Was this TD slated to be cancelled but completed anyway? */
1912 if (!list_empty(&td->cancelled_td_list))
1913 list_del_init(&td->cancelled_td_list);
1914
1915 inc_td_cnt(urb);
1916 /* Giveback the urb when all the tds are completed */
1917 if (last_td_in_urb(td)) {
1918 if ((urb->actual_length != urb->transfer_buffer_length &&
1919 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1920 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1921 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1922 urb, urb->actual_length,
1923 urb->transfer_buffer_length, *status);
1924
1925 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1926 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1927 *status = 0;
1928 xhci_giveback_urb_in_irq(xhci, td, *status);
1929 }
1930
1931 return 0;
1932 }
1933
1934 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1935 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1936 struct xhci_virt_ep *ep, int *status)
1937 {
1938 struct xhci_virt_device *xdev;
1939 struct xhci_ep_ctx *ep_ctx;
1940 struct xhci_ring *ep_ring;
1941 unsigned int slot_id;
1942 u32 trb_comp_code;
1943 int ep_index;
1944
1945 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1946 xdev = xhci->devs[slot_id];
1947 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1948 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1949 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1950 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1951
1952 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1953 trb_comp_code == COMP_STOPPED ||
1954 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1955 /* The Endpoint Stop Command completion will take care of any
1956 * stopped TDs. A stopped TD may be restarted, so don't update
1957 * the ring dequeue pointer or take this TD off any lists yet.
1958 */
1959 return 0;
1960 }
1961 if (trb_comp_code == COMP_STALL_ERROR ||
1962 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1963 trb_comp_code)) {
1964 /* Issue a reset endpoint command to clear the host side
1965 * halt, followed by a set dequeue command to move the
1966 * dequeue pointer past the TD.
1967 * The class driver clears the device side halt later.
1968 */
1969 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1970 ep_ring->stream_id, td, ep_trb,
1971 EP_HARD_RESET);
1972 } else {
1973 /* Update ring dequeue pointer */
1974 while (ep_ring->dequeue != td->last_trb)
1975 inc_deq(xhci, ep_ring);
1976 inc_deq(xhci, ep_ring);
1977 }
1978
1979 return xhci_td_cleanup(xhci, td, ep_ring, status);
1980 }
1981
1982 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1983 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1984 union xhci_trb *stop_trb)
1985 {
1986 u32 sum;
1987 union xhci_trb *trb = ring->dequeue;
1988 struct xhci_segment *seg = ring->deq_seg;
1989
1990 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1991 if (!trb_is_noop(trb) && !trb_is_link(trb))
1992 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1993 }
1994 return sum;
1995 }
1996
1997 /*
1998 * Process control tds, update urb status and actual_length.
1999 */
2000 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2001 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2002 struct xhci_virt_ep *ep, int *status)
2003 {
2004 struct xhci_virt_device *xdev;
2005 struct xhci_ring *ep_ring;
2006 unsigned int slot_id;
2007 int ep_index;
2008 struct xhci_ep_ctx *ep_ctx;
2009 u32 trb_comp_code;
2010 u32 remaining, requested;
2011 u32 trb_type;
2012
2013 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2014 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2015 xdev = xhci->devs[slot_id];
2016 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2017 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2018 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2019 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2020 requested = td->urb->transfer_buffer_length;
2021 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2022
2023 switch (trb_comp_code) {
2024 case COMP_SUCCESS:
2025 if (trb_type != TRB_STATUS) {
2026 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2027 (trb_type == TRB_DATA) ? "data" : "setup");
2028 *status = -ESHUTDOWN;
2029 break;
2030 }
2031 *status = 0;
2032 break;
2033 case COMP_SHORT_PACKET:
2034 *status = 0;
2035 break;
2036 case COMP_STOPPED_SHORT_PACKET:
2037 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2038 td->urb->actual_length = remaining;
2039 else
2040 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2041 goto finish_td;
2042 case COMP_STOPPED:
2043 switch (trb_type) {
2044 case TRB_SETUP:
2045 td->urb->actual_length = 0;
2046 goto finish_td;
2047 case TRB_DATA:
2048 case TRB_NORMAL:
2049 td->urb->actual_length = requested - remaining;
2050 goto finish_td;
2051 case TRB_STATUS:
2052 td->urb->actual_length = requested;
2053 goto finish_td;
2054 default:
2055 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2056 trb_type);
2057 goto finish_td;
2058 }
2059 case COMP_STOPPED_LENGTH_INVALID:
2060 goto finish_td;
2061 default:
2062 if (!xhci_requires_manual_halt_cleanup(xhci,
2063 ep_ctx, trb_comp_code))
2064 break;
2065 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2066 trb_comp_code, ep_index);
2067 /* else fall through */
2068 case COMP_STALL_ERROR:
2069 /* Did we transfer part of the data (middle) phase? */
2070 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2071 td->urb->actual_length = requested - remaining;
2072 else if (!td->urb_length_set)
2073 td->urb->actual_length = 0;
2074 goto finish_td;
2075 }
2076
2077 /* stopped at setup stage, no data transferred */
2078 if (trb_type == TRB_SETUP)
2079 goto finish_td;
2080
2081 /*
2082 * if on data stage then update the actual_length of the URB and flag it
2083 * as set, so it won't be overwritten in the event for the last TRB.
2084 */
2085 if (trb_type == TRB_DATA ||
2086 trb_type == TRB_NORMAL) {
2087 td->urb_length_set = true;
2088 td->urb->actual_length = requested - remaining;
2089 xhci_dbg(xhci, "Waiting for status stage event\n");
2090 return 0;
2091 }
2092
2093 /* at status stage */
2094 if (!td->urb_length_set)
2095 td->urb->actual_length = requested;
2096
2097 finish_td:
2098 return finish_td(xhci, td, ep_trb, event, ep, status);
2099 }
2100
2101 /*
2102 * Process isochronous tds, update urb packet status and actual_length.
2103 */
2104 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2105 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2106 struct xhci_virt_ep *ep, int *status)
2107 {
2108 struct xhci_ring *ep_ring;
2109 struct urb_priv *urb_priv;
2110 int idx;
2111 struct usb_iso_packet_descriptor *frame;
2112 u32 trb_comp_code;
2113 bool sum_trbs_for_length = false;
2114 u32 remaining, requested, ep_trb_len;
2115 int short_framestatus;
2116
2117 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2118 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2119 urb_priv = td->urb->hcpriv;
2120 idx = urb_priv->num_tds_done;
2121 frame = &td->urb->iso_frame_desc[idx];
2122 requested = frame->length;
2123 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2124 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2125 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2126 -EREMOTEIO : 0;
2127
2128 /* handle completion code */
2129 switch (trb_comp_code) {
2130 case COMP_SUCCESS:
2131 if (remaining) {
2132 frame->status = short_framestatus;
2133 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2134 sum_trbs_for_length = true;
2135 break;
2136 }
2137 frame->status = 0;
2138 break;
2139 case COMP_SHORT_PACKET:
2140 frame->status = short_framestatus;
2141 sum_trbs_for_length = true;
2142 break;
2143 case COMP_BANDWIDTH_OVERRUN_ERROR:
2144 frame->status = -ECOMM;
2145 break;
2146 case COMP_ISOCH_BUFFER_OVERRUN:
2147 case COMP_BABBLE_DETECTED_ERROR:
2148 frame->status = -EOVERFLOW;
2149 break;
2150 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2151 case COMP_STALL_ERROR:
2152 frame->status = -EPROTO;
2153 break;
2154 case COMP_USB_TRANSACTION_ERROR:
2155 frame->status = -EPROTO;
2156 if (ep_trb != td->last_trb)
2157 return 0;
2158 break;
2159 case COMP_STOPPED:
2160 sum_trbs_for_length = true;
2161 break;
2162 case COMP_STOPPED_SHORT_PACKET:
2163 /* field normally containing residue now contains tranferred */
2164 frame->status = short_framestatus;
2165 requested = remaining;
2166 break;
2167 case COMP_STOPPED_LENGTH_INVALID:
2168 requested = 0;
2169 remaining = 0;
2170 break;
2171 default:
2172 sum_trbs_for_length = true;
2173 frame->status = -1;
2174 break;
2175 }
2176
2177 if (sum_trbs_for_length)
2178 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2179 ep_trb_len - remaining;
2180 else
2181 frame->actual_length = requested;
2182
2183 td->urb->actual_length += frame->actual_length;
2184
2185 return finish_td(xhci, td, ep_trb, event, ep, status);
2186 }
2187
2188 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2189 struct xhci_transfer_event *event,
2190 struct xhci_virt_ep *ep, int *status)
2191 {
2192 struct xhci_ring *ep_ring;
2193 struct urb_priv *urb_priv;
2194 struct usb_iso_packet_descriptor *frame;
2195 int idx;
2196
2197 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2198 urb_priv = td->urb->hcpriv;
2199 idx = urb_priv->num_tds_done;
2200 frame = &td->urb->iso_frame_desc[idx];
2201
2202 /* The transfer is partly done. */
2203 frame->status = -EXDEV;
2204
2205 /* calc actual length */
2206 frame->actual_length = 0;
2207
2208 /* Update ring dequeue pointer */
2209 while (ep_ring->dequeue != td->last_trb)
2210 inc_deq(xhci, ep_ring);
2211 inc_deq(xhci, ep_ring);
2212
2213 return xhci_td_cleanup(xhci, td, ep_ring, status);
2214 }
2215
2216 /*
2217 * Process bulk and interrupt tds, update urb status and actual_length.
