]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/host/xhci-ring.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73
74 /*
75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76 * address of the TRB.
77 */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 union xhci_trb *trb)
80 {
81 unsigned long segment_offset;
82
83 if (!seg || !trb || trb < seg->trbs)
84 return 0;
85 /* offset in TRBs */
86 segment_offset = trb - seg->trbs;
87 if (segment_offset >= TRBS_PER_SEGMENT)
88 return 0;
89 return seg->dma + (segment_offset * sizeof(*trb));
90 }
91
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 struct urb_priv *urb_priv = td->urb->hcpriv;
121
122 return urb_priv->num_tds_done == urb_priv->num_tds;
123 }
124
125 static void inc_td_cnt(struct urb *urb)
126 {
127 struct urb_priv *urb_priv = urb->hcpriv;
128
129 urb_priv->num_tds_done++;
130 }
131
132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
133 {
134 if (trb_is_link(trb)) {
135 /* unchain chained link TRBs */
136 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
137 } else {
138 trb->generic.field[0] = 0;
139 trb->generic.field[1] = 0;
140 trb->generic.field[2] = 0;
141 /* Preserve only the cycle bit of this TRB */
142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
144 }
145 }
146
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148 * TRB is in a new segment. This does not skip over link TRBs, and it does not
149 * effect the ring dequeue or enqueue pointers.
150 */
151 static void next_trb(struct xhci_hcd *xhci,
152 struct xhci_ring *ring,
153 struct xhci_segment **seg,
154 union xhci_trb **trb)
155 {
156 if (trb_is_link(*trb)) {
157 *seg = (*seg)->next;
158 *trb = ((*seg)->trbs);
159 } else {
160 (*trb)++;
161 }
162 }
163
164 /*
165 * See Cycle bit rules. SW is the consumer for the event ring only.
166 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
167 */
168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
169 {
170 /* event ring doesn't have link trbs, check for last trb */
171 if (ring->type == TYPE_EVENT) {
172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
173 ring->dequeue++;
174 return;
175 }
176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
177 ring->cycle_state ^= 1;
178 ring->deq_seg = ring->deq_seg->next;
179 ring->dequeue = ring->deq_seg->trbs;
180 return;
181 }
182
183 /* All other rings have link trbs */
184 if (!trb_is_link(ring->dequeue)) {
185 ring->dequeue++;
186 ring->num_trbs_free++;
187 }
188 while (trb_is_link(ring->dequeue)) {
189 ring->deq_seg = ring->deq_seg->next;
190 ring->dequeue = ring->deq_seg->trbs;
191 }
192
193 trace_xhci_inc_deq(ring);
194
195 return;
196 }
197
198 /*
199 * See Cycle bit rules. SW is the consumer for the event ring only.
200 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
201 *
202 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
203 * chain bit is set), then set the chain bit in all the following link TRBs.
204 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
205 * have their chain bit cleared (so that each Link TRB is a separate TD).
206 *
207 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
208 * set, but other sections talk about dealing with the chain bit set. This was
209 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
210 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
211 *
212 * @more_trbs_coming: Will you enqueue more TRBs before calling
213 * prepare_transfer()?
214 */
215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
216 bool more_trbs_coming)
217 {
218 u32 chain;
219 union xhci_trb *next;
220
221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
222 /* If this is not event ring, there is one less usable TRB */
223 if (!trb_is_link(ring->enqueue))
224 ring->num_trbs_free--;
225 next = ++(ring->enqueue);
226
227 /* Update the dequeue pointer further if that was a link TRB */
228 while (trb_is_link(next)) {
229
230 /*
231 * If the caller doesn't plan on enqueueing more TDs before
232 * ringing the doorbell, then we don't want to give the link TRB
233 * to the hardware just yet. We'll give the link TRB back in
234 * prepare_ring() just before we enqueue the TD at the top of
235 * the ring.
236 */
237 if (!chain && !more_trbs_coming)
238 break;
239
240 /* If we're not dealing with 0.95 hardware or isoc rings on
241 * AMD 0.96 host, carry over the chain bit of the previous TRB
242 * (which may mean the chain bit is cleared).
243 */
244 if (!(ring->type == TYPE_ISOC &&
245 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
246 !xhci_link_trb_quirk(xhci)) {
247 next->link.control &= cpu_to_le32(~TRB_CHAIN);
248 next->link.control |= cpu_to_le32(chain);
249 }
250 /* Give this link TRB to the hardware */
251 wmb();
252 next->link.control ^= cpu_to_le32(TRB_CYCLE);
253
254 /* Toggle the cycle bit after the last ring segment. */
255 if (link_trb_toggles_cycle(next))
256 ring->cycle_state ^= 1;
257
258 ring->enq_seg = ring->enq_seg->next;
259 ring->enqueue = ring->enq_seg->trbs;
260 next = ring->enqueue;
261 }
262
263 trace_xhci_inc_enq(ring);
264 }
265
266 /*
267 * Check to see if there's room to enqueue num_trbs on the ring and make sure
268 * enqueue pointer will not advance into dequeue segment. See rules above.
269 */
270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
271 unsigned int num_trbs)
272 {
273 int num_trbs_in_deq_seg;
274
275 if (ring->num_trbs_free < num_trbs)
276 return 0;
277
278 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
279 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
280 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
281 return 0;
282 }
283
284 return 1;
285 }
286
287 /* Ring the host controller doorbell after placing a command on the ring */
288 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
289 {
290 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
291 return;
292
293 xhci_dbg(xhci, "// Ding dong!\n");
294 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
295 /* Flush PCI posted writes */
296 readl(&xhci->dba->doorbell[0]);
297 }
298
299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
300 {
301 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
302 }
303
304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
305 {
306 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
307 cmd_list);
308 }
309
310 /*
311 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
312 * If there are other commands waiting then restart the ring and kick the timer.
313 * This must be called with command ring stopped and xhci->lock held.
314 */
315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
316 struct xhci_command *cur_cmd)
317 {
318 struct xhci_command *i_cmd;
319
320 /* Turn all aborted commands in list to no-ops, then restart */
321 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
322
323 if (i_cmd->status != COMP_COMMAND_ABORTED)
324 continue;
325
326 i_cmd->status = COMP_COMMAND_RING_STOPPED;
327
328 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
329 i_cmd->command_trb);
330
331 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
332
333 /*
334 * caller waiting for completion is called when command
335 * completion event is received for these no-op commands
336 */
337 }
338
339 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
340
341 /* ring command ring doorbell to restart the command ring */
342 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
343 !(xhci->xhc_state & XHCI_STATE_DYING)) {
344 xhci->current_cmd = cur_cmd;
345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
346 xhci_ring_cmd_db(xhci);
347 }
348 }
349
350 /* Must be called with xhci->lock held, releases and aquires lock back */
351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
352 {
353 u64 temp_64;
354 int ret;
355
356 xhci_dbg(xhci, "Abort command ring\n");
357
358 reinit_completion(&xhci->cmd_ring_stop_completion);
359
360 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
361 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
362 &xhci->op_regs->cmd_ring);
363
364 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
365 * completion of the Command Abort operation. If CRR is not negated in 5
366 * seconds then driver handles it as if host died (-ENODEV).
367 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
368 * and try to recover a -ETIMEDOUT with a host controller reset.
369 */
370 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
371 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
372 if (ret < 0) {
373 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
374 xhci_halt(xhci);
375 xhci_hc_died(xhci);
376 return ret;
377 }
378 /*
379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
381 * but the completion event in never sent. Wait 2 secs (arbitrary
382 * number) to handle those cases after negation of CMD_RING_RUNNING.
383 */
384 spin_unlock_irqrestore(&xhci->lock, flags);
385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
386 msecs_to_jiffies(2000));
387 spin_lock_irqsave(&xhci->lock, flags);
388 if (!ret) {
389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
390 xhci_cleanup_command_queue(xhci);
391 } else {
392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
393 }
394 return 0;
395 }
396
397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
398 unsigned int slot_id,
399 unsigned int ep_index,
400 unsigned int stream_id)
401 {
402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
404 unsigned int ep_state = ep->ep_state;
405
406 /* Don't ring the doorbell for this endpoint if there are pending
407 * cancellations because we don't want to interrupt processing.
408 * We don't want to restart any stream rings if there's a set dequeue
409 * pointer command pending because the device can choose to start any
410 * stream once the endpoint is on the HW schedule.
411 */
412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
413 (ep_state & EP_HALTED))
414 return;
415 writel(DB_VALUE(ep_index, stream_id), db_addr);
416 /* The CPU has better things to do at this point than wait for a
417 * write-posting flush. It'll get there soon enough.
418 */
419 }
420
421 /* Ring the doorbell for any rings with pending URBs */
422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
423 unsigned int slot_id,
424 unsigned int ep_index)
425 {
426 unsigned int stream_id;
427 struct xhci_virt_ep *ep;
428
429 ep = &xhci->devs[slot_id]->eps[ep_index];
430
431 /* A ring has pending URBs if its TD list is not empty */
432 if (!(ep->ep_state & EP_HAS_STREAMS)) {
433 if (ep->ring && !(list_empty(&ep->ring->td_list)))
434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
435 return;
436 }
437
438 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
439 stream_id++) {
440 struct xhci_stream_info *stream_info = ep->stream_info;
441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
443 stream_id);
444 }
445 }
446
447 /* Get the right ring for the given slot_id, ep_index and stream_id.
448 * If the endpoint supports streams, boundary check the URB's stream ID.
449 * If the endpoint doesn't support streams, return the singular endpoint ring.
450 */
451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
452 unsigned int slot_id, unsigned int ep_index,
453 unsigned int stream_id)
454 {
455 struct xhci_virt_ep *ep;
456
457 ep = &xhci->devs[slot_id]->eps[ep_index];
458 /* Common case: no streams */
459 if (!(ep->ep_state & EP_HAS_STREAMS))
460 return ep->ring;
461
462 if (stream_id == 0) {
463 xhci_warn(xhci,
464 "WARN: Slot ID %u, ep index %u has streams, "
465 "but URB has no stream ID.\n",
466 slot_id, ep_index);
467 return NULL;
468 }
469
470 if (stream_id < ep->stream_info->num_streams)
471 return ep->stream_info->stream_rings[stream_id];
472
473 xhci_warn(xhci,
474 "WARN: Slot ID %u, ep index %u has "
475 "stream IDs 1 to %u allocated, "
476 "but stream ID %u is requested.\n",
477 slot_id, ep_index,
478 ep->stream_info->num_streams - 1,
479 stream_id);
480 return NULL;
481 }
482
483
484 /*
485 * Get the hw dequeue pointer xHC stopped on, either directly from the
486 * endpoint context, or if streams are in use from the stream context.
487 * The returned hw_dequeue contains the lowest four bits with cycle state
488 * and possbile stream context type.
489 */
490 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
491 unsigned int ep_index, unsigned int stream_id)
492 {
493 struct xhci_ep_ctx *ep_ctx;
494 struct xhci_stream_ctx *st_ctx;
495 struct xhci_virt_ep *ep;
496
497 ep = &vdev->eps[ep_index];
498
499 if (ep->ep_state & EP_HAS_STREAMS) {
500 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
501 return le64_to_cpu(st_ctx->stream_ring);
502 }
503 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
504 return le64_to_cpu(ep_ctx->deq);
505 }
506
507 /*
508 * Move the xHC's endpoint ring dequeue pointer past cur_td.
509 * Record the new state of the xHC's endpoint ring dequeue segment,
510 * dequeue pointer, stream id, and new consumer cycle state in state.
511 * Update our internal representation of the ring's dequeue pointer.
512 *
513 * We do this in three jumps:
514 * - First we update our new ring state to be the same as when the xHC stopped.
515 * - Then we traverse the ring to find the segment that contains
516 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
517 * any link TRBs with the toggle cycle bit set.
518 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
519 * if we've moved it past a link TRB with the toggle cycle bit set.
520 *
521 * Some of the uses of xhci_generic_trb are grotty, but if they're done
522 * with correct __le32 accesses they should work fine. Only users of this are
523 * in here.
524 */
525 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
526 unsigned int slot_id, unsigned int ep_index,
527 unsigned int stream_id, struct xhci_td *cur_td,
528 struct xhci_dequeue_state *state)
529 {
530 struct xhci_virt_device *dev = xhci->devs[slot_id];
531 struct xhci_virt_ep *ep = &dev->eps[ep_index];
532 struct xhci_ring *ep_ring;
533 struct xhci_segment *new_seg;
534 union xhci_trb *new_deq;
535 dma_addr_t addr;
536 u64 hw_dequeue;
537 bool cycle_found = false;
538 bool td_last_trb_found = false;
539
540 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
541 ep_index, stream_id);
542 if (!ep_ring) {
543 xhci_warn(xhci, "WARN can't find new dequeue state "
544 "for invalid stream ID %u.\n",
545 stream_id);
546 return;
547 }
548 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
550 "Finding endpoint context");
551
552 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
553 new_seg = ep_ring->deq_seg;
554 new_deq = ep_ring->dequeue;
555 state->new_cycle_state = hw_dequeue & 0x1;
556 state->stream_id = stream_id;
557
558 /*
559 * We want to find the pointer, segment and cycle state of the new trb
560 * (the one after current TD's last_trb). We know the cycle state at
561 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
562 * found.
