]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci.c
2ad8d16811f50da72379366befd34d5a776b5f24
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42 * xhci_handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 u32 result;
57
58 do {
59 result = readl(ptr);
60 if (result == ~(u32)0) /* card removed */
61 return -ENODEV;
62 result &= mask;
63 if (result == done)
64 return 0;
65 udelay(1);
66 usec--;
67 } while (usec > 0);
68 return -ETIMEDOUT;
69 }
70
71 /*
72 * Disable interrupts and begin the xHCI halting process.
73 */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 u32 halted;
77 u32 cmd;
78 u32 mask;
79
80 mask = ~(XHCI_IRQS);
81 halted = readl(&xhci->op_regs->status) & STS_HALT;
82 if (!halted)
83 mask &= ~CMD_RUN;
84
85 cmd = readl(&xhci->op_regs->command);
86 cmd &= mask;
87 writel(cmd, &xhci->op_regs->command);
88 }
89
90 /*
91 * Force HC into halt state.
92 *
93 * Disable any IRQs and clear the run/stop bit.
94 * HC will complete any current and actively pipelined transactions, and
95 * should halt within 16 ms of the run/stop bit being cleared.
96 * Read HC Halted bit in the status register to see when the HC is finished.
97 */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 int ret;
101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 xhci_quiesce(xhci);
103
104 ret = xhci_handshake(&xhci->op_regs->status,
105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 if (ret) {
107 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 return ret;
109 }
110 xhci->xhc_state |= XHCI_STATE_HALTED;
111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 return ret;
113 }
114
115 /*
116 * Set the run bit and wait for the host to be running.
117 */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 u32 temp;
121 int ret;
122
123 temp = readl(&xhci->op_regs->command);
124 temp |= (CMD_RUN);
125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 temp);
127 writel(temp, &xhci->op_regs->command);
128
129 /*
130 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 * running.
132 */
133 ret = xhci_handshake(&xhci->op_regs->status,
134 STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 if (ret == -ETIMEDOUT)
136 xhci_err(xhci, "Host took too long to start, "
137 "waited %u microseconds.\n",
138 XHCI_MAX_HALT_USEC);
139 if (!ret)
140 /* clear state flags. Including dying, halted or removing */
141 xhci->xhc_state = 0;
142
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = readl(&xhci->op_regs->status);
160
161 if (state == ~(u32)0) {
162 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 return -ENODEV;
164 }
165
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
169 }
170
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
175
176 /* Existing Intel xHCI controllers require a delay of 1 mS,
177 * after setting the CMD_RESET bit, and before accessing any
178 * HC registers. This allows the HC to complete the
179 * reset operation and be ready for HC register access.
180 * Without this delay, the subsequent HC register access,
181 * may result in a system hang very rarely.
182 */
183 if (xhci->quirks & XHCI_INTEL_HOST)
184 udelay(1000);
185
186 ret = xhci_handshake(&xhci->op_regs->command,
187 CMD_RESET, 0, 10 * 1000 * 1000);
188 if (ret)
189 return ret;
190
191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; i++) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210 }
211
212
213 #ifdef CONFIG_USB_PCI
214 /*
215 * Set up MSI
216 */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 int ret;
220 /*
221 * TODO:Check with MSI Soc for sysdev
222 */
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224
225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 if (ret < 0) {
227 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 "failed to allocate MSI entry");
229 return ret;
230 }
231
232 ret = request_irq(pdev->irq, xhci_msi_irq,
233 0, "xhci_hcd", xhci_to_hcd(xhci));
234 if (ret) {
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "disable MSI interrupt");
237 pci_free_irq_vectors(pdev);
238 }
239
240 return ret;
241 }
242
243 /*
244 * Set up MSI-X
245 */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248 int i, ret = 0;
249 struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252 /*
253 * calculate number of msi-x vectors supported.
254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 * with max number of interrupters based on the xhci HCSPARAMS1.
256 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 * Add additional 1 vector to ensure always available interrupt.
258 */
259 xhci->msix_count = min(num_online_cpus() + 1,
260 HCS_MAX_INTRS(xhci->hcs_params1));
261
262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 PCI_IRQ_MSIX);
264 if (ret < 0) {
265 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 "Failed to enable MSI-X");
267 return ret;
268 }
269
270 for (i = 0; i < xhci->msix_count; i++) {
271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 "xhci_hcd", xhci_to_hcd(xhci));
273 if (ret)
274 goto disable_msix;
275 }
276
277 hcd->msix_enabled = 1;
278 return ret;
279
280 disable_msix:
281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 while (--i >= 0)
283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 pci_free_irq_vectors(pdev);
285 return ret;
286 }
287
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291 struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293
294 if (xhci->quirks & XHCI_PLAT)
295 return;
296
297 /* return if using legacy interrupt */
298 if (hcd->irq > 0)
299 return;
300
301 if (hcd->msix_enabled) {
302 int i;
303
304 for (i = 0; i < xhci->msix_count; i++)
305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 } else {
307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 }
309
310 pci_free_irq_vectors(pdev);
311 hcd->msix_enabled = 0;
312 }
313
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316 struct usb_hcd *hcd = xhci_to_hcd(xhci);
317
318 if (hcd->msix_enabled) {
319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 int i;
321
322 for (i = 0; i < xhci->msix_count; i++)
323 synchronize_irq(pci_irq_vector(pdev, i));
324 }
325 }
326
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 struct pci_dev *pdev;
331 int ret;
332
333 /* The xhci platform device has set up IRQs through usb_add_hcd. */
334 if (xhci->quirks & XHCI_PLAT)
335 return 0;
336
337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 /*
339 * Some Fresco Logic host controllers advertise MSI, but fail to
340 * generate interrupts. Don't even try to enable MSI.
341 */
342 if (xhci->quirks & XHCI_BROKEN_MSI)
343 goto legacy_irq;
344
345 /* unregister the legacy interrupt */
346 if (hcd->irq)
347 free_irq(hcd->irq, hcd);
348 hcd->irq = 0;
349
350 ret = xhci_setup_msix(xhci);
351 if (ret)
352 /* fall back to msi*/
353 ret = xhci_setup_msi(xhci);
354
355 if (!ret) {
356 hcd->msi_enabled = 1;
357 return 0;
358 }
359
360 if (!pdev->irq) {
361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 return -EINVAL;
363 }
364
365 legacy_irq:
366 if (!strlen(hcd->irq_descr))
367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 hcd->driver->description, hcd->self.busnum);
369
370 /* fall back to legacy interrupt*/
371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 hcd->irq_descr, hcd);
373 if (ret) {
374 xhci_err(xhci, "request interrupt %d failed\n",
375 pdev->irq);
376 return ret;
377 }
378 hcd->irq = pdev->irq;
379 return 0;
380 }
381
382 #else
383
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386 return 0;
387 }
388
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396
397 #endif
398
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401 struct xhci_hcd *xhci;
402 struct usb_hcd *hcd;
403 u32 temp;
404 int i;
405
406 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407
408 for (i = 0; i < xhci->num_usb3_ports; i++) {
409 temp = readl(xhci->usb3_ports[i]);
410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411 /*
412 * Compliance Mode Detected. Letting USB Core
413 * handle the Warm Reset
414 */
415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 "Compliance mode detected->port %d",
417 i + 1);
418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 "Attempting compliance mode recovery");
420 hcd = xhci->shared_hcd;
421
422 if (hcd->state == HC_STATE_SUSPENDED)
423 usb_hcd_resume_root_hub(hcd);
424
425 usb_hcd_poll_rh_status(hcd);
426 }
427 }
428
429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 mod_timer(&xhci->comp_mode_recovery_timer,
431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433
434 /*
435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436 * that causes ports behind that hardware to enter compliance mode sometimes.
437 * The quirk creates a timer that polls every 2 seconds the link state of
438 * each host controller's port and recovers it by issuing a Warm reset
439 * if Compliance mode is detected, otherwise the port will become "dead" (no
440 * device connections or disconnections will be detected anymore). Becasue no
441 * status event is generated when entering compliance mode (per xhci spec),
442 * this quirk is needed on systems that have the failing hardware installed.