2218 */
2219 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2220 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2221 struct xhci_virt_ep *ep, int *status)
2222 {
2223 struct xhci_ring *ep_ring;
2224 u32 trb_comp_code;
2225 u32 remaining, requested, ep_trb_len;
2226
2227 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2228 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2229 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2230 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2231 requested = td->urb->transfer_buffer_length;
2232
2233 switch (trb_comp_code) {
2234 case COMP_SUCCESS:
2235 /* handle success with untransferred data as short packet */
2236 if (ep_trb != td->last_trb || remaining) {
2237 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2238 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2239 td->urb->ep->desc.bEndpointAddress,
2240 requested, remaining);
2241 }
2242 *status = 0;
2243 break;
2244 case COMP_SHORT_PACKET:
2245 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2246 td->urb->ep->desc.bEndpointAddress,
2247 requested, remaining);
2248 *status = 0;
2249 break;
2250 case COMP_STOPPED_SHORT_PACKET:
2251 td->urb->actual_length = remaining;
2252 goto finish_td;
2253 case COMP_STOPPED_LENGTH_INVALID:
2254 /* stopped on ep trb with invalid length, exclude it */
2255 ep_trb_len = 0;
2256 remaining = 0;
2257 break;
2258 default:
2259 /* do nothing */
2260 break;
2261 }
2262
2263 if (ep_trb == td->last_trb)
2264 td->urb->actual_length = requested - remaining;
2265 else
2266 td->urb->actual_length =
2267 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2268 ep_trb_len - remaining;
2269 finish_td:
2270 if (remaining > requested) {
2271 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2272 remaining);
2273 td->urb->actual_length = 0;
2274 }
2275 return finish_td(xhci, td, ep_trb, event, ep, status);
2276 }
2277
2278 /*
2279 * If this function returns an error condition, it means it got a Transfer
2280 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2281 * At this point, the host controller is probably hosed and should be reset.
2282 */
2283 static int handle_tx_event(struct xhci_hcd *xhci,
2284 struct xhci_transfer_event *event)
2285 {
2286 struct xhci_virt_device *xdev;
2287 struct xhci_virt_ep *ep;
2288 struct xhci_ring *ep_ring;
2289 unsigned int slot_id;
2290 int ep_index;
2291 struct xhci_td *td = NULL;
2292 dma_addr_t ep_trb_dma;
2293 struct xhci_segment *ep_seg;
2294 union xhci_trb *ep_trb;
2295 int status = -EINPROGRESS;
2296 struct xhci_ep_ctx *ep_ctx;
2297 struct list_head *tmp;
2298 u32 trb_comp_code;
2299 int td_num = 0;
2300 bool handling_skipped_tds = false;
2301
2302 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2303 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2304 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2305 ep_trb_dma = le64_to_cpu(event->buffer);
2306
2307 xdev = xhci->devs[slot_id];
2308 if (!xdev) {
2309 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2310 slot_id);
2311 goto err_out;
2312 }
2313
2314 ep = &xdev->eps[ep_index];
2315 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2316 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2317
2318 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2319 xhci_err(xhci,
2320 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2321 slot_id, ep_index);
2322 goto err_out;
2323 }
2324
2325 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2326 if (!ep_ring) {
2327 switch (trb_comp_code) {
2328 case COMP_STALL_ERROR:
2329 case COMP_USB_TRANSACTION_ERROR:
2330 case COMP_INVALID_STREAM_TYPE_ERROR:
2331 case COMP_INVALID_STREAM_ID_ERROR:
2332 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2333 NULL, NULL, EP_SOFT_RESET);
2334 goto cleanup;
2335 case COMP_RING_UNDERRUN:
2336 case COMP_RING_OVERRUN:
2337 goto cleanup;
2338 default:
2339 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2340 slot_id, ep_index);
2341 goto err_out;
2342 }
2343 }
2344
2345 /* Count current td numbers if ep->skip is set */
2346 if (ep->skip) {
2347 list_for_each(tmp, &ep_ring->td_list)
2348 td_num++;
2349 }
2350
2351 /* Look for common error cases */
2352 switch (trb_comp_code) {
2353 /* Skip codes that require special handling depending on
2354 * transfer type
2355 */
2356 case COMP_SUCCESS:
2357 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2358 break;
2359 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2360 trb_comp_code = COMP_SHORT_PACKET;
2361 else
2362 xhci_warn_ratelimited(xhci,
2363 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2364 slot_id, ep_index);
2365 case COMP_SHORT_PACKET:
2366 break;
2367 /* Completion codes for endpoint stopped state */
2368 case COMP_STOPPED:
2369 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2370 slot_id, ep_index);
2371 break;
2372 case COMP_STOPPED_LENGTH_INVALID:
2373 xhci_dbg(xhci,
2374 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2375 slot_id, ep_index);
2376 break;
2377 case COMP_STOPPED_SHORT_PACKET:
2378 xhci_dbg(xhci,
2379 "Stopped with short packet transfer detected for slot %u ep %u\n",
2380 slot_id, ep_index);
2381 break;
2382 /* Completion codes for endpoint halted state */
2383 case COMP_STALL_ERROR:
2384 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2385 ep_index);
2386 ep->ep_state |= EP_HALTED;
2387 status = -EPIPE;
2388 break;
2389 case COMP_SPLIT_TRANSACTION_ERROR:
2390 case COMP_USB_TRANSACTION_ERROR:
2391 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2392 slot_id, ep_index);
2393 status = -EPROTO;
2394 break;
2395 case COMP_BABBLE_DETECTED_ERROR:
2396 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2397 slot_id, ep_index);
2398 status = -EOVERFLOW;
2399 break;
2400 /* Completion codes for endpoint error state */
2401 case COMP_TRB_ERROR:
2402 xhci_warn(xhci,
2403 "WARN: TRB error for slot %u ep %u on endpoint\n",
2404 slot_id, ep_index);
2405 status = -EILSEQ;
2406 break;
2407 /* completion codes not indicating endpoint state change */
2408 case COMP_DATA_BUFFER_ERROR:
2409 xhci_warn(xhci,
2410 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2411 slot_id, ep_index);
2412 status = -ENOSR;
2413 break;
2414 case COMP_BANDWIDTH_OVERRUN_ERROR:
2415 xhci_warn(xhci,
2416 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2417 slot_id, ep_index);
2418 break;
2419 case COMP_ISOCH_BUFFER_OVERRUN:
2420 xhci_warn(xhci,
2421 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2422 slot_id, ep_index);
2423 break;
2424 case COMP_RING_UNDERRUN:
2425 /*
2426 * When the Isoch ring is empty, the xHC will generate
2427 * a Ring Overrun Event for IN Isoch endpoint or Ring
2428 * Underrun Event for OUT Isoch endpoint.
2429 */
2430 xhci_dbg(xhci, "underrun event on endpoint\n");
2431 if (!list_empty(&ep_ring->td_list))
2432 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2433 "still with TDs queued?\n",
2434 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2435 ep_index);
2436 goto cleanup;
2437 case COMP_RING_OVERRUN:
2438 xhci_dbg(xhci, "overrun event on endpoint\n");
2439 if (!list_empty(&ep_ring->td_list))
2440 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2441 "still with TDs queued?\n",
2442 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2443 ep_index);
2444 goto cleanup;
2445 case COMP_MISSED_SERVICE_ERROR:
2446 /*
2447 * When encounter missed service error, one or more isoc tds
2448 * may be missed by xHC.
2449 * Set skip flag of the ep_ring; Complete the missed tds as
2450 * short transfer when process the ep_ring next time.