563 */
564 do {
565 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
566 == (dma_addr_t)(hw_dequeue & ~0xf)) {
567 cycle_found = true;
568 if (td_last_trb_found)
569 break;
570 }
571 if (new_deq == cur_td->last_trb)
572 td_last_trb_found = true;
573
574 if (cycle_found && trb_is_link(new_deq) &&
575 link_trb_toggles_cycle(new_deq))
576 state->new_cycle_state ^= 0x1;
577
578 next_trb(xhci, ep_ring, &new_seg, &new_deq);
579
580 /* Search wrapped around, bail out */
581 if (new_deq == ep->ring->dequeue) {
582 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
583 state->new_deq_seg = NULL;
584 state->new_deq_ptr = NULL;
585 return;
586 }
587
588 } while (!cycle_found || !td_last_trb_found);
589
590 state->new_deq_seg = new_seg;
591 state->new_deq_ptr = new_deq;
592
593 /* Don't update the ring cycle state for the producer (us). */
594 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
595 "Cycle state = 0x%x", state->new_cycle_state);
596
597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
598 "New dequeue segment = %p (virtual)",
599 state->new_deq_seg);
600 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
601 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
602 "New dequeue pointer = 0x%llx (DMA)",
603 (unsigned long long) addr);
604 }
605
606 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
607 * (The last TRB actually points to the ring enqueue pointer, which is not part
608 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
609 */
610 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
611 struct xhci_td *td, bool flip_cycle)
612 {
613 struct xhci_segment *seg = td->start_seg;
614 union xhci_trb *trb = td->first_trb;
615
616 while (1) {
617 trb_to_noop(trb, TRB_TR_NOOP);
618
619 /* flip cycle if asked to */
620 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
621 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
622
623 if (trb == td->last_trb)
624 break;
625
626 next_trb(xhci, ep_ring, &seg, &trb);
627 }
628 }
629
630 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
631 struct xhci_virt_ep *ep)
632 {
633 ep->ep_state &= ~EP_STOP_CMD_PENDING;
634 /* Can't del_timer_sync in interrupt */
635 del_timer(&ep->stop_cmd_timer);
636 }
637
638 /*
639 * Must be called with xhci->lock held in interrupt context,
640 * releases and re-acquires xhci->lock
641 */
642 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
643 struct xhci_td *cur_td, int status)
644 {
645 struct urb *urb = cur_td->urb;
646 struct urb_priv *urb_priv = urb->hcpriv;
647 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
648
649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
650 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
651 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
652 if (xhci->quirks & XHCI_AMD_PLL_FIX)
653 usb_amd_quirk_pll_enable();
654 }
655 }
656 xhci_urb_free_priv(urb_priv);
657 usb_hcd_unlink_urb_from_ep(hcd, urb);
658 spin_unlock(&xhci->lock);
659 trace_xhci_urb_giveback(urb);
660 usb_hcd_giveback_urb(hcd, urb, status);
661 spin_lock(&xhci->lock);
662 }
663
664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
665 struct xhci_ring *ring, struct xhci_td *td)
666 {
667 struct device *dev = xhci_to_hcd(xhci)->self.controller;
668 struct xhci_segment *seg = td->bounce_seg;
669 struct urb *urb = td->urb;
670
671 if (!ring || !seg || !urb)
672 return;
673
674 if (usb_urb_dir_out(urb)) {
675 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
676 DMA_TO_DEVICE);
677 return;
678 }
679
680 /* for in tranfers we need to copy the data from bounce to sg */
681 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
682 seg->bounce_len, seg->bounce_offs);
683 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
684 DMA_FROM_DEVICE);
685 seg->bounce_len = 0;
686 seg->bounce_offs = 0;
687 }
688
689 /*
690 * When we get a command completion for a Stop Endpoint Command, we need to
691 * unlink any cancelled TDs from the ring. There are two ways to do that:
692 *
693 * 1. If the HW was in the middle of processing the TD that needs to be
694 * cancelled, then we must move the ring's dequeue pointer past the last TRB
695 * in the TD with a Set Dequeue Pointer Command.
696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
697 * bit cleared) so that the HW will skip over them.
698 */
699 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
700 union xhci_trb *trb, struct xhci_event_cmd *event)
701 {
702 unsigned int ep_index;
703 struct xhci_ring *ep_ring;
704 struct xhci_virt_ep *ep;
705 struct xhci_td *cur_td = NULL;
706 struct xhci_td *last_unlinked_td;
707 struct xhci_ep_ctx *ep_ctx;
708 struct xhci_virt_device *vdev;
709 u64 hw_deq;
710 struct xhci_dequeue_state deq_state;
711
712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
713 if (!xhci->devs[slot_id])
714 xhci_warn(xhci, "Stop endpoint command "
715 "completion for disabled slot %u\n",
716 slot_id);
717 return;
718 }
719
720 memset(&deq_state, 0, sizeof(deq_state));
721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
722
723 vdev = xhci->devs[slot_id];
724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
725 trace_xhci_handle_cmd_stop_ep(ep_ctx);
726
727 ep = &xhci->devs[slot_id]->eps[ep_index];
728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
729 struct xhci_td, cancelled_td_list);
730
731 if (list_empty(&ep->cancelled_td_list)) {
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
734 return;
735 }
736
737 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
738 * We have the xHCI lock, so nothing can modify this list until we drop
739 * it. We're also in the event handler, so we can't get re-interrupted
740 * if another Stop Endpoint command completes
741 */
742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
744 "Removing canceled TD starting at 0x%llx (dma).",
745 (unsigned long long)xhci_trb_virt_to_dma(
746 cur_td->start_seg, cur_td->first_trb));
747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
748 if (!ep_ring) {
749 /* This shouldn't happen unless a driver is mucking
750 * with the stream ID after submission. This will
751 * leave the TD on the hardware ring, and the hardware
752 * will try to execute it, and may access a buffer
753 * that has already been freed. In the best case, the
754 * hardware will execute it, and the event handler will
755 * ignore the completion event for that TD, since it was
756 * removed from the td_list for that endpoint. In
757 * short, don't muck with the stream ID after
758 * submission.
759 */
760 xhci_warn(xhci, "WARN Cancelled URB %p "
761 "has invalid stream ID %u.\n",
762 cur_td->urb,
763 cur_td->urb->stream_id);
764 goto remove_finished_td;
765 }
766 /*
767 * If we stopped on the TD we need to cancel, then we have to
768 * move the xHC endpoint ring dequeue pointer past this TD.
769 */
770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
771 cur_td->urb->stream_id);
772 hw_deq &= ~0xf;
773
774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
775 cur_td->last_trb, hw_deq, false)) {
776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
777 cur_td->urb->stream_id,
778 cur_td, &deq_state);
779 } else {
780 td_to_noop(xhci, ep_ring, cur_td, false);
781 }
782
783 remove_finished_td:
784 /*
785 * The event handler won't see a completion for this TD anymore,
786 * so remove it from the endpoint ring's TD list. Keep it in
787 * the cancelled TD list for URB completion later.
788 */
789 list_del_init(&cur_td->td_list);
790 }
791
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793
794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
797 &deq_state);
798 xhci_ring_cmd_db(xhci);
799 } else {
800 /* Otherwise ring the doorbell(s) to restart queued transfers */
801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
802 }
803
804 /*
805 * Drop the lock and complete the URBs in the cancelled TD list.
806 * New TDs to be cancelled might be added to the end of the list before
807 * we can complete all the URBs for the TDs we already unlinked.
808 * So stop when we've completed the URB for the last TD we unlinked.
809 */
810 do {
811 cur_td = list_first_entry(&ep->cancelled_td_list,
812 struct xhci_td, cancelled_td_list);
813 list_del_init(&cur_td->cancelled_td_list);
814
815 /* Clean up the cancelled URB */
816 /* Doesn't matter what we pass for status, since the core will
817 * just overwrite it (because the URB has been unlinked).
818 */
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
821 inc_td_cnt(cur_td->urb);
822 if (last_td_in_urb(cur_td))
823 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
824
825 /* Stop processing the cancelled list if the watchdog timer is
826 * running.
827 */
828 if (xhci->xhc_state & XHCI_STATE_DYING)
829 return;
830 } while (cur_td != last_unlinked_td);
831
832 /* Return to the event handler with xhci->lock re-acquired */
833 }
834
835 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
836 {
837 struct xhci_td *cur_td;
838 struct xhci_td *tmp;
839
840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
841 list_del_init(&cur_td->td_list);
842
843 if (!list_empty(&cur_td->cancelled_td_list))
844 list_del_init(&cur_td->cancelled_td_list);
845
846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
847
848 inc_td_cnt(cur_td->urb);
849 if (last_td_in_urb(cur_td))
850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
851 }
852 }
853
854 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
855 int slot_id, int ep_index)
856 {
857 struct xhci_td *cur_td;
858 struct xhci_td *tmp;
859 struct xhci_virt_ep *ep;
860 struct xhci_ring *ring;
861
862 ep = &xhci->devs[slot_id]->eps[ep_index];
863 if ((ep->ep_state & EP_HAS_STREAMS) ||
864 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
865 int stream_id;
866
867 for (stream_id = 0; stream_id < ep->stream_info->num_streams;
868 stream_id++) {
869 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
870 "Killing URBs for slot ID %u, ep index %u, stream %u",
871 slot_id, ep_index, stream_id + 1);
872 xhci_kill_ring_urbs(xhci,
873 ep->stream_info->stream_rings[stream_id]);
874 }
875 } else {
876 ring = ep->ring;
877 if (!ring)
878 return;
879 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
880 "Killing URBs for slot ID %u, ep index %u",
881 slot_id, ep_index);
882 xhci_kill_ring_urbs(xhci, ring);
883 }
884
885 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
886 cancelled_td_list) {
887 list_del_init(&cur_td->cancelled_td_list);
888 inc_td_cnt(cur_td->urb);
889
890 if (last_td_in_urb(cur_td))
891 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
892 }
893 }
894
895 /*
896 * host controller died, register read returns 0xffffffff
897 * Complete pending commands, mark them ABORTED.
898 * URBs need to be given back as usb core might be waiting with device locks
899 * held for the URBs to finish during device disconnect, blocking host remove.
900 *
901 * Call with xhci->lock held.
902 * lock is relased and re-acquired while giving back urb.
903 */
904 void xhci_hc_died(struct xhci_hcd *xhci)
905 {
906 int i, j;
907
908 if (xhci->xhc_state & XHCI_STATE_DYING)
909 return;
910
911 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
912 xhci->xhc_state |= XHCI_STATE_DYING;
913
914 xhci_cleanup_command_queue(xhci);
915
916 /* return any pending urbs, remove may be waiting for them */
917 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
918 if (!xhci->devs[i])
919 continue;
920 for (j = 0; j < 31; j++)
921 xhci_kill_endpoint_urbs(xhci, i, j);
922 }
923
924 /* inform usb core hc died if PCI remove isn't already handling it */
925 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
926 usb_hc_died(xhci_to_hcd(xhci));
927 }
928
929 /* Watchdog timer function for when a stop endpoint command fails to complete.
930 * In this case, we assume the host controller is broken or dying or dead. The
931 * host may still be completing some other events, so we have to be careful to
932 * let the event ring handler and the URB dequeueing/enqueueing functions know
933 * through xhci->state.
934 *
935 * The timer may also fire if the host takes a very long time to respond to the
936 * command, and the stop endpoint command completion handler cannot delete the
937 * timer before the timer function is called. Another endpoint cancellation may
938 * sneak in before the timer function can grab the lock, and that may queue
939 * another stop endpoint command and add the timer back. So we cannot use a
940 * simple flag to say whether there is a pending stop endpoint command for a
941 * particular endpoint.
942 *
943 * Instead we use a combination of that flag and checking if a new timer is
944 * pending.
945 */
946 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
947 {
948 struct xhci_hcd *xhci;
949 struct xhci_virt_ep *ep;
950 unsigned long flags;
951
952 ep = (struct xhci_virt_ep *) arg;
953 xhci = ep->xhci;
954
955 spin_lock_irqsave(&xhci->lock, flags);
956
957 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
958 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
959 timer_pending(&ep->stop_cmd_timer)) {
960 spin_unlock_irqrestore(&xhci->lock, flags);
961 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
962 return;
963 }
964
965 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
966 ep->ep_state &= ~EP_STOP_CMD_PENDING;
967
968 xhci_halt(xhci);
969
970 /*
971 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
972 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
973 * and try to recover a -ETIMEDOUT with a host controller reset
974 */
975 xhci_hc_died(xhci);
976
977 spin_unlock_irqrestore(&xhci->lock, flags);
978 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
979 "xHCI host controller is dead.");
980 }
981
982 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
983 struct xhci_virt_device *dev,
984 struct xhci_ring *ep_ring,
985 unsigned int ep_index)
986 {
987 union xhci_trb *dequeue_temp;
988 int num_trbs_free_temp;
989 bool revert = false;
990
991 num_trbs_free_temp = ep_ring->num_trbs_free;
992 dequeue_temp = ep_ring->dequeue;
993
994 /* If we get two back-to-back stalls, and the first stalled transfer
995 * ends just before a link TRB, the dequeue pointer will be left on
996 * the link TRB by the code in the while loop. So we have to update
997 * the dequeue pointer one segment further, or we'll jump off
998 * the segment into la-la-land.
999 */
1000 if (trb_is_link(ep_ring->dequeue)) {
1001 ep_ring->deq_seg = ep_ring->deq_seg->next;
1002 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1003 }
1004
1005 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1006 /* We have more usable TRBs */
1007 ep_ring->num_trbs_free++;
1008 ep_ring->dequeue++;
1009 if (trb_is_link(ep_ring->dequeue)) {
1010 if (ep_ring->dequeue ==
1011 dev->eps[ep_index].queued_deq_ptr)
1012 break;
1013 ep_ring->deq_seg = ep_ring->deq_seg->next;
1014 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1015 }
1016 if (ep_ring->dequeue == dequeue_temp) {
1017 revert = true;
1018 break;
1019 }
1020 }
1021
1022 if (revert) {
1023 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1024 ep_ring->num_trbs_free = num_trbs_free_temp;
1025 }
1026 }
1027
1028 /*
1029 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1030 * we need to clear the set deq pending flag in the endpoint ring state, so that
1031 * the TD queueing code can ring the doorbell again. We also need to ring the
1032 * endpoint doorbell to restart the ring, but only if there aren't more
1033 * cancellations pending.
1034 */
1035 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1036 union xhci_trb *trb, u32 cmd_comp_code)
1037 {
1038 unsigned int ep_index;
1039 unsigned int stream_id;
1040 struct xhci_ring *ep_ring;
1041 struct xhci_virt_device *dev;
1042 struct xhci_virt_ep *ep;
1043 struct xhci_ep_ctx *ep_ctx;
1044 struct xhci_slot_ctx *slot_ctx;
1045
1046 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1047 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1048 dev = xhci->devs[slot_id];
1049 ep = &dev->eps[ep_index];
1050
1051 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1052 if (!ep_ring) {
1053 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1054 stream_id);
1055 /* XXX: Harmless??? */
1056 goto cleanup;
1057 }
1058
1059 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1060 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1061 trace_xhci_handle_cmd_set_deq(slot_ctx);
1062 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1063
1064 if (cmd_comp_code != COMP_SUCCESS) {
1065 unsigned int ep_state;
1066 unsigned int slot_state;
1067
1068 switch (cmd_comp_code) {
1069 case COMP_TRB_ERROR:
1070 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1071 break;
1072 case COMP_CONTEXT_STATE_ERROR:
1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1074 ep_state = GET_EP_CTX_STATE(ep_ctx);
1075 slot_state = le32_to_cpu(slot_ctx->dev_state);
1076 slot_state = GET_SLOT_STATE(slot_state);
1077 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1078 "Slot state = %u, EP state = %u",
1079 slot_state, ep_state);
1080 break;
1081 case COMP_SLOT_NOT_ENABLED_ERROR:
1082 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1083 slot_id);
1084 break;
1085 default:
1086 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1087 cmd_comp_code);
1088 break;
1089 }
1090 /* OK what do we do now? The endpoint state is hosed, and we
1091 * should never get to this point if the synchronization between
1092 * queueing, and endpoint state are correct. This might happen
1093 * if the device gets disconnected after we've finished
1094 * cancelling URBs, which might not be an error...
1095 */
1096 } else {
1097 u64 deq;
1098 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1099 if (ep->ep_state & EP_HAS_STREAMS) {
1100 struct xhci_stream_ctx *ctx =
1101 &ep->stream_info->stream_ctx_array[stream_id];
1102 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1103 } else {
1104 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1105 }
1106 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1107 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1108 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1109 ep->queued_deq_ptr) == deq) {
1110 /* Update the ring's dequeue segment and dequeue pointer
1111 * to reflect the new position.
