]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79 }
80
81 /*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (!ret) {
117 xhci->xhc_state |= XHCI_STATE_HALTED;
118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 } else
120 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 XHCI_MAX_HALT_USEC);
122 return ret;
123 }
124
125 /*
126 * Set the run bit and wait for the host to be running.
127 */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151
152 return ret;
153 }
154
155 /*
156 * Reset a halted HC.
157 *
158 * This resets pipelines, timers, counters, state machines, etc.
159 * Transactions will be terminated immediately, and operational registers
160 * will be set to their defaults.
161 */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 u32 command;
165 u32 state;
166 int ret, i;
167
168 state = readl(&xhci->op_regs->status);
169 if ((state & STS_HALT) == 0) {
170 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 return 0;
172 }
173
174 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 command = readl(&xhci->op_regs->command);
176 command |= CMD_RESET;
177 writel(command, &xhci->op_regs->command);
178
179 /* Existing Intel xHCI controllers require a delay of 1 mS,
180 * after setting the CMD_RESET bit, and before accessing any
181 * HC registers. This allows the HC to complete the
182 * reset operation and be ready for HC register access.
183 * Without this delay, the subsequent HC register access,
184 * may result in a system hang very rarely.
185 */
186 if (xhci->quirks & XHCI_INTEL_HOST)
187 udelay(1000);
188
189 ret = xhci_handshake(&xhci->op_regs->command,
190 CMD_RESET, 0, 10 * 1000 * 1000);
191 if (ret)
192 return ret;
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; ++i) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 int i;
216
217 if (!xhci->msix_entries)
218 return -EINVAL;
219
220 for (i = 0; i < xhci->msix_count; i++)
221 if (xhci->msix_entries[i].vector)
222 free_irq(xhci->msix_entries[i].vector,
223 xhci_to_hcd(xhci));
224 return 0;
225 }
226
227 /*
228 * Set up MSI
229 */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 int ret;
233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235 ret = pci_enable_msi(pdev);
236 if (ret) {
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "failed to allocate MSI entry");
239 return ret;
240 }
241
242 ret = request_irq(pdev->irq, xhci_msi_irq,
243 0, "xhci_hcd", xhci_to_hcd(xhci));
244 if (ret) {
245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 "disable MSI interrupt");
247 pci_disable_msi(pdev);
248 }
249
250 return ret;
251 }
252
253 /*
254 * Free IRQs
255 * free all IRQs request
256 */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 int ret;
261
262 /* return if using legacy interrupt */
263 if (xhci_to_hcd(xhci)->irq > 0)
264 return;
265
266 ret = xhci_free_msi(xhci);
267 if (!ret)
268 return;
269 if (pdev->irq > 0)
270 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272 return;
273 }
274
275 /*
276 * Set up MSI-X
277 */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 int i, ret = 0;
281 struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284 /*
285 * calculate number of msi-x vectors supported.
286 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 * with max number of interrupters based on the xhci HCSPARAMS1.
288 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 * Add additional 1 vector to ensure always available interrupt.
290 */
291 xhci->msix_count = min(num_online_cpus() + 1,
292 HCS_MAX_INTRS(xhci->hcs_params1));
293
294 xhci->msix_entries =
295 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 GFP_KERNEL);
297 if (!xhci->msix_entries) {
298 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 return -ENOMEM;
300 }
301
302 for (i = 0; i < xhci->msix_count; i++) {
303 xhci->msix_entries[i].entry = i;
304 xhci->msix_entries[i].vector = 0;
305 }
306
307 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 if (ret) {
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 "Failed to enable MSI-X");
311 goto free_entries;
312 }
313
314 for (i = 0; i < xhci->msix_count; i++) {
315 ret = request_irq(xhci->msix_entries[i].vector,
316 xhci_msi_irq,
317 0, "xhci_hcd", xhci_to_hcd(xhci));
318 if (ret)
319 goto disable_msix;
320 }
321
322 hcd->msix_enabled = 1;
323 return ret;
324
325 disable_msix:
326 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 xhci_free_irq(xhci);
328 pci_disable_msix(pdev);
329 free_entries:
330 kfree(xhci->msix_entries);
331 xhci->msix_entries = NULL;
332 return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341 if (xhci->quirks & XHCI_PLAT)
342 return;
343
344 xhci_free_irq(xhci);
345
346 if (xhci->msix_entries) {
347 pci_disable_msix(pdev);
348 kfree(xhci->msix_entries);
349 xhci->msix_entries = NULL;
350 } else {
351 pci_disable_msi(pdev);
352 }
353
354 hcd->msix_enabled = 0;
355 return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 int i;
361
362 if (xhci->msix_entries) {
363 for (i = 0; i < xhci->msix_count; i++)
364 synchronize_irq(xhci->msix_entries[i].vector);
365 }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 struct pci_dev *pdev;
372 int ret;
373
374 /* The xhci platform device has set up IRQs through usb_add_hcd. */
375 if (xhci->quirks & XHCI_PLAT)
376 return 0;
377
378 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 /*
380 * Some Fresco Logic host controllers advertise MSI, but fail to
381 * generate interrupts. Don't even try to enable MSI.
382 */
383 if (xhci->quirks & XHCI_BROKEN_MSI)
384 goto legacy_irq;
385
386 /* unregister the legacy interrupt */
387 if (hcd->irq)
388 free_irq(hcd->irq, hcd);
389 hcd->irq = 0;
390
391 ret = xhci_setup_msix(xhci);
392 if (ret)
393 /* fall back to msi*/
394 ret = xhci_setup_msi(xhci);
395
396 if (!ret)
397 /* hcd->irq is 0, we have MSI */
398 return 0;
399
400 if (!pdev->irq) {
401 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 return -EINVAL;
403 }
404
405 legacy_irq:
406 if (!strlen(hcd->irq_descr))
407 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 hcd->driver->description, hcd->self.busnum);
409
410 /* fall back to legacy interrupt*/
411 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 hcd->irq_descr, hcd);
413 if (ret) {
414 xhci_err(xhci, "request interrupt %d failed\n",
415 pdev->irq);
416 return ret;
417 }
418 hcd->irq = pdev->irq;
419 return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 struct xhci_hcd *xhci;
442 struct usb_hcd *hcd;
443 u32 temp;
444 int i;
445
446 xhci = (struct xhci_hcd *)arg;
447
448 for (i = 0; i < xhci->num_usb3_ports; i++) {
449 temp = readl(xhci->usb3_ports[i]);
450 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 /*
452 * Compliance Mode Detected. Letting USB Core
453 * handle the Warm Reset
454 */
455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 "Compliance mode detected->port %d",
457 i + 1);
458 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 "Attempting compliance mode recovery");
460 hcd = xhci->shared_hcd;
461
462 if (hcd->state == HC_STATE_SUSPENDED)
463 usb_hcd_resume_root_hub(hcd);
464
465 usb_hcd_poll_rh_status(hcd);
466 }
467 }
468
469 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 mod_timer(&xhci->comp_mode_recovery_timer,
471 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476 * that causes ports behind that hardware to enter compliance mode sometimes.
477 * The quirk creates a timer that polls every 2 seconds the link state of
478 * each host controller's port and recovers it by issuing a Warm reset
479 * if Compliance mode is detected, otherwise the port will become "dead" (no
480 * device connections or disconnections will be detected anymore). Becasue no
481 * status event is generated when entering compliance mode (per xhci spec),
482 * this quirk is needed on systems that have the failing hardware installed.
483 */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 xhci->port_status_u0 = 0;
487 setup_timer(&xhci->comp_mode_recovery_timer,
488 compliance_mode_recovery, (unsigned long)xhci);
489 xhci->comp_mode_recovery_timer.expires = jiffies +
490 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492 set_timer_slack(&xhci->comp_mode_recovery_timer,
493 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 add_timer(&xhci->comp_mode_recovery_timer);
495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 "Compliance mode recovery timer initialized");
497 }
498
499 /*
500 * This function identifies the systems that have installed the SN65LVPE502CP
501 * USB3.0 re-driver and that need the Compliance Mode Quirk.
502 * Systems:
503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504 */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 const char *dmi_product_name, *dmi_sys_vendor;
508
509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 if (!dmi_product_name || !dmi_sys_vendor)
512 return false;
513
514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 return false;
516
517 if (strstr(dmi_product_name, "Z420") ||
518 strstr(dmi_product_name, "Z620") ||
519 strstr(dmi_product_name, "Z820") ||
520 strstr(dmi_product_name, "Z1 Workstation"))
521 return true;
522
523 return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533 * Initialize memory for HCD and xHC (one-time init).
534 *
535 * Program the PAGESIZE register, initialize the device context array, create
536 * device contexts (?), set up a command ring segment (or two?), create event
537 * ring (one for now).
538 */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 int retval = 0;
543
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 spin_lock_init(&xhci->lock);
546 if (xhci->hci_version == 0x95 && link_quirk) {
547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 "QUIRK: Not clearing Link TRB chain bits.");
549 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 } else {
551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 "xHCI doesn't need link TRB QUIRK");
553 }
554 retval = xhci_mem_init(xhci, GFP_KERNEL);
555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557 /* Initializing Compliance Mode Recovery Data If Needed */
558 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 compliance_mode_recovery_timer_init(xhci);
561 }
562
563 return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 if (xhci_start(xhci)) {
572 xhci_halt(xhci);
573 return -ENODEV;
574 }
575 xhci->shared_hcd->state = HC_STATE_RUNNING;
576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578 if (xhci->quirks & XHCI_NEC_HOST)
579 xhci_ring_cmd_db(xhci);
580
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 "Finished xhci_run for USB3 roothub");
583 return 0;
584 }
585
586 /*
587 * Start the HC after it was halted.
588 *
589 * This function is called by the USB core when the HC driver is added.
590 * Its opposite is xhci_stop().
591 *
592 * xhci_init() must be called once before this function can be called.
593 * Reset the HC, enable device slot contexts, program DCBAAP, and
594 * set command ring pointer and event ring pointer.
595 *
596 * Setup MSI-X vectors and enable interrupts.
597 */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600 u32 temp;
601 u64 temp_64;
602 int ret;
603 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605 /* Start the xHCI host controller running only after the USB 2.0 roothub
606 * is setup.
607 */
608
609 hcd->uses_new_polling = 1;
610 if (!usb_hcd_is_primary_hcd(hcd))
611 return xhci_run_finished(xhci);
612
613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615 ret = xhci_try_enable_msi(hcd);
616 if (ret)
617 return ret;
618
619 xhci_dbg(xhci, "Command ring memory map follows:\n");
620 xhci_debug_ring(xhci, xhci->cmd_ring);
621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 xhci_dbg_cmd_ptrs(xhci);
623
624 xhci_dbg(xhci, "ERST memory map follows:\n");
625 xhci_dbg_erst(xhci, &xhci->erst);
626 xhci_dbg(xhci, "Event ring:\n");
627 xhci_debug_ring(xhci, xhci->event_ring);
628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 temp_64 &= ~ERST_PTR_MASK;
631 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 "// Set the interrupt modulation register");
636 temp = readl(&xhci->ir_set->irq_control);
637 temp &= ~ER_IRQ_INTERVAL_MASK;
638 /*
639 * the increment interval is 8 times as much as that defined
640 * in xHCI spec on MTK's controller
641 */
642 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643 writel(temp, &xhci->ir_set->irq_control);
644
645 /* Set the HCD state before we enable the irqs */
646 temp = readl(&xhci->op_regs->command);
647 temp |= (CMD_EIE);
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "// Enable interrupts, cmd = 0x%x.", temp);
650 writel(temp, &xhci->op_regs->command);
651
652 temp = readl(&xhci->ir_set->irq_pending);
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657 xhci_print_ir_set(xhci, 0);
658
659 if (xhci->quirks & XHCI_NEC_HOST) {
660 struct xhci_command *command;
661 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662 if (!command)
663 return -ENOMEM;
664 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665 TRB_TYPE(TRB_NEC_GET_FW));
666 }
667 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 "Finished xhci_run for USB2 roothub");
669 return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672
673 /*
674 * Stop xHCI driver.
675 *
676 * This function is called by the USB core when the HC driver is removed.
677 * Its opposite is xhci_run().
678 *
679 * Disable device contexts, disable IRQs, and quiesce the HC.
680 * Reset the HC, finish any completed transactions, and cleanup memory.
681 */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684 u32 temp;
685 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687 if (xhci->xhc_state & XHCI_STATE_HALTED)
688 return;
689
690 mutex_lock(&xhci->mutex);
691 spin_lock_irq(&xhci->lock);
692 xhci->xhc_state |= XHCI_STATE_HALTED;
693 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694
695 /* Make sure the xHC is halted for a USB3 roothub
696 * (xhci_stop() could be called as part of failed init).
697 */
698 xhci_halt(xhci);
699 xhci_reset(xhci);
700 spin_unlock_irq(&xhci->lock);
701
702 xhci_cleanup_msix(xhci);
703
704 /* Deleting Compliance Mode Recovery Timer */
705 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706 (!(xhci_all_ports_seen_u0(xhci)))) {
707 del_timer_sync(&xhci->comp_mode_recovery_timer);
708 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709 "%s: compliance mode recovery timer deleted",
710 __func__);
711 }
712
713 if (xhci->quirks & XHCI_AMD_PLL_FIX)
714 usb_amd_dev_put();
715
716 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717 "// Disabling event ring interrupts");
718 temp = readl(&xhci->op_regs->status);
719 writel(temp & ~STS_EINT, &xhci->op_regs->status);
720 temp = readl(&xhci->ir_set->irq_pending);
721 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722 xhci_print_ir_set(xhci, 0);
723
724 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725 xhci_mem_cleanup(xhci);
726 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727 "xhci_stop completed - status = %x",
728 readl(&xhci->op_regs->status));
729 mutex_unlock(&xhci->mutex);
730 }
731
732 /*
733 * Shutdown HC (not bus-specific)
734 *
735 * This is called when the machine is rebooting or halting. We assume that the
736 * machine will be powered off, and the HC's internal state will be reset.
737 * Don't bother to free memory.
738 *
739 * This will only ever be called with the main usb_hcd (the USB3 roothub).
740 */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744
745 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747
748 spin_lock_irq(&xhci->lock);
749 xhci_halt(xhci);
750 /* Workaround for spurious wakeups at shutdown with HSW */
751 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752 xhci_reset(xhci);
753 spin_unlock_irq(&xhci->lock);
754
755 xhci_cleanup_msix(xhci);
756
757 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 "xhci_shutdown completed - status = %x",
759 readl(&xhci->op_regs->status));
760
761 /* Yet another workaround for spurious wakeups at shutdown with HSW */
762 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769 xhci->s3.command = readl(&xhci->op_regs->command);
770 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782 writel(xhci->s3.command, &xhci->op_regs->command);
783 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795 u64 val_64;
796
797 /* step 2: initialize command ring buffer */
798 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801 xhci->cmd_ring->dequeue) &
802 (u64) ~CMD_RING_RSVD_BITS) |
803 xhci->cmd_ring->cycle_state;
804 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805 "// Setting command ring address to 0x%llx",
806 (long unsigned long) val_64);
807 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809
810 /*
811 * The whole command ring must be cleared to zero when we suspend the host.
812 *
813 * The host doesn't save the command ring pointer in the suspend well, so we
814 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
815 * aligned, because of the reserved bits in the command ring dequeue pointer
816 * register. Therefore, we can't just set the dequeue pointer back in the
817 * middle of the ring (TRBs are 16-byte aligned).
818 */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821 struct xhci_ring *ring;
822 struct xhci_segment *seg;
823
824 ring = xhci->cmd_ring;
825 seg = ring->deq_seg;
826 do {
827 memset(seg->trbs, 0,
828 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830 cpu_to_le32(~TRB_CYCLE);
831 seg = seg->next;
832 } while (seg != ring->deq_seg);
833
834 /* Reset the software enqueue and dequeue pointers */
835 ring->deq_seg = ring->first_seg;
836 ring->dequeue = ring->first_seg->trbs;
837 ring->enq_seg = ring->deq_seg;
838 ring->enqueue = ring->dequeue;
839
840 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841 /*
842 * Ring is now zeroed, so the HW should look for change of ownership
843 * when the cycle bit is set to 1.
844 */
845 ring->cycle_state = 1;
846
847 /*
848 * Reset the hardware dequeue pointer.
849 * Yes, this will need to be re-written after resume, but we're paranoid
850 * and want to make sure the hardware doesn't access bogus memory
851 * because, say, the BIOS or an SMI started the host without changing
852 * the command ring pointers.
853 */
854 xhci_set_cmd_ring_deq(xhci);
855 }
856
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859 int port_index;
860 __le32 __iomem **port_array;
861 unsigned long flags;
862 u32 t1, t2;
863
864 spin_lock_irqsave(&xhci->lock, flags);
865
866 /* disble usb3 ports Wake bits*/
867 port_index = xhci->num_usb3_ports;
868 port_array = xhci->usb3_ports;
869 while (port_index--) {
870 t1 = readl(port_array[port_index]);
871 t1 = xhci_port_state_to_neutral(t1);
872 t2 = t1 & ~PORT_WAKE_BITS;
873 if (t1 != t2)
874 writel(t2, port_array[port_index]);
875 }
876
877 /* disble usb2 ports Wake bits*/
878 port_index = xhci->num_usb2_ports;
879 port_array = xhci->usb2_ports;
880 while (port_index--) {
881 t1 = readl(port_array[port_index]);
882 t1 = xhci_port_state_to_neutral(t1);
883 t2 = t1 & ~PORT_WAKE_BITS;
884 if (t1 != t2)
885 writel(t2, port_array[port_index]);
886 }
887
888 spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890
891 /*
892 * Stop HC (not bus-specific)
893 *
894 * This is called when the machine transition into S3/S4 mode.