443 */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446 xhci->port_status_u0 = 0;
447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448 0);
449 xhci->comp_mode_recovery_timer.expires = jiffies +
450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452 add_timer(&xhci->comp_mode_recovery_timer);
453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 "Compliance mode recovery timer initialized");
455 }
456
457 /*
458 * This function identifies the systems that have installed the SN65LVPE502CP
459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
460 * Systems:
461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462 */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465 const char *dmi_product_name, *dmi_sys_vendor;
466
467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 if (!dmi_product_name || !dmi_sys_vendor)
470 return false;
471
472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 return false;
474
475 if (strstr(dmi_product_name, "Z420") ||
476 strstr(dmi_product_name, "Z620") ||
477 strstr(dmi_product_name, "Z820") ||
478 strstr(dmi_product_name, "Z1 Workstation"))
479 return true;
480
481 return false;
482 }
483
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488
489
490 /*
491 * Initialize memory for HCD and xHC (one-time init).
492 *
493 * Program the PAGESIZE register, initialize the device context array, create
494 * device contexts (?), set up a command ring segment (or two?), create event
495 * ring (one for now).
496 */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 int retval = 0;
501
502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 spin_lock_init(&xhci->lock);
504 if (xhci->hci_version == 0x95 && link_quirk) {
505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 "QUIRK: Not clearing Link TRB chain bits.");
507 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 } else {
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 "xHCI doesn't need link TRB QUIRK");
511 }
512 retval = xhci_mem_init(xhci, GFP_KERNEL);
513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514
515 /* Initializing Compliance Mode Recovery Data If Needed */
516 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 compliance_mode_recovery_timer_init(xhci);
519 }
520
521 return retval;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529 if (xhci_start(xhci)) {
530 xhci_halt(xhci);
531 return -ENODEV;
532 }
533 xhci->shared_hcd->state = HC_STATE_RUNNING;
534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535
536 if (xhci->quirks & XHCI_NEC_HOST)
537 xhci_ring_cmd_db(xhci);
538
539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 "Finished xhci_run for USB3 roothub");
541 return 0;
542 }
543
544 /*
545 * Start the HC after it was halted.
546 *
547 * This function is called by the USB core when the HC driver is added.
548 * Its opposite is xhci_stop().
549 *
550 * xhci_init() must be called once before this function can be called.
551 * Reset the HC, enable device slot contexts, program DCBAAP, and
552 * set command ring pointer and event ring pointer.
553 *
554 * Setup MSI-X vectors and enable interrupts.
555 */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558 u32 temp;
559 u64 temp_64;
560 int ret;
561 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562
563 /* Start the xHCI host controller running only after the USB 2.0 roothub
564 * is setup.
565 */
566
567 hcd->uses_new_polling = 1;
568 if (!usb_hcd_is_primary_hcd(hcd))
569 return xhci_run_finished(xhci);
570
571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572
573 ret = xhci_try_enable_msi(hcd);
574 if (ret)
575 return ret;
576
577 xhci_dbg_cmd_ptrs(xhci);
578
579 xhci_dbg(xhci, "ERST memory map follows:\n");
580 xhci_dbg_erst(xhci, &xhci->erst);
581 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
582 temp_64 &= ~ERST_PTR_MASK;
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
584 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
585
586 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
587 "// Set the interrupt modulation register");
588 temp = readl(&xhci->ir_set->irq_control);
589 temp &= ~ER_IRQ_INTERVAL_MASK;
590 /*
591 * the increment interval is 8 times as much as that defined
592 * in xHCI spec on MTK's controller
593 */
594 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
595 writel(temp, &xhci->ir_set->irq_control);
596
597 /* Set the HCD state before we enable the irqs */
598 temp = readl(&xhci->op_regs->command);
599 temp |= (CMD_EIE);
600 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
601 "// Enable interrupts, cmd = 0x%x.", temp);
602 writel(temp, &xhci->op_regs->command);
603
604 temp = readl(&xhci->ir_set->irq_pending);
605 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
606 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
607 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
608 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
609 xhci_print_ir_set(xhci, 0);
610
611 if (xhci->quirks & XHCI_NEC_HOST) {
612 struct xhci_command *command;
613
614 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
615 if (!command)
616 return -ENOMEM;
617
618 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
619 TRB_TYPE(TRB_NEC_GET_FW));
620 if (ret)
621 xhci_free_command(xhci, command);
622 }
623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 "Finished xhci_run for USB2 roothub");
625
626 xhci_dbc_init(xhci);
627
628 xhci_debugfs_init(xhci);
629
630 return 0;
631 }
632 EXPORT_SYMBOL_GPL(xhci_run);
633
634 /*
635 * Stop xHCI driver.
636 *
637 * This function is called by the USB core when the HC driver is removed.
638 * Its opposite is xhci_run().
639 *
640 * Disable device contexts, disable IRQs, and quiesce the HC.
641 * Reset the HC, finish any completed transactions, and cleanup memory.
642 */
643 static void xhci_stop(struct usb_hcd *hcd)
644 {
645 u32 temp;
646 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647
648 mutex_lock(&xhci->mutex);
649
650 /* Only halt host and free memory after both hcds are removed */
651 if (!usb_hcd_is_primary_hcd(hcd)) {
652 /* usb core will free this hcd shortly, unset pointer */
653 xhci->shared_hcd = NULL;
654 mutex_unlock(&xhci->mutex);
655 return;
656 }
657
658 xhci_dbc_exit(xhci);
659
660 spin_lock_irq(&xhci->lock);
661 xhci->xhc_state |= XHCI_STATE_HALTED;
662 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
663 xhci_halt(xhci);
664 xhci_reset(xhci);
665 spin_unlock_irq(&xhci->lock);
666
667 xhci_cleanup_msix(xhci);
668
669 /* Deleting Compliance Mode Recovery Timer */
670 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
671 (!(xhci_all_ports_seen_u0(xhci)))) {
672 del_timer_sync(&xhci->comp_mode_recovery_timer);
673 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
674 "%s: compliance mode recovery timer deleted",
675 __func__);
676 }
677
678 if (xhci->quirks & XHCI_AMD_PLL_FIX)
679 usb_amd_dev_put();
680
681 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
682 "// Disabling event ring interrupts");
683 temp = readl(&xhci->op_regs->status);
684 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
685 temp = readl(&xhci->ir_set->irq_pending);
686 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
687 xhci_print_ir_set(xhci, 0);
688
689 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
690 xhci_mem_cleanup(xhci);
691 xhci_debugfs_exit(xhci);
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 "xhci_stop completed - status = %x",
694 readl(&xhci->op_regs->status));
695 mutex_unlock(&xhci->mutex);
696 }
697
698 /*
699 * Shutdown HC (not bus-specific)
700 *
701 * This is called when the machine is rebooting or halting. We assume that the
702 * machine will be powered off, and the HC's internal state will be reset.
703 * Don't bother to free memory.
704 *
705 * This will only ever be called with the main usb_hcd (the USB3 roothub).
706 */
707 static void xhci_shutdown(struct usb_hcd *hcd)
708 {
709 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
710
711 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
712 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
713
714 spin_lock_irq(&xhci->lock);
715 xhci_halt(xhci);
716 /* Workaround for spurious wakeups at shutdown with HSW */
717 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
718 xhci_reset(xhci);
719 spin_unlock_irq(&xhci->lock);
720
721 xhci_cleanup_msix(xhci);
722
723 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 "xhci_shutdown completed - status = %x",
725 readl(&xhci->op_regs->status));
726
727 /* Yet another workaround for spurious wakeups at shutdown with HSW */
728 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
729 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
730 }
731
732 #ifdef CONFIG_PM
733 static void xhci_save_registers(struct xhci_hcd *xhci)
734 {
735 xhci->s3.command = readl(&xhci->op_regs->command);
736 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
737 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
738 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
739 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
740 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
741 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
742 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
743 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
744 }
745
746 static void xhci_restore_registers(struct xhci_hcd *xhci)
747 {
748 writel(xhci->s3.command, &xhci->op_regs->command);
749 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
750 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
751 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
752 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
753 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
754 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
755 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
756 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
757 }
758
759 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
760 {
761 u64 val_64;
762
763 /* step 2: initialize command ring buffer */
764 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
765 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
766 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
767 xhci->cmd_ring->dequeue) &
768 (u64) ~CMD_RING_RSVD_BITS) |
769 xhci->cmd_ring->cycle_state;
770 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
771 "// Setting command ring address to 0x%llx",
772 (long unsigned long) val_64);
773 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
774 }
775
776 /*
777 * The whole command ring must be cleared to zero when we suspend the host.