2451 */
2452 ep->skip = true;
2453 xhci_dbg(xhci,
2454 "Miss service interval error for slot %u ep %u, set skip flag\n",
2455 slot_id, ep_index);
2456 goto cleanup;
2457 case COMP_NO_PING_RESPONSE_ERROR:
2458 ep->skip = true;
2459 xhci_dbg(xhci,
2460 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2461 slot_id, ep_index);
2462 goto cleanup;
2463
2464 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2465 /* needs disable slot command to recover */
2466 xhci_warn(xhci,
2467 "WARN: detect an incompatible device for slot %u ep %u",
2468 slot_id, ep_index);
2469 status = -EPROTO;
2470 break;
2471 default:
2472 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2473 status = 0;
2474 break;
2475 }
2476 xhci_warn(xhci,
2477 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2478 trb_comp_code, slot_id, ep_index);
2479 goto cleanup;
2480 }
2481
2482 do {
2483 /* This TRB should be in the TD at the head of this ring's
2484 * TD list.
2485 */
2486 if (list_empty(&ep_ring->td_list)) {
2487 /*
2488 * A stopped endpoint may generate an extra completion
2489 * event if the device was suspended. Don't print
2490 * warnings.
2491 */
2492 if (!(trb_comp_code == COMP_STOPPED ||
2493 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2494 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2495 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2496 ep_index);
2497 }
2498 if (ep->skip) {
2499 ep->skip = false;
2500 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2501 slot_id, ep_index);
2502 }
2503 goto cleanup;
2504 }
2505
2506 /* We've skipped all the TDs on the ep ring when ep->skip set */
2507 if (ep->skip && td_num == 0) {
2508 ep->skip = false;
2509 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2510 slot_id, ep_index);
2511 goto cleanup;
2512 }
2513
2514 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2515 td_list);
2516 if (ep->skip)
2517 td_num--;
2518
2519 /* Is this a TRB in the currently executing TD? */
2520 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2521 td->last_trb, ep_trb_dma, false);
2522
2523 /*
2524 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2525 * is not in the current TD pointed by ep_ring->dequeue because
2526 * that the hardware dequeue pointer still at the previous TRB
2527 * of the current TD. The previous TRB maybe a Link TD or the
2528 * last TRB of the previous TD. The command completion handle
2529 * will take care the rest.
2530 */
2531 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2532 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2533 goto cleanup;
2534 }
2535
2536 if (!ep_seg) {
2537 if (!ep->skip ||
2538 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2539 /* Some host controllers give a spurious
2540 * successful event after a short transfer.
2541 * Ignore it.
2542 */
2543 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2544 ep_ring->last_td_was_short) {
2545 ep_ring->last_td_was_short = false;
2546 goto cleanup;
2547 }
2548 /* HC is busted, give up! */
2549 xhci_err(xhci,
2550 "ERROR Transfer event TRB DMA ptr not "
2551 "part of current TD ep_index %d "
2552 "comp_code %u\n", ep_index,
2553 trb_comp_code);
2554 trb_in_td(xhci, ep_ring->deq_seg,
2555 ep_ring->dequeue, td->last_trb,
2556 ep_trb_dma, true);
2557 return -ESHUTDOWN;
2558 }
2559
2560 skip_isoc_td(xhci, td, event, ep, &status);
2561 goto cleanup;
2562 }
2563 if (trb_comp_code == COMP_SHORT_PACKET)
2564 ep_ring->last_td_was_short = true;
2565 else
2566 ep_ring->last_td_was_short = false;
2567
2568 if (ep->skip) {
2569 xhci_dbg(xhci,
2570 "Found td. Clear skip flag for slot %u ep %u.\n",
2571 slot_id, ep_index);
2572 ep->skip = false;
2573 }
2574
2575 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2576 sizeof(*ep_trb)];
2577
2578 trace_xhci_handle_transfer(ep_ring,
2579 (struct xhci_generic_trb *) ep_trb);
2580
2581 /*
2582 * No-op TRB should not trigger interrupts.
2583 * If ep_trb is a no-op TRB, it means the
2584 * corresponding TD has been cancelled. Just ignore
2585 * the TD.
2586 */
2587 if (trb_is_noop(ep_trb)) {
2588 xhci_dbg(xhci,
2589 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n",
2590 slot_id, ep_index);
2591 goto cleanup;
2592 }
2593
2594 /* update the urb's actual_length and give back to the core */
2595 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2596 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2597 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2598 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2599 else
2600 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2601 &status);
2602 cleanup:
2603 handling_skipped_tds = ep->skip &&
2604 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2605 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2606
2607 /*
2608 * Do not update event ring dequeue pointer if we're in a loop
2609 * processing missed tds.
2610 */
2611 if (!handling_skipped_tds)
2612 inc_deq(xhci, xhci->event_ring);
2613
2614 /*
2615 * If ep->skip is set, it means there are missed tds on the
2616 * endpoint ring need to take care of.
2617 * Process them as short transfer until reach the td pointed by
2618 * the event.
2619 */
2620 } while (handling_skipped_tds);
2621
2622 return 0;
2623
2624 err_out:
2625 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2626 (unsigned long long) xhci_trb_virt_to_dma(
2627 xhci->event_ring->deq_seg,
2628 xhci->event_ring->dequeue),
2629 lower_32_bits(le64_to_cpu(event->buffer)),
2630 upper_32_bits(le64_to_cpu(event->buffer)),
2631 le32_to_cpu(event->transfer_len),
2632 le32_to_cpu(event->flags));
2633 return -ENODEV;
2634 }
2635
2636 /*
2637 * This function handles all OS-owned events on the event ring. It may drop
2638 * xhci->lock between event processing (e.g. to pass up port status changes).
2639 * Returns >0 for "possibly more events to process" (caller should call again),
2640 * otherwise 0 if done. In future, <0 returns should indicate error code.
2641 */
2642 static int xhci_handle_event(struct xhci_hcd *xhci)
2643 {
2644 union xhci_trb *event;
2645 int update_ptrs = 1;
2646 int ret;
2647
2648 /* Event ring hasn't been allocated yet. */
2649 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2650 xhci_err(xhci, "ERROR event ring not ready\n");
2651 return -ENOMEM;
2652 }
2653
2654 event = xhci->event_ring->dequeue;
2655 /* Does the HC or OS own the TRB? */
2656 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2657 xhci->event_ring->cycle_state)
2658 return 0;
2659
2660 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2661
2662 /*
2663 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2664 * speculative reads of the event's flags/data below.
2665 */
2666 rmb();
2667 /* FIXME: Handle more event types. */
2668 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2669 case TRB_TYPE(TRB_COMPLETION):
2670 handle_cmd_completion(xhci, &event->event_cmd);
2671 break;
2672 case TRB_TYPE(TRB_PORT_STATUS):
2673 handle_port_status(xhci, event);
2674 update_ptrs = 0;
2675 break;
2676 case TRB_TYPE(TRB_TRANSFER):
2677 ret = handle_tx_event(xhci, &event->trans_event);
2678 if (ret >= 0)
2679 update_ptrs = 0;
2680 break;
2681 case TRB_TYPE(TRB_DEV_NOTE):
2682 handle_device_notification(xhci, event);
2683 break;
2684 default:
2685 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2686 TRB_TYPE(48))
2687 handle_vendor_event(xhci, event);
2688 else
2689 xhci_warn(xhci, "ERROR unknown event type %d\n",
2690 TRB_FIELD_TO_TYPE(
2691 le32_to_cpu(event->event_cmd.flags)));
2692 }
2693 /* Any of the above functions may drop and re-acquire the lock, so check
2694 * to make sure a watchdog timer didn't mark the host as non-responsive.
2695 */
2696 if (xhci->xhc_state & XHCI_STATE_DYING) {
2697 xhci_dbg(xhci, "xHCI host dying, returning from "
2698 "event handler.\n");
2699 return 0;
2700 }
2701
2702 if (update_ptrs)
2703 /* Update SW event ring dequeue pointer */
2704 inc_deq(xhci, xhci->event_ring);
2705
2706 /* Are there more items on the event ring? Caller will call us again to
2707 * check.
2708 */
2709 return 1;
2710 }
2711
2712 /*
2713 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2714 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2715 * indicators of an event TRB error, but we check the status *first* to be safe.