895 *
896 */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899 int rc = 0;
900 unsigned int delay = XHCI_MAX_HALT_USEC;
901 struct usb_hcd *hcd = xhci_to_hcd(xhci);
902 u32 command;
903
904 if (!hcd->state)
905 return 0;
906
907 if (hcd->state != HC_STATE_SUSPENDED ||
908 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909 return -EINVAL;
910
911 /* Clear root port wake on bits if wakeup not allowed. */
912 if (!do_wakeup)
913 xhci_disable_port_wake_on_bits(xhci);
914
915 /* Don't poll the roothubs on bus suspend. */
916 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 del_timer_sync(&hcd->rh_timer);
919 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920 del_timer_sync(&xhci->shared_hcd->rh_timer);
921
922 spin_lock_irq(&xhci->lock);
923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925 /* step 1: stop endpoint */
926 /* skipped assuming that port suspend has done */
927
928 /* step 2: clear Run/Stop bit */
929 command = readl(&xhci->op_regs->command);
930 command &= ~CMD_RUN;
931 writel(command, &xhci->op_regs->command);
932
933 /* Some chips from Fresco Logic need an extraordinary delay */
934 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935
936 if (xhci_handshake(&xhci->op_regs->status,
937 STS_HALT, STS_HALT, delay)) {
938 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939 spin_unlock_irq(&xhci->lock);
940 return -ETIMEDOUT;
941 }
942 xhci_clear_command_ring(xhci);
943
944 /* step 3: save registers */
945 xhci_save_registers(xhci);
946
947 /* step 4: set CSS flag */
948 command = readl(&xhci->op_regs->command);
949 command |= CMD_CSS;
950 writel(command, &xhci->op_regs->command);
951 if (xhci_handshake(&xhci->op_regs->status,
952 STS_SAVE, 0, 10 * 1000)) {
953 xhci_warn(xhci, "WARN: xHC save state timeout\n");
954 spin_unlock_irq(&xhci->lock);
955 return -ETIMEDOUT;
956 }
957 spin_unlock_irq(&xhci->lock);
958
959 /*
960 * Deleting Compliance Mode Recovery Timer because the xHCI Host
961 * is about to be suspended.
962 */
963 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964 (!(xhci_all_ports_seen_u0(xhci)))) {
965 del_timer_sync(&xhci->comp_mode_recovery_timer);
966 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967 "%s: compliance mode recovery timer deleted",
968 __func__);
969 }
970
971 /* step 5: remove core well power */
972 /* synchronize irq when using MSI-X */
973 xhci_msix_sync_irqs(xhci);
974
975 return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978
979 /*
980 * start xHC (not bus-specific)
981 *
982 * This is called when the machine transition from S3/S4 mode.
983 *
984 */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987 u32 command, temp = 0, status;
988 struct usb_hcd *hcd = xhci_to_hcd(xhci);
989 struct usb_hcd *secondary_hcd;
990 int retval = 0;
991 bool comp_timer_running = false;
992
993 if (!hcd->state)
994 return 0;
995
996 /* Wait a bit if either of the roothubs need to settle from the
997 * transition into bus suspend.
998 */
999 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000 time_before(jiffies,
1001 xhci->bus_state[1].next_statechange))
1002 msleep(100);
1003
1004 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006
1007 spin_lock_irq(&xhci->lock);
1008 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009 hibernated = true;
1010
1011 if (!hibernated) {
1012 /* step 1: restore register */
1013 xhci_restore_registers(xhci);
1014 /* step 2: initialize command ring buffer */
1015 xhci_set_cmd_ring_deq(xhci);
1016 /* step 3: restore state and start state*/
1017 /* step 3: set CRS flag */
1018 command = readl(&xhci->op_regs->command);
1019 command |= CMD_CRS;
1020 writel(command, &xhci->op_regs->command);
1021 if (xhci_handshake(&xhci->op_regs->status,
1022 STS_RESTORE, 0, 10 * 1000)) {
1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 spin_unlock_irq(&xhci->lock);
1025 return -ETIMEDOUT;
1026 }
1027 temp = readl(&xhci->op_regs->status);
1028 }
1029
1030 /* If restore operation fails, re-initialize the HC during resume */
1031 if ((temp & STS_SRE) || hibernated) {
1032
1033 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034 !(xhci_all_ports_seen_u0(xhci))) {
1035 del_timer_sync(&xhci->comp_mode_recovery_timer);
1036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037 "Compliance Mode Recovery Timer deleted!");
1038 }
1039
1040 /* Let the USB core know _both_ roothubs lost power. */
1041 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043
1044 xhci_dbg(xhci, "Stop HCD\n");
1045 xhci_halt(xhci);
1046 xhci_reset(xhci);
1047 spin_unlock_irq(&xhci->lock);
1048 xhci_cleanup_msix(xhci);
1049
1050 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051 temp = readl(&xhci->op_regs->status);
1052 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053 temp = readl(&xhci->ir_set->irq_pending);
1054 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055 xhci_print_ir_set(xhci, 0);
1056
1057 xhci_dbg(xhci, "cleaning up memory\n");
1058 xhci_mem_cleanup(xhci);
1059 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060 readl(&xhci->op_regs->status));
1061
1062 /* USB core calls the PCI reinit and start functions twice:
1063 * first with the primary HCD, and then with the secondary HCD.
1064 * If we don't do the same, the host will never be started.
1065 */
1066 if (!usb_hcd_is_primary_hcd(hcd))
1067 secondary_hcd = hcd;
1068 else
1069 secondary_hcd = xhci->shared_hcd;
1070
1071 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072 retval = xhci_init(hcd->primary_hcd);
1073 if (retval)
1074 return retval;
1075 comp_timer_running = true;
1076
1077 xhci_dbg(xhci, "Start the primary HCD\n");
1078 retval = xhci_run(hcd->primary_hcd);
1079 if (!retval) {
1080 xhci_dbg(xhci, "Start the secondary HCD\n");
1081 retval = xhci_run(secondary_hcd);
1082 }
1083 hcd->state = HC_STATE_SUSPENDED;
1084 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085 goto done;
1086 }
1087
1088 /* step 4: set Run/Stop bit */
1089 command = readl(&xhci->op_regs->command);
1090 command |= CMD_RUN;
1091 writel(command, &xhci->op_regs->command);
1092 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093 0, 250 * 1000);
1094
1095 /* step 5: walk topology and initialize portsc,
1096 * portpmsc and portli
1097 */
1098 /* this is done in bus_resume */
1099
1100 /* step 6: restart each of the previously
1101 * Running endpoints by ringing their doorbells
1102 */
1103
1104 spin_unlock_irq(&xhci->lock);
1105
1106 done:
1107 if (retval == 0) {
1108 /* Resume root hubs only when have pending events. */
1109 status = readl(&xhci->op_regs->status);
1110 if (status & STS_EINT) {
1111 usb_hcd_resume_root_hub(hcd);
1112 usb_hcd_resume_root_hub(xhci->shared_hcd);
1113 }
1114 }
1115
1116 /*
1117 * If system is subject to the Quirk, Compliance Mode Timer needs to
1118 * be re-initialized Always after a system resume. Ports are subject
1119 * to suffer the Compliance Mode issue again. It doesn't matter if
1120 * ports have entered previously to U0 before system's suspension.
1121 */
1122 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123 compliance_mode_recovery_timer_init(xhci);
1124
1125 /* Re-enable port polling. */
1126 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1128 usb_hcd_poll_rh_status(hcd);
1129 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130 usb_hcd_poll_rh_status(xhci->shared_hcd);
1131
1132 return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif /* CONFIG_PM */
1136
1137 /*-------------------------------------------------------------------------*/
1138
1139 /**
1140 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1142 * value to right shift 1 for the bitmask.
1143 *
1144 * Index = (epnum * 2) + direction - 1,
1145 * where direction = 0 for OUT, 1 for IN.
1146 * For control endpoints, the IN index is used (OUT index is unused), so
1147 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148 */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151 unsigned int index;
1152 if (usb_endpoint_xfer_control(desc))
1153 index = (unsigned int) (usb_endpoint_num(desc)*2);
1154 else
1155 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157 return index;
1158 }
1159
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161 * address from the XHCI endpoint index.
1162 */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167 return direction | number;
1168 }
1169
1170 /* Find the flag for this endpoint (for use in the control context). Use the
1171 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1172 * bit 1, etc.
1173 */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176 return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178
1179 /* Find the flag for this endpoint (for use in the control context). Use the
1180 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1181 * bit 1, etc.
1182 */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185 return 1 << (ep_index + 1);
1186 }
1187
1188 /* Compute the last valid endpoint context index. Basically, this is the
1189 * endpoint index plus one. For slot contexts with more than valid endpoint,
1190 * we find the most significant bit set in the added contexts flags.
1191 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193 */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196 return fls(added_ctxs) - 1;
1197 }
1198
1199 /* Returns 1 if the arguments are OK;
1200 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201 */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204 const char *func) {
1205 struct xhci_hcd *xhci;
1206 struct xhci_virt_device *virt_dev;
1207
1208 if (!hcd || (check_ep && !ep) || !udev) {
1209 pr_debug("xHCI %s called with invalid args\n", func);
1210 return -EINVAL;
1211 }
1212 if (!udev->parent) {
1213 pr_debug("xHCI %s called for root hub\n", func);
1214 return 0;
1215 }
1216
1217 xhci = hcd_to_xhci(hcd);
1218 if (check_virt_dev) {
1219 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221 func);
1222 return -EINVAL;
1223 }
1224
1225 virt_dev = xhci->devs[udev->slot_id];
1226 if (virt_dev->udev != udev) {
1227 xhci_dbg(xhci, "xHCI %s called with udev and "
1228 "virt_dev does not match\n", func);
1229 return -EINVAL;
1230 }
1231 }
1232
1233 if (xhci->xhc_state & XHCI_STATE_HALTED)
1234 return -ENODEV;
1235
1236 return 1;
1237 }
1238
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240 struct usb_device *udev, struct xhci_command *command,
1241 bool ctx_change, bool must_succeed);
1242
1243 /*
1244 * Full speed devices may have a max packet size greater than 8 bytes, but the
1245 * USB core doesn't know that until it reads the first 8 bytes of the
1246 * descriptor. If the usb_device's max packet size changes after that point,
1247 * we need to issue an evaluate context command and wait on it.
1248 */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250 unsigned int ep_index, struct urb *urb)
1251 {
1252 struct xhci_container_ctx *out_ctx;
1253 struct xhci_input_control_ctx *ctrl_ctx;
1254 struct xhci_ep_ctx *ep_ctx;
1255 struct xhci_command *command;
1256 int max_packet_size;
1257 int hw_max_packet_size;
1258 int ret = 0;
1259
1260 out_ctx = xhci->devs[slot_id]->out_ctx;
1261 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264 if (hw_max_packet_size != max_packet_size) {
1265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1266 "Max Packet Size for ep 0 changed.");
1267 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1268 "Max packet size in usb_device = %d",
1269 max_packet_size);
1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1271 "Max packet size in xHCI HW = %d",
1272 hw_max_packet_size);
1273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1274 "Issuing evaluate context command.");
1275
1276 /* Set up the input context flags for the command */
1277 /* FIXME: This won't work if a non-default control endpoint
1278 * changes max packet sizes.
1279 */
1280
1281 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282 if (!command)
1283 return -ENOMEM;
1284
1285 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287 if (!ctrl_ctx) {
1288 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289 __func__);
1290 ret = -ENOMEM;
1291 goto command_cleanup;
1292 }
1293 /* Set up the modified control endpoint 0 */
1294 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295 xhci->devs[slot_id]->out_ctx, ep_index);
1296
1297 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300
1301 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302 ctrl_ctx->drop_flags = 0;
1303
1304 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308
1309 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310 true, false);
1311
1312 /* Clean up the input context for later use by bandwidth
1313 * functions.
1314 */
1315 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317 kfree(command->completion);
1318 kfree(command);
1319 }
1320 return ret;
1321 }
1322
1323 /*
1324 * non-error returns are a promise to giveback() the urb later
1325 * we drop ownership so next owner (or urb unlink) can get it
1326 */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330 struct xhci_td *buffer;
1331 unsigned long flags;
1332 int ret = 0;
1333 unsigned int slot_id, ep_index;
1334 struct urb_priv *urb_priv;
1335 int size, i;
1336
1337 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338 true, true, __func__) <= 0)
1339 return -EINVAL;
1340
1341 slot_id = urb->dev->slot_id;
1342 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343
1344 if (!HCD_HW_ACCESSIBLE(hcd)) {
1345 if (!in_interrupt())
1346 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347 ret = -ESHUTDOWN;
1348 goto exit;
1349 }
1350
1351 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352 size = urb->number_of_packets;
1353 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354 urb->transfer_buffer_length > 0 &&
1355 urb->transfer_flags & URB_ZERO_PACKET &&
1356 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357 size = 2;
1358 else
1359 size = 1;
1360
1361 urb_priv = kzalloc(sizeof(struct urb_priv) +
1362 size * sizeof(struct xhci_td *), mem_flags);
1363 if (!urb_priv)
1364 return -ENOMEM;
1365
1366 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367 if (!buffer) {
1368 kfree(urb_priv);
1369 return -ENOMEM;
1370 }
1371
1372 for (i = 0; i < size; i++) {
1373 urb_priv->td[i] = buffer;
1374 buffer++;
1375 }
1376
1377 urb_priv->length = size;
1378 urb_priv->td_cnt = 0;
1379 urb->hcpriv = urb_priv;
1380
1381 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382 /* Check to see if the max packet size for the default control
1383 * endpoint changed during FS device enumeration
1384 */
1385 if (urb->dev->speed == USB_SPEED_FULL) {
1386 ret = xhci_check_maxpacket(xhci, slot_id,
1387 ep_index, urb);
1388 if (ret < 0) {
1389 xhci_urb_free_priv(urb_priv);
1390 urb->hcpriv = NULL;
1391 return ret;
1392 }
1393 }
1394
1395 /* We have a spinlock and interrupts disabled, so we must pass
1396 * atomic context to this function, which may allocate memory.
1397 */
1398 spin_lock_irqsave(&xhci->lock, flags);
1399 if (xhci->xhc_state & XHCI_STATE_DYING)
1400 goto dying;
1401 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402 slot_id, ep_index);
1403 if (ret)
1404 goto free_priv;
1405 spin_unlock_irqrestore(&xhci->lock, flags);
1406 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407 spin_lock_irqsave(&xhci->lock, flags);
1408 if (xhci->xhc_state & XHCI_STATE_DYING)
1409 goto dying;
1410 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 EP_GETTING_STREAMS) {
1412 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 "is transitioning to using streams.\n");
1414 ret = -EINVAL;
1415 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 EP_GETTING_NO_STREAMS) {
1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 "is transitioning to "
1419 "not having streams.\n");
1420 ret = -EINVAL;
1421 } else {
1422 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423 slot_id, ep_index);
1424 }
1425 if (ret)
1426 goto free_priv;
1427 spin_unlock_irqrestore(&xhci->lock, flags);
1428 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429 spin_lock_irqsave(&xhci->lock, flags);
1430 if (xhci->xhc_state & XHCI_STATE_DYING)
1431 goto dying;
1432 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433 slot_id, ep_index);
1434 if (ret)
1435 goto free_priv;
1436 spin_unlock_irqrestore(&xhci->lock, flags);
1437 } else {
1438 spin_lock_irqsave(&xhci->lock, flags);
1439 if (xhci->xhc_state & XHCI_STATE_DYING)
1440 goto dying;
1441 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442 slot_id, ep_index);
1443 if (ret)
1444 goto free_priv;
1445 spin_unlock_irqrestore(&xhci->lock, flags);
1446 }
1447 exit:
1448 return ret;
1449 dying:
1450 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451 "non-responsive xHCI host.\n",
1452 urb->ep->desc.bEndpointAddress, urb);
1453 ret = -ESHUTDOWN;
1454 free_priv:
1455 xhci_urb_free_priv(urb_priv);
1456 urb->hcpriv = NULL;
1457 spin_unlock_irqrestore(&xhci->lock, flags);
1458 return ret;
1459 }
1460
1461 /* Get the right ring for the given URB.
1462 * If the endpoint supports streams, boundary check the URB's stream ID.
1463 * If the endpoint doesn't support streams, return the singular endpoint ring.
1464 */
1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1466 struct urb *urb)
1467 {
1468 unsigned int slot_id;
1469 unsigned int ep_index;
1470 unsigned int stream_id;
1471 struct xhci_virt_ep *ep;
1472
1473 slot_id = urb->dev->slot_id;
1474 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1475 stream_id = urb->stream_id;
1476 ep = &xhci->devs[slot_id]->eps[ep_index];
1477 /* Common case: no streams */
1478 if (!(ep->ep_state & EP_HAS_STREAMS))
1479 return ep->ring;
1480
1481 if (stream_id == 0) {
1482 xhci_warn(xhci,
1483 "WARN: Slot ID %u, ep index %u has streams, "
1484 "but URB has no stream ID.\n",
1485 slot_id, ep_index);
1486 return NULL;
1487 }
1488
1489 if (stream_id < ep->stream_info->num_streams)
1490 return ep->stream_info->stream_rings[stream_id];
1491
1492 xhci_warn(xhci,
1493 "WARN: Slot ID %u, ep index %u has "
1494 "stream IDs 1 to %u allocated, "
1495 "but stream ID %u is requested.\n",
1496 slot_id, ep_index,
1497 ep->stream_info->num_streams - 1,
1498 stream_id);
1499 return NULL;
1500 }
1501
1502 /*
1503 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1504 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1505 * should pick up where it left off in the TD, unless a Set Transfer Ring
1506 * Dequeue Pointer is issued.
1507 *
1508 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1509 * the ring. Since the ring is a contiguous structure, they can't be physically
1510 * removed. Instead, there are two options:
1511 *
1512 * 1) If the HC is in the middle of processing the URB to be canceled, we
1513 * simply move the ring's dequeue pointer past those TRBs using the Set
1514 * Transfer Ring Dequeue Pointer command. This will be the common case,
1515 * when drivers timeout on the last submitted URB and attempt to cancel.
1516 *
1517 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1518 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1519 * HC will need to invalidate the any TRBs it has cached after the stop
1520 * endpoint command, as noted in the xHCI 0.95 errata.
1521 *
1522 * 3) The TD may have completed by the time the Stop Endpoint Command
1523 * completes, so software needs to handle that case too.
1524 *
1525 * This function should protect against the TD enqueueing code ringing the
1526 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1527 * It also needs to account for multiple cancellations on happening at the same
1528 * time for the same endpoint.
