]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/host/xhci-ring.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73
74 /*
75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76 * address of the TRB.
77 */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 union xhci_trb *trb)
80 {
81 unsigned long segment_offset;
82
83 if (!seg || !trb || trb < seg->trbs)
84 return 0;
85 /* offset in TRBs */
86 segment_offset = trb - seg->trbs;
87 if (segment_offset >= TRBS_PER_SEGMENT)
88 return 0;
89 return seg->dma + (segment_offset * sizeof(*trb));
90 }
91
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 struct urb_priv *urb_priv = td->urb->hcpriv;
121
122 return urb_priv->num_tds_done == urb_priv->num_tds;
123 }
124
125 static void inc_td_cnt(struct urb *urb)
126 {
127 struct urb_priv *urb_priv = urb->hcpriv;
128
129 urb_priv->num_tds_done++;
130 }
131
132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
133 {
134 if (trb_is_link(trb)) {
135 /* unchain chained link TRBs */
136 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
137 } else {
138 trb->generic.field[0] = 0;
139 trb->generic.field[1] = 0;
140 trb->generic.field[2] = 0;
141 /* Preserve only the cycle bit of this TRB */
142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
144 }
145 }
146
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148 * TRB is in a new segment. This does not skip over link TRBs, and it does not
149 * effect the ring dequeue or enqueue pointers.
150 */
151 static void next_trb(struct xhci_hcd *xhci,
152 struct xhci_ring *ring,
153 struct xhci_segment **seg,
154 union xhci_trb **trb)
155 {
156 if (trb_is_link(*trb)) {
157 *seg = (*seg)->next;
158 *trb = ((*seg)->trbs);
159 } else {
160 (*trb)++;
161 }
162 }
163
164 /*
165 * See Cycle bit rules. SW is the consumer for the event ring only.
166 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
167 */
168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
169 {
170 /* event ring doesn't have link trbs, check for last trb */
171 if (ring->type == TYPE_EVENT) {
172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
173 ring->dequeue++;
174 return;
175 }
176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
177 ring->cycle_state ^= 1;
178 ring->deq_seg = ring->deq_seg->next;
179 ring->dequeue = ring->deq_seg->trbs;
180 return;
181 }
182
183 /* All other rings have link trbs */
184 if (!trb_is_link(ring->dequeue)) {
185 ring->dequeue++;
186 ring->num_trbs_free++;
187 }
188 while (trb_is_link(ring->dequeue)) {
189 ring->deq_seg = ring->deq_seg->next;
190 ring->dequeue = ring->deq_seg->trbs;
191 }
192
193 trace_xhci_inc_deq(ring);
194
195 return;
196 }
197
198 /*
199 * See Cycle bit rules. SW is the consumer for the event ring only.
200 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
201 *
202 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
203 * chain bit is set), then set the chain bit in all the following link TRBs.
204 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
205 * have their chain bit cleared (so that each Link TRB is a separate TD).
206 *
207 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
208 * set, but other sections talk about dealing with the chain bit set. This was
209 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
210 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
211 *
212 * @more_trbs_coming: Will you enqueue more TRBs before calling
213 * prepare_transfer()?
214 */
215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
216 bool more_trbs_coming)
217 {
218 u32 chain;
219 union xhci_trb *next;
220
221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
222 /* If this is not event ring, there is one less usable TRB */
223 if (!trb_is_link(ring->enqueue))
224 ring->num_trbs_free--;
225 next = ++(ring->enqueue);
226
227 /* Update the dequeue pointer further if that was a link TRB */
228 while (trb_is_link(next)) {
229
230 /*
231 * If the caller doesn't plan on enqueueing more TDs before
232 * ringing the doorbell, then we don't want to give the link TRB
233 * to the hardware just yet. We'll give the link TRB back in
234 * prepare_ring() just before we enqueue the TD at the top of
235 * the ring.
236 */
237 if (!chain && !more_trbs_coming)
238 break;
239
240 /* If we're not dealing with 0.95 hardware or isoc rings on
241 * AMD 0.96 host, carry over the chain bit of the previous TRB
242 * (which may mean the chain bit is cleared).
243 */
244 if (!(ring->type == TYPE_ISOC &&
245 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
246 !xhci_link_trb_quirk(xhci)) {
247 next->link.control &= cpu_to_le32(~TRB_CHAIN);
248 next->link.control |= cpu_to_le32(chain);
249 }
250 /* Give this link TRB to the hardware */
251 wmb();
252 next->link.control ^= cpu_to_le32(TRB_CYCLE);
253
254 /* Toggle the cycle bit after the last ring segment. */
255 if (link_trb_toggles_cycle(next))
256 ring->cycle_state ^= 1;
257
258 ring->enq_seg = ring->enq_seg->next;
259 ring->enqueue = ring->enq_seg->trbs;
260 next = ring->enqueue;
261 }
262
263 trace_xhci_inc_enq(ring);
264 }
265
266 /*
267 * Check to see if there's room to enqueue num_trbs on the ring and make sure
268 * enqueue pointer will not advance into dequeue segment. See rules above.
269 */
270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
271 unsigned int num_trbs)
272 {
273 int num_trbs_in_deq_seg;
274
275 if (ring->num_trbs_free < num_trbs)
276 return 0;
277
278 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
279 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
280 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
281 return 0;
282 }
283
284 return 1;
285 }
286
287 /* Ring the host controller doorbell after placing a command on the ring */
288 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
289 {
290 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
291 return;
292
293 xhci_dbg(xhci, "// Ding dong!\n");
294 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
295 /* Flush PCI posted writes */
296 readl(&xhci->dba->doorbell[0]);
297 }
298
299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
300 {
301 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
302 }
303
304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
305 {
306 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
307 cmd_list);
308 }
309
310 /*
311 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
312 * If there are other commands waiting then restart the ring and kick the timer.
313 * This must be called with command ring stopped and xhci->lock held.
314 */
315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
316 struct xhci_command *cur_cmd)
317 {
318 struct xhci_command *i_cmd;
319
320 /* Turn all aborted commands in list to no-ops, then restart */
321 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
322
323 if (i_cmd->status != COMP_COMMAND_ABORTED)
324 continue;
325
326 i_cmd->status = COMP_COMMAND_RING_STOPPED;
327
328 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
329 i_cmd->command_trb);
330
331 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
332
333 /*
334 * caller waiting for completion is called when command
335 * completion event is received for these no-op commands
336 */
337 }
338
339 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
340
341 /* ring command ring doorbell to restart the command ring */
342 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
343 !(xhci->xhc_state & XHCI_STATE_DYING)) {
344 xhci->current_cmd = cur_cmd;
345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
346 xhci_ring_cmd_db(xhci);
347 }
348 }
349
350 /* Must be called with xhci->lock held, releases and aquires lock back */
351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
352 {
353 u64 temp_64;
354 int ret;
355
356 xhci_dbg(xhci, "Abort command ring\n");
357
358 reinit_completion(&xhci->cmd_ring_stop_completion);
359
360 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
361 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
362 &xhci->op_regs->cmd_ring);
363
364 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
365 * completion of the Command Abort operation. If CRR is not negated in 5
366 * seconds then driver handles it as if host died (-ENODEV).
367 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
368 * and try to recover a -ETIMEDOUT with a host controller reset.
369 */
370 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
371 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
372 if (ret < 0) {
373 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
374 xhci_halt(xhci);
375 xhci_hc_died(xhci);
376 return ret;
377 }
378 /*
379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
381 * but the completion event in never sent. Wait 2 secs (arbitrary
382 * number) to handle those cases after negation of CMD_RING_RUNNING.
383 */
384 spin_unlock_irqrestore(&xhci->lock, flags);
385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
386 msecs_to_jiffies(2000));
387 spin_lock_irqsave(&xhci->lock, flags);
388 if (!ret) {
389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
390 xhci_cleanup_command_queue(xhci);
391 } else {
392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
393 }
394 return 0;
395 }
396
397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
398 unsigned int slot_id,
399 unsigned int ep_index,
400 unsigned int stream_id)
401 {
402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
404 unsigned int ep_state = ep->ep_state;
405
406 /* Don't ring the doorbell for this endpoint if there are pending
407 * cancellations because we don't want to interrupt processing.
408 * We don't want to restart any stream rings if there's a set dequeue
409 * pointer command pending because the device can choose to start any
410 * stream once the endpoint is on the HW schedule.
411 */
412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
413 (ep_state & EP_HALTED))
414 return;
415 writel(DB_VALUE(ep_index, stream_id), db_addr);
416 /* The CPU has better things to do at this point than wait for a
417 * write-posting flush. It'll get there soon enough.
418 */
419 }
420
421 /* Ring the doorbell for any rings with pending URBs */
422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
423 unsigned int slot_id,
424 unsigned int ep_index)
425 {
426 unsigned int stream_id;
427 struct xhci_virt_ep *ep;
428
429 ep = &xhci->devs[slot_id]->eps[ep_index];
430
431 /* A ring has pending URBs if its TD list is not empty */
432 if (!(ep->ep_state & EP_HAS_STREAMS)) {
433 if (ep->ring && !(list_empty(&ep->ring->td_list)))
434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
435 return;
436 }
437
438 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
439 stream_id++) {
440 struct xhci_stream_info *stream_info = ep->stream_info;
441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
443 stream_id);
444 }
445 }
446
447 /* Get the right ring for the given slot_id, ep_index and stream_id.
448 * If the endpoint supports streams, boundary check the URB's stream ID.
449 * If the endpoint doesn't support streams, return the singular endpoint ring.
450 */
451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
452 unsigned int slot_id, unsigned int ep_index,
453 unsigned int stream_id)
454 {
455 struct xhci_virt_ep *ep;
456
457 ep = &xhci->devs[slot_id]->eps[ep_index];
458 /* Common case: no streams */
459 if (!(ep->ep_state & EP_HAS_STREAMS))
460 return ep->ring;
461
462 if (stream_id == 0) {
463 xhci_warn(xhci,
464 "WARN: Slot ID %u, ep index %u has streams, "
465 "but URB has no stream ID.\n",
466 slot_id, ep_index);
467 return NULL;
468 }
469
470 if (stream_id < ep->stream_info->num_streams)
471 return ep->stream_info->stream_rings[stream_id];
472
473 xhci_warn(xhci,
474 "WARN: Slot ID %u, ep index %u has "
475 "stream IDs 1 to %u allocated, "
476 "but stream ID %u is requested.\n",
477 slot_id, ep_index,
478 ep->stream_info->num_streams - 1,
479 stream_id);
480 return NULL;
481 }
482
483
484 /*
485 * Get the hw dequeue pointer xHC stopped on, either directly from the
486 * endpoint context, or if streams are in use from the stream context.
487 * The returned hw_dequeue contains the lowest four bits with cycle state
488 * and possbile stream context type.
489 */
490 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
491 unsigned int ep_index, unsigned int stream_id)
492 {
493 struct xhci_ep_ctx *ep_ctx;
494 struct xhci_stream_ctx *st_ctx;
495 struct xhci_virt_ep *ep;
496
497 ep = &vdev->eps[ep_index];
498
499 if (ep->ep_state & EP_HAS_STREAMS) {
500 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
501 return le64_to_cpu(st_ctx->stream_ring);
502 }
503 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
504 return le64_to_cpu(ep_ctx->deq);
505 }
506
507 /*
508 * Move the xHC's endpoint ring dequeue pointer past cur_td.
509 * Record the new state of the xHC's endpoint ring dequeue segment,
510 * dequeue pointer, stream id, and new consumer cycle state in state.
511 * Update our internal representation of the ring's dequeue pointer.
512 *
513 * We do this in three jumps:
514 * - First we update our new ring state to be the same as when the xHC stopped.
515 * - Then we traverse the ring to find the segment that contains
516 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
517 * any link TRBs with the toggle cycle bit set.
518 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
519 * if we've moved it past a link TRB with the toggle cycle bit set.
520 *
521 * Some of the uses of xhci_generic_trb are grotty, but if they're done
522 * with correct __le32 accesses they should work fine. Only users of this are
523 * in here.
524 */
525 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
526 unsigned int slot_id, unsigned int ep_index,
527 unsigned int stream_id, struct xhci_td *cur_td,
528 struct xhci_dequeue_state *state)
529 {
530 struct xhci_virt_device *dev = xhci->devs[slot_id];
531 struct xhci_virt_ep *ep = &dev->eps[ep_index];
532 struct xhci_ring *ep_ring;
533 struct xhci_segment *new_seg;
534 union xhci_trb *new_deq;
535 dma_addr_t addr;
536 u64 hw_dequeue;
537 bool cycle_found = false;
538 bool td_last_trb_found = false;
539
540 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
541 ep_index, stream_id);
542 if (!ep_ring) {
543 xhci_warn(xhci, "WARN can't find new dequeue state "
544 "for invalid stream ID %u.\n",
545 stream_id);
546 return;
547 }
548 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
550 "Finding endpoint context");
551
552 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
553 new_seg = ep_ring->deq_seg;
554 new_deq = ep_ring->dequeue;
555 state->new_cycle_state = hw_dequeue & 0x1;
556 state->stream_id = stream_id;
557
558 /*
559 * We want to find the pointer, segment and cycle state of the new trb
560 * (the one after current TD's last_trb). We know the cycle state at
561 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
562 * found.
