]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/host/xhci-ring.c
Merge tag 'phy-for-4.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71 #include "xhci-mtk.h"
72
73 /*
74 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
75 * address of the TRB.
76 */
77 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
78 union xhci_trb *trb)
79 {
80 unsigned long segment_offset;
81
82 if (!seg || !trb || trb < seg->trbs)
83 return 0;
84 /* offset in TRBs */
85 segment_offset = trb - seg->trbs;
86 if (segment_offset >= TRBS_PER_SEGMENT)
87 return 0;
88 return seg->dma + (segment_offset * sizeof(*trb));
89 }
90
91 /* Does this link TRB point to the first segment in a ring,
92 * or was the previous TRB the last TRB on the last segment in the ERST?
93 */
94 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
95 struct xhci_segment *seg, union xhci_trb *trb)
96 {
97 if (ring == xhci->event_ring)
98 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
99 (seg->next == xhci->event_ring->first_seg);
100 else
101 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
102 }
103
104 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
105 * segment? I.e. would the updated event TRB pointer step off the end of the
106 * event seg?
107 */
108 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
109 struct xhci_segment *seg, union xhci_trb *trb)
110 {
111 if (ring == xhci->event_ring)
112 return trb == &seg->trbs[TRBS_PER_SEGMENT];
113 else
114 return TRB_TYPE_LINK_LE32(trb->link.control);
115 }
116
117 static int enqueue_is_link_trb(struct xhci_ring *ring)
118 {
119 struct xhci_link_trb *link = &ring->enqueue->link;
120 return TRB_TYPE_LINK_LE32(link->control);
121 }
122
123 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
124 * TRB is in a new segment. This does not skip over link TRBs, and it does not
125 * effect the ring dequeue or enqueue pointers.
126 */
127 static void next_trb(struct xhci_hcd *xhci,
128 struct xhci_ring *ring,
129 struct xhci_segment **seg,
130 union xhci_trb **trb)
131 {
132 if (last_trb(xhci, ring, *seg, *trb)) {
133 *seg = (*seg)->next;
134 *trb = ((*seg)->trbs);
135 } else {
136 (*trb)++;
137 }
138 }
139
140 /*
141 * See Cycle bit rules. SW is the consumer for the event ring only.
142 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
143 */
144 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
145 {
146 ring->deq_updates++;
147
148 /*
149 * If this is not event ring, and the dequeue pointer
150 * is not on a link TRB, there is one more usable TRB
151 */
152 if (ring->type != TYPE_EVENT &&
153 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
154 ring->num_trbs_free++;
155
156 do {
157 /*
158 * Update the dequeue pointer further if that was a link TRB or
159 * we're at the end of an event ring segment (which doesn't have
160 * link TRBS)
161 */
162 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
163 if (ring->type == TYPE_EVENT &&
164 last_trb_on_last_seg(xhci, ring,
165 ring->deq_seg, ring->dequeue)) {
166 ring->cycle_state ^= 1;
167 }
168 ring->deq_seg = ring->deq_seg->next;
169 ring->dequeue = ring->deq_seg->trbs;
170 } else {
171 ring->dequeue++;
172 }
173 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
174 }
175
176 /*
177 * See Cycle bit rules. SW is the consumer for the event ring only.
178 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179 *
180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181 * chain bit is set), then set the chain bit in all the following link TRBs.
182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183 * have their chain bit cleared (so that each Link TRB is a separate TD).
184 *
185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
186 * set, but other sections talk about dealing with the chain bit set. This was
187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
188 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
189 *
190 * @more_trbs_coming: Will you enqueue more TRBs before calling
191 * prepare_transfer()?
192 */
193 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
194 bool more_trbs_coming)
195 {
196 u32 chain;
197 union xhci_trb *next;
198
199 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
200 /* If this is not event ring, there is one less usable TRB */
201 if (ring->type != TYPE_EVENT &&
202 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
203 ring->num_trbs_free--;
204 next = ++(ring->enqueue);
205
206 ring->enq_updates++;
207 /* Update the dequeue pointer further if that was a link TRB or we're at
208 * the end of an event ring segment (which doesn't have link TRBS)
209 */
210 while (last_trb(xhci, ring, ring->enq_seg, next)) {
211 if (ring->type != TYPE_EVENT) {
212 /*
213 * If the caller doesn't plan on enqueueing more
214 * TDs before ringing the doorbell, then we
215 * don't want to give the link TRB to the
216 * hardware just yet. We'll give the link TRB
217 * back in prepare_ring() just before we enqueue
218 * the TD at the top of the ring.
219 */
220 if (!chain && !more_trbs_coming)
221 break;
222
223 /* If we're not dealing with 0.95 hardware or
224 * isoc rings on AMD 0.96 host,
225 * carry over the chain bit of the previous TRB
226 * (which may mean the chain bit is cleared).
227 */
228 if (!(ring->type == TYPE_ISOC &&
229 (xhci->quirks & XHCI_AMD_0x96_HOST))
230 && !xhci_link_trb_quirk(xhci)) {
231 next->link.control &=
232 cpu_to_le32(~TRB_CHAIN);
233 next->link.control |=
234 cpu_to_le32(chain);
235 }
236 /* Give this link TRB to the hardware */
237 wmb();
238 next->link.control ^= cpu_to_le32(TRB_CYCLE);
239
240 /* Toggle the cycle bit after the last ring segment. */
241 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
242 ring->cycle_state ^= 1;
243 }
244 }
245 ring->enq_seg = ring->enq_seg->next;
246 ring->enqueue = ring->enq_seg->trbs;
247 next = ring->enqueue;
248 }
249 }
250
251 /*
252 * Check to see if there's room to enqueue num_trbs on the ring and make sure
253 * enqueue pointer will not advance into dequeue segment. See rules above.
254 */
255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
256 unsigned int num_trbs)
257 {
258 int num_trbs_in_deq_seg;
259
260 if (ring->num_trbs_free < num_trbs)
261 return 0;
262
263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
266 return 0;
267 }
268
269 return 1;
270 }
271
272 /* Ring the host controller doorbell after placing a command on the ring */
273 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
274 {
275 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
276 return;
277
278 xhci_dbg(xhci, "// Ding dong!\n");
279 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
280 /* Flush PCI posted writes */
281 readl(&xhci->dba->doorbell[0]);
282 }
283
284 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
285 {
286 u64 temp_64;
287 int ret;
288
289 xhci_dbg(xhci, "Abort command ring\n");
290
291 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
292 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
293
294 /*
295 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
296 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
297 * but the completion event in never sent. Use the cmd timeout timer to
298 * handle those cases. Use twice the time to cover the bit polling retry
299 */
300 mod_timer(&xhci->cmd_timer, jiffies + (2 * XHCI_CMD_DEFAULT_TIMEOUT));
301 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
302 &xhci->op_regs->cmd_ring);
303
304 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
305 * time the completion od all xHCI commands, including
306 * the Command Abort operation. If software doesn't see
307 * CRR negated in a timely manner (e.g. longer than 5
308 * seconds), then it should assume that the there are
309 * larger problems with the xHC and assert HCRST.
310 */
311 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
312 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
313 if (ret < 0) {
314 /* we are about to kill xhci, give it one more chance */
315 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
316 &xhci->op_regs->cmd_ring);
317 udelay(1000);
318 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
319 CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
320 if (ret == 0)
321 return 0;
322
323 xhci_err(xhci, "Stopped the command ring failed, "
324 "maybe the host is dead\n");
325 del_timer(&xhci->cmd_timer);
326 xhci->xhc_state |= XHCI_STATE_DYING;
327 xhci_quiesce(xhci);
328 xhci_halt(xhci);
329 return -ESHUTDOWN;
330 }
331
332 return 0;
333 }
334
335 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
336 unsigned int slot_id,
337 unsigned int ep_index,
338 unsigned int stream_id)
339 {
340 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
341 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
342 unsigned int ep_state = ep->ep_state;
343
344 /* Don't ring the doorbell for this endpoint if there are pending
345 * cancellations because we don't want to interrupt processing.
346 * We don't want to restart any stream rings if there's a set dequeue
347 * pointer command pending because the device can choose to start any
348 * stream once the endpoint is on the HW schedule.
349 */
350 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
351 (ep_state & EP_HALTED))
352 return;
353 writel(DB_VALUE(ep_index, stream_id), db_addr);
354 /* The CPU has better things to do at this point than wait for a
355 * write-posting flush. It'll get there soon enough.
356 */
357 }
358
359 /* Ring the doorbell for any rings with pending URBs */
360 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
361 unsigned int slot_id,
362 unsigned int ep_index)
363 {
364 unsigned int stream_id;
365 struct xhci_virt_ep *ep;
366
367 ep = &xhci->devs[slot_id]->eps[ep_index];
368
369 /* A ring has pending URBs if its TD list is not empty */
370 if (!(ep->ep_state & EP_HAS_STREAMS)) {
371 if (ep->ring && !(list_empty(&ep->ring->td_list)))
372 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
373 return;
374 }
375
376 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
377 stream_id++) {
378 struct xhci_stream_info *stream_info = ep->stream_info;
379 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
380 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
381 stream_id);
382 }
383 }
384
385 /* Get the right ring for the given slot_id, ep_index and stream_id.
386 * If the endpoint supports streams, boundary check the URB's stream ID.
387 * If the endpoint doesn't support streams, return the singular endpoint ring.
388 */
389 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
390 unsigned int slot_id, unsigned int ep_index,
391 unsigned int stream_id)
392 {
393 struct xhci_virt_ep *ep;
394
395 ep = &xhci->devs[slot_id]->eps[ep_index];
396 /* Common case: no streams */
397 if (!(ep->ep_state & EP_HAS_STREAMS))
398 return ep->ring;
399
400 if (stream_id == 0) {
401 xhci_warn(xhci,
402 "WARN: Slot ID %u, ep index %u has streams, "
403 "but URB has no stream ID.\n",
404 slot_id, ep_index);
405 return NULL;
406 }
407
408 if (stream_id < ep->stream_info->num_streams)
409 return ep->stream_info->stream_rings[stream_id];
410
411 xhci_warn(xhci,
412 "WARN: Slot ID %u, ep index %u has "
413 "stream IDs 1 to %u allocated, "
414 "but stream ID %u is requested.\n",
415 slot_id, ep_index,
416 ep->stream_info->num_streams - 1,
417 stream_id);
418 return NULL;
419 }
420
421 /*
422 * Move the xHC's endpoint ring dequeue pointer past cur_td.
423 * Record the new state of the xHC's endpoint ring dequeue segment,
424 * dequeue pointer, and new consumer cycle state in state.
425 * Update our internal representation of the ring's dequeue pointer.
426 *
427 * We do this in three jumps:
428 * - First we update our new ring state to be the same as when the xHC stopped.
429 * - Then we traverse the ring to find the segment that contains
430 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
431 * any link TRBs with the toggle cycle bit set.
432 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
433 * if we've moved it past a link TRB with the toggle cycle bit set.
434 *
435 * Some of the uses of xhci_generic_trb are grotty, but if they're done
436 * with correct __le32 accesses they should work fine. Only users of this are
437 * in here.
438 */
439 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
440 unsigned int slot_id, unsigned int ep_index,
441 unsigned int stream_id, struct xhci_td *cur_td,
442 struct xhci_dequeue_state *state)
443 {
444 struct xhci_virt_device *dev = xhci->devs[slot_id];
445 struct xhci_virt_ep *ep = &dev->eps[ep_index];
446 struct xhci_ring *ep_ring;
447 struct xhci_segment *new_seg;
448 union xhci_trb *new_deq;
449 dma_addr_t addr;
450 u64 hw_dequeue;
451 bool cycle_found = false;
452 bool td_last_trb_found = false;
453
454 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
455 ep_index, stream_id);
456 if (!ep_ring) {
457 xhci_warn(xhci, "WARN can't find new dequeue state "
458 "for invalid stream ID %u.\n",
459 stream_id);
460 return;
461 }
462
463 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
464 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
465 "Finding endpoint context");
466 /* 4.6.9 the css flag is written to the stream context for streams */
467 if (ep->ep_state & EP_HAS_STREAMS) {
468 struct xhci_stream_ctx *ctx =
469 &ep->stream_info->stream_ctx_array[stream_id];
470 hw_dequeue = le64_to_cpu(ctx->stream_ring);
471 } else {
472 struct xhci_ep_ctx *ep_ctx
473 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
474 hw_dequeue = le64_to_cpu(ep_ctx->deq);
475 }
476
477 new_seg = ep_ring->deq_seg;
478 new_deq = ep_ring->dequeue;
479 state->new_cycle_state = hw_dequeue & 0x1;
480
481 /*
482 * We want to find the pointer, segment and cycle state of the new trb
483 * (the one after current TD's last_trb). We know the cycle state at
484 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
485 * found.
486 */
487 do {
488 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
489 == (dma_addr_t)(hw_dequeue & ~0xf)) {
490 cycle_found = true;
491 if (td_last_trb_found)
492 break;
493 }
494 if (new_deq == cur_td->last_trb)
495 td_last_trb_found = true;
496
497 if (cycle_found &&
498 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
499 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
500 state->new_cycle_state ^= 0x1;
501
502 next_trb(xhci, ep_ring, &new_seg, &new_deq);
503
504 /* Search wrapped around, bail out */
505 if (new_deq == ep->ring->dequeue) {
506 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
507 state->new_deq_seg = NULL;
508 state->new_deq_ptr = NULL;
509 return;
510 }
511
512 } while (!cycle_found || !td_last_trb_found);
513
514 state->new_deq_seg = new_seg;
515 state->new_deq_ptr = new_deq;
516
517 /* Don't update the ring cycle state for the producer (us). */
518 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
519 "Cycle state = 0x%x", state->new_cycle_state);
520
521 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
522 "New dequeue segment = %p (virtual)",
523 state->new_deq_seg);
524 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
525 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
526 "New dequeue pointer = 0x%llx (DMA)",
527 (unsigned long long) addr);
528 }
529
530 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
531 * (The last TRB actually points to the ring enqueue pointer, which is not part
532 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
533 */
534 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
535 struct xhci_td *cur_td, bool flip_cycle)
536 {
537 struct xhci_segment *cur_seg;
538 union xhci_trb *cur_trb;
539
540 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
541 true;
542 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
543 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
544 /* Unchain any chained Link TRBs, but
545 * leave the pointers intact.
546 */
547 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
548 /* Flip the cycle bit (link TRBs can't be the first
549 * or last TRB).
550 */
551 if (flip_cycle)
552 cur_trb->generic.field[3] ^=
553 cpu_to_le32(TRB_CYCLE);
554 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
555 "Cancel (unchain) link TRB");
556 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
557 "Address = %p (0x%llx dma); "
558 "in seg %p (0x%llx dma)",
559 cur_trb,
560 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
561 cur_seg,
562 (unsigned long long)cur_seg->dma);
563 } else {
564 cur_trb->generic.field[0] = 0;
565 cur_trb->generic.field[1] = 0;
566 cur_trb->generic.field[2] = 0;
567 /* Preserve only the cycle bit of this TRB */
568 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
569 /* Flip the cycle bit except on the first or last TRB */
570 if (flip_cycle && cur_trb != cur_td->first_trb &&
571 cur_trb != cur_td->last_trb)
572 cur_trb->generic.field[3] ^=
573 cpu_to_le32(TRB_CYCLE);
574 cur_trb->generic.field[3] |= cpu_to_le32(
575 TRB_TYPE(TRB_TR_NOOP));
576 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
577 "TRB to noop at offset 0x%llx",
578 (unsigned long long)
579 xhci_trb_virt_to_dma(cur_seg, cur_trb));
580 }
581 if (cur_trb == cur_td->last_trb)
582 break;
583 }
584 }
585
586 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
587 struct xhci_virt_ep *ep)
588 {
589 ep->ep_state &= ~EP_HALT_PENDING;
590 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
591 * timer is running on another CPU, we don't decrement stop_cmds_pending
592 * (since we didn't successfully stop the watchdog timer).