1529 *
1530 * Note that this function can be called in any context, or so says
1531 * usb_hcd_unlink_urb()
1532 */
1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 {
1535 unsigned long flags;
1536 int ret, i;
1537 u32 temp;
1538 struct xhci_hcd *xhci;
1539 struct urb_priv *urb_priv;
1540 struct xhci_td *td;
1541 unsigned int ep_index;
1542 struct xhci_ring *ep_ring;
1543 struct xhci_virt_ep *ep;
1544 struct xhci_command *command;
1545
1546 xhci = hcd_to_xhci(hcd);
1547 spin_lock_irqsave(&xhci->lock, flags);
1548 /* Make sure the URB hasn't completed or been unlinked already */
1549 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1550 if (ret || !urb->hcpriv)
1551 goto done;
1552 temp = readl(&xhci->op_regs->status);
1553 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555 "HW died, freeing TD.");
1556 urb_priv = urb->hcpriv;
1557 for (i = urb_priv->td_cnt;
1558 i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1559 i++) {
1560 td = urb_priv->td[i];
1561 if (!list_empty(&td->td_list))
1562 list_del_init(&td->td_list);
1563 if (!list_empty(&td->cancelled_td_list))
1564 list_del_init(&td->cancelled_td_list);
1565 }
1566
1567 usb_hcd_unlink_urb_from_ep(hcd, urb);
1568 spin_unlock_irqrestore(&xhci->lock, flags);
1569 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1570 xhci_urb_free_priv(urb_priv);
1571 return ret;
1572 }
1573 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1574 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1575 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1576 "Ep 0x%x: URB %p to be canceled on "
1577 "non-responsive xHCI host.",
1578 urb->ep->desc.bEndpointAddress, urb);
1579 /* Let the stop endpoint command watchdog timer (which set this
1580 * state) finish cleaning up the endpoint TD lists. We must
1581 * have caught it in the middle of dropping a lock and giving
1582 * back an URB.
1583 */
1584 goto done;
1585 }
1586
1587 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1588 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1589 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1590 if (!ep_ring) {
1591 ret = -EINVAL;
1592 goto done;
1593 }
1594
1595 urb_priv = urb->hcpriv;
1596 i = urb_priv->td_cnt;
1597 if (i < urb_priv->length)
1598 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1599 "Cancel URB %p, dev %s, ep 0x%x, "
1600 "starting at offset 0x%llx",
1601 urb, urb->dev->devpath,
1602 urb->ep->desc.bEndpointAddress,
1603 (unsigned long long) xhci_trb_virt_to_dma(
1604 urb_priv->td[i]->start_seg,
1605 urb_priv->td[i]->first_trb));
1606
1607 for (; i < urb_priv->length; i++) {
1608 td = urb_priv->td[i];
1609 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1610 }
1611
1612 /* Queue a stop endpoint command, but only if this is
1613 * the first cancellation to be handled.
1614 */
1615 if (!(ep->ep_state & EP_HALT_PENDING)) {
1616 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1617 if (!command) {
1618 ret = -ENOMEM;
1619 goto done;
1620 }
1621 ep->ep_state |= EP_HALT_PENDING;
1622 ep->stop_cmds_pending++;
1623 ep->stop_cmd_timer.expires = jiffies +
1624 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1625 add_timer(&ep->stop_cmd_timer);
1626 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1627 ep_index, 0);
1628 xhci_ring_cmd_db(xhci);
1629 }
1630 done:
1631 spin_unlock_irqrestore(&xhci->lock, flags);
1632 return ret;
1633 }
1634
1635 /* Drop an endpoint from a new bandwidth configuration for this device.
1636 * Only one call to this function is allowed per endpoint before
1637 * check_bandwidth() or reset_bandwidth() must be called.
1638 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1639 * add the endpoint to the schedule with possibly new parameters denoted by a
1640 * different endpoint descriptor in usb_host_endpoint.
1641 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1642 * not allowed.
1643 *
1644 * The USB core will not allow URBs to be queued to an endpoint that is being
1645 * disabled, so there's no need for mutual exclusion to protect
1646 * the xhci->devs[slot_id] structure.
1647 */
1648 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1649 struct usb_host_endpoint *ep)
1650 {
1651 struct xhci_hcd *xhci;
1652 struct xhci_container_ctx *in_ctx, *out_ctx;
1653 struct xhci_input_control_ctx *ctrl_ctx;
1654 unsigned int ep_index;
1655 struct xhci_ep_ctx *ep_ctx;
1656 u32 drop_flag;
1657 u32 new_add_flags, new_drop_flags;
1658 int ret;
1659
1660 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1661 if (ret <= 0)
1662 return ret;
1663 xhci = hcd_to_xhci(hcd);
1664 if (xhci->xhc_state & XHCI_STATE_DYING)
1665 return -ENODEV;
1666
1667 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1668 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1669 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1670 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1671 __func__, drop_flag);
1672 return 0;
1673 }
1674
1675 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1676 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1677 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1678 if (!ctrl_ctx) {
1679 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1680 __func__);
1681 return 0;
1682 }
1683
1684 ep_index = xhci_get_endpoint_index(&ep->desc);
1685 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1686 /* If the HC already knows the endpoint is disabled,
1687 * or the HCD has noted it is disabled, ignore this request
1688 */
1689 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1690 cpu_to_le32(EP_STATE_DISABLED)) ||
1691 le32_to_cpu(ctrl_ctx->drop_flags) &
1692 xhci_get_endpoint_flag(&ep->desc)) {
1693 /* Do not warn when called after a usb_device_reset */
1694 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1695 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1696 __func__, ep);
1697 return 0;
1698 }
1699
1700 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1701 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1702
1703 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1704 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1705
1706 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1707
1708 if (xhci->quirks & XHCI_MTK_HOST)
1709 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1710
1711 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1712 (unsigned int) ep->desc.bEndpointAddress,
1713 udev->slot_id,
1714 (unsigned int) new_drop_flags,
1715 (unsigned int) new_add_flags);
1716 return 0;
1717 }
1718
1719 /* Add an endpoint to a new possible bandwidth configuration for this device.
1720 * Only one call to this function is allowed per endpoint before
1721 * check_bandwidth() or reset_bandwidth() must be called.
1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723 * add the endpoint to the schedule with possibly new parameters denoted by a
1724 * different endpoint descriptor in usb_host_endpoint.
1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726 * not allowed.
1727 *
1728 * The USB core will not allow URBs to be queued to an endpoint until the
1729 * configuration or alt setting is installed in the device, so there's no need
1730 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1731 */
1732 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733 struct usb_host_endpoint *ep)
1734 {
1735 struct xhci_hcd *xhci;
1736 struct xhci_container_ctx *in_ctx;
1737 unsigned int ep_index;
1738 struct xhci_input_control_ctx *ctrl_ctx;
1739 u32 added_ctxs;
1740 u32 new_add_flags, new_drop_flags;
1741 struct xhci_virt_device *virt_dev;
1742 int ret = 0;
1743
1744 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745 if (ret <= 0) {
1746 /* So we won't queue a reset ep command for a root hub */
1747 ep->hcpriv = NULL;
1748 return ret;
1749 }
1750 xhci = hcd_to_xhci(hcd);
1751 if (xhci->xhc_state & XHCI_STATE_DYING)
1752 return -ENODEV;
1753
1754 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1755 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1756 /* FIXME when we have to issue an evaluate endpoint command to
1757 * deal with ep0 max packet size changing once we get the
1758 * descriptors
1759 */
1760 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1761 __func__, added_ctxs);
1762 return 0;
1763 }
1764
1765 virt_dev = xhci->devs[udev->slot_id];
1766 in_ctx = virt_dev->in_ctx;
1767 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1768 if (!ctrl_ctx) {
1769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1770 __func__);
1771 return 0;
1772 }
1773
1774 ep_index = xhci_get_endpoint_index(&ep->desc);
1775 /* If this endpoint is already in use, and the upper layers are trying
1776 * to add it again without dropping it, reject the addition.
1777 */
1778 if (virt_dev->eps[ep_index].ring &&
1779 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1780 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1781 "without dropping it.\n",
1782 (unsigned int) ep->desc.bEndpointAddress);
1783 return -EINVAL;
1784 }
1785
1786 /* If the HCD has already noted the endpoint is enabled,
1787 * ignore this request.
1788 */
1789 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1790 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1791 __func__, ep);
1792 return 0;
1793 }
1794
1795 /*
1796 * Configuration and alternate setting changes must be done in
1797 * process context, not interrupt context (or so documenation
1798 * for usb_set_interface() and usb_set_configuration() claim).
1799 */
1800 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1801 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1802 __func__, ep->desc.bEndpointAddress);
1803 return -ENOMEM;
1804 }
1805
1806 if (xhci->quirks & XHCI_MTK_HOST) {
1807 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1808 if (ret < 0) {
1809 xhci_free_or_cache_endpoint_ring(xhci,
1810 virt_dev, ep_index);
1811 return ret;
1812 }
1813 }
1814
1815 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1816 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1817
1818 /* If xhci_endpoint_disable() was called for this endpoint, but the
1819 * xHC hasn't been notified yet through the check_bandwidth() call,
1820 * this re-adds a new state for the endpoint from the new endpoint
1821 * descriptors. We must drop and re-add this endpoint, so we leave the
1822 * drop flags alone.
1823 */
1824 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1825
1826 /* Store the usb_device pointer for later use */
1827 ep->hcpriv = udev;
1828
1829 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1830 (unsigned int) ep->desc.bEndpointAddress,
1831 udev->slot_id,
1832 (unsigned int) new_drop_flags,
1833 (unsigned int) new_add_flags);
1834 return 0;
1835 }
1836
1837 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1838 {
1839 struct xhci_input_control_ctx *ctrl_ctx;
1840 struct xhci_ep_ctx *ep_ctx;
1841 struct xhci_slot_ctx *slot_ctx;
1842 int i;
1843
1844 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1845 if (!ctrl_ctx) {
1846 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1847 __func__);
1848 return;
1849 }
1850
1851 /* When a device's add flag and drop flag are zero, any subsequent
1852 * configure endpoint command will leave that endpoint's state
1853 * untouched. Make sure we don't leave any old state in the input
1854 * endpoint contexts.
1855 */
1856 ctrl_ctx->drop_flags = 0;
1857 ctrl_ctx->add_flags = 0;
1858 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1859 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1860 /* Endpoint 0 is always valid */
1861 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1862 for (i = 1; i < 31; ++i) {
1863 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1864 ep_ctx->ep_info = 0;
1865 ep_ctx->ep_info2 = 0;
1866 ep_ctx->deq = 0;
1867 ep_ctx->tx_info = 0;
1868 }
1869 }
1870
1871 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1872 struct usb_device *udev, u32 *cmd_status)
1873 {
1874 int ret;
1875
1876 switch (*cmd_status) {
1877 case COMP_CMD_ABORT:
1878 case COMP_CMD_STOP:
1879 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1880 ret = -ETIME;
1881 break;
1882 case COMP_ENOMEM:
1883 dev_warn(&udev->dev,
1884 "Not enough host controller resources for new device state.\n");
1885 ret = -ENOMEM;
1886 /* FIXME: can we allocate more resources for the HC? */
1887 break;
1888 case COMP_BW_ERR:
1889 case COMP_2ND_BW_ERR:
1890 dev_warn(&udev->dev,
1891 "Not enough bandwidth for new device state.\n");
1892 ret = -ENOSPC;
1893 /* FIXME: can we go back to the old state? */
1894 break;
1895 case COMP_TRB_ERR:
1896 /* the HCD set up something wrong */
1897 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1898 "add flag = 1, "
1899 "and endpoint is not disabled.\n");
1900 ret = -EINVAL;
1901 break;
1902 case COMP_DEV_ERR:
1903 dev_warn(&udev->dev,
1904 "ERROR: Incompatible device for endpoint configure command.\n");
1905 ret = -ENODEV;
1906 break;
1907 case COMP_SUCCESS:
1908 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1909 "Successful Endpoint Configure command");
1910 ret = 0;
1911 break;
1912 default:
1913 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1914 *cmd_status);
1915 ret = -EINVAL;
1916 break;
1917 }
1918 return ret;
1919 }
1920
1921 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1922 struct usb_device *udev, u32 *cmd_status)
1923 {
1924 int ret;
1925 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1926
1927 switch (*cmd_status) {
1928 case COMP_CMD_ABORT:
1929 case COMP_CMD_STOP:
1930 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1931 ret = -ETIME;
1932 break;
1933 case COMP_EINVAL:
1934 dev_warn(&udev->dev,
1935 "WARN: xHCI driver setup invalid evaluate context command.\n");
1936 ret = -EINVAL;
1937 break;
1938 case COMP_EBADSLT:
1939 dev_warn(&udev->dev,
1940 "WARN: slot not enabled for evaluate context command.\n");
1941 ret = -EINVAL;
1942 break;
1943 case COMP_CTX_STATE:
1944 dev_warn(&udev->dev,
1945 "WARN: invalid context state for evaluate context command.\n");
1946 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1947 ret = -EINVAL;
1948 break;
1949 case COMP_DEV_ERR:
1950 dev_warn(&udev->dev,
1951 "ERROR: Incompatible device for evaluate context command.\n");
1952 ret = -ENODEV;
1953 break;
1954 case COMP_MEL_ERR:
1955 /* Max Exit Latency too large error */
1956 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1957 ret = -EINVAL;
1958 break;
1959 case COMP_SUCCESS:
1960 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1961 "Successful evaluate context command");
1962 ret = 0;
1963 break;
1964 default:
1965 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1966 *cmd_status);
1967 ret = -EINVAL;
1968 break;
1969 }
1970 return ret;
1971 }
1972
1973 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1974 struct xhci_input_control_ctx *ctrl_ctx)
1975 {
1976 u32 valid_add_flags;
1977 u32 valid_drop_flags;
1978
1979 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1980 * (bit 1). The default control endpoint is added during the Address
1981 * Device command and is never removed until the slot is disabled.
1982 */
1983 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1984 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1985
1986 /* Use hweight32 to count the number of ones in the add flags, or
1987 * number of endpoints added. Don't count endpoints that are changed
1988 * (both added and dropped).
1989 */
1990 return hweight32(valid_add_flags) -
1991 hweight32(valid_add_flags & valid_drop_flags);
1992 }
1993
1994 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1995 struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997 u32 valid_add_flags;
1998 u32 valid_drop_flags;
1999
2000 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2001 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2002
2003 return hweight32(valid_drop_flags) -
2004 hweight32(valid_add_flags & valid_drop_flags);
2005 }
2006
2007 /*
2008 * We need to reserve the new number of endpoints before the configure endpoint
2009 * command completes. We can't subtract the dropped endpoints from the number
2010 * of active endpoints until the command completes because we can oversubscribe
2011 * the host in this case:
2012 *
2013 * - the first configure endpoint command drops more endpoints than it adds
2014 * - a second configure endpoint command that adds more endpoints is queued
2015 * - the first configure endpoint command fails, so the config is unchanged
2016 * - the second command may succeed, even though there isn't enough resources
2017 *
2018 * Must be called with xhci->lock held.
2019 */
2020 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2021 struct xhci_input_control_ctx *ctrl_ctx)
2022 {
2023 u32 added_eps;
2024
2025 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2026 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2027 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2028 "Not enough ep ctxs: "
2029 "%u active, need to add %u, limit is %u.",
2030 xhci->num_active_eps, added_eps,
2031 xhci->limit_active_eps);
2032 return -ENOMEM;
2033 }
2034 xhci->num_active_eps += added_eps;
2035 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036 "Adding %u ep ctxs, %u now active.", added_eps,
2037 xhci->num_active_eps);
2038 return 0;
2039 }
2040
2041 /*
2042 * The configure endpoint was failed by the xHC for some other reason, so we
2043 * need to revert the resources that failed configuration would have used.
2044 *
2045 * Must be called with xhci->lock held.
2046 */
2047 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2048 struct xhci_input_control_ctx *ctrl_ctx)
2049 {
2050 u32 num_failed_eps;
2051
2052 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2053 xhci->num_active_eps -= num_failed_eps;
2054 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2055 "Removing %u failed ep ctxs, %u now active.",
2056 num_failed_eps,
2057 xhci->num_active_eps);
2058 }
2059
2060 /*
2061 * Now that the command has completed, clean up the active endpoint count by
2062 * subtracting out the endpoints that were dropped (but not changed).
2063 *
2064 * Must be called with xhci->lock held.
2065 */
2066 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2067 struct xhci_input_control_ctx *ctrl_ctx)
2068 {
2069 u32 num_dropped_eps;
2070
2071 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2072 xhci->num_active_eps -= num_dropped_eps;
2073 if (num_dropped_eps)
2074 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2075 "Removing %u dropped ep ctxs, %u now active.",
2076 num_dropped_eps,
2077 xhci->num_active_eps);
2078 }
2079
2080 static unsigned int xhci_get_block_size(struct usb_device *udev)
2081 {
2082 switch (udev->speed) {
2083 case USB_SPEED_LOW:
2084 case USB_SPEED_FULL:
2085 return FS_BLOCK;
2086 case USB_SPEED_HIGH:
2087 return HS_BLOCK;
2088 case USB_SPEED_SUPER:
2089 return SS_BLOCK;
2090 case USB_SPEED_UNKNOWN:
2091 case USB_SPEED_WIRELESS:
2092 default:
2093 /* Should never happen */
2094 return 1;
2095 }
2096 }
2097
2098 static unsigned int
2099 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2100 {
2101 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2102 return LS_OVERHEAD;
2103 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2104 return FS_OVERHEAD;
2105 return HS_OVERHEAD;
2106 }
2107
2108 /* If we are changing a LS/FS device under a HS hub,
2109 * make sure (if we are activating a new TT) that the HS bus has enough
2110 * bandwidth for this new TT.
2111 */
2112 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2113 struct xhci_virt_device *virt_dev,
2114 int old_active_eps)
2115 {
2116 struct xhci_interval_bw_table *bw_table;
2117 struct xhci_tt_bw_info *tt_info;
2118
2119 /* Find the bandwidth table for the root port this TT is attached to. */
2120 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2121 tt_info = virt_dev->tt_info;
2122 /* If this TT already had active endpoints, the bandwidth for this TT
2123 * has already been added. Removing all periodic endpoints (and thus
2124 * making the TT enactive) will only decrease the bandwidth used.