778 *
779 * The host doesn't save the command ring pointer in the suspend well, so we
780 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
781 * aligned, because of the reserved bits in the command ring dequeue pointer
782 * register. Therefore, we can't just set the dequeue pointer back in the
783 * middle of the ring (TRBs are 16-byte aligned).
784 */
785 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
786 {
787 struct xhci_ring *ring;
788 struct xhci_segment *seg;
789
790 ring = xhci->cmd_ring;
791 seg = ring->deq_seg;
792 do {
793 memset(seg->trbs, 0,
794 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
795 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
796 cpu_to_le32(~TRB_CYCLE);
797 seg = seg->next;
798 } while (seg != ring->deq_seg);
799
800 /* Reset the software enqueue and dequeue pointers */
801 ring->deq_seg = ring->first_seg;
802 ring->dequeue = ring->first_seg->trbs;
803 ring->enq_seg = ring->deq_seg;
804 ring->enqueue = ring->dequeue;
805
806 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
807 /*
808 * Ring is now zeroed, so the HW should look for change of ownership
809 * when the cycle bit is set to 1.
810 */
811 ring->cycle_state = 1;
812
813 /*
814 * Reset the hardware dequeue pointer.
815 * Yes, this will need to be re-written after resume, but we're paranoid
816 * and want to make sure the hardware doesn't access bogus memory
817 * because, say, the BIOS or an SMI started the host without changing
818 * the command ring pointers.
819 */
820 xhci_set_cmd_ring_deq(xhci);
821 }
822
823 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
824 {
825 int port_index;
826 __le32 __iomem **port_array;
827 unsigned long flags;
828 u32 t1, t2;
829
830 spin_lock_irqsave(&xhci->lock, flags);
831
832 /* disable usb3 ports Wake bits */
833 port_index = xhci->num_usb3_ports;
834 port_array = xhci->usb3_ports;
835 while (port_index--) {
836 t1 = readl(port_array[port_index]);
837 t1 = xhci_port_state_to_neutral(t1);
838 t2 = t1 & ~PORT_WAKE_BITS;
839 if (t1 != t2)
840 writel(t2, port_array[port_index]);
841 }
842
843 /* disable usb2 ports Wake bits */
844 port_index = xhci->num_usb2_ports;
845 port_array = xhci->usb2_ports;
846 while (port_index--) {
847 t1 = readl(port_array[port_index]);
848 t1 = xhci_port_state_to_neutral(t1);
849 t2 = t1 & ~PORT_WAKE_BITS;
850 if (t1 != t2)
851 writel(t2, port_array[port_index]);
852 }
853
854 spin_unlock_irqrestore(&xhci->lock, flags);
855 }
856
857 /*
858 * Stop HC (not bus-specific)
859 *
860 * This is called when the machine transition into S3/S4 mode.
861 *
862 */
863 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
864 {
865 int rc = 0;
866 unsigned int delay = XHCI_MAX_HALT_USEC;
867 struct usb_hcd *hcd = xhci_to_hcd(xhci);
868 u32 command;
869
870 if (!hcd->state)
871 return 0;
872
873 if (hcd->state != HC_STATE_SUSPENDED ||
874 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
875 return -EINVAL;
876
877 xhci_dbc_suspend(xhci);
878
879 /* Clear root port wake on bits if wakeup not allowed. */
880 if (!do_wakeup)
881 xhci_disable_port_wake_on_bits(xhci);
882
883 /* Don't poll the roothubs on bus suspend. */
884 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
885 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
886 del_timer_sync(&hcd->rh_timer);
887 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
888 del_timer_sync(&xhci->shared_hcd->rh_timer);
889
890 if (xhci->quirks & XHCI_SUSPEND_DELAY)
891 usleep_range(1000, 1500);
892
893 spin_lock_irq(&xhci->lock);
894 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
895 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
896 /* step 1: stop endpoint */
897 /* skipped assuming that port suspend has done */
898
899 /* step 2: clear Run/Stop bit */
900 command = readl(&xhci->op_regs->command);
901 command &= ~CMD_RUN;
902 writel(command, &xhci->op_regs->command);
903
904 /* Some chips from Fresco Logic need an extraordinary delay */
905 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
906
907 if (xhci_handshake(&xhci->op_regs->status,
908 STS_HALT, STS_HALT, delay)) {
909 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
910 spin_unlock_irq(&xhci->lock);
911 return -ETIMEDOUT;
912 }
913 xhci_clear_command_ring(xhci);
914
915 /* step 3: save registers */
916 xhci_save_registers(xhci);
917
918 /* step 4: set CSS flag */
919 command = readl(&xhci->op_regs->command);
920 command |= CMD_CSS;
921 writel(command, &xhci->op_regs->command);
922 if (xhci_handshake(&xhci->op_regs->status,
923 STS_SAVE, 0, 10 * 1000)) {
924 xhci_warn(xhci, "WARN: xHC save state timeout\n");
925 spin_unlock_irq(&xhci->lock);
926 return -ETIMEDOUT;
927 }
928 spin_unlock_irq(&xhci->lock);
929
930 /*
931 * Deleting Compliance Mode Recovery Timer because the xHCI Host
932 * is about to be suspended.
933 */
934 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
935 (!(xhci_all_ports_seen_u0(xhci)))) {
936 del_timer_sync(&xhci->comp_mode_recovery_timer);
937 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
938 "%s: compliance mode recovery timer deleted",
939 __func__);
940 }
941
942 /* step 5: remove core well power */
943 /* synchronize irq when using MSI-X */
944 xhci_msix_sync_irqs(xhci);
945
946 return rc;
947 }
948 EXPORT_SYMBOL_GPL(xhci_suspend);
949
950 /*
951 * start xHC (not bus-specific)
952 *
953 * This is called when the machine transition from S3/S4 mode.
954 *
955 */
956 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
957 {
958 u32 command, temp = 0, status;
959 struct usb_hcd *hcd = xhci_to_hcd(xhci);
960 struct usb_hcd *secondary_hcd;
961 int retval = 0;
962 bool comp_timer_running = false;
963
964 if (!hcd->state)
965 return 0;
966
967 /* Wait a bit if either of the roothubs need to settle from the
968 * transition into bus suspend.