2716 */
2717 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2718 {
2719 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2720 union xhci_trb *event_ring_deq;
2721 irqreturn_t ret = IRQ_NONE;
2722 unsigned long flags;
2723 dma_addr_t deq;
2724 u64 temp_64;
2725 u32 status;
2726
2727 spin_lock_irqsave(&xhci->lock, flags);
2728 /* Check if the xHC generated the interrupt, or the irq is shared */
2729 status = readl(&xhci->op_regs->status);
2730 if (status == ~(u32)0) {
2731 xhci_hc_died(xhci);
2732 ret = IRQ_HANDLED;
2733 goto out;
2734 }
2735
2736 if (!(status & STS_EINT))
2737 goto out;
2738
2739 if (status & STS_FATAL) {
2740 xhci_warn(xhci, "WARNING: Host System Error\n");
2741 xhci_halt(xhci);
2742 ret = IRQ_HANDLED;
2743 goto out;
2744 }
2745
2746 /*
2747 * Clear the op reg interrupt status first,
2748 * so we can receive interrupts from other MSI-X interrupters.
2749 * Write 1 to clear the interrupt status.
2750 */
2751 status |= STS_EINT;
2752 writel(status, &xhci->op_regs->status);
2753
2754 if (!hcd->msi_enabled) {
2755 u32 irq_pending;
2756 irq_pending = readl(&xhci->ir_set->irq_pending);
2757 irq_pending |= IMAN_IP;
2758 writel(irq_pending, &xhci->ir_set->irq_pending);
2759 }
2760
2761 if (xhci->xhc_state & XHCI_STATE_DYING ||
2762 xhci->xhc_state & XHCI_STATE_HALTED) {
2763 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2764 "Shouldn't IRQs be disabled?\n");
2765 /* Clear the event handler busy flag (RW1C);
2766 * the event ring should be empty.
2767 */
2768 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2769 xhci_write_64(xhci, temp_64 | ERST_EHB,
2770 &xhci->ir_set->erst_dequeue);
2771 ret = IRQ_HANDLED;
2772 goto out;
2773 }
2774
2775 event_ring_deq = xhci->event_ring->dequeue;
2776 /* FIXME this should be a delayed service routine
2777 * that clears the EHB.
2778 */
2779 while (xhci_handle_event(xhci) > 0) {}
2780
2781 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2782 /* If necessary, update the HW's version of the event ring deq ptr. */
2783 if (event_ring_deq != xhci->event_ring->dequeue) {
2784 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2785 xhci->event_ring->dequeue);
2786 if (deq == 0)
2787 xhci_warn(xhci, "WARN something wrong with SW event "
2788 "ring dequeue ptr.\n");
2789 /* Update HC event ring dequeue pointer */
2790 temp_64 &= ERST_PTR_MASK;
2791 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2792 }
2793
2794 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2795 temp_64 |= ERST_EHB;
2796 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2797 ret = IRQ_HANDLED;
2798
2799 out:
2800 spin_unlock_irqrestore(&xhci->lock, flags);
2801
2802 return ret;
2803 }
2804
2805 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2806 {
2807 return xhci_irq(hcd);
2808 }
2809
2810 /**** Endpoint Ring Operations ****/
2811
2812 /*
2813 * Generic function for queueing a TRB on a ring.
2814 * The caller must have checked to make sure there's room on the ring.
2815 *
2816 * @more_trbs_coming: Will you enqueue more TRBs before calling
2817 * prepare_transfer()?
2818 */
2819 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2820 bool more_trbs_coming,
2821 u32 field1, u32 field2, u32 field3, u32 field4)
2822 {
2823 struct xhci_generic_trb *trb;
2824
2825 trb = &ring->enqueue->generic;
2826 trb->field[0] = cpu_to_le32(field1);
2827 trb->field[1] = cpu_to_le32(field2);
2828 trb->field[2] = cpu_to_le32(field3);
2829 trb->field[3] = cpu_to_le32(field4);
2830
2831 trace_xhci_queue_trb(ring, trb);
2832
2833 inc_enq(xhci, ring, more_trbs_coming);
2834 }
2835
2836 /*
2837 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2838 * FIXME allocate segments if the ring is full.
2839 */
2840 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2841 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2842 {
2843 unsigned int num_trbs_needed;
2844
2845 /* Make sure the endpoint has been added to xHC schedule */
2846 switch (ep_state) {
2847 case EP_STATE_DISABLED:
2848 /*
2849 * USB core changed config/interfaces without notifying us,
2850 * or hardware is reporting the wrong state.
2851 */
2852 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2853 return -ENOENT;
2854 case EP_STATE_ERROR:
2855 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2856 /* FIXME event handling code for error needs to clear it */
2857 /* XXX not sure if this should be -ENOENT or not */
2858 return -EINVAL;
2859 case EP_STATE_HALTED:
2860 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2861 case EP_STATE_STOPPED:
2862 case EP_STATE_RUNNING:
2863 break;
2864 default:
2865 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2866 /*
2867 * FIXME issue Configure Endpoint command to try to get the HC
2868 * back into a known state.
2869 */
2870 return -EINVAL;
2871 }
2872
2873 while (1) {
2874 if (room_on_ring(xhci, ep_ring, num_trbs))
2875 break;
2876
2877 if (ep_ring == xhci->cmd_ring) {
2878 xhci_err(xhci, "Do not support expand command ring\n");
2879 return -ENOMEM;
2880 }
2881
2882 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2883 "ERROR no room on ep ring, try ring expansion");
2884 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2885 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2886 mem_flags)) {
2887 xhci_err(xhci, "Ring expansion failed\n");
2888 return -ENOMEM;
2889 }
2890 }
2891
2892 while (trb_is_link(ep_ring->enqueue)) {
2893 /* If we're not dealing with 0.95 hardware or isoc rings
2894 * on AMD 0.96 host, clear the chain bit.
2895 */
2896 if (!xhci_link_trb_quirk(xhci) &&
2897 !(ep_ring->type == TYPE_ISOC &&
2898 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2899 ep_ring->enqueue->link.control &=
2900 cpu_to_le32(~TRB_CHAIN);
2901 else
2902 ep_ring->enqueue->link.control |=
2903 cpu_to_le32(TRB_CHAIN);
2904
2905 wmb();
2906 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2907
2908 /* Toggle the cycle bit after the last ring segment. */
2909 if (link_trb_toggles_cycle(ep_ring->enqueue))
2910 ep_ring->cycle_state ^= 1;
2911
2912 ep_ring->enq_seg = ep_ring->enq_seg->next;
2913 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2914 }
2915 return 0;
2916 }
2917
2918 static int prepare_transfer(struct xhci_hcd *xhci,
2919 struct xhci_virt_device *xdev,
2920 unsigned int ep_index,
2921 unsigned int stream_id,
2922 unsigned int num_trbs,
2923 struct urb *urb,
2924 unsigned int td_index,
2925 gfp_t mem_flags)
2926 {
2927 int ret;
2928 struct urb_priv *urb_priv;
2929 struct xhci_td *td;
2930 struct xhci_ring *ep_ring;
2931 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2932
2933 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2934 if (!ep_ring) {
2935 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2936 stream_id);
2937 return -EINVAL;
2938 }
2939
2940 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2941 num_trbs, mem_flags);
2942 if (ret)
2943 return ret;
2944
2945 urb_priv = urb->hcpriv;
2946 td = &urb_priv->td[td_index];
2947
2948 INIT_LIST_HEAD(&td->td_list);
2949 INIT_LIST_HEAD(&td->cancelled_td_list);
2950
2951 if (td_index == 0) {
2952 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2953 if (unlikely(ret))
2954 return ret;
2955 }
2956
2957 td->urb = urb;
2958 /* Add this TD to the tail of the endpoint ring's TD list */
2959 list_add_tail(&td->td_list, &ep_ring->td_list);
2960 td->start_seg = ep_ring->enq_seg;
2961 td->first_trb = ep_ring->enqueue;
2962
2963 return 0;
2964 }
2965
2966 static unsigned int count_trbs(u64 addr, u64 len)
2967 {
2968 unsigned int num_trbs;
2969
2970 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2971 TRB_MAX_BUFF_SIZE);
2972 if (num_trbs == 0)
2973 num_trbs++;
2974
2975 return num_trbs;
2976 }
2977
2978 static inline unsigned int count_trbs_needed(struct urb *urb)
2979 {
2980 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2981 }
2982
2983 static unsigned int count_sg_trbs_needed(struct urb *urb)
2984 {
2985 struct scatterlist *sg;
2986 unsigned int i, len, full_len, num_trbs = 0;
2987
2988 full_len = urb->transfer_buffer_length;
2989
2990 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2991 len = sg_dma_len(sg);
2992 num_trbs += count_trbs(sg_dma_address(sg), len);
2993 len = min_t(unsigned int, len, full_len);
2994 full_len -= len;
2995 if (full_len == 0)
2996 break;
2997 }
2998
2999 return num_trbs;
3000 }
3001
3002 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3003 {
3004 u64 addr, len;
3005
3006 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3007 len = urb->iso_frame_desc[i].length;
3008
3009 return count_trbs(addr, len);
3010 }
3011
3012 static void check_trb_math(struct urb *urb, int running_total)
3013 {
3014 if (unlikely(running_total != urb->transfer_buffer_length))
3015 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3016 "queued %#x (%d), asked for %#x (%d)\n",
3017 __func__,
3018 urb->ep->desc.bEndpointAddress,
3019 running_total, running_total,
3020 urb->transfer_buffer_length,
3021 urb->transfer_buffer_length);
3022 }
3023
3024 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3025 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3026 struct xhci_generic_trb *start_trb)
3027 {
3028 /*
3029 * Pass all the TRBs to the hardware at once and make sure this write
3030 * isn't reordered.