2125 */
2126 if (old_active_eps)
2127 return 0;
2128 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2129 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2130 return -ENOMEM;
2131 return 0;
2132 }
2133 /* Not sure why we would have no new active endpoints...
2134 *
2135 * Maybe because of an Evaluate Context change for a hub update or a
2136 * control endpoint 0 max packet size change?
2137 * FIXME: skip the bandwidth calculation in that case.
2138 */
2139 return 0;
2140 }
2141
2142 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2143 struct xhci_virt_device *virt_dev)
2144 {
2145 unsigned int bw_reserved;
2146
2147 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2148 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2149 return -ENOMEM;
2150
2151 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2152 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2153 return -ENOMEM;
2154
2155 return 0;
2156 }
2157
2158 /*
2159 * This algorithm is a very conservative estimate of the worst-case scheduling
2160 * scenario for any one interval. The hardware dynamically schedules the
2161 * packets, so we can't tell which microframe could be the limiting factor in
2162 * the bandwidth scheduling. This only takes into account periodic endpoints.
2163 *
2164 * Obviously, we can't solve an NP complete problem to find the minimum worst
2165 * case scenario. Instead, we come up with an estimate that is no less than
2166 * the worst case bandwidth used for any one microframe, but may be an
2167 * over-estimate.
2168 *
2169 * We walk the requirements for each endpoint by interval, starting with the
2170 * smallest interval, and place packets in the schedule where there is only one
2171 * possible way to schedule packets for that interval. In order to simplify
2172 * this algorithm, we record the largest max packet size for each interval, and
2173 * assume all packets will be that size.
2174 *
2175 * For interval 0, we obviously must schedule all packets for each interval.
2176 * The bandwidth for interval 0 is just the amount of data to be transmitted
2177 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2178 * the number of packets).
2179 *
2180 * For interval 1, we have two possible microframes to schedule those packets
2181 * in. For this algorithm, if we can schedule the same number of packets for
2182 * each possible scheduling opportunity (each microframe), we will do so. The
2183 * remaining number of packets will be saved to be transmitted in the gaps in
2184 * the next interval's scheduling sequence.
2185 *
2186 * As we move those remaining packets to be scheduled with interval 2 packets,
2187 * we have to double the number of remaining packets to transmit. This is
2188 * because the intervals are actually powers of 2, and we would be transmitting
2189 * the previous interval's packets twice in this interval. We also have to be
2190 * sure that when we look at the largest max packet size for this interval, we
2191 * also look at the largest max packet size for the remaining packets and take
2192 * the greater of the two.
2193 *
2194 * The algorithm continues to evenly distribute packets in each scheduling
2195 * opportunity, and push the remaining packets out, until we get to the last
2196 * interval. Then those packets and their associated overhead are just added
2197 * to the bandwidth used.
2198 */
2199 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2200 struct xhci_virt_device *virt_dev,
2201 int old_active_eps)
2202 {
2203 unsigned int bw_reserved;
2204 unsigned int max_bandwidth;
2205 unsigned int bw_used;
2206 unsigned int block_size;
2207 struct xhci_interval_bw_table *bw_table;
2208 unsigned int packet_size = 0;
2209 unsigned int overhead = 0;
2210 unsigned int packets_transmitted = 0;
2211 unsigned int packets_remaining = 0;
2212 unsigned int i;
2213
2214 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2215 return xhci_check_ss_bw(xhci, virt_dev);
2216
2217 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2218 max_bandwidth = HS_BW_LIMIT;
2219 /* Convert percent of bus BW reserved to blocks reserved */
2220 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2221 } else {
2222 max_bandwidth = FS_BW_LIMIT;
2223 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2224 }
2225
2226 bw_table = virt_dev->bw_table;
2227 /* We need to translate the max packet size and max ESIT payloads into
2228 * the units the hardware uses.
2229 */
2230 block_size = xhci_get_block_size(virt_dev->udev);
2231
2232 /* If we are manipulating a LS/FS device under a HS hub, double check
2233 * that the HS bus has enough bandwidth if we are activing a new TT.
2234 */
2235 if (virt_dev->tt_info) {
2236 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2237 "Recalculating BW for rootport %u",
2238 virt_dev->real_port);
2239 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2240 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2241 "newly activated TT.\n");
2242 return -ENOMEM;
2243 }
2244 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2245 "Recalculating BW for TT slot %u port %u",
2246 virt_dev->tt_info->slot_id,
2247 virt_dev->tt_info->ttport);
2248 } else {
2249 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2250 "Recalculating BW for rootport %u",
2251 virt_dev->real_port);
2252 }
2253
2254 /* Add in how much bandwidth will be used for interval zero, or the
2255 * rounded max ESIT payload + number of packets * largest overhead.
2256 */
2257 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2258 bw_table->interval_bw[0].num_packets *
2259 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2260
2261 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2262 unsigned int bw_added;
2263 unsigned int largest_mps;
2264 unsigned int interval_overhead;
2265
2266 /*
2267 * How many packets could we transmit in this interval?
2268 * If packets didn't fit in the previous interval, we will need
2269 * to transmit that many packets twice within this interval.
2270 */
2271 packets_remaining = 2 * packets_remaining +
2272 bw_table->interval_bw[i].num_packets;
2273
2274 /* Find the largest max packet size of this or the previous
2275 * interval.
2276 */
2277 if (list_empty(&bw_table->interval_bw[i].endpoints))
2278 largest_mps = 0;
2279 else {
2280 struct xhci_virt_ep *virt_ep;
2281 struct list_head *ep_entry;
2282
2283 ep_entry = bw_table->interval_bw[i].endpoints.next;
2284 virt_ep = list_entry(ep_entry,
2285 struct xhci_virt_ep, bw_endpoint_list);
2286 /* Convert to blocks, rounding up */
2287 largest_mps = DIV_ROUND_UP(
2288 virt_ep->bw_info.max_packet_size,
2289 block_size);
2290 }
2291 if (largest_mps > packet_size)
2292 packet_size = largest_mps;
2293
2294 /* Use the larger overhead of this or the previous interval. */
2295 interval_overhead = xhci_get_largest_overhead(
2296 &bw_table->interval_bw[i]);
2297 if (interval_overhead > overhead)
2298 overhead = interval_overhead;
2299
2300 /* How many packets can we evenly distribute across
2301 * (1 << (i + 1)) possible scheduling opportunities?
2302 */
2303 packets_transmitted = packets_remaining >> (i + 1);
2304
2305 /* Add in the bandwidth used for those scheduled packets */
2306 bw_added = packets_transmitted * (overhead + packet_size);
2307
2308 /* How many packets do we have remaining to transmit? */
2309 packets_remaining = packets_remaining % (1 << (i + 1));
2310
2311 /* What largest max packet size should those packets have? */
2312 /* If we've transmitted all packets, don't carry over the
2313 * largest packet size.
2314 */
2315 if (packets_remaining == 0) {
2316 packet_size = 0;
2317 overhead = 0;
2318 } else if (packets_transmitted > 0) {
2319 /* Otherwise if we do have remaining packets, and we've
2320 * scheduled some packets in this interval, take the
2321 * largest max packet size from endpoints with this
2322 * interval.
2323 */
2324 packet_size = largest_mps;
2325 overhead = interval_overhead;
2326 }
2327 /* Otherwise carry over packet_size and overhead from the last
2328 * time we had a remainder.
2329 */
2330 bw_used += bw_added;
2331 if (bw_used > max_bandwidth) {
2332 xhci_warn(xhci, "Not enough bandwidth. "
2333 "Proposed: %u, Max: %u\n",
2334 bw_used, max_bandwidth);
2335 return -ENOMEM;
2336 }
2337 }
2338 /*
2339 * Ok, we know we have some packets left over after even-handedly
2340 * scheduling interval 15. We don't know which microframes they will
2341 * fit into, so we over-schedule and say they will be scheduled every
2342 * microframe.
2343 */
2344 if (packets_remaining > 0)
2345 bw_used += overhead + packet_size;
2346
2347 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2348 unsigned int port_index = virt_dev->real_port - 1;
2349
2350 /* OK, we're manipulating a HS device attached to a
2351 * root port bandwidth domain. Include the number of active TTs
2352 * in the bandwidth used.
2353 */
2354 bw_used += TT_HS_OVERHEAD *
2355 xhci->rh_bw[port_index].num_active_tts;
2356 }
2357
2358 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2359 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2360 "Available: %u " "percent",
2361 bw_used, max_bandwidth, bw_reserved,
2362 (max_bandwidth - bw_used - bw_reserved) * 100 /
2363 max_bandwidth);
2364
2365 bw_used += bw_reserved;
2366 if (bw_used > max_bandwidth) {
2367 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2368 bw_used, max_bandwidth);
2369 return -ENOMEM;
2370 }
2371
2372 bw_table->bw_used = bw_used;
2373 return 0;
2374 }
2375
2376 static bool xhci_is_async_ep(unsigned int ep_type)
2377 {
2378 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2379 ep_type != ISOC_IN_EP &&
2380 ep_type != INT_IN_EP);
2381 }
2382
2383 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2384 {
2385 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2386 }
2387
2388 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2389 {
2390 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2391
2392 if (ep_bw->ep_interval == 0)
2393 return SS_OVERHEAD_BURST +
2394 (ep_bw->mult * ep_bw->num_packets *
2395 (SS_OVERHEAD + mps));
2396 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2397 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2398 1 << ep_bw->ep_interval);
2399
2400 }
2401
2402 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2403 struct xhci_bw_info *ep_bw,
2404 struct xhci_interval_bw_table *bw_table,
2405 struct usb_device *udev,
2406 struct xhci_virt_ep *virt_ep,
2407 struct xhci_tt_bw_info *tt_info)
2408 {
2409 struct xhci_interval_bw *interval_bw;
2410 int normalized_interval;
2411
2412 if (xhci_is_async_ep(ep_bw->type))
2413 return;
2414
2415 if (udev->speed == USB_SPEED_SUPER) {
2416 if (xhci_is_sync_in_ep(ep_bw->type))
2417 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2418 xhci_get_ss_bw_consumed(ep_bw);
2419 else
2420 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2421 xhci_get_ss_bw_consumed(ep_bw);
2422 return;
2423 }
2424
2425 /* SuperSpeed endpoints never get added to intervals in the table, so
2426 * this check is only valid for HS/FS/LS devices.
2427 */
2428 if (list_empty(&virt_ep->bw_endpoint_list))
2429 return;
2430 /* For LS/FS devices, we need to translate the interval expressed in
2431 * microframes to frames.
2432 */
2433 if (udev->speed == USB_SPEED_HIGH)
2434 normalized_interval = ep_bw->ep_interval;
2435 else
2436 normalized_interval = ep_bw->ep_interval - 3;
2437
2438 if (normalized_interval == 0)
2439 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2440 interval_bw = &bw_table->interval_bw[normalized_interval];
2441 interval_bw->num_packets -= ep_bw->num_packets;
2442 switch (udev->speed) {
2443 case USB_SPEED_LOW:
2444 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2445 break;
2446 case USB_SPEED_FULL:
2447 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2448 break;
2449 case USB_SPEED_HIGH:
2450 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2451 break;
2452 case USB_SPEED_SUPER:
2453 case USB_SPEED_UNKNOWN:
2454 case USB_SPEED_WIRELESS:
2455 /* Should never happen because only LS/FS/HS endpoints will get
2456 * added to the endpoint list.
2457 */
2458 return;
2459 }
2460 if (tt_info)
2461 tt_info->active_eps -= 1;
2462 list_del_init(&virt_ep->bw_endpoint_list);
2463 }
2464
2465 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2466 struct xhci_bw_info *ep_bw,
2467 struct xhci_interval_bw_table *bw_table,
2468 struct usb_device *udev,
2469 struct xhci_virt_ep *virt_ep,
2470 struct xhci_tt_bw_info *tt_info)
2471 {
2472 struct xhci_interval_bw *interval_bw;
2473 struct xhci_virt_ep *smaller_ep;
2474 int normalized_interval;
2475
2476 if (xhci_is_async_ep(ep_bw->type))
2477 return;
2478
2479 if (udev->speed == USB_SPEED_SUPER) {
2480 if (xhci_is_sync_in_ep(ep_bw->type))
2481 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2482 xhci_get_ss_bw_consumed(ep_bw);
2483 else
2484 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2485 xhci_get_ss_bw_consumed(ep_bw);
2486 return;
2487 }
2488
2489 /* For LS/FS devices, we need to translate the interval expressed in
2490 * microframes to frames.
2491 */
2492 if (udev->speed == USB_SPEED_HIGH)
2493 normalized_interval = ep_bw->ep_interval;
2494 else
2495 normalized_interval = ep_bw->ep_interval - 3;
2496
2497 if (normalized_interval == 0)
2498 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2499 interval_bw = &bw_table->interval_bw[normalized_interval];
2500 interval_bw->num_packets += ep_bw->num_packets;
2501 switch (udev->speed) {
2502 case USB_SPEED_LOW:
2503 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2504 break;
2505 case USB_SPEED_FULL:
2506 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2507 break;
2508 case USB_SPEED_HIGH:
2509 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2510 break;
2511 case USB_SPEED_SUPER:
2512 case USB_SPEED_UNKNOWN:
2513 case USB_SPEED_WIRELESS:
2514 /* Should never happen because only LS/FS/HS endpoints will get
2515 * added to the endpoint list.
2516 */
2517 return;
2518 }
2519
2520 if (tt_info)
2521 tt_info->active_eps += 1;
2522 /* Insert the endpoint into the list, largest max packet size first. */
2523 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2524 bw_endpoint_list) {
2525 if (ep_bw->max_packet_size >=
2526 smaller_ep->bw_info.max_packet_size) {
2527 /* Add the new ep before the smaller endpoint */
2528 list_add_tail(&virt_ep->bw_endpoint_list,
2529 &smaller_ep->bw_endpoint_list);
2530 return;
2531 }
2532 }
2533 /* Add the new endpoint at the end of the list. */
2534 list_add_tail(&virt_ep->bw_endpoint_list,
2535 &interval_bw->endpoints);
2536 }
2537
2538 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2539 struct xhci_virt_device *virt_dev,
2540 int old_active_eps)
2541 {
2542 struct xhci_root_port_bw_info *rh_bw_info;
2543 if (!virt_dev->tt_info)
2544 return;
2545
2546 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2547 if (old_active_eps == 0 &&
2548 virt_dev->tt_info->active_eps != 0) {
2549 rh_bw_info->num_active_tts += 1;
2550 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2551 } else if (old_active_eps != 0 &&
2552 virt_dev->tt_info->active_eps == 0) {
2553 rh_bw_info->num_active_tts -= 1;
2554 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2555 }
2556 }
2557
2558 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2559 struct xhci_virt_device *virt_dev,
2560 struct xhci_container_ctx *in_ctx)
2561 {
2562 struct xhci_bw_info ep_bw_info[31];
2563 int i;
2564 struct xhci_input_control_ctx *ctrl_ctx;
2565 int old_active_eps = 0;
2566
2567 if (virt_dev->tt_info)
2568 old_active_eps = virt_dev->tt_info->active_eps;
2569
2570 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2571 if (!ctrl_ctx) {
2572 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2573 __func__);
2574 return -ENOMEM;
2575 }
2576
2577 for (i = 0; i < 31; i++) {
2578 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2579 continue;
2580
2581 /* Make a copy of the BW info in case we need to revert this */
2582 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2583 sizeof(ep_bw_info[i]));
2584 /* Drop the endpoint from the interval table if the endpoint is
2585 * being dropped or changed.
2586 */
2587 if (EP_IS_DROPPED(ctrl_ctx, i))
2588 xhci_drop_ep_from_interval_table(xhci,
2589 &virt_dev->eps[i].bw_info,
2590 virt_dev->bw_table,
2591 virt_dev->udev,
2592 &virt_dev->eps[i],
2593 virt_dev->tt_info);
2594 }
2595 /* Overwrite the information stored in the endpoints' bw_info */
2596 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2597 for (i = 0; i < 31; i++) {
2598 /* Add any changed or added endpoints to the interval table */
2599 if (EP_IS_ADDED(ctrl_ctx, i))
2600 xhci_add_ep_to_interval_table(xhci,
2601 &virt_dev->eps[i].bw_info,
2602 virt_dev->bw_table,
2603 virt_dev->udev,
2604 &virt_dev->eps[i],
2605 virt_dev->tt_info);
2606 }
2607
2608 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2609 /* Ok, this fits in the bandwidth we have.
2610 * Update the number of active TTs.
2611 */
2612 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2613 return 0;
2614 }
2615
2616 /* We don't have enough bandwidth for this, revert the stored info. */
2617 for (i = 0; i < 31; i++) {
2618 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2619 continue;
2620
2621 /* Drop the new copies of any added or changed endpoints from
2622 * the interval table.
2623 */
2624 if (EP_IS_ADDED(ctrl_ctx, i)) {
2625 xhci_drop_ep_from_interval_table(xhci,
2626 &virt_dev->eps[i].bw_info,
2627 virt_dev->bw_table,
2628 virt_dev->udev,
2629 &virt_dev->eps[i],
2630 virt_dev->tt_info);
2631 }
2632 /* Revert the endpoint back to its old information */
2633 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2634 sizeof(ep_bw_info[i]));
2635 /* Add any changed or dropped endpoints back into the table */
2636 if (EP_IS_DROPPED(ctrl_ctx, i))
2637 xhci_add_ep_to_interval_table(xhci,
2638 &virt_dev->eps[i].bw_info,
2639 virt_dev->bw_table,
2640 virt_dev->udev,
2641 &virt_dev->eps[i],
2642 virt_dev->tt_info);
2643 }
2644 return -ENOMEM;
2645 }
2646
2647
2648 /* Issue a configure endpoint command or evaluate context command
2649 * and wait for it to finish.