969 */
970 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
971 time_before(jiffies,
972 xhci->bus_state[1].next_statechange))
973 msleep(100);
974
975 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
976 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
977
978 spin_lock_irq(&xhci->lock);
979 if (xhci->quirks & XHCI_RESET_ON_RESUME)
980 hibernated = true;
981
982 if (!hibernated) {
983 /* step 1: restore register */
984 xhci_restore_registers(xhci);
985 /* step 2: initialize command ring buffer */
986 xhci_set_cmd_ring_deq(xhci);
987 /* step 3: restore state and start state*/
988 /* step 3: set CRS flag */
989 command = readl(&xhci->op_regs->command);
990 command |= CMD_CRS;
991 writel(command, &xhci->op_regs->command);
992 if (xhci_handshake(&xhci->op_regs->status,
993 STS_RESTORE, 0, 10 * 1000)) {
994 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
995 spin_unlock_irq(&xhci->lock);
996 return -ETIMEDOUT;
997 }
998 temp = readl(&xhci->op_regs->status);
999 }
1000
1001 /* If restore operation fails, re-initialize the HC during resume */
1002 if ((temp & STS_SRE) || hibernated) {
1003
1004 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1005 !(xhci_all_ports_seen_u0(xhci))) {
1006 del_timer_sync(&xhci->comp_mode_recovery_timer);
1007 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1008 "Compliance Mode Recovery Timer deleted!");
1009 }
1010
1011 /* Let the USB core know _both_ roothubs lost power. */
1012 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1013 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1014
1015 xhci_dbg(xhci, "Stop HCD\n");
1016 xhci_halt(xhci);
1017 xhci_reset(xhci);
1018 spin_unlock_irq(&xhci->lock);
1019 xhci_cleanup_msix(xhci);
1020
1021 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1022 temp = readl(&xhci->op_regs->status);
1023 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1024 temp = readl(&xhci->ir_set->irq_pending);
1025 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1026 xhci_print_ir_set(xhci, 0);
1027
1028 xhci_dbg(xhci, "cleaning up memory\n");
1029 xhci_mem_cleanup(xhci);
1030 xhci_debugfs_exit(xhci);
1031 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1032 readl(&xhci->op_regs->status));
1033
1034 /* USB core calls the PCI reinit and start functions twice:
1035 * first with the primary HCD, and then with the secondary HCD.
1036 * If we don't do the same, the host will never be started.
1037 */
1038 if (!usb_hcd_is_primary_hcd(hcd))
1039 secondary_hcd = hcd;
1040 else
1041 secondary_hcd = xhci->shared_hcd;
1042
1043 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1044 retval = xhci_init(hcd->primary_hcd);
1045 if (retval)
1046 return retval;
1047 comp_timer_running = true;
1048
1049 xhci_dbg(xhci, "Start the primary HCD\n");
1050 retval = xhci_run(hcd->primary_hcd);
1051 if (!retval) {
1052 xhci_dbg(xhci, "Start the secondary HCD\n");
1053 retval = xhci_run(secondary_hcd);
1054 }
1055 hcd->state = HC_STATE_SUSPENDED;
1056 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1057 goto done;
1058 }
1059
1060 /* step 4: set Run/Stop bit */
1061 command = readl(&xhci->op_regs->command);
1062 command |= CMD_RUN;
1063 writel(command, &xhci->op_regs->command);
1064 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1065 0, 250 * 1000);
1066
1067 /* step 5: walk topology and initialize portsc,
1068 * portpmsc and portli
1069 */
1070 /* this is done in bus_resume */
1071
1072 /* step 6: restart each of the previously
1073 * Running endpoints by ringing their doorbells
1074 */
1075
1076 spin_unlock_irq(&xhci->lock);
1077
1078 xhci_dbc_resume(xhci);
1079
1080 done:
1081 if (retval == 0) {
1082 /* Resume root hubs only when have pending events. */
1083 status = readl(&xhci->op_regs->status);
1084 if (status & STS_EINT) {
1085 usb_hcd_resume_root_hub(xhci->shared_hcd);
1086 usb_hcd_resume_root_hub(hcd);
1087 }
1088 }
1089
1090 /*
1091 * If system is subject to the Quirk, Compliance Mode Timer needs to
1092 * be re-initialized Always after a system resume. Ports are subject
1093 * to suffer the Compliance Mode issue again. It doesn't matter if
1094 * ports have entered previously to U0 before system's suspension.
1095 */
1096 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1097 compliance_mode_recovery_timer_init(xhci);
1098
1099 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1100 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1101
1102 /* Re-enable port polling. */
1103 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1104 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1105 usb_hcd_poll_rh_status(xhci->shared_hcd);
1106 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1107 usb_hcd_poll_rh_status(hcd);
1108
1109 return retval;
1110 }
1111 EXPORT_SYMBOL_GPL(xhci_resume);
1112 #endif /* CONFIG_PM */
1113
1114 /*-------------------------------------------------------------------------*/
1115
1116 /**
1117 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1118 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1119 * value to right shift 1 for the bitmask.
1120 *
1121 * Index = (epnum * 2) + direction - 1,
1122 * where direction = 0 for OUT, 1 for IN.
1123 * For control endpoints, the IN index is used (OUT index is unused), so
1124 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1125 */
1126 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1127 {
1128 unsigned int index;
1129 if (usb_endpoint_xfer_control(desc))
1130 index = (unsigned int) (usb_endpoint_num(desc)*2);
1131 else
1132 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1133 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1134 return index;
1135 }
1136
1137 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1138 * address from the XHCI endpoint index.
1139 */
1140 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1141 {
1142 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1143 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1144 return direction | number;
1145 }
1146
1147 /* Find the flag for this endpoint (for use in the control context). Use the
1148 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1149 * bit 1, etc.
1150 */
1151 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1152 {
1153 return 1 << (xhci_get_endpoint_index(desc) + 1);
1154 }
1155
1156 /* Find the flag for this endpoint (for use in the control context). Use the
1157 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1158 * bit 1, etc.
1159 */
1160 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1161 {
1162 return 1 << (ep_index + 1);
1163 }
1164
1165 /* Compute the last valid endpoint context index. Basically, this is the
1166 * endpoint index plus one. For slot contexts with more than valid endpoint,
1167 * we find the most significant bit set in the added contexts flags.
1168 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1169 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1170 */
1171 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1172 {
1173 return fls(added_ctxs) - 1;
1174 }
1175
1176 /* Returns 1 if the arguments are OK;
1177 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1178 */
1179 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1180 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1181 const char *func) {
1182 struct xhci_hcd *xhci;
1183 struct xhci_virt_device *virt_dev;
1184
1185 if (!hcd || (check_ep && !ep) || !udev) {
1186 pr_debug("xHCI %s called with invalid args\n", func);
1187 return -EINVAL;
1188 }
1189 if (!udev->parent) {
1190 pr_debug("xHCI %s called for root hub\n", func);
1191 return 0;
1192 }
1193
1194 xhci = hcd_to_xhci(hcd);
1195 if (check_virt_dev) {
1196 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1197 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1198 func);
1199 return -EINVAL;
1200 }
1201
1202 virt_dev = xhci->devs[udev->slot_id];
1203 if (virt_dev->udev != udev) {
1204 xhci_dbg(xhci, "xHCI %s called with udev and "
1205 "virt_dev does not match\n", func);
1206 return -EINVAL;
1207 }
1208 }
1209
1210 if (xhci->xhc_state & XHCI_STATE_HALTED)
1211 return -ENODEV;
1212
1213 return 1;
1214 }
1215
1216 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1217 struct usb_device *udev, struct xhci_command *command,
1218 bool ctx_change, bool must_succeed);
1219
1220 /*
1221 * Full speed devices may have a max packet size greater than 8 bytes, but the
1222 * USB core doesn't know that until it reads the first 8 bytes of the
1223 * descriptor. If the usb_device's max packet size changes after that point,
1224 * we need to issue an evaluate context command and wait on it.
1225 */
1226 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1227 unsigned int ep_index, struct urb *urb)
1228 {
1229 struct xhci_container_ctx *out_ctx;
1230 struct xhci_input_control_ctx *ctrl_ctx;
1231 struct xhci_ep_ctx *ep_ctx;
1232 struct xhci_command *command;
1233 int max_packet_size;
1234 int hw_max_packet_size;
1235 int ret = 0;
1236
1237 out_ctx = xhci->devs[slot_id]->out_ctx;
1238 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1239 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1240 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1241 if (hw_max_packet_size != max_packet_size) {
1242 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1243 "Max Packet Size for ep 0 changed.");
1244 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1245 "Max packet size in usb_device = %d",
1246 max_packet_size);
1247 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1248 "Max packet size in xHCI HW = %d",
1249 hw_max_packet_size);
1250 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1251 "Issuing evaluate context command.");
1252
1253 /* Set up the input context flags for the command */
1254 /* FIXME: This won't work if a non-default control endpoint
1255 * changes max packet sizes.