1112 */
1113 update_ring_for_set_deq_completion(xhci, dev,
1114 ep_ring, ep_index);
1115 } else {
1116 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1117 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1118 ep->queued_deq_seg, ep->queued_deq_ptr);
1119 }
1120 }
1121
1122 cleanup:
1123 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1124 dev->eps[ep_index].queued_deq_seg = NULL;
1125 dev->eps[ep_index].queued_deq_ptr = NULL;
1126 /* Restart any rings with pending URBs */
1127 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1128 }
1129
1130 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1131 union xhci_trb *trb, u32 cmd_comp_code)
1132 {
1133 struct xhci_virt_device *vdev;
1134 struct xhci_ep_ctx *ep_ctx;
1135 unsigned int ep_index;
1136
1137 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1138 vdev = xhci->devs[slot_id];
1139 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1140 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1141
1142 /* This command will only fail if the endpoint wasn't halted,
1143 * but we don't care.
1144 */
1145 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1146 "Ignoring reset ep completion code of %u", cmd_comp_code);
1147
1148 /* HW with the reset endpoint quirk needs to have a configure endpoint
1149 * command complete before the endpoint can be used. Queue that here
1150 * because the HW can't handle two commands being queued in a row.
1151 */
1152 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1153 struct xhci_command *command;
1154
1155 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1156 if (!command)
1157 return;
1158
1159 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1160 "Queueing configure endpoint command");
1161 xhci_queue_configure_endpoint(xhci, command,
1162 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1163 false);
1164 xhci_ring_cmd_db(xhci);
1165 } else {
1166 /* Clear our internal halted state */
1167 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1168 }
1169 }
1170
1171 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1172 struct xhci_command *command, u32 cmd_comp_code)
1173 {
1174 if (cmd_comp_code == COMP_SUCCESS)
1175 command->slot_id = slot_id;
1176 else
1177 command->slot_id = 0;
1178 }
1179
1180 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1181 {
1182 struct xhci_virt_device *virt_dev;
1183 struct xhci_slot_ctx *slot_ctx;
1184
1185 virt_dev = xhci->devs[slot_id];
1186 if (!virt_dev)
1187 return;
1188
1189 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1190 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1191
1192 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1193 /* Delete default control endpoint resources */
1194 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1195 xhci_free_virt_device(xhci, slot_id);
1196 }
1197
1198 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1199 struct xhci_event_cmd *event, u32 cmd_comp_code)
1200 {
1201 struct xhci_virt_device *virt_dev;
1202 struct xhci_input_control_ctx *ctrl_ctx;
1203 struct xhci_ep_ctx *ep_ctx;
1204 unsigned int ep_index;
1205 unsigned int ep_state;
1206 u32 add_flags, drop_flags;
1207
1208 /*
1209 * Configure endpoint commands can come from the USB core
1210 * configuration or alt setting changes, or because the HW
1211 * needed an extra configure endpoint command after a reset
1212 * endpoint command or streams were being configured.
1213 * If the command was for a halted endpoint, the xHCI driver
1214 * is not waiting on the configure endpoint command.
1215 */
1216 virt_dev = xhci->devs[slot_id];
1217 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1218 if (!ctrl_ctx) {
1219 xhci_warn(xhci, "Could not get input context, bad type.\n");
1220 return;
1221 }
1222
1223 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1224 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1225 /* Input ctx add_flags are the endpoint index plus one */
1226 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1227
1228 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1229 trace_xhci_handle_cmd_config_ep(ep_ctx);
1230
1231 /* A usb_set_interface() call directly after clearing a halted
1232 * condition may race on this quirky hardware. Not worth
1233 * worrying about, since this is prototype hardware. Not sure
1234 * if this will work for streams, but streams support was
1235 * untested on this prototype.
1236 */
1237 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1238 ep_index != (unsigned int) -1 &&
1239 add_flags - SLOT_FLAG == drop_flags) {
1240 ep_state = virt_dev->eps[ep_index].ep_state;
1241 if (!(ep_state & EP_HALTED))
1242 return;
1243 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1244 "Completed config ep cmd - "
1245 "last ep index = %d, state = %d",
1246 ep_index, ep_state);
1247 /* Clear internal halted state and restart ring(s) */
1248 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1249 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1250 return;
1251 }
1252 return;
1253 }
1254
1255 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1256 {
1257 struct xhci_virt_device *vdev;
1258 struct xhci_slot_ctx *slot_ctx;
1259
1260 vdev = xhci->devs[slot_id];
1261 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1262 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1263 }
1264
1265 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1266 struct xhci_event_cmd *event)
1267 {
1268 struct xhci_virt_device *vdev;
1269 struct xhci_slot_ctx *slot_ctx;
1270
1271 vdev = xhci->devs[slot_id];
1272 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1273 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1274
1275 xhci_dbg(xhci, "Completed reset device command.\n");
1276 if (!xhci->devs[slot_id])
1277 xhci_warn(xhci, "Reset device command completion "
1278 "for disabled slot %u\n", slot_id);
1279 }
1280
1281 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1282 struct xhci_event_cmd *event)
1283 {
1284 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1285 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1286 return;
1287 }
1288 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1289 "NEC firmware version %2x.%02x",
1290 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1291 NEC_FW_MINOR(le32_to_cpu(event->status)));
1292 }
1293
1294 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1295 {
1296 list_del(&cmd->cmd_list);
1297
1298 if (cmd->completion) {
1299 cmd->status = status;
1300 complete(cmd->completion);
1301 } else {
1302 kfree(cmd);
1303 }
1304 }
1305
1306 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1307 {
1308 struct xhci_command *cur_cmd, *tmp_cmd;
1309 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1310 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1311 }
1312
1313 void xhci_handle_command_timeout(struct work_struct *work)
1314 {
1315 struct xhci_hcd *xhci;
1316 unsigned long flags;
1317 u64 hw_ring_state;
1318
1319 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1320
1321 spin_lock_irqsave(&xhci->lock, flags);
1322
1323 /*
1324 * If timeout work is pending, or current_cmd is NULL, it means we
1325 * raced with command completion. Command is handled so just return.
1326 */
1327 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1328 spin_unlock_irqrestore(&xhci->lock, flags);
1329 return;
1330 }
1331 /* mark this command to be cancelled */
1332 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1333
1334 /* Make sure command ring is running before aborting it */
1335 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1336 if (hw_ring_state == ~(u64)0) {
1337 xhci_hc_died(xhci);
1338 goto time_out_completed;
1339 }
1340
1341 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1342 (hw_ring_state & CMD_RING_RUNNING)) {
1343 /* Prevent new doorbell, and start command abort */
1344 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1345 xhci_dbg(xhci, "Command timeout\n");
1346 xhci_abort_cmd_ring(xhci, flags);
1347 goto time_out_completed;
1348 }
1349
1350 /* host removed. Bail out */
1351 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1352 xhci_dbg(xhci, "host removed, ring start fail?\n");
1353 xhci_cleanup_command_queue(xhci);
1354
1355 goto time_out_completed;
1356 }
1357
1358 /* command timeout on stopped ring, ring can't be aborted */
1359 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1360 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1361
1362 time_out_completed:
1363 spin_unlock_irqrestore(&xhci->lock, flags);
1364 return;
1365 }
1366
1367 static void handle_cmd_completion(struct xhci_hcd *xhci,
1368 struct xhci_event_cmd *event)
1369 {
1370 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1371 u64 cmd_dma;
1372 dma_addr_t cmd_dequeue_dma;
1373 u32 cmd_comp_code;
1374 union xhci_trb *cmd_trb;
1375 struct xhci_command *cmd;
1376 u32 cmd_type;
1377
1378 cmd_dma = le64_to_cpu(event->cmd_trb);
1379 cmd_trb = xhci->cmd_ring->dequeue;
1380
1381 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1382
1383 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1384 cmd_trb);
1385 /*
1386 * Check whether the completion event is for our internal kept
1387 * command.
1388 */
1389 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1390 xhci_warn(xhci,
1391 "ERROR mismatched command completion event\n");
1392 return;
1393 }
1394
1395 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1396
1397 cancel_delayed_work(&xhci->cmd_timer);
1398
1399 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1400
1401 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1402 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1403 complete_all(&xhci->cmd_ring_stop_completion);
1404 return;
1405 }
1406
1407 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1408 xhci_err(xhci,
1409 "Command completion event does not match command\n");
1410 return;
1411 }
1412
1413 /*
1414 * Host aborted the command ring, check if the current command was
1415 * supposed to be aborted, otherwise continue normally.
1416 * The command ring is stopped now, but the xHC will issue a Command
1417 * Ring Stopped event which will cause us to restart it.
1418 */
1419 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1420 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1421 if (cmd->status == COMP_COMMAND_ABORTED) {
1422 if (xhci->current_cmd == cmd)
1423 xhci->current_cmd = NULL;
1424 goto event_handled;
1425 }
1426 }
1427
1428 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1429 switch (cmd_type) {
1430 case TRB_ENABLE_SLOT:
1431 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1432 break;
1433 case TRB_DISABLE_SLOT:
1434 xhci_handle_cmd_disable_slot(xhci, slot_id);
1435 break;
1436 case TRB_CONFIG_EP:
1437 if (!cmd->completion)
1438 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1439 cmd_comp_code);
1440 break;
1441 case TRB_EVAL_CONTEXT:
1442 break;
1443 case TRB_ADDR_DEV:
1444 xhci_handle_cmd_addr_dev(xhci, slot_id);
1445 break;
1446 case TRB_STOP_RING:
1447 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1448 le32_to_cpu(cmd_trb->generic.field[3])));
1449 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1450 break;
1451 case TRB_SET_DEQ:
1452 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1453 le32_to_cpu(cmd_trb->generic.field[3])));
1454 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1455 break;
1456 case TRB_CMD_NOOP:
1457 /* Is this an aborted command turned to NO-OP? */
1458 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1459 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1460 break;
1461 case TRB_RESET_EP:
1462 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1463 le32_to_cpu(cmd_trb->generic.field[3])));
1464 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1465 break;
1466 case TRB_RESET_DEV:
1467 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1468 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1469 */
1470 slot_id = TRB_TO_SLOT_ID(
1471 le32_to_cpu(cmd_trb->generic.field[3]));
1472 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1473 break;
1474 case TRB_NEC_GET_FW:
1475 xhci_handle_cmd_nec_get_fw(xhci, event);
1476 break;
1477 default:
1478 /* Skip over unknown commands on the event ring */
1479 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1480 break;
1481 }
1482
1483 /* restart timer if this wasn't the last command */
1484 if (!list_is_singular(&xhci->cmd_list)) {
1485 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1486 struct xhci_command, cmd_list);
1487 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1488 } else if (xhci->current_cmd == cmd) {
1489 xhci->current_cmd = NULL;
1490 }
1491
1492 event_handled:
1493 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1494
1495 inc_deq(xhci, xhci->cmd_ring);
1496 }
1497
1498 static void handle_vendor_event(struct xhci_hcd *xhci,
1499 union xhci_trb *event)
1500 {
1501 u32 trb_type;
1502
1503 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1504 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1505 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1506 handle_cmd_completion(xhci, &event->event_cmd);
1507 }
1508
1509 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1510 * port registers -- USB 3.0 and USB 2.0).
1511 *
1512 * Returns a zero-based port number, which is suitable for indexing into each of
1513 * the split roothubs' port arrays and bus state arrays.
1514 * Add one to it in order to call xhci_find_slot_id_by_port.
1515 */
1516 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1517 struct xhci_hcd *xhci, u32 port_id)
1518 {
1519 unsigned int i;
1520 unsigned int num_similar_speed_ports = 0;
1521
1522 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1523 * and usb2_ports are 0-based indexes. Count the number of similar
1524 * speed ports, up to 1 port before this port.
1525 */
1526 for (i = 0; i < (port_id - 1); i++) {
1527 u8 port_speed = xhci->port_array[i];
1528
1529 /*
1530 * Skip ports that don't have known speeds, or have duplicate
1531 * Extended Capabilities port speed entries.
1532 */
1533 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1534 continue;
1535
1536 /*
1537 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1538 * 1.1 ports are under the USB 2.0 hub. If the port speed
1539 * matches the device speed, it's a similar speed port.
1540 */
1541 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1542 num_similar_speed_ports++;
1543 }
1544 return num_similar_speed_ports;
1545 }
1546
1547 static void handle_device_notification(struct xhci_hcd *xhci,
1548 union xhci_trb *event)
1549 {
1550 u32 slot_id;
1551 struct usb_device *udev;
1552
1553 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1554 if (!xhci->devs[slot_id]) {
1555 xhci_warn(xhci, "Device Notification event for "
1556 "unused slot %u\n", slot_id);
1557 return;
1558 }
1559
1560 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1561 slot_id);
1562 udev = xhci->devs[slot_id]->udev;
1563 if (udev && udev->parent)
1564 usb_wakeup_notification(udev->parent, udev->portnum);
1565 }
1566
1567 static void handle_port_status(struct xhci_hcd *xhci,
1568 union xhci_trb *event)
1569 {
1570 struct usb_hcd *hcd;
1571 u32 port_id;
1572 u32 temp, temp1;
1573 int max_ports;
1574 int slot_id;
1575 unsigned int faked_port_index;
1576 u8 major_revision;
1577 struct xhci_bus_state *bus_state;
1578 __le32 __iomem **port_array;
1579 bool bogus_port_status = false;
1580
1581 /* Port status change events always have a successful completion code */
1582 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1583 xhci_warn(xhci,
1584 "WARN: xHC returned failed port status event\n");
1585
1586 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1587 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1588
1589 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1590 if ((port_id <= 0) || (port_id > max_ports)) {
1591 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1592 inc_deq(xhci, xhci->event_ring);
1593 return;
1594 }
1595
1596 /* Figure out which usb_hcd this port is attached to:
1597 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1598 */
1599 major_revision = xhci->port_array[port_id - 1];
1600
1601 /* Find the right roothub. */
1602 hcd = xhci_to_hcd(xhci);
1603 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1604 hcd = xhci->shared_hcd;
1605
1606 if (major_revision == 0) {
1607 xhci_warn(xhci, "Event for port %u not in "
1608 "Extended Capabilities, ignoring.\n",
1609 port_id);
1610 bogus_port_status = true;
1611 goto cleanup;
1612 }
1613 if (major_revision == DUPLICATE_ENTRY) {
1614 xhci_warn(xhci, "Event for port %u duplicated in"
1615 "Extended Capabilities, ignoring.\n",
1616 port_id);
1617 bogus_port_status = true;
1618 goto cleanup;
1619 }
1620
1621 /*
1622 * Hardware port IDs reported by a Port Status Change Event include USB
1623 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1624 * resume event, but we first need to translate the hardware port ID
1625 * into the index into the ports on the correct split roothub, and the
1626 * correct bus_state structure.
1627 */
1628 bus_state = &xhci->bus_state[hcd_index(hcd)];
1629 if (hcd->speed >= HCD_USB3)
1630 port_array = xhci->usb3_ports;
1631 else
1632 port_array = xhci->usb2_ports;
1633 /* Find the faked port hub number */
1634 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1635 port_id);
1636
1637 temp = readl(port_array[faked_port_index]);
1638 if (hcd->state == HC_STATE_SUSPENDED) {
1639 xhci_dbg(xhci, "resume root hub\n");
1640 usb_hcd_resume_root_hub(hcd);
1641 }
1642
1643 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1644 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1645
1646 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1647 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1648
1649 temp1 = readl(&xhci->op_regs->command);
1650 if (!(temp1 & CMD_RUN)) {
1651 xhci_warn(xhci, "xHC is not running.\n");
1652 goto cleanup;
1653 }
1654
1655 if (DEV_SUPERSPEED_ANY(temp)) {
1656 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1657 /* Set a flag to say the port signaled remote wakeup,
1658 * so we can tell the difference between the end of
1659 * device and host initiated resume.