2650 */
2651 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2652 struct usb_device *udev,
2653 struct xhci_command *command,
2654 bool ctx_change, bool must_succeed)
2655 {
2656 int ret;
2657 unsigned long flags;
2658 struct xhci_input_control_ctx *ctrl_ctx;
2659 struct xhci_virt_device *virt_dev;
2660
2661 if (!command)
2662 return -EINVAL;
2663
2664 spin_lock_irqsave(&xhci->lock, flags);
2665 virt_dev = xhci->devs[udev->slot_id];
2666
2667 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2668 if (!ctrl_ctx) {
2669 spin_unlock_irqrestore(&xhci->lock, flags);
2670 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2671 __func__);
2672 return -ENOMEM;
2673 }
2674
2675 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2676 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2677 spin_unlock_irqrestore(&xhci->lock, flags);
2678 xhci_warn(xhci, "Not enough host resources, "
2679 "active endpoint contexts = %u\n",
2680 xhci->num_active_eps);
2681 return -ENOMEM;
2682 }
2683 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2684 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2685 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2686 xhci_free_host_resources(xhci, ctrl_ctx);
2687 spin_unlock_irqrestore(&xhci->lock, flags);
2688 xhci_warn(xhci, "Not enough bandwidth\n");
2689 return -ENOMEM;
2690 }
2691
2692 if (!ctx_change)
2693 ret = xhci_queue_configure_endpoint(xhci, command,
2694 command->in_ctx->dma,
2695 udev->slot_id, must_succeed);
2696 else
2697 ret = xhci_queue_evaluate_context(xhci, command,
2698 command->in_ctx->dma,
2699 udev->slot_id, must_succeed);
2700 if (ret < 0) {
2701 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2702 xhci_free_host_resources(xhci, ctrl_ctx);
2703 spin_unlock_irqrestore(&xhci->lock, flags);
2704 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2705 "FIXME allocate a new ring segment");
2706 return -ENOMEM;
2707 }
2708 xhci_ring_cmd_db(xhci);
2709 spin_unlock_irqrestore(&xhci->lock, flags);
2710
2711 /* Wait for the configure endpoint command to complete */
2712 wait_for_completion(command->completion);
2713
2714 if (!ctx_change)
2715 ret = xhci_configure_endpoint_result(xhci, udev,
2716 &command->status);
2717 else
2718 ret = xhci_evaluate_context_result(xhci, udev,
2719 &command->status);
2720
2721 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2722 spin_lock_irqsave(&xhci->lock, flags);
2723 /* If the command failed, remove the reserved resources.
2724 * Otherwise, clean up the estimate to include dropped eps.
2725 */
2726 if (ret)
2727 xhci_free_host_resources(xhci, ctrl_ctx);
2728 else
2729 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2730 spin_unlock_irqrestore(&xhci->lock, flags);
2731 }
2732 return ret;
2733 }
2734
2735 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2736 struct xhci_virt_device *vdev, int i)
2737 {
2738 struct xhci_virt_ep *ep = &vdev->eps[i];
2739
2740 if (ep->ep_state & EP_HAS_STREAMS) {
2741 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2742 xhci_get_endpoint_address(i));
2743 xhci_free_stream_info(xhci, ep->stream_info);
2744 ep->stream_info = NULL;
2745 ep->ep_state &= ~EP_HAS_STREAMS;
2746 }
2747 }
2748
2749 /* Called after one or more calls to xhci_add_endpoint() or
2750 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2751 * to call xhci_reset_bandwidth().
2752 *
2753 * Since we are in the middle of changing either configuration or
2754 * installing a new alt setting, the USB core won't allow URBs to be
2755 * enqueued for any endpoint on the old config or interface. Nothing
2756 * else should be touching the xhci->devs[slot_id] structure, so we
2757 * don't need to take the xhci->lock for manipulating that.
2758 */
2759 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2760 {
2761 int i;
2762 int ret = 0;
2763 struct xhci_hcd *xhci;
2764 struct xhci_virt_device *virt_dev;
2765 struct xhci_input_control_ctx *ctrl_ctx;
2766 struct xhci_slot_ctx *slot_ctx;
2767 struct xhci_command *command;
2768
2769 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2770 if (ret <= 0)
2771 return ret;
2772 xhci = hcd_to_xhci(hcd);
2773 if (xhci->xhc_state & XHCI_STATE_DYING)
2774 return -ENODEV;
2775
2776 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2777 virt_dev = xhci->devs[udev->slot_id];
2778
2779 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2780 if (!command)
2781 return -ENOMEM;
2782
2783 command->in_ctx = virt_dev->in_ctx;
2784
2785 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2786 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2787 if (!ctrl_ctx) {
2788 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2789 __func__);
2790 ret = -ENOMEM;
2791 goto command_cleanup;
2792 }
2793 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2794 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2795 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2796
2797 /* Don't issue the command if there's no endpoints to update. */
2798 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2799 ctrl_ctx->drop_flags == 0) {
2800 ret = 0;
2801 goto command_cleanup;
2802 }
2803 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2804 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2805 for (i = 31; i >= 1; i--) {
2806 __le32 le32 = cpu_to_le32(BIT(i));
2807
2808 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2809 || (ctrl_ctx->add_flags & le32) || i == 1) {
2810 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2811 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2812 break;
2813 }
2814 }
2815 xhci_dbg(xhci, "New Input Control Context:\n");
2816 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2817 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2818
2819 ret = xhci_configure_endpoint(xhci, udev, command,
2820 false, false);
2821 if (ret)
2822 /* Callee should call reset_bandwidth() */
2823 goto command_cleanup;
2824
2825 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2826 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2827 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2828
2829 /* Free any rings that were dropped, but not changed. */
2830 for (i = 1; i < 31; ++i) {
2831 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2832 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2833 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2834 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2835 }
2836 }
2837 xhci_zero_in_ctx(xhci, virt_dev);
2838 /*
2839 * Install any rings for completely new endpoints or changed endpoints,
2840 * and free or cache any old rings from changed endpoints.
2841 */
2842 for (i = 1; i < 31; ++i) {
2843 if (!virt_dev->eps[i].new_ring)
2844 continue;
2845 /* Only cache or free the old ring if it exists.
2846 * It may not if this is the first add of an endpoint.
2847 */
2848 if (virt_dev->eps[i].ring) {
2849 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2850 }
2851 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2852 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2853 virt_dev->eps[i].new_ring = NULL;
2854 }
2855 command_cleanup:
2856 kfree(command->completion);
2857 kfree(command);
2858
2859 return ret;
2860 }
2861
2862 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2863 {
2864 struct xhci_hcd *xhci;
2865 struct xhci_virt_device *virt_dev;
2866 int i, ret;
2867
2868 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2869 if (ret <= 0)
2870 return;
2871 xhci = hcd_to_xhci(hcd);
2872
2873 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2874 virt_dev = xhci->devs[udev->slot_id];
2875 /* Free any rings allocated for added endpoints */
2876 for (i = 0; i < 31; ++i) {
2877 if (virt_dev->eps[i].new_ring) {
2878 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2879 virt_dev->eps[i].new_ring = NULL;
2880 }
2881 }
2882 xhci_zero_in_ctx(xhci, virt_dev);
2883 }
2884
2885 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2886 struct xhci_container_ctx *in_ctx,
2887 struct xhci_container_ctx *out_ctx,
2888 struct xhci_input_control_ctx *ctrl_ctx,
2889 u32 add_flags, u32 drop_flags)
2890 {
2891 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2892 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2893 xhci_slot_copy(xhci, in_ctx, out_ctx);
2894 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2895
2896 xhci_dbg(xhci, "Input Context:\n");
2897 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2898 }
2899
2900 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2901 unsigned int slot_id, unsigned int ep_index,
2902 struct xhci_dequeue_state *deq_state)
2903 {
2904 struct xhci_input_control_ctx *ctrl_ctx;
2905 struct xhci_container_ctx *in_ctx;
2906 struct xhci_ep_ctx *ep_ctx;
2907 u32 added_ctxs;
2908 dma_addr_t addr;
2909
2910 in_ctx = xhci->devs[slot_id]->in_ctx;
2911 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2912 if (!ctrl_ctx) {
2913 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2914 __func__);
2915 return;
2916 }
2917
2918 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2919 xhci->devs[slot_id]->out_ctx, ep_index);
2920 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2921 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2922 deq_state->new_deq_ptr);
2923 if (addr == 0) {
2924 xhci_warn(xhci, "WARN Cannot submit config ep after "
2925 "reset ep command\n");
2926 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2927 deq_state->new_deq_seg,
2928 deq_state->new_deq_ptr);
2929 return;
2930 }
2931 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2932
2933 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2934 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2935 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2936 added_ctxs, added_ctxs);
2937 }
2938
2939 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2940 unsigned int ep_index, struct xhci_td *td)
2941 {
2942 struct xhci_dequeue_state deq_state;
2943 struct xhci_virt_ep *ep;
2944 struct usb_device *udev = td->urb->dev;
2945
2946 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2947 "Cleaning up stalled endpoint ring");
2948 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2949 /* We need to move the HW's dequeue pointer past this TD,
2950 * or it will attempt to resend it on the next doorbell ring.
2951 */
2952 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2953 ep_index, ep->stopped_stream, td, &deq_state);
2954
2955 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2956 return;
2957
2958 /* HW with the reset endpoint quirk will use the saved dequeue state to
2959 * issue a configure endpoint command later.
2960 */
2961 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2962 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2963 "Queueing new dequeue state");
2964 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2965 ep_index, ep->stopped_stream, &deq_state);
2966 } else {
2967 /* Better hope no one uses the input context between now and the
2968 * reset endpoint completion!
2969 * XXX: No idea how this hardware will react when stream rings
2970 * are enabled.
2971 */
2972 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2973 "Setting up input context for "
2974 "configure endpoint command");
2975 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2976 ep_index, &deq_state);
2977 }
2978 }
2979
2980 /* Called when clearing halted device. The core should have sent the control
2981 * message to clear the device halt condition. The host side of the halt should
2982 * already be cleared with a reset endpoint command issued when the STALL tx
2983 * event was received.
2984 *
2985 * Context: in_interrupt
2986 */
2987
2988 void xhci_endpoint_reset(struct usb_hcd *hcd,
2989 struct usb_host_endpoint *ep)
2990 {
2991 struct xhci_hcd *xhci;
2992
2993 xhci = hcd_to_xhci(hcd);
2994
2995 /*
2996 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2997 * The Reset Endpoint Command may only be issued to endpoints in the
2998 * Halted state. If software wishes reset the Data Toggle or Sequence
2999 * Number of an endpoint that isn't in the Halted state, then software
3000 * may issue a Configure Endpoint Command with the Drop and Add bits set
3001 * for the target endpoint. that is in the Stopped state.
3002 */
3003
3004 /* For now just print debug to follow the situation */
3005 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3006 ep->desc.bEndpointAddress);
3007 }
3008
3009 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3010 struct usb_device *udev, struct usb_host_endpoint *ep,
3011 unsigned int slot_id)
3012 {
3013 int ret;
3014 unsigned int ep_index;
3015 unsigned int ep_state;
3016
3017 if (!ep)
3018 return -EINVAL;
3019 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3020 if (ret <= 0)
3021 return -EINVAL;
3022 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3023 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3024 " descriptor for ep 0x%x does not support streams\n",
3025 ep->desc.bEndpointAddress);
3026 return -EINVAL;
3027 }
3028
3029 ep_index = xhci_get_endpoint_index(&ep->desc);
3030 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3031 if (ep_state & EP_HAS_STREAMS ||
3032 ep_state & EP_GETTING_STREAMS) {
3033 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3034 "already has streams set up.\n",
3035 ep->desc.bEndpointAddress);
3036 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3037 "dynamic stream context array reallocation.\n");
3038 return -EINVAL;
3039 }
3040 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3041 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3042 "endpoint 0x%x; URBs are pending.\n",
3043 ep->desc.bEndpointAddress);
3044 return -EINVAL;
3045 }
3046 return 0;
3047 }
3048
3049 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3050 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3051 {
3052 unsigned int max_streams;
3053
3054 /* The stream context array size must be a power of two */
3055 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3056 /*
3057 * Find out how many primary stream array entries the host controller
3058 * supports. Later we may use secondary stream arrays (similar to 2nd
3059 * level page entries), but that's an optional feature for xHCI host
3060 * controllers. xHCs must support at least 4 stream IDs.
3061 */
3062 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3063 if (*num_stream_ctxs > max_streams) {
3064 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3065 max_streams);
3066 *num_stream_ctxs = max_streams;
3067 *num_streams = max_streams;
3068 }
3069 }
3070
3071 /* Returns an error code if one of the endpoint already has streams.
3072 * This does not change any data structures, it only checks and gathers
3073 * information.
3074 */
3075 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3076 struct usb_device *udev,
3077 struct usb_host_endpoint **eps, unsigned int num_eps,
3078 unsigned int *num_streams, u32 *changed_ep_bitmask)
3079 {
3080 unsigned int max_streams;
3081 unsigned int endpoint_flag;
3082 int i;
3083 int ret;
3084
3085 for (i = 0; i < num_eps; i++) {
3086 ret = xhci_check_streams_endpoint(xhci, udev,
3087 eps[i], udev->slot_id);
3088 if (ret < 0)
3089 return ret;
3090
3091 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3092 if (max_streams < (*num_streams - 1)) {
3093 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3094 eps[i]->desc.bEndpointAddress,
3095 max_streams);
3096 *num_streams = max_streams+1;
3097 }
3098
3099 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3100 if (*changed_ep_bitmask & endpoint_flag)
3101 return -EINVAL;
3102 *changed_ep_bitmask |= endpoint_flag;
3103 }
3104 return 0;
3105 }
3106
3107 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3108 struct usb_device *udev,
3109 struct usb_host_endpoint **eps, unsigned int num_eps)
3110 {
3111 u32 changed_ep_bitmask = 0;
3112 unsigned int slot_id;
3113 unsigned int ep_index;
3114 unsigned int ep_state;
3115 int i;
3116
3117 slot_id = udev->slot_id;
3118 if (!xhci->devs[slot_id])
3119 return 0;
3120
3121 for (i = 0; i < num_eps; i++) {
3122 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3123 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3124 /* Are streams already being freed for the endpoint? */
3125 if (ep_state & EP_GETTING_NO_STREAMS) {
3126 xhci_warn(xhci, "WARN Can't disable streams for "
3127 "endpoint 0x%x, "
3128 "streams are being disabled already\n",
3129 eps[i]->desc.bEndpointAddress);
3130 return 0;
3131 }
3132 /* Are there actually any streams to free? */
3133 if (!(ep_state & EP_HAS_STREAMS) &&
3134 !(ep_state & EP_GETTING_STREAMS)) {
3135 xhci_warn(xhci, "WARN Can't disable streams for "
3136 "endpoint 0x%x, "
3137 "streams are already disabled!\n",
3138 eps[i]->desc.bEndpointAddress);
3139 xhci_warn(xhci, "WARN xhci_free_streams() called "
3140 "with non-streams endpoint\n");
3141 return 0;
3142 }
3143 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3144 }
3145 return changed_ep_bitmask;
3146 }
3147
3148 /*
3149 * The USB device drivers use this function (through the HCD interface in USB
3150 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3151 * coordinate mass storage command queueing across multiple endpoints (basically
3152 * a stream ID == a task ID).
3153 *
3154 * Setting up streams involves allocating the same size stream context array
3155 * for each endpoint and issuing a configure endpoint command for all endpoints.
3156 *
3157 * Don't allow the call to succeed if one endpoint only supports one stream
3158 * (which means it doesn't support streams at all).
3159 *
3160 * Drivers may get less stream IDs than they asked for, if the host controller
3161 * hardware or endpoints claim they can't support the number of requested
3162 * stream IDs.
3163 */
3164 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3165 struct usb_host_endpoint **eps, unsigned int num_eps,
3166 unsigned int num_streams, gfp_t mem_flags)
3167 {
3168 int i, ret;
3169 struct xhci_hcd *xhci;
3170 struct xhci_virt_device *vdev;
3171 struct xhci_command *config_cmd;
3172 struct xhci_input_control_ctx *ctrl_ctx;
3173 unsigned int ep_index;
3174 unsigned int num_stream_ctxs;
3175 unsigned long flags;
3176 u32 changed_ep_bitmask = 0;
3177
3178 if (!eps)
3179 return -EINVAL;
3180
3181 /* Add one to the number of streams requested to account for
3182 * stream 0 that is reserved for xHCI usage.
3183 */
3184 num_streams += 1;
3185 xhci = hcd_to_xhci(hcd);
3186 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3187 num_streams);
3188
3189 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3190 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3191 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3192 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3193 return -ENOSYS;
3194 }
3195
3196 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3197 if (!config_cmd) {
3198 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3199 return -ENOMEM;
3200 }
3201 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3202 if (!ctrl_ctx) {
3203 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3204 __func__);
3205 xhci_free_command(xhci, config_cmd);
3206 return -ENOMEM;
3207 }
3208
3209 /* Check to make sure all endpoints are not already configured for
3210 * streams. While we're at it, find the maximum number of streams that
3211 * all the endpoints will support and check for duplicate endpoints.
3212 */
3213 spin_lock_irqsave(&xhci->lock, flags);
3214 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3215 num_eps, &num_streams, &changed_ep_bitmask);
3216 if (ret < 0) {
3217 xhci_free_command(xhci, config_cmd);
3218 spin_unlock_irqrestore(&xhci->lock, flags);
3219 return ret;
3220 }
3221 if (num_streams <= 1) {
3222 xhci_warn(xhci, "WARN: endpoints can't handle "
3223 "more than one stream.\n");
3224 xhci_free_command(xhci, config_cmd);
3225 spin_unlock_irqrestore(&xhci->lock, flags);
3226 return -EINVAL;
3227 }
3228 vdev = xhci->devs[udev->slot_id];
3229 /* Mark each endpoint as being in transition, so
3230 * xhci_urb_enqueue() will reject all URBs.
3231 */
3232 for (i = 0; i < num_eps; i++) {
3233 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3235 }
3236 spin_unlock_irqrestore(&xhci->lock, flags);
3237
3238 /* Setup internal data structures and allocate HW data structures for
3239 * streams (but don't install the HW structures in the input context
3240 * until we're sure all memory allocation succeeded).