1256 */
1257
1258 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1259 if (!command)
1260 return -ENOMEM;
1261
1262 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1263 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1264 if (!ctrl_ctx) {
1265 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1266 __func__);
1267 ret = -ENOMEM;
1268 goto command_cleanup;
1269 }
1270 /* Set up the modified control endpoint 0 */
1271 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1272 xhci->devs[slot_id]->out_ctx, ep_index);
1273
1274 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1275 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1276 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1277
1278 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1279 ctrl_ctx->drop_flags = 0;
1280
1281 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1282 true, false);
1283
1284 /* Clean up the input context for later use by bandwidth
1285 * functions.
1286 */
1287 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1288 command_cleanup:
1289 kfree(command->completion);
1290 kfree(command);
1291 }
1292 return ret;
1293 }
1294
1295 /*
1296 * non-error returns are a promise to giveback() the urb later
1297 * we drop ownership so next owner (or urb unlink) can get it
1298 */
1299 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1300 {
1301 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1302 unsigned long flags;
1303 int ret = 0;
1304 unsigned int slot_id, ep_index, ep_state;
1305 struct urb_priv *urb_priv;
1306 int num_tds;
1307
1308 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1309 true, true, __func__) <= 0)
1310 return -EINVAL;
1311
1312 slot_id = urb->dev->slot_id;
1313 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1314
1315 if (!HCD_HW_ACCESSIBLE(hcd)) {
1316 if (!in_interrupt())
1317 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1318 return -ESHUTDOWN;
1319 }
1320
1321 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1322 num_tds = urb->number_of_packets;
1323 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1324 urb->transfer_buffer_length > 0 &&
1325 urb->transfer_flags & URB_ZERO_PACKET &&
1326 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1327 num_tds = 2;
1328 else
1329 num_tds = 1;
1330
1331 urb_priv = kzalloc(sizeof(struct urb_priv) +
1332 num_tds * sizeof(struct xhci_td), mem_flags);
1333 if (!urb_priv)
1334 return -ENOMEM;
1335
1336 urb_priv->num_tds = num_tds;
1337 urb_priv->num_tds_done = 0;
1338 urb->hcpriv = urb_priv;
1339
1340 trace_xhci_urb_enqueue(urb);
1341
1342 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1343 /* Check to see if the max packet size for the default control
1344 * endpoint changed during FS device enumeration
1345 */
1346 if (urb->dev->speed == USB_SPEED_FULL) {
1347 ret = xhci_check_maxpacket(xhci, slot_id,
1348 ep_index, urb);
1349 if (ret < 0) {
1350 xhci_urb_free_priv(urb_priv);
1351 urb->hcpriv = NULL;
1352 return ret;
1353 }
1354 }
1355 }
1356
1357 spin_lock_irqsave(&xhci->lock, flags);
1358
1359 if (xhci->xhc_state & XHCI_STATE_DYING) {
1360 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1361 urb->ep->desc.bEndpointAddress, urb);
1362 ret = -ESHUTDOWN;
1363 goto free_priv;
1364 }
1365
1366 switch (usb_endpoint_type(&urb->ep->desc)) {
1367
1368 case USB_ENDPOINT_XFER_CONTROL:
1369 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1370 slot_id, ep_index);
1371 break;
1372 case USB_ENDPOINT_XFER_BULK:
1373 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1374 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1375 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1376 ep_state);
1377 ret = -EINVAL;
1378 break;
1379 }
1380 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1381 slot_id, ep_index);
1382 break;
1383
1384
1385 case USB_ENDPOINT_XFER_INT:
1386 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1387 slot_id, ep_index);
1388 break;
1389
1390 case USB_ENDPOINT_XFER_ISOC:
1391 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1392 slot_id, ep_index);
1393 }
1394
1395 if (ret) {
1396 free_priv:
1397 xhci_urb_free_priv(urb_priv);
1398 urb->hcpriv = NULL;
1399 }
1400 spin_unlock_irqrestore(&xhci->lock, flags);
1401 return ret;
1402 }
1403
1404 /*
1405 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1406 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1407 * should pick up where it left off in the TD, unless a Set Transfer Ring
1408 * Dequeue Pointer is issued.
1409 *
1410 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1411 * the ring. Since the ring is a contiguous structure, they can't be physically
1412 * removed. Instead, there are two options:
1413 *
1414 * 1) If the HC is in the middle of processing the URB to be canceled, we
1415 * simply move the ring's dequeue pointer past those TRBs using the Set
1416 * Transfer Ring Dequeue Pointer command. This will be the common case,
1417 * when drivers timeout on the last submitted URB and attempt to cancel.
1418 *
1419 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1420 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1421 * HC will need to invalidate the any TRBs it has cached after the stop
1422 * endpoint command, as noted in the xHCI 0.95 errata.
1423 *
1424 * 3) The TD may have completed by the time the Stop Endpoint Command
1425 * completes, so software needs to handle that case too.
1426 *
1427 * This function should protect against the TD enqueueing code ringing the
1428 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1429 * It also needs to account for multiple cancellations on happening at the same
1430 * time for the same endpoint.
1431 *
1432 * Note that this function can be called in any context, or so says
1433 * usb_hcd_unlink_urb()
1434 */
1435 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1436 {
1437 unsigned long flags;
1438 int ret, i;
1439 u32 temp;
1440 struct xhci_hcd *xhci;
1441 struct urb_priv *urb_priv;
1442 struct xhci_td *td;
1443 unsigned int ep_index;
1444 struct xhci_ring *ep_ring;
1445 struct xhci_virt_ep *ep;
1446 struct xhci_command *command;
1447 struct xhci_virt_device *vdev;
1448
1449 xhci = hcd_to_xhci(hcd);
1450 spin_lock_irqsave(&xhci->lock, flags);
1451
1452 trace_xhci_urb_dequeue(urb);
1453
1454 /* Make sure the URB hasn't completed or been unlinked already */
1455 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1456 if (ret)
1457 goto done;
1458
1459 /* give back URB now if we can't queue it for cancel */
1460 vdev = xhci->devs[urb->dev->slot_id];
1461 urb_priv = urb->hcpriv;
1462 if (!vdev || !urb_priv)
1463 goto err_giveback;
1464
1465 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1466 ep = &vdev->eps[ep_index];
1467 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1468 if (!ep || !ep_ring)
1469 goto err_giveback;
1470
1471 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1472 temp = readl(&xhci->op_regs->status);
1473 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1474 xhci_hc_died(xhci);
1475 goto done;
1476 }
1477
1478 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1479 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1480 "HC halted, freeing TD manually.");
1481 for (i = urb_priv->num_tds_done;
1482 i < urb_priv->num_tds;
1483 i++) {
1484 td = &urb_priv->td[i];
1485 if (!list_empty(&td->td_list))
1486 list_del_init(&td->td_list);
1487 if (!list_empty(&td->cancelled_td_list))
1488 list_del_init(&td->cancelled_td_list);
1489 }
1490 goto err_giveback;
1491 }
1492
1493 i = urb_priv->num_tds_done;
1494 if (i < urb_priv->num_tds)
1495 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1496 "Cancel URB %p, dev %s, ep 0x%x, "
1497 "starting at offset 0x%llx",
1498 urb, urb->dev->devpath,
1499 urb->ep->desc.bEndpointAddress,
1500 (unsigned long long) xhci_trb_virt_to_dma(
1501 urb_priv->td[i].start_seg,
1502 urb_priv->td[i].first_trb));
1503
1504 for (; i < urb_priv->num_tds; i++) {
1505 td = &urb_priv->td[i];
1506 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1507 }
1508
1509 /* Queue a stop endpoint command, but only if this is
1510 * the first cancellation to be handled.