593 */
594 if (del_timer(&ep->stop_cmd_timer))
595 ep->stop_cmds_pending--;
596 }
597
598 /* Must be called with xhci->lock held in interrupt context */
599 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
600 struct xhci_td *cur_td, int status)
601 {
602 struct usb_hcd *hcd;
603 struct urb *urb;
604 struct urb_priv *urb_priv;
605
606 urb = cur_td->urb;
607 urb_priv = urb->hcpriv;
608 urb_priv->td_cnt++;
609 hcd = bus_to_hcd(urb->dev->bus);
610
611 /* Only giveback urb when this is the last td in urb */
612 if (urb_priv->td_cnt == urb_priv->length) {
613 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
614 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
615 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
616 if (xhci->quirks & XHCI_AMD_PLL_FIX)
617 usb_amd_quirk_pll_enable();
618 }
619 }
620 usb_hcd_unlink_urb_from_ep(hcd, urb);
621
622 spin_unlock(&xhci->lock);
623 usb_hcd_giveback_urb(hcd, urb, status);
624 xhci_urb_free_priv(urb_priv);
625 spin_lock(&xhci->lock);
626 }
627 }
628
629 /*
630 * When we get a command completion for a Stop Endpoint Command, we need to
631 * unlink any cancelled TDs from the ring. There are two ways to do that:
632 *
633 * 1. If the HW was in the middle of processing the TD that needs to be
634 * cancelled, then we must move the ring's dequeue pointer past the last TRB
635 * in the TD with a Set Dequeue Pointer Command.
636 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
637 * bit cleared) so that the HW will skip over them.
638 */
639 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
640 union xhci_trb *trb, struct xhci_event_cmd *event)
641 {
642 unsigned int ep_index;
643 struct xhci_ring *ep_ring;
644 struct xhci_virt_ep *ep;
645 struct list_head *entry;
646 struct xhci_td *cur_td = NULL;
647 struct xhci_td *last_unlinked_td;
648
649 struct xhci_dequeue_state deq_state;
650
651 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
652 if (!xhci->devs[slot_id])
653 xhci_warn(xhci, "Stop endpoint command "
654 "completion for disabled slot %u\n",
655 slot_id);
656 return;
657 }
658
659 memset(&deq_state, 0, sizeof(deq_state));
660 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
661 ep = &xhci->devs[slot_id]->eps[ep_index];
662
663 if (list_empty(&ep->cancelled_td_list)) {
664 xhci_stop_watchdog_timer_in_irq(xhci, ep);
665 ep->stopped_td = NULL;
666 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
667 return;
668 }
669
670 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
671 * We have the xHCI lock, so nothing can modify this list until we drop
672 * it. We're also in the event handler, so we can't get re-interrupted
673 * if another Stop Endpoint command completes
674 */
675 list_for_each(entry, &ep->cancelled_td_list) {
676 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
677 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
678 "Removing canceled TD starting at 0x%llx (dma).",
679 (unsigned long long)xhci_trb_virt_to_dma(
680 cur_td->start_seg, cur_td->first_trb));
681 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
682 if (!ep_ring) {
683 /* This shouldn't happen unless a driver is mucking
684 * with the stream ID after submission. This will
685 * leave the TD on the hardware ring, and the hardware
686 * will try to execute it, and may access a buffer
687 * that has already been freed. In the best case, the
688 * hardware will execute it, and the event handler will
689 * ignore the completion event for that TD, since it was
690 * removed from the td_list for that endpoint. In
691 * short, don't muck with the stream ID after
692 * submission.
693 */
694 xhci_warn(xhci, "WARN Cancelled URB %p "
695 "has invalid stream ID %u.\n",
696 cur_td->urb,
697 cur_td->urb->stream_id);
698 goto remove_finished_td;
699 }
700 /*
701 * If we stopped on the TD we need to cancel, then we have to
702 * move the xHC endpoint ring dequeue pointer past this TD.
703 */
704 if (cur_td == ep->stopped_td)
705 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
706 cur_td->urb->stream_id,
707 cur_td, &deq_state);
708 else
709 td_to_noop(xhci, ep_ring, cur_td, false);
710 remove_finished_td:
711 /*
712 * The event handler won't see a completion for this TD anymore,
713 * so remove it from the endpoint ring's TD list. Keep it in
714 * the cancelled TD list for URB completion later.
715 */
716 list_del_init(&cur_td->td_list);
717 }
718 last_unlinked_td = cur_td;
719 xhci_stop_watchdog_timer_in_irq(xhci, ep);
720
721 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
722 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
723 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
724 ep->stopped_td->urb->stream_id, &deq_state);
725 xhci_ring_cmd_db(xhci);
726 } else {
727 /* Otherwise ring the doorbell(s) to restart queued transfers */
728 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
729 }
730
731 ep->stopped_td = NULL;
732
733 /*
734 * Drop the lock and complete the URBs in the cancelled TD list.
735 * New TDs to be cancelled might be added to the end of the list before
736 * we can complete all the URBs for the TDs we already unlinked.
737 * So stop when we've completed the URB for the last TD we unlinked.
738 */
739 do {
740 cur_td = list_entry(ep->cancelled_td_list.next,
741 struct xhci_td, cancelled_td_list);
742 list_del_init(&cur_td->cancelled_td_list);
743
744 /* Clean up the cancelled URB */
745 /* Doesn't matter what we pass for status, since the core will
746 * just overwrite it (because the URB has been unlinked).
747 */
748 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
749
750 /* Stop processing the cancelled list if the watchdog timer is
751 * running.
752 */
753 if (xhci->xhc_state & XHCI_STATE_DYING)
754 return;
755 } while (cur_td != last_unlinked_td);
756
757 /* Return to the event handler with xhci->lock re-acquired */
758 }
759
760 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
761 {
762 struct xhci_td *cur_td;
763
764 while (!list_empty(&ring->td_list)) {
765 cur_td = list_first_entry(&ring->td_list,
766 struct xhci_td, td_list);
767 list_del_init(&cur_td->td_list);
768 if (!list_empty(&cur_td->cancelled_td_list))
769 list_del_init(&cur_td->cancelled_td_list);
770 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
771 }
772 }
773
774 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
775 int slot_id, int ep_index)
776 {
777 struct xhci_td *cur_td;
778 struct xhci_virt_ep *ep;
779 struct xhci_ring *ring;
780
781 ep = &xhci->devs[slot_id]->eps[ep_index];
782 if ((ep->ep_state & EP_HAS_STREAMS) ||
783 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
784 int stream_id;
785
786 for (stream_id = 0; stream_id < ep->stream_info->num_streams;
787 stream_id++) {
788 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
789 "Killing URBs for slot ID %u, ep index %u, stream %u",
790 slot_id, ep_index, stream_id + 1);
791 xhci_kill_ring_urbs(xhci,
792 ep->stream_info->stream_rings[stream_id]);
793 }
794 } else {
795 ring = ep->ring;
796 if (!ring)
797 return;
798 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
799 "Killing URBs for slot ID %u, ep index %u",
800 slot_id, ep_index);
801 xhci_kill_ring_urbs(xhci, ring);
802 }
803 while (!list_empty(&ep->cancelled_td_list)) {
804 cur_td = list_first_entry(&ep->cancelled_td_list,
805 struct xhci_td, cancelled_td_list);
806 list_del_init(&cur_td->cancelled_td_list);
807 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
808 }
809 }
810
811 /* Watchdog timer function for when a stop endpoint command fails to complete.
812 * In this case, we assume the host controller is broken or dying or dead. The
813 * host may still be completing some other events, so we have to be careful to
814 * let the event ring handler and the URB dequeueing/enqueueing functions know
815 * through xhci->state.
816 *
817 * The timer may also fire if the host takes a very long time to respond to the
818 * command, and the stop endpoint command completion handler cannot delete the
819 * timer before the timer function is called. Another endpoint cancellation may
820 * sneak in before the timer function can grab the lock, and that may queue
821 * another stop endpoint command and add the timer back. So we cannot use a
822 * simple flag to say whether there is a pending stop endpoint command for a
823 * particular endpoint.
824 *
825 * Instead we use a combination of that flag and a counter for the number of
826 * pending stop endpoint commands. If the timer is the tail end of the last
827 * stop endpoint command, and the endpoint's command is still pending, we assume
828 * the host is dying.
829 */
830 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
831 {
832 struct xhci_hcd *xhci;
833 struct xhci_virt_ep *ep;
834 int ret, i, j;
835 unsigned long flags;
836
837 ep = (struct xhci_virt_ep *) arg;
838 xhci = ep->xhci;
839
840 spin_lock_irqsave(&xhci->lock, flags);
841
842 ep->stop_cmds_pending--;
843 if (xhci->xhc_state & XHCI_STATE_DYING) {
844 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
845 "Stop EP timer ran, but another timer marked "
846 "xHCI as DYING, exiting.");
847 spin_unlock_irqrestore(&xhci->lock, flags);
848 return;
849 }
850 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
851 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
852 "Stop EP timer ran, but no command pending, "
853 "exiting.");
854 spin_unlock_irqrestore(&xhci->lock, flags);
855 return;
856 }
857
858 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
859 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
860 /* Oops, HC is dead or dying or at least not responding to the stop
861 * endpoint command.
862 */
863 xhci->xhc_state |= XHCI_STATE_DYING;
864 /* Disable interrupts from the host controller and start halting it */
865 xhci_quiesce(xhci);
866 spin_unlock_irqrestore(&xhci->lock, flags);
867
868 ret = xhci_halt(xhci);
869
870 spin_lock_irqsave(&xhci->lock, flags);
871 if (ret < 0) {
872 /* This is bad; the host is not responding to commands and it's
873 * not allowing itself to be halted. At least interrupts are
874 * disabled. If we call usb_hc_died(), it will attempt to
875 * disconnect all device drivers under this host. Those
876 * disconnect() methods will wait for all URBs to be unlinked,
877 * so we must complete them.
878 */
879 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
880 xhci_warn(xhci, "Completing active URBs anyway.\n");
881 /* We could turn all TDs on the rings to no-ops. This won't
882 * help if the host has cached part of the ring, and is slow if
883 * we want to preserve the cycle bit. Skip it and hope the host
884 * doesn't touch the memory.
885 */
886 }
887 for (i = 0; i < MAX_HC_SLOTS; i++) {
888 if (!xhci->devs[i])
889 continue;
890 for (j = 0; j < 31; j++)
891 xhci_kill_endpoint_urbs(xhci, i, j);
892 }
893 spin_unlock_irqrestore(&xhci->lock, flags);
894 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
895 "Calling usb_hc_died()");
896 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
897 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
898 "xHCI host controller is dead.");
899 }
900
901
902 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
903 struct xhci_virt_device *dev,
904 struct xhci_ring *ep_ring,
905 unsigned int ep_index)
906 {
907 union xhci_trb *dequeue_temp;
908 int num_trbs_free_temp;
909 bool revert = false;
910
911 num_trbs_free_temp = ep_ring->num_trbs_free;
912 dequeue_temp = ep_ring->dequeue;
913
914 /* If we get two back-to-back stalls, and the first stalled transfer
915 * ends just before a link TRB, the dequeue pointer will be left on
916 * the link TRB by the code in the while loop. So we have to update
917 * the dequeue pointer one segment further, or we'll jump off
918 * the segment into la-la-land.
919 */
920 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
921 ep_ring->deq_seg = ep_ring->deq_seg->next;
922 ep_ring->dequeue = ep_ring->deq_seg->trbs;
923 }
924
925 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
926 /* We have more usable TRBs */
927 ep_ring->num_trbs_free++;
928 ep_ring->dequeue++;
929 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
930 ep_ring->dequeue)) {
931 if (ep_ring->dequeue ==
932 dev->eps[ep_index].queued_deq_ptr)
933 break;
934 ep_ring->deq_seg = ep_ring->deq_seg->next;
935 ep_ring->dequeue = ep_ring->deq_seg->trbs;
936 }
937 if (ep_ring->dequeue == dequeue_temp) {
938 revert = true;
939 break;
940 }
941 }
942
943 if (revert) {
944 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
945 ep_ring->num_trbs_free = num_trbs_free_temp;
946 }
947 }
948
949 /*
950 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
951 * we need to clear the set deq pending flag in the endpoint ring state, so that
952 * the TD queueing code can ring the doorbell again. We also need to ring the
953 * endpoint doorbell to restart the ring, but only if there aren't more
954 * cancellations pending.
955 */
956 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
957 union xhci_trb *trb, u32 cmd_comp_code)
958 {
959 unsigned int ep_index;
960 unsigned int stream_id;
961 struct xhci_ring *ep_ring;
962 struct xhci_virt_device *dev;
963 struct xhci_virt_ep *ep;
964 struct xhci_ep_ctx *ep_ctx;
965 struct xhci_slot_ctx *slot_ctx;
966
967 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
968 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
969 dev = xhci->devs[slot_id];
970 ep = &dev->eps[ep_index];
971
972 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
973 if (!ep_ring) {
974 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
975 stream_id);
976 /* XXX: Harmless??? */
977 goto cleanup;
978 }
979
980 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
981 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
982
983 if (cmd_comp_code != COMP_SUCCESS) {
984 unsigned int ep_state;
985 unsigned int slot_state;
986
987 switch (cmd_comp_code) {
988 case COMP_TRB_ERR:
989 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
990 break;
991 case COMP_CTX_STATE:
992 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
993 ep_state = le32_to_cpu(ep_ctx->ep_info);
994 ep_state &= EP_STATE_MASK;
995 slot_state = le32_to_cpu(slot_ctx->dev_state);
996 slot_state = GET_SLOT_STATE(slot_state);
997 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
998 "Slot state = %u, EP state = %u",
999 slot_state, ep_state);
1000 break;
1001 case COMP_EBADSLT:
1002 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1003 slot_id);
1004 break;
1005 default:
1006 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1007 cmd_comp_code);
1008 break;
1009 }
1010 /* OK what do we do now? The endpoint state is hosed, and we
1011 * should never get to this point if the synchronization between
1012 * queueing, and endpoint state are correct. This might happen
1013 * if the device gets disconnected after we've finished
1014 * cancelling URBs, which might not be an error...
1015 */
1016 } else {
1017 u64 deq;
1018 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1019 if (ep->ep_state & EP_HAS_STREAMS) {
1020 struct xhci_stream_ctx *ctx =
1021 &ep->stream_info->stream_ctx_array[stream_id];
1022 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1023 } else {
1024 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1025 }
1026 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1027 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1028 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1029 ep->queued_deq_ptr) == deq) {
1030 /* Update the ring's dequeue segment and dequeue pointer
1031 * to reflect the new position.