3241 */
3242 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3243 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3244 num_stream_ctxs, num_streams);
3245
3246 for (i = 0; i < num_eps; i++) {
3247 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3249 num_stream_ctxs,
3250 num_streams, mem_flags);
3251 if (!vdev->eps[ep_index].stream_info)
3252 goto cleanup;
3253 /* Set maxPstreams in endpoint context and update deq ptr to
3254 * point to stream context array. FIXME
3255 */
3256 }
3257
3258 /* Set up the input context for a configure endpoint command. */
3259 for (i = 0; i < num_eps; i++) {
3260 struct xhci_ep_ctx *ep_ctx;
3261
3262 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3264
3265 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3266 vdev->out_ctx, ep_index);
3267 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3268 vdev->eps[ep_index].stream_info);
3269 }
3270 /* Tell the HW to drop its old copy of the endpoint context info
3271 * and add the updated copy from the input context.
3272 */
3273 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3274 vdev->out_ctx, ctrl_ctx,
3275 changed_ep_bitmask, changed_ep_bitmask);
3276
3277 /* Issue and wait for the configure endpoint command */
3278 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3279 false, false);
3280
3281 /* xHC rejected the configure endpoint command for some reason, so we
3282 * leave the old ring intact and free our internal streams data
3283 * structure.
3284 */
3285 if (ret < 0)
3286 goto cleanup;
3287
3288 spin_lock_irqsave(&xhci->lock, flags);
3289 for (i = 0; i < num_eps; i++) {
3290 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3291 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3292 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3293 udev->slot_id, ep_index);
3294 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3295 }
3296 xhci_free_command(xhci, config_cmd);
3297 spin_unlock_irqrestore(&xhci->lock, flags);
3298
3299 /* Subtract 1 for stream 0, which drivers can't use */
3300 return num_streams - 1;
3301
3302 cleanup:
3303 /* If it didn't work, free the streams! */
3304 for (i = 0; i < num_eps; i++) {
3305 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3306 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3307 vdev->eps[ep_index].stream_info = NULL;
3308 /* FIXME Unset maxPstreams in endpoint context and
3309 * update deq ptr to point to normal string ring.
3310 */
3311 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3312 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3313 xhci_endpoint_zero(xhci, vdev, eps[i]);
3314 }
3315 xhci_free_command(xhci, config_cmd);
3316 return -ENOMEM;
3317 }
3318
3319 /* Transition the endpoint from using streams to being a "normal" endpoint
3320 * without streams.
3321 *
3322 * Modify the endpoint context state, submit a configure endpoint command,
3323 * and free all endpoint rings for streams if that completes successfully.
3324 */
3325 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3326 struct usb_host_endpoint **eps, unsigned int num_eps,
3327 gfp_t mem_flags)
3328 {
3329 int i, ret;
3330 struct xhci_hcd *xhci;
3331 struct xhci_virt_device *vdev;
3332 struct xhci_command *command;
3333 struct xhci_input_control_ctx *ctrl_ctx;
3334 unsigned int ep_index;
3335 unsigned long flags;
3336 u32 changed_ep_bitmask;
3337
3338 xhci = hcd_to_xhci(hcd);
3339 vdev = xhci->devs[udev->slot_id];
3340
3341 /* Set up a configure endpoint command to remove the streams rings */
3342 spin_lock_irqsave(&xhci->lock, flags);
3343 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3344 udev, eps, num_eps);
3345 if (changed_ep_bitmask == 0) {
3346 spin_unlock_irqrestore(&xhci->lock, flags);
3347 return -EINVAL;
3348 }
3349
3350 /* Use the xhci_command structure from the first endpoint. We may have
3351 * allocated too many, but the driver may call xhci_free_streams() for
3352 * each endpoint it grouped into one call to xhci_alloc_streams().
3353 */
3354 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3355 command = vdev->eps[ep_index].stream_info->free_streams_command;
3356 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3357 if (!ctrl_ctx) {
3358 spin_unlock_irqrestore(&xhci->lock, flags);
3359 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3360 __func__);
3361 return -EINVAL;
3362 }
3363
3364 for (i = 0; i < num_eps; i++) {
3365 struct xhci_ep_ctx *ep_ctx;
3366
3367 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3369 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3370 EP_GETTING_NO_STREAMS;
3371
3372 xhci_endpoint_copy(xhci, command->in_ctx,
3373 vdev->out_ctx, ep_index);
3374 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3375 &vdev->eps[ep_index]);
3376 }
3377 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3378 vdev->out_ctx, ctrl_ctx,
3379 changed_ep_bitmask, changed_ep_bitmask);
3380 spin_unlock_irqrestore(&xhci->lock, flags);
3381
3382 /* Issue and wait for the configure endpoint command,
3383 * which must succeed.
3384 */
3385 ret = xhci_configure_endpoint(xhci, udev, command,
3386 false, true);
3387
3388 /* xHC rejected the configure endpoint command for some reason, so we
3389 * leave the streams rings intact.
3390 */
3391 if (ret < 0)
3392 return ret;
3393
3394 spin_lock_irqsave(&xhci->lock, flags);
3395 for (i = 0; i < num_eps; i++) {
3396 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3397 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3398 vdev->eps[ep_index].stream_info = NULL;
3399 /* FIXME Unset maxPstreams in endpoint context and
3400 * update deq ptr to point to normal string ring.
3401 */
3402 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3403 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3404 }
3405 spin_unlock_irqrestore(&xhci->lock, flags);
3406
3407 return 0;
3408 }
3409
3410 /*
3411 * Deletes endpoint resources for endpoints that were active before a Reset
3412 * Device command, or a Disable Slot command. The Reset Device command leaves
3413 * the control endpoint intact, whereas the Disable Slot command deletes it.
3414 *
3415 * Must be called with xhci->lock held.
3416 */
3417 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3418 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3419 {
3420 int i;
3421 unsigned int num_dropped_eps = 0;
3422 unsigned int drop_flags = 0;
3423
3424 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3425 if (virt_dev->eps[i].ring) {
3426 drop_flags |= 1 << i;
3427 num_dropped_eps++;
3428 }
3429 }
3430 xhci->num_active_eps -= num_dropped_eps;
3431 if (num_dropped_eps)
3432 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3433 "Dropped %u ep ctxs, flags = 0x%x, "
3434 "%u now active.",
3435 num_dropped_eps, drop_flags,
3436 xhci->num_active_eps);
3437 }
3438
3439 /*
3440 * This submits a Reset Device Command, which will set the device state to 0,
3441 * set the device address to 0, and disable all the endpoints except the default
3442 * control endpoint. The USB core should come back and call
3443 * xhci_address_device(), and then re-set up the configuration. If this is
3444 * called because of a usb_reset_and_verify_device(), then the old alternate
3445 * settings will be re-installed through the normal bandwidth allocation
3446 * functions.
3447 *
3448 * Wait for the Reset Device command to finish. Remove all structures
3449 * associated with the endpoints that were disabled. Clear the input device
3450 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3451 *
3452 * If the virt_dev to be reset does not exist or does not match the udev,
3453 * it means the device is lost, possibly due to the xHC restore error and
3454 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3455 * re-allocate the device.
3456 */
3457 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3458 {
3459 int ret, i;
3460 unsigned long flags;
3461 struct xhci_hcd *xhci;
3462 unsigned int slot_id;
3463 struct xhci_virt_device *virt_dev;
3464 struct xhci_command *reset_device_cmd;
3465 int last_freed_endpoint;
3466 struct xhci_slot_ctx *slot_ctx;
3467 int old_active_eps = 0;
3468
3469 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3470 if (ret <= 0)
3471 return ret;
3472 xhci = hcd_to_xhci(hcd);
3473 slot_id = udev->slot_id;
3474 virt_dev = xhci->devs[slot_id];
3475 if (!virt_dev) {
3476 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3477 "not exist. Re-allocate the device\n", slot_id);
3478 ret = xhci_alloc_dev(hcd, udev);
3479 if (ret == 1)
3480 return 0;
3481 else
3482 return -EINVAL;
3483 }
3484
3485 if (virt_dev->tt_info)
3486 old_active_eps = virt_dev->tt_info->active_eps;
3487
3488 if (virt_dev->udev != udev) {
3489 /* If the virt_dev and the udev does not match, this virt_dev
3490 * may belong to another udev.
3491 * Re-allocate the device.
3492 */
3493 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3494 "not match the udev. Re-allocate the device\n",
3495 slot_id);
3496 ret = xhci_alloc_dev(hcd, udev);
3497 if (ret == 1)
3498 return 0;
3499 else
3500 return -EINVAL;
3501 }
3502
3503 /* If device is not setup, there is no point in resetting it */
3504 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3505 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3506 SLOT_STATE_DISABLED)
3507 return 0;
3508
3509 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3510 /* Allocate the command structure that holds the struct completion.
3511 * Assume we're in process context, since the normal device reset
3512 * process has to wait for the device anyway. Storage devices are
3513 * reset as part of error handling, so use GFP_NOIO instead of
3514 * GFP_KERNEL.
3515 */
3516 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3517 if (!reset_device_cmd) {
3518 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3519 return -ENOMEM;
3520 }
3521
3522 /* Attempt to submit the Reset Device command to the command ring */
3523 spin_lock_irqsave(&xhci->lock, flags);
3524
3525 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3526 if (ret) {
3527 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3528 spin_unlock_irqrestore(&xhci->lock, flags);
3529 goto command_cleanup;
3530 }
3531 xhci_ring_cmd_db(xhci);
3532 spin_unlock_irqrestore(&xhci->lock, flags);
3533
3534 /* Wait for the Reset Device command to finish */
3535 wait_for_completion(reset_device_cmd->completion);
3536
3537 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3538 * unless we tried to reset a slot ID that wasn't enabled,
3539 * or the device wasn't in the addressed or configured state.
3540 */
3541 ret = reset_device_cmd->status;
3542 switch (ret) {
3543 case COMP_CMD_ABORT:
3544 case COMP_CMD_STOP:
3545 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3546 ret = -ETIME;
3547 goto command_cleanup;
3548 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3549 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3550 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3551 slot_id,
3552 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3553 xhci_dbg(xhci, "Not freeing device rings.\n");
3554 /* Don't treat this as an error. May change my mind later. */
3555 ret = 0;
3556 goto command_cleanup;
3557 case COMP_SUCCESS:
3558 xhci_dbg(xhci, "Successful reset device command.\n");
3559 break;
3560 default:
3561 if (xhci_is_vendor_info_code(xhci, ret))
3562 break;
3563 xhci_warn(xhci, "Unknown completion code %u for "
3564 "reset device command.\n", ret);
3565 ret = -EINVAL;
3566 goto command_cleanup;
3567 }
3568
3569 /* Free up host controller endpoint resources */
3570 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3571 spin_lock_irqsave(&xhci->lock, flags);
3572 /* Don't delete the default control endpoint resources */
3573 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3574 spin_unlock_irqrestore(&xhci->lock, flags);
3575 }
3576
3577 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3578 last_freed_endpoint = 1;
3579 for (i = 1; i < 31; ++i) {
3580 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3581
3582 if (ep->ep_state & EP_HAS_STREAMS) {
3583 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3584 xhci_get_endpoint_address(i));
3585 xhci_free_stream_info(xhci, ep->stream_info);
3586 ep->stream_info = NULL;
3587 ep->ep_state &= ~EP_HAS_STREAMS;
3588 }
3589
3590 if (ep->ring) {
3591 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3592 last_freed_endpoint = i;
3593 }
3594 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3595 xhci_drop_ep_from_interval_table(xhci,
3596 &virt_dev->eps[i].bw_info,
3597 virt_dev->bw_table,
3598 udev,
3599 &virt_dev->eps[i],
3600 virt_dev->tt_info);
3601 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3602 }
3603 /* If necessary, update the number of active TTs on this root port */
3604 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3605
3606 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3607 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3608 ret = 0;
3609
3610 command_cleanup:
3611 xhci_free_command(xhci, reset_device_cmd);
3612 return ret;
3613 }
3614
3615 /*
3616 * At this point, the struct usb_device is about to go away, the device has
3617 * disconnected, and all traffic has been stopped and the endpoints have been
3618 * disabled. Free any HC data structures associated with that device.
3619 */
3620 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3621 {
3622 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3623 struct xhci_virt_device *virt_dev;
3624 unsigned long flags;
3625 u32 state;
3626 int i, ret;
3627 struct xhci_command *command;
3628
3629 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3630 if (!command)
3631 return;
3632
3633 #ifndef CONFIG_USB_DEFAULT_PERSIST
3634 /*
3635 * We called pm_runtime_get_noresume when the device was attached.
3636 * Decrement the counter here to allow controller to runtime suspend
3637 * if no devices remain.
3638 */
3639 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3640 pm_runtime_put_noidle(hcd->self.controller);
3641 #endif
3642
3643 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3644 /* If the host is halted due to driver unload, we still need to free the
3645 * device.
3646 */
3647 if (ret <= 0 && ret != -ENODEV) {
3648 kfree(command);
3649 return;
3650 }
3651
3652 virt_dev = xhci->devs[udev->slot_id];
3653
3654 /* Stop any wayward timer functions (which may grab the lock) */
3655 for (i = 0; i < 31; ++i) {
3656 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3657 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3658 }
3659
3660 spin_lock_irqsave(&xhci->lock, flags);
3661 /* Don't disable the slot if the host controller is dead. */
3662 state = readl(&xhci->op_regs->status);
3663 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3664 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3665 xhci_free_virt_device(xhci, udev->slot_id);
3666 spin_unlock_irqrestore(&xhci->lock, flags);
3667 kfree(command);
3668 return;
3669 }
3670
3671 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3672 udev->slot_id)) {
3673 spin_unlock_irqrestore(&xhci->lock, flags);
3674 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3675 return;
3676 }
3677 xhci_ring_cmd_db(xhci);
3678 spin_unlock_irqrestore(&xhci->lock, flags);
3679
3680 /*
3681 * Event command completion handler will free any data structures
3682 * associated with the slot. XXX Can free sleep?
3683 */
3684 }
3685
3686 /*
3687 * Checks if we have enough host controller resources for the default control
3688 * endpoint.
3689 *
3690 * Must be called with xhci->lock held.
3691 */
3692 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3693 {
3694 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3695 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3696 "Not enough ep ctxs: "
3697 "%u active, need to add 1, limit is %u.",
3698 xhci->num_active_eps, xhci->limit_active_eps);
3699 return -ENOMEM;
3700 }
3701 xhci->num_active_eps += 1;
3702 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3703 "Adding 1 ep ctx, %u now active.",
3704 xhci->num_active_eps);
3705 return 0;
3706 }
3707
3708
3709 /*
3710 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3711 * timed out, or allocating memory failed. Returns 1 on success.
3712 */
3713 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3714 {
3715 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3716 unsigned long flags;
3717 int ret, slot_id;
3718 struct xhci_command *command;
3719
3720 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3721 if (!command)
3722 return 0;
3723
3724 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3725 mutex_lock(&xhci->mutex);
3726 spin_lock_irqsave(&xhci->lock, flags);
3727 command->completion = &xhci->addr_dev;
3728 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3729 if (ret) {
3730 spin_unlock_irqrestore(&xhci->lock, flags);
3731 mutex_unlock(&xhci->mutex);
3732 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3733 kfree(command);
3734 return 0;
3735 }
3736 xhci_ring_cmd_db(xhci);
3737 spin_unlock_irqrestore(&xhci->lock, flags);
3738
3739 wait_for_completion(command->completion);
3740 slot_id = xhci->slot_id;
3741 mutex_unlock(&xhci->mutex);
3742
3743 if (!slot_id || command->status != COMP_SUCCESS) {
3744 xhci_err(xhci, "Error while assigning device slot ID\n");
3745 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3746 HCS_MAX_SLOTS(
3747 readl(&xhci->cap_regs->hcs_params1)));
3748 kfree(command);
3749 return 0;
3750 }
3751
3752 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3753 spin_lock_irqsave(&xhci->lock, flags);
3754 ret = xhci_reserve_host_control_ep_resources(xhci);
3755 if (ret) {
3756 spin_unlock_irqrestore(&xhci->lock, flags);
3757 xhci_warn(xhci, "Not enough host resources, "
3758 "active endpoint contexts = %u\n",
3759 xhci->num_active_eps);
3760 goto disable_slot;
3761 }
3762 spin_unlock_irqrestore(&xhci->lock, flags);
3763 }
3764 /* Use GFP_NOIO, since this function can be called from
3765 * xhci_discover_or_reset_device(), which may be called as part of
3766 * mass storage driver error handling.
3767 */
3768 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3769 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3770 goto disable_slot;
3771 }
3772 udev->slot_id = slot_id;
3773
3774 #ifndef CONFIG_USB_DEFAULT_PERSIST
3775 /*
3776 * If resetting upon resume, we can't put the controller into runtime
3777 * suspend if there is a device attached.
3778 */
3779 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3780 pm_runtime_get_noresume(hcd->self.controller);
3781 #endif
3782
3783
3784 kfree(command);
3785 /* Is this a LS or FS device under a HS hub? */
3786 /* Hub or peripherial? */
3787 return 1;
3788
3789 disable_slot:
3790 /* Disable slot, if we can do it without mem alloc */
3791 spin_lock_irqsave(&xhci->lock, flags);
3792 command->completion = NULL;
3793 command->status = 0;
3794 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3795 udev->slot_id))
3796 xhci_ring_cmd_db(xhci);
3797 spin_unlock_irqrestore(&xhci->lock, flags);
3798 return 0;
3799 }
3800
3801 /*
3802 * Issue an Address Device command and optionally send a corresponding
3803 * SetAddress request to the device.
3804 */
3805 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3806 enum xhci_setup_dev setup)
3807 {
3808 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3809 unsigned long flags;
3810 struct xhci_virt_device *virt_dev;
3811 int ret = 0;
3812 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3813 struct xhci_slot_ctx *slot_ctx;
3814 struct xhci_input_control_ctx *ctrl_ctx;
3815 u64 temp_64;
3816 struct xhci_command *command = NULL;
3817
3818 mutex_lock(&xhci->mutex);
3819
3820 if (xhci->xhc_state) /* dying or halted */
3821 goto out;
3822
3823 if (!udev->slot_id) {
3824 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3825 "Bad Slot ID %d", udev->slot_id);
3826 ret = -EINVAL;
3827 goto out;
3828 }
3829
3830 virt_dev = xhci->devs[udev->slot_id];
3831
3832 if (WARN_ON(!virt_dev)) {
3833 /*
3834 * In plug/unplug torture test with an NEC controller,
3835 * a zero-dereference was observed once due to virt_dev = 0.