1511 */
1512 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1513 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1514 if (!command) {
1515 ret = -ENOMEM;
1516 goto done;
1517 }
1518 ep->ep_state |= EP_STOP_CMD_PENDING;
1519 ep->stop_cmd_timer.expires = jiffies +
1520 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521 add_timer(&ep->stop_cmd_timer);
1522 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1523 ep_index, 0);
1524 xhci_ring_cmd_db(xhci);
1525 }
1526 done:
1527 spin_unlock_irqrestore(&xhci->lock, flags);
1528 return ret;
1529
1530 err_giveback:
1531 if (urb_priv)
1532 xhci_urb_free_priv(urb_priv);
1533 usb_hcd_unlink_urb_from_ep(hcd, urb);
1534 spin_unlock_irqrestore(&xhci->lock, flags);
1535 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1536 return ret;
1537 }
1538
1539 /* Drop an endpoint from a new bandwidth configuration for this device.
1540 * Only one call to this function is allowed per endpoint before
1541 * check_bandwidth() or reset_bandwidth() must be called.
1542 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1543 * add the endpoint to the schedule with possibly new parameters denoted by a
1544 * different endpoint descriptor in usb_host_endpoint.
1545 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1546 * not allowed.
1547 *
1548 * The USB core will not allow URBs to be queued to an endpoint that is being
1549 * disabled, so there's no need for mutual exclusion to protect
1550 * the xhci->devs[slot_id] structure.
1551 */
1552 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1553 struct usb_host_endpoint *ep)
1554 {
1555 struct xhci_hcd *xhci;
1556 struct xhci_container_ctx *in_ctx, *out_ctx;
1557 struct xhci_input_control_ctx *ctrl_ctx;
1558 unsigned int ep_index;
1559 struct xhci_ep_ctx *ep_ctx;
1560 u32 drop_flag;
1561 u32 new_add_flags, new_drop_flags;
1562 int ret;
1563
1564 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1565 if (ret <= 0)
1566 return ret;
1567 xhci = hcd_to_xhci(hcd);
1568 if (xhci->xhc_state & XHCI_STATE_DYING)
1569 return -ENODEV;
1570
1571 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1572 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1573 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1574 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1575 __func__, drop_flag);
1576 return 0;
1577 }
1578
1579 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1580 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1581 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1582 if (!ctrl_ctx) {
1583 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1584 __func__);
1585 return 0;
1586 }
1587
1588 ep_index = xhci_get_endpoint_index(&ep->desc);
1589 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1590 /* If the HC already knows the endpoint is disabled,
1591 * or the HCD has noted it is disabled, ignore this request
1592 */
1593 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1594 le32_to_cpu(ctrl_ctx->drop_flags) &
1595 xhci_get_endpoint_flag(&ep->desc)) {
1596 /* Do not warn when called after a usb_device_reset */
1597 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1598 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1599 __func__, ep);
1600 return 0;
1601 }
1602
1603 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1604 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1605
1606 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1607 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1608
1609 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1610
1611 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1612
1613 if (xhci->quirks & XHCI_MTK_HOST)
1614 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1615
1616 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1617 (unsigned int) ep->desc.bEndpointAddress,
1618 udev->slot_id,
1619 (unsigned int) new_drop_flags,
1620 (unsigned int) new_add_flags);
1621 return 0;
1622 }
1623
1624 /* Add an endpoint to a new possible bandwidth configuration for this device.
1625 * Only one call to this function is allowed per endpoint before
1626 * check_bandwidth() or reset_bandwidth() must be called.
1627 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1628 * add the endpoint to the schedule with possibly new parameters denoted by a
1629 * different endpoint descriptor in usb_host_endpoint.
1630 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1631 * not allowed.
1632 *
1633 * The USB core will not allow URBs to be queued to an endpoint until the
1634 * configuration or alt setting is installed in the device, so there's no need
1635 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1636 */
1637 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1638 struct usb_host_endpoint *ep)
1639 {
1640 struct xhci_hcd *xhci;
1641 struct xhci_container_ctx *in_ctx;
1642 unsigned int ep_index;
1643 struct xhci_input_control_ctx *ctrl_ctx;
1644 u32 added_ctxs;
1645 u32 new_add_flags, new_drop_flags;
1646 struct xhci_virt_device *virt_dev;
1647 int ret = 0;
1648
1649 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1650 if (ret <= 0) {
1651 /* So we won't queue a reset ep command for a root hub */
1652 ep->hcpriv = NULL;
1653 return ret;
1654 }
1655 xhci = hcd_to_xhci(hcd);
1656 if (xhci->xhc_state & XHCI_STATE_DYING)
1657 return -ENODEV;
1658
1659 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1660 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1661 /* FIXME when we have to issue an evaluate endpoint command to
1662 * deal with ep0 max packet size changing once we get the
1663 * descriptors
1664 */
1665 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1666 __func__, added_ctxs);
1667 return 0;
1668 }
1669
1670 virt_dev = xhci->devs[udev->slot_id];
1671 in_ctx = virt_dev->in_ctx;
1672 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1673 if (!ctrl_ctx) {
1674 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1675 __func__);
1676 return 0;
1677 }
1678
1679 ep_index = xhci_get_endpoint_index(&ep->desc);
1680 /* If this endpoint is already in use, and the upper layers are trying
1681 * to add it again without dropping it, reject the addition.
1682 */
1683 if (virt_dev->eps[ep_index].ring &&
1684 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1685 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1686 "without dropping it.\n",
1687 (unsigned int) ep->desc.bEndpointAddress);
1688 return -EINVAL;
1689 }
1690
1691 /* If the HCD has already noted the endpoint is enabled,
1692 * ignore this request.
1693 */
1694 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1695 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1696 __func__, ep);
1697 return 0;
1698 }
1699
1700 /*
1701 * Configuration and alternate setting changes must be done in
1702 * process context, not interrupt context (or so documenation
1703 * for usb_set_interface() and usb_set_configuration() claim).
1704 */
1705 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1706 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1707 __func__, ep->desc.bEndpointAddress);
1708 return -ENOMEM;
1709 }
1710
1711 if (xhci->quirks & XHCI_MTK_HOST) {
1712 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1713 if (ret < 0) {
1714 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1715 virt_dev->eps[ep_index].new_ring = NULL;
1716 return ret;
1717 }
1718 }
1719
1720 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1721 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1722
1723 /* If xhci_endpoint_disable() was called for this endpoint, but the
1724 * xHC hasn't been notified yet through the check_bandwidth() call,
1725 * this re-adds a new state for the endpoint from the new endpoint
1726 * descriptors. We must drop and re-add this endpoint, so we leave the
1727 * drop flags alone.
1728 */
1729 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1730
1731 /* Store the usb_device pointer for later use */
1732 ep->hcpriv = udev;
1733
1734 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1735
1736 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1737 (unsigned int) ep->desc.bEndpointAddress,
1738 udev->slot_id,
1739 (unsigned int) new_drop_flags,
1740 (unsigned int) new_add_flags);
1741 return 0;
1742 }
1743
1744 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1745 {
1746 struct xhci_input_control_ctx *ctrl_ctx;
1747 struct xhci_ep_ctx *ep_ctx;
1748 struct xhci_slot_ctx *slot_ctx;
1749 int i;
1750
1751 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1752 if (!ctrl_ctx) {
1753 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1754 __func__);
1755 return;
1756 }
1757
1758 /* When a device's add flag and drop flag are zero, any subsequent
1759 * configure endpoint command will leave that endpoint's state
1760 * untouched. Make sure we don't leave any old state in the input
1761 * endpoint contexts.