563 */
564 do {
565 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
566 == (dma_addr_t)(hw_dequeue & ~0xf)) {
567 cycle_found = true;
568 if (td_last_trb_found)
569 break;
570 }
571 if (new_deq == cur_td->last_trb)
572 td_last_trb_found = true;
573
574 if (cycle_found && trb_is_link(new_deq) &&
575 link_trb_toggles_cycle(new_deq))
576 state->new_cycle_state ^= 0x1;
577
578 next_trb(xhci, ep_ring, &new_seg, &new_deq);
579
580 /* Search wrapped around, bail out */
581 if (new_deq == ep->ring->dequeue) {
582 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
583 state->new_deq_seg = NULL;
584 state->new_deq_ptr = NULL;
585 return;
586 }
587
588 } while (!cycle_found || !td_last_trb_found);
589
590 state->new_deq_seg = new_seg;
591 state->new_deq_ptr = new_deq;
592
593 /* Don't update the ring cycle state for the producer (us). */
594 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
595 "Cycle state = 0x%x", state->new_cycle_state);
596
597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
598 "New dequeue segment = %p (virtual)",
599 state->new_deq_seg);
600 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
601 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
602 "New dequeue pointer = 0x%llx (DMA)",
603 (unsigned long long) addr);
604 }
605
606 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
607 * (The last TRB actually points to the ring enqueue pointer, which is not part
608 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
609 */
610 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
611 struct xhci_td *td, bool flip_cycle)
612 {
613 struct xhci_segment *seg = td->start_seg;
614 union xhci_trb *trb = td->first_trb;
615
616 while (1) {
617 trb_to_noop(trb, TRB_TR_NOOP);
618
619 /* flip cycle if asked to */
620 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
621 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
622
623 if (trb == td->last_trb)
624 break;
625
626 next_trb(xhci, ep_ring, &seg, &trb);
627 }
628 }
629
630 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
631 struct xhci_virt_ep *ep)
632 {
633 ep->ep_state &= ~EP_STOP_CMD_PENDING;
634 /* Can't del_timer_sync in interrupt */
635 del_timer(&ep->stop_cmd_timer);
636 }
637
638 /*
639 * Must be called with xhci->lock held in interrupt context,
640 * releases and re-acquires xhci->lock
641 */
642 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
643 struct xhci_td *cur_td, int status)
644 {
645 struct urb *urb = cur_td->urb;
646 struct urb_priv *urb_priv = urb->hcpriv;
647 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
648
649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
650 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
651 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
652 if (xhci->quirks & XHCI_AMD_PLL_FIX)
653 usb_amd_quirk_pll_enable();
654 }
655 }
656 xhci_urb_free_priv(urb_priv);
657 usb_hcd_unlink_urb_from_ep(hcd, urb);
658 spin_unlock(&xhci->lock);
659 trace_xhci_urb_giveback(urb);
660 usb_hcd_giveback_urb(hcd, urb, status);
661 spin_lock(&xhci->lock);
662 }
663
664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
665 struct xhci_ring *ring, struct xhci_td *td)
666 {
667 struct device *dev = xhci_to_hcd(xhci)->self.controller;
668 struct xhci_segment *seg = td->bounce_seg;
669 struct urb *urb = td->urb;
670
671 if (!ring || !seg || !urb)
672 return;
673
674 if (usb_urb_dir_out(urb)) {
675 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
676 DMA_TO_DEVICE);
677 return;
678 }
679
680 /* for in tranfers we need to copy the data from bounce to sg */
681 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
682 seg->bounce_len, seg->bounce_offs);
683 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
684 DMA_FROM_DEVICE);
685 seg->bounce_len = 0;
686 seg->bounce_offs = 0;
687 }
688
689 /*
690 * When we get a command completion for a Stop Endpoint Command, we need to
691 * unlink any cancelled TDs from the ring. There are two ways to do that:
692 *
693 * 1. If the HW was in the middle of processing the TD that needs to be
694 * cancelled, then we must move the ring's dequeue pointer past the last TRB
695 * in the TD with a Set Dequeue Pointer Command.
696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
697 * bit cleared) so that the HW will skip over them.
698 */
699 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
700 union xhci_trb *trb, struct xhci_event_cmd *event)
701 {
702 unsigned int ep_index;
703 struct xhci_ring *ep_ring;
704 struct xhci_virt_ep *ep;
705 struct xhci_td *cur_td = NULL;
706 struct xhci_td *last_unlinked_td;
707 struct xhci_ep_ctx *ep_ctx;
708 struct xhci_virt_device *vdev;
709 u64 hw_deq;
710 struct xhci_dequeue_state deq_state;
711
712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
713 if (!xhci->devs[slot_id])
714 xhci_warn(xhci, "Stop endpoint command "
715 "completion for disabled slot %u\n",
716 slot_id);
717 return;
718 }
719
720 memset(&deq_state, 0, sizeof(deq_state));
721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
722
723 vdev = xhci->devs[slot_id];
724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
725 trace_xhci_handle_cmd_stop_ep(ep_ctx);
726
727 ep = &xhci->devs[slot_id]->eps[ep_index];
728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
729 struct xhci_td, cancelled_td_list);
730
731 if (list_empty(&ep->cancelled_td_list)) {
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
734 return;
735 }
736
737 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
738 * We have the xHCI lock, so nothing can modify this list until we drop
739 * it. We're also in the event handler, so we can't get re-interrupted
740 * if another Stop Endpoint command completes
741 */
742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
744 "Removing canceled TD starting at 0x%llx (dma).",
745 (unsigned long long)xhci_trb_virt_to_dma(
746 cur_td->start_seg, cur_td->first_trb));
747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
748 if (!ep_ring) {
749 /* This shouldn't happen unless a driver is mucking
750 * with the stream ID after submission. This will
751 * leave the TD on the hardware ring, and the hardware
752 * will try to execute it, and may access a buffer
753 * that has already been freed. In the best case, the
754 * hardware will execute it, and the event handler will
755 * ignore the completion event for that TD, since it was
756 * removed from the td_list for that endpoint. In
757 * short, don't muck with the stream ID after
758 * submission.
759 */
760 xhci_warn(xhci, "WARN Cancelled URB %p "
761 "has invalid stream ID %u.\n",
762 cur_td->urb,
763 cur_td->urb->stream_id);
764 goto remove_finished_td;
765 }
766 /*
767 * If we stopped on the TD we need to cancel, then we have to
768 * move the xHC endpoint ring dequeue pointer past this TD.
769 */
770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
771 cur_td->urb->stream_id);
772 hw_deq &= ~0xf;
773
774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
775 cur_td->last_trb, hw_deq, false)) {
776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
777 cur_td->urb->stream_id,
778 cur_td, &deq_state);
779 } else {
780 td_to_noop(xhci, ep_ring, cur_td, false);
781 }
782
783 remove_finished_td:
784 /*
785 * The event handler won't see a completion for this TD anymore,
786 * so remove it from the endpoint ring's TD list. Keep it in
787 * the cancelled TD list for URB completion later.
788 */
789 list_del_init(&cur_td->td_list);
790 }
791
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793
794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
797 &deq_state);
798 xhci_ring_cmd_db(xhci);
799 } else {
800 /* Otherwise ring the doorbell(s) to restart queued transfers */
801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
802 }
803
804 /*
805 * Drop the lock and complete the URBs in the cancelled TD list.
806 * New TDs to be cancelled might be added to the end of the list before
807 * we can complete all the URBs for the TDs we already unlinked.
808 * So stop when we've completed the URB for the last TD we unlinked.
809 */
810 do {
811 cur_td = list_first_entry(&ep->cancelled_td_list,
812 struct xhci_td, cancelled_td_list);
813 list_del_init(&cur_td->cancelled_td_list);
814
815 /* Clean up the cancelled URB */
816 /* Doesn't matter what we pass for status, since the core will
817 * just overwrite it (because the URB has been unlinked).
818 */
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
821 inc_td_cnt(cur_td->urb);
822 if (last_td_in_urb(cur_td))
823 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
824
825 /* Stop processing the cancelled list if the watchdog timer is
826 * running.
827 */
828 if (xhci->xhc_state & XHCI_STATE_DYING)
829 return;
830 } while (cur_td != last_unlinked_td);
831
832 /* Return to the event handler with xhci->lock re-acquired */
833 }
834
835 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
836 {
837 struct xhci_td *cur_td;
838 struct xhci_td *tmp;
839
840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
841 list_del_init(&cur_td->td_list);
842
843 if (!list_empty(&cur_td->cancelled_td_list))
844 list_del_init(&cur_td->cancelled_td_list);
845
846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
847
848 inc_td_cnt(cur_td->urb);
849 if (last_td_in_urb(cur_td))
850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
851 }
852 }
853
854 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
855 int slot_id, int ep_index)
856 {
857 struct xhci_td *cur_td;
858 struct xhci_td *tmp;
859 struct xhci_virt_ep *ep;
860 struct xhci_ring *ring;
861
862 ep = &xhci->devs[slot_id]->eps[ep_index];
863 if ((ep->ep_state & EP_HAS_STREAMS) ||
864 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
865 int stream_id;
866
867 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
868 stream_id++) {
869 ring = ep->stream_info->stream_rings[stream_id];
870 if (!ring)
871 continue;
872
873 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
874 "Killing URBs for slot ID %u, ep index %u, stream %u",
875 slot_id, ep_index, stream_id);
876 xhci_kill_ring_urbs(xhci, ring);
877 }
878 } else {
879 ring = ep->ring;
880 if (!ring)
881 return;
882 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
883 "Killing URBs for slot ID %u, ep index %u",
884 slot_id, ep_index);
885 xhci_kill_ring_urbs(xhci, ring);
886 }
887
888 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
889 cancelled_td_list) {
890 list_del_init(&cur_td->cancelled_td_list);
891 inc_td_cnt(cur_td->urb);
892
893 if (last_td_in_urb(cur_td))
894 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
895 }
896 }
897
898 /*
899 * host controller died, register read returns 0xffffffff
900 * Complete pending commands, mark them ABORTED.
901 * URBs need to be given back as usb core might be waiting with device locks
902 * held for the URBs to finish during device disconnect, blocking host remove.
903 *
904 * Call with xhci->lock held.
905 * lock is relased and re-acquired while giving back urb.
906 */
907 void xhci_hc_died(struct xhci_hcd *xhci)
908 {
909 int i, j;
910
911 if (xhci->xhc_state & XHCI_STATE_DYING)
912 return;
913
914 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
915 xhci->xhc_state |= XHCI_STATE_DYING;
916
917 xhci_cleanup_command_queue(xhci);
918
919 /* return any pending urbs, remove may be waiting for them */
920 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
921 if (!xhci->devs[i])
922 continue;
923 for (j = 0; j < 31; j++)
924 xhci_kill_endpoint_urbs(xhci, i, j);
925 }
926
927 /* inform usb core hc died if PCI remove isn't already handling it */
928 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
929 usb_hc_died(xhci_to_hcd(xhci));
930 }
931
932 /* Watchdog timer function for when a stop endpoint command fails to complete.
933 * In this case, we assume the host controller is broken or dying or dead. The
934 * host may still be completing some other events, so we have to be careful to
935 * let the event ring handler and the URB dequeueing/enqueueing functions know
936 * through xhci->state.
937 *
938 * The timer may also fire if the host takes a very long time to respond to the
939 * command, and the stop endpoint command completion handler cannot delete the
940 * timer before the timer function is called. Another endpoint cancellation may
941 * sneak in before the timer function can grab the lock, and that may queue
942 * another stop endpoint command and add the timer back. So we cannot use a
943 * simple flag to say whether there is a pending stop endpoint command for a
944 * particular endpoint.
945 *
946 * Instead we use a combination of that flag and checking if a new timer is
947 * pending.
948 */
949 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
950 {
951 struct xhci_hcd *xhci;
952 struct xhci_virt_ep *ep;
953 unsigned long flags;
954
955 ep = (struct xhci_virt_ep *) arg;
956 xhci = ep->xhci;
957
958 spin_lock_irqsave(&xhci->lock, flags);
959
960 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
961 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
962 timer_pending(&ep->stop_cmd_timer)) {
963 spin_unlock_irqrestore(&xhci->lock, flags);
964 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
965 return;
966 }
967
968 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
969 ep->ep_state &= ~EP_STOP_CMD_PENDING;
970
971 xhci_halt(xhci);
972
973 /*
974 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
975 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
976 * and try to recover a -ETIMEDOUT with a host controller reset
977 */
978 xhci_hc_died(xhci);
979
980 spin_unlock_irqrestore(&xhci->lock, flags);
981 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
982 "xHCI host controller is dead.");
983 }
984
985 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
986 struct xhci_virt_device *dev,
987 struct xhci_ring *ep_ring,
988 unsigned int ep_index)
989 {
990 union xhci_trb *dequeue_temp;
991 int num_trbs_free_temp;
992 bool revert = false;
993
994 num_trbs_free_temp = ep_ring->num_trbs_free;
995 dequeue_temp = ep_ring->dequeue;
996
997 /* If we get two back-to-back stalls, and the first stalled transfer
998 * ends just before a link TRB, the dequeue pointer will be left on
999 * the link TRB by the code in the while loop. So we have to update
1000 * the dequeue pointer one segment further, or we'll jump off
1001 * the segment into la-la-land.
1002 */
1003 if (trb_is_link(ep_ring->dequeue)) {
1004 ep_ring->deq_seg = ep_ring->deq_seg->next;
1005 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1006 }
1007
1008 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1009 /* We have more usable TRBs */
1010 ep_ring->num_trbs_free++;
1011 ep_ring->dequeue++;
1012 if (trb_is_link(ep_ring->dequeue)) {
1013 if (ep_ring->dequeue ==
1014 dev->eps[ep_index].queued_deq_ptr)
1015 break;
1016 ep_ring->deq_seg = ep_ring->deq_seg->next;
1017 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1018 }
1019 if (ep_ring->dequeue == dequeue_temp) {
1020 revert = true;
1021 break;
1022 }
1023 }
1024
1025 if (revert) {
1026 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1027 ep_ring->num_trbs_free = num_trbs_free_temp;
1028 }
1029 }
1030
1031 /*
1032 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1033 * we need to clear the set deq pending flag in the endpoint ring state, so that
1034 * the TD queueing code can ring the doorbell again. We also need to ring the
1035 * endpoint doorbell to restart the ring, but only if there aren't more
1036 * cancellations pending.
1037 */
1038 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1039 union xhci_trb *trb, u32 cmd_comp_code)
1040 {
1041 unsigned int ep_index;
1042 unsigned int stream_id;
1043 struct xhci_ring *ep_ring;
1044 struct xhci_virt_device *dev;
1045 struct xhci_virt_ep *ep;
1046 struct xhci_ep_ctx *ep_ctx;
1047 struct xhci_slot_ctx *slot_ctx;
1048
1049 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1050 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1051 dev = xhci->devs[slot_id];
1052 ep = &dev->eps[ep_index];
1053
1054 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1055 if (!ep_ring) {
1056 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1057 stream_id);
1058 /* XXX: Harmless??? */
1059 goto cleanup;
1060 }
1061
1062 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1063 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1064 trace_xhci_handle_cmd_set_deq(slot_ctx);
1065 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1066
1067 if (cmd_comp_code != COMP_SUCCESS) {
1068 unsigned int ep_state;
1069 unsigned int slot_state;
1070
1071 switch (cmd_comp_code) {
1072 case COMP_TRB_ERROR:
1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1074 break;
1075 case COMP_CONTEXT_STATE_ERROR:
1076 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1077 ep_state = GET_EP_CTX_STATE(ep_ctx);
1078 slot_state = le32_to_cpu(slot_ctx->dev_state);
1079 slot_state = GET_SLOT_STATE(slot_state);
1080 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1081 "Slot state = %u, EP state = %u",
1082 slot_state, ep_state);
1083 break;
1084 case COMP_SLOT_NOT_ENABLED_ERROR:
1085 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1086 slot_id);
1087 break;
1088 default:
1089 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1090 cmd_comp_code);
1091 break;
1092 }
1093 /* OK what do we do now? The endpoint state is hosed, and we
1094 * should never get to this point if the synchronization between
1095 * queueing, and endpoint state are correct. This might happen
1096 * if the device gets disconnected after we've finished
1097 * cancelling URBs, which might not be an error...
1098 */
1099 } else {
1100 u64 deq;
1101 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1102 if (ep->ep_state & EP_HAS_STREAMS) {
1103 struct xhci_stream_ctx *ctx =
1104 &ep->stream_info->stream_ctx_array[stream_id];
1105 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1106 } else {
1107 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1108 }
1109 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1110 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1111 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1112 ep->queued_deq_ptr) == deq) {
1113 /* Update the ring's dequeue segment and dequeue pointer
1114 * to reflect the new position.