1660 */
1661 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1662 xhci_test_and_clear_bit(xhci, port_array,
1663 faked_port_index, PORT_PLC);
1664 xhci_set_link_state(xhci, port_array, faked_port_index,
1665 XDEV_U0);
1666 /* Need to wait until the next link state change
1667 * indicates the device is actually in U0.
1668 */
1669 bogus_port_status = true;
1670 goto cleanup;
1671 } else if (!test_bit(faked_port_index,
1672 &bus_state->resuming_ports)) {
1673 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1674 bus_state->resume_done[faked_port_index] = jiffies +
1675 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1676 set_bit(faked_port_index, &bus_state->resuming_ports);
1677 mod_timer(&hcd->rh_timer,
1678 bus_state->resume_done[faked_port_index]);
1679 /* Do the rest in GetPortStatus */
1680 }
1681 }
1682
1683 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1684 DEV_SUPERSPEED_ANY(temp)) {
1685 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1686 /* We've just brought the device into U0 through either the
1687 * Resume state after a device remote wakeup, or through the
1688 * U3Exit state after a host-initiated resume. If it's a device
1689 * initiated remote wake, don't pass up the link state change,
1690 * so the roothub behavior is consistent with external
1691 * USB 3.0 hub behavior.
1692 */
1693 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1694 faked_port_index + 1);
1695 if (slot_id && xhci->devs[slot_id])
1696 xhci_ring_device(xhci, slot_id);
1697 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1698 bus_state->port_remote_wakeup &=
1699 ~(1 << faked_port_index);
1700 xhci_test_and_clear_bit(xhci, port_array,
1701 faked_port_index, PORT_PLC);
1702 usb_wakeup_notification(hcd->self.root_hub,
1703 faked_port_index + 1);
1704 bogus_port_status = true;
1705 goto cleanup;
1706 }
1707 }
1708
1709 /*
1710 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1711 * RExit to a disconnect state). If so, let the the driver know it's
1712 * out of the RExit state.
1713 */
1714 if (!DEV_SUPERSPEED_ANY(temp) &&
1715 test_and_clear_bit(faked_port_index,
1716 &bus_state->rexit_ports)) {
1717 complete(&bus_state->rexit_done[faked_port_index]);
1718 bogus_port_status = true;
1719 goto cleanup;
1720 }
1721
1722 if (hcd->speed < HCD_USB3)
1723 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1724 PORT_PLC);
1725
1726 cleanup:
1727 /* Update event ring dequeue pointer before dropping the lock */
1728 inc_deq(xhci, xhci->event_ring);
1729
1730 /* Don't make the USB core poll the roothub if we got a bad port status
1731 * change event. Besides, at that point we can't tell which roothub
1732 * (USB 2.0 or USB 3.0) to kick.
1733 */
1734 if (bogus_port_status)
1735 return;
1736
1737 /*
1738 * xHCI port-status-change events occur when the "or" of all the
1739 * status-change bits in the portsc register changes from 0 to 1.
1740 * New status changes won't cause an event if any other change
1741 * bits are still set. When an event occurs, switch over to
1742 * polling to avoid losing status changes.
1743 */
1744 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1745 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1746 spin_unlock(&xhci->lock);
1747 /* Pass this up to the core */
1748 usb_hcd_poll_rh_status(hcd);
1749 spin_lock(&xhci->lock);
1750 }
1751
1752 /*
1753 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1754 * at end_trb, which may be in another segment. If the suspect DMA address is a
1755 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1756 * returns 0.
1757 */
1758 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1759 struct xhci_segment *start_seg,
1760 union xhci_trb *start_trb,
1761 union xhci_trb *end_trb,
1762 dma_addr_t suspect_dma,
1763 bool debug)
1764 {
1765 dma_addr_t start_dma;
1766 dma_addr_t end_seg_dma;
1767 dma_addr_t end_trb_dma;
1768 struct xhci_segment *cur_seg;
1769
1770 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1771 cur_seg = start_seg;
1772
1773 do {
1774 if (start_dma == 0)
1775 return NULL;
1776 /* We may get an event for a Link TRB in the middle of a TD */
1777 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1778 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1779 /* If the end TRB isn't in this segment, this is set to 0 */
1780 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1781
1782 if (debug)
1783 xhci_warn(xhci,
1784 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1785 (unsigned long long)suspect_dma,
1786 (unsigned long long)start_dma,
1787 (unsigned long long)end_trb_dma,
1788 (unsigned long long)cur_seg->dma,
1789 (unsigned long long)end_seg_dma);
1790
1791 if (end_trb_dma > 0) {
1792 /* The end TRB is in this segment, so suspect should be here */
1793 if (start_dma <= end_trb_dma) {
1794 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1795 return cur_seg;
1796 } else {
1797 /* Case for one segment with
1798 * a TD wrapped around to the top
1799 */
1800 if ((suspect_dma >= start_dma &&
1801 suspect_dma <= end_seg_dma) ||
1802 (suspect_dma >= cur_seg->dma &&
1803 suspect_dma <= end_trb_dma))
1804 return cur_seg;
1805 }
1806 return NULL;
1807 } else {
1808 /* Might still be somewhere in this segment */
1809 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1810 return cur_seg;
1811 }
1812 cur_seg = cur_seg->next;
1813 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1814 } while (cur_seg != start_seg);
1815
1816 return NULL;
1817 }
1818
1819 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1820 unsigned int slot_id, unsigned int ep_index,
1821 unsigned int stream_id,
1822 struct xhci_td *td, union xhci_trb *ep_trb,
1823 enum xhci_ep_reset_type reset_type)
1824 {
1825 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1826 struct xhci_command *command;
1827 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1828 if (!command)
1829 return;
1830
1831 ep->ep_state |= EP_HALTED;
1832
1833 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1834
1835 if (reset_type == EP_HARD_RESET)
1836 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1837
1838 xhci_ring_cmd_db(xhci);
1839 }
1840
1841 /* Check if an error has halted the endpoint ring. The class driver will
1842 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1843 * However, a babble and other errors also halt the endpoint ring, and the class
1844 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1845 * Ring Dequeue Pointer command manually.
1846 */
1847 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1848 struct xhci_ep_ctx *ep_ctx,
1849 unsigned int trb_comp_code)
1850 {
1851 /* TRB completion codes that may require a manual halt cleanup */
1852 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1853 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1854 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1855 /* The 0.95 spec says a babbling control endpoint
1856 * is not halted. The 0.96 spec says it is. Some HW
1857 * claims to be 0.95 compliant, but it halts the control
1858 * endpoint anyway. Check if a babble halted the
1859 * endpoint.
1860 */
1861 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1862 return 1;
1863
1864 return 0;
1865 }
1866
1867 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1868 {
1869 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1870 /* Vendor defined "informational" completion code,
1871 * treat as not-an-error.
1872 */
1873 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1874 trb_comp_code);
1875 xhci_dbg(xhci, "Treating code as success.\n");
1876 return 1;
1877 }
1878 return 0;
1879 }
1880
1881 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1882 struct xhci_ring *ep_ring, int *status)
1883 {
1884 struct urb_priv *urb_priv;
1885 struct urb *urb = NULL;
1886
1887 /* Clean up the endpoint's TD list */
1888 urb = td->urb;
1889 urb_priv = urb->hcpriv;
1890
1891 /* if a bounce buffer was used to align this td then unmap it */
1892 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1893
1894 /* Do one last check of the actual transfer length.
1895 * If the host controller said we transferred more data than the buffer
1896 * length, urb->actual_length will be a very big number (since it's
1897 * unsigned). Play it safe and say we didn't transfer anything.
1898 */
1899 if (urb->actual_length > urb->transfer_buffer_length) {
1900 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1901 urb->transfer_buffer_length, urb->actual_length);
1902 urb->actual_length = 0;
1903 *status = 0;
1904 }
1905 list_del_init(&td->td_list);
1906 /* Was this TD slated to be cancelled but completed anyway? */
1907 if (!list_empty(&td->cancelled_td_list))
1908 list_del_init(&td->cancelled_td_list);
1909
1910 inc_td_cnt(urb);
1911 /* Giveback the urb when all the tds are completed */
1912 if (last_td_in_urb(td)) {
1913 if ((urb->actual_length != urb->transfer_buffer_length &&
1914 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1915 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1916 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1917 urb, urb->actual_length,
1918 urb->transfer_buffer_length, *status);
1919
1920 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1921 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1922 *status = 0;
1923 xhci_giveback_urb_in_irq(xhci, td, *status);
1924 }
1925
1926 return 0;
1927 }
1928
1929 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1930 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1931 struct xhci_virt_ep *ep, int *status)
1932 {
1933 struct xhci_virt_device *xdev;
1934 struct xhci_ep_ctx *ep_ctx;
1935 struct xhci_ring *ep_ring;
1936 unsigned int slot_id;
1937 u32 trb_comp_code;
1938 int ep_index;
1939
1940 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1941 xdev = xhci->devs[slot_id];
1942 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1943 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1944 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1945 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1946
1947 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1948 trb_comp_code == COMP_STOPPED ||
1949 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1950 /* The Endpoint Stop Command completion will take care of any
1951 * stopped TDs. A stopped TD may be restarted, so don't update
1952 * the ring dequeue pointer or take this TD off any lists yet.
1953 */
1954 return 0;
1955 }
1956 if (trb_comp_code == COMP_STALL_ERROR ||
1957 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1958 trb_comp_code)) {
1959 /* Issue a reset endpoint command to clear the host side
1960 * halt, followed by a set dequeue command to move the
1961 * dequeue pointer past the TD.
1962 * The class driver clears the device side halt later.
1963 */
1964 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1965 ep_ring->stream_id, td, ep_trb,
1966 EP_HARD_RESET);
1967 } else {
1968 /* Update ring dequeue pointer */
1969 while (ep_ring->dequeue != td->last_trb)
1970 inc_deq(xhci, ep_ring);
1971 inc_deq(xhci, ep_ring);
1972 }
1973
1974 return xhci_td_cleanup(xhci, td, ep_ring, status);
1975 }
1976
1977 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1978 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1979 union xhci_trb *stop_trb)
1980 {
1981 u32 sum;
1982 union xhci_trb *trb = ring->dequeue;
1983 struct xhci_segment *seg = ring->deq_seg;
1984
1985 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1986 if (!trb_is_noop(trb) && !trb_is_link(trb))
1987 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1988 }
1989 return sum;
1990 }
1991
1992 /*
1993 * Process control tds, update urb status and actual_length.
1994 */
1995 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1996 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1997 struct xhci_virt_ep *ep, int *status)
1998 {
1999 struct xhci_virt_device *xdev;
2000 struct xhci_ring *ep_ring;
2001 unsigned int slot_id;
2002 int ep_index;
2003 struct xhci_ep_ctx *ep_ctx;
2004 u32 trb_comp_code;
2005 u32 remaining, requested;
2006 u32 trb_type;
2007
2008 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2009 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2010 xdev = xhci->devs[slot_id];
2011 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2012 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2013 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2014 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2015 requested = td->urb->transfer_buffer_length;
2016 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2017
2018 switch (trb_comp_code) {
2019 case COMP_SUCCESS:
2020 if (trb_type != TRB_STATUS) {
2021 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2022 (trb_type == TRB_DATA) ? "data" : "setup");
2023 *status = -ESHUTDOWN;
2024 break;
2025 }
2026 *status = 0;
2027 break;
2028 case COMP_SHORT_PACKET:
2029 *status = 0;
2030 break;
2031 case COMP_STOPPED_SHORT_PACKET:
2032 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2033 td->urb->actual_length = remaining;
2034 else
2035 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2036 goto finish_td;
2037 case COMP_STOPPED:
2038 switch (trb_type) {
2039 case TRB_SETUP:
2040 td->urb->actual_length = 0;
2041 goto finish_td;
2042 case TRB_DATA:
2043 case TRB_NORMAL:
2044 td->urb->actual_length = requested - remaining;
2045 goto finish_td;
2046 case TRB_STATUS:
2047 td->urb->actual_length = requested;
2048 goto finish_td;
2049 default:
2050 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2051 trb_type);
2052 goto finish_td;
2053 }
2054 case COMP_STOPPED_LENGTH_INVALID:
2055 goto finish_td;
2056 default:
2057 if (!xhci_requires_manual_halt_cleanup(xhci,
2058 ep_ctx, trb_comp_code))
2059 break;
2060 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2061 trb_comp_code, ep_index);
2062 /* else fall through */
2063 case COMP_STALL_ERROR:
2064 /* Did we transfer part of the data (middle) phase? */
2065 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2066 td->urb->actual_length = requested - remaining;
2067 else if (!td->urb_length_set)
2068 td->urb->actual_length = 0;
2069 goto finish_td;
2070 }
2071
2072 /* stopped at setup stage, no data transferred */
2073 if (trb_type == TRB_SETUP)
2074 goto finish_td;
2075
2076 /*
2077 * if on data stage then update the actual_length of the URB and flag it
2078 * as set, so it won't be overwritten in the event for the last TRB.
2079 */
2080 if (trb_type == TRB_DATA ||
2081 trb_type == TRB_NORMAL) {
2082 td->urb_length_set = true;
2083 td->urb->actual_length = requested - remaining;
2084 xhci_dbg(xhci, "Waiting for status stage event\n");
2085 return 0;
2086 }
2087
2088 /* at status stage */
2089 if (!td->urb_length_set)
2090 td->urb->actual_length = requested;
2091
2092 finish_td:
2093 return finish_td(xhci, td, ep_trb, event, ep, status);
2094 }
2095
2096 /*
2097 * Process isochronous tds, update urb packet status and actual_length.