1032 */
1033 update_ring_for_set_deq_completion(xhci, dev,
1034 ep_ring, ep_index);
1035 } else {
1036 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1037 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1038 ep->queued_deq_seg, ep->queued_deq_ptr);
1039 }
1040 }
1041
1042 cleanup:
1043 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1044 dev->eps[ep_index].queued_deq_seg = NULL;
1045 dev->eps[ep_index].queued_deq_ptr = NULL;
1046 /* Restart any rings with pending URBs */
1047 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1048 }
1049
1050 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1051 union xhci_trb *trb, u32 cmd_comp_code)
1052 {
1053 unsigned int ep_index;
1054
1055 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1056 /* This command will only fail if the endpoint wasn't halted,
1057 * but we don't care.
1058 */
1059 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1060 "Ignoring reset ep completion code of %u", cmd_comp_code);
1061
1062 /* HW with the reset endpoint quirk needs to have a configure endpoint
1063 * command complete before the endpoint can be used. Queue that here
1064 * because the HW can't handle two commands being queued in a row.
1065 */
1066 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1067 struct xhci_command *command;
1068 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1069 if (!command) {
1070 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1071 return;
1072 }
1073 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1074 "Queueing configure endpoint command");
1075 xhci_queue_configure_endpoint(xhci, command,
1076 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1077 false);
1078 xhci_ring_cmd_db(xhci);
1079 } else {
1080 /* Clear our internal halted state */
1081 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1082 }
1083 }
1084
1085 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1086 u32 cmd_comp_code)
1087 {
1088 if (cmd_comp_code == COMP_SUCCESS)
1089 xhci->slot_id = slot_id;
1090 else
1091 xhci->slot_id = 0;
1092 }
1093
1094 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1095 {
1096 struct xhci_virt_device *virt_dev;
1097
1098 virt_dev = xhci->devs[slot_id];
1099 if (!virt_dev)
1100 return;
1101 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1102 /* Delete default control endpoint resources */
1103 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1104 xhci_free_virt_device(xhci, slot_id);
1105 }
1106
1107 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1108 struct xhci_event_cmd *event, u32 cmd_comp_code)
1109 {
1110 struct xhci_virt_device *virt_dev;
1111 struct xhci_input_control_ctx *ctrl_ctx;
1112 unsigned int ep_index;
1113 unsigned int ep_state;
1114 u32 add_flags, drop_flags;
1115
1116 /*
1117 * Configure endpoint commands can come from the USB core
1118 * configuration or alt setting changes, or because the HW
1119 * needed an extra configure endpoint command after a reset
1120 * endpoint command or streams were being configured.
1121 * If the command was for a halted endpoint, the xHCI driver
1122 * is not waiting on the configure endpoint command.
1123 */
1124 virt_dev = xhci->devs[slot_id];
1125 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1126 if (!ctrl_ctx) {
1127 xhci_warn(xhci, "Could not get input context, bad type.\n");
1128 return;
1129 }
1130
1131 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1132 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1133 /* Input ctx add_flags are the endpoint index plus one */
1134 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1135
1136 /* A usb_set_interface() call directly after clearing a halted
1137 * condition may race on this quirky hardware. Not worth
1138 * worrying about, since this is prototype hardware. Not sure
1139 * if this will work for streams, but streams support was
1140 * untested on this prototype.
1141 */
1142 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1143 ep_index != (unsigned int) -1 &&
1144 add_flags - SLOT_FLAG == drop_flags) {
1145 ep_state = virt_dev->eps[ep_index].ep_state;
1146 if (!(ep_state & EP_HALTED))
1147 return;
1148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1149 "Completed config ep cmd - "
1150 "last ep index = %d, state = %d",
1151 ep_index, ep_state);
1152 /* Clear internal halted state and restart ring(s) */
1153 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1154 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1155 return;
1156 }
1157 return;
1158 }
1159
1160 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1161 struct xhci_event_cmd *event)
1162 {
1163 xhci_dbg(xhci, "Completed reset device command.\n");
1164 if (!xhci->devs[slot_id])
1165 xhci_warn(xhci, "Reset device command completion "
1166 "for disabled slot %u\n", slot_id);
1167 }
1168
1169 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1170 struct xhci_event_cmd *event)
1171 {
1172 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1173 xhci->error_bitmask |= 1 << 6;
1174 return;
1175 }
1176 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1177 "NEC firmware version %2x.%02x",
1178 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1179 NEC_FW_MINOR(le32_to_cpu(event->status)));
1180 }
1181
1182 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1183 {
1184 list_del(&cmd->cmd_list);
1185
1186 if (cmd->completion) {
1187 cmd->status = status;
1188 complete(cmd->completion);
1189 } else {
1190 kfree(cmd);
1191 }
1192 }
1193
1194 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1195 {
1196 struct xhci_command *cur_cmd, *tmp_cmd;
1197 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1198 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1199 }
1200
1201 /*
1202 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1203 * If there are other commands waiting then restart the ring and kick the timer.
1204 * This must be called with command ring stopped and xhci->lock held.
1205 */
1206 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1207 struct xhci_command *cur_cmd)
1208 {
1209 struct xhci_command *i_cmd, *tmp_cmd;
1210 u32 cycle_state;
1211
1212 /* Turn all aborted commands in list to no-ops, then restart */
1213 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1214 cmd_list) {
1215
1216 if (i_cmd->status != COMP_CMD_ABORT)
1217 continue;
1218
1219 i_cmd->status = COMP_CMD_STOP;
1220
1221 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1222 i_cmd->command_trb);
1223 /* get cycle state from the original cmd trb */
1224 cycle_state = le32_to_cpu(
1225 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE;
1226 /* modify the command trb to no-op command */
1227 i_cmd->command_trb->generic.field[0] = 0;
1228 i_cmd->command_trb->generic.field[1] = 0;
1229 i_cmd->command_trb->generic.field[2] = 0;
1230 i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1231 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1232
1233 /*
1234 * caller waiting for completion is called when command
1235 * completion event is received for these no-op commands
1236 */
1237 }
1238
1239 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1240
1241 /* ring command ring doorbell to restart the command ring */
1242 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1243 !(xhci->xhc_state & XHCI_STATE_DYING)) {
1244 xhci->current_cmd = cur_cmd;
1245 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1246 xhci_ring_cmd_db(xhci);
1247 }
1248 return;
1249 }
1250
1251
1252 void xhci_handle_command_timeout(unsigned long data)
1253 {
1254 struct xhci_hcd *xhci;
1255 int ret;
1256 unsigned long flags;
1257 u64 hw_ring_state;
1258 bool second_timeout = false;
1259 xhci = (struct xhci_hcd *) data;
1260
1261 /* mark this command to be cancelled */
1262 spin_lock_irqsave(&xhci->lock, flags);
1263 if (xhci->current_cmd) {
1264 if (xhci->current_cmd->status == COMP_CMD_ABORT)
1265 second_timeout = true;
1266 xhci->current_cmd->status = COMP_CMD_ABORT;
1267 }
1268
1269 /* Make sure command ring is running before aborting it */
1270 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1271 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1272 (hw_ring_state & CMD_RING_RUNNING)) {
1273 spin_unlock_irqrestore(&xhci->lock, flags);
1274 xhci_dbg(xhci, "Command timeout\n");
1275 ret = xhci_abort_cmd_ring(xhci);
1276 if (unlikely(ret == -ESHUTDOWN)) {
1277 xhci_err(xhci, "Abort command ring failed\n");
1278 xhci_cleanup_command_queue(xhci);
1279 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1280 xhci_dbg(xhci, "xHCI host controller is dead.\n");
1281 }
1282 return;
1283 }
1284
1285 /* command ring failed to restart, or host removed. Bail out */
1286 if (second_timeout || xhci->xhc_state & XHCI_STATE_REMOVING) {
1287 spin_unlock_irqrestore(&xhci->lock, flags);
1288 xhci_dbg(xhci, "command timed out twice, ring start fail?\n");
1289 xhci_cleanup_command_queue(xhci);
1290 return;
1291 }
1292
1293 /* command timeout on stopped ring, ring can't be aborted */
1294 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1295 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1296 spin_unlock_irqrestore(&xhci->lock, flags);
1297 return;
1298 }
1299
1300 static void handle_cmd_completion(struct xhci_hcd *xhci,
1301 struct xhci_event_cmd *event)
1302 {
1303 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1304 u64 cmd_dma;
1305 dma_addr_t cmd_dequeue_dma;
1306 u32 cmd_comp_code;
1307 union xhci_trb *cmd_trb;
1308 struct xhci_command *cmd;
1309 u32 cmd_type;
1310
1311 cmd_dma = le64_to_cpu(event->cmd_trb);
1312 cmd_trb = xhci->cmd_ring->dequeue;
1313 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1314 cmd_trb);
1315 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1316 if (cmd_dequeue_dma == 0) {
1317 xhci->error_bitmask |= 1 << 4;
1318 return;
1319 }
1320 /* Does the DMA address match our internal dequeue pointer address? */
1321 if (cmd_dma != (u64) cmd_dequeue_dma) {
1322 xhci->error_bitmask |= 1 << 5;
1323 return;
1324 }
1325
1326 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1327
1328 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1329 xhci_err(xhci,
1330 "Command completion event does not match command\n");
1331 return;
1332 }
1333
1334 del_timer(&xhci->cmd_timer);
1335
1336 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1337
1338 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1339
1340 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1341 if (cmd_comp_code == COMP_CMD_STOP) {
1342 xhci_handle_stopped_cmd_ring(xhci, cmd);
1343 return;
1344 }
1345 /*
1346 * Host aborted the command ring, check if the current command was
1347 * supposed to be aborted, otherwise continue normally.
1348 * The command ring is stopped now, but the xHC will issue a Command
1349 * Ring Stopped event which will cause us to restart it.
1350 */
1351 if (cmd_comp_code == COMP_CMD_ABORT) {
1352 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1353 if (cmd->status == COMP_CMD_ABORT)
1354 goto event_handled;
1355 }
1356
1357 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1358 switch (cmd_type) {
1359 case TRB_ENABLE_SLOT:
1360 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1361 break;
1362 case TRB_DISABLE_SLOT:
1363 xhci_handle_cmd_disable_slot(xhci, slot_id);
1364 break;
1365 case TRB_CONFIG_EP:
1366 if (!cmd->completion)
1367 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1368 cmd_comp_code);
1369 break;
1370 case TRB_EVAL_CONTEXT:
1371 break;
1372 case TRB_ADDR_DEV:
1373 break;
1374 case TRB_STOP_RING:
1375 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1376 le32_to_cpu(cmd_trb->generic.field[3])));
1377 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1378 break;
1379 case TRB_SET_DEQ:
1380 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1381 le32_to_cpu(cmd_trb->generic.field[3])));
1382 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1383 break;
1384 case TRB_CMD_NOOP:
1385 /* Is this an aborted command turned to NO-OP? */
1386 if (cmd->status == COMP_CMD_STOP)
1387 cmd_comp_code = COMP_CMD_STOP;
1388 break;
1389 case TRB_RESET_EP:
1390 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1391 le32_to_cpu(cmd_trb->generic.field[3])));
1392 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1393 break;
1394 case TRB_RESET_DEV:
1395 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1396 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1397 */
1398 slot_id = TRB_TO_SLOT_ID(
1399 le32_to_cpu(cmd_trb->generic.field[3]));
1400 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1401 break;
1402 case TRB_NEC_GET_FW:
1403 xhci_handle_cmd_nec_get_fw(xhci, event);
1404 break;
1405 default:
1406 /* Skip over unknown commands on the event ring */
1407 xhci->error_bitmask |= 1 << 6;
1408 break;
1409 }
1410
1411 /* restart timer if this wasn't the last command */
1412 if (cmd->cmd_list.next != &xhci->cmd_list) {
1413 xhci->current_cmd = list_entry(cmd->cmd_list.next,
1414 struct xhci_command, cmd_list);
1415 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1416 }
1417
1418 event_handled:
1419 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1420
1421 inc_deq(xhci, xhci->cmd_ring);
1422 }
1423
1424 static void handle_vendor_event(struct xhci_hcd *xhci,
1425 union xhci_trb *event)
1426 {
1427 u32 trb_type;
1428
1429 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1430 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1431 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1432 handle_cmd_completion(xhci, &event->event_cmd);
1433 }
1434
1435 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1436 * port registers -- USB 3.0 and USB 2.0).
1437 *
1438 * Returns a zero-based port number, which is suitable for indexing into each of
1439 * the split roothubs' port arrays and bus state arrays.
1440 * Add one to it in order to call xhci_find_slot_id_by_port.
1441 */
1442 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1443 struct xhci_hcd *xhci, u32 port_id)
1444 {
1445 unsigned int i;
1446 unsigned int num_similar_speed_ports = 0;
1447
1448 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1449 * and usb2_ports are 0-based indexes. Count the number of similar
1450 * speed ports, up to 1 port before this port.
1451 */
1452 for (i = 0; i < (port_id - 1); i++) {
1453 u8 port_speed = xhci->port_array[i];
1454
1455 /*
1456 * Skip ports that don't have known speeds, or have duplicate
1457 * Extended Capabilities port speed entries.
1458 */
1459 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1460 continue;
1461
1462 /*
1463 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1464 * 1.1 ports are under the USB 2.0 hub. If the port speed
1465 * matches the device speed, it's a similar speed port.
1466 */
1467 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1468 num_similar_speed_ports++;
1469 }
1470 return num_similar_speed_ports;
1471 }
1472
1473 static void handle_device_notification(struct xhci_hcd *xhci,
1474 union xhci_trb *event)
1475 {
1476 u32 slot_id;
1477 struct usb_device *udev;
1478
1479 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1480 if (!xhci->devs[slot_id]) {
1481 xhci_warn(xhci, "Device Notification event for "
1482 "unused slot %u\n", slot_id);
1483 return;
1484 }
1485
1486 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1487 slot_id);
1488 udev = xhci->devs[slot_id]->udev;
1489 if (udev && udev->parent)
1490 usb_wakeup_notification(udev->parent, udev->portnum);
1491 }
1492
1493 static void handle_port_status(struct xhci_hcd *xhci,
1494 union xhci_trb *event)
1495 {
1496 struct usb_hcd *hcd;
1497 u32 port_id;
1498 u32 temp, temp1;
1499 int max_ports;
1500 int slot_id;
1501 unsigned int faked_port_index;
1502 u8 major_revision;
1503 struct xhci_bus_state *bus_state;
1504 __le32 __iomem **port_array;
1505 bool bogus_port_status = false;
1506
1507 /* Port status change events always have a successful completion code */
1508 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1509 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1510 xhci->error_bitmask |= 1 << 8;
1511 }
1512 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1513 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1514
1515 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1516 if ((port_id <= 0) || (port_id > max_ports)) {
1517 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1518 inc_deq(xhci, xhci->event_ring);
1519 return;
1520 }
1521
1522 /* Figure out which usb_hcd this port is attached to:
1523 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1524 */
1525 major_revision = xhci->port_array[port_id - 1];
1526
1527 /* Find the right roothub. */
1528 hcd = xhci_to_hcd(xhci);
1529 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1530 hcd = xhci->shared_hcd;
1531
1532 if (major_revision == 0) {
1533 xhci_warn(xhci, "Event for port %u not in "
1534 "Extended Capabilities, ignoring.\n",
1535 port_id);
1536 bogus_port_status = true;
1537 goto cleanup;
1538 }
1539 if (major_revision == DUPLICATE_ENTRY) {
1540 xhci_warn(xhci, "Event for port %u duplicated in"
1541 "Extended Capabilities, ignoring.\n",
1542 port_id);
1543 bogus_port_status = true;
1544 goto cleanup;
1545 }
1546
1547 /*
1548 * Hardware port IDs reported by a Port Status Change Event include USB
1549 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1550 * resume event, but we first need to translate the hardware port ID
1551 * into the index into the ports on the correct split roothub, and the
1552 * correct bus_state structure.