1115 */
1116 update_ring_for_set_deq_completion(xhci, dev,
1117 ep_ring, ep_index);
1118 } else {
1119 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1120 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1121 ep->queued_deq_seg, ep->queued_deq_ptr);
1122 }
1123 }
1124
1125 cleanup:
1126 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1127 dev->eps[ep_index].queued_deq_seg = NULL;
1128 dev->eps[ep_index].queued_deq_ptr = NULL;
1129 /* Restart any rings with pending URBs */
1130 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1131 }
1132
1133 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1134 union xhci_trb *trb, u32 cmd_comp_code)
1135 {
1136 struct xhci_virt_device *vdev;
1137 struct xhci_ep_ctx *ep_ctx;
1138 unsigned int ep_index;
1139
1140 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1141 vdev = xhci->devs[slot_id];
1142 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1143 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1144
1145 /* This command will only fail if the endpoint wasn't halted,
1146 * but we don't care.
1147 */
1148 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1149 "Ignoring reset ep completion code of %u", cmd_comp_code);
1150
1151 /* HW with the reset endpoint quirk needs to have a configure endpoint
1152 * command complete before the endpoint can be used. Queue that here
1153 * because the HW can't handle two commands being queued in a row.
1154 */
1155 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1156 struct xhci_command *command;
1157
1158 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1159 if (!command)
1160 return;
1161
1162 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1163 "Queueing configure endpoint command");
1164 xhci_queue_configure_endpoint(xhci, command,
1165 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1166 false);
1167 xhci_ring_cmd_db(xhci);
1168 } else {
1169 /* Clear our internal halted state */
1170 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1171 }
1172 }
1173
1174 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1175 struct xhci_command *command, u32 cmd_comp_code)
1176 {
1177 if (cmd_comp_code == COMP_SUCCESS)
1178 command->slot_id = slot_id;
1179 else
1180 command->slot_id = 0;
1181 }
1182
1183 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1184 {
1185 struct xhci_virt_device *virt_dev;
1186 struct xhci_slot_ctx *slot_ctx;
1187
1188 virt_dev = xhci->devs[slot_id];
1189 if (!virt_dev)
1190 return;
1191
1192 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1193 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1194
1195 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1196 /* Delete default control endpoint resources */
1197 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1198 xhci_free_virt_device(xhci, slot_id);
1199 }
1200
1201 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1202 struct xhci_event_cmd *event, u32 cmd_comp_code)
1203 {
1204 struct xhci_virt_device *virt_dev;
1205 struct xhci_input_control_ctx *ctrl_ctx;
1206 struct xhci_ep_ctx *ep_ctx;
1207 unsigned int ep_index;
1208 unsigned int ep_state;
1209 u32 add_flags, drop_flags;
1210
1211 /*
1212 * Configure endpoint commands can come from the USB core
1213 * configuration or alt setting changes, or because the HW
1214 * needed an extra configure endpoint command after a reset
1215 * endpoint command or streams were being configured.
1216 * If the command was for a halted endpoint, the xHCI driver
1217 * is not waiting on the configure endpoint command.
1218 */
1219 virt_dev = xhci->devs[slot_id];
1220 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1221 if (!ctrl_ctx) {
1222 xhci_warn(xhci, "Could not get input context, bad type.\n");
1223 return;
1224 }
1225
1226 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1227 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1228 /* Input ctx add_flags are the endpoint index plus one */
1229 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1230
1231 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1232 trace_xhci_handle_cmd_config_ep(ep_ctx);
1233
1234 /* A usb_set_interface() call directly after clearing a halted
1235 * condition may race on this quirky hardware. Not worth
1236 * worrying about, since this is prototype hardware. Not sure
1237 * if this will work for streams, but streams support was
1238 * untested on this prototype.
1239 */
1240 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1241 ep_index != (unsigned int) -1 &&
1242 add_flags - SLOT_FLAG == drop_flags) {
1243 ep_state = virt_dev->eps[ep_index].ep_state;
1244 if (!(ep_state & EP_HALTED))
1245 return;
1246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1247 "Completed config ep cmd - "
1248 "last ep index = %d, state = %d",
1249 ep_index, ep_state);
1250 /* Clear internal halted state and restart ring(s) */
1251 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1252 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1253 return;
1254 }
1255 return;
1256 }
1257
1258 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1259 {
1260 struct xhci_virt_device *vdev;
1261 struct xhci_slot_ctx *slot_ctx;
1262
1263 vdev = xhci->devs[slot_id];
1264 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1265 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1266 }
1267
1268 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1269 struct xhci_event_cmd *event)
1270 {
1271 struct xhci_virt_device *vdev;
1272 struct xhci_slot_ctx *slot_ctx;
1273
1274 vdev = xhci->devs[slot_id];
1275 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1276 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1277
1278 xhci_dbg(xhci, "Completed reset device command.\n");
1279 if (!xhci->devs[slot_id])
1280 xhci_warn(xhci, "Reset device command completion "
1281 "for disabled slot %u\n", slot_id);
1282 }
1283
1284 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1285 struct xhci_event_cmd *event)
1286 {
1287 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1288 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1289 return;
1290 }
1291 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1292 "NEC firmware version %2x.%02x",
1293 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1294 NEC_FW_MINOR(le32_to_cpu(event->status)));
1295 }
1296
1297 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1298 {
1299 list_del(&cmd->cmd_list);
1300
1301 if (cmd->completion) {
1302 cmd->status = status;
1303 complete(cmd->completion);
1304 } else {
1305 kfree(cmd);
1306 }
1307 }
1308
1309 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1310 {
1311 struct xhci_command *cur_cmd, *tmp_cmd;
1312 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1313 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1314 }
1315
1316 void xhci_handle_command_timeout(struct work_struct *work)
1317 {
1318 struct xhci_hcd *xhci;
1319 unsigned long flags;
1320 u64 hw_ring_state;
1321
1322 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1323
1324 spin_lock_irqsave(&xhci->lock, flags);
1325
1326 /*
1327 * If timeout work is pending, or current_cmd is NULL, it means we
1328 * raced with command completion. Command is handled so just return.
1329 */
1330 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1331 spin_unlock_irqrestore(&xhci->lock, flags);
1332 return;
1333 }
1334 /* mark this command to be cancelled */
1335 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1336
1337 /* Make sure command ring is running before aborting it */
1338 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1339 if (hw_ring_state == ~(u64)0) {
1340 xhci_hc_died(xhci);
1341 goto time_out_completed;
1342 }
1343
1344 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1345 (hw_ring_state & CMD_RING_RUNNING)) {
1346 /* Prevent new doorbell, and start command abort */
1347 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1348 xhci_dbg(xhci, "Command timeout\n");
1349 xhci_abort_cmd_ring(xhci, flags);
1350 goto time_out_completed;
1351 }
1352
1353 /* host removed. Bail out */
1354 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1355 xhci_dbg(xhci, "host removed, ring start fail?\n");
1356 xhci_cleanup_command_queue(xhci);
1357
1358 goto time_out_completed;
1359 }
1360
1361 /* command timeout on stopped ring, ring can't be aborted */
1362 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1363 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1364
1365 time_out_completed:
1366 spin_unlock_irqrestore(&xhci->lock, flags);
1367 return;
1368 }
1369
1370 static void handle_cmd_completion(struct xhci_hcd *xhci,
1371 struct xhci_event_cmd *event)
1372 {
1373 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1374 u64 cmd_dma;
1375 dma_addr_t cmd_dequeue_dma;
1376 u32 cmd_comp_code;
1377 union xhci_trb *cmd_trb;
1378 struct xhci_command *cmd;
1379 u32 cmd_type;
1380
1381 cmd_dma = le64_to_cpu(event->cmd_trb);
1382 cmd_trb = xhci->cmd_ring->dequeue;
1383
1384 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1385
1386 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1387 cmd_trb);
1388 /*
1389 * Check whether the completion event is for our internal kept
1390 * command.
1391 */
1392 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1393 xhci_warn(xhci,
1394 "ERROR mismatched command completion event\n");
1395 return;
1396 }
1397
1398 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1399
1400 cancel_delayed_work(&xhci->cmd_timer);
1401
1402 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1403
1404 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1405 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1406 complete_all(&xhci->cmd_ring_stop_completion);
1407 return;
1408 }
1409
1410 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1411 xhci_err(xhci,
1412 "Command completion event does not match command\n");
1413 return;
1414 }
1415
1416 /*
1417 * Host aborted the command ring, check if the current command was
1418 * supposed to be aborted, otherwise continue normally.
1419 * The command ring is stopped now, but the xHC will issue a Command
1420 * Ring Stopped event which will cause us to restart it.
1421 */
1422 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1423 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1424 if (cmd->status == COMP_COMMAND_ABORTED) {
1425 if (xhci->current_cmd == cmd)
1426 xhci->current_cmd = NULL;
1427 goto event_handled;
1428 }
1429 }
1430
1431 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1432 switch (cmd_type) {
1433 case TRB_ENABLE_SLOT:
1434 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1435 break;
1436 case TRB_DISABLE_SLOT:
1437 xhci_handle_cmd_disable_slot(xhci, slot_id);
1438 break;
1439 case TRB_CONFIG_EP:
1440 if (!cmd->completion)
1441 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1442 cmd_comp_code);
1443 break;
1444 case TRB_EVAL_CONTEXT:
1445 break;
1446 case TRB_ADDR_DEV:
1447 xhci_handle_cmd_addr_dev(xhci, slot_id);
1448 break;
1449 case TRB_STOP_RING:
1450 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1451 le32_to_cpu(cmd_trb->generic.field[3])));
1452 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1453 break;
1454 case TRB_SET_DEQ:
1455 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1456 le32_to_cpu(cmd_trb->generic.field[3])));
1457 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1458 break;
1459 case TRB_CMD_NOOP:
1460 /* Is this an aborted command turned to NO-OP? */
1461 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1462 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1463 break;
1464 case TRB_RESET_EP:
1465 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1466 le32_to_cpu(cmd_trb->generic.field[3])));
1467 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1468 break;
1469 case TRB_RESET_DEV:
1470 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1471 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1472 */
1473 slot_id = TRB_TO_SLOT_ID(
1474 le32_to_cpu(cmd_trb->generic.field[3]));
1475 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1476 break;
1477 case TRB_NEC_GET_FW:
1478 xhci_handle_cmd_nec_get_fw(xhci, event);
1479 break;
1480 default:
1481 /* Skip over unknown commands on the event ring */
1482 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1483 break;
1484 }
1485
1486 /* restart timer if this wasn't the last command */
1487 if (!list_is_singular(&xhci->cmd_list)) {
1488 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1489 struct xhci_command, cmd_list);
1490 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1491 } else if (xhci->current_cmd == cmd) {
1492 xhci->current_cmd = NULL;
1493 }
1494
1495 event_handled:
1496 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1497
1498 inc_deq(xhci, xhci->cmd_ring);
1499 }
1500
1501 static void handle_vendor_event(struct xhci_hcd *xhci,
1502 union xhci_trb *event)
1503 {
1504 u32 trb_type;
1505
1506 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1507 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1508 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1509 handle_cmd_completion(xhci, &event->event_cmd);
1510 }
1511
1512 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1513 * port registers -- USB 3.0 and USB 2.0).
1514 *
1515 * Returns a zero-based port number, which is suitable for indexing into each of
1516 * the split roothubs' port arrays and bus state arrays.
1517 * Add one to it in order to call xhci_find_slot_id_by_port.
1518 */
1519 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1520 struct xhci_hcd *xhci, u32 port_id)
1521 {
1522 unsigned int i;
1523 unsigned int num_similar_speed_ports = 0;
1524
1525 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1526 * and usb2_ports are 0-based indexes. Count the number of similar
1527 * speed ports, up to 1 port before this port.
1528 */
1529 for (i = 0; i < (port_id - 1); i++) {
1530 u8 port_speed = xhci->port_array[i];
1531
1532 /*
1533 * Skip ports that don't have known speeds, or have duplicate
1534 * Extended Capabilities port speed entries.
1535 */
1536 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1537 continue;
1538
1539 /*
1540 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1541 * 1.1 ports are under the USB 2.0 hub. If the port speed
1542 * matches the device speed, it's a similar speed port.
1543 */
1544 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1545 num_similar_speed_ports++;
1546 }
1547 return num_similar_speed_ports;
1548 }
1549
1550 static void handle_device_notification(struct xhci_hcd *xhci,
1551 union xhci_trb *event)
1552 {
1553 u32 slot_id;
1554 struct usb_device *udev;
1555
1556 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1557 if (!xhci->devs[slot_id]) {
1558 xhci_warn(xhci, "Device Notification event for "
1559 "unused slot %u\n", slot_id);
1560 return;
1561 }
1562
1563 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1564 slot_id);
1565 udev = xhci->devs[slot_id]->udev;
1566 if (udev && udev->parent)
1567 usb_wakeup_notification(udev->parent, udev->portnum);
1568 }
1569
1570 static void handle_port_status(struct xhci_hcd *xhci,
1571 union xhci_trb *event)
1572 {
1573 struct usb_hcd *hcd;
1574 u32 port_id;
1575 u32 temp, temp1;
1576 int max_ports;
1577 int slot_id;
1578 unsigned int faked_port_index;
1579 u8 major_revision;
1580 struct xhci_bus_state *bus_state;
1581 __le32 __iomem **port_array;
1582 bool bogus_port_status = false;
1583
1584 /* Port status change events always have a successful completion code */
1585 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1586 xhci_warn(xhci,
1587 "WARN: xHC returned failed port status event\n");
1588
1589 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1590 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1591
1592 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1593 if ((port_id <= 0) || (port_id > max_ports)) {
1594 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1595 inc_deq(xhci, xhci->event_ring);
1596 return;
1597 }
1598
1599 /* Figure out which usb_hcd this port is attached to:
1600 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1601 */
1602 major_revision = xhci->port_array[port_id - 1];
1603
1604 /* Find the right roothub. */
1605 hcd = xhci_to_hcd(xhci);
1606 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1607 hcd = xhci->shared_hcd;
1608
1609 if (major_revision == 0) {
1610 xhci_warn(xhci, "Event for port %u not in "
1611 "Extended Capabilities, ignoring.\n",
1612 port_id);
1613 bogus_port_status = true;
1614 goto cleanup;
1615 }
1616 if (major_revision == DUPLICATE_ENTRY) {
1617 xhci_warn(xhci, "Event for port %u duplicated in"
1618 "Extended Capabilities, ignoring.\n",
1619 port_id);
1620 bogus_port_status = true;
1621 goto cleanup;
1622 }
1623
1624 /*
1625 * Hardware port IDs reported by a Port Status Change Event include USB
1626 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1627 * resume event, but we first need to translate the hardware port ID
1628 * into the index into the ports on the correct split roothub, and the
1629 * correct bus_state structure.
1630 */
1631 bus_state = &xhci->bus_state[hcd_index(hcd)];
1632 if (hcd->speed >= HCD_USB3)
1633 port_array = xhci->usb3_ports;
1634 else
1635 port_array = xhci->usb2_ports;
1636 /* Find the faked port hub number */
1637 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1638 port_id);
1639
1640 temp = readl(port_array[faked_port_index]);
1641 if (hcd->state == HC_STATE_SUSPENDED) {
1642 xhci_dbg(xhci, "resume root hub\n");
1643 usb_hcd_resume_root_hub(hcd);
1644 }
1645
1646 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1647 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1648
1649 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1650 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1651
1652 temp1 = readl(&xhci->op_regs->command);
1653 if (!(temp1 & CMD_RUN)) {
1654 xhci_warn(xhci, "xHC is not running.\n");
1655 goto cleanup;
1656 }
1657
1658 if (DEV_SUPERSPEED_ANY(temp)) {
1659 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1660 /* Set a flag to say the port signaled remote wakeup,
1661 * so we can tell the difference between the end of
1662 * device and host initiated resume.