1762 */
1763 ctrl_ctx->drop_flags = 0;
1764 ctrl_ctx->add_flags = 0;
1765 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1766 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1767 /* Endpoint 0 is always valid */
1768 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1769 for (i = 1; i < 31; i++) {
1770 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1771 ep_ctx->ep_info = 0;
1772 ep_ctx->ep_info2 = 0;
1773 ep_ctx->deq = 0;
1774 ep_ctx->tx_info = 0;
1775 }
1776 }
1777
1778 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1779 struct usb_device *udev, u32 *cmd_status)
1780 {
1781 int ret;
1782
1783 switch (*cmd_status) {
1784 case COMP_COMMAND_ABORTED:
1785 case COMP_COMMAND_RING_STOPPED:
1786 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1787 ret = -ETIME;
1788 break;
1789 case COMP_RESOURCE_ERROR:
1790 dev_warn(&udev->dev,
1791 "Not enough host controller resources for new device state.\n");
1792 ret = -ENOMEM;
1793 /* FIXME: can we allocate more resources for the HC? */
1794 break;
1795 case COMP_BANDWIDTH_ERROR:
1796 case COMP_SECONDARY_BANDWIDTH_ERROR:
1797 dev_warn(&udev->dev,
1798 "Not enough bandwidth for new device state.\n");
1799 ret = -ENOSPC;
1800 /* FIXME: can we go back to the old state? */
1801 break;
1802 case COMP_TRB_ERROR:
1803 /* the HCD set up something wrong */
1804 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1805 "add flag = 1, "
1806 "and endpoint is not disabled.\n");
1807 ret = -EINVAL;
1808 break;
1809 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1810 dev_warn(&udev->dev,
1811 "ERROR: Incompatible device for endpoint configure command.\n");
1812 ret = -ENODEV;
1813 break;
1814 case COMP_SUCCESS:
1815 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1816 "Successful Endpoint Configure command");
1817 ret = 0;
1818 break;
1819 default:
1820 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1821 *cmd_status);
1822 ret = -EINVAL;
1823 break;
1824 }
1825 return ret;
1826 }
1827
1828 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1829 struct usb_device *udev, u32 *cmd_status)
1830 {
1831 int ret;
1832
1833 switch (*cmd_status) {
1834 case COMP_COMMAND_ABORTED:
1835 case COMP_COMMAND_RING_STOPPED:
1836 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1837 ret = -ETIME;
1838 break;
1839 case COMP_PARAMETER_ERROR:
1840 dev_warn(&udev->dev,
1841 "WARN: xHCI driver setup invalid evaluate context command.\n");
1842 ret = -EINVAL;
1843 break;
1844 case COMP_SLOT_NOT_ENABLED_ERROR:
1845 dev_warn(&udev->dev,
1846 "WARN: slot not enabled for evaluate context command.\n");
1847 ret = -EINVAL;
1848 break;
1849 case COMP_CONTEXT_STATE_ERROR:
1850 dev_warn(&udev->dev,
1851 "WARN: invalid context state for evaluate context command.\n");
1852 ret = -EINVAL;
1853 break;
1854 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1855 dev_warn(&udev->dev,
1856 "ERROR: Incompatible device for evaluate context command.\n");
1857 ret = -ENODEV;
1858 break;
1859 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1860 /* Max Exit Latency too large error */
1861 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1862 ret = -EINVAL;
1863 break;
1864 case COMP_SUCCESS:
1865 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1866 "Successful evaluate context command");
1867 ret = 0;
1868 break;
1869 default:
1870 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1871 *cmd_status);
1872 ret = -EINVAL;
1873 break;
1874 }
1875 return ret;
1876 }
1877
1878 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1879 struct xhci_input_control_ctx *ctrl_ctx)
1880 {
1881 u32 valid_add_flags;
1882 u32 valid_drop_flags;
1883
1884 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1885 * (bit 1). The default control endpoint is added during the Address
1886 * Device command and is never removed until the slot is disabled.
1887 */
1888 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1889 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1890
1891 /* Use hweight32 to count the number of ones in the add flags, or
1892 * number of endpoints added. Don't count endpoints that are changed
1893 * (both added and dropped).
1894 */
1895 return hweight32(valid_add_flags) -
1896 hweight32(valid_add_flags & valid_drop_flags);
1897 }
1898
1899 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1900 struct xhci_input_control_ctx *ctrl_ctx)
1901 {
1902 u32 valid_add_flags;
1903 u32 valid_drop_flags;
1904
1905 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1906 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1907
1908 return hweight32(valid_drop_flags) -
1909 hweight32(valid_add_flags & valid_drop_flags);
1910 }
1911
1912 /*
1913 * We need to reserve the new number of endpoints before the configure endpoint
1914 * command completes. We can't subtract the dropped endpoints from the number
1915 * of active endpoints until the command completes because we can oversubscribe
1916 * the host in this case:
1917 *
1918 * - the first configure endpoint command drops more endpoints than it adds
1919 * - a second configure endpoint command that adds more endpoints is queued
1920 * - the first configure endpoint command fails, so the config is unchanged
1921 * - the second command may succeed, even though there isn't enough resources
1922 *
1923 * Must be called with xhci->lock held.
1924 */
1925 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1926 struct xhci_input_control_ctx *ctrl_ctx)
1927 {
1928 u32 added_eps;
1929
1930 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1931 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1932 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1933 "Not enough ep ctxs: "
1934 "%u active, need to add %u, limit is %u.",
1935 xhci->num_active_eps, added_eps,
1936 xhci->limit_active_eps);
1937 return -ENOMEM;
1938 }
1939 xhci->num_active_eps += added_eps;
1940 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1941 "Adding %u ep ctxs, %u now active.", added_eps,
1942 xhci->num_active_eps);
1943 return 0;
1944 }
1945
1946 /*
1947 * The configure endpoint was failed by the xHC for some other reason, so we
1948 * need to revert the resources that failed configuration would have used.
1949 *
1950 * Must be called with xhci->lock held.
1951 */
1952 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1953 struct xhci_input_control_ctx *ctrl_ctx)
1954 {
1955 u32 num_failed_eps;
1956
1957 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1958 xhci->num_active_eps -= num_failed_eps;
1959 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1960 "Removing %u failed ep ctxs, %u now active.",
1961 num_failed_eps,
1962 xhci->num_active_eps);
1963 }
1964
1965 /*
1966 * Now that the command has completed, clean up the active endpoint count by
1967 * subtracting out the endpoints that were dropped (but not changed).
1968 *
1969 * Must be called with xhci->lock held.
1970 */
1971 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1972 struct xhci_input_control_ctx *ctrl_ctx)
1973 {
1974 u32 num_dropped_eps;
1975
1976 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1977 xhci->num_active_eps -= num_dropped_eps;
1978 if (num_dropped_eps)
1979 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1980 "Removing %u dropped ep ctxs, %u now active.",
1981 num_dropped_eps,
1982 xhci->num_active_eps);
1983 }
1984
1985 static unsigned int xhci_get_block_size(struct usb_device *udev)
1986 {
1987 switch (udev->speed) {
1988 case USB_SPEED_LOW:
1989 case USB_SPEED_FULL:
1990 return FS_BLOCK;
1991 case USB_SPEED_HIGH:
1992 return HS_BLOCK;
1993 case USB_SPEED_SUPER:
1994 case USB_SPEED_SUPER_PLUS:
1995 return SS_BLOCK;
1996 case USB_SPEED_UNKNOWN:
1997 case USB_SPEED_WIRELESS:
1998 default:
1999 /* Should never happen */
2000 return 1;
2001 }
2002 }
2003
2004 static unsigned int
2005 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2006 {
2007 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2008 return LS_OVERHEAD;
2009 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2010 return FS_OVERHEAD;
2011 return HS_OVERHEAD;
2012 }
2013
2014 /* If we are changing a LS/FS device under a HS hub,
2015 * make sure (if we are activating a new TT) that the HS bus has enough
2016 * bandwidth for this new TT.
2017 */
2018 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2019 struct xhci_virt_device *virt_dev,
2020 int old_active_eps)
2021 {
2022 struct xhci_interval_bw_table *bw_table;
2023 struct xhci_tt_bw_info *tt_info;
2024
2025 /* Find the bandwidth table for the root port this TT is attached to. */
2026 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2027 tt_info = virt_dev->tt_info;
2028 /* If this TT already had active endpoints, the bandwidth for this TT
2029 * has already been added. Removing all periodic endpoints (and thus
2030 * making the TT enactive) will only decrease the bandwidth used.
2031 */
2032 if (old_active_eps)
2033 return 0;
2034 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2035 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2036 return -ENOMEM;
2037 return 0;
2038 }
2039 /* Not sure why we would have no new active endpoints...