1553 */
1554 bus_state = &xhci->bus_state[hcd_index(hcd)];
1555 if (hcd->speed >= HCD_USB3)
1556 port_array = xhci->usb3_ports;
1557 else
1558 port_array = xhci->usb2_ports;
1559 /* Find the faked port hub number */
1560 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1561 port_id);
1562
1563 temp = readl(port_array[faked_port_index]);
1564 if (hcd->state == HC_STATE_SUSPENDED) {
1565 xhci_dbg(xhci, "resume root hub\n");
1566 usb_hcd_resume_root_hub(hcd);
1567 }
1568
1569 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1570 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1571
1572 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1573 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1574
1575 temp1 = readl(&xhci->op_regs->command);
1576 if (!(temp1 & CMD_RUN)) {
1577 xhci_warn(xhci, "xHC is not running.\n");
1578 goto cleanup;
1579 }
1580
1581 if (DEV_SUPERSPEED_ANY(temp)) {
1582 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1583 /* Set a flag to say the port signaled remote wakeup,
1584 * so we can tell the difference between the end of
1585 * device and host initiated resume.
1586 */
1587 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1588 xhci_test_and_clear_bit(xhci, port_array,
1589 faked_port_index, PORT_PLC);
1590 xhci_set_link_state(xhci, port_array, faked_port_index,
1591 XDEV_U0);
1592 /* Need to wait until the next link state change
1593 * indicates the device is actually in U0.
1594 */
1595 bogus_port_status = true;
1596 goto cleanup;
1597 } else if (!test_bit(faked_port_index,
1598 &bus_state->resuming_ports)) {
1599 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1600 bus_state->resume_done[faked_port_index] = jiffies +
1601 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1602 set_bit(faked_port_index, &bus_state->resuming_ports);
1603 mod_timer(&hcd->rh_timer,
1604 bus_state->resume_done[faked_port_index]);
1605 /* Do the rest in GetPortStatus */
1606 }
1607 }
1608
1609 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1610 DEV_SUPERSPEED_ANY(temp)) {
1611 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1612 /* We've just brought the device into U0 through either the
1613 * Resume state after a device remote wakeup, or through the
1614 * U3Exit state after a host-initiated resume. If it's a device
1615 * initiated remote wake, don't pass up the link state change,
1616 * so the roothub behavior is consistent with external
1617 * USB 3.0 hub behavior.
1618 */
1619 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1620 faked_port_index + 1);
1621 if (slot_id && xhci->devs[slot_id])
1622 xhci_ring_device(xhci, slot_id);
1623 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1624 bus_state->port_remote_wakeup &=
1625 ~(1 << faked_port_index);
1626 xhci_test_and_clear_bit(xhci, port_array,
1627 faked_port_index, PORT_PLC);
1628 usb_wakeup_notification(hcd->self.root_hub,
1629 faked_port_index + 1);
1630 bogus_port_status = true;
1631 goto cleanup;
1632 }
1633 }
1634
1635 /*
1636 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1637 * RExit to a disconnect state). If so, let the the driver know it's
1638 * out of the RExit state.
1639 */
1640 if (!DEV_SUPERSPEED_ANY(temp) &&
1641 test_and_clear_bit(faked_port_index,
1642 &bus_state->rexit_ports)) {
1643 complete(&bus_state->rexit_done[faked_port_index]);
1644 bogus_port_status = true;
1645 goto cleanup;
1646 }
1647
1648 if (hcd->speed < HCD_USB3)
1649 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1650 PORT_PLC);
1651
1652 cleanup:
1653 /* Update event ring dequeue pointer before dropping the lock */
1654 inc_deq(xhci, xhci->event_ring);
1655
1656 /* Don't make the USB core poll the roothub if we got a bad port status
1657 * change event. Besides, at that point we can't tell which roothub
1658 * (USB 2.0 or USB 3.0) to kick.
1659 */
1660 if (bogus_port_status)
1661 return;
1662
1663 /*
1664 * xHCI port-status-change events occur when the "or" of all the
1665 * status-change bits in the portsc register changes from 0 to 1.
1666 * New status changes won't cause an event if any other change
1667 * bits are still set. When an event occurs, switch over to
1668 * polling to avoid losing status changes.
1669 */
1670 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1671 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1672 spin_unlock(&xhci->lock);
1673 /* Pass this up to the core */
1674 usb_hcd_poll_rh_status(hcd);
1675 spin_lock(&xhci->lock);
1676 }
1677
1678 /*
1679 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1680 * at end_trb, which may be in another segment. If the suspect DMA address is a
1681 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1682 * returns 0.
1683 */
1684 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1685 struct xhci_segment *start_seg,
1686 union xhci_trb *start_trb,
1687 union xhci_trb *end_trb,
1688 dma_addr_t suspect_dma,
1689 bool debug)
1690 {
1691 dma_addr_t start_dma;
1692 dma_addr_t end_seg_dma;
1693 dma_addr_t end_trb_dma;
1694 struct xhci_segment *cur_seg;
1695
1696 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1697 cur_seg = start_seg;
1698
1699 do {
1700 if (start_dma == 0)
1701 return NULL;
1702 /* We may get an event for a Link TRB in the middle of a TD */
1703 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1704 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1705 /* If the end TRB isn't in this segment, this is set to 0 */
1706 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1707
1708 if (debug)
1709 xhci_warn(xhci,
1710 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1711 (unsigned long long)suspect_dma,
1712 (unsigned long long)start_dma,
1713 (unsigned long long)end_trb_dma,
1714 (unsigned long long)cur_seg->dma,
1715 (unsigned long long)end_seg_dma);
1716
1717 if (end_trb_dma > 0) {
1718 /* The end TRB is in this segment, so suspect should be here */
1719 if (start_dma <= end_trb_dma) {
1720 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1721 return cur_seg;
1722 } else {
1723 /* Case for one segment with
1724 * a TD wrapped around to the top
1725 */
1726 if ((suspect_dma >= start_dma &&
1727 suspect_dma <= end_seg_dma) ||
1728 (suspect_dma >= cur_seg->dma &&
1729 suspect_dma <= end_trb_dma))
1730 return cur_seg;
1731 }
1732 return NULL;
1733 } else {
1734 /* Might still be somewhere in this segment */
1735 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1736 return cur_seg;
1737 }
1738 cur_seg = cur_seg->next;
1739 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1740 } while (cur_seg != start_seg);
1741
1742 return NULL;
1743 }
1744
1745 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1746 unsigned int slot_id, unsigned int ep_index,
1747 unsigned int stream_id,
1748 struct xhci_td *td, union xhci_trb *event_trb)
1749 {
1750 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1751 struct xhci_command *command;
1752 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1753 if (!command)
1754 return;
1755
1756 ep->ep_state |= EP_HALTED;
1757 ep->stopped_stream = stream_id;
1758
1759 xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1760 xhci_cleanup_stalled_ring(xhci, ep_index, td);
1761
1762 ep->stopped_stream = 0;
1763
1764 xhci_ring_cmd_db(xhci);
1765 }
1766
1767 /* Check if an error has halted the endpoint ring. The class driver will
1768 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1769 * However, a babble and other errors also halt the endpoint ring, and the class
1770 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1771 * Ring Dequeue Pointer command manually.
1772 */
1773 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1774 struct xhci_ep_ctx *ep_ctx,
1775 unsigned int trb_comp_code)
1776 {
1777 /* TRB completion codes that may require a manual halt cleanup */
1778 if (trb_comp_code == COMP_TX_ERR ||
1779 trb_comp_code == COMP_BABBLE ||
1780 trb_comp_code == COMP_SPLIT_ERR)
1781 /* The 0.95 spec says a babbling control endpoint
1782 * is not halted. The 0.96 spec says it is. Some HW
1783 * claims to be 0.95 compliant, but it halts the control
1784 * endpoint anyway. Check if a babble halted the
1785 * endpoint.
1786 */
1787 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1788 cpu_to_le32(EP_STATE_HALTED))
1789 return 1;
1790
1791 return 0;
1792 }
1793
1794 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1795 {
1796 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1797 /* Vendor defined "informational" completion code,
1798 * treat as not-an-error.
1799 */
1800 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1801 trb_comp_code);
1802 xhci_dbg(xhci, "Treating code as success.\n");
1803 return 1;
1804 }
1805 return 0;
1806 }
1807
1808 /*
1809 * Finish the td processing, remove the td from td list;
1810 * Return 1 if the urb can be given back.
1811 */
1812 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1813 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1814 struct xhci_virt_ep *ep, int *status, bool skip)
1815 {
1816 struct xhci_virt_device *xdev;
1817 struct xhci_ring *ep_ring;
1818 unsigned int slot_id;
1819 int ep_index;
1820 struct urb *urb = NULL;
1821 struct xhci_ep_ctx *ep_ctx;
1822 int ret = 0;
1823 struct urb_priv *urb_priv;
1824 u32 trb_comp_code;
1825
1826 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1827 xdev = xhci->devs[slot_id];
1828 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1829 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1830 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1831 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1832
1833 if (skip)
1834 goto td_cleanup;
1835
1836 if (trb_comp_code == COMP_STOP_INVAL ||
1837 trb_comp_code == COMP_STOP ||
1838 trb_comp_code == COMP_STOP_SHORT) {
1839 /* The Endpoint Stop Command completion will take care of any
1840 * stopped TDs. A stopped TD may be restarted, so don't update
1841 * the ring dequeue pointer or take this TD off any lists yet.
1842 */
1843 ep->stopped_td = td;
1844 return 0;
1845 }
1846 if (trb_comp_code == COMP_STALL ||
1847 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1848 trb_comp_code)) {
1849 /* Issue a reset endpoint command to clear the host side
1850 * halt, followed by a set dequeue command to move the
1851 * dequeue pointer past the TD.
1852 * The class driver clears the device side halt later.
1853 */
1854 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1855 ep_ring->stream_id, td, event_trb);
1856 } else {
1857 /* Update ring dequeue pointer */
1858 while (ep_ring->dequeue != td->last_trb)
1859 inc_deq(xhci, ep_ring);
1860 inc_deq(xhci, ep_ring);
1861 }
1862
1863 td_cleanup:
1864 /* Clean up the endpoint's TD list */
1865 urb = td->urb;
1866 urb_priv = urb->hcpriv;
1867
1868 /* Do one last check of the actual transfer length.
1869 * If the host controller said we transferred more data than the buffer
1870 * length, urb->actual_length will be a very big number (since it's
1871 * unsigned). Play it safe and say we didn't transfer anything.
1872 */
1873 if (urb->actual_length > urb->transfer_buffer_length) {
1874 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1875 urb->transfer_buffer_length,
1876 urb->actual_length);
1877 urb->actual_length = 0;
1878 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1879 *status = -EREMOTEIO;
1880 else
1881 *status = 0;
1882 }
1883 list_del_init(&td->td_list);
1884 /* Was this TD slated to be cancelled but completed anyway? */
1885 if (!list_empty(&td->cancelled_td_list))
1886 list_del_init(&td->cancelled_td_list);
1887
1888 urb_priv->td_cnt++;
1889 /* Giveback the urb when all the tds are completed */
1890 if (urb_priv->td_cnt == urb_priv->length) {
1891 ret = 1;
1892 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1893 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1894 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1895 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1896 usb_amd_quirk_pll_enable();
1897 }
1898 }
1899 }
1900
1901 return ret;
1902 }
1903
1904 /*
1905 * Process control tds, update urb status and actual_length.
1906 */
1907 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1908 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1909 struct xhci_virt_ep *ep, int *status)
1910 {
1911 struct xhci_virt_device *xdev;
1912 struct xhci_ring *ep_ring;
1913 unsigned int slot_id;
1914 int ep_index;
1915 struct xhci_ep_ctx *ep_ctx;
1916 u32 trb_comp_code;
1917
1918 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1919 xdev = xhci->devs[slot_id];
1920 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1921 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1922 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1923 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1924
1925 switch (trb_comp_code) {
1926 case COMP_SUCCESS:
1927 if (event_trb == ep_ring->dequeue) {
1928 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1929 "without IOC set??\n");
1930 *status = -ESHUTDOWN;
1931 } else if (event_trb != td->last_trb) {
1932 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1933 "without IOC set??\n");
1934 *status = -ESHUTDOWN;
1935 } else {
1936 *status = 0;
1937 }
1938 break;
1939 case COMP_SHORT_TX:
1940 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1941 *status = -EREMOTEIO;
1942 else
1943 *status = 0;
1944 break;
1945 case COMP_STOP_SHORT:
1946 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1947 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1948 else
1949 td->urb->actual_length =
1950 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1951
1952 return finish_td(xhci, td, event_trb, event, ep, status, false);
1953 case COMP_STOP:
1954 /* Did we stop at data stage? */
1955 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1956 td->urb->actual_length =
1957 td->urb->transfer_buffer_length -
1958 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1959 /* fall through */
1960 case COMP_STOP_INVAL:
1961 return finish_td(xhci, td, event_trb, event, ep, status, false);
1962 default:
1963 if (!xhci_requires_manual_halt_cleanup(xhci,
1964 ep_ctx, trb_comp_code))
1965 break;
1966 xhci_dbg(xhci, "TRB error code %u, "
1967 "halted endpoint index = %u\n",
1968 trb_comp_code, ep_index);
1969 /* else fall through */
1970 case COMP_STALL:
1971 /* Did we transfer part of the data (middle) phase? */
1972 if (event_trb != ep_ring->dequeue &&
1973 event_trb != td->last_trb)
1974 td->urb->actual_length =
1975 td->urb->transfer_buffer_length -
1976 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1977 else if (!td->urb_length_set)
1978 td->urb->actual_length = 0;
1979
1980 return finish_td(xhci, td, event_trb, event, ep, status, false);
1981 }
1982 /*
1983 * Did we transfer any data, despite the errors that might have
1984 * happened? I.e. did we get past the setup stage?
1985 */
1986 if (event_trb != ep_ring->dequeue) {
1987 /* The event was for the status stage */
1988 if (event_trb == td->last_trb) {
1989 if (td->urb_length_set) {
1990 /* Don't overwrite a previously set error code
1991 */
1992 if ((*status == -EINPROGRESS || *status == 0) &&
1993 (td->urb->transfer_flags
1994 & URB_SHORT_NOT_OK))
1995 /* Did we already see a short data
1996 * stage? */
1997 *status = -EREMOTEIO;
1998 } else {
1999 td->urb->actual_length =
2000 td->urb->transfer_buffer_length;
2001 }
2002 } else {
2003 /*
2004 * Maybe the event was for the data stage? If so, update
2005 * already the actual_length of the URB and flag it as
2006 * set, so that it is not overwritten in the event for
2007 * the last TRB.
2008 */
2009 td->urb_length_set = true;
2010 td->urb->actual_length =
2011 td->urb->transfer_buffer_length -
2012 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2013 xhci_dbg(xhci, "Waiting for status "
2014 "stage event\n");
2015 return 0;
2016 }
2017 }
2018
2019 return finish_td(xhci, td, event_trb, event, ep, status, false);
2020 }
2021
2022 /*
2023 * Process isochronous tds, update urb packet status and actual_length.