1663 */
1664 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1665 xhci_test_and_clear_bit(xhci, port_array,
1666 faked_port_index, PORT_PLC);
1667 xhci_set_link_state(xhci, port_array, faked_port_index,
1668 XDEV_U0);
1669 /* Need to wait until the next link state change
1670 * indicates the device is actually in U0.
1671 */
1672 bogus_port_status = true;
1673 goto cleanup;
1674 } else if (!test_bit(faked_port_index,
1675 &bus_state->resuming_ports)) {
1676 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1677 bus_state->resume_done[faked_port_index] = jiffies +
1678 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1679 set_bit(faked_port_index, &bus_state->resuming_ports);
1680 mod_timer(&hcd->rh_timer,
1681 bus_state->resume_done[faked_port_index]);
1682 /* Do the rest in GetPortStatus */
1683 }
1684 }
1685
1686 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1687 DEV_SUPERSPEED_ANY(temp)) {
1688 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1689 /* We've just brought the device into U0 through either the
1690 * Resume state after a device remote wakeup, or through the
1691 * U3Exit state after a host-initiated resume. If it's a device
1692 * initiated remote wake, don't pass up the link state change,
1693 * so the roothub behavior is consistent with external
1694 * USB 3.0 hub behavior.
1695 */
1696 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1697 faked_port_index + 1);
1698 if (slot_id && xhci->devs[slot_id])
1699 xhci_ring_device(xhci, slot_id);
1700 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1701 bus_state->port_remote_wakeup &=
1702 ~(1 << faked_port_index);
1703 xhci_test_and_clear_bit(xhci, port_array,
1704 faked_port_index, PORT_PLC);
1705 usb_wakeup_notification(hcd->self.root_hub,
1706 faked_port_index + 1);
1707 bogus_port_status = true;
1708 goto cleanup;
1709 }
1710 }
1711
1712 /*
1713 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1714 * RExit to a disconnect state). If so, let the the driver know it's
1715 * out of the RExit state.
1716 */
1717 if (!DEV_SUPERSPEED_ANY(temp) &&
1718 test_and_clear_bit(faked_port_index,
1719 &bus_state->rexit_ports)) {
1720 complete(&bus_state->rexit_done[faked_port_index]);
1721 bogus_port_status = true;
1722 goto cleanup;
1723 }
1724
1725 if (hcd->speed < HCD_USB3)
1726 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1727 PORT_PLC);
1728
1729 cleanup:
1730 /* Update event ring dequeue pointer before dropping the lock */
1731 inc_deq(xhci, xhci->event_ring);
1732
1733 /* Don't make the USB core poll the roothub if we got a bad port status
1734 * change event. Besides, at that point we can't tell which roothub
1735 * (USB 2.0 or USB 3.0) to kick.
1736 */
1737 if (bogus_port_status)
1738 return;
1739
1740 /*
1741 * xHCI port-status-change events occur when the "or" of all the
1742 * status-change bits in the portsc register changes from 0 to 1.
1743 * New status changes won't cause an event if any other change
1744 * bits are still set. When an event occurs, switch over to
1745 * polling to avoid losing status changes.
1746 */
1747 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1748 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1749 spin_unlock(&xhci->lock);
1750 /* Pass this up to the core */
1751 usb_hcd_poll_rh_status(hcd);
1752 spin_lock(&xhci->lock);
1753 }
1754
1755 /*
1756 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1757 * at end_trb, which may be in another segment. If the suspect DMA address is a
1758 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1759 * returns 0.
1760 */
1761 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1762 struct xhci_segment *start_seg,
1763 union xhci_trb *start_trb,
1764 union xhci_trb *end_trb,
1765 dma_addr_t suspect_dma,
1766 bool debug)
1767 {
1768 dma_addr_t start_dma;
1769 dma_addr_t end_seg_dma;
1770 dma_addr_t end_trb_dma;
1771 struct xhci_segment *cur_seg;
1772
1773 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1774 cur_seg = start_seg;
1775
1776 do {
1777 if (start_dma == 0)
1778 return NULL;
1779 /* We may get an event for a Link TRB in the middle of a TD */
1780 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1781 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1782 /* If the end TRB isn't in this segment, this is set to 0 */
1783 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1784
1785 if (debug)
1786 xhci_warn(xhci,
1787 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1788 (unsigned long long)suspect_dma,
1789 (unsigned long long)start_dma,
1790 (unsigned long long)end_trb_dma,
1791 (unsigned long long)cur_seg->dma,
1792 (unsigned long long)end_seg_dma);
1793
1794 if (end_trb_dma > 0) {
1795 /* The end TRB is in this segment, so suspect should be here */
1796 if (start_dma <= end_trb_dma) {
1797 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1798 return cur_seg;
1799 } else {
1800 /* Case for one segment with
1801 * a TD wrapped around to the top
1802 */
1803 if ((suspect_dma >= start_dma &&
1804 suspect_dma <= end_seg_dma) ||
1805 (suspect_dma >= cur_seg->dma &&
1806 suspect_dma <= end_trb_dma))
1807 return cur_seg;
1808 }
1809 return NULL;
1810 } else {
1811 /* Might still be somewhere in this segment */
1812 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1813 return cur_seg;
1814 }
1815 cur_seg = cur_seg->next;
1816 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1817 } while (cur_seg != start_seg);
1818
1819 return NULL;
1820 }
1821
1822 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1823 unsigned int slot_id, unsigned int ep_index,
1824 unsigned int stream_id,
1825 struct xhci_td *td, union xhci_trb *ep_trb,
1826 enum xhci_ep_reset_type reset_type)
1827 {
1828 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1829 struct xhci_command *command;
1830 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1831 if (!command)
1832 return;
1833
1834 ep->ep_state |= EP_HALTED;
1835
1836 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1837
1838 if (reset_type == EP_HARD_RESET)
1839 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1840
1841 xhci_ring_cmd_db(xhci);
1842 }
1843
1844 /* Check if an error has halted the endpoint ring. The class driver will
1845 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1846 * However, a babble and other errors also halt the endpoint ring, and the class
1847 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1848 * Ring Dequeue Pointer command manually.
1849 */
1850 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1851 struct xhci_ep_ctx *ep_ctx,
1852 unsigned int trb_comp_code)
1853 {
1854 /* TRB completion codes that may require a manual halt cleanup */
1855 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1856 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1857 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1858 /* The 0.95 spec says a babbling control endpoint
1859 * is not halted. The 0.96 spec says it is. Some HW
1860 * claims to be 0.95 compliant, but it halts the control
1861 * endpoint anyway. Check if a babble halted the
1862 * endpoint.
1863 */
1864 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1865 return 1;
1866
1867 return 0;
1868 }
1869
1870 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1871 {
1872 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1873 /* Vendor defined "informational" completion code,
1874 * treat as not-an-error.
1875 */
1876 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1877 trb_comp_code);
1878 xhci_dbg(xhci, "Treating code as success.\n");
1879 return 1;
1880 }
1881 return 0;
1882 }
1883
1884 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1885 struct xhci_ring *ep_ring, int *status)
1886 {
1887 struct urb_priv *urb_priv;
1888 struct urb *urb = NULL;
1889
1890 /* Clean up the endpoint's TD list */
1891 urb = td->urb;
1892 urb_priv = urb->hcpriv;
1893
1894 /* if a bounce buffer was used to align this td then unmap it */
1895 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1896
1897 /* Do one last check of the actual transfer length.
1898 * If the host controller said we transferred more data than the buffer
1899 * length, urb->actual_length will be a very big number (since it's
1900 * unsigned). Play it safe and say we didn't transfer anything.
1901 */
1902 if (urb->actual_length > urb->transfer_buffer_length) {
1903 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1904 urb->transfer_buffer_length, urb->actual_length);
1905 urb->actual_length = 0;
1906 *status = 0;
1907 }
1908 list_del_init(&td->td_list);
1909 /* Was this TD slated to be cancelled but completed anyway? */
1910 if (!list_empty(&td->cancelled_td_list))
1911 list_del_init(&td->cancelled_td_list);
1912
1913 inc_td_cnt(urb);
1914 /* Giveback the urb when all the tds are completed */
1915 if (last_td_in_urb(td)) {
1916 if ((urb->actual_length != urb->transfer_buffer_length &&
1917 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1918 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1919 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1920 urb, urb->actual_length,
1921 urb->transfer_buffer_length, *status);
1922
1923 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1924 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1925 *status = 0;
1926 xhci_giveback_urb_in_irq(xhci, td, *status);
1927 }
1928
1929 return 0;
1930 }
1931
1932 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1933 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1934 struct xhci_virt_ep *ep, int *status)
1935 {
1936 struct xhci_virt_device *xdev;
1937 struct xhci_ep_ctx *ep_ctx;
1938 struct xhci_ring *ep_ring;
1939 unsigned int slot_id;
1940 u32 trb_comp_code;
1941 int ep_index;
1942
1943 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1944 xdev = xhci->devs[slot_id];
1945 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1946 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1947 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1948 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1949
1950 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1951 trb_comp_code == COMP_STOPPED ||
1952 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1953 /* The Endpoint Stop Command completion will take care of any
1954 * stopped TDs. A stopped TD may be restarted, so don't update
1955 * the ring dequeue pointer or take this TD off any lists yet.
1956 */
1957 return 0;
1958 }
1959 if (trb_comp_code == COMP_STALL_ERROR ||
1960 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1961 trb_comp_code)) {
1962 /* Issue a reset endpoint command to clear the host side
1963 * halt, followed by a set dequeue command to move the
1964 * dequeue pointer past the TD.
1965 * The class driver clears the device side halt later.
1966 */
1967 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1968 ep_ring->stream_id, td, ep_trb,
1969 EP_HARD_RESET);
1970 } else {
1971 /* Update ring dequeue pointer */
1972 while (ep_ring->dequeue != td->last_trb)
1973 inc_deq(xhci, ep_ring);
1974 inc_deq(xhci, ep_ring);
1975 }
1976
1977 return xhci_td_cleanup(xhci, td, ep_ring, status);
1978 }
1979
1980 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1981 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1982 union xhci_trb *stop_trb)
1983 {
1984 u32 sum;
1985 union xhci_trb *trb = ring->dequeue;
1986 struct xhci_segment *seg = ring->deq_seg;
1987
1988 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1989 if (!trb_is_noop(trb) && !trb_is_link(trb))
1990 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1991 }
1992 return sum;
1993 }
1994
1995 /*
1996 * Process control tds, update urb status and actual_length.
1997 */
1998 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1999 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2000 struct xhci_virt_ep *ep, int *status)
2001 {
2002 struct xhci_virt_device *xdev;
2003 struct xhci_ring *ep_ring;
2004 unsigned int slot_id;
2005 int ep_index;
2006 struct xhci_ep_ctx *ep_ctx;
2007 u32 trb_comp_code;
2008 u32 remaining, requested;
2009 u32 trb_type;
2010
2011 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2012 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2013 xdev = xhci->devs[slot_id];
2014 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2015 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2016 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2017 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2018 requested = td->urb->transfer_buffer_length;
2019 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2020
2021 switch (trb_comp_code) {
2022 case COMP_SUCCESS:
2023 if (trb_type != TRB_STATUS) {
2024 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2025 (trb_type == TRB_DATA) ? "data" : "setup");
2026 *status = -ESHUTDOWN;
2027 break;
2028 }
2029 *status = 0;
2030 break;
2031 case COMP_SHORT_PACKET:
2032 *status = 0;
2033 break;
2034 case COMP_STOPPED_SHORT_PACKET:
2035 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2036 td->urb->actual_length = remaining;
2037 else
2038 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2039 goto finish_td;
2040 case COMP_STOPPED:
2041 switch (trb_type) {
2042 case TRB_SETUP:
2043 td->urb->actual_length = 0;
2044 goto finish_td;
2045 case TRB_DATA:
2046 case TRB_NORMAL:
2047 td->urb->actual_length = requested - remaining;
2048 goto finish_td;
2049 case TRB_STATUS:
2050 td->urb->actual_length = requested;
2051 goto finish_td;
2052 default:
2053 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2054 trb_type);
2055 goto finish_td;
2056 }
2057 case COMP_STOPPED_LENGTH_INVALID:
2058 goto finish_td;
2059 default:
2060 if (!xhci_requires_manual_halt_cleanup(xhci,
2061 ep_ctx, trb_comp_code))
2062 break;
2063 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2064 trb_comp_code, ep_index);
2065 /* else fall through */
2066 case COMP_STALL_ERROR:
2067 /* Did we transfer part of the data (middle) phase? */
2068 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2069 td->urb->actual_length = requested - remaining;
2070 else if (!td->urb_length_set)
2071 td->urb->actual_length = 0;
2072 goto finish_td;
2073 }
2074
2075 /* stopped at setup stage, no data transferred */
2076 if (trb_type == TRB_SETUP)
2077 goto finish_td;
2078
2079 /*
2080 * if on data stage then update the actual_length of the URB and flag it
2081 * as set, so it won't be overwritten in the event for the last TRB.
2082 */
2083 if (trb_type == TRB_DATA ||
2084 trb_type == TRB_NORMAL) {
2085 td->urb_length_set = true;
2086 td->urb->actual_length = requested - remaining;
2087 xhci_dbg(xhci, "Waiting for status stage event\n");
2088 return 0;
2089 }
2090
2091 /* at status stage */
2092 if (!td->urb_length_set)
2093 td->urb->actual_length = requested;
2094
2095 finish_td:
2096 return finish_td(xhci, td, ep_trb, event, ep, status);
2097 }
2098
2099 /*
2100 * Process isochronous tds, update urb packet status and actual_length.