3836 * Print useful debug rather than crash if it is observed again!
3837 */
3838 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3839 udev->slot_id);
3840 ret = -EINVAL;
3841 goto out;
3842 }
3843
3844 if (setup == SETUP_CONTEXT_ONLY) {
3845 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3846 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3847 SLOT_STATE_DEFAULT) {
3848 xhci_dbg(xhci, "Slot already in default state\n");
3849 goto out;
3850 }
3851 }
3852
3853 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3854 if (!command) {
3855 ret = -ENOMEM;
3856 goto out;
3857 }
3858
3859 command->in_ctx = virt_dev->in_ctx;
3860 command->completion = &xhci->addr_dev;
3861
3862 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3863 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3864 if (!ctrl_ctx) {
3865 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3866 __func__);
3867 ret = -EINVAL;
3868 goto out;
3869 }
3870 /*
3871 * If this is the first Set Address since device plug-in or
3872 * virt_device realloaction after a resume with an xHCI power loss,
3873 * then set up the slot context.
3874 */
3875 if (!slot_ctx->dev_info)
3876 xhci_setup_addressable_virt_dev(xhci, udev);
3877 /* Otherwise, update the control endpoint ring enqueue pointer. */
3878 else
3879 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3880 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3881 ctrl_ctx->drop_flags = 0;
3882
3883 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3884 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3885 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3886 le32_to_cpu(slot_ctx->dev_info) >> 27);
3887
3888 spin_lock_irqsave(&xhci->lock, flags);
3889 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3890 udev->slot_id, setup);
3891 if (ret) {
3892 spin_unlock_irqrestore(&xhci->lock, flags);
3893 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3894 "FIXME: allocate a command ring segment");
3895 goto out;
3896 }
3897 xhci_ring_cmd_db(xhci);
3898 spin_unlock_irqrestore(&xhci->lock, flags);
3899
3900 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3901 wait_for_completion(command->completion);
3902
3903 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3904 * the SetAddress() "recovery interval" required by USB and aborting the
3905 * command on a timeout.
3906 */
3907 switch (command->status) {
3908 case COMP_CMD_ABORT:
3909 case COMP_CMD_STOP:
3910 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3911 ret = -ETIME;
3912 break;
3913 case COMP_CTX_STATE:
3914 case COMP_EBADSLT:
3915 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3916 act, udev->slot_id);
3917 ret = -EINVAL;
3918 break;
3919 case COMP_TX_ERR:
3920 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3921 ret = -EPROTO;
3922 break;
3923 case COMP_DEV_ERR:
3924 dev_warn(&udev->dev,
3925 "ERROR: Incompatible device for setup %s command\n", act);
3926 ret = -ENODEV;
3927 break;
3928 case COMP_SUCCESS:
3929 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3930 "Successful setup %s command", act);
3931 break;
3932 default:
3933 xhci_err(xhci,
3934 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3935 act, command->status);
3936 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3937 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3938 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3939 ret = -EINVAL;
3940 break;
3941 }
3942 if (ret)
3943 goto out;
3944 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3945 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3946 "Op regs DCBAA ptr = %#016llx", temp_64);
3947 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3948 "Slot ID %d dcbaa entry @%p = %#016llx",
3949 udev->slot_id,
3950 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3951 (unsigned long long)
3952 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3953 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954 "Output Context DMA address = %#08llx",
3955 (unsigned long long)virt_dev->out_ctx->dma);
3956 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3957 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3958 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3959 le32_to_cpu(slot_ctx->dev_info) >> 27);
3960 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3961 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3962 /*
3963 * USB core uses address 1 for the roothubs, so we add one to the
3964 * address given back to us by the HC.
3965 */
3966 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3967 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3968 le32_to_cpu(slot_ctx->dev_info) >> 27);
3969 /* Zero the input context control for later use */
3970 ctrl_ctx->add_flags = 0;
3971 ctrl_ctx->drop_flags = 0;
3972
3973 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3974 "Internal device address = %d",
3975 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3976 out:
3977 mutex_unlock(&xhci->mutex);
3978 kfree(command);
3979 return ret;
3980 }
3981
3982 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3983 {
3984 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3985 }
3986
3987 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3988 {
3989 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3990 }
3991
3992 /*
3993 * Transfer the port index into real index in the HW port status
3994 * registers. Caculate offset between the port's PORTSC register
3995 * and port status base. Divide the number of per port register
3996 * to get the real index. The raw port number bases 1.
3997 */
3998 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3999 {
4000 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4001 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4002 __le32 __iomem *addr;
4003 int raw_port;
4004
4005 if (hcd->speed < HCD_USB3)
4006 addr = xhci->usb2_ports[port1 - 1];
4007 else
4008 addr = xhci->usb3_ports[port1 - 1];
4009
4010 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4011 return raw_port;
4012 }
4013
4014 /*
4015 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4016 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4017 */
4018 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4019 struct usb_device *udev, u16 max_exit_latency)
4020 {
4021 struct xhci_virt_device *virt_dev;
4022 struct xhci_command *command;
4023 struct xhci_input_control_ctx *ctrl_ctx;
4024 struct xhci_slot_ctx *slot_ctx;
4025 unsigned long flags;
4026 int ret;
4027
4028 spin_lock_irqsave(&xhci->lock, flags);
4029
4030 virt_dev = xhci->devs[udev->slot_id];
4031
4032 /*
4033 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4034 * xHC was re-initialized. Exit latency will be set later after
4035 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4036 */
4037
4038 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4039 spin_unlock_irqrestore(&xhci->lock, flags);
4040 return 0;
4041 }
4042
4043 /* Attempt to issue an Evaluate Context command to change the MEL. */
4044 command = xhci->lpm_command;
4045 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4046 if (!ctrl_ctx) {
4047 spin_unlock_irqrestore(&xhci->lock, flags);
4048 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4049 __func__);
4050 return -ENOMEM;
4051 }
4052
4053 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4054 spin_unlock_irqrestore(&xhci->lock, flags);
4055
4056 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4057 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4058 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4059 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4060 slot_ctx->dev_state = 0;
4061
4062 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4063 "Set up evaluate context for LPM MEL change.");
4064 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4065 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4066
4067 /* Issue and wait for the evaluate context command. */
4068 ret = xhci_configure_endpoint(xhci, udev, command,
4069 true, true);
4070 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4071 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4072
4073 if (!ret) {
4074 spin_lock_irqsave(&xhci->lock, flags);
4075 virt_dev->current_mel = max_exit_latency;
4076 spin_unlock_irqrestore(&xhci->lock, flags);
4077 }
4078 return ret;
4079 }
4080
4081 #ifdef CONFIG_PM
4082
4083 /* BESL to HIRD Encoding array for USB2 LPM */
4084 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4085 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4086
4087 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4088 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4089 struct usb_device *udev)
4090 {
4091 int u2del, besl, besl_host;
4092 int besl_device = 0;
4093 u32 field;
4094
4095 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4096 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4097
4098 if (field & USB_BESL_SUPPORT) {
4099 for (besl_host = 0; besl_host < 16; besl_host++) {
4100 if (xhci_besl_encoding[besl_host] >= u2del)
4101 break;
4102 }
4103 /* Use baseline BESL value as default */
4104 if (field & USB_BESL_BASELINE_VALID)
4105 besl_device = USB_GET_BESL_BASELINE(field);
4106 else if (field & USB_BESL_DEEP_VALID)
4107 besl_device = USB_GET_BESL_DEEP(field);
4108 } else {
4109 if (u2del <= 50)
4110 besl_host = 0;
4111 else
4112 besl_host = (u2del - 51) / 75 + 1;
4113 }
4114
4115 besl = besl_host + besl_device;
4116 if (besl > 15)
4117 besl = 15;
4118
4119 return besl;
4120 }
4121
4122 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4123 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4124 {
4125 u32 field;
4126 int l1;
4127 int besld = 0;
4128 int hirdm = 0;
4129
4130 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4131
4132 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4133 l1 = udev->l1_params.timeout / 256;
4134
4135 /* device has preferred BESLD */
4136 if (field & USB_BESL_DEEP_VALID) {
4137 besld = USB_GET_BESL_DEEP(field);
4138 hirdm = 1;
4139 }
4140
4141 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4142 }
4143
4144 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4145 struct usb_device *udev, int enable)
4146 {
4147 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4148 __le32 __iomem **port_array;
4149 __le32 __iomem *pm_addr, *hlpm_addr;
4150 u32 pm_val, hlpm_val, field;
4151 unsigned int port_num;
4152 unsigned long flags;
4153 int hird, exit_latency;
4154 int ret;
4155
4156 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4157 !udev->lpm_capable)
4158 return -EPERM;
4159
4160 if (!udev->parent || udev->parent->parent ||
4161 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4162 return -EPERM;
4163
4164 if (udev->usb2_hw_lpm_capable != 1)
4165 return -EPERM;
4166
4167 spin_lock_irqsave(&xhci->lock, flags);
4168
4169 port_array = xhci->usb2_ports;
4170 port_num = udev->portnum - 1;
4171 pm_addr = port_array[port_num] + PORTPMSC;
4172 pm_val = readl(pm_addr);
4173 hlpm_addr = port_array[port_num] + PORTHLPMC;
4174 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4175
4176 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4177 enable ? "enable" : "disable", port_num + 1);
4178
4179 if (enable) {
4180 /* Host supports BESL timeout instead of HIRD */
4181 if (udev->usb2_hw_lpm_besl_capable) {
4182 /* if device doesn't have a preferred BESL value use a
4183 * default one which works with mixed HIRD and BESL
4184 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4185 */
4186 if ((field & USB_BESL_SUPPORT) &&
4187 (field & USB_BESL_BASELINE_VALID))
4188 hird = USB_GET_BESL_BASELINE(field);
4189 else
4190 hird = udev->l1_params.besl;
4191
4192 exit_latency = xhci_besl_encoding[hird];
4193 spin_unlock_irqrestore(&xhci->lock, flags);
4194
4195 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4196 * input context for link powermanagement evaluate
4197 * context commands. It is protected by hcd->bandwidth
4198 * mutex and is shared by all devices. We need to set
4199 * the max ext latency in USB 2 BESL LPM as well, so
4200 * use the same mutex and xhci_change_max_exit_latency()
4201 */
4202 mutex_lock(hcd->bandwidth_mutex);
4203 ret = xhci_change_max_exit_latency(xhci, udev,
4204 exit_latency);
4205 mutex_unlock(hcd->bandwidth_mutex);
4206
4207 if (ret < 0)
4208 return ret;
4209 spin_lock_irqsave(&xhci->lock, flags);
4210
4211 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4212 writel(hlpm_val, hlpm_addr);
4213 /* flush write */
4214 readl(hlpm_addr);
4215 } else {
4216 hird = xhci_calculate_hird_besl(xhci, udev);
4217 }
4218
4219 pm_val &= ~PORT_HIRD_MASK;
4220 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4221 writel(pm_val, pm_addr);
4222 pm_val = readl(pm_addr);
4223 pm_val |= PORT_HLE;
4224 writel(pm_val, pm_addr);
4225 /* flush write */
4226 readl(pm_addr);
4227 } else {
4228 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4229 writel(pm_val, pm_addr);
4230 /* flush write */
4231 readl(pm_addr);
4232 if (udev->usb2_hw_lpm_besl_capable) {
4233 spin_unlock_irqrestore(&xhci->lock, flags);
4234 mutex_lock(hcd->bandwidth_mutex);
4235 xhci_change_max_exit_latency(xhci, udev, 0);
4236 mutex_unlock(hcd->bandwidth_mutex);
4237 return 0;
4238 }
4239 }
4240
4241 spin_unlock_irqrestore(&xhci->lock, flags);
4242 return 0;
4243 }
4244
4245 /* check if a usb2 port supports a given extened capability protocol
4246 * only USB2 ports extended protocol capability values are cached.
4247 * Return 1 if capability is supported
4248 */
4249 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4250 unsigned capability)
4251 {
4252 u32 port_offset, port_count;
4253 int i;
4254
4255 for (i = 0; i < xhci->num_ext_caps; i++) {
4256 if (xhci->ext_caps[i] & capability) {
4257 /* port offsets starts at 1 */
4258 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4259 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4260 if (port >= port_offset &&
4261 port < port_offset + port_count)
4262 return 1;
4263 }
4264 }
4265 return 0;
4266 }
4267
4268 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4269 {
4270 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4271 int portnum = udev->portnum - 1;
4272
4273 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4274 !udev->lpm_capable)
4275 return 0;
4276
4277 /* we only support lpm for non-hub device connected to root hub yet */
4278 if (!udev->parent || udev->parent->parent ||
4279 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4280 return 0;
4281
4282 if (xhci->hw_lpm_support == 1 &&
4283 xhci_check_usb2_port_capability(
4284 xhci, portnum, XHCI_HLC)) {
4285 udev->usb2_hw_lpm_capable = 1;
4286 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4287 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4288 if (xhci_check_usb2_port_capability(xhci, portnum,
4289 XHCI_BLC))
4290 udev->usb2_hw_lpm_besl_capable = 1;
4291 }
4292
4293 return 0;
4294 }
4295
4296 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4297
4298 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4299 static unsigned long long xhci_service_interval_to_ns(
4300 struct usb_endpoint_descriptor *desc)
4301 {
4302 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4303 }
4304
4305 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4306 enum usb3_link_state state)
4307 {
4308 unsigned long long sel;
4309 unsigned long long pel;
4310 unsigned int max_sel_pel;
4311 char *state_name;
4312
4313 switch (state) {
4314 case USB3_LPM_U1:
4315 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4316 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4317 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4318 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4319 state_name = "U1";
4320 break;
4321 case USB3_LPM_U2:
4322 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4323 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4324 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4325 state_name = "U2";
4326 break;
4327 default:
4328 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4329 __func__);
4330 return USB3_LPM_DISABLED;
4331 }
4332
4333 if (sel <= max_sel_pel && pel <= max_sel_pel)
4334 return USB3_LPM_DEVICE_INITIATED;
4335
4336 if (sel > max_sel_pel)
4337 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4338 "due to long SEL %llu ms\n",
4339 state_name, sel);
4340 else
4341 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4342 "due to long PEL %llu ms\n",
4343 state_name, pel);
4344 return USB3_LPM_DISABLED;
4345 }
4346
4347 /* The U1 timeout should be the maximum of the following values:
4348 * - For control endpoints, U1 system exit latency (SEL) * 3
4349 * - For bulk endpoints, U1 SEL * 5
4350 * - For interrupt endpoints:
4351 * - Notification EPs, U1 SEL * 3
4352 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4353 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4354 */
4355 static unsigned long long xhci_calculate_intel_u1_timeout(
4356 struct usb_device *udev,
4357 struct usb_endpoint_descriptor *desc)
4358 {
4359 unsigned long long timeout_ns;
4360 int ep_type;
4361 int intr_type;
4362
4363 ep_type = usb_endpoint_type(desc);
4364 switch (ep_type) {
4365 case USB_ENDPOINT_XFER_CONTROL:
4366 timeout_ns = udev->u1_params.sel * 3;
4367 break;
4368 case USB_ENDPOINT_XFER_BULK:
4369 timeout_ns = udev->u1_params.sel * 5;
4370 break;
4371 case USB_ENDPOINT_XFER_INT:
4372 intr_type = usb_endpoint_interrupt_type(desc);
4373 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4374 timeout_ns = udev->u1_params.sel * 3;
4375 break;
4376 }
4377 /* Otherwise the calculation is the same as isoc eps */
4378 case USB_ENDPOINT_XFER_ISOC:
4379 timeout_ns = xhci_service_interval_to_ns(desc);
4380 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4381 if (timeout_ns < udev->u1_params.sel * 2)
4382 timeout_ns = udev->u1_params.sel * 2;
4383 break;
4384 default:
4385 return 0;
4386 }
4387
4388 return timeout_ns;
4389 }
4390
4391 /* Returns the hub-encoded U1 timeout value. */
4392 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4393 struct usb_device *udev,
4394 struct usb_endpoint_descriptor *desc)
4395 {
4396 unsigned long long timeout_ns;
4397
4398 if (xhci->quirks & XHCI_INTEL_HOST)
4399 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4400 else
4401 timeout_ns = udev->u1_params.sel;
4402
4403 /* The U1 timeout is encoded in 1us intervals.
4404 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4405 */
4406 if (timeout_ns == USB3_LPM_DISABLED)
4407 timeout_ns = 1;
4408 else
4409 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4410
4411 /* If the necessary timeout value is bigger than what we can set in the
4412 * USB 3.0 hub, we have to disable hub-initiated U1.
4413 */
4414 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4415 return timeout_ns;
4416 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4417 "due to long timeout %llu ms\n", timeout_ns);
4418 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4419 }
4420
4421 /* The U2 timeout should be the maximum of:
4422 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4423 * - largest bInterval of any active periodic endpoint (to avoid going
4424 * into lower power link states between intervals).
4425 * - the U2 Exit Latency of the device
4426 */
4427 static unsigned long long xhci_calculate_intel_u2_timeout(
4428 struct usb_device *udev,
4429 struct usb_endpoint_descriptor *desc)
4430 {
4431 unsigned long long timeout_ns;
4432 unsigned long long u2_del_ns;
4433
4434 timeout_ns = 10 * 1000 * 1000;
4435
4436 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4437 (xhci_service_interval_to_ns(desc) > timeout_ns))
4438 timeout_ns = xhci_service_interval_to_ns(desc);
4439
4440 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4441 if (u2_del_ns > timeout_ns)
4442 timeout_ns = u2_del_ns;
4443
4444 return timeout_ns;
4445 }
4446
4447 /* Returns the hub-encoded U2 timeout value. */
4448 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4449 struct usb_device *udev,
4450 struct usb_endpoint_descriptor *desc)
4451 {
4452 unsigned long long timeout_ns;
4453
4454 if (xhci->quirks & XHCI_INTEL_HOST)
4455 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4456 else
4457 timeout_ns = udev->u2_params.sel;
4458
4459 /* The U2 timeout is encoded in 256us intervals */
4460 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4461 /* If the necessary timeout value is bigger than what we can set in the
4462 * USB 3.0 hub, we have to disable hub-initiated U2.