3031 */
3032 wmb();
3033 if (start_cycle)
3034 start_trb->field[3] |= cpu_to_le32(start_cycle);
3035 else
3036 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3037 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3038 }
3039
3040 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3041 struct xhci_ep_ctx *ep_ctx)
3042 {
3043 int xhci_interval;
3044 int ep_interval;
3045
3046 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3047 ep_interval = urb->interval;
3048
3049 /* Convert to microframes */
3050 if (urb->dev->speed == USB_SPEED_LOW ||
3051 urb->dev->speed == USB_SPEED_FULL)
3052 ep_interval *= 8;
3053
3054 /* FIXME change this to a warning and a suggestion to use the new API
3055 * to set the polling interval (once the API is added).
3056 */
3057 if (xhci_interval != ep_interval) {
3058 dev_dbg_ratelimited(&urb->dev->dev,
3059 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3060 ep_interval, ep_interval == 1 ? "" : "s",
3061 xhci_interval, xhci_interval == 1 ? "" : "s");
3062 urb->interval = xhci_interval;
3063 /* Convert back to frames for LS/FS devices */
3064 if (urb->dev->speed == USB_SPEED_LOW ||
3065 urb->dev->speed == USB_SPEED_FULL)
3066 urb->interval /= 8;
3067 }
3068 }
3069
3070 /*
3071 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3072 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3073 * (comprised of sg list entries) can take several service intervals to
3074 * transmit.
3075 */
3076 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3077 struct urb *urb, int slot_id, unsigned int ep_index)
3078 {
3079 struct xhci_ep_ctx *ep_ctx;
3080
3081 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3082 check_interval(xhci, urb, ep_ctx);
3083
3084 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3085 }
3086
3087 /*
3088 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3089 * packets remaining in the TD (*not* including this TRB).
3090 *
3091 * Total TD packet count = total_packet_count =
3092 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3093 *
3094 * Packets transferred up to and including this TRB = packets_transferred =
3095 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3096 *
3097 * TD size = total_packet_count - packets_transferred
3098 *
3099 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3100 * including this TRB, right shifted by 10
3101 *
3102 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3103 * This is taken care of in the TRB_TD_SIZE() macro
3104 *
3105 * The last TRB in a TD must have the TD size set to zero.
3106 */
3107 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3108 int trb_buff_len, unsigned int td_total_len,
3109 struct urb *urb, bool more_trbs_coming)
3110 {
3111 u32 maxp, total_packet_count;
3112
3113 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3114 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3115 return ((td_total_len - transferred) >> 10);
3116
3117 /* One TRB with a zero-length data packet. */
3118 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3119 trb_buff_len == td_total_len)
3120 return 0;
3121
3122 /* for MTK xHCI, TD size doesn't include this TRB */
3123 if (xhci->quirks & XHCI_MTK_HOST)
3124 trb_buff_len = 0;
3125
3126 maxp = usb_endpoint_maxp(&urb->ep->desc);
3127 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3128
3129 /* Queueing functions don't count the current TRB into transferred */
3130 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3131 }
3132
3133
3134 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3135 u32 *trb_buff_len, struct xhci_segment *seg)
3136 {
3137 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3138 unsigned int unalign;
3139 unsigned int max_pkt;
3140 u32 new_buff_len;
3141
3142 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3143 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3144
3145 /* we got lucky, last normal TRB data on segment is packet aligned */
3146 if (unalign == 0)
3147 return 0;
3148
3149 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3150 unalign, *trb_buff_len);
3151
3152 /* is the last nornal TRB alignable by splitting it */
3153 if (*trb_buff_len > unalign) {
3154 *trb_buff_len -= unalign;
3155 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3156 return 0;
3157 }
3158
3159 /*
3160 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3161 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3162 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3163 */
3164 new_buff_len = max_pkt - (enqd_len % max_pkt);
3165
3166 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3167 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3168
3169 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3170 if (usb_urb_dir_out(urb)) {
3171 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3172 seg->bounce_buf, new_buff_len, enqd_len);
3173 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3174 max_pkt, DMA_TO_DEVICE);
3175 } else {
3176 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3177 max_pkt, DMA_FROM_DEVICE);
3178 }
3179
3180 if (dma_mapping_error(dev, seg->bounce_dma)) {
3181 /* try without aligning. Some host controllers survive */
3182 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3183 return 0;
3184 }
3185 *trb_buff_len = new_buff_len;
3186 seg->bounce_len = new_buff_len;
3187 seg->bounce_offs = enqd_len;
3188
3189 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3190
3191 return 1;
3192 }
3193
3194 /* This is very similar to what ehci-q.c qtd_fill() does */
3195 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3196 struct urb *urb, int slot_id, unsigned int ep_index)
3197 {
3198 struct xhci_ring *ring;
3199 struct urb_priv *urb_priv;
3200 struct xhci_td *td;
3201 struct xhci_generic_trb *start_trb;
3202 struct scatterlist *sg = NULL;
3203 bool more_trbs_coming = true;
3204 bool need_zero_pkt = false;
3205 bool first_trb = true;
3206 unsigned int num_trbs;
3207 unsigned int start_cycle, num_sgs = 0;
3208 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3209 int sent_len, ret;
3210 u32 field, length_field, remainder;
3211 u64 addr, send_addr;
3212
3213 ring = xhci_urb_to_transfer_ring(xhci, urb);
3214 if (!ring)
3215 return -EINVAL;
3216
3217 full_len = urb->transfer_buffer_length;
3218 /* If we have scatter/gather list, we use it. */
3219 if (urb->num_sgs) {
3220 num_sgs = urb->num_mapped_sgs;
3221 sg = urb->sg;
3222 addr = (u64) sg_dma_address(sg);
3223 block_len = sg_dma_len(sg);
3224 num_trbs = count_sg_trbs_needed(urb);
3225 } else {
3226 num_trbs = count_trbs_needed(urb);
3227 addr = (u64) urb->transfer_dma;
3228 block_len = full_len;
3229 }
3230 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3231 ep_index, urb->stream_id,
3232 num_trbs, urb, 0, mem_flags);
3233 if (unlikely(ret < 0))
3234 return ret;
3235
3236 urb_priv = urb->hcpriv;
3237
3238 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3239 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3240 need_zero_pkt = true;
3241
3242 td = &urb_priv->td[0];
3243
3244 /*
3245 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3246 * until we've finished creating all the other TRBs. The ring's cycle
3247 * state may change as we enqueue the other TRBs, so save it too.
3248 */
3249 start_trb = &ring->enqueue->generic;
3250 start_cycle = ring->cycle_state;
3251 send_addr = addr;
3252
3253 /* Queue the TRBs, even if they are zero-length */
3254 for (enqd_len = 0; first_trb || enqd_len < full_len;
3255 enqd_len += trb_buff_len) {
3256 field = TRB_TYPE(TRB_NORMAL);
3257
3258 /* TRB buffer should not cross 64KB boundaries */
3259 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3260 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3261
3262 if (enqd_len + trb_buff_len > full_len)
3263 trb_buff_len = full_len - enqd_len;
3264
3265 /* Don't change the cycle bit of the first TRB until later */
3266 if (first_trb) {
3267 first_trb = false;
3268 if (start_cycle == 0)
3269 field |= TRB_CYCLE;
3270 } else
3271 field |= ring->cycle_state;
3272
3273 /* Chain all the TRBs together; clear the chain bit in the last
3274 * TRB to indicate it's the last TRB in the chain.