2101 */
2102 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2103 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2104 struct xhci_virt_ep *ep, int *status)
2105 {
2106 struct xhci_ring *ep_ring;
2107 struct urb_priv *urb_priv;
2108 int idx;
2109 struct usb_iso_packet_descriptor *frame;
2110 u32 trb_comp_code;
2111 bool sum_trbs_for_length = false;
2112 u32 remaining, requested, ep_trb_len;
2113 int short_framestatus;
2114
2115 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2116 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2117 urb_priv = td->urb->hcpriv;
2118 idx = urb_priv->num_tds_done;
2119 frame = &td->urb->iso_frame_desc[idx];
2120 requested = frame->length;
2121 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2122 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2123 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2124 -EREMOTEIO : 0;
2125
2126 /* handle completion code */
2127 switch (trb_comp_code) {
2128 case COMP_SUCCESS:
2129 if (remaining) {
2130 frame->status = short_framestatus;
2131 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2132 sum_trbs_for_length = true;
2133 break;
2134 }
2135 frame->status = 0;
2136 break;
2137 case COMP_SHORT_PACKET:
2138 frame->status = short_framestatus;
2139 sum_trbs_for_length = true;
2140 break;
2141 case COMP_BANDWIDTH_OVERRUN_ERROR:
2142 frame->status = -ECOMM;
2143 break;
2144 case COMP_ISOCH_BUFFER_OVERRUN:
2145 case COMP_BABBLE_DETECTED_ERROR:
2146 frame->status = -EOVERFLOW;
2147 break;
2148 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2149 case COMP_STALL_ERROR:
2150 frame->status = -EPROTO;
2151 break;
2152 case COMP_USB_TRANSACTION_ERROR:
2153 frame->status = -EPROTO;
2154 if (ep_trb != td->last_trb)
2155 return 0;
2156 break;
2157 case COMP_STOPPED:
2158 sum_trbs_for_length = true;
2159 break;
2160 case COMP_STOPPED_SHORT_PACKET:
2161 /* field normally containing residue now contains tranferred */
2162 frame->status = short_framestatus;
2163 requested = remaining;
2164 break;
2165 case COMP_STOPPED_LENGTH_INVALID:
2166 requested = 0;
2167 remaining = 0;
2168 break;
2169 default:
2170 sum_trbs_for_length = true;
2171 frame->status = -1;
2172 break;
2173 }
2174
2175 if (sum_trbs_for_length)
2176 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2177 ep_trb_len - remaining;
2178 else
2179 frame->actual_length = requested;
2180
2181 td->urb->actual_length += frame->actual_length;
2182
2183 return finish_td(xhci, td, ep_trb, event, ep, status);
2184 }
2185
2186 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2187 struct xhci_transfer_event *event,
2188 struct xhci_virt_ep *ep, int *status)
2189 {
2190 struct xhci_ring *ep_ring;
2191 struct urb_priv *urb_priv;
2192 struct usb_iso_packet_descriptor *frame;
2193 int idx;
2194
2195 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2196 urb_priv = td->urb->hcpriv;
2197 idx = urb_priv->num_tds_done;
2198 frame = &td->urb->iso_frame_desc[idx];
2199
2200 /* The transfer is partly done. */
2201 frame->status = -EXDEV;
2202
2203 /* calc actual length */
2204 frame->actual_length = 0;
2205
2206 /* Update ring dequeue pointer */
2207 while (ep_ring->dequeue != td->last_trb)
2208 inc_deq(xhci, ep_ring);
2209 inc_deq(xhci, ep_ring);
2210
2211 return xhci_td_cleanup(xhci, td, ep_ring, status);
2212 }
2213
2214 /*
2215 * Process bulk and interrupt tds, update urb status and actual_length.
2216 */
2217 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2218 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2219 struct xhci_virt_ep *ep, int *status)
2220 {
2221 struct xhci_ring *ep_ring;
2222 u32 trb_comp_code;
2223 u32 remaining, requested, ep_trb_len;
2224
2225 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2226 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2227 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2228 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2229 requested = td->urb->transfer_buffer_length;
2230
2231 switch (trb_comp_code) {
2232 case COMP_SUCCESS:
2233 /* handle success with untransferred data as short packet */
2234 if (ep_trb != td->last_trb || remaining) {
2235 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2236 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2237 td->urb->ep->desc.bEndpointAddress,
2238 requested, remaining);
2239 }
2240 *status = 0;
2241 break;
2242 case COMP_SHORT_PACKET:
2243 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2244 td->urb->ep->desc.bEndpointAddress,
2245 requested, remaining);
2246 *status = 0;
2247 break;
2248 case COMP_STOPPED_SHORT_PACKET:
2249 td->urb->actual_length = remaining;
2250 goto finish_td;
2251 case COMP_STOPPED_LENGTH_INVALID:
2252 /* stopped on ep trb with invalid length, exclude it */
2253 ep_trb_len = 0;
2254 remaining = 0;
2255 break;
2256 default:
2257 /* do nothing */
2258 break;
2259 }
2260
2261 if (ep_trb == td->last_trb)
2262 td->urb->actual_length = requested - remaining;
2263 else
2264 td->urb->actual_length =
2265 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2266 ep_trb_len - remaining;
2267 finish_td:
2268 if (remaining > requested) {
2269 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2270 remaining);
2271 td->urb->actual_length = 0;
2272 }
2273 return finish_td(xhci, td, ep_trb, event, ep, status);
2274 }
2275
2276 /*
2277 * If this function returns an error condition, it means it got a Transfer
2278 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2279 * At this point, the host controller is probably hosed and should be reset.
2280 */
2281 static int handle_tx_event(struct xhci_hcd *xhci,
2282 struct xhci_transfer_event *event)
2283 {
2284 struct xhci_virt_device *xdev;
2285 struct xhci_virt_ep *ep;
2286 struct xhci_ring *ep_ring;
2287 unsigned int slot_id;
2288 int ep_index;
2289 struct xhci_td *td = NULL;
2290 dma_addr_t ep_trb_dma;
2291 struct xhci_segment *ep_seg;
2292 union xhci_trb *ep_trb;
2293 int status = -EINPROGRESS;
2294 struct xhci_ep_ctx *ep_ctx;
2295 struct list_head *tmp;
2296 u32 trb_comp_code;
2297 int td_num = 0;
2298 bool handling_skipped_tds = false;
2299
2300 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2301 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2302 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2303 ep_trb_dma = le64_to_cpu(event->buffer);
2304
2305 xdev = xhci->devs[slot_id];
2306 if (!xdev) {
2307 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2308 slot_id);
2309 goto err_out;
2310 }
2311
2312 ep = &xdev->eps[ep_index];
2313 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2314 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2315
2316 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2317 xhci_err(xhci,
2318 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2319 slot_id, ep_index);
2320 goto err_out;
2321 }
2322
2323 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2324 if (!ep_ring) {
2325 switch (trb_comp_code) {
2326 case COMP_STALL_ERROR:
2327 case COMP_USB_TRANSACTION_ERROR:
2328 case COMP_INVALID_STREAM_TYPE_ERROR:
2329 case COMP_INVALID_STREAM_ID_ERROR:
2330 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2331 NULL, NULL, EP_SOFT_RESET);
2332 goto cleanup;
2333 case COMP_RING_UNDERRUN:
2334 case COMP_RING_OVERRUN:
2335 goto cleanup;
2336 default:
2337 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2338 slot_id, ep_index);
2339 goto err_out;
2340 }
2341 }
2342
2343 /* Count current td numbers if ep->skip is set */
2344 if (ep->skip) {
2345 list_for_each(tmp, &ep_ring->td_list)
2346 td_num++;
2347 }
2348
2349 /* Look for common error cases */
2350 switch (trb_comp_code) {
2351 /* Skip codes that require special handling depending on
2352 * transfer type
2353 */
2354 case COMP_SUCCESS:
2355 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2356 break;
2357 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2358 trb_comp_code = COMP_SHORT_PACKET;
2359 else
2360 xhci_warn_ratelimited(xhci,
2361 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2362 slot_id, ep_index);
2363 case COMP_SHORT_PACKET:
2364 break;
2365 /* Completion codes for endpoint stopped state */
2366 case COMP_STOPPED:
2367 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2368 slot_id, ep_index);
2369 break;
2370 case COMP_STOPPED_LENGTH_INVALID:
2371 xhci_dbg(xhci,
2372 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2373 slot_id, ep_index);
2374 break;
2375 case COMP_STOPPED_SHORT_PACKET:
2376 xhci_dbg(xhci,
2377 "Stopped with short packet transfer detected for slot %u ep %u\n",
2378 slot_id, ep_index);
2379 break;
2380 /* Completion codes for endpoint halted state */
2381 case COMP_STALL_ERROR:
2382 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2383 ep_index);
2384 ep->ep_state |= EP_HALTED;
2385 status = -EPIPE;
2386 break;
2387 case COMP_SPLIT_TRANSACTION_ERROR:
2388 case COMP_USB_TRANSACTION_ERROR:
2389 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2390 slot_id, ep_index);
2391 status = -EPROTO;
2392 break;
2393 case COMP_BABBLE_DETECTED_ERROR:
2394 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2395 slot_id, ep_index);
2396 status = -EOVERFLOW;
2397 break;
2398 /* Completion codes for endpoint error state */
2399 case COMP_TRB_ERROR:
2400 xhci_warn(xhci,
2401 "WARN: TRB error for slot %u ep %u on endpoint\n",
2402 slot_id, ep_index);
2403 status = -EILSEQ;
2404 break;
2405 /* completion codes not indicating endpoint state change */
2406 case COMP_DATA_BUFFER_ERROR:
2407 xhci_warn(xhci,
2408 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2409 slot_id, ep_index);
2410 status = -ENOSR;
2411 break;
2412 case COMP_BANDWIDTH_OVERRUN_ERROR:
2413 xhci_warn(xhci,
2414 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2415 slot_id, ep_index);
2416 break;
2417 case COMP_ISOCH_BUFFER_OVERRUN:
2418 xhci_warn(xhci,
2419 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2420 slot_id, ep_index);
2421 break;
2422 case COMP_RING_UNDERRUN:
2423 /*
2424 * When the Isoch ring is empty, the xHC will generate
2425 * a Ring Overrun Event for IN Isoch endpoint or Ring
2426 * Underrun Event for OUT Isoch endpoint.
2427 */
2428 xhci_dbg(xhci, "underrun event on endpoint\n");
2429 if (!list_empty(&ep_ring->td_list))
2430 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2431 "still with TDs queued?\n",
2432 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2433 ep_index);
2434 goto cleanup;
2435 case COMP_RING_OVERRUN:
2436 xhci_dbg(xhci, "overrun event on endpoint\n");
2437 if (!list_empty(&ep_ring->td_list))
2438 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2439 "still with TDs queued?\n",
2440 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2441 ep_index);
2442 goto cleanup;
2443 case COMP_MISSED_SERVICE_ERROR:
2444 /*
2445 * When encounter missed service error, one or more isoc tds
2446 * may be missed by xHC.
2447 * Set skip flag of the ep_ring; Complete the missed tds as
2448 * short transfer when process the ep_ring next time.
2449 */
2450 ep->skip = true;
2451 xhci_dbg(xhci,
2452 "Miss service interval error for slot %u ep %u, set skip flag\n",
2453 slot_id, ep_index);
2454 goto cleanup;
2455 case COMP_NO_PING_RESPONSE_ERROR:
2456 ep->skip = true;
2457 xhci_dbg(xhci,
2458 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2459 slot_id, ep_index);
2460 goto cleanup;
2461
2462 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2463 /* needs disable slot command to recover */
2464 xhci_warn(xhci,
2465 "WARN: detect an incompatible device for slot %u ep %u",
2466 slot_id, ep_index);
2467 status = -EPROTO;
2468 break;
2469 default:
2470 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2471 status = 0;
2472 break;
2473 }
2474 xhci_warn(xhci,
2475 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2476 trb_comp_code, slot_id, ep_index);
2477 goto cleanup;
2478 }
2479
2480 do {
2481 /* This TRB should be in the TD at the head of this ring's
2482 * TD list.
2483 */
2484 if (list_empty(&ep_ring->td_list)) {
2485 /*
2486 * A stopped endpoint may generate an extra completion
2487 * event if the device was suspended. Don't print
2488 * warnings.
2489 */
2490 if (!(trb_comp_code == COMP_STOPPED ||
2491 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2492 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2493 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2494 ep_index);
2495 }
2496 if (ep->skip) {
2497 ep->skip = false;
2498 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2499 slot_id, ep_index);
2500 }
2501 goto cleanup;
2502 }
2503
2504 /* We've skipped all the TDs on the ep ring when ep->skip set */
2505 if (ep->skip && td_num == 0) {
2506 ep->skip = false;
2507 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2508 slot_id, ep_index);
2509 goto cleanup;
2510 }
2511
2512 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2513 td_list);
2514 if (ep->skip)
2515 td_num--;
2516
2517 /* Is this a TRB in the currently executing TD? */
2518 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2519 td->last_trb, ep_trb_dma, false);
2520
2521 /*
2522 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2523 * is not in the current TD pointed by ep_ring->dequeue because
2524 * that the hardware dequeue pointer still at the previous TRB
2525 * of the current TD. The previous TRB maybe a Link TD or the
2526 * last TRB of the previous TD. The command completion handle
2527 * will take care the rest.
2528 */
2529 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2530 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2531 goto cleanup;
2532 }
2533
2534 if (!ep_seg) {
2535 if (!ep->skip ||
2536 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2537 /* Some host controllers give a spurious
2538 * successful event after a short transfer.
2539 * Ignore it.
2540 */
2541 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2542 ep_ring->last_td_was_short) {
2543 ep_ring->last_td_was_short = false;
2544 goto cleanup;
2545 }
2546 /* HC is busted, give up! */
2547 xhci_err(xhci,
2548 "ERROR Transfer event TRB DMA ptr not "
2549 "part of current TD ep_index %d "
2550 "comp_code %u\n", ep_index,
2551 trb_comp_code);
2552 trb_in_td(xhci, ep_ring->deq_seg,
2553 ep_ring->dequeue, td->last_trb,
2554 ep_trb_dma, true);
2555 return -ESHUTDOWN;
2556 }
2557
2558 skip_isoc_td(xhci, td, event, ep, &status);
2559 goto cleanup;
2560 }
2561 if (trb_comp_code == COMP_SHORT_PACKET)
2562 ep_ring->last_td_was_short = true;
2563 else
2564 ep_ring->last_td_was_short = false;
2565
2566 if (ep->skip) {
2567 xhci_dbg(xhci,
2568 "Found td. Clear skip flag for slot %u ep %u.\n",
2569 slot_id, ep_index);
2570 ep->skip = false;
2571 }
2572
2573 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2574 sizeof(*ep_trb)];
2575
2576 trace_xhci_handle_transfer(ep_ring,
2577 (struct xhci_generic_trb *) ep_trb);
2578
2579 /*
2580 * No-op TRB should not trigger interrupts.
2581 * If ep_trb is a no-op TRB, it means the
2582 * corresponding TD has been cancelled. Just ignore
2583 * the TD.
2584 */
2585 if (trb_is_noop(ep_trb)) {
2586 xhci_dbg(xhci,
2587 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n",
2588 slot_id, ep_index);
2589 goto cleanup;
2590 }
2591
2592 /* update the urb's actual_length and give back to the core */
2593 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2594 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2595 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2596 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2597 else
2598 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2599 &status);
2600 cleanup:
2601 handling_skipped_tds = ep->skip &&
2602 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2603 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2604
2605 /*
2606 * Do not update event ring dequeue pointer if we're in a loop
2607 * processing missed tds.
2608 */
2609 if (!handling_skipped_tds)
2610 inc_deq(xhci, xhci->event_ring);
2611
2612 /*
2613 * If ep->skip is set, it means there are missed tds on the
2614 * endpoint ring need to take care of.
2615 * Process them as short transfer until reach the td pointed by
2616 * the event.