2098 */
2099 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2100 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2101 struct xhci_virt_ep *ep, int *status)
2102 {
2103 struct xhci_ring *ep_ring;
2104 struct urb_priv *urb_priv;
2105 int idx;
2106 struct usb_iso_packet_descriptor *frame;
2107 u32 trb_comp_code;
2108 bool sum_trbs_for_length = false;
2109 u32 remaining, requested, ep_trb_len;
2110 int short_framestatus;
2111
2112 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2113 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2114 urb_priv = td->urb->hcpriv;
2115 idx = urb_priv->num_tds_done;
2116 frame = &td->urb->iso_frame_desc[idx];
2117 requested = frame->length;
2118 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2119 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2120 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2121 -EREMOTEIO : 0;
2122
2123 /* handle completion code */
2124 switch (trb_comp_code) {
2125 case COMP_SUCCESS:
2126 if (remaining) {
2127 frame->status = short_framestatus;
2128 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2129 sum_trbs_for_length = true;
2130 break;
2131 }
2132 frame->status = 0;
2133 break;
2134 case COMP_SHORT_PACKET:
2135 frame->status = short_framestatus;
2136 sum_trbs_for_length = true;
2137 break;
2138 case COMP_BANDWIDTH_OVERRUN_ERROR:
2139 frame->status = -ECOMM;
2140 break;
2141 case COMP_ISOCH_BUFFER_OVERRUN:
2142 case COMP_BABBLE_DETECTED_ERROR:
2143 frame->status = -EOVERFLOW;
2144 break;
2145 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2146 case COMP_STALL_ERROR:
2147 frame->status = -EPROTO;
2148 break;
2149 case COMP_USB_TRANSACTION_ERROR:
2150 frame->status = -EPROTO;
2151 if (ep_trb != td->last_trb)
2152 return 0;
2153 break;
2154 case COMP_STOPPED:
2155 sum_trbs_for_length = true;
2156 break;
2157 case COMP_STOPPED_SHORT_PACKET:
2158 /* field normally containing residue now contains tranferred */
2159 frame->status = short_framestatus;
2160 requested = remaining;
2161 break;
2162 case COMP_STOPPED_LENGTH_INVALID:
2163 requested = 0;
2164 remaining = 0;
2165 break;
2166 default:
2167 sum_trbs_for_length = true;
2168 frame->status = -1;
2169 break;
2170 }
2171
2172 if (sum_trbs_for_length)
2173 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2174 ep_trb_len - remaining;
2175 else
2176 frame->actual_length = requested;
2177
2178 td->urb->actual_length += frame->actual_length;
2179
2180 return finish_td(xhci, td, ep_trb, event, ep, status);
2181 }
2182
2183 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2184 struct xhci_transfer_event *event,
2185 struct xhci_virt_ep *ep, int *status)
2186 {
2187 struct xhci_ring *ep_ring;
2188 struct urb_priv *urb_priv;
2189 struct usb_iso_packet_descriptor *frame;
2190 int idx;
2191
2192 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2193 urb_priv = td->urb->hcpriv;
2194 idx = urb_priv->num_tds_done;
2195 frame = &td->urb->iso_frame_desc[idx];
2196
2197 /* The transfer is partly done. */
2198 frame->status = -EXDEV;
2199
2200 /* calc actual length */
2201 frame->actual_length = 0;
2202
2203 /* Update ring dequeue pointer */
2204 while (ep_ring->dequeue != td->last_trb)
2205 inc_deq(xhci, ep_ring);
2206 inc_deq(xhci, ep_ring);
2207
2208 return xhci_td_cleanup(xhci, td, ep_ring, status);
2209 }
2210
2211 /*
2212 * Process bulk and interrupt tds, update urb status and actual_length.
2213 */
2214 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2215 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2216 struct xhci_virt_ep *ep, int *status)
2217 {
2218 struct xhci_ring *ep_ring;
2219 u32 trb_comp_code;
2220 u32 remaining, requested, ep_trb_len;
2221
2222 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2223 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2224 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2225 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2226 requested = td->urb->transfer_buffer_length;
2227
2228 switch (trb_comp_code) {
2229 case COMP_SUCCESS:
2230 /* handle success with untransferred data as short packet */
2231 if (ep_trb != td->last_trb || remaining) {
2232 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2233 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2234 td->urb->ep->desc.bEndpointAddress,
2235 requested, remaining);
2236 }
2237 *status = 0;
2238 break;
2239 case COMP_SHORT_PACKET:
2240 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2241 td->urb->ep->desc.bEndpointAddress,
2242 requested, remaining);
2243 *status = 0;
2244 break;
2245 case COMP_STOPPED_SHORT_PACKET:
2246 td->urb->actual_length = remaining;
2247 goto finish_td;
2248 case COMP_STOPPED_LENGTH_INVALID:
2249 /* stopped on ep trb with invalid length, exclude it */
2250 ep_trb_len = 0;
2251 remaining = 0;
2252 break;
2253 default:
2254 /* do nothing */
2255 break;
2256 }
2257
2258 if (ep_trb == td->last_trb)
2259 td->urb->actual_length = requested - remaining;
2260 else
2261 td->urb->actual_length =
2262 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2263 ep_trb_len - remaining;
2264 finish_td:
2265 if (remaining > requested) {
2266 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2267 remaining);
2268 td->urb->actual_length = 0;
2269 }
2270 return finish_td(xhci, td, ep_trb, event, ep, status);
2271 }
2272
2273 /*
2274 * If this function returns an error condition, it means it got a Transfer
2275 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2276 * At this point, the host controller is probably hosed and should be reset.
2277 */
2278 static int handle_tx_event(struct xhci_hcd *xhci,
2279 struct xhci_transfer_event *event)
2280 {
2281 struct xhci_virt_device *xdev;
2282 struct xhci_virt_ep *ep;
2283 struct xhci_ring *ep_ring;
2284 unsigned int slot_id;
2285 int ep_index;
2286 struct xhci_td *td = NULL;
2287 dma_addr_t ep_trb_dma;
2288 struct xhci_segment *ep_seg;
2289 union xhci_trb *ep_trb;
2290 int status = -EINPROGRESS;
2291 struct xhci_ep_ctx *ep_ctx;
2292 struct list_head *tmp;
2293 u32 trb_comp_code;
2294 int td_num = 0;
2295 bool handling_skipped_tds = false;
2296
2297 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2298 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2299 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2300 ep_trb_dma = le64_to_cpu(event->buffer);
2301
2302 xdev = xhci->devs[slot_id];
2303 if (!xdev) {
2304 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2305 slot_id);
2306 goto err_out;
2307 }
2308
2309 ep = &xdev->eps[ep_index];
2310 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2311 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2312
2313 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2314 xhci_err(xhci,
2315 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2316 slot_id, ep_index);
2317 goto err_out;
2318 }
2319
2320 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2321 if (!ep_ring) {
2322 switch (trb_comp_code) {
2323 case COMP_STALL_ERROR:
2324 case COMP_USB_TRANSACTION_ERROR:
2325 case COMP_INVALID_STREAM_TYPE_ERROR:
2326 case COMP_INVALID_STREAM_ID_ERROR:
2327 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2328 NULL, NULL, EP_SOFT_RESET);
2329 goto cleanup;
2330 case COMP_RING_UNDERRUN:
2331 case COMP_RING_OVERRUN:
2332 goto cleanup;
2333 default:
2334 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2335 slot_id, ep_index);
2336 goto err_out;
2337 }
2338 }
2339
2340 /* Count current td numbers if ep->skip is set */
2341 if (ep->skip) {
2342 list_for_each(tmp, &ep_ring->td_list)
2343 td_num++;
2344 }
2345
2346 /* Look for common error cases */
2347 switch (trb_comp_code) {
2348 /* Skip codes that require special handling depending on
2349 * transfer type
2350 */
2351 case COMP_SUCCESS:
2352 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2353 break;
2354 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2355 trb_comp_code = COMP_SHORT_PACKET;
2356 else
2357 xhci_warn_ratelimited(xhci,
2358 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2359 slot_id, ep_index);
2360 case COMP_SHORT_PACKET:
2361 break;
2362 /* Completion codes for endpoint stopped state */
2363 case COMP_STOPPED:
2364 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2365 slot_id, ep_index);
2366 break;
2367 case COMP_STOPPED_LENGTH_INVALID:
2368 xhci_dbg(xhci,
2369 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2370 slot_id, ep_index);
2371 break;
2372 case COMP_STOPPED_SHORT_PACKET:
2373 xhci_dbg(xhci,
2374 "Stopped with short packet transfer detected for slot %u ep %u\n",
2375 slot_id, ep_index);
2376 break;
2377 /* Completion codes for endpoint halted state */
2378 case COMP_STALL_ERROR:
2379 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2380 ep_index);
2381 ep->ep_state |= EP_HALTED;
2382 status = -EPIPE;
2383 break;
2384 case COMP_SPLIT_TRANSACTION_ERROR:
2385 case COMP_USB_TRANSACTION_ERROR:
2386 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2387 slot_id, ep_index);
2388 status = -EPROTO;
2389 break;
2390 case COMP_BABBLE_DETECTED_ERROR:
2391 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2392 slot_id, ep_index);
2393 status = -EOVERFLOW;
2394 break;
2395 /* Completion codes for endpoint error state */
2396 case COMP_TRB_ERROR:
2397 xhci_warn(xhci,
2398 "WARN: TRB error for slot %u ep %u on endpoint\n",
2399 slot_id, ep_index);
2400 status = -EILSEQ;
2401 break;
2402 /* completion codes not indicating endpoint state change */
2403 case COMP_DATA_BUFFER_ERROR:
2404 xhci_warn(xhci,
2405 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2406 slot_id, ep_index);
2407 status = -ENOSR;
2408 break;
2409 case COMP_BANDWIDTH_OVERRUN_ERROR:
2410 xhci_warn(xhci,
2411 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2412 slot_id, ep_index);
2413 break;
2414 case COMP_ISOCH_BUFFER_OVERRUN:
2415 xhci_warn(xhci,
2416 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2417 slot_id, ep_index);
2418 break;
2419 case COMP_RING_UNDERRUN:
2420 /*
2421 * When the Isoch ring is empty, the xHC will generate
2422 * a Ring Overrun Event for IN Isoch endpoint or Ring
2423 * Underrun Event for OUT Isoch endpoint.
2424 */
2425 xhci_dbg(xhci, "underrun event on endpoint\n");
2426 if (!list_empty(&ep_ring->td_list))
2427 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2428 "still with TDs queued?\n",
2429 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2430 ep_index);
2431 goto cleanup;
2432 case COMP_RING_OVERRUN:
2433 xhci_dbg(xhci, "overrun event on endpoint\n");
2434 if (!list_empty(&ep_ring->td_list))
2435 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2436 "still with TDs queued?\n",
2437 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2438 ep_index);
2439 goto cleanup;
2440 case COMP_MISSED_SERVICE_ERROR:
2441 /*
2442 * When encounter missed service error, one or more isoc tds
2443 * may be missed by xHC.
2444 * Set skip flag of the ep_ring; Complete the missed tds as
2445 * short transfer when process the ep_ring next time.
2446 */
2447 ep->skip = true;
2448 xhci_dbg(xhci,
2449 "Miss service interval error for slot %u ep %u, set skip flag\n",
2450 slot_id, ep_index);
2451 goto cleanup;
2452 case COMP_NO_PING_RESPONSE_ERROR:
2453 ep->skip = true;
2454 xhci_dbg(xhci,
2455 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2456 slot_id, ep_index);
2457 goto cleanup;
2458
2459 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2460 /* needs disable slot command to recover */
2461 xhci_warn(xhci,
2462 "WARN: detect an incompatible device for slot %u ep %u",
2463 slot_id, ep_index);
2464 status = -EPROTO;
2465 break;
2466 default:
2467 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2468 status = 0;
2469 break;
2470 }
2471 xhci_warn(xhci,
2472 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2473 trb_comp_code, slot_id, ep_index);
2474 goto cleanup;
2475 }
2476
2477 do {
2478 /* This TRB should be in the TD at the head of this ring's
2479 * TD list.
2480 */
2481 if (list_empty(&ep_ring->td_list)) {
2482 /*
2483 * A stopped endpoint may generate an extra completion
2484 * event if the device was suspended. Don't print
2485 * warnings.
2486 */
2487 if (!(trb_comp_code == COMP_STOPPED ||
2488 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2489 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2490 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2491 ep_index);
2492 }
2493 if (ep->skip) {
2494 ep->skip = false;
2495 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2496 slot_id, ep_index);
2497 }
2498 goto cleanup;
2499 }
2500
2501 /* We've skipped all the TDs on the ep ring when ep->skip set */
2502 if (ep->skip && td_num == 0) {
2503 ep->skip = false;
2504 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2505 slot_id, ep_index);
2506 goto cleanup;
2507 }
2508
2509 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2510 td_list);
2511 if (ep->skip)
2512 td_num--;
2513
2514 /* Is this a TRB in the currently executing TD? */
2515 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2516 td->last_trb, ep_trb_dma, false);
2517
2518 /*
2519 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2520 * is not in the current TD pointed by ep_ring->dequeue because
2521 * that the hardware dequeue pointer still at the previous TRB
2522 * of the current TD. The previous TRB maybe a Link TD or the
2523 * last TRB of the previous TD. The command completion handle
2524 * will take care the rest.
2525 */
2526 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2527 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2528 goto cleanup;
2529 }
2530
2531 if (!ep_seg) {
2532 if (!ep->skip ||
2533 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2534 /* Some host controllers give a spurious
2535 * successful event after a short transfer.
2536 * Ignore it.
2537 */
2538 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2539 ep_ring->last_td_was_short) {
2540 ep_ring->last_td_was_short = false;
2541 goto cleanup;
2542 }
2543 /* HC is busted, give up! */
2544 xhci_err(xhci,
2545 "ERROR Transfer event TRB DMA ptr not "
2546 "part of current TD ep_index %d "
2547 "comp_code %u\n", ep_index,
2548 trb_comp_code);
2549 trb_in_td(xhci, ep_ring->deq_seg,
2550 ep_ring->dequeue, td->last_trb,
2551 ep_trb_dma, true);
2552 return -ESHUTDOWN;
2553 }
2554
2555 skip_isoc_td(xhci, td, event, ep, &status);
2556 goto cleanup;
2557 }
2558 if (trb_comp_code == COMP_SHORT_PACKET)
2559 ep_ring->last_td_was_short = true;
2560 else
2561 ep_ring->last_td_was_short = false;
2562
2563 if (ep->skip) {
2564 xhci_dbg(xhci,
2565 "Found td. Clear skip flag for slot %u ep %u.\n",
2566 slot_id, ep_index);
2567 ep->skip = false;
2568 }
2569
2570 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2571 sizeof(*ep_trb)];
2572
2573 trace_xhci_handle_transfer(ep_ring,
2574 (struct xhci_generic_trb *) ep_trb);
2575
2576 /*
2577 * No-op TRB should not trigger interrupts.
2578 * If ep_trb is a no-op TRB, it means the
2579 * corresponding TD has been cancelled. Just ignore
2580 * the TD.
2581 */
2582 if (trb_is_noop(ep_trb)) {
2583 xhci_dbg(xhci,
2584 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n",
2585 slot_id, ep_index);
2586 goto cleanup;
2587 }
2588
2589 /* update the urb's actual_length and give back to the core */
2590 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2591 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2592 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2593 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2594 else
2595 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2596 &status);
2597 cleanup:
2598 handling_skipped_tds = ep->skip &&
2599 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2600 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2601
2602 /*
2603 * Do not update event ring dequeue pointer if we're in a loop
2604 * processing missed tds.
2605 */
2606 if (!handling_skipped_tds)
2607 inc_deq(xhci, xhci->event_ring);
2608
2609 /*
2610 * If ep->skip is set, it means there are missed tds on the
2611 * endpoint ring need to take care of.
2612 * Process them as short transfer until reach the td pointed by
2613 * the event.