2024 */
2025 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2026 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2027 struct xhci_virt_ep *ep, int *status)
2028 {
2029 struct xhci_ring *ep_ring;
2030 struct urb_priv *urb_priv;
2031 int idx;
2032 int len = 0;
2033 union xhci_trb *cur_trb;
2034 struct xhci_segment *cur_seg;
2035 struct usb_iso_packet_descriptor *frame;
2036 u32 trb_comp_code;
2037 bool skip_td = false;
2038
2039 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2040 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2041 urb_priv = td->urb->hcpriv;
2042 idx = urb_priv->td_cnt;
2043 frame = &td->urb->iso_frame_desc[idx];
2044
2045 /* handle completion code */
2046 switch (trb_comp_code) {
2047 case COMP_SUCCESS:
2048 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2049 frame->status = 0;
2050 break;
2051 }
2052 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2053 trb_comp_code = COMP_SHORT_TX;
2054 /* fallthrough */
2055 case COMP_STOP_SHORT:
2056 case COMP_SHORT_TX:
2057 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2058 -EREMOTEIO : 0;
2059 break;
2060 case COMP_BW_OVER:
2061 frame->status = -ECOMM;
2062 skip_td = true;
2063 break;
2064 case COMP_BUFF_OVER:
2065 case COMP_BABBLE:
2066 frame->status = -EOVERFLOW;
2067 skip_td = true;
2068 break;
2069 case COMP_DEV_ERR:
2070 case COMP_STALL:
2071 frame->status = -EPROTO;
2072 skip_td = true;
2073 break;
2074 case COMP_TX_ERR:
2075 frame->status = -EPROTO;
2076 if (event_trb != td->last_trb)
2077 return 0;
2078 skip_td = true;
2079 break;
2080 case COMP_STOP:
2081 case COMP_STOP_INVAL:
2082 break;
2083 default:
2084 frame->status = -1;
2085 break;
2086 }
2087
2088 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2089 frame->actual_length = frame->length;
2090 td->urb->actual_length += frame->length;
2091 } else if (trb_comp_code == COMP_STOP_SHORT) {
2092 frame->actual_length =
2093 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2094 td->urb->actual_length += frame->actual_length;
2095 } else {
2096 for (cur_trb = ep_ring->dequeue,
2097 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2098 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2099 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2100 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2101 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2102 }
2103 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2104 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2105
2106 if (trb_comp_code != COMP_STOP_INVAL) {
2107 frame->actual_length = len;
2108 td->urb->actual_length += len;
2109 }
2110 }
2111
2112 return finish_td(xhci, td, event_trb, event, ep, status, false);
2113 }
2114
2115 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2116 struct xhci_transfer_event *event,
2117 struct xhci_virt_ep *ep, int *status)
2118 {
2119 struct xhci_ring *ep_ring;
2120 struct urb_priv *urb_priv;
2121 struct usb_iso_packet_descriptor *frame;
2122 int idx;
2123
2124 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2125 urb_priv = td->urb->hcpriv;
2126 idx = urb_priv->td_cnt;
2127 frame = &td->urb->iso_frame_desc[idx];
2128
2129 /* The transfer is partly done. */
2130 frame->status = -EXDEV;
2131
2132 /* calc actual length */
2133 frame->actual_length = 0;
2134
2135 /* Update ring dequeue pointer */
2136 while (ep_ring->dequeue != td->last_trb)
2137 inc_deq(xhci, ep_ring);
2138 inc_deq(xhci, ep_ring);
2139
2140 return finish_td(xhci, td, NULL, event, ep, status, true);
2141 }
2142
2143 /*
2144 * Process bulk and interrupt tds, update urb status and actual_length.
2145 */
2146 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2147 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2148 struct xhci_virt_ep *ep, int *status)
2149 {
2150 struct xhci_ring *ep_ring;
2151 union xhci_trb *cur_trb;
2152 struct xhci_segment *cur_seg;
2153 u32 trb_comp_code;
2154
2155 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2156 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2157
2158 switch (trb_comp_code) {
2159 case COMP_SUCCESS:
2160 /* Double check that the HW transferred everything. */
2161 if (event_trb != td->last_trb ||
2162 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2163 xhci_warn(xhci, "WARN Successful completion "
2164 "on short TX\n");
2165 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2166 *status = -EREMOTEIO;
2167 else
2168 *status = 0;
2169 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2170 trb_comp_code = COMP_SHORT_TX;
2171 } else {
2172 *status = 0;
2173 }
2174 break;
2175 case COMP_STOP_SHORT:
2176 case COMP_SHORT_TX:
2177 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2178 *status = -EREMOTEIO;
2179 else
2180 *status = 0;
2181 break;
2182 default:
2183 /* Others already handled above */
2184 break;
2185 }
2186 if (trb_comp_code == COMP_SHORT_TX)
2187 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2188 "%d bytes untransferred\n",
2189 td->urb->ep->desc.bEndpointAddress,
2190 td->urb->transfer_buffer_length,
2191 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2192 /* Stopped - short packet completion */
2193 if (trb_comp_code == COMP_STOP_SHORT) {
2194 td->urb->actual_length =
2195 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2196
2197 if (td->urb->transfer_buffer_length <
2198 td->urb->actual_length) {
2199 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2200 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2201 td->urb->actual_length = 0;
2202 /* status will be set by usb core for canceled urbs */
2203 }
2204 /* Fast path - was this the last TRB in the TD for this URB? */
2205 } else if (event_trb == td->last_trb) {
2206 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2207 td->urb->actual_length =
2208 td->urb->transfer_buffer_length -
2209 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2210 if (td->urb->transfer_buffer_length <
2211 td->urb->actual_length) {
2212 xhci_warn(xhci, "HC gave bad length "
2213 "of %d bytes left\n",
2214 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2215 td->urb->actual_length = 0;
2216 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2217 *status = -EREMOTEIO;
2218 else
2219 *status = 0;
2220 }
2221 /* Don't overwrite a previously set error code */
2222 if (*status == -EINPROGRESS) {
2223 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2224 *status = -EREMOTEIO;
2225 else
2226 *status = 0;
2227 }
2228 } else {
2229 td->urb->actual_length =
2230 td->urb->transfer_buffer_length;
2231 /* Ignore a short packet completion if the
2232 * untransferred length was zero.
2233 */
2234 if (*status == -EREMOTEIO)
2235 *status = 0;
2236 }
2237 } else {
2238 /* Slow path - walk the list, starting from the dequeue
2239 * pointer, to get the actual length transferred.
2240 */
2241 td->urb->actual_length = 0;
2242 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2243 cur_trb != event_trb;
2244 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2245 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2246 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2247 td->urb->actual_length +=
2248 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2249 }
2250 /* If the ring didn't stop on a Link or No-op TRB, add
2251 * in the actual bytes transferred from the Normal TRB
2252 */
2253 if (trb_comp_code != COMP_STOP_INVAL)
2254 td->urb->actual_length +=
2255 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2256 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2257 }
2258
2259 return finish_td(xhci, td, event_trb, event, ep, status, false);
2260 }
2261
2262 /*
2263 * If this function returns an error condition, it means it got a Transfer
2264 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2265 * At this point, the host controller is probably hosed and should be reset.
2266 */
2267 static int handle_tx_event(struct xhci_hcd *xhci,
2268 struct xhci_transfer_event *event)
2269 __releases(&xhci->lock)
2270 __acquires(&xhci->lock)
2271 {
2272 struct xhci_virt_device *xdev;
2273 struct xhci_virt_ep *ep;
2274 struct xhci_ring *ep_ring;
2275 unsigned int slot_id;
2276 int ep_index;
2277 struct xhci_td *td = NULL;
2278 dma_addr_t event_dma;
2279 struct xhci_segment *event_seg;
2280 union xhci_trb *event_trb;
2281 struct urb *urb = NULL;
2282 int status = -EINPROGRESS;
2283 struct urb_priv *urb_priv;
2284 struct xhci_ep_ctx *ep_ctx;
2285 struct list_head *tmp;
2286 u32 trb_comp_code;
2287 int ret = 0;
2288 int td_num = 0;
2289 bool handling_skipped_tds = false;
2290
2291 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2292 xdev = xhci->devs[slot_id];
2293 if (!xdev) {
2294 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2295 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2296 (unsigned long long) xhci_trb_virt_to_dma(
2297 xhci->event_ring->deq_seg,
2298 xhci->event_ring->dequeue),
2299 lower_32_bits(le64_to_cpu(event->buffer)),
2300 upper_32_bits(le64_to_cpu(event->buffer)),
2301 le32_to_cpu(event->transfer_len),
2302 le32_to_cpu(event->flags));
2303 xhci_dbg(xhci, "Event ring:\n");
2304 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2305 return -ENODEV;
2306 }
2307
2308 /* Endpoint ID is 1 based, our index is zero based */
2309 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2310 ep = &xdev->eps[ep_index];
2311 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2312 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2313 if (!ep_ring ||
2314 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2315 EP_STATE_DISABLED) {
2316 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2317 "or incorrect stream ring\n");
2318 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2319 (unsigned long long) xhci_trb_virt_to_dma(
2320 xhci->event_ring->deq_seg,
2321 xhci->event_ring->dequeue),
2322 lower_32_bits(le64_to_cpu(event->buffer)),
2323 upper_32_bits(le64_to_cpu(event->buffer)),
2324 le32_to_cpu(event->transfer_len),
2325 le32_to_cpu(event->flags));
2326 xhci_dbg(xhci, "Event ring:\n");
2327 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2328 return -ENODEV;
2329 }
2330
2331 /* Count current td numbers if ep->skip is set */
2332 if (ep->skip) {
2333 list_for_each(tmp, &ep_ring->td_list)
2334 td_num++;
2335 }
2336
2337 event_dma = le64_to_cpu(event->buffer);
2338 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2339 /* Look for common error cases */
2340 switch (trb_comp_code) {
2341 /* Skip codes that require special handling depending on
2342 * transfer type
2343 */
2344 case COMP_SUCCESS:
2345 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2346 break;
2347 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2348 trb_comp_code = COMP_SHORT_TX;
2349 else
2350 xhci_warn_ratelimited(xhci,
2351 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2352 case COMP_SHORT_TX:
2353 break;
2354 case COMP_STOP:
2355 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2356 break;
2357 case COMP_STOP_INVAL:
2358 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2359 break;
2360 case COMP_STOP_SHORT:
2361 xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2362 break;
2363 case COMP_STALL:
2364 xhci_dbg(xhci, "Stalled endpoint\n");
2365 ep->ep_state |= EP_HALTED;
2366 status = -EPIPE;
2367 break;
2368 case COMP_TRB_ERR:
2369 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2370 status = -EILSEQ;
2371 break;
2372 case COMP_SPLIT_ERR:
2373 case COMP_TX_ERR:
2374 xhci_dbg(xhci, "Transfer error on endpoint\n");
2375 status = -EPROTO;
2376 break;
2377 case COMP_BABBLE:
2378 xhci_dbg(xhci, "Babble error on endpoint\n");
2379 status = -EOVERFLOW;
2380 break;
2381 case COMP_DB_ERR:
2382 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2383 status = -ENOSR;
2384 break;
2385 case COMP_BW_OVER:
2386 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2387 break;
2388 case COMP_BUFF_OVER:
2389 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2390 break;
2391 case COMP_UNDERRUN:
2392 /*
2393 * When the Isoch ring is empty, the xHC will generate
2394 * a Ring Overrun Event for IN Isoch endpoint or Ring
2395 * Underrun Event for OUT Isoch endpoint.
2396 */
2397 xhci_dbg(xhci, "underrun event on endpoint\n");
2398 if (!list_empty(&ep_ring->td_list))
2399 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2400 "still with TDs queued?\n",
2401 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2402 ep_index);
2403 goto cleanup;
2404 case COMP_OVERRUN:
2405 xhci_dbg(xhci, "overrun event on endpoint\n");
2406 if (!list_empty(&ep_ring->td_list))
2407 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2408 "still with TDs queued?\n",
2409 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2410 ep_index);
2411 goto cleanup;
2412 case COMP_DEV_ERR:
2413 xhci_warn(xhci, "WARN: detect an incompatible device");
2414 status = -EPROTO;
2415 break;
2416 case COMP_MISSED_INT:
2417 /*
2418 * When encounter missed service error, one or more isoc tds
2419 * may be missed by xHC.
2420 * Set skip flag of the ep_ring; Complete the missed tds as
2421 * short transfer when process the ep_ring next time.
2422 */
2423 ep->skip = true;
2424 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2425 goto cleanup;
2426 case COMP_PING_ERR:
2427 ep->skip = true;
2428 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2429 goto cleanup;
2430 default:
2431 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2432 status = 0;
2433 break;
2434 }
2435 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2436 trb_comp_code);
2437 goto cleanup;
2438 }
2439
2440 do {
2441 /* This TRB should be in the TD at the head of this ring's
2442 * TD list.
2443 */
2444 if (list_empty(&ep_ring->td_list)) {
2445 /*
2446 * A stopped endpoint may generate an extra completion
2447 * event if the device was suspended. Don't print
2448 * warnings.
2449 */
2450 if (!(trb_comp_code == COMP_STOP ||
2451 trb_comp_code == COMP_STOP_INVAL)) {
2452 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2453 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2454 ep_index);
2455 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2456 (le32_to_cpu(event->flags) &
2457 TRB_TYPE_BITMASK)>>10);
2458 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2459 }
2460 if (ep->skip) {
2461 ep->skip = false;
2462 xhci_dbg(xhci, "td_list is empty while skip "
2463 "flag set. Clear skip flag.\n");
2464 }
2465 ret = 0;
2466 goto cleanup;
2467 }
2468
2469 /* We've skipped all the TDs on the ep ring when ep->skip set */
2470 if (ep->skip && td_num == 0) {
2471 ep->skip = false;
2472 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2473 "Clear skip flag.\n");
2474 ret = 0;
2475 goto cleanup;
2476 }
2477
2478 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2479 if (ep->skip)
2480 td_num--;
2481
2482 /* Is this a TRB in the currently executing TD? */
2483 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2484 td->last_trb, event_dma, false);
2485
2486 /*
2487 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2488 * is not in the current TD pointed by ep_ring->dequeue because
2489 * that the hardware dequeue pointer still at the previous TRB
2490 * of the current TD. The previous TRB maybe a Link TD or the
2491 * last TRB of the previous TD. The command completion handle
2492 * will take care the rest.
2493 */
2494 if (!event_seg && (trb_comp_code == COMP_STOP ||
2495 trb_comp_code == COMP_STOP_INVAL)) {
2496 ret = 0;
2497 goto cleanup;
2498 }
2499
2500 if (!event_seg) {
2501 if (!ep->skip ||
2502 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2503 /* Some host controllers give a spurious
2504 * successful event after a short transfer.
2505 * Ignore it.
2506 */
2507 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2508 ep_ring->last_td_was_short) {
2509 ep_ring->last_td_was_short = false;
2510 ret = 0;
2511 goto cleanup;
2512 }
2513 /* HC is busted, give up! */
2514 xhci_err(xhci,
2515 "ERROR Transfer event TRB DMA ptr not "
2516 "part of current TD ep_index %d "
2517 "comp_code %u\n", ep_index,
2518 trb_comp_code);
2519 trb_in_td(xhci, ep_ring->deq_seg,
2520 ep_ring->dequeue, td->last_trb,
2521 event_dma, true);
2522 return -ESHUTDOWN;
2523 }
2524
2525 ret = skip_isoc_td(xhci, td, event, ep, &status);
2526 goto cleanup;
2527 }
2528 if (trb_comp_code == COMP_SHORT_TX)
2529 ep_ring->last_td_was_short = true;
2530 else
2531 ep_ring->last_td_was_short = false;
2532
2533 if (ep->skip) {
2534 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2535 ep->skip = false;
2536 }
2537
2538 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2539 sizeof(*event_trb)];
2540 /*
2541 * No-op TRB should not trigger interrupts.