2617 */
2618 } while (handling_skipped_tds);
2619
2620 return 0;
2621
2622 err_out:
2623 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2624 (unsigned long long) xhci_trb_virt_to_dma(
2625 xhci->event_ring->deq_seg,
2626 xhci->event_ring->dequeue),
2627 lower_32_bits(le64_to_cpu(event->buffer)),
2628 upper_32_bits(le64_to_cpu(event->buffer)),
2629 le32_to_cpu(event->transfer_len),
2630 le32_to_cpu(event->flags));
2631 return -ENODEV;
2632 }
2633
2634 /*
2635 * This function handles all OS-owned events on the event ring. It may drop
2636 * xhci->lock between event processing (e.g. to pass up port status changes).
2637 * Returns >0 for "possibly more events to process" (caller should call again),
2638 * otherwise 0 if done. In future, <0 returns should indicate error code.
2639 */
2640 static int xhci_handle_event(struct xhci_hcd *xhci)
2641 {
2642 union xhci_trb *event;
2643 int update_ptrs = 1;
2644 int ret;
2645
2646 /* Event ring hasn't been allocated yet. */
2647 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2648 xhci_err(xhci, "ERROR event ring not ready\n");
2649 return -ENOMEM;
2650 }
2651
2652 event = xhci->event_ring->dequeue;
2653 /* Does the HC or OS own the TRB? */
2654 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2655 xhci->event_ring->cycle_state)
2656 return 0;
2657
2658 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2659
2660 /*
2661 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2662 * speculative reads of the event's flags/data below.
2663 */
2664 rmb();
2665 /* FIXME: Handle more event types. */
2666 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2667 case TRB_TYPE(TRB_COMPLETION):
2668 handle_cmd_completion(xhci, &event->event_cmd);
2669 break;
2670 case TRB_TYPE(TRB_PORT_STATUS):
2671 handle_port_status(xhci, event);
2672 update_ptrs = 0;
2673 break;
2674 case TRB_TYPE(TRB_TRANSFER):
2675 ret = handle_tx_event(xhci, &event->trans_event);
2676 if (ret >= 0)
2677 update_ptrs = 0;
2678 break;
2679 case TRB_TYPE(TRB_DEV_NOTE):
2680 handle_device_notification(xhci, event);
2681 break;
2682 default:
2683 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2684 TRB_TYPE(48))
2685 handle_vendor_event(xhci, event);
2686 else
2687 xhci_warn(xhci, "ERROR unknown event type %d\n",
2688 TRB_FIELD_TO_TYPE(
2689 le32_to_cpu(event->event_cmd.flags)));
2690 }
2691 /* Any of the above functions may drop and re-acquire the lock, so check
2692 * to make sure a watchdog timer didn't mark the host as non-responsive.
2693 */
2694 if (xhci->xhc_state & XHCI_STATE_DYING) {
2695 xhci_dbg(xhci, "xHCI host dying, returning from "
2696 "event handler.\n");
2697 return 0;
2698 }
2699
2700 if (update_ptrs)
2701 /* Update SW event ring dequeue pointer */
2702 inc_deq(xhci, xhci->event_ring);
2703
2704 /* Are there more items on the event ring? Caller will call us again to
2705 * check.
2706 */
2707 return 1;
2708 }
2709
2710 /*
2711 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2712 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2713 * indicators of an event TRB error, but we check the status *first* to be safe.
2714 */
2715 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2716 {
2717 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2718 union xhci_trb *event_ring_deq;
2719 irqreturn_t ret = IRQ_NONE;
2720 unsigned long flags;
2721 dma_addr_t deq;
2722 u64 temp_64;
2723 u32 status;
2724
2725 spin_lock_irqsave(&xhci->lock, flags);
2726 /* Check if the xHC generated the interrupt, or the irq is shared */
2727 status = readl(&xhci->op_regs->status);
2728 if (status == ~(u32)0) {
2729 xhci_hc_died(xhci);
2730 ret = IRQ_HANDLED;
2731 goto out;
2732 }
2733
2734 if (!(status & STS_EINT))
2735 goto out;
2736
2737 if (status & STS_FATAL) {
2738 xhci_warn(xhci, "WARNING: Host System Error\n");
2739 xhci_halt(xhci);
2740 ret = IRQ_HANDLED;
2741 goto out;
2742 }
2743
2744 /*
2745 * Clear the op reg interrupt status first,
2746 * so we can receive interrupts from other MSI-X interrupters.
2747 * Write 1 to clear the interrupt status.
2748 */
2749 status |= STS_EINT;
2750 writel(status, &xhci->op_regs->status);
2751
2752 if (!hcd->msi_enabled) {
2753 u32 irq_pending;
2754 irq_pending = readl(&xhci->ir_set->irq_pending);
2755 irq_pending |= IMAN_IP;
2756 writel(irq_pending, &xhci->ir_set->irq_pending);
2757 }
2758
2759 if (xhci->xhc_state & XHCI_STATE_DYING ||
2760 xhci->xhc_state & XHCI_STATE_HALTED) {
2761 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2762 "Shouldn't IRQs be disabled?\n");
2763 /* Clear the event handler busy flag (RW1C);
2764 * the event ring should be empty.
2765 */
2766 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2767 xhci_write_64(xhci, temp_64 | ERST_EHB,
2768 &xhci->ir_set->erst_dequeue);
2769 ret = IRQ_HANDLED;
2770 goto out;
2771 }
2772
2773 event_ring_deq = xhci->event_ring->dequeue;
2774 /* FIXME this should be a delayed service routine
2775 * that clears the EHB.
2776 */
2777 while (xhci_handle_event(xhci) > 0) {}
2778
2779 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2780 /* If necessary, update the HW's version of the event ring deq ptr. */
2781 if (event_ring_deq != xhci->event_ring->dequeue) {
2782 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2783 xhci->event_ring->dequeue);
2784 if (deq == 0)
2785 xhci_warn(xhci, "WARN something wrong with SW event "
2786 "ring dequeue ptr.\n");
2787 /* Update HC event ring dequeue pointer */
2788 temp_64 &= ERST_PTR_MASK;
2789 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2790 }
2791
2792 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2793 temp_64 |= ERST_EHB;
2794 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2795 ret = IRQ_HANDLED;
2796
2797 out:
2798 spin_unlock_irqrestore(&xhci->lock, flags);
2799
2800 return ret;
2801 }
2802
2803 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2804 {
2805 return xhci_irq(hcd);
2806 }
2807
2808 /**** Endpoint Ring Operations ****/
2809
2810 /*
2811 * Generic function for queueing a TRB on a ring.
2812 * The caller must have checked to make sure there's room on the ring.
2813 *
2814 * @more_trbs_coming: Will you enqueue more TRBs before calling
2815 * prepare_transfer()?
2816 */
2817 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2818 bool more_trbs_coming,
2819 u32 field1, u32 field2, u32 field3, u32 field4)
2820 {
2821 struct xhci_generic_trb *trb;
2822
2823 trb = &ring->enqueue->generic;
2824 trb->field[0] = cpu_to_le32(field1);
2825 trb->field[1] = cpu_to_le32(field2);
2826 trb->field[2] = cpu_to_le32(field3);
2827 trb->field[3] = cpu_to_le32(field4);
2828
2829 trace_xhci_queue_trb(ring, trb);
2830
2831 inc_enq(xhci, ring, more_trbs_coming);
2832 }
2833
2834 /*
2835 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2836 * FIXME allocate segments if the ring is full.
2837 */
2838 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2839 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2840 {
2841 unsigned int num_trbs_needed;
2842
2843 /* Make sure the endpoint has been added to xHC schedule */
2844 switch (ep_state) {
2845 case EP_STATE_DISABLED:
2846 /*
2847 * USB core changed config/interfaces without notifying us,
2848 * or hardware is reporting the wrong state.
2849 */
2850 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2851 return -ENOENT;
2852 case EP_STATE_ERROR:
2853 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2854 /* FIXME event handling code for error needs to clear it */
2855 /* XXX not sure if this should be -ENOENT or not */
2856 return -EINVAL;
2857 case EP_STATE_HALTED:
2858 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2859 case EP_STATE_STOPPED:
2860 case EP_STATE_RUNNING:
2861 break;
2862 default:
2863 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2864 /*
2865 * FIXME issue Configure Endpoint command to try to get the HC
2866 * back into a known state.
2867 */
2868 return -EINVAL;
2869 }
2870
2871 while (1) {
2872 if (room_on_ring(xhci, ep_ring, num_trbs))
2873 break;
2874
2875 if (ep_ring == xhci->cmd_ring) {
2876 xhci_err(xhci, "Do not support expand command ring\n");
2877 return -ENOMEM;
2878 }
2879
2880 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2881 "ERROR no room on ep ring, try ring expansion");
2882 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2883 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2884 mem_flags)) {
2885 xhci_err(xhci, "Ring expansion failed\n");
2886 return -ENOMEM;
2887 }
2888 }
2889
2890 while (trb_is_link(ep_ring->enqueue)) {
2891 /* If we're not dealing with 0.95 hardware or isoc rings
2892 * on AMD 0.96 host, clear the chain bit.
2893 */
2894 if (!xhci_link_trb_quirk(xhci) &&
2895 !(ep_ring->type == TYPE_ISOC &&
2896 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2897 ep_ring->enqueue->link.control &=
2898 cpu_to_le32(~TRB_CHAIN);
2899 else
2900 ep_ring->enqueue->link.control |=
2901 cpu_to_le32(TRB_CHAIN);
2902
2903 wmb();
2904 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2905
2906 /* Toggle the cycle bit after the last ring segment. */
2907 if (link_trb_toggles_cycle(ep_ring->enqueue))
2908 ep_ring->cycle_state ^= 1;
2909
2910 ep_ring->enq_seg = ep_ring->enq_seg->next;
2911 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2912 }
2913 return 0;
2914 }
2915
2916 static int prepare_transfer(struct xhci_hcd *xhci,
2917 struct xhci_virt_device *xdev,
2918 unsigned int ep_index,
2919 unsigned int stream_id,
2920 unsigned int num_trbs,
2921 struct urb *urb,
2922 unsigned int td_index,
2923 gfp_t mem_flags)
2924 {
2925 int ret;
2926 struct urb_priv *urb_priv;
2927 struct xhci_td *td;
2928 struct xhci_ring *ep_ring;
2929 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2930
2931 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2932 if (!ep_ring) {
2933 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2934 stream_id);
2935 return -EINVAL;
2936 }
2937
2938 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2939 num_trbs, mem_flags);
2940 if (ret)
2941 return ret;
2942
2943 urb_priv = urb->hcpriv;
2944 td = &urb_priv->td[td_index];
2945
2946 INIT_LIST_HEAD(&td->td_list);
2947 INIT_LIST_HEAD(&td->cancelled_td_list);
2948
2949 if (td_index == 0) {
2950 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2951 if (unlikely(ret))
2952 return ret;
2953 }
2954
2955 td->urb = urb;
2956 /* Add this TD to the tail of the endpoint ring's TD list */
2957 list_add_tail(&td->td_list, &ep_ring->td_list);
2958 td->start_seg = ep_ring->enq_seg;
2959 td->first_trb = ep_ring->enqueue;
2960
2961 return 0;
2962 }
2963
2964 static unsigned int count_trbs(u64 addr, u64 len)
2965 {
2966 unsigned int num_trbs;
2967
2968 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2969 TRB_MAX_BUFF_SIZE);
2970 if (num_trbs == 0)
2971 num_trbs++;
2972
2973 return num_trbs;
2974 }
2975
2976 static inline unsigned int count_trbs_needed(struct urb *urb)
2977 {
2978 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2979 }
2980
2981 static unsigned int count_sg_trbs_needed(struct urb *urb)
2982 {
2983 struct scatterlist *sg;
2984 unsigned int i, len, full_len, num_trbs = 0;
2985
2986 full_len = urb->transfer_buffer_length;
2987
2988 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2989 len = sg_dma_len(sg);
2990 num_trbs += count_trbs(sg_dma_address(sg), len);
2991 len = min_t(unsigned int, len, full_len);
2992 full_len -= len;
2993 if (full_len == 0)
2994 break;
2995 }
2996
2997 return num_trbs;
2998 }
2999
3000 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3001 {
3002 u64 addr, len;
3003
3004 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3005 len = urb->iso_frame_desc[i].length;
3006
3007 return count_trbs(addr, len);
3008 }
3009
3010 static void check_trb_math(struct urb *urb, int running_total)
3011 {
3012 if (unlikely(running_total != urb->transfer_buffer_length))
3013 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3014 "queued %#x (%d), asked for %#x (%d)\n",
3015 __func__,
3016 urb->ep->desc.bEndpointAddress,
3017 running_total, running_total,
3018 urb->transfer_buffer_length,
3019 urb->transfer_buffer_length);
3020 }
3021
3022 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3023 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3024 struct xhci_generic_trb *start_trb)
3025 {
3026 /*
3027 * Pass all the TRBs to the hardware at once and make sure this write
3028 * isn't reordered.
3029 */
3030 wmb();
3031 if (start_cycle)
3032 start_trb->field[3] |= cpu_to_le32(start_cycle);
3033 else
3034 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3035 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3036 }
3037
3038 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3039 struct xhci_ep_ctx *ep_ctx)
3040 {
3041 int xhci_interval;
3042 int ep_interval;
3043
3044 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3045 ep_interval = urb->interval;
3046
3047 /* Convert to microframes */
3048 if (urb->dev->speed == USB_SPEED_LOW ||
3049 urb->dev->speed == USB_SPEED_FULL)
3050 ep_interval *= 8;
3051
3052 /* FIXME change this to a warning and a suggestion to use the new API
3053 * to set the polling interval (once the API is added).
3054 */
3055 if (xhci_interval != ep_interval) {
3056 dev_dbg_ratelimited(&urb->dev->dev,
3057 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3058 ep_interval, ep_interval == 1 ? "" : "s",
3059 xhci_interval, xhci_interval == 1 ? "" : "s");
3060 urb->interval = xhci_interval;
3061 /* Convert back to frames for LS/FS devices */
3062 if (urb->dev->speed == USB_SPEED_LOW ||
3063 urb->dev->speed == USB_SPEED_FULL)
3064 urb->interval /= 8;
3065 }
3066 }
3067
3068 /*
3069 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3070 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3071 * (comprised of sg list entries) can take several service intervals to
3072 * transmit.
3073 */
3074 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3075 struct urb *urb, int slot_id, unsigned int ep_index)
3076 {
3077 struct xhci_ep_ctx *ep_ctx;
3078
3079 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3080 check_interval(xhci, urb, ep_ctx);
3081
3082 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3083 }
3084
3085 /*
3086 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3087 * packets remaining in the TD (*not* including this TRB).
3088 *
3089 * Total TD packet count = total_packet_count =
3090 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3091 *
3092 * Packets transferred up to and including this TRB = packets_transferred =
3093 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3094 *
3095 * TD size = total_packet_count - packets_transferred
3096 *
3097 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3098 * including this TRB, right shifted by 10
3099 *
3100 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3101 * This is taken care of in the TRB_TD_SIZE() macro
3102 *
3103 * The last TRB in a TD must have the TD size set to zero.