4463 */
4464 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4465 return timeout_ns;
4466 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4467 "due to long timeout %llu ms\n", timeout_ns);
4468 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4469 }
4470
4471 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4472 struct usb_device *udev,
4473 struct usb_endpoint_descriptor *desc,
4474 enum usb3_link_state state,
4475 u16 *timeout)
4476 {
4477 if (state == USB3_LPM_U1)
4478 return xhci_calculate_u1_timeout(xhci, udev, desc);
4479 else if (state == USB3_LPM_U2)
4480 return xhci_calculate_u2_timeout(xhci, udev, desc);
4481
4482 return USB3_LPM_DISABLED;
4483 }
4484
4485 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4486 struct usb_device *udev,
4487 struct usb_endpoint_descriptor *desc,
4488 enum usb3_link_state state,
4489 u16 *timeout)
4490 {
4491 u16 alt_timeout;
4492
4493 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4494 desc, state, timeout);
4495
4496 /* If we found we can't enable hub-initiated LPM, or
4497 * the U1 or U2 exit latency was too high to allow
4498 * device-initiated LPM as well, just stop searching.
4499 */
4500 if (alt_timeout == USB3_LPM_DISABLED ||
4501 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4502 *timeout = alt_timeout;
4503 return -E2BIG;
4504 }
4505 if (alt_timeout > *timeout)
4506 *timeout = alt_timeout;
4507 return 0;
4508 }
4509
4510 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4511 struct usb_device *udev,
4512 struct usb_host_interface *alt,
4513 enum usb3_link_state state,
4514 u16 *timeout)
4515 {
4516 int j;
4517
4518 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4519 if (xhci_update_timeout_for_endpoint(xhci, udev,
4520 &alt->endpoint[j].desc, state, timeout))
4521 return -E2BIG;
4522 continue;
4523 }
4524 return 0;
4525 }
4526
4527 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4528 enum usb3_link_state state)
4529 {
4530 struct usb_device *parent;
4531 unsigned int num_hubs;
4532
4533 if (state == USB3_LPM_U2)
4534 return 0;
4535
4536 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4537 for (parent = udev->parent, num_hubs = 0; parent->parent;
4538 parent = parent->parent)
4539 num_hubs++;
4540
4541 if (num_hubs < 2)
4542 return 0;
4543
4544 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4545 " below second-tier hub.\n");
4546 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4547 "to decrease power consumption.\n");
4548 return -E2BIG;
4549 }
4550
4551 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4552 struct usb_device *udev,
4553 enum usb3_link_state state)
4554 {
4555 if (xhci->quirks & XHCI_INTEL_HOST)
4556 return xhci_check_intel_tier_policy(udev, state);
4557 else
4558 return 0;
4559 }
4560
4561 /* Returns the U1 or U2 timeout that should be enabled.
4562 * If the tier check or timeout setting functions return with a non-zero exit
4563 * code, that means the timeout value has been finalized and we shouldn't look
4564 * at any more endpoints.
4565 */
4566 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4567 struct usb_device *udev, enum usb3_link_state state)
4568 {
4569 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4570 struct usb_host_config *config;
4571 char *state_name;
4572 int i;
4573 u16 timeout = USB3_LPM_DISABLED;
4574
4575 if (state == USB3_LPM_U1)
4576 state_name = "U1";
4577 else if (state == USB3_LPM_U2)
4578 state_name = "U2";
4579 else {
4580 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4581 state);
4582 return timeout;
4583 }
4584
4585 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4586 return timeout;
4587
4588 /* Gather some information about the currently installed configuration
4589 * and alternate interface settings.
4590 */
4591 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4592 state, &timeout))
4593 return timeout;
4594
4595 config = udev->actconfig;
4596 if (!config)
4597 return timeout;
4598
4599 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4600 struct usb_driver *driver;
4601 struct usb_interface *intf = config->interface[i];
4602
4603 if (!intf)
4604 continue;
4605
4606 /* Check if any currently bound drivers want hub-initiated LPM
4607 * disabled.
4608 */
4609 if (intf->dev.driver) {
4610 driver = to_usb_driver(intf->dev.driver);
4611 if (driver && driver->disable_hub_initiated_lpm) {
4612 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4613 "at request of driver %s\n",
4614 state_name, driver->name);
4615 return xhci_get_timeout_no_hub_lpm(udev, state);
4616 }
4617 }
4618
4619 /* Not sure how this could happen... */
4620 if (!intf->cur_altsetting)
4621 continue;
4622
4623 if (xhci_update_timeout_for_interface(xhci, udev,
4624 intf->cur_altsetting,
4625 state, &timeout))
4626 return timeout;
4627 }
4628 return timeout;
4629 }
4630
4631 static int calculate_max_exit_latency(struct usb_device *udev,
4632 enum usb3_link_state state_changed,
4633 u16 hub_encoded_timeout)
4634 {
4635 unsigned long long u1_mel_us = 0;
4636 unsigned long long u2_mel_us = 0;
4637 unsigned long long mel_us = 0;
4638 bool disabling_u1;
4639 bool disabling_u2;
4640 bool enabling_u1;
4641 bool enabling_u2;
4642
4643 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4644 hub_encoded_timeout == USB3_LPM_DISABLED);
4645 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4646 hub_encoded_timeout == USB3_LPM_DISABLED);
4647
4648 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4649 hub_encoded_timeout != USB3_LPM_DISABLED);
4650 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4651 hub_encoded_timeout != USB3_LPM_DISABLED);
4652
4653 /* If U1 was already enabled and we're not disabling it,
4654 * or we're going to enable U1, account for the U1 max exit latency.
4655 */
4656 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4657 enabling_u1)
4658 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4659 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4660 enabling_u2)
4661 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4662
4663 if (u1_mel_us > u2_mel_us)
4664 mel_us = u1_mel_us;
4665 else
4666 mel_us = u2_mel_us;
4667 /* xHCI host controller max exit latency field is only 16 bits wide. */
4668 if (mel_us > MAX_EXIT) {
4669 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4670 "is too big.\n", mel_us);
4671 return -E2BIG;
4672 }
4673 return mel_us;
4674 }
4675
4676 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4678 struct usb_device *udev, enum usb3_link_state state)
4679 {
4680 struct xhci_hcd *xhci;
4681 u16 hub_encoded_timeout;
4682 int mel;
4683 int ret;
4684
4685 xhci = hcd_to_xhci(hcd);
4686 /* The LPM timeout values are pretty host-controller specific, so don't
4687 * enable hub-initiated timeouts unless the vendor has provided
4688 * information about their timeout algorithm.
4689 */
4690 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4691 !xhci->devs[udev->slot_id])
4692 return USB3_LPM_DISABLED;
4693
4694 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4695 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4696 if (mel < 0) {
4697 /* Max Exit Latency is too big, disable LPM. */
4698 hub_encoded_timeout = USB3_LPM_DISABLED;
4699 mel = 0;
4700 }
4701
4702 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4703 if (ret)
4704 return ret;
4705 return hub_encoded_timeout;
4706 }
4707
4708 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4709 struct usb_device *udev, enum usb3_link_state state)
4710 {
4711 struct xhci_hcd *xhci;
4712 u16 mel;
4713
4714 xhci = hcd_to_xhci(hcd);
4715 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4716 !xhci->devs[udev->slot_id])
4717 return 0;
4718
4719 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4720 return xhci_change_max_exit_latency(xhci, udev, mel);
4721 }
4722 #else /* CONFIG_PM */
4723
4724 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4725 struct usb_device *udev, int enable)
4726 {
4727 return 0;
4728 }
4729
4730 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4731 {
4732 return 0;
4733 }
4734
4735 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4736 struct usb_device *udev, enum usb3_link_state state)
4737 {
4738 return USB3_LPM_DISABLED;
4739 }
4740
4741 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4742 struct usb_device *udev, enum usb3_link_state state)
4743 {
4744 return 0;
4745 }
4746 #endif /* CONFIG_PM */
4747
4748 /*-------------------------------------------------------------------------*/
4749
4750 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4751 * internal data structures for the device.
4752 */
4753 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4754 struct usb_tt *tt, gfp_t mem_flags)
4755 {
4756 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4757 struct xhci_virt_device *vdev;
4758 struct xhci_command *config_cmd;
4759 struct xhci_input_control_ctx *ctrl_ctx;
4760 struct xhci_slot_ctx *slot_ctx;
4761 unsigned long flags;
4762 unsigned think_time;
4763 int ret;
4764
4765 /* Ignore root hubs */
4766 if (!hdev->parent)
4767 return 0;
4768
4769 vdev = xhci->devs[hdev->slot_id];
4770 if (!vdev) {
4771 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4772 return -EINVAL;
4773 }
4774 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4775 if (!config_cmd) {
4776 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4777 return -ENOMEM;
4778 }
4779 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4780 if (!ctrl_ctx) {
4781 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4782 __func__);
4783 xhci_free_command(xhci, config_cmd);
4784 return -ENOMEM;
4785 }
4786
4787 spin_lock_irqsave(&xhci->lock, flags);
4788 if (hdev->speed == USB_SPEED_HIGH &&
4789 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4790 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4791 xhci_free_command(xhci, config_cmd);
4792 spin_unlock_irqrestore(&xhci->lock, flags);
4793 return -ENOMEM;
4794 }
4795
4796 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4797 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4798 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4799 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4800 /*
4801 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4802 * but it may be already set to 1 when setup an xHCI virtual
4803 * device, so clear it anyway.
4804 */
4805 if (tt->multi)
4806 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4807 else if (hdev->speed == USB_SPEED_FULL)
4808 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4809
4810 if (xhci->hci_version > 0x95) {
4811 xhci_dbg(xhci, "xHCI version %x needs hub "
4812 "TT think time and number of ports\n",
4813 (unsigned int) xhci->hci_version);
4814 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4815 /* Set TT think time - convert from ns to FS bit times.
4816 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4817 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4818 *
4819 * xHCI 1.0: this field shall be 0 if the device is not a
4820 * High-spped hub.
4821 */
4822 think_time = tt->think_time;
4823 if (think_time != 0)
4824 think_time = (think_time / 666) - 1;
4825 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4826 slot_ctx->tt_info |=
4827 cpu_to_le32(TT_THINK_TIME(think_time));
4828 } else {
4829 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4830 "TT think time or number of ports\n",
4831 (unsigned int) xhci->hci_version);
4832 }
4833 slot_ctx->dev_state = 0;
4834 spin_unlock_irqrestore(&xhci->lock, flags);
4835
4836 xhci_dbg(xhci, "Set up %s for hub device.\n",
4837 (xhci->hci_version > 0x95) ?
4838 "configure endpoint" : "evaluate context");
4839 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4840 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4841
4842 /* Issue and wait for the configure endpoint or
4843 * evaluate context command.
4844 */
4845 if (xhci->hci_version > 0x95)
4846 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4847 false, false);
4848 else
4849 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4850 true, false);
4851
4852 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4853 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4854
4855 xhci_free_command(xhci, config_cmd);
4856 return ret;
4857 }
4858
4859 int xhci_get_frame(struct usb_hcd *hcd)
4860 {
4861 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4862 /* EHCI mods by the periodic size. Why? */
4863 return readl(&xhci->run_regs->microframe_index) >> 3;
4864 }
4865
4866 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4867 {
4868 struct xhci_hcd *xhci;
4869 struct device *dev = hcd->self.controller;
4870 int retval;
4871
4872 /* Accept arbitrarily long scatter-gather lists */
4873 hcd->self.sg_tablesize = ~0;
4874
4875 /* support to build packet from discontinuous buffers */
4876 hcd->self.no_sg_constraint = 1;
4877
4878 /* XHCI controllers don't stop the ep queue on short packets :| */
4879 hcd->self.no_stop_on_short = 1;
4880
4881 xhci = hcd_to_xhci(hcd);
4882
4883 if (usb_hcd_is_primary_hcd(hcd)) {
4884 xhci->main_hcd = hcd;
4885 /* Mark the first roothub as being USB 2.0.
4886 * The xHCI driver will register the USB 3.0 roothub.
4887 */
4888 hcd->speed = HCD_USB2;
4889 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4890 /*
4891 * USB 2.0 roothub under xHCI has an integrated TT,
4892 * (rate matching hub) as opposed to having an OHCI/UHCI
4893 * companion controller.
4894 */
4895 hcd->has_tt = 1;
4896 } else {
4897 if (xhci->sbrn == 0x31) {
4898 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4899 hcd->speed = HCD_USB31;
4900 }
4901 /* xHCI private pointer was set in xhci_pci_probe for the second
4902 * registered roothub.
4903 */
4904 return 0;
4905 }
4906
4907 mutex_init(&xhci->mutex);
4908 xhci->cap_regs = hcd->regs;
4909 xhci->op_regs = hcd->regs +
4910 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4911 xhci->run_regs = hcd->regs +
4912 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4913 /* Cache read-only capability registers */
4914 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4915 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4916 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4917 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4918 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4919 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4920 if (xhci->hci_version > 0x100)
4921 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4922 xhci_print_registers(xhci);
4923
4924 xhci->quirks = quirks;
4925
4926 get_quirks(dev, xhci);
4927
4928 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4929 * success event after a short transfer. This quirk will ignore such
4930 * spurious event.
4931 */
4932 if (xhci->hci_version > 0x96)
4933 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4934
4935 /* Make sure the HC is halted. */
4936 retval = xhci_halt(xhci);
4937 if (retval)
4938 return retval;
4939
4940 xhci_dbg(xhci, "Resetting HCD\n");
4941 /* Reset the internal HC memory state and registers. */
4942 retval = xhci_reset(xhci);
4943 if (retval)
4944 return retval;
4945 xhci_dbg(xhci, "Reset complete\n");
4946
4947 /* Set dma_mask and coherent_dma_mask to 64-bits,
4948 * if xHC supports 64-bit addressing */
4949 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4950 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4951 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4952 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4953 } else {
4954 /*
4955 * This is to avoid error in cases where a 32-bit USB
4956 * controller is used on a 64-bit capable system.
4957 */
4958 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4959 if (retval)
4960 return retval;
4961 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4962 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4963 }
4964
4965 xhci_dbg(xhci, "Calling HCD init\n");
4966 /* Initialize HCD and host controller data structures. */
4967 retval = xhci_init(hcd);
4968 if (retval)
4969 return retval;
4970 xhci_dbg(xhci, "Called HCD init\n");
4971
4972 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4973 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4974
4975 return 0;
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4978
4979 static const struct hc_driver xhci_hc_driver = {
4980 .description = "xhci-hcd",
4981 .product_desc = "xHCI Host Controller",
4982 .hcd_priv_size = sizeof(struct xhci_hcd),
4983
4984 /*
4985 * generic hardware linkage
4986 */
4987 .irq = xhci_irq,
4988 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4989
4990 /*
4991 * basic lifecycle operations
4992 */
4993 .reset = NULL, /* set in xhci_init_driver() */
4994 .start = xhci_run,
4995 .stop = xhci_stop,
4996 .shutdown = xhci_shutdown,
4997
4998 /*
4999 * managing i/o requests and associated device resources
5000 */
5001 .urb_enqueue = xhci_urb_enqueue,
5002 .urb_dequeue = xhci_urb_dequeue,
5003 .alloc_dev = xhci_alloc_dev,
5004 .free_dev = xhci_free_dev,
5005 .alloc_streams = xhci_alloc_streams,
5006 .free_streams = xhci_free_streams,
5007 .add_endpoint = xhci_add_endpoint,
5008 .drop_endpoint = xhci_drop_endpoint,
5009 .endpoint_reset = xhci_endpoint_reset,
5010 .check_bandwidth = xhci_check_bandwidth,
5011 .reset_bandwidth = xhci_reset_bandwidth,
5012 .address_device = xhci_address_device,
5013 .enable_device = xhci_enable_device,
5014 .update_hub_device = xhci_update_hub_device,
5015 .reset_device = xhci_discover_or_reset_device,
5016
5017 /*
5018 * scheduling support
5019 */
5020 .get_frame_number = xhci_get_frame,
5021
5022 /*
5023 * root hub support
5024 */
5025 .hub_control = xhci_hub_control,
5026 .hub_status_data = xhci_hub_status_data,
5027 .bus_suspend = xhci_bus_suspend,
5028 .bus_resume = xhci_bus_resume,
5029
5030 /*
5031 * call back when device connected and addressed
5032 */
5033 .update_device = xhci_update_device,
5034 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5035 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5036 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5037 .find_raw_port_number = xhci_find_raw_port_number,
5038 };
5039
5040 void xhci_init_driver(struct hc_driver *drv,
5041 const struct xhci_driver_overrides *over)
5042 {
5043 BUG_ON(!over);
5044
5045 /* Copy the generic table to drv then apply the overrides */
5046 *drv = xhci_hc_driver;
5047
5048 if (over) {
5049 drv->hcd_priv_size += over->extra_priv_size;
5050 if (over->reset)
5051 drv->reset = over->reset;
5052 if (over->start)
5053 drv->start = over->start;
5054 }
5055 }
5056 EXPORT_SYMBOL_GPL(xhci_init_driver);
5057
5058 MODULE_DESCRIPTION(DRIVER_DESC);
5059 MODULE_AUTHOR(DRIVER_AUTHOR);
5060 MODULE_LICENSE("GPL");
5061
5062 static int __init xhci_hcd_init(void)
5063 {
5064 /*
5065 * Check the compiler generated sizes of structures that must be laid
5066 * out in specific ways for hardware access.
5067 */
5068 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5069 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5070 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5071 /* xhci_device_control has eight fields, and also
5072 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5073 */
5074 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5075 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5076 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5077 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5078 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5079 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5080 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5081
5082 if (usb_disabled())
5083 return -ENODEV;
5084
5085 return 0;
5086 }
5087
5088 /*
5089 * If an init function is provided, an exit function must also be provided
5090 * to allow module unload.
5091 */
5092 static void __exit xhci_hcd_fini(void) { }
5093
5094 module_init(xhci_hcd_init);
5095 module_exit(xhci_hcd_fini);