2614 */
2615 } while (handling_skipped_tds);
2616
2617 return 0;
2618
2619 err_out:
2620 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2621 (unsigned long long) xhci_trb_virt_to_dma(
2622 xhci->event_ring->deq_seg,
2623 xhci->event_ring->dequeue),
2624 lower_32_bits(le64_to_cpu(event->buffer)),
2625 upper_32_bits(le64_to_cpu(event->buffer)),
2626 le32_to_cpu(event->transfer_len),
2627 le32_to_cpu(event->flags));
2628 return -ENODEV;
2629 }
2630
2631 /*
2632 * This function handles all OS-owned events on the event ring. It may drop
2633 * xhci->lock between event processing (e.g. to pass up port status changes).
2634 * Returns >0 for "possibly more events to process" (caller should call again),
2635 * otherwise 0 if done. In future, <0 returns should indicate error code.
2636 */
2637 static int xhci_handle_event(struct xhci_hcd *xhci)
2638 {
2639 union xhci_trb *event;
2640 int update_ptrs = 1;
2641 int ret;
2642
2643 /* Event ring hasn't been allocated yet. */
2644 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2645 xhci_err(xhci, "ERROR event ring not ready\n");
2646 return -ENOMEM;
2647 }
2648
2649 event = xhci->event_ring->dequeue;
2650 /* Does the HC or OS own the TRB? */
2651 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2652 xhci->event_ring->cycle_state)
2653 return 0;
2654
2655 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2656
2657 /*
2658 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2659 * speculative reads of the event's flags/data below.
2660 */
2661 rmb();
2662 /* FIXME: Handle more event types. */
2663 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2664 case TRB_TYPE(TRB_COMPLETION):
2665 handle_cmd_completion(xhci, &event->event_cmd);
2666 break;
2667 case TRB_TYPE(TRB_PORT_STATUS):
2668 handle_port_status(xhci, event);
2669 update_ptrs = 0;
2670 break;
2671 case TRB_TYPE(TRB_TRANSFER):
2672 ret = handle_tx_event(xhci, &event->trans_event);
2673 if (ret >= 0)
2674 update_ptrs = 0;
2675 break;
2676 case TRB_TYPE(TRB_DEV_NOTE):
2677 handle_device_notification(xhci, event);
2678 break;
2679 default:
2680 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2681 TRB_TYPE(48))
2682 handle_vendor_event(xhci, event);
2683 else
2684 xhci_warn(xhci, "ERROR unknown event type %d\n",
2685 TRB_FIELD_TO_TYPE(
2686 le32_to_cpu(event->event_cmd.flags)));
2687 }
2688 /* Any of the above functions may drop and re-acquire the lock, so check
2689 * to make sure a watchdog timer didn't mark the host as non-responsive.
2690 */
2691 if (xhci->xhc_state & XHCI_STATE_DYING) {
2692 xhci_dbg(xhci, "xHCI host dying, returning from "
2693 "event handler.\n");
2694 return 0;
2695 }
2696
2697 if (update_ptrs)
2698 /* Update SW event ring dequeue pointer */
2699 inc_deq(xhci, xhci->event_ring);
2700
2701 /* Are there more items on the event ring? Caller will call us again to
2702 * check.
2703 */
2704 return 1;
2705 }
2706
2707 /*
2708 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2709 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2710 * indicators of an event TRB error, but we check the status *first* to be safe.
2711 */
2712 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2713 {
2714 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2715 union xhci_trb *event_ring_deq;
2716 irqreturn_t ret = IRQ_NONE;
2717 unsigned long flags;
2718 dma_addr_t deq;
2719 u64 temp_64;
2720 u32 status;
2721
2722 spin_lock_irqsave(&xhci->lock, flags);
2723 /* Check if the xHC generated the interrupt, or the irq is shared */
2724 status = readl(&xhci->op_regs->status);
2725 if (status == ~(u32)0) {
2726 xhci_hc_died(xhci);
2727 ret = IRQ_HANDLED;
2728 goto out;
2729 }
2730
2731 if (!(status & STS_EINT))
2732 goto out;
2733
2734 if (status & STS_FATAL) {
2735 xhci_warn(xhci, "WARNING: Host System Error\n");
2736 xhci_halt(xhci);
2737 ret = IRQ_HANDLED;
2738 goto out;
2739 }
2740
2741 /*
2742 * Clear the op reg interrupt status first,
2743 * so we can receive interrupts from other MSI-X interrupters.
2744 * Write 1 to clear the interrupt status.
2745 */
2746 status |= STS_EINT;
2747 writel(status, &xhci->op_regs->status);
2748
2749 if (!hcd->msi_enabled) {
2750 u32 irq_pending;
2751 irq_pending = readl(&xhci->ir_set->irq_pending);
2752 irq_pending |= IMAN_IP;
2753 writel(irq_pending, &xhci->ir_set->irq_pending);
2754 }
2755
2756 if (xhci->xhc_state & XHCI_STATE_DYING ||
2757 xhci->xhc_state & XHCI_STATE_HALTED) {
2758 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2759 "Shouldn't IRQs be disabled?\n");
2760 /* Clear the event handler busy flag (RW1C);
2761 * the event ring should be empty.
2762 */
2763 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2764 xhci_write_64(xhci, temp_64 | ERST_EHB,
2765 &xhci->ir_set->erst_dequeue);
2766 ret = IRQ_HANDLED;
2767 goto out;
2768 }
2769
2770 event_ring_deq = xhci->event_ring->dequeue;
2771 /* FIXME this should be a delayed service routine
2772 * that clears the EHB.
2773 */
2774 while (xhci_handle_event(xhci) > 0) {}
2775
2776 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2777 /* If necessary, update the HW's version of the event ring deq ptr. */
2778 if (event_ring_deq != xhci->event_ring->dequeue) {
2779 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2780 xhci->event_ring->dequeue);
2781 if (deq == 0)
2782 xhci_warn(xhci, "WARN something wrong with SW event "
2783 "ring dequeue ptr.\n");
2784 /* Update HC event ring dequeue pointer */
2785 temp_64 &= ERST_PTR_MASK;
2786 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2787 }
2788
2789 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2790 temp_64 |= ERST_EHB;
2791 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2792 ret = IRQ_HANDLED;
2793
2794 out:
2795 spin_unlock_irqrestore(&xhci->lock, flags);
2796
2797 return ret;
2798 }
2799
2800 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2801 {
2802 return xhci_irq(hcd);
2803 }
2804
2805 /**** Endpoint Ring Operations ****/
2806
2807 /*
2808 * Generic function for queueing a TRB on a ring.
2809 * The caller must have checked to make sure there's room on the ring.
2810 *
2811 * @more_trbs_coming: Will you enqueue more TRBs before calling
2812 * prepare_transfer()?
2813 */
2814 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2815 bool more_trbs_coming,
2816 u32 field1, u32 field2, u32 field3, u32 field4)
2817 {
2818 struct xhci_generic_trb *trb;
2819
2820 trb = &ring->enqueue->generic;
2821 trb->field[0] = cpu_to_le32(field1);
2822 trb->field[1] = cpu_to_le32(field2);
2823 trb->field[2] = cpu_to_le32(field3);
2824 trb->field[3] = cpu_to_le32(field4);
2825
2826 trace_xhci_queue_trb(ring, trb);
2827
2828 inc_enq(xhci, ring, more_trbs_coming);
2829 }
2830
2831 /*
2832 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2833 * FIXME allocate segments if the ring is full.
2834 */
2835 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2836 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2837 {
2838 unsigned int num_trbs_needed;
2839
2840 /* Make sure the endpoint has been added to xHC schedule */
2841 switch (ep_state) {
2842 case EP_STATE_DISABLED:
2843 /*
2844 * USB core changed config/interfaces without notifying us,
2845 * or hardware is reporting the wrong state.
2846 */
2847 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2848 return -ENOENT;
2849 case EP_STATE_ERROR:
2850 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2851 /* FIXME event handling code for error needs to clear it */
2852 /* XXX not sure if this should be -ENOENT or not */
2853 return -EINVAL;
2854 case EP_STATE_HALTED:
2855 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2856 case EP_STATE_STOPPED:
2857 case EP_STATE_RUNNING:
2858 break;
2859 default:
2860 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2861 /*
2862 * FIXME issue Configure Endpoint command to try to get the HC
2863 * back into a known state.
2864 */
2865 return -EINVAL;
2866 }
2867
2868 while (1) {
2869 if (room_on_ring(xhci, ep_ring, num_trbs))
2870 break;
2871
2872 if (ep_ring == xhci->cmd_ring) {
2873 xhci_err(xhci, "Do not support expand command ring\n");
2874 return -ENOMEM;
2875 }
2876
2877 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2878 "ERROR no room on ep ring, try ring expansion");
2879 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2880 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2881 mem_flags)) {
2882 xhci_err(xhci, "Ring expansion failed\n");
2883 return -ENOMEM;
2884 }
2885 }
2886
2887 while (trb_is_link(ep_ring->enqueue)) {
2888 /* If we're not dealing with 0.95 hardware or isoc rings
2889 * on AMD 0.96 host, clear the chain bit.
2890 */
2891 if (!xhci_link_trb_quirk(xhci) &&
2892 !(ep_ring->type == TYPE_ISOC &&
2893 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2894 ep_ring->enqueue->link.control &=
2895 cpu_to_le32(~TRB_CHAIN);
2896 else
2897 ep_ring->enqueue->link.control |=
2898 cpu_to_le32(TRB_CHAIN);
2899
2900 wmb();
2901 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2902
2903 /* Toggle the cycle bit after the last ring segment. */
2904 if (link_trb_toggles_cycle(ep_ring->enqueue))
2905 ep_ring->cycle_state ^= 1;
2906
2907 ep_ring->enq_seg = ep_ring->enq_seg->next;
2908 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2909 }
2910 return 0;
2911 }
2912
2913 static int prepare_transfer(struct xhci_hcd *xhci,
2914 struct xhci_virt_device *xdev,
2915 unsigned int ep_index,
2916 unsigned int stream_id,
2917 unsigned int num_trbs,
2918 struct urb *urb,
2919 unsigned int td_index,
2920 gfp_t mem_flags)
2921 {
2922 int ret;
2923 struct urb_priv *urb_priv;
2924 struct xhci_td *td;
2925 struct xhci_ring *ep_ring;
2926 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2927
2928 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2929 if (!ep_ring) {
2930 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2931 stream_id);
2932 return -EINVAL;
2933 }
2934
2935 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2936 num_trbs, mem_flags);
2937 if (ret)
2938 return ret;
2939
2940 urb_priv = urb->hcpriv;
2941 td = &urb_priv->td[td_index];
2942
2943 INIT_LIST_HEAD(&td->td_list);
2944 INIT_LIST_HEAD(&td->cancelled_td_list);
2945
2946 if (td_index == 0) {
2947 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2948 if (unlikely(ret))
2949 return ret;
2950 }
2951
2952 td->urb = urb;
2953 /* Add this TD to the tail of the endpoint ring's TD list */
2954 list_add_tail(&td->td_list, &ep_ring->td_list);
2955 td->start_seg = ep_ring->enq_seg;
2956 td->first_trb = ep_ring->enqueue;
2957
2958 return 0;
2959 }
2960
2961 static unsigned int count_trbs(u64 addr, u64 len)
2962 {
2963 unsigned int num_trbs;
2964
2965 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2966 TRB_MAX_BUFF_SIZE);
2967 if (num_trbs == 0)
2968 num_trbs++;
2969
2970 return num_trbs;
2971 }
2972
2973 static inline unsigned int count_trbs_needed(struct urb *urb)
2974 {
2975 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2976 }
2977
2978 static unsigned int count_sg_trbs_needed(struct urb *urb)
2979 {
2980 struct scatterlist *sg;
2981 unsigned int i, len, full_len, num_trbs = 0;
2982
2983 full_len = urb->transfer_buffer_length;
2984
2985 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2986 len = sg_dma_len(sg);
2987 num_trbs += count_trbs(sg_dma_address(sg), len);
2988 len = min_t(unsigned int, len, full_len);
2989 full_len -= len;
2990 if (full_len == 0)
2991 break;
2992 }
2993
2994 return num_trbs;
2995 }
2996
2997 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2998 {
2999 u64 addr, len;
3000
3001 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3002 len = urb->iso_frame_desc[i].length;
3003
3004 return count_trbs(addr, len);
3005 }
3006
3007 static void check_trb_math(struct urb *urb, int running_total)
3008 {
3009 if (unlikely(running_total != urb->transfer_buffer_length))
3010 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3011 "queued %#x (%d), asked for %#x (%d)\n",
3012 __func__,
3013 urb->ep->desc.bEndpointAddress,
3014 running_total, running_total,
3015 urb->transfer_buffer_length,
3016 urb->transfer_buffer_length);
3017 }
3018
3019 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3020 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3021 struct xhci_generic_trb *start_trb)
3022 {
3023 /*
3024 * Pass all the TRBs to the hardware at once and make sure this write
3025 * isn't reordered.
3026 */
3027 wmb();
3028 if (start_cycle)
3029 start_trb->field[3] |= cpu_to_le32(start_cycle);
3030 else
3031 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3032 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3033 }
3034
3035 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3036 struct xhci_ep_ctx *ep_ctx)
3037 {
3038 int xhci_interval;
3039 int ep_interval;
3040
3041 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3042 ep_interval = urb->interval;
3043
3044 /* Convert to microframes */
3045 if (urb->dev->speed == USB_SPEED_LOW ||
3046 urb->dev->speed == USB_SPEED_FULL)
3047 ep_interval *= 8;
3048
3049 /* FIXME change this to a warning and a suggestion to use the new API
3050 * to set the polling interval (once the API is added).
3051 */
3052 if (xhci_interval != ep_interval) {
3053 dev_dbg_ratelimited(&urb->dev->dev,
3054 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3055 ep_interval, ep_interval == 1 ? "" : "s",
3056 xhci_interval, xhci_interval == 1 ? "" : "s");
3057 urb->interval = xhci_interval;
3058 /* Convert back to frames for LS/FS devices */
3059 if (urb->dev->speed == USB_SPEED_LOW ||
3060 urb->dev->speed == USB_SPEED_FULL)
3061 urb->interval /= 8;
3062 }
3063 }
3064
3065 /*
3066 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3067 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3068 * (comprised of sg list entries) can take several service intervals to
3069 * transmit.
3070 */
3071 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3072 struct urb *urb, int slot_id, unsigned int ep_index)
3073 {
3074 struct xhci_ep_ctx *ep_ctx;
3075
3076 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3077 check_interval(xhci, urb, ep_ctx);
3078
3079 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3080 }
3081
3082 /*
3083 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3084 * packets remaining in the TD (*not* including this TRB).
3085 *
3086 * Total TD packet count = total_packet_count =
3087 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3088 *
3089 * Packets transferred up to and including this TRB = packets_transferred =
3090 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3091 *
3092 * TD size = total_packet_count - packets_transferred
3093 *
3094 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3095 * including this TRB, right shifted by 10
3096 *
3097 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3098 * This is taken care of in the TRB_TD_SIZE() macro
3099 *
3100 * The last TRB in a TD must have the TD size set to zero.