3104 */
3105 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3106 int trb_buff_len, unsigned int td_total_len,
3107 struct urb *urb, bool more_trbs_coming)
3108 {
3109 u32 maxp, total_packet_count;
3110
3111 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3112 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3113 return ((td_total_len - transferred) >> 10);
3114
3115 /* One TRB with a zero-length data packet. */
3116 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3117 trb_buff_len == td_total_len)
3118 return 0;
3119
3120 /* for MTK xHCI, TD size doesn't include this TRB */
3121 if (xhci->quirks & XHCI_MTK_HOST)
3122 trb_buff_len = 0;
3123
3124 maxp = usb_endpoint_maxp(&urb->ep->desc);
3125 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3126
3127 /* Queueing functions don't count the current TRB into transferred */
3128 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3129 }
3130
3131
3132 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3133 u32 *trb_buff_len, struct xhci_segment *seg)
3134 {
3135 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3136 unsigned int unalign;
3137 unsigned int max_pkt;
3138 u32 new_buff_len;
3139
3140 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3141 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3142
3143 /* we got lucky, last normal TRB data on segment is packet aligned */
3144 if (unalign == 0)
3145 return 0;
3146
3147 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3148 unalign, *trb_buff_len);
3149
3150 /* is the last nornal TRB alignable by splitting it */
3151 if (*trb_buff_len > unalign) {
3152 *trb_buff_len -= unalign;
3153 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3154 return 0;
3155 }
3156
3157 /*
3158 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3159 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3160 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3161 */
3162 new_buff_len = max_pkt - (enqd_len % max_pkt);
3163
3164 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3165 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3166
3167 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3168 if (usb_urb_dir_out(urb)) {
3169 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3170 seg->bounce_buf, new_buff_len, enqd_len);
3171 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3172 max_pkt, DMA_TO_DEVICE);
3173 } else {
3174 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3175 max_pkt, DMA_FROM_DEVICE);
3176 }
3177
3178 if (dma_mapping_error(dev, seg->bounce_dma)) {
3179 /* try without aligning. Some host controllers survive */
3180 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3181 return 0;
3182 }
3183 *trb_buff_len = new_buff_len;
3184 seg->bounce_len = new_buff_len;
3185 seg->bounce_offs = enqd_len;
3186
3187 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3188
3189 return 1;
3190 }
3191
3192 /* This is very similar to what ehci-q.c qtd_fill() does */
3193 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3194 struct urb *urb, int slot_id, unsigned int ep_index)
3195 {
3196 struct xhci_ring *ring;
3197 struct urb_priv *urb_priv;
3198 struct xhci_td *td;
3199 struct xhci_generic_trb *start_trb;
3200 struct scatterlist *sg = NULL;
3201 bool more_trbs_coming = true;
3202 bool need_zero_pkt = false;
3203 bool first_trb = true;
3204 unsigned int num_trbs;
3205 unsigned int start_cycle, num_sgs = 0;
3206 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3207 int sent_len, ret;
3208 u32 field, length_field, remainder;
3209 u64 addr, send_addr;
3210
3211 ring = xhci_urb_to_transfer_ring(xhci, urb);
3212 if (!ring)
3213 return -EINVAL;
3214
3215 full_len = urb->transfer_buffer_length;
3216 /* If we have scatter/gather list, we use it. */
3217 if (urb->num_sgs) {
3218 num_sgs = urb->num_mapped_sgs;
3219 sg = urb->sg;
3220 addr = (u64) sg_dma_address(sg);
3221 block_len = sg_dma_len(sg);
3222 num_trbs = count_sg_trbs_needed(urb);
3223 } else {
3224 num_trbs = count_trbs_needed(urb);
3225 addr = (u64) urb->transfer_dma;
3226 block_len = full_len;
3227 }
3228 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3229 ep_index, urb->stream_id,
3230 num_trbs, urb, 0, mem_flags);
3231 if (unlikely(ret < 0))
3232 return ret;
3233
3234 urb_priv = urb->hcpriv;
3235
3236 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3237 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3238 need_zero_pkt = true;
3239
3240 td = &urb_priv->td[0];
3241
3242 /*
3243 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3244 * until we've finished creating all the other TRBs. The ring's cycle
3245 * state may change as we enqueue the other TRBs, so save it too.
3246 */
3247 start_trb = &ring->enqueue->generic;
3248 start_cycle = ring->cycle_state;
3249 send_addr = addr;
3250
3251 /* Queue the TRBs, even if they are zero-length */
3252 for (enqd_len = 0; first_trb || enqd_len < full_len;
3253 enqd_len += trb_buff_len) {
3254 field = TRB_TYPE(TRB_NORMAL);
3255
3256 /* TRB buffer should not cross 64KB boundaries */
3257 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3258 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3259
3260 if (enqd_len + trb_buff_len > full_len)
3261 trb_buff_len = full_len - enqd_len;
3262
3263 /* Don't change the cycle bit of the first TRB until later */
3264 if (first_trb) {
3265 first_trb = false;
3266 if (start_cycle == 0)
3267 field |= TRB_CYCLE;
3268 } else
3269 field |= ring->cycle_state;
3270
3271 /* Chain all the TRBs together; clear the chain bit in the last
3272 * TRB to indicate it's the last TRB in the chain.
3273 */
3274 if (enqd_len + trb_buff_len < full_len) {
3275 field |= TRB_CHAIN;
3276 if (trb_is_link(ring->enqueue + 1)) {
3277 if (xhci_align_td(xhci, urb, enqd_len,
3278 &trb_buff_len,
3279 ring->enq_seg)) {
3280 send_addr = ring->enq_seg->bounce_dma;
3281 /* assuming TD won't span 2 segs */
3282 td->bounce_seg = ring->enq_seg;
3283 }
3284 }
3285 }
3286 if (enqd_len + trb_buff_len >= full_len) {
3287 field &= ~TRB_CHAIN;
3288 field |= TRB_IOC;
3289 more_trbs_coming = false;
3290 td->last_trb = ring->enqueue;
3291 }
3292
3293 /* Only set interrupt on short packet for IN endpoints */
3294 if (usb_urb_dir_in(urb))
3295 field |= TRB_ISP;
3296
3297 /* Set the TRB length, TD size, and interrupter fields. */
3298 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3299 full_len, urb, more_trbs_coming);
3300
3301 length_field = TRB_LEN(trb_buff_len) |
3302 TRB_TD_SIZE(remainder) |
3303 TRB_INTR_TARGET(0);
3304
3305 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3306 lower_32_bits(send_addr),
3307 upper_32_bits(send_addr),
3308 length_field,
3309 field);
3310
3311 addr += trb_buff_len;
3312 sent_len = trb_buff_len;
3313
3314 while (sg && sent_len >= block_len) {
3315 /* New sg entry */
3316 --num_sgs;
3317 sent_len -= block_len;
3318 if (num_sgs != 0) {
3319 sg = sg_next(sg);
3320 block_len = sg_dma_len(sg);
3321 addr = (u64) sg_dma_address(sg);
3322 addr += sent_len;
3323 }
3324 }
3325 block_len -= sent_len;
3326 send_addr = addr;
3327 }
3328
3329 if (need_zero_pkt) {
3330 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3331 ep_index, urb->stream_id,
3332 1, urb, 1, mem_flags);
3333 urb_priv->td[1].last_trb = ring->enqueue;
3334 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3335 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3336 }
3337
3338 check_trb_math(urb, enqd_len);
3339 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3340 start_cycle, start_trb);
3341 return 0;
3342 }
3343
3344 /* Caller must have locked xhci->lock */
3345 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3346 struct urb *urb, int slot_id, unsigned int ep_index)
3347 {
3348 struct xhci_ring *ep_ring;
3349 int num_trbs;
3350 int ret;
3351 struct usb_ctrlrequest *setup;
3352 struct xhci_generic_trb *start_trb;
3353 int start_cycle;
3354 u32 field;
3355 struct urb_priv *urb_priv;
3356 struct xhci_td *td;
3357
3358 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3359 if (!ep_ring)
3360 return -EINVAL;
3361
3362 /*
3363 * Need to copy setup packet into setup TRB, so we can't use the setup
3364 * DMA address.
3365 */
3366 if (!urb->setup_packet)
3367 return -EINVAL;
3368
3369 /* 1 TRB for setup, 1 for status */
3370 num_trbs = 2;
3371 /*
3372 * Don't need to check if we need additional event data and normal TRBs,
3373 * since data in control transfers will never get bigger than 16MB
3374 * XXX: can we get a buffer that crosses 64KB boundaries?
3375 */
3376 if (urb->transfer_buffer_length > 0)
3377 num_trbs++;
3378 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3379 ep_index, urb->stream_id,
3380 num_trbs, urb, 0, mem_flags);
3381 if (ret < 0)
3382 return ret;
3383
3384 urb_priv = urb->hcpriv;
3385 td = &urb_priv->td[0];
3386
3387 /*
3388 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3389 * until we've finished creating all the other TRBs. The ring's cycle
3390 * state may change as we enqueue the other TRBs, so save it too.
3391 */
3392 start_trb = &ep_ring->enqueue->generic;
3393 start_cycle = ep_ring->cycle_state;
3394
3395 /* Queue setup TRB - see section 6.4.1.2.1 */
3396 /* FIXME better way to translate setup_packet into two u32 fields? */
3397 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3398 field = 0;
3399 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3400 if (start_cycle == 0)
3401 field |= 0x1;
3402
3403 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3404 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3405 if (urb->transfer_buffer_length > 0) {
3406 if (setup->bRequestType & USB_DIR_IN)
3407 field |= TRB_TX_TYPE(TRB_DATA_IN);
3408 else
3409 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3410 }
3411 }
3412
3413 queue_trb(xhci, ep_ring, true,
3414 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3415 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3416 TRB_LEN(8) | TRB_INTR_TARGET(0),
3417 /* Immediate data in pointer */
3418 field);
3419
3420 /* If there's data, queue data TRBs */
3421 /* Only set interrupt on short packet for IN endpoints */
3422 if (usb_urb_dir_in(urb))
3423 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3424 else
3425 field = TRB_TYPE(TRB_DATA);
3426
3427 if (urb->transfer_buffer_length > 0) {
3428 u32 length_field, remainder;
3429
3430 remainder = xhci_td_remainder(xhci, 0,
3431 urb->transfer_buffer_length,
3432 urb->transfer_buffer_length,
3433 urb, 1);
3434 length_field = TRB_LEN(urb->transfer_buffer_length) |
3435 TRB_TD_SIZE(remainder) |
3436 TRB_INTR_TARGET(0);
3437 if (setup->bRequestType & USB_DIR_IN)
3438 field |= TRB_DIR_IN;
3439 queue_trb(xhci, ep_ring, true,
3440 lower_32_bits(urb->transfer_dma),
3441 upper_32_bits(urb->transfer_dma),
3442 length_field,
3443 field | ep_ring->cycle_state);
3444 }
3445
3446 /* Save the DMA address of the last TRB in the TD */
3447 td->last_trb = ep_ring->enqueue;
3448
3449 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3450 /* If the device sent data, the status stage is an OUT transfer */
3451 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3452 field = 0;
3453 else
3454 field = TRB_DIR_IN;
3455 queue_trb(xhci, ep_ring, false,
3456 0,
3457 0,
3458 TRB_INTR_TARGET(0),
3459 /* Event on completion */
3460 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3461
3462 giveback_first_trb(xhci, slot_id, ep_index, 0,
3463 start_cycle, start_trb);
3464 return 0;
3465 }
3466
3467 /*
3468 * The transfer burst count field of the isochronous TRB defines the number of
3469 * bursts that are required to move all packets in this TD. Only SuperSpeed
3470 * devices can burst up to bMaxBurst number of packets per service interval.
3471 * This field is zero based, meaning a value of zero in the field means one
3472 * burst. Basically, for everything but SuperSpeed devices, this field will be
3473 * zero. Only xHCI 1.0 host controllers support this field.
3474 */
3475 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3476 struct urb *urb, unsigned int total_packet_count)
3477 {
3478 unsigned int max_burst;
3479
3480 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3481 return 0;
3482
3483 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3484 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3485 }
3486
3487 /*
3488 * Returns the number of packets in the last "burst" of packets. This field is
3489 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3490 * the last burst packet count is equal to the total number of packets in the
3491 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3492 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3493 * contain 1 to (bMaxBurst + 1) packets.
3494 */
3495 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3496 struct urb *urb, unsigned int total_packet_count)
3497 {
3498 unsigned int max_burst;
3499 unsigned int residue;
3500
3501 if (xhci->hci_version < 0x100)
3502 return 0;
3503
3504 if (urb->dev->speed >= USB_SPEED_SUPER) {
3505 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3506 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3507 residue = total_packet_count % (max_burst + 1);
3508 /* If residue is zero, the last burst contains (max_burst + 1)
3509 * number of packets, but the TLBPC field is zero-based.
3510 */
3511 if (residue == 0)
3512 return max_burst;
3513 return residue - 1;
3514 }
3515 if (total_packet_count == 0)
3516 return 0;
3517 return total_packet_count - 1;
3518 }
3519
3520 /*
3521 * Calculates Frame ID field of the isochronous TRB identifies the
3522 * target frame that the Interval associated with this Isochronous
3523 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3524 *
3525 * Returns actual frame id on success, negative value on error.
3526 */
3527 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3528 struct urb *urb, int index)
3529 {
3530 int start_frame, ist, ret = 0;
3531 int start_frame_id, end_frame_id, current_frame_id;
3532
3533 if (urb->dev->speed == USB_SPEED_LOW ||
3534 urb->dev->speed == USB_SPEED_FULL)
3535 start_frame = urb->start_frame + index * urb->interval;
3536 else
3537 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3538
3539 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3540 *
3541 * If bit [3] of IST is cleared to '0', software can add a TRB no
3542 * later than IST[2:0] Microframes before that TRB is scheduled to
3543 * be executed.
3544 * If bit [3] of IST is set to '1', software can add a TRB no later
3545 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3546 */
3547 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3548 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3549 ist <<= 3;
3550
3551 /* Software shall not schedule an Isoch TD with a Frame ID value that
3552 * is less than the Start Frame ID or greater than the End Frame ID,
3553 * where:
3554 *
3555 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3556 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3557 *
3558 * Both the End Frame ID and Start Frame ID values are calculated
3559 * in microframes. When software determines the valid Frame ID value;
3560 * The End Frame ID value should be rounded down to the nearest Frame
3561 * boundary, and the Start Frame ID value should be rounded up to the
3562 * nearest Frame boundary.