3275 */
3276 if (enqd_len + trb_buff_len < full_len) {
3277 field |= TRB_CHAIN;
3278 if (trb_is_link(ring->enqueue + 1)) {
3279 if (xhci_align_td(xhci, urb, enqd_len,
3280 &trb_buff_len,
3281 ring->enq_seg)) {
3282 send_addr = ring->enq_seg->bounce_dma;
3283 /* assuming TD won't span 2 segs */
3284 td->bounce_seg = ring->enq_seg;
3285 }
3286 }
3287 }
3288 if (enqd_len + trb_buff_len >= full_len) {
3289 field &= ~TRB_CHAIN;
3290 field |= TRB_IOC;
3291 more_trbs_coming = false;
3292 td->last_trb = ring->enqueue;
3293 }
3294
3295 /* Only set interrupt on short packet for IN endpoints */
3296 if (usb_urb_dir_in(urb))
3297 field |= TRB_ISP;
3298
3299 /* Set the TRB length, TD size, and interrupter fields. */
3300 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3301 full_len, urb, more_trbs_coming);
3302
3303 length_field = TRB_LEN(trb_buff_len) |
3304 TRB_TD_SIZE(remainder) |
3305 TRB_INTR_TARGET(0);
3306
3307 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3308 lower_32_bits(send_addr),
3309 upper_32_bits(send_addr),
3310 length_field,
3311 field);
3312
3313 addr += trb_buff_len;
3314 sent_len = trb_buff_len;
3315
3316 while (sg && sent_len >= block_len) {
3317 /* New sg entry */
3318 --num_sgs;
3319 sent_len -= block_len;
3320 if (num_sgs != 0) {
3321 sg = sg_next(sg);
3322 block_len = sg_dma_len(sg);
3323 addr = (u64) sg_dma_address(sg);
3324 addr += sent_len;
3325 }
3326 }
3327 block_len -= sent_len;
3328 send_addr = addr;
3329 }
3330
3331 if (need_zero_pkt) {
3332 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3333 ep_index, urb->stream_id,
3334 1, urb, 1, mem_flags);
3335 urb_priv->td[1].last_trb = ring->enqueue;
3336 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3337 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3338 }
3339
3340 check_trb_math(urb, enqd_len);
3341 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3342 start_cycle, start_trb);
3343 return 0;
3344 }
3345
3346 /* Caller must have locked xhci->lock */
3347 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3348 struct urb *urb, int slot_id, unsigned int ep_index)
3349 {
3350 struct xhci_ring *ep_ring;
3351 int num_trbs;
3352 int ret;
3353 struct usb_ctrlrequest *setup;
3354 struct xhci_generic_trb *start_trb;
3355 int start_cycle;
3356 u32 field;
3357 struct urb_priv *urb_priv;
3358 struct xhci_td *td;
3359
3360 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3361 if (!ep_ring)
3362 return -EINVAL;
3363
3364 /*
3365 * Need to copy setup packet into setup TRB, so we can't use the setup
3366 * DMA address.
3367 */
3368 if (!urb->setup_packet)
3369 return -EINVAL;
3370
3371 /* 1 TRB for setup, 1 for status */
3372 num_trbs = 2;
3373 /*
3374 * Don't need to check if we need additional event data and normal TRBs,
3375 * since data in control transfers will never get bigger than 16MB
3376 * XXX: can we get a buffer that crosses 64KB boundaries?
3377 */
3378 if (urb->transfer_buffer_length > 0)
3379 num_trbs++;
3380 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3381 ep_index, urb->stream_id,
3382 num_trbs, urb, 0, mem_flags);
3383 if (ret < 0)
3384 return ret;
3385
3386 urb_priv = urb->hcpriv;
3387 td = &urb_priv->td[0];
3388
3389 /*
3390 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3391 * until we've finished creating all the other TRBs. The ring's cycle
3392 * state may change as we enqueue the other TRBs, so save it too.
3393 */
3394 start_trb = &ep_ring->enqueue->generic;
3395 start_cycle = ep_ring->cycle_state;
3396
3397 /* Queue setup TRB - see section 6.4.1.2.1 */
3398 /* FIXME better way to translate setup_packet into two u32 fields? */
3399 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3400 field = 0;
3401 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3402 if (start_cycle == 0)
3403 field |= 0x1;
3404
3405 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3406 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3407 if (urb->transfer_buffer_length > 0) {
3408 if (setup->bRequestType & USB_DIR_IN)
3409 field |= TRB_TX_TYPE(TRB_DATA_IN);
3410 else
3411 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3412 }
3413 }
3414
3415 queue_trb(xhci, ep_ring, true,
3416 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3417 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3418 TRB_LEN(8) | TRB_INTR_TARGET(0),
3419 /* Immediate data in pointer */
3420 field);
3421
3422 /* If there's data, queue data TRBs */
3423 /* Only set interrupt on short packet for IN endpoints */
3424 if (usb_urb_dir_in(urb))
3425 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3426 else
3427 field = TRB_TYPE(TRB_DATA);
3428
3429 if (urb->transfer_buffer_length > 0) {
3430 u32 length_field, remainder;
3431
3432 remainder = xhci_td_remainder(xhci, 0,
3433 urb->transfer_buffer_length,
3434 urb->transfer_buffer_length,
3435 urb, 1);
3436 length_field = TRB_LEN(urb->transfer_buffer_length) |
3437 TRB_TD_SIZE(remainder) |
3438 TRB_INTR_TARGET(0);
3439 if (setup->bRequestType & USB_DIR_IN)
3440 field |= TRB_DIR_IN;
3441 queue_trb(xhci, ep_ring, true,
3442 lower_32_bits(urb->transfer_dma),
3443 upper_32_bits(urb->transfer_dma),
3444 length_field,
3445 field | ep_ring->cycle_state);
3446 }
3447
3448 /* Save the DMA address of the last TRB in the TD */
3449 td->last_trb = ep_ring->enqueue;
3450
3451 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3452 /* If the device sent data, the status stage is an OUT transfer */
3453 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3454 field = 0;
3455 else
3456 field = TRB_DIR_IN;
3457 queue_trb(xhci, ep_ring, false,
3458 0,
3459 0,
3460 TRB_INTR_TARGET(0),
3461 /* Event on completion */
3462 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3463
3464 giveback_first_trb(xhci, slot_id, ep_index, 0,
3465 start_cycle, start_trb);
3466 return 0;
3467 }
3468
3469 /*
3470 * The transfer burst count field of the isochronous TRB defines the number of
3471 * bursts that are required to move all packets in this TD. Only SuperSpeed
3472 * devices can burst up to bMaxBurst number of packets per service interval.
3473 * This field is zero based, meaning a value of zero in the field means one
3474 * burst. Basically, for everything but SuperSpeed devices, this field will be
3475 * zero. Only xHCI 1.0 host controllers support this field.
3476 */
3477 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3478 struct urb *urb, unsigned int total_packet_count)
3479 {
3480 unsigned int max_burst;
3481
3482 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3483 return 0;
3484
3485 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3486 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3487 }
3488
3489 /*
3490 * Returns the number of packets in the last "burst" of packets. This field is
3491 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3492 * the last burst packet count is equal to the total number of packets in the
3493 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3494 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3495 * contain 1 to (bMaxBurst + 1) packets.
3496 */
3497 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3498 struct urb *urb, unsigned int total_packet_count)
3499 {
3500 unsigned int max_burst;
3501 unsigned int residue;
3502
3503 if (xhci->hci_version < 0x100)
3504 return 0;
3505
3506 if (urb->dev->speed >= USB_SPEED_SUPER) {
3507 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3508 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3509 residue = total_packet_count % (max_burst + 1);
3510 /* If residue is zero, the last burst contains (max_burst + 1)
3511 * number of packets, but the TLBPC field is zero-based.
3512 */
3513 if (residue == 0)
3514 return max_burst;
3515 return residue - 1;
3516 }
3517 if (total_packet_count == 0)
3518 return 0;
3519 return total_packet_count - 1;
3520 }
3521
3522 /*
3523 * Calculates Frame ID field of the isochronous TRB identifies the
3524 * target frame that the Interval associated with this Isochronous
3525 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3526 *
3527 * Returns actual frame id on success, negative value on error.
3528 */
3529 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3530 struct urb *urb, int index)
3531 {
3532 int start_frame, ist, ret = 0;
3533 int start_frame_id, end_frame_id, current_frame_id;
3534
3535 if (urb->dev->speed == USB_SPEED_LOW ||
3536 urb->dev->speed == USB_SPEED_FULL)
3537 start_frame = urb->start_frame + index * urb->interval;
3538 else
3539 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3540
3541 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3542 *
3543 * If bit [3] of IST is cleared to '0', software can add a TRB no
3544 * later than IST[2:0] Microframes before that TRB is scheduled to
3545 * be executed.