3101 */
3102 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3103 int trb_buff_len, unsigned int td_total_len,
3104 struct urb *urb, bool more_trbs_coming)
3105 {
3106 u32 maxp, total_packet_count;
3107
3108 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3109 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3110 return ((td_total_len - transferred) >> 10);
3111
3112 /* One TRB with a zero-length data packet. */
3113 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3114 trb_buff_len == td_total_len)
3115 return 0;
3116
3117 /* for MTK xHCI, TD size doesn't include this TRB */
3118 if (xhci->quirks & XHCI_MTK_HOST)
3119 trb_buff_len = 0;
3120
3121 maxp = usb_endpoint_maxp(&urb->ep->desc);
3122 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3123
3124 /* Queueing functions don't count the current TRB into transferred */
3125 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3126 }
3127
3128
3129 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3130 u32 *trb_buff_len, struct xhci_segment *seg)
3131 {
3132 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3133 unsigned int unalign;
3134 unsigned int max_pkt;
3135 u32 new_buff_len;
3136
3137 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3138 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3139
3140 /* we got lucky, last normal TRB data on segment is packet aligned */
3141 if (unalign == 0)
3142 return 0;
3143
3144 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3145 unalign, *trb_buff_len);
3146
3147 /* is the last nornal TRB alignable by splitting it */
3148 if (*trb_buff_len > unalign) {
3149 *trb_buff_len -= unalign;
3150 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3151 return 0;
3152 }
3153
3154 /*
3155 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3156 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3157 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3158 */
3159 new_buff_len = max_pkt - (enqd_len % max_pkt);
3160
3161 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3162 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3163
3164 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3165 if (usb_urb_dir_out(urb)) {
3166 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3167 seg->bounce_buf, new_buff_len, enqd_len);
3168 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3169 max_pkt, DMA_TO_DEVICE);
3170 } else {
3171 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3172 max_pkt, DMA_FROM_DEVICE);
3173 }
3174
3175 if (dma_mapping_error(dev, seg->bounce_dma)) {
3176 /* try without aligning. Some host controllers survive */
3177 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3178 return 0;
3179 }
3180 *trb_buff_len = new_buff_len;
3181 seg->bounce_len = new_buff_len;
3182 seg->bounce_offs = enqd_len;
3183
3184 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3185
3186 return 1;
3187 }
3188
3189 /* This is very similar to what ehci-q.c qtd_fill() does */
3190 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3191 struct urb *urb, int slot_id, unsigned int ep_index)
3192 {
3193 struct xhci_ring *ring;
3194 struct urb_priv *urb_priv;
3195 struct xhci_td *td;
3196 struct xhci_generic_trb *start_trb;
3197 struct scatterlist *sg = NULL;
3198 bool more_trbs_coming = true;
3199 bool need_zero_pkt = false;
3200 bool first_trb = true;
3201 unsigned int num_trbs;
3202 unsigned int start_cycle, num_sgs = 0;
3203 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3204 int sent_len, ret;
3205 u32 field, length_field, remainder;
3206 u64 addr, send_addr;
3207
3208 ring = xhci_urb_to_transfer_ring(xhci, urb);
3209 if (!ring)
3210 return -EINVAL;
3211
3212 full_len = urb->transfer_buffer_length;
3213 /* If we have scatter/gather list, we use it. */
3214 if (urb->num_sgs) {
3215 num_sgs = urb->num_mapped_sgs;
3216 sg = urb->sg;
3217 addr = (u64) sg_dma_address(sg);
3218 block_len = sg_dma_len(sg);
3219 num_trbs = count_sg_trbs_needed(urb);
3220 } else {
3221 num_trbs = count_trbs_needed(urb);
3222 addr = (u64) urb->transfer_dma;
3223 block_len = full_len;
3224 }
3225 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3226 ep_index, urb->stream_id,
3227 num_trbs, urb, 0, mem_flags);
3228 if (unlikely(ret < 0))
3229 return ret;
3230
3231 urb_priv = urb->hcpriv;
3232
3233 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3234 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3235 need_zero_pkt = true;
3236
3237 td = &urb_priv->td[0];
3238
3239 /*
3240 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3241 * until we've finished creating all the other TRBs. The ring's cycle
3242 * state may change as we enqueue the other TRBs, so save it too.
3243 */
3244 start_trb = &ring->enqueue->generic;
3245 start_cycle = ring->cycle_state;
3246 send_addr = addr;
3247
3248 /* Queue the TRBs, even if they are zero-length */
3249 for (enqd_len = 0; first_trb || enqd_len < full_len;
3250 enqd_len += trb_buff_len) {
3251 field = TRB_TYPE(TRB_NORMAL);
3252
3253 /* TRB buffer should not cross 64KB boundaries */
3254 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3255 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3256
3257 if (enqd_len + trb_buff_len > full_len)
3258 trb_buff_len = full_len - enqd_len;
3259
3260 /* Don't change the cycle bit of the first TRB until later */
3261 if (first_trb) {
3262 first_trb = false;
3263 if (start_cycle == 0)
3264 field |= TRB_CYCLE;
3265 } else
3266 field |= ring->cycle_state;
3267
3268 /* Chain all the TRBs together; clear the chain bit in the last
3269 * TRB to indicate it's the last TRB in the chain.
3270 */
3271 if (enqd_len + trb_buff_len < full_len) {
3272 field |= TRB_CHAIN;
3273 if (trb_is_link(ring->enqueue + 1)) {
3274 if (xhci_align_td(xhci, urb, enqd_len,
3275 &trb_buff_len,
3276 ring->enq_seg)) {
3277 send_addr = ring->enq_seg->bounce_dma;
3278 /* assuming TD won't span 2 segs */
3279 td->bounce_seg = ring->enq_seg;
3280 }
3281 }
3282 }
3283 if (enqd_len + trb_buff_len >= full_len) {
3284 field &= ~TRB_CHAIN;
3285 field |= TRB_IOC;
3286 more_trbs_coming = false;
3287 td->last_trb = ring->enqueue;
3288 }
3289
3290 /* Only set interrupt on short packet for IN endpoints */
3291 if (usb_urb_dir_in(urb))
3292 field |= TRB_ISP;
3293
3294 /* Set the TRB length, TD size, and interrupter fields. */
3295 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3296 full_len, urb, more_trbs_coming);
3297
3298 length_field = TRB_LEN(trb_buff_len) |
3299 TRB_TD_SIZE(remainder) |
3300 TRB_INTR_TARGET(0);
3301
3302 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3303 lower_32_bits(send_addr),
3304 upper_32_bits(send_addr),
3305 length_field,
3306 field);
3307
3308 addr += trb_buff_len;
3309 sent_len = trb_buff_len;
3310
3311 while (sg && sent_len >= block_len) {
3312 /* New sg entry */
3313 --num_sgs;
3314 sent_len -= block_len;
3315 if (num_sgs != 0) {
3316 sg = sg_next(sg);
3317 block_len = sg_dma_len(sg);
3318 addr = (u64) sg_dma_address(sg);
3319 addr += sent_len;
3320 }
3321 }
3322 block_len -= sent_len;
3323 send_addr = addr;
3324 }
3325
3326 if (need_zero_pkt) {
3327 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3328 ep_index, urb->stream_id,
3329 1, urb, 1, mem_flags);
3330 urb_priv->td[1].last_trb = ring->enqueue;
3331 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3332 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3333 }
3334
3335 check_trb_math(urb, enqd_len);
3336 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3337 start_cycle, start_trb);
3338 return 0;
3339 }
3340
3341 /* Caller must have locked xhci->lock */
3342 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3343 struct urb *urb, int slot_id, unsigned int ep_index)
3344 {
3345 struct xhci_ring *ep_ring;
3346 int num_trbs;
3347 int ret;
3348 struct usb_ctrlrequest *setup;
3349 struct xhci_generic_trb *start_trb;
3350 int start_cycle;
3351 u32 field;
3352 struct urb_priv *urb_priv;
3353 struct xhci_td *td;
3354
3355 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3356 if (!ep_ring)
3357 return -EINVAL;
3358
3359 /*
3360 * Need to copy setup packet into setup TRB, so we can't use the setup
3361 * DMA address.
3362 */
3363 if (!urb->setup_packet)
3364 return -EINVAL;
3365
3366 /* 1 TRB for setup, 1 for status */
3367 num_trbs = 2;
3368 /*
3369 * Don't need to check if we need additional event data and normal TRBs,
3370 * since data in control transfers will never get bigger than 16MB
3371 * XXX: can we get a buffer that crosses 64KB boundaries?
3372 */
3373 if (urb->transfer_buffer_length > 0)
3374 num_trbs++;
3375 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3376 ep_index, urb->stream_id,
3377 num_trbs, urb, 0, mem_flags);
3378 if (ret < 0)
3379 return ret;
3380
3381 urb_priv = urb->hcpriv;
3382 td = &urb_priv->td[0];
3383
3384 /*
3385 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3386 * until we've finished creating all the other TRBs. The ring's cycle
3387 * state may change as we enqueue the other TRBs, so save it too.
3388 */
3389 start_trb = &ep_ring->enqueue->generic;
3390 start_cycle = ep_ring->cycle_state;
3391
3392 /* Queue setup TRB - see section 6.4.1.2.1 */
3393 /* FIXME better way to translate setup_packet into two u32 fields? */
3394 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3395 field = 0;
3396 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3397 if (start_cycle == 0)
3398 field |= 0x1;
3399
3400 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3401 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3402 if (urb->transfer_buffer_length > 0) {
3403 if (setup->bRequestType & USB_DIR_IN)
3404 field |= TRB_TX_TYPE(TRB_DATA_IN);
3405 else
3406 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3407 }
3408 }
3409
3410 queue_trb(xhci, ep_ring, true,
3411 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3412 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3413 TRB_LEN(8) | TRB_INTR_TARGET(0),
3414 /* Immediate data in pointer */
3415 field);
3416
3417 /* If there's data, queue data TRBs */
3418 /* Only set interrupt on short packet for IN endpoints */
3419 if (usb_urb_dir_in(urb))
3420 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3421 else
3422 field = TRB_TYPE(TRB_DATA);
3423
3424 if (urb->transfer_buffer_length > 0) {
3425 u32 length_field, remainder;
3426
3427 remainder = xhci_td_remainder(xhci, 0,
3428 urb->transfer_buffer_length,
3429 urb->transfer_buffer_length,
3430 urb, 1);
3431 length_field = TRB_LEN(urb->transfer_buffer_length) |
3432 TRB_TD_SIZE(remainder) |
3433 TRB_INTR_TARGET(0);
3434 if (setup->bRequestType & USB_DIR_IN)
3435 field |= TRB_DIR_IN;
3436 queue_trb(xhci, ep_ring, true,
3437 lower_32_bits(urb->transfer_dma),
3438 upper_32_bits(urb->transfer_dma),
3439 length_field,
3440 field | ep_ring->cycle_state);
3441 }
3442
3443 /* Save the DMA address of the last TRB in the TD */
3444 td->last_trb = ep_ring->enqueue;
3445
3446 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3447 /* If the device sent data, the status stage is an OUT transfer */
3448 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3449 field = 0;
3450 else
3451 field = TRB_DIR_IN;
3452 queue_trb(xhci, ep_ring, false,
3453 0,
3454 0,
3455 TRB_INTR_TARGET(0),
3456 /* Event on completion */
3457 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3458
3459 giveback_first_trb(xhci, slot_id, ep_index, 0,
3460 start_cycle, start_trb);
3461 return 0;
3462 }
3463
3464 /*
3465 * The transfer burst count field of the isochronous TRB defines the number of
3466 * bursts that are required to move all packets in this TD. Only SuperSpeed
3467 * devices can burst up to bMaxBurst number of packets per service interval.
3468 * This field is zero based, meaning a value of zero in the field means one
3469 * burst. Basically, for everything but SuperSpeed devices, this field will be
3470 * zero. Only xHCI 1.0 host controllers support this field.
3471 */
3472 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3473 struct urb *urb, unsigned int total_packet_count)
3474 {
3475 unsigned int max_burst;
3476
3477 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3478 return 0;
3479
3480 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3481 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3482 }
3483
3484 /*
3485 * Returns the number of packets in the last "burst" of packets. This field is
3486 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3487 * the last burst packet count is equal to the total number of packets in the
3488 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3489 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3490 * contain 1 to (bMaxBurst + 1) packets.
3491 */
3492 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3493 struct urb *urb, unsigned int total_packet_count)
3494 {
3495 unsigned int max_burst;
3496 unsigned int residue;
3497
3498 if (xhci->hci_version < 0x100)
3499 return 0;
3500
3501 if (urb->dev->speed >= USB_SPEED_SUPER) {
3502 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3503 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3504 residue = total_packet_count % (max_burst + 1);
3505 /* If residue is zero, the last burst contains (max_burst + 1)
3506 * number of packets, but the TLBPC field is zero-based.
3507 */
3508 if (residue == 0)
3509 return max_burst;
3510 return residue - 1;
3511 }
3512 if (total_packet_count == 0)
3513 return 0;
3514 return total_packet_count - 1;
3515 }
3516
3517 /*
3518 * Calculates Frame ID field of the isochronous TRB identifies the
3519 * target frame that the Interval associated with this Isochronous
3520 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3521 *
3522 * Returns actual frame id on success, negative value on error.
3523 */
3524 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3525 struct urb *urb, int index)
3526 {
3527 int start_frame, ist, ret = 0;
3528 int start_frame_id, end_frame_id, current_frame_id;
3529
3530 if (urb->dev->speed == USB_SPEED_LOW ||
3531 urb->dev->speed == USB_SPEED_FULL)
3532 start_frame = urb->start_frame + index * urb->interval;
3533 else
3534 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3535
3536 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3537 *
3538 * If bit [3] of IST is cleared to '0', software can add a TRB no
3539 * later than IST[2:0] Microframes before that TRB is scheduled to
3540 * be executed.
3541 * If bit [3] of IST is set to '1', software can add a TRB no later
3542 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3543 */
3544 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3545 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3546 ist <<= 3;
3547
3548 /* Software shall not schedule an Isoch TD with a Frame ID value that
3549 * is less than the Start Frame ID or greater than the End Frame ID,
3550 * where:
3551 *
3552 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3553 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3554 *
3555 * Both the End Frame ID and Start Frame ID values are calculated
3556 * in microframes. When software determines the valid Frame ID value;
3557 * The End Frame ID value should be rounded down to the nearest Frame
3558 * boundary, and the Start Frame ID value should be rounded up to the
3559 * nearest Frame boundary.