2542 * If event_trb is a no-op TRB, it means the
2543 * corresponding TD has been cancelled. Just ignore
2544 * the TD.
2545 */
2546 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2547 xhci_dbg(xhci,
2548 "event_trb is a no-op TRB. Skip it\n");
2549 goto cleanup;
2550 }
2551
2552 /* Now update the urb's actual_length and give back to
2553 * the core
2554 */
2555 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2556 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2557 &status);
2558 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2559 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2560 &status);
2561 else
2562 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2563 ep, &status);
2564
2565 cleanup:
2566
2567
2568 handling_skipped_tds = ep->skip &&
2569 trb_comp_code != COMP_MISSED_INT &&
2570 trb_comp_code != COMP_PING_ERR;
2571
2572 /*
2573 * Do not update event ring dequeue pointer if we're in a loop
2574 * processing missed tds.
2575 */
2576 if (!handling_skipped_tds)
2577 inc_deq(xhci, xhci->event_ring);
2578
2579 if (ret) {
2580 urb = td->urb;
2581 urb_priv = urb->hcpriv;
2582
2583 xhci_urb_free_priv(urb_priv);
2584
2585 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2586 if ((urb->actual_length != urb->transfer_buffer_length &&
2587 (urb->transfer_flags &
2588 URB_SHORT_NOT_OK)) ||
2589 (status != 0 &&
2590 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2591 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2592 "expected = %d, status = %d\n",
2593 urb, urb->actual_length,
2594 urb->transfer_buffer_length,
2595 status);
2596 spin_unlock(&xhci->lock);
2597 /* EHCI, UHCI, and OHCI always unconditionally set the
2598 * urb->status of an isochronous endpoint to 0.
2599 */
2600 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2601 status = 0;
2602 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2603 spin_lock(&xhci->lock);
2604 }
2605
2606 /*
2607 * If ep->skip is set, it means there are missed tds on the
2608 * endpoint ring need to take care of.
2609 * Process them as short transfer until reach the td pointed by
2610 * the event.
2611 */
2612 } while (handling_skipped_tds);
2613
2614 return 0;
2615 }
2616
2617 /*
2618 * This function handles all OS-owned events on the event ring. It may drop
2619 * xhci->lock between event processing (e.g. to pass up port status changes).
2620 * Returns >0 for "possibly more events to process" (caller should call again),
2621 * otherwise 0 if done. In future, <0 returns should indicate error code.
2622 */
2623 static int xhci_handle_event(struct xhci_hcd *xhci)
2624 {
2625 union xhci_trb *event;
2626 int update_ptrs = 1;
2627 int ret;
2628
2629 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2630 xhci->error_bitmask |= 1 << 1;
2631 return 0;
2632 }
2633
2634 event = xhci->event_ring->dequeue;
2635 /* Does the HC or OS own the TRB? */
2636 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2637 xhci->event_ring->cycle_state) {
2638 xhci->error_bitmask |= 1 << 2;
2639 return 0;
2640 }
2641
2642 /*
2643 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2644 * speculative reads of the event's flags/data below.
2645 */
2646 rmb();
2647 /* FIXME: Handle more event types. */
2648 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2649 case TRB_TYPE(TRB_COMPLETION):
2650 handle_cmd_completion(xhci, &event->event_cmd);
2651 break;
2652 case TRB_TYPE(TRB_PORT_STATUS):
2653 handle_port_status(xhci, event);
2654 update_ptrs = 0;
2655 break;
2656 case TRB_TYPE(TRB_TRANSFER):
2657 ret = handle_tx_event(xhci, &event->trans_event);
2658 if (ret < 0)
2659 xhci->error_bitmask |= 1 << 9;
2660 else
2661 update_ptrs = 0;
2662 break;
2663 case TRB_TYPE(TRB_DEV_NOTE):
2664 handle_device_notification(xhci, event);
2665 break;
2666 default:
2667 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2668 TRB_TYPE(48))
2669 handle_vendor_event(xhci, event);
2670 else
2671 xhci->error_bitmask |= 1 << 3;
2672 }
2673 /* Any of the above functions may drop and re-acquire the lock, so check
2674 * to make sure a watchdog timer didn't mark the host as non-responsive.
2675 */
2676 if (xhci->xhc_state & XHCI_STATE_DYING) {
2677 xhci_dbg(xhci, "xHCI host dying, returning from "
2678 "event handler.\n");
2679 return 0;
2680 }
2681
2682 if (update_ptrs)
2683 /* Update SW event ring dequeue pointer */
2684 inc_deq(xhci, xhci->event_ring);
2685
2686 /* Are there more items on the event ring? Caller will call us again to
2687 * check.
2688 */
2689 return 1;
2690 }
2691
2692 /*
2693 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2694 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2695 * indicators of an event TRB error, but we check the status *first* to be safe.
2696 */
2697 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2698 {
2699 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2700 u32 status;
2701 u64 temp_64;
2702 union xhci_trb *event_ring_deq;
2703 dma_addr_t deq;
2704
2705 spin_lock(&xhci->lock);
2706 /* Check if the xHC generated the interrupt, or the irq is shared */
2707 status = readl(&xhci->op_regs->status);
2708 if (status == 0xffffffff)
2709 goto hw_died;
2710
2711 if (!(status & STS_EINT)) {
2712 spin_unlock(&xhci->lock);
2713 return IRQ_NONE;
2714 }
2715 if (status & STS_FATAL) {
2716 xhci_warn(xhci, "WARNING: Host System Error\n");
2717 xhci_halt(xhci);
2718 hw_died:
2719 spin_unlock(&xhci->lock);
2720 return IRQ_HANDLED;
2721 }
2722
2723 /*
2724 * Clear the op reg interrupt status first,
2725 * so we can receive interrupts from other MSI-X interrupters.
2726 * Write 1 to clear the interrupt status.
2727 */
2728 status |= STS_EINT;
2729 writel(status, &xhci->op_regs->status);
2730 /* FIXME when MSI-X is supported and there are multiple vectors */
2731 /* Clear the MSI-X event interrupt status */
2732
2733 if (hcd->irq) {
2734 u32 irq_pending;
2735 /* Acknowledge the PCI interrupt */
2736 irq_pending = readl(&xhci->ir_set->irq_pending);
2737 irq_pending |= IMAN_IP;
2738 writel(irq_pending, &xhci->ir_set->irq_pending);
2739 }
2740
2741 if (xhci->xhc_state & XHCI_STATE_DYING ||
2742 xhci->xhc_state & XHCI_STATE_HALTED) {
2743 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2744 "Shouldn't IRQs be disabled?\n");
2745 /* Clear the event handler busy flag (RW1C);
2746 * the event ring should be empty.
2747 */
2748 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2749 xhci_write_64(xhci, temp_64 | ERST_EHB,
2750 &xhci->ir_set->erst_dequeue);
2751 spin_unlock(&xhci->lock);
2752
2753 return IRQ_HANDLED;
2754 }
2755
2756 event_ring_deq = xhci->event_ring->dequeue;
2757 /* FIXME this should be a delayed service routine
2758 * that clears the EHB.
2759 */
2760 while (xhci_handle_event(xhci) > 0) {}
2761
2762 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2763 /* If necessary, update the HW's version of the event ring deq ptr. */
2764 if (event_ring_deq != xhci->event_ring->dequeue) {
2765 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2766 xhci->event_ring->dequeue);
2767 if (deq == 0)
2768 xhci_warn(xhci, "WARN something wrong with SW event "
2769 "ring dequeue ptr.\n");
2770 /* Update HC event ring dequeue pointer */
2771 temp_64 &= ERST_PTR_MASK;
2772 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2773 }
2774
2775 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2776 temp_64 |= ERST_EHB;
2777 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2778
2779 spin_unlock(&xhci->lock);
2780
2781 return IRQ_HANDLED;
2782 }
2783
2784 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2785 {
2786 return xhci_irq(hcd);
2787 }
2788
2789 /**** Endpoint Ring Operations ****/
2790
2791 /*
2792 * Generic function for queueing a TRB on a ring.
2793 * The caller must have checked to make sure there's room on the ring.
2794 *
2795 * @more_trbs_coming: Will you enqueue more TRBs before calling
2796 * prepare_transfer()?
2797 */
2798 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2799 bool more_trbs_coming,
2800 u32 field1, u32 field2, u32 field3, u32 field4)
2801 {
2802 struct xhci_generic_trb *trb;
2803
2804 trb = &ring->enqueue->generic;
2805 trb->field[0] = cpu_to_le32(field1);
2806 trb->field[1] = cpu_to_le32(field2);
2807 trb->field[2] = cpu_to_le32(field3);
2808 trb->field[3] = cpu_to_le32(field4);
2809 inc_enq(xhci, ring, more_trbs_coming);
2810 }
2811
2812 /*
2813 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2814 * FIXME allocate segments if the ring is full.
2815 */
2816 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2817 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2818 {
2819 unsigned int num_trbs_needed;
2820
2821 /* Make sure the endpoint has been added to xHC schedule */
2822 switch (ep_state) {
2823 case EP_STATE_DISABLED:
2824 /*
2825 * USB core changed config/interfaces without notifying us,
2826 * or hardware is reporting the wrong state.
2827 */
2828 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2829 return -ENOENT;
2830 case EP_STATE_ERROR:
2831 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2832 /* FIXME event handling code for error needs to clear it */
2833 /* XXX not sure if this should be -ENOENT or not */
2834 return -EINVAL;
2835 case EP_STATE_HALTED:
2836 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2837 case EP_STATE_STOPPED:
2838 case EP_STATE_RUNNING:
2839 break;
2840 default:
2841 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2842 /*
2843 * FIXME issue Configure Endpoint command to try to get the HC
2844 * back into a known state.
2845 */
2846 return -EINVAL;
2847 }
2848
2849 while (1) {
2850 if (room_on_ring(xhci, ep_ring, num_trbs))
2851 break;
2852
2853 if (ep_ring == xhci->cmd_ring) {
2854 xhci_err(xhci, "Do not support expand command ring\n");
2855 return -ENOMEM;
2856 }
2857
2858 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2859 "ERROR no room on ep ring, try ring expansion");
2860 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2861 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2862 mem_flags)) {
2863 xhci_err(xhci, "Ring expansion failed\n");
2864 return -ENOMEM;
2865 }
2866 }
2867
2868 if (enqueue_is_link_trb(ep_ring)) {
2869 struct xhci_ring *ring = ep_ring;
2870 union xhci_trb *next;
2871
2872 next = ring->enqueue;
2873
2874 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2875 /* If we're not dealing with 0.95 hardware or isoc rings
2876 * on AMD 0.96 host, clear the chain bit.
2877 */
2878 if (!xhci_link_trb_quirk(xhci) &&
2879 !(ring->type == TYPE_ISOC &&
2880 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2881 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2882 else
2883 next->link.control |= cpu_to_le32(TRB_CHAIN);
2884
2885 wmb();
2886 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2887
2888 /* Toggle the cycle bit after the last ring segment. */
2889 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2890 ring->cycle_state ^= 1;
2891 }
2892 ring->enq_seg = ring->enq_seg->next;
2893 ring->enqueue = ring->enq_seg->trbs;
2894 next = ring->enqueue;
2895 }
2896 }
2897
2898 return 0;
2899 }
2900
2901 static int prepare_transfer(struct xhci_hcd *xhci,
2902 struct xhci_virt_device *xdev,
2903 unsigned int ep_index,
2904 unsigned int stream_id,
2905 unsigned int num_trbs,
2906 struct urb *urb,
2907 unsigned int td_index,
2908 gfp_t mem_flags)
2909 {
2910 int ret;
2911 struct urb_priv *urb_priv;
2912 struct xhci_td *td;
2913 struct xhci_ring *ep_ring;
2914 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2915
2916 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2917 if (!ep_ring) {
2918 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2919 stream_id);
2920 return -EINVAL;
2921 }
2922
2923 ret = prepare_ring(xhci, ep_ring,
2924 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2925 num_trbs, mem_flags);
2926 if (ret)
2927 return ret;
2928
2929 urb_priv = urb->hcpriv;
2930 td = urb_priv->td[td_index];
2931
2932 INIT_LIST_HEAD(&td->td_list);
2933 INIT_LIST_HEAD(&td->cancelled_td_list);
2934
2935 if (td_index == 0) {
2936 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2937 if (unlikely(ret))
2938 return ret;
2939 }
2940
2941 td->urb = urb;
2942 /* Add this TD to the tail of the endpoint ring's TD list */
2943 list_add_tail(&td->td_list, &ep_ring->td_list);
2944 td->start_seg = ep_ring->enq_seg;
2945 td->first_trb = ep_ring->enqueue;
2946
2947 urb_priv->td[td_index] = td;
2948
2949 return 0;
2950 }
2951
2952 static unsigned int count_trbs(u64 addr, u64 len)
2953 {
2954 unsigned int num_trbs;
2955
2956 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2957 TRB_MAX_BUFF_SIZE);
2958 if (num_trbs == 0)
2959 num_trbs++;
2960
2961 return num_trbs;
2962 }
2963
2964 static inline unsigned int count_trbs_needed(struct urb *urb)
2965 {
2966 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2967 }
2968
2969 static unsigned int count_sg_trbs_needed(struct urb *urb)
2970 {
2971 struct scatterlist *sg;
2972 unsigned int i, len, full_len, num_trbs = 0;
2973
2974 full_len = urb->transfer_buffer_length;
2975
2976 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2977 len = sg_dma_len(sg);
2978 num_trbs += count_trbs(sg_dma_address(sg), len);
2979 len = min_t(unsigned int, len, full_len);
2980 full_len -= len;
2981 if (full_len == 0)
2982 break;
2983 }
2984
2985 return num_trbs;
2986 }
2987
2988 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2989 {
2990 u64 addr, len;
2991
2992 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2993 len = urb->iso_frame_desc[i].length;
2994
2995 return count_trbs(addr, len);
2996 }
2997
2998 static void check_trb_math(struct urb *urb, int running_total)
2999 {
3000 if (unlikely(running_total != urb->transfer_buffer_length))
3001 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3002 "queued %#x (%d), asked for %#x (%d)\n",
3003 __func__,
3004 urb->ep->desc.bEndpointAddress,
3005 running_total, running_total,
3006 urb->transfer_buffer_length,
3007 urb->transfer_buffer_length);
3008 }
3009
3010 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3011 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3012 struct xhci_generic_trb *start_trb)
3013 {
3014 /*
3015 * Pass all the TRBs to the hardware at once and make sure this write
3016 * isn't reordered.
3017 */
3018 wmb();
3019 if (start_cycle)
3020 start_trb->field[3] |= cpu_to_le32(start_cycle);
3021 else
3022 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3023 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3024 }
3025
3026 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3027 struct xhci_ep_ctx *ep_ctx)
3028 {
3029 int xhci_interval;
3030 int ep_interval;
3031
3032 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3033 ep_interval = urb->interval;
3034
3035 /* Convert to microframes */
3036 if (urb->dev->speed == USB_SPEED_LOW ||
3037 urb->dev->speed == USB_SPEED_FULL)
3038 ep_interval *= 8;
3039
3040 /* FIXME change this to a warning and a suggestion to use the new API
3041 * to set the polling interval (once the API is added).