3546 * If bit [3] of IST is set to '1', software can add a TRB no later
3547 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3548 */
3549 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3550 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3551 ist <<= 3;
3552
3553 /* Software shall not schedule an Isoch TD with a Frame ID value that
3554 * is less than the Start Frame ID or greater than the End Frame ID,
3555 * where:
3556 *
3557 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3558 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3559 *
3560 * Both the End Frame ID and Start Frame ID values are calculated
3561 * in microframes. When software determines the valid Frame ID value;
3562 * The End Frame ID value should be rounded down to the nearest Frame
3563 * boundary, and the Start Frame ID value should be rounded up to the
3564 * nearest Frame boundary.
3565 */
3566 current_frame_id = readl(&xhci->run_regs->microframe_index);
3567 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3568 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3569
3570 start_frame &= 0x7ff;
3571 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3572 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3573
3574 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3575 __func__, index, readl(&xhci->run_regs->microframe_index),
3576 start_frame_id, end_frame_id, start_frame);
3577
3578 if (start_frame_id < end_frame_id) {
3579 if (start_frame > end_frame_id ||
3580 start_frame < start_frame_id)
3581 ret = -EINVAL;
3582 } else if (start_frame_id > end_frame_id) {
3583 if ((start_frame > end_frame_id &&
3584 start_frame < start_frame_id))
3585 ret = -EINVAL;
3586 } else {
3587 ret = -EINVAL;
3588 }
3589
3590 if (index == 0) {
3591 if (ret == -EINVAL || start_frame == start_frame_id) {
3592 start_frame = start_frame_id + 1;
3593 if (urb->dev->speed == USB_SPEED_LOW ||
3594 urb->dev->speed == USB_SPEED_FULL)
3595 urb->start_frame = start_frame;
3596 else
3597 urb->start_frame = start_frame << 3;
3598 ret = 0;
3599 }
3600 }
3601
3602 if (ret) {
3603 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3604 start_frame, current_frame_id, index,
3605 start_frame_id, end_frame_id);
3606 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3607 return ret;
3608 }
3609
3610 return start_frame;
3611 }
3612
3613 /* This is for isoc transfer */
3614 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3615 struct urb *urb, int slot_id, unsigned int ep_index)
3616 {
3617 struct xhci_ring *ep_ring;
3618 struct urb_priv *urb_priv;
3619 struct xhci_td *td;
3620 int num_tds, trbs_per_td;
3621 struct xhci_generic_trb *start_trb;
3622 bool first_trb;
3623 int start_cycle;
3624 u32 field, length_field;
3625 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3626 u64 start_addr, addr;
3627 int i, j;
3628 bool more_trbs_coming;
3629 struct xhci_virt_ep *xep;
3630 int frame_id;
3631
3632 xep = &xhci->devs[slot_id]->eps[ep_index];
3633 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3634
3635 num_tds = urb->number_of_packets;
3636 if (num_tds < 1) {
3637 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3638 return -EINVAL;
3639 }
3640 start_addr = (u64) urb->transfer_dma;
3641 start_trb = &ep_ring->enqueue->generic;
3642 start_cycle = ep_ring->cycle_state;
3643
3644 urb_priv = urb->hcpriv;
3645 /* Queue the TRBs for each TD, even if they are zero-length */
3646 for (i = 0; i < num_tds; i++) {
3647 unsigned int total_pkt_count, max_pkt;
3648 unsigned int burst_count, last_burst_pkt_count;
3649 u32 sia_frame_id;
3650
3651 first_trb = true;
3652 running_total = 0;
3653 addr = start_addr + urb->iso_frame_desc[i].offset;
3654 td_len = urb->iso_frame_desc[i].length;
3655 td_remain_len = td_len;
3656 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3657 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3658
3659 /* A zero-length transfer still involves at least one packet. */
3660 if (total_pkt_count == 0)
3661 total_pkt_count++;
3662 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3663 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3664 urb, total_pkt_count);
3665
3666 trbs_per_td = count_isoc_trbs_needed(urb, i);
3667
3668 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3669 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3670 if (ret < 0) {
3671 if (i == 0)
3672 return ret;
3673 goto cleanup;
3674 }
3675 td = &urb_priv->td[i];
3676
3677 /* use SIA as default, if frame id is used overwrite it */
3678 sia_frame_id = TRB_SIA;
3679 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3680 HCC_CFC(xhci->hcc_params)) {
3681 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3682 if (frame_id >= 0)
3683 sia_frame_id = TRB_FRAME_ID(frame_id);
3684 }
3685 /*
3686 * Set isoc specific data for the first TRB in a TD.
3687 * Prevent HW from getting the TRBs by keeping the cycle state
3688 * inverted in the first TDs isoc TRB.
3689 */
3690 field = TRB_TYPE(TRB_ISOC) |
3691 TRB_TLBPC(last_burst_pkt_count) |
3692 sia_frame_id |
3693 (i ? ep_ring->cycle_state : !start_cycle);
3694
3695 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3696 if (!xep->use_extended_tbc)
3697 field |= TRB_TBC(burst_count);
3698
3699 /* fill the rest of the TRB fields, and remaining normal TRBs */
3700 for (j = 0; j < trbs_per_td; j++) {
3701 u32 remainder = 0;
3702
3703 /* only first TRB is isoc, overwrite otherwise */
3704 if (!first_trb)
3705 field = TRB_TYPE(TRB_NORMAL) |
3706 ep_ring->cycle_state;
3707
3708 /* Only set interrupt on short packet for IN EPs */
3709 if (usb_urb_dir_in(urb))
3710 field |= TRB_ISP;
3711
3712 /* Set the chain bit for all except the last TRB */
3713 if (j < trbs_per_td - 1) {
3714 more_trbs_coming = true;
3715 field |= TRB_CHAIN;
3716 } else {
3717 more_trbs_coming = false;
3718 td->last_trb = ep_ring->enqueue;
3719 field |= TRB_IOC;
3720 /* set BEI, except for the last TD */
3721 if (xhci->hci_version >= 0x100 &&
3722 !(xhci->quirks & XHCI_AVOID_BEI) &&
3723 i < num_tds - 1)
3724 field |= TRB_BEI;
3725 }
3726 /* Calculate TRB length */
3727 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3728 if (trb_buff_len > td_remain_len)
3729 trb_buff_len = td_remain_len;
3730
3731 /* Set the TRB length, TD size, & interrupter fields. */
3732 remainder = xhci_td_remainder(xhci, running_total,
3733 trb_buff_len, td_len,
3734 urb, more_trbs_coming);
3735
3736 length_field = TRB_LEN(trb_buff_len) |
3737 TRB_INTR_TARGET(0);
3738
3739 /* xhci 1.1 with ETE uses TD Size field for TBC */
3740 if (first_trb && xep->use_extended_tbc)
3741 length_field |= TRB_TD_SIZE_TBC(burst_count);
3742 else
3743 length_field |= TRB_TD_SIZE(remainder);
3744 first_trb = false;
3745
3746 queue_trb(xhci, ep_ring, more_trbs_coming,
3747 lower_32_bits(addr),
3748 upper_32_bits(addr),
3749 length_field,
3750 field);
3751 running_total += trb_buff_len;
3752
3753 addr += trb_buff_len;
3754 td_remain_len -= trb_buff_len;
3755 }
3756
3757 /* Check TD length */
3758 if (running_total != td_len) {
3759 xhci_err(xhci, "ISOC TD length unmatch\n");
3760 ret = -EINVAL;
3761 goto cleanup;
3762 }
3763 }
3764
3765 /* store the next frame id */
3766 if (HCC_CFC(xhci->hcc_params))
3767 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3768
3769 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3770 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3771 usb_amd_quirk_pll_disable();
3772 }
3773 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3774
3775 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3776 start_cycle, start_trb);
3777 return 0;
3778 cleanup:
3779 /* Clean up a partially enqueued isoc transfer. */
3780
3781 for (i--; i >= 0; i--)
3782 list_del_init(&urb_priv->td[i].td_list);
3783
3784 /* Use the first TD as a temporary variable to turn the TDs we've queued
3785 * into No-ops with a software-owned cycle bit. That way the hardware
3786 * won't accidentally start executing bogus TDs when we partially
3787 * overwrite them. td->first_trb and td->start_seg are already set.