3563 */
3564 current_frame_id = readl(&xhci->run_regs->microframe_index);
3565 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3566 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3567
3568 start_frame &= 0x7ff;
3569 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3570 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3571
3572 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3573 __func__, index, readl(&xhci->run_regs->microframe_index),
3574 start_frame_id, end_frame_id, start_frame);
3575
3576 if (start_frame_id < end_frame_id) {
3577 if (start_frame > end_frame_id ||
3578 start_frame < start_frame_id)
3579 ret = -EINVAL;
3580 } else if (start_frame_id > end_frame_id) {
3581 if ((start_frame > end_frame_id &&
3582 start_frame < start_frame_id))
3583 ret = -EINVAL;
3584 } else {
3585 ret = -EINVAL;
3586 }
3587
3588 if (index == 0) {
3589 if (ret == -EINVAL || start_frame == start_frame_id) {
3590 start_frame = start_frame_id + 1;
3591 if (urb->dev->speed == USB_SPEED_LOW ||
3592 urb->dev->speed == USB_SPEED_FULL)
3593 urb->start_frame = start_frame;
3594 else
3595 urb->start_frame = start_frame << 3;
3596 ret = 0;
3597 }
3598 }
3599
3600 if (ret) {
3601 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3602 start_frame, current_frame_id, index,
3603 start_frame_id, end_frame_id);
3604 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3605 return ret;
3606 }
3607
3608 return start_frame;
3609 }
3610
3611 /* This is for isoc transfer */
3612 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3613 struct urb *urb, int slot_id, unsigned int ep_index)
3614 {
3615 struct xhci_ring *ep_ring;
3616 struct urb_priv *urb_priv;
3617 struct xhci_td *td;
3618 int num_tds, trbs_per_td;
3619 struct xhci_generic_trb *start_trb;
3620 bool first_trb;
3621 int start_cycle;
3622 u32 field, length_field;
3623 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3624 u64 start_addr, addr;
3625 int i, j;
3626 bool more_trbs_coming;
3627 struct xhci_virt_ep *xep;
3628 int frame_id;
3629
3630 xep = &xhci->devs[slot_id]->eps[ep_index];
3631 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3632
3633 num_tds = urb->number_of_packets;
3634 if (num_tds < 1) {
3635 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3636 return -EINVAL;
3637 }
3638 start_addr = (u64) urb->transfer_dma;
3639 start_trb = &ep_ring->enqueue->generic;
3640 start_cycle = ep_ring->cycle_state;
3641
3642 urb_priv = urb->hcpriv;
3643 /* Queue the TRBs for each TD, even if they are zero-length */
3644 for (i = 0; i < num_tds; i++) {
3645 unsigned int total_pkt_count, max_pkt;
3646 unsigned int burst_count, last_burst_pkt_count;
3647 u32 sia_frame_id;
3648
3649 first_trb = true;
3650 running_total = 0;
3651 addr = start_addr + urb->iso_frame_desc[i].offset;
3652 td_len = urb->iso_frame_desc[i].length;
3653 td_remain_len = td_len;
3654 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3655 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3656
3657 /* A zero-length transfer still involves at least one packet. */
3658 if (total_pkt_count == 0)
3659 total_pkt_count++;
3660 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3661 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3662 urb, total_pkt_count);
3663
3664 trbs_per_td = count_isoc_trbs_needed(urb, i);
3665
3666 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3667 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3668 if (ret < 0) {
3669 if (i == 0)
3670 return ret;
3671 goto cleanup;
3672 }
3673 td = &urb_priv->td[i];
3674
3675 /* use SIA as default, if frame id is used overwrite it */
3676 sia_frame_id = TRB_SIA;
3677 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3678 HCC_CFC(xhci->hcc_params)) {
3679 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3680 if (frame_id >= 0)
3681 sia_frame_id = TRB_FRAME_ID(frame_id);
3682 }
3683 /*
3684 * Set isoc specific data for the first TRB in a TD.
3685 * Prevent HW from getting the TRBs by keeping the cycle state
3686 * inverted in the first TDs isoc TRB.
3687 */
3688 field = TRB_TYPE(TRB_ISOC) |
3689 TRB_TLBPC(last_burst_pkt_count) |
3690 sia_frame_id |
3691 (i ? ep_ring->cycle_state : !start_cycle);
3692
3693 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3694 if (!xep->use_extended_tbc)
3695 field |= TRB_TBC(burst_count);
3696
3697 /* fill the rest of the TRB fields, and remaining normal TRBs */
3698 for (j = 0; j < trbs_per_td; j++) {
3699 u32 remainder = 0;
3700
3701 /* only first TRB is isoc, overwrite otherwise */
3702 if (!first_trb)
3703 field = TRB_TYPE(TRB_NORMAL) |
3704 ep_ring->cycle_state;
3705
3706 /* Only set interrupt on short packet for IN EPs */
3707 if (usb_urb_dir_in(urb))
3708 field |= TRB_ISP;
3709
3710 /* Set the chain bit for all except the last TRB */
3711 if (j < trbs_per_td - 1) {
3712 more_trbs_coming = true;
3713 field |= TRB_CHAIN;
3714 } else {
3715 more_trbs_coming = false;
3716 td->last_trb = ep_ring->enqueue;
3717 field |= TRB_IOC;
3718 /* set BEI, except for the last TD */
3719 if (xhci->hci_version >= 0x100 &&
3720 !(xhci->quirks & XHCI_AVOID_BEI) &&
3721 i < num_tds - 1)
3722 field |= TRB_BEI;
3723 }
3724 /* Calculate TRB length */
3725 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3726 if (trb_buff_len > td_remain_len)
3727 trb_buff_len = td_remain_len;
3728
3729 /* Set the TRB length, TD size, & interrupter fields. */
3730 remainder = xhci_td_remainder(xhci, running_total,
3731 trb_buff_len, td_len,
3732 urb, more_trbs_coming);
3733
3734 length_field = TRB_LEN(trb_buff_len) |
3735 TRB_INTR_TARGET(0);
3736
3737 /* xhci 1.1 with ETE uses TD Size field for TBC */
3738 if (first_trb && xep->use_extended_tbc)
3739 length_field |= TRB_TD_SIZE_TBC(burst_count);
3740 else
3741 length_field |= TRB_TD_SIZE(remainder);
3742 first_trb = false;
3743
3744 queue_trb(xhci, ep_ring, more_trbs_coming,
3745 lower_32_bits(addr),
3746 upper_32_bits(addr),
3747 length_field,
3748 field);
3749 running_total += trb_buff_len;
3750
3751 addr += trb_buff_len;
3752 td_remain_len -= trb_buff_len;
3753 }
3754
3755 /* Check TD length */
3756 if (running_total != td_len) {
3757 xhci_err(xhci, "ISOC TD length unmatch\n");
3758 ret = -EINVAL;
3759 goto cleanup;
3760 }
3761 }
3762
3763 /* store the next frame id */
3764 if (HCC_CFC(xhci->hcc_params))
3765 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3766
3767 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3768 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3769 usb_amd_quirk_pll_disable();
3770 }
3771 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3772
3773 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3774 start_cycle, start_trb);
3775 return 0;
3776 cleanup:
3777 /* Clean up a partially enqueued isoc transfer. */
3778
3779 for (i--; i >= 0; i--)
3780 list_del_init(&urb_priv->td[i].td_list);
3781
3782 /* Use the first TD as a temporary variable to turn the TDs we've queued
3783 * into No-ops with a software-owned cycle bit. That way the hardware
3784 * won't accidentally start executing bogus TDs when we partially
3785 * overwrite them. td->first_trb and td->start_seg are already set.
3786 */
3787 urb_priv->td[0].last_trb = ep_ring->enqueue;
3788 /* Every TRB except the first & last will have its cycle bit flipped. */
3789 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3790
3791 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3792 ep_ring->enqueue = urb_priv->td[0].first_trb;
3793 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3794 ep_ring->cycle_state = start_cycle;
3795 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3796 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3797 return ret;
3798 }
3799
3800 /*
3801 * Check transfer ring to guarantee there is enough room for the urb.
3802 * Update ISO URB start_frame and interval.
3803 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3804 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3805 * Contiguous Frame ID is not supported by HC.
3806 */
3807 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3808 struct urb *urb, int slot_id, unsigned int ep_index)
3809 {
3810 struct xhci_virt_device *xdev;
3811 struct xhci_ring *ep_ring;
3812 struct xhci_ep_ctx *ep_ctx;
3813 int start_frame;
3814 int num_tds, num_trbs, i;
3815 int ret;
3816 struct xhci_virt_ep *xep;
3817 int ist;
3818
3819 xdev = xhci->devs[slot_id];
3820 xep = &xhci->devs[slot_id]->eps[ep_index];
3821 ep_ring = xdev->eps[ep_index].ring;
3822 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3823
3824 num_trbs = 0;
3825 num_tds = urb->number_of_packets;
3826 for (i = 0; i < num_tds; i++)
3827 num_trbs += count_isoc_trbs_needed(urb, i);
3828
3829 /* Check the ring to guarantee there is enough room for the whole urb.
3830 * Do not insert any td of the urb to the ring if the check failed.
3831 */
3832 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3833 num_trbs, mem_flags);
3834 if (ret)
3835 return ret;
3836
3837 /*
3838 * Check interval value. This should be done before we start to
3839 * calculate the start frame value.
3840 */
3841 check_interval(xhci, urb, ep_ctx);
3842
3843 /* Calculate the start frame and put it in urb->start_frame. */
3844 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3845 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3846 urb->start_frame = xep->next_frame_id;
3847 goto skip_start_over;
3848 }
3849 }
3850
3851 start_frame = readl(&xhci->run_regs->microframe_index);
3852 start_frame &= 0x3fff;
3853 /*
3854 * Round up to the next frame and consider the time before trb really
3855 * gets scheduled by hardare.
3856 */
3857 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3858 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3859 ist <<= 3;
3860 start_frame += ist + XHCI_CFC_DELAY;
3861 start_frame = roundup(start_frame, 8);
3862
3863 /*
3864 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3865 * is greate than 8 microframes.
3866 */
3867 if (urb->dev->speed == USB_SPEED_LOW ||
3868 urb->dev->speed == USB_SPEED_FULL) {
3869 start_frame = roundup(start_frame, urb->interval << 3);
3870 urb->start_frame = start_frame >> 3;
3871 } else {
3872 start_frame = roundup(start_frame, urb->interval);
3873 urb->start_frame = start_frame;
3874 }
3875
3876 skip_start_over:
3877 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3878
3879 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3880 }
3881
3882 /**** Command Ring Operations ****/
3883
3884 /* Generic function for queueing a command TRB on the command ring.
3885 * Check to make sure there's room on the command ring for one command TRB.
3886 * Also check that there's room reserved for commands that must not fail.
3887 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3888 * then only check for the number of reserved spots.
3889 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3890 * because the command event handler may want to resubmit a failed command.
3891 */
3892 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3893 u32 field1, u32 field2,
3894 u32 field3, u32 field4, bool command_must_succeed)
3895 {
3896 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3897 int ret;
3898
3899 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3900 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3901 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3902 return -ESHUTDOWN;
3903 }
3904
3905 if (!command_must_succeed)
3906 reserved_trbs++;
3907
3908 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3909 reserved_trbs, GFP_ATOMIC);
3910 if (ret < 0) {
3911 xhci_err(xhci, "ERR: No room for command on command ring\n");
3912 if (command_must_succeed)
3913 xhci_err(xhci, "ERR: Reserved TRB counting for "
3914 "unfailable commands failed.\n");
3915 return ret;
3916 }
3917
3918 cmd->command_trb = xhci->cmd_ring->enqueue;
3919
3920 /* if there are no other commands queued we start the timeout timer */
3921 if (list_empty(&xhci->cmd_list)) {
3922 xhci->current_cmd = cmd;
3923 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3924 }
3925
3926 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3927
3928 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3929 field4 | xhci->cmd_ring->cycle_state);
3930 return 0;
3931 }
3932
3933 /* Queue a slot enable or disable request on the command ring */
3934 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3935 u32 trb_type, u32 slot_id)
3936 {
3937 return queue_command(xhci, cmd, 0, 0, 0,
3938 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3939 }
3940
3941 /* Queue an address device command TRB */
3942 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3943 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3944 {
3945 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3946 upper_32_bits(in_ctx_ptr), 0,
3947 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3948 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3949 }
3950
3951 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3952 u32 field1, u32 field2, u32 field3, u32 field4)
3953 {
3954 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3955 }
3956
3957 /* Queue a reset device command TRB */
3958 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3959 u32 slot_id)
3960 {
3961 return queue_command(xhci, cmd, 0, 0, 0,
3962 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3963 false);
3964 }
3965
3966 /* Queue a configure endpoint command TRB */
3967 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3968 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3969 u32 slot_id, bool command_must_succeed)
3970 {
3971 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3972 upper_32_bits(in_ctx_ptr), 0,
3973 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3974 command_must_succeed);
3975 }
3976
3977 /* Queue an evaluate context command TRB */
3978 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3979 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3980 {
3981 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3982 upper_32_bits(in_ctx_ptr), 0,
3983 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3984 command_must_succeed);
3985 }
3986
3987 /*
3988 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3989 * activity on an endpoint that is about to be suspended.
3990 */
3991 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3992 int slot_id, unsigned int ep_index, int suspend)
3993 {
3994 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3995 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3996 u32 type = TRB_TYPE(TRB_STOP_RING);
3997 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3998
3999 return queue_command(xhci, cmd, 0, 0, 0,
4000 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4001 }
4002
4003 /* Set Transfer Ring Dequeue Pointer command */
4004 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4005 unsigned int slot_id, unsigned int ep_index,
4006 struct xhci_dequeue_state *deq_state)
4007 {
4008 dma_addr_t addr;
4009 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4010 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4011 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4012 u32 trb_sct = 0;
4013 u32 type = TRB_TYPE(TRB_SET_DEQ);
4014 struct xhci_virt_ep *ep;
4015 struct xhci_command *cmd;
4016 int ret;
4017
4018 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4019 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4020 deq_state->new_deq_seg,
4021 (unsigned long long)deq_state->new_deq_seg->dma,
4022 deq_state->new_deq_ptr,
4023 (unsigned long long)xhci_trb_virt_to_dma(
4024 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4025 deq_state->new_cycle_state);
4026
4027 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4028 deq_state->new_deq_ptr);
4029 if (addr == 0) {
4030 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4031 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4032 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4033 return;
4034 }
4035 ep = &xhci->devs[slot_id]->eps[ep_index];
4036 if ((ep->ep_state & SET_DEQ_PENDING)) {
4037 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4038 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4039 return;
4040 }
4041
4042 /* This function gets called from contexts where it cannot sleep */
4043 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4044 if (!cmd)
4045 return;
4046
4047 ep->queued_deq_seg = deq_state->new_deq_seg;
4048 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4049 if (deq_state->stream_id)
4050 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4051 ret = queue_command(xhci, cmd,
4052 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4053 upper_32_bits(addr), trb_stream_id,
4054 trb_slot_id | trb_ep_index | type, false);
4055 if (ret < 0) {
4056 xhci_free_command(xhci, cmd);
4057 return;
4058 }
4059
4060 /* Stop the TD queueing code from ringing the doorbell until
4061 * this command completes. The HC won't set the dequeue pointer
4062 * if the ring is running, and ringing the doorbell starts the
4063 * ring running.
4064 */
4065 ep->ep_state |= SET_DEQ_PENDING;
4066 }
4067
4068 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4069 int slot_id, unsigned int ep_index,
4070 enum xhci_ep_reset_type reset_type)
4071 {
4072 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4073 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4074 u32 type = TRB_TYPE(TRB_RESET_EP);
4075
4076 if (reset_type == EP_SOFT_RESET)
4077 type |= TRB_TSP;
4078
4079 return queue_command(xhci, cmd, 0, 0, 0,
4080 trb_slot_id | trb_ep_index | type, false);
4081 }