3560 */
3561 current_frame_id = readl(&xhci->run_regs->microframe_index);
3562 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3563 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3564
3565 start_frame &= 0x7ff;
3566 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3567 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3568
3569 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3570 __func__, index, readl(&xhci->run_regs->microframe_index),
3571 start_frame_id, end_frame_id, start_frame);
3572
3573 if (start_frame_id < end_frame_id) {
3574 if (start_frame > end_frame_id ||
3575 start_frame < start_frame_id)
3576 ret = -EINVAL;
3577 } else if (start_frame_id > end_frame_id) {
3578 if ((start_frame > end_frame_id &&
3579 start_frame < start_frame_id))
3580 ret = -EINVAL;
3581 } else {
3582 ret = -EINVAL;
3583 }
3584
3585 if (index == 0) {
3586 if (ret == -EINVAL || start_frame == start_frame_id) {
3587 start_frame = start_frame_id + 1;
3588 if (urb->dev->speed == USB_SPEED_LOW ||
3589 urb->dev->speed == USB_SPEED_FULL)
3590 urb->start_frame = start_frame;
3591 else
3592 urb->start_frame = start_frame << 3;
3593 ret = 0;
3594 }
3595 }
3596
3597 if (ret) {
3598 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3599 start_frame, current_frame_id, index,
3600 start_frame_id, end_frame_id);
3601 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3602 return ret;
3603 }
3604
3605 return start_frame;
3606 }
3607
3608 /* This is for isoc transfer */
3609 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3610 struct urb *urb, int slot_id, unsigned int ep_index)
3611 {
3612 struct xhci_ring *ep_ring;
3613 struct urb_priv *urb_priv;
3614 struct xhci_td *td;
3615 int num_tds, trbs_per_td;
3616 struct xhci_generic_trb *start_trb;
3617 bool first_trb;
3618 int start_cycle;
3619 u32 field, length_field;
3620 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3621 u64 start_addr, addr;
3622 int i, j;
3623 bool more_trbs_coming;
3624 struct xhci_virt_ep *xep;
3625 int frame_id;
3626
3627 xep = &xhci->devs[slot_id]->eps[ep_index];
3628 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3629
3630 num_tds = urb->number_of_packets;
3631 if (num_tds < 1) {
3632 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3633 return -EINVAL;
3634 }
3635 start_addr = (u64) urb->transfer_dma;
3636 start_trb = &ep_ring->enqueue->generic;
3637 start_cycle = ep_ring->cycle_state;
3638
3639 urb_priv = urb->hcpriv;
3640 /* Queue the TRBs for each TD, even if they are zero-length */
3641 for (i = 0; i < num_tds; i++) {
3642 unsigned int total_pkt_count, max_pkt;
3643 unsigned int burst_count, last_burst_pkt_count;
3644 u32 sia_frame_id;
3645
3646 first_trb = true;
3647 running_total = 0;
3648 addr = start_addr + urb->iso_frame_desc[i].offset;
3649 td_len = urb->iso_frame_desc[i].length;
3650 td_remain_len = td_len;
3651 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3652 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3653
3654 /* A zero-length transfer still involves at least one packet. */
3655 if (total_pkt_count == 0)
3656 total_pkt_count++;
3657 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3658 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3659 urb, total_pkt_count);
3660
3661 trbs_per_td = count_isoc_trbs_needed(urb, i);
3662
3663 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3664 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3665 if (ret < 0) {
3666 if (i == 0)
3667 return ret;
3668 goto cleanup;
3669 }
3670 td = &urb_priv->td[i];
3671
3672 /* use SIA as default, if frame id is used overwrite it */
3673 sia_frame_id = TRB_SIA;
3674 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3675 HCC_CFC(xhci->hcc_params)) {
3676 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3677 if (frame_id >= 0)
3678 sia_frame_id = TRB_FRAME_ID(frame_id);
3679 }
3680 /*
3681 * Set isoc specific data for the first TRB in a TD.
3682 * Prevent HW from getting the TRBs by keeping the cycle state
3683 * inverted in the first TDs isoc TRB.
3684 */
3685 field = TRB_TYPE(TRB_ISOC) |
3686 TRB_TLBPC(last_burst_pkt_count) |
3687 sia_frame_id |
3688 (i ? ep_ring->cycle_state : !start_cycle);
3689
3690 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3691 if (!xep->use_extended_tbc)
3692 field |= TRB_TBC(burst_count);
3693
3694 /* fill the rest of the TRB fields, and remaining normal TRBs */
3695 for (j = 0; j < trbs_per_td; j++) {
3696 u32 remainder = 0;
3697
3698 /* only first TRB is isoc, overwrite otherwise */
3699 if (!first_trb)
3700 field = TRB_TYPE(TRB_NORMAL) |
3701 ep_ring->cycle_state;
3702
3703 /* Only set interrupt on short packet for IN EPs */
3704 if (usb_urb_dir_in(urb))
3705 field |= TRB_ISP;
3706
3707 /* Set the chain bit for all except the last TRB */
3708 if (j < trbs_per_td - 1) {
3709 more_trbs_coming = true;
3710 field |= TRB_CHAIN;
3711 } else {
3712 more_trbs_coming = false;
3713 td->last_trb = ep_ring->enqueue;
3714 field |= TRB_IOC;
3715 /* set BEI, except for the last TD */
3716 if (xhci->hci_version >= 0x100 &&
3717 !(xhci->quirks & XHCI_AVOID_BEI) &&
3718 i < num_tds - 1)
3719 field |= TRB_BEI;
3720 }
3721 /* Calculate TRB length */
3722 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3723 if (trb_buff_len > td_remain_len)
3724 trb_buff_len = td_remain_len;
3725
3726 /* Set the TRB length, TD size, & interrupter fields. */
3727 remainder = xhci_td_remainder(xhci, running_total,
3728 trb_buff_len, td_len,
3729 urb, more_trbs_coming);
3730
3731 length_field = TRB_LEN(trb_buff_len) |
3732 TRB_INTR_TARGET(0);
3733
3734 /* xhci 1.1 with ETE uses TD Size field for TBC */
3735 if (first_trb && xep->use_extended_tbc)
3736 length_field |= TRB_TD_SIZE_TBC(burst_count);
3737 else
3738 length_field |= TRB_TD_SIZE(remainder);
3739 first_trb = false;
3740
3741 queue_trb(xhci, ep_ring, more_trbs_coming,
3742 lower_32_bits(addr),
3743 upper_32_bits(addr),
3744 length_field,
3745 field);
3746 running_total += trb_buff_len;
3747
3748 addr += trb_buff_len;
3749 td_remain_len -= trb_buff_len;
3750 }
3751
3752 /* Check TD length */
3753 if (running_total != td_len) {
3754 xhci_err(xhci, "ISOC TD length unmatch\n");
3755 ret = -EINVAL;
3756 goto cleanup;
3757 }
3758 }
3759
3760 /* store the next frame id */
3761 if (HCC_CFC(xhci->hcc_params))
3762 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3763
3764 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3765 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3766 usb_amd_quirk_pll_disable();
3767 }
3768 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3769
3770 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3771 start_cycle, start_trb);
3772 return 0;
3773 cleanup:
3774 /* Clean up a partially enqueued isoc transfer. */
3775
3776 for (i--; i >= 0; i--)
3777 list_del_init(&urb_priv->td[i].td_list);
3778
3779 /* Use the first TD as a temporary variable to turn the TDs we've queued
3780 * into No-ops with a software-owned cycle bit. That way the hardware
3781 * won't accidentally start executing bogus TDs when we partially
3782 * overwrite them. td->first_trb and td->start_seg are already set.
3783 */
3784 urb_priv->td[0].last_trb = ep_ring->enqueue;
3785 /* Every TRB except the first & last will have its cycle bit flipped. */
3786 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3787
3788 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3789 ep_ring->enqueue = urb_priv->td[0].first_trb;
3790 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3791 ep_ring->cycle_state = start_cycle;
3792 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3793 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3794 return ret;
3795 }
3796
3797 /*
3798 * Check transfer ring to guarantee there is enough room for the urb.
3799 * Update ISO URB start_frame and interval.
3800 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3801 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3802 * Contiguous Frame ID is not supported by HC.
3803 */
3804 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3805 struct urb *urb, int slot_id, unsigned int ep_index)
3806 {
3807 struct xhci_virt_device *xdev;
3808 struct xhci_ring *ep_ring;
3809 struct xhci_ep_ctx *ep_ctx;
3810 int start_frame;
3811 int num_tds, num_trbs, i;
3812 int ret;
3813 struct xhci_virt_ep *xep;
3814 int ist;
3815
3816 xdev = xhci->devs[slot_id];
3817 xep = &xhci->devs[slot_id]->eps[ep_index];
3818 ep_ring = xdev->eps[ep_index].ring;
3819 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3820
3821 num_trbs = 0;
3822 num_tds = urb->number_of_packets;
3823 for (i = 0; i < num_tds; i++)
3824 num_trbs += count_isoc_trbs_needed(urb, i);
3825
3826 /* Check the ring to guarantee there is enough room for the whole urb.
3827 * Do not insert any td of the urb to the ring if the check failed.
3828 */
3829 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3830 num_trbs, mem_flags);
3831 if (ret)
3832 return ret;
3833
3834 /*
3835 * Check interval value. This should be done before we start to
3836 * calculate the start frame value.
3837 */
3838 check_interval(xhci, urb, ep_ctx);
3839
3840 /* Calculate the start frame and put it in urb->start_frame. */
3841 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3842 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3843 urb->start_frame = xep->next_frame_id;
3844 goto skip_start_over;
3845 }
3846 }
3847
3848 start_frame = readl(&xhci->run_regs->microframe_index);
3849 start_frame &= 0x3fff;
3850 /*
3851 * Round up to the next frame and consider the time before trb really
3852 * gets scheduled by hardare.
3853 */
3854 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3855 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3856 ist <<= 3;
3857 start_frame += ist + XHCI_CFC_DELAY;
3858 start_frame = roundup(start_frame, 8);
3859
3860 /*
3861 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3862 * is greate than 8 microframes.
3863 */
3864 if (urb->dev->speed == USB_SPEED_LOW ||
3865 urb->dev->speed == USB_SPEED_FULL) {
3866 start_frame = roundup(start_frame, urb->interval << 3);
3867 urb->start_frame = start_frame >> 3;
3868 } else {
3869 start_frame = roundup(start_frame, urb->interval);
3870 urb->start_frame = start_frame;
3871 }
3872
3873 skip_start_over:
3874 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3875
3876 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3877 }
3878
3879 /**** Command Ring Operations ****/
3880
3881 /* Generic function for queueing a command TRB on the command ring.
3882 * Check to make sure there's room on the command ring for one command TRB.
3883 * Also check that there's room reserved for commands that must not fail.
3884 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3885 * then only check for the number of reserved spots.
3886 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3887 * because the command event handler may want to resubmit a failed command.
3888 */
3889 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3890 u32 field1, u32 field2,
3891 u32 field3, u32 field4, bool command_must_succeed)
3892 {
3893 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3894 int ret;
3895
3896 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3897 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3898 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3899 return -ESHUTDOWN;
3900 }
3901
3902 if (!command_must_succeed)
3903 reserved_trbs++;
3904
3905 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3906 reserved_trbs, GFP_ATOMIC);
3907 if (ret < 0) {
3908 xhci_err(xhci, "ERR: No room for command on command ring\n");
3909 if (command_must_succeed)
3910 xhci_err(xhci, "ERR: Reserved TRB counting for "
3911 "unfailable commands failed.\n");
3912 return ret;
3913 }
3914
3915 cmd->command_trb = xhci->cmd_ring->enqueue;
3916
3917 /* if there are no other commands queued we start the timeout timer */
3918 if (list_empty(&xhci->cmd_list)) {
3919 xhci->current_cmd = cmd;
3920 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3921 }
3922
3923 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3924
3925 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3926 field4 | xhci->cmd_ring->cycle_state);
3927 return 0;
3928 }
3929
3930 /* Queue a slot enable or disable request on the command ring */
3931 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3932 u32 trb_type, u32 slot_id)
3933 {
3934 return queue_command(xhci, cmd, 0, 0, 0,
3935 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3936 }
3937
3938 /* Queue an address device command TRB */
3939 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3940 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3941 {
3942 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3943 upper_32_bits(in_ctx_ptr), 0,
3944 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3945 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3946 }
3947
3948 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3949 u32 field1, u32 field2, u32 field3, u32 field4)
3950 {
3951 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3952 }
3953
3954 /* Queue a reset device command TRB */
3955 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3956 u32 slot_id)
3957 {
3958 return queue_command(xhci, cmd, 0, 0, 0,
3959 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3960 false);
3961 }
3962
3963 /* Queue a configure endpoint command TRB */
3964 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3965 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3966 u32 slot_id, bool command_must_succeed)
3967 {
3968 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3969 upper_32_bits(in_ctx_ptr), 0,
3970 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3971 command_must_succeed);
3972 }
3973
3974 /* Queue an evaluate context command TRB */
3975 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3976 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3977 {
3978 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3979 upper_32_bits(in_ctx_ptr), 0,
3980 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3981 command_must_succeed);
3982 }
3983
3984 /*
3985 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3986 * activity on an endpoint that is about to be suspended.
3987 */
3988 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3989 int slot_id, unsigned int ep_index, int suspend)
3990 {
3991 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3992 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3993 u32 type = TRB_TYPE(TRB_STOP_RING);
3994 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3995
3996 return queue_command(xhci, cmd, 0, 0, 0,
3997 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3998 }
3999
4000 /* Set Transfer Ring Dequeue Pointer command */
4001 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4002 unsigned int slot_id, unsigned int ep_index,
4003 struct xhci_dequeue_state *deq_state)
4004 {
4005 dma_addr_t addr;
4006 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4007 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4008 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4009 u32 trb_sct = 0;
4010 u32 type = TRB_TYPE(TRB_SET_DEQ);
4011 struct xhci_virt_ep *ep;
4012 struct xhci_command *cmd;
4013 int ret;
4014
4015 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4016 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4017 deq_state->new_deq_seg,
4018 (unsigned long long)deq_state->new_deq_seg->dma,
4019 deq_state->new_deq_ptr,
4020 (unsigned long long)xhci_trb_virt_to_dma(
4021 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4022 deq_state->new_cycle_state);
4023
4024 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4025 deq_state->new_deq_ptr);
4026 if (addr == 0) {
4027 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4028 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4029 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4030 return;
4031 }
4032 ep = &xhci->devs[slot_id]->eps[ep_index];
4033 if ((ep->ep_state & SET_DEQ_PENDING)) {
4034 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4035 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4036 return;
4037 }
4038
4039 /* This function gets called from contexts where it cannot sleep */
4040 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4041 if (!cmd)
4042 return;
4043
4044 ep->queued_deq_seg = deq_state->new_deq_seg;
4045 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4046 if (deq_state->stream_id)
4047 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4048 ret = queue_command(xhci, cmd,
4049 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4050 upper_32_bits(addr), trb_stream_id,
4051 trb_slot_id | trb_ep_index | type, false);
4052 if (ret < 0) {
4053 xhci_free_command(xhci, cmd);
4054 return;
4055 }
4056
4057 /* Stop the TD queueing code from ringing the doorbell until
4058 * this command completes. The HC won't set the dequeue pointer
4059 * if the ring is running, and ringing the doorbell starts the
4060 * ring running.
4061 */
4062 ep->ep_state |= SET_DEQ_PENDING;
4063 }
4064
4065 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4066 int slot_id, unsigned int ep_index,
4067 enum xhci_ep_reset_type reset_type)
4068 {
4069 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4070 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4071 u32 type = TRB_TYPE(TRB_RESET_EP);
4072
4073 if (reset_type == EP_SOFT_RESET)
4074 type |= TRB_TSP;
4075
4076 return queue_command(xhci, cmd, 0, 0, 0,
4077 trb_slot_id | trb_ep_index | type, false);
4078 }