3788 */
3789 urb_priv->td[0].last_trb = ep_ring->enqueue;
3790 /* Every TRB except the first & last will have its cycle bit flipped. */
3791 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3792
3793 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3794 ep_ring->enqueue = urb_priv->td[0].first_trb;
3795 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3796 ep_ring->cycle_state = start_cycle;
3797 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3798 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3799 return ret;
3800 }
3801
3802 /*
3803 * Check transfer ring to guarantee there is enough room for the urb.
3804 * Update ISO URB start_frame and interval.
3805 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3806 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3807 * Contiguous Frame ID is not supported by HC.
3808 */
3809 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3810 struct urb *urb, int slot_id, unsigned int ep_index)
3811 {
3812 struct xhci_virt_device *xdev;
3813 struct xhci_ring *ep_ring;
3814 struct xhci_ep_ctx *ep_ctx;
3815 int start_frame;
3816 int num_tds, num_trbs, i;
3817 int ret;
3818 struct xhci_virt_ep *xep;
3819 int ist;
3820
3821 xdev = xhci->devs[slot_id];
3822 xep = &xhci->devs[slot_id]->eps[ep_index];
3823 ep_ring = xdev->eps[ep_index].ring;
3824 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3825
3826 num_trbs = 0;
3827 num_tds = urb->number_of_packets;
3828 for (i = 0; i < num_tds; i++)
3829 num_trbs += count_isoc_trbs_needed(urb, i);
3830
3831 /* Check the ring to guarantee there is enough room for the whole urb.
3832 * Do not insert any td of the urb to the ring if the check failed.
3833 */
3834 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3835 num_trbs, mem_flags);
3836 if (ret)
3837 return ret;
3838
3839 /*
3840 * Check interval value. This should be done before we start to
3841 * calculate the start frame value.
3842 */
3843 check_interval(xhci, urb, ep_ctx);
3844
3845 /* Calculate the start frame and put it in urb->start_frame. */
3846 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3847 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3848 urb->start_frame = xep->next_frame_id;
3849 goto skip_start_over;
3850 }
3851 }
3852
3853 start_frame = readl(&xhci->run_regs->microframe_index);
3854 start_frame &= 0x3fff;
3855 /*
3856 * Round up to the next frame and consider the time before trb really
3857 * gets scheduled by hardare.
3858 */
3859 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3860 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3861 ist <<= 3;
3862 start_frame += ist + XHCI_CFC_DELAY;
3863 start_frame = roundup(start_frame, 8);
3864
3865 /*
3866 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3867 * is greate than 8 microframes.
3868 */
3869 if (urb->dev->speed == USB_SPEED_LOW ||
3870 urb->dev->speed == USB_SPEED_FULL) {
3871 start_frame = roundup(start_frame, urb->interval << 3);
3872 urb->start_frame = start_frame >> 3;
3873 } else {
3874 start_frame = roundup(start_frame, urb->interval);
3875 urb->start_frame = start_frame;
3876 }
3877
3878 skip_start_over:
3879 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3880
3881 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3882 }
3883
3884 /**** Command Ring Operations ****/
3885
3886 /* Generic function for queueing a command TRB on the command ring.
3887 * Check to make sure there's room on the command ring for one command TRB.
3888 * Also check that there's room reserved for commands that must not fail.
3889 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3890 * then only check for the number of reserved spots.
3891 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3892 * because the command event handler may want to resubmit a failed command.
3893 */
3894 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3895 u32 field1, u32 field2,
3896 u32 field3, u32 field4, bool command_must_succeed)
3897 {
3898 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3899 int ret;
3900
3901 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3902 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3903 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3904 return -ESHUTDOWN;
3905 }
3906
3907 if (!command_must_succeed)
3908 reserved_trbs++;
3909
3910 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3911 reserved_trbs, GFP_ATOMIC);
3912 if (ret < 0) {
3913 xhci_err(xhci, "ERR: No room for command on command ring\n");
3914 if (command_must_succeed)
3915 xhci_err(xhci, "ERR: Reserved TRB counting for "
3916 "unfailable commands failed.\n");
3917 return ret;
3918 }
3919
3920 cmd->command_trb = xhci->cmd_ring->enqueue;
3921
3922 /* if there are no other commands queued we start the timeout timer */
3923 if (list_empty(&xhci->cmd_list)) {
3924 xhci->current_cmd = cmd;
3925 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3926 }
3927
3928 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3929
3930 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3931 field4 | xhci->cmd_ring->cycle_state);
3932 return 0;
3933 }
3934
3935 /* Queue a slot enable or disable request on the command ring */
3936 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3937 u32 trb_type, u32 slot_id)
3938 {
3939 return queue_command(xhci, cmd, 0, 0, 0,
3940 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3941 }
3942
3943 /* Queue an address device command TRB */
3944 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3945 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3946 {
3947 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3948 upper_32_bits(in_ctx_ptr), 0,
3949 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3950 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3951 }
3952
3953 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3954 u32 field1, u32 field2, u32 field3, u32 field4)
3955 {
3956 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3957 }
3958
3959 /* Queue a reset device command TRB */
3960 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3961 u32 slot_id)
3962 {
3963 return queue_command(xhci, cmd, 0, 0, 0,
3964 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3965 false);
3966 }
3967
3968 /* Queue a configure endpoint command TRB */
3969 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3970 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3971 u32 slot_id, bool command_must_succeed)
3972 {
3973 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3974 upper_32_bits(in_ctx_ptr), 0,
3975 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3976 command_must_succeed);
3977 }
3978
3979 /* Queue an evaluate context command TRB */
3980 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3981 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3982 {
3983 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3984 upper_32_bits(in_ctx_ptr), 0,
3985 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3986 command_must_succeed);
3987 }
3988
3989 /*
3990 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3991 * activity on an endpoint that is about to be suspended.
3992 */
3993 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3994 int slot_id, unsigned int ep_index, int suspend)
3995 {
3996 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3997 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3998 u32 type = TRB_TYPE(TRB_STOP_RING);
3999 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4000
4001 return queue_command(xhci, cmd, 0, 0, 0,
4002 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4003 }
4004
4005 /* Set Transfer Ring Dequeue Pointer command */
4006 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4007 unsigned int slot_id, unsigned int ep_index,
4008 struct xhci_dequeue_state *deq_state)
4009 {
4010 dma_addr_t addr;
4011 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4012 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4013 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4014 u32 trb_sct = 0;
4015 u32 type = TRB_TYPE(TRB_SET_DEQ);
4016 struct xhci_virt_ep *ep;
4017 struct xhci_command *cmd;
4018 int ret;
4019
4020 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4021 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4022 deq_state->new_deq_seg,
4023 (unsigned long long)deq_state->new_deq_seg->dma,
4024 deq_state->new_deq_ptr,
4025 (unsigned long long)xhci_trb_virt_to_dma(
4026 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4027 deq_state->new_cycle_state);
4028
4029 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4030 deq_state->new_deq_ptr);
4031 if (addr == 0) {
4032 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4033 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4034 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4035 return;
4036 }
4037 ep = &xhci->devs[slot_id]->eps[ep_index];
4038 if ((ep->ep_state & SET_DEQ_PENDING)) {
4039 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4040 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4041 return;
4042 }
4043
4044 /* This function gets called from contexts where it cannot sleep */
4045 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4046 if (!cmd)
4047 return;
4048
4049 ep->queued_deq_seg = deq_state->new_deq_seg;
4050 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4051 if (deq_state->stream_id)
4052 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4053 ret = queue_command(xhci, cmd,
4054 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4055 upper_32_bits(addr), trb_stream_id,
4056 trb_slot_id | trb_ep_index | type, false);
4057 if (ret < 0) {
4058 xhci_free_command(xhci, cmd);
4059 return;
4060 }
4061
4062 /* Stop the TD queueing code from ringing the doorbell until
4063 * this command completes. The HC won't set the dequeue pointer
4064 * if the ring is running, and ringing the doorbell starts the
4065 * ring running.
4066 */
4067 ep->ep_state |= SET_DEQ_PENDING;
4068 }
4069
4070 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4071 int slot_id, unsigned int ep_index,
4072 enum xhci_ep_reset_type reset_type)
4073 {
4074 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4075 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4076 u32 type = TRB_TYPE(TRB_RESET_EP);
4077
4078 if (reset_type == EP_SOFT_RESET)
4079 type |= TRB_TSP;
4080
4081 return queue_command(xhci, cmd, 0, 0, 0,
4082 trb_slot_id | trb_ep_index | type, false);
4083 }