3042 */
3043 if (xhci_interval != ep_interval) {
3044 dev_dbg_ratelimited(&urb->dev->dev,
3045 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3046 ep_interval, ep_interval == 1 ? "" : "s",
3047 xhci_interval, xhci_interval == 1 ? "" : "s");
3048 urb->interval = xhci_interval;
3049 /* Convert back to frames for LS/FS devices */
3050 if (urb->dev->speed == USB_SPEED_LOW ||
3051 urb->dev->speed == USB_SPEED_FULL)
3052 urb->interval /= 8;
3053 }
3054 }
3055
3056 /*
3057 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3058 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3059 * (comprised of sg list entries) can take several service intervals to
3060 * transmit.
3061 */
3062 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3063 struct urb *urb, int slot_id, unsigned int ep_index)
3064 {
3065 struct xhci_ep_ctx *ep_ctx;
3066
3067 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3068 check_interval(xhci, urb, ep_ctx);
3069
3070 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3071 }
3072
3073 /*
3074 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3075 * packets remaining in the TD (*not* including this TRB).
3076 *
3077 * Total TD packet count = total_packet_count =
3078 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3079 *
3080 * Packets transferred up to and including this TRB = packets_transferred =
3081 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3082 *
3083 * TD size = total_packet_count - packets_transferred
3084 *
3085 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3086 * including this TRB, right shifted by 10
3087 *
3088 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3089 * This is taken care of in the TRB_TD_SIZE() macro
3090 *
3091 * The last TRB in a TD must have the TD size set to zero.
3092 */
3093 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3094 int trb_buff_len, unsigned int td_total_len,
3095 struct urb *urb, unsigned int num_trbs_left)
3096 {
3097 u32 maxp, total_packet_count;
3098
3099 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3100 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3101 return ((td_total_len - transferred) >> 10);
3102
3103 /* One TRB with a zero-length data packet. */
3104 if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) ||
3105 trb_buff_len == td_total_len)
3106 return 0;
3107
3108 /* for MTK xHCI, TD size doesn't include this TRB */
3109 if (xhci->quirks & XHCI_MTK_HOST)
3110 trb_buff_len = 0;
3111
3112 maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3113 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3114
3115 /* Queueing functions don't count the current TRB into transferred */
3116 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3117 }
3118
3119 /* This is very similar to what ehci-q.c qtd_fill() does */
3120 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3121 struct urb *urb, int slot_id, unsigned int ep_index)
3122 {
3123 struct xhci_ring *ep_ring;
3124 struct urb_priv *urb_priv;
3125 struct xhci_td *td;
3126 struct xhci_generic_trb *start_trb;
3127 struct scatterlist *sg = NULL;
3128 bool more_trbs_coming;
3129 bool zero_length_needed;
3130 unsigned int num_trbs, last_trb_num, i;
3131 unsigned int start_cycle, num_sgs = 0;
3132 unsigned int running_total, block_len, trb_buff_len;
3133 unsigned int full_len;
3134 int ret;
3135 u32 field, length_field, remainder;
3136 u64 addr;
3137
3138 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3139 if (!ep_ring)
3140 return -EINVAL;
3141
3142 /* If we have scatter/gather list, we use it. */
3143 if (urb->num_sgs) {
3144 num_sgs = urb->num_mapped_sgs;
3145 sg = urb->sg;
3146 num_trbs = count_sg_trbs_needed(urb);
3147 } else
3148 num_trbs = count_trbs_needed(urb);
3149
3150 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3151 ep_index, urb->stream_id,
3152 num_trbs, urb, 0, mem_flags);
3153 if (unlikely(ret < 0))
3154 return ret;
3155
3156 urb_priv = urb->hcpriv;
3157
3158 last_trb_num = num_trbs - 1;
3159
3160 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3161 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3162 urb_priv->length == 2;
3163 if (zero_length_needed) {
3164 num_trbs++;
3165 xhci_dbg(xhci, "Creating zero length td.\n");
3166 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3167 ep_index, urb->stream_id,
3168 1, urb, 1, mem_flags);
3169 if (unlikely(ret < 0))
3170 return ret;
3171 }
3172
3173 td = urb_priv->td[0];
3174
3175 /*
3176 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3177 * until we've finished creating all the other TRBs. The ring's cycle
3178 * state may change as we enqueue the other TRBs, so save it too.
3179 */
3180 start_trb = &ep_ring->enqueue->generic;
3181 start_cycle = ep_ring->cycle_state;
3182
3183 full_len = urb->transfer_buffer_length;
3184 running_total = 0;
3185 block_len = 0;
3186
3187 /* Queue the TRBs, even if they are zero-length */
3188 for (i = 0; i < num_trbs; i++) {
3189 field = TRB_TYPE(TRB_NORMAL);
3190
3191 if (block_len == 0) {
3192 /* A new contiguous block. */
3193 if (sg) {
3194 addr = (u64) sg_dma_address(sg);
3195 block_len = sg_dma_len(sg);
3196 } else {
3197 addr = (u64) urb->transfer_dma;
3198 block_len = full_len;
3199 }
3200 /* TRB buffer should not cross 64KB boundaries */
3201 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3202 trb_buff_len = min_t(unsigned int,
3203 trb_buff_len,
3204 block_len);
3205 } else {
3206 /* Further through the contiguous block. */
3207 trb_buff_len = block_len;
3208 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3209 trb_buff_len = TRB_MAX_BUFF_SIZE;
3210 }
3211
3212 if (running_total + trb_buff_len > full_len)
3213 trb_buff_len = full_len - running_total;
3214
3215 /* Don't change the cycle bit of the first TRB until later */
3216 if (i == 0) {
3217 if (start_cycle == 0)
3218 field |= TRB_CYCLE;
3219 } else
3220 field |= ep_ring->cycle_state;
3221
3222 /* Chain all the TRBs together; clear the chain bit in the last
3223 * TRB to indicate it's the last TRB in the chain.
3224 */
3225 if (i < last_trb_num) {
3226 field |= TRB_CHAIN;
3227 } else {
3228 field |= TRB_IOC;
3229 if (i == last_trb_num)
3230 td->last_trb = ep_ring->enqueue;
3231 else if (zero_length_needed) {
3232 trb_buff_len = 0;
3233 urb_priv->td[1]->last_trb = ep_ring->enqueue;
3234 }
3235 }
3236
3237 /* Only set interrupt on short packet for IN endpoints */
3238 if (usb_urb_dir_in(urb))
3239 field |= TRB_ISP;
3240
3241 /* Set the TRB length, TD size, and interrupter fields. */
3242 remainder = xhci_td_remainder(xhci, running_total,
3243 trb_buff_len, full_len,
3244 urb, num_trbs - i - 1);
3245
3246 length_field = TRB_LEN(trb_buff_len) |
3247 TRB_TD_SIZE(remainder) |
3248 TRB_INTR_TARGET(0);
3249
3250 if (i < num_trbs - 1)
3251 more_trbs_coming = true;
3252 else
3253 more_trbs_coming = false;
3254 queue_trb(xhci, ep_ring, more_trbs_coming,
3255 lower_32_bits(addr),
3256 upper_32_bits(addr),
3257 length_field,
3258 field);
3259
3260 running_total += trb_buff_len;
3261 addr += trb_buff_len;
3262 block_len -= trb_buff_len;
3263
3264 if (sg) {
3265 if (block_len == 0) {
3266 /* New sg entry */
3267 --num_sgs;
3268 if (num_sgs == 0)
3269 break;
3270 sg = sg_next(sg);
3271 }
3272 }
3273 }
3274
3275 check_trb_math(urb, running_total);
3276 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3277 start_cycle, start_trb);
3278 return 0;
3279 }
3280
3281 /* Caller must have locked xhci->lock */
3282 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3283 struct urb *urb, int slot_id, unsigned int ep_index)
3284 {
3285 struct xhci_ring *ep_ring;
3286 int num_trbs;
3287 int ret;
3288 struct usb_ctrlrequest *setup;
3289 struct xhci_generic_trb *start_trb;
3290 int start_cycle;
3291 u32 field, length_field, remainder;
3292 struct urb_priv *urb_priv;
3293 struct xhci_td *td;
3294
3295 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3296 if (!ep_ring)
3297 return -EINVAL;
3298
3299 /*
3300 * Need to copy setup packet into setup TRB, so we can't use the setup
3301 * DMA address.
3302 */
3303 if (!urb->setup_packet)
3304 return -EINVAL;
3305
3306 /* 1 TRB for setup, 1 for status */
3307 num_trbs = 2;
3308 /*
3309 * Don't need to check if we need additional event data and normal TRBs,
3310 * since data in control transfers will never get bigger than 16MB
3311 * XXX: can we get a buffer that crosses 64KB boundaries?
3312 */
3313 if (urb->transfer_buffer_length > 0)
3314 num_trbs++;
3315 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3316 ep_index, urb->stream_id,
3317 num_trbs, urb, 0, mem_flags);
3318 if (ret < 0)
3319 return ret;
3320
3321 urb_priv = urb->hcpriv;
3322 td = urb_priv->td[0];
3323
3324 /*
3325 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3326 * until we've finished creating all the other TRBs. The ring's cycle
3327 * state may change as we enqueue the other TRBs, so save it too.
3328 */
3329 start_trb = &ep_ring->enqueue->generic;
3330 start_cycle = ep_ring->cycle_state;
3331
3332 /* Queue setup TRB - see section 6.4.1.2.1 */
3333 /* FIXME better way to translate setup_packet into two u32 fields? */
3334 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3335 field = 0;
3336 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3337 if (start_cycle == 0)
3338 field |= 0x1;
3339
3340 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3341 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3342 if (urb->transfer_buffer_length > 0) {
3343 if (setup->bRequestType & USB_DIR_IN)
3344 field |= TRB_TX_TYPE(TRB_DATA_IN);
3345 else
3346 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3347 }
3348 }
3349
3350 queue_trb(xhci, ep_ring, true,
3351 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3352 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3353 TRB_LEN(8) | TRB_INTR_TARGET(0),
3354 /* Immediate data in pointer */
3355 field);
3356
3357 /* If there's data, queue data TRBs */
3358 /* Only set interrupt on short packet for IN endpoints */
3359 if (usb_urb_dir_in(urb))
3360 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3361 else
3362 field = TRB_TYPE(TRB_DATA);
3363
3364 remainder = xhci_td_remainder(xhci, 0,
3365 urb->transfer_buffer_length,
3366 urb->transfer_buffer_length,
3367 urb, 1);
3368
3369 length_field = TRB_LEN(urb->transfer_buffer_length) |
3370 TRB_TD_SIZE(remainder) |
3371 TRB_INTR_TARGET(0);
3372
3373 if (urb->transfer_buffer_length > 0) {
3374 if (setup->bRequestType & USB_DIR_IN)
3375 field |= TRB_DIR_IN;
3376 queue_trb(xhci, ep_ring, true,
3377 lower_32_bits(urb->transfer_dma),
3378 upper_32_bits(urb->transfer_dma),
3379 length_field,
3380 field | ep_ring->cycle_state);
3381 }
3382
3383 /* Save the DMA address of the last TRB in the TD */
3384 td->last_trb = ep_ring->enqueue;
3385
3386 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3387 /* If the device sent data, the status stage is an OUT transfer */
3388 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3389 field = 0;
3390 else
3391 field = TRB_DIR_IN;
3392 queue_trb(xhci, ep_ring, false,
3393 0,
3394 0,
3395 TRB_INTR_TARGET(0),
3396 /* Event on completion */
3397 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3398
3399 giveback_first_trb(xhci, slot_id, ep_index, 0,
3400 start_cycle, start_trb);
3401 return 0;
3402 }
3403
3404 /*
3405 * The transfer burst count field of the isochronous TRB defines the number of
3406 * bursts that are required to move all packets in this TD. Only SuperSpeed
3407 * devices can burst up to bMaxBurst number of packets per service interval.
3408 * This field is zero based, meaning a value of zero in the field means one
3409 * burst. Basically, for everything but SuperSpeed devices, this field will be
3410 * zero. Only xHCI 1.0 host controllers support this field.
3411 */
3412 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3413 struct urb *urb, unsigned int total_packet_count)
3414 {
3415 unsigned int max_burst;
3416
3417 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3418 return 0;
3419
3420 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3421 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3422 }
3423
3424 /*
3425 * Returns the number of packets in the last "burst" of packets. This field is
3426 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3427 * the last burst packet count is equal to the total number of packets in the
3428 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3429 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3430 * contain 1 to (bMaxBurst + 1) packets.
3431 */
3432 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3433 struct urb *urb, unsigned int total_packet_count)
3434 {
3435 unsigned int max_burst;
3436 unsigned int residue;
3437
3438 if (xhci->hci_version < 0x100)
3439 return 0;
3440
3441 if (urb->dev->speed >= USB_SPEED_SUPER) {
3442 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3443 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3444 residue = total_packet_count % (max_burst + 1);
3445 /* If residue is zero, the last burst contains (max_burst + 1)
3446 * number of packets, but the TLBPC field is zero-based.
3447 */
3448 if (residue == 0)
3449 return max_burst;
3450 return residue - 1;
3451 }
3452 if (total_packet_count == 0)
3453 return 0;
3454 return total_packet_count - 1;
3455 }
3456
3457 /*
3458 * Calculates Frame ID field of the isochronous TRB identifies the
3459 * target frame that the Interval associated with this Isochronous
3460 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3461 *
3462 * Returns actual frame id on success, negative value on error.
3463 */
3464 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3465 struct urb *urb, int index)
3466 {
3467 int start_frame, ist, ret = 0;
3468 int start_frame_id, end_frame_id, current_frame_id;
3469
3470 if (urb->dev->speed == USB_SPEED_LOW ||
3471 urb->dev->speed == USB_SPEED_FULL)
3472 start_frame = urb->start_frame + index * urb->interval;
3473 else
3474 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3475
3476 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3477 *
3478 * If bit [3] of IST is cleared to '0', software can add a TRB no
3479 * later than IST[2:0] Microframes before that TRB is scheduled to
3480 * be executed.
3481 * If bit [3] of IST is set to '1', software can add a TRB no later
3482 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3483 */
3484 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3485 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3486 ist <<= 3;
3487
3488 /* Software shall not schedule an Isoch TD with a Frame ID value that
3489 * is less than the Start Frame ID or greater than the End Frame ID,
3490 * where:
3491 *
3492 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3493 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3494 *
3495 * Both the End Frame ID and Start Frame ID values are calculated
3496 * in microframes. When software determines the valid Frame ID value;
3497 * The End Frame ID value should be rounded down to the nearest Frame
3498 * boundary, and the Start Frame ID value should be rounded up to the
3499 * nearest Frame boundary.
3500 */
3501 current_frame_id = readl(&xhci->run_regs->microframe_index);
3502 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3503 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3504
3505 start_frame &= 0x7ff;
3506 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3507 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3508
3509 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3510 __func__, index, readl(&xhci->run_regs->microframe_index),
3511 start_frame_id, end_frame_id, start_frame);
3512
3513 if (start_frame_id < end_frame_id) {
3514 if (start_frame > end_frame_id ||
3515 start_frame < start_frame_id)
3516 ret = -EINVAL;
3517 } else if (start_frame_id > end_frame_id) {
3518 if ((start_frame > end_frame_id &&
3519 start_frame < start_frame_id))
3520 ret = -EINVAL;
3521 } else {
3522 ret = -EINVAL;
3523 }
3524
3525 if (index == 0) {
3526 if (ret == -EINVAL || start_frame == start_frame_id) {
3527 start_frame = start_frame_id + 1;
3528 if (urb->dev->speed == USB_SPEED_LOW ||
3529 urb->dev->speed == USB_SPEED_FULL)
3530 urb->start_frame = start_frame;
3531 else
3532 urb->start_frame = start_frame << 3;
3533 ret = 0;
3534 }
3535 }
3536
3537 if (ret) {
3538 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3539 start_frame, current_frame_id, index,
3540 start_frame_id, end_frame_id);
3541 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3542 return ret;
3543 }
3544
3545 return start_frame;
3546 }
3547
3548 /* This is for isoc transfer */
3549 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3550 struct urb *urb, int slot_id, unsigned int ep_index)
3551 {
3552 struct xhci_ring *ep_ring;
3553 struct urb_priv *urb_priv;
3554 struct xhci_td *td;
3555 int num_tds, trbs_per_td;
3556 struct xhci_generic_trb *start_trb;
3557 bool first_trb;
3558 int start_cycle;
3559 u32 field, length_field;
3560 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3561 u64 start_addr, addr;
3562 int i, j;
3563 bool more_trbs_coming;
3564 struct xhci_virt_ep *xep;
3565 int frame_id;
3566
3567 xep = &xhci->devs[slot_id]->eps[ep_index];
3568 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3569
3570 num_tds = urb->number_of_packets;
3571 if (num_tds < 1) {
3572 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3573 return -EINVAL;
3574 }
3575 start_addr = (u64) urb->transfer_dma;
3576 start_trb = &ep_ring->enqueue->generic;
3577 start_cycle = ep_ring->cycle_state;
3578
3579 urb_priv = urb->hcpriv;
3580 /* Queue the TRBs for each TD, even if they are zero-length */
3581 for (i = 0; i < num_tds; i++) {
3582 unsigned int total_pkt_count, max_pkt;
3583 unsigned int burst_count, last_burst_pkt_count;
3584 u32 sia_frame_id;
3585
3586 first_trb = true;
3587 running_total = 0;
3588 addr = start_addr + urb->iso_frame_desc[i].offset;
3589 td_len = urb->iso_frame_desc[i].length;
3590 td_remain_len = td_len;
3591 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3592 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3593
3594 /* A zero-length transfer still involves at least one packet. */
3595 if (total_pkt_count == 0)
3596 total_pkt_count++;
3597 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3598 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3599 urb, total_pkt_count);
3600
3601 trbs_per_td = count_isoc_trbs_needed(urb, i);
3602
3603 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3604 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3605 if (ret < 0) {
3606 if (i == 0)
3607 return ret;
3608 goto cleanup;
3609 }
3610 td = urb_priv->td[i];
3611
3612 /* use SIA as default, if frame id is used overwrite it */
3613 sia_frame_id = TRB_SIA;
3614 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3615 HCC_CFC(xhci->hcc_params)) {
3616 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3617 if (frame_id >= 0)
3618 sia_frame_id = TRB_FRAME_ID(frame_id);
3619 }
3620 /*
3621 * Set isoc specific data for the first TRB in a TD.
3622 * Prevent HW from getting the TRBs by keeping the cycle state
3623 * inverted in the first TDs isoc TRB.
3624 */
3625 field = TRB_TYPE(TRB_ISOC) |
3626 TRB_TLBPC(last_burst_pkt_count) |
3627 sia_frame_id |
3628 (i ? ep_ring->cycle_state : !start_cycle);
3629
3630 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3631 if (!xep->use_extended_tbc)
3632 field |= TRB_TBC(burst_count);
3633
3634 /* fill the rest of the TRB fields, and remaining normal TRBs */
3635 for (j = 0; j < trbs_per_td; j++) {
3636 u32 remainder = 0;
3637
3638 /* only first TRB is isoc, overwrite otherwise */
3639 if (!first_trb)
3640 field = TRB_TYPE(TRB_NORMAL) |
3641 ep_ring->cycle_state;
3642
3643 /* Only set interrupt on short packet for IN EPs */
3644 if (usb_urb_dir_in(urb))
3645 field |= TRB_ISP;
3646
3647 /* Set the chain bit for all except the last TRB */
3648 if (j < trbs_per_td - 1) {
3649 more_trbs_coming = true;
3650 field |= TRB_CHAIN;
3651 } else {
3652 more_trbs_coming = false;
3653 td->last_trb = ep_ring->enqueue;
3654 field |= TRB_IOC;
3655 /* set BEI, except for the last TD */
3656 if (xhci->hci_version >= 0x100 &&
3657 !(xhci->quirks & XHCI_AVOID_BEI) &&
3658 i < num_tds - 1)
3659 field |= TRB_BEI;
3660 }
3661 /* Calculate TRB length */
3662 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3663 if (trb_buff_len > td_remain_len)
3664 trb_buff_len = td_remain_len;
3665
3666 /* Set the TRB length, TD size, & interrupter fields. */
3667 remainder = xhci_td_remainder(xhci, running_total,
3668 trb_buff_len, td_len,
3669 urb, trbs_per_td - j - 1);
3670
3671 length_field = TRB_LEN(trb_buff_len) |
3672 TRB_INTR_TARGET(0);
3673
3674 /* xhci 1.1 with ETE uses TD Size field for TBC */
3675 if (first_trb && xep->use_extended_tbc)
3676 length_field |= TRB_TD_SIZE_TBC(burst_count);
3677 else
3678 length_field |= TRB_TD_SIZE(remainder);
3679 first_trb = false;
3680
3681 queue_trb(xhci, ep_ring, more_trbs_coming,
3682 lower_32_bits(addr),
3683 upper_32_bits(addr),
3684 length_field,
3685 field);
3686 running_total += trb_buff_len;
3687
3688 addr += trb_buff_len;
3689 td_remain_len -= trb_buff_len;
3690 }
3691
3692 /* Check TD length */
3693 if (running_total != td_len) {
3694 xhci_err(xhci, "ISOC TD length unmatch\n");
3695 ret = -EINVAL;
3696 goto cleanup;
3697 }
3698 }
3699
3700 /* store the next frame id */
3701 if (HCC_CFC(xhci->hcc_params))
3702 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3703
3704 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3705 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3706 usb_amd_quirk_pll_disable();
3707 }
3708 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3709
3710 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3711 start_cycle, start_trb);
3712 return 0;
3713 cleanup:
3714 /* Clean up a partially enqueued isoc transfer. */
3715
3716 for (i--; i >= 0; i--)
3717 list_del_init(&urb_priv->td[i]->td_list);
3718
3719 /* Use the first TD as a temporary variable to turn the TDs we've queued
3720 * into No-ops with a software-owned cycle bit. That way the hardware
3721 * won't accidentally start executing bogus TDs when we partially
3722 * overwrite them. td->first_trb and td->start_seg are already set.
3723 */
3724 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3725 /* Every TRB except the first & last will have its cycle bit flipped. */
3726 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3727
3728 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3729 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3730 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3731 ep_ring->cycle_state = start_cycle;
3732 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3733 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3734 return ret;
3735 }
3736
3737 /*
3738 * Check transfer ring to guarantee there is enough room for the urb.
3739 * Update ISO URB start_frame and interval.
3740 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3741 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3742 * Contiguous Frame ID is not supported by HC.
3743 */
3744 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3745 struct urb *urb, int slot_id, unsigned int ep_index)
3746 {
3747 struct xhci_virt_device *xdev;
3748 struct xhci_ring *ep_ring;
3749 struct xhci_ep_ctx *ep_ctx;
3750 int start_frame;
3751 int num_tds, num_trbs, i;
3752 int ret;
3753 struct xhci_virt_ep *xep;
3754 int ist;
3755
3756 xdev = xhci->devs[slot_id];
3757 xep = &xhci->devs[slot_id]->eps[ep_index];
3758 ep_ring = xdev->eps[ep_index].ring;
3759 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3760
3761 num_trbs = 0;
3762 num_tds = urb->number_of_packets;
3763 for (i = 0; i < num_tds; i++)
3764 num_trbs += count_isoc_trbs_needed(urb, i);
3765
3766 /* Check the ring to guarantee there is enough room for the whole urb.
3767 * Do not insert any td of the urb to the ring if the check failed.
3768 */
3769 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3770 num_trbs, mem_flags);
3771 if (ret)
3772 return ret;
3773
3774 /*
3775 * Check interval value. This should be done before we start to
3776 * calculate the start frame value.
3777 */
3778 check_interval(xhci, urb, ep_ctx);
3779
3780 /* Calculate the start frame and put it in urb->start_frame. */
3781 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3782 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
3783 EP_STATE_RUNNING) {
3784 urb->start_frame = xep->next_frame_id;
3785 goto skip_start_over;
3786 }
3787 }
3788
3789 start_frame = readl(&xhci->run_regs->microframe_index);
3790 start_frame &= 0x3fff;
3791 /*
3792 * Round up to the next frame and consider the time before trb really
3793 * gets scheduled by hardare.
3794 */
3795 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3796 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3797 ist <<= 3;
3798 start_frame += ist + XHCI_CFC_DELAY;
3799 start_frame = roundup(start_frame, 8);
3800
3801 /*
3802 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3803 * is greate than 8 microframes.
3804 */
3805 if (urb->dev->speed == USB_SPEED_LOW ||
3806 urb->dev->speed == USB_SPEED_FULL) {
3807 start_frame = roundup(start_frame, urb->interval << 3);
3808 urb->start_frame = start_frame >> 3;
3809 } else {
3810 start_frame = roundup(start_frame, urb->interval);
3811 urb->start_frame = start_frame;
3812 }
3813
3814 skip_start_over:
3815 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3816
3817 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3818 }
3819
3820 /**** Command Ring Operations ****/
3821
3822 /* Generic function for queueing a command TRB on the command ring.
3823 * Check to make sure there's room on the command ring for one command TRB.
3824 * Also check that there's room reserved for commands that must not fail.
3825 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3826 * then only check for the number of reserved spots.
3827 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3828 * because the command event handler may want to resubmit a failed command.
3829 */
3830 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3831 u32 field1, u32 field2,
3832 u32 field3, u32 field4, bool command_must_succeed)
3833 {
3834 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3835 int ret;
3836
3837 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3838 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3839 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3840 return -ESHUTDOWN;
3841 }
3842
3843 if (!command_must_succeed)
3844 reserved_trbs++;
3845
3846 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3847 reserved_trbs, GFP_ATOMIC);
3848 if (ret < 0) {
3849 xhci_err(xhci, "ERR: No room for command on command ring\n");
3850 if (command_must_succeed)
3851 xhci_err(xhci, "ERR: Reserved TRB counting for "
3852 "unfailable commands failed.\n");
3853 return ret;
3854 }
3855
3856 cmd->command_trb = xhci->cmd_ring->enqueue;
3857 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3858
3859 /* if there are no other commands queued we start the timeout timer */
3860 if (xhci->cmd_list.next == &cmd->cmd_list &&
3861 !timer_pending(&xhci->cmd_timer)) {
3862 xhci->current_cmd = cmd;
3863 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3864 }
3865
3866 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3867 field4 | xhci->cmd_ring->cycle_state);
3868 return 0;
3869 }
3870
3871 /* Queue a slot enable or disable request on the command ring */
3872 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3873 u32 trb_type, u32 slot_id)
3874 {
3875 return queue_command(xhci, cmd, 0, 0, 0,
3876 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3877 }
3878
3879 /* Queue an address device command TRB */
3880 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3881 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3882 {
3883 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3884 upper_32_bits(in_ctx_ptr), 0,
3885 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3886 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3887 }
3888
3889 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3890 u32 field1, u32 field2, u32 field3, u32 field4)
3891 {
3892 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3893 }
3894
3895 /* Queue a reset device command TRB */
3896 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3897 u32 slot_id)
3898 {
3899 return queue_command(xhci, cmd, 0, 0, 0,
3900 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3901 false);
3902 }
3903
3904 /* Queue a configure endpoint command TRB */
3905 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3906 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3907 u32 slot_id, bool command_must_succeed)
3908 {
3909 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3910 upper_32_bits(in_ctx_ptr), 0,
3911 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3912 command_must_succeed);
3913 }
3914
3915 /* Queue an evaluate context command TRB */
3916 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3917 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3918 {
3919 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3920 upper_32_bits(in_ctx_ptr), 0,
3921 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3922 command_must_succeed);
3923 }
3924
3925 /*
3926 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3927 * activity on an endpoint that is about to be suspended.
3928 */
3929 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3930 int slot_id, unsigned int ep_index, int suspend)
3931 {
3932 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3933 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3934 u32 type = TRB_TYPE(TRB_STOP_RING);
3935 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3936
3937 return queue_command(xhci, cmd, 0, 0, 0,
3938 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3939 }
3940
3941 /* Set Transfer Ring Dequeue Pointer command */
3942 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3943 unsigned int slot_id, unsigned int ep_index,
3944 unsigned int stream_id,
3945 struct xhci_dequeue_state *deq_state)
3946 {
3947 dma_addr_t addr;
3948 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3949 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3950 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3951 u32 trb_sct = 0;
3952 u32 type = TRB_TYPE(TRB_SET_DEQ);
3953 struct xhci_virt_ep *ep;
3954 struct xhci_command *cmd;
3955 int ret;
3956
3957 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3958 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3959 deq_state->new_deq_seg,
3960 (unsigned long long)deq_state->new_deq_seg->dma,
3961 deq_state->new_deq_ptr,
3962 (unsigned long long)xhci_trb_virt_to_dma(
3963 deq_state->new_deq_seg, deq_state->new_deq_ptr),
3964 deq_state->new_cycle_state);
3965
3966 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3967 deq_state->new_deq_ptr);
3968 if (addr == 0) {
3969 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3970 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3971 deq_state->new_deq_seg, deq_state->new_deq_ptr);
3972 return;
3973 }
3974 ep = &xhci->devs[slot_id]->eps[ep_index];
3975 if ((ep->ep_state & SET_DEQ_PENDING)) {
3976 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3977 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3978 return;
3979 }
3980
3981 /* This function gets called from contexts where it cannot sleep */
3982 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
3983 if (!cmd) {
3984 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
3985 return;
3986 }
3987
3988 ep->queued_deq_seg = deq_state->new_deq_seg;
3989 ep->queued_deq_ptr = deq_state->new_deq_ptr;
3990 if (stream_id)
3991 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3992 ret = queue_command(xhci, cmd,
3993 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3994 upper_32_bits(addr), trb_stream_id,
3995 trb_slot_id | trb_ep_index | type, false);
3996 if (ret < 0) {
3997 xhci_free_command(xhci, cmd);
3998 return;
3999 }
4000
4001 /* Stop the TD queueing code from ringing the doorbell until
4002 * this command completes. The HC won't set the dequeue pointer
4003 * if the ring is running, and ringing the doorbell starts the
4004 * ring running.
4005 */
4006 ep->ep_state |= SET_DEQ_PENDING;
4007 }
4008
4009 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4010 int slot_id, unsigned int ep_index)
4011 {
4012 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4013 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4014 u32 type = TRB_TYPE(TRB_RESET_EP);
4015
4016 return queue_command(xhci, cmd, 0, 0, 0,
4017 trb_slot_id | trb_ep_index | type, false);
4018 }