2040 *
2041 * Maybe because of an Evaluate Context change for a hub update or a
2042 * control endpoint 0 max packet size change?
2043 * FIXME: skip the bandwidth calculation in that case.
2044 */
2045 return 0;
2046 }
2047
2048 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2049 struct xhci_virt_device *virt_dev)
2050 {
2051 unsigned int bw_reserved;
2052
2053 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2054 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2055 return -ENOMEM;
2056
2057 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2058 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2059 return -ENOMEM;
2060
2061 return 0;
2062 }
2063
2064 /*
2065 * This algorithm is a very conservative estimate of the worst-case scheduling
2066 * scenario for any one interval. The hardware dynamically schedules the
2067 * packets, so we can't tell which microframe could be the limiting factor in
2068 * the bandwidth scheduling. This only takes into account periodic endpoints.
2069 *
2070 * Obviously, we can't solve an NP complete problem to find the minimum worst
2071 * case scenario. Instead, we come up with an estimate that is no less than
2072 * the worst case bandwidth used for any one microframe, but may be an
2073 * over-estimate.
2074 *
2075 * We walk the requirements for each endpoint by interval, starting with the
2076 * smallest interval, and place packets in the schedule where there is only one
2077 * possible way to schedule packets for that interval. In order to simplify
2078 * this algorithm, we record the largest max packet size for each interval, and
2079 * assume all packets will be that size.
2080 *
2081 * For interval 0, we obviously must schedule all packets for each interval.
2082 * The bandwidth for interval 0 is just the amount of data to be transmitted
2083 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2084 * the number of packets).
2085 *
2086 * For interval 1, we have two possible microframes to schedule those packets
2087 * in. For this algorithm, if we can schedule the same number of packets for
2088 * each possible scheduling opportunity (each microframe), we will do so. The
2089 * remaining number of packets will be saved to be transmitted in the gaps in
2090 * the next interval's scheduling sequence.
2091 *
2092 * As we move those remaining packets to be scheduled with interval 2 packets,
2093 * we have to double the number of remaining packets to transmit. This is
2094 * because the intervals are actually powers of 2, and we would be transmitting
2095 * the previous interval's packets twice in this interval. We also have to be
2096 * sure that when we look at the largest max packet size for this interval, we
2097 * also look at the largest max packet size for the remaining packets and take
2098 * the greater of the two.
2099 *
2100 * The algorithm continues to evenly distribute packets in each scheduling
2101 * opportunity, and push the remaining packets out, until we get to the last
2102 * interval. Then those packets and their associated overhead are just added
2103 * to the bandwidth used.
2104 */
2105 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2106 struct xhci_virt_device *virt_dev,
2107 int old_active_eps)
2108 {
2109 unsigned int bw_reserved;
2110 unsigned int max_bandwidth;
2111 unsigned int bw_used;
2112 unsigned int block_size;
2113 struct xhci_interval_bw_table *bw_table;
2114 unsigned int packet_size = 0;
2115 unsigned int overhead = 0;
2116 unsigned int packets_transmitted = 0;
2117 unsigned int packets_remaining = 0;
2118 unsigned int i;
2119
2120 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2121 return xhci_check_ss_bw(xhci, virt_dev);
2122
2123 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2124 max_bandwidth = HS_BW_LIMIT;
2125 /* Convert percent of bus BW reserved to blocks reserved */
2126 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2127 } else {
2128 max_bandwidth = FS_BW_LIMIT;
2129 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2130 }
2131
2132 bw_table = virt_dev->bw_table;
2133 /* We need to translate the max packet size and max ESIT payloads into
2134 * the units the hardware uses.
2135 */
2136 block_size = xhci_get_block_size(virt_dev->udev);
2137
2138 /* If we are manipulating a LS/FS device under a HS hub, double check
2139 * that the HS bus has enough bandwidth if we are activing a new TT.
2140 */
2141 if (virt_dev->tt_info) {
2142 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143 "Recalculating BW for rootport %u",
2144 virt_dev->real_port);
2145 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2146 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2147 "newly activated TT.\n");
2148 return -ENOMEM;
2149 }
2150 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2151 "Recalculating BW for TT slot %u port %u",
2152 virt_dev->tt_info->slot_id,
2153 virt_dev->tt_info->ttport);
2154 } else {
2155 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2156 "Recalculating BW for rootport %u",
2157 virt_dev->real_port);
2158 }
2159
2160 /* Add in how much bandwidth will be used for interval zero, or the
2161 * rounded max ESIT payload + number of packets * largest overhead.
2162 */
2163 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2164 bw_table->interval_bw[0].num_packets *
2165 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2166
2167 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2168 unsigned int bw_added;
2169 unsigned int largest_mps;
2170 unsigned int interval_overhead;
2171
2172 /*
2173 * How many packets could we transmit in this interval?
2174 * If packets didn't fit in the previous interval, we will need
2175 * to transmit that many packets twice within this interval.
2176 */
2177 packets_remaining = 2 * packets_remaining +
2178 bw_table->interval_bw[i].num_packets;
2179
2180 /* Find the largest max packet size of this or the previous
2181 * interval.
2182 */
2183 if (list_empty(&bw_table->interval_bw[i].endpoints))
2184 largest_mps = 0;
2185 else {
2186 struct xhci_virt_ep *virt_ep;
2187 struct list_head *ep_entry;
2188
2189 ep_entry = bw_table->interval_bw[i].endpoints.next;
2190 virt_ep = list_entry(ep_entry,
2191 struct xhci_virt_ep, bw_endpoint_list);
2192 /* Convert to blocks, rounding up */
2193 largest_mps = DIV_ROUND_UP(
2194 virt_ep->bw_info.max_packet_size,
2195 block_size);
2196 }
2197 if (largest_mps > packet_size)
2198 packet_size = largest_mps;
2199
2200 /* Use the larger overhead of this or the previous interval. */
2201 interval_overhead = xhci_get_largest_overhead(
2202 &bw_table->interval_bw[i]);
2203 if (interval_overhead > overhead)
2204 overhead = interval_overhead;
2205
2206 /* How many packets can we evenly distribute across
2207 * (1 << (i + 1)) possible scheduling opportunities?
2208 */
2209 packets_transmitted = packets_remaining >> (i + 1);
2210
2211 /* Add in the bandwidth used for those scheduled packets */
2212 bw_added = packets_transmitted * (overhead + packet_size);
2213
2214 /* How many packets do we have remaining to transmit? */
2215 packets_remaining = packets_remaining % (1 << (i + 1));
2216
2217 /* What largest max packet size should those packets have? */
2218 /* If we've transmitted all packets, don't carry over the
2219 * largest packet size.
2220 */
2221 if (packets_remaining == 0) {
2222 packet_size = 0;
2223 overhead = 0;
2224 } else if (packets_transmitted > 0) {
2225 /* Otherwise if we do have remaining packets, and we've
2226 * scheduled some packets in this interval, take the
2227 * largest max packet size from endpoints with this
2228 * interval.
2229 */
2230 packet_size = largest_mps;
2231 overhead = interval_overhead;
2232 }
2233 /* Otherwise carry over packet_size and overhead from the last
2234 * time we had a remainder.
2235 */
2236 bw_used += bw_added;
2237 if (bw_used > max_bandwidth) {
2238 xhci_warn(xhci, "Not enough bandwidth. "
2239 "Proposed: %u, Max: %u\n",
2240 bw_used, max_bandwidth);
2241 return -ENOMEM;
2242 }
2243 }
2244 /*
2245 * Ok, we know we have some packets left over after even-handedly
2246 * scheduling interval 15. We don't know which microframes they will
2247 * fit into, so we over-schedule and say they will be scheduled every
2248 * microframe.
2249 */
2250 if (packets_remaining > 0)
2251 bw_used += overhead + packet_size;
2252
2253 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2254 unsigned int port_index = virt_dev->real_port - 1;
2255
2256 /* OK, we're manipulating a HS device attached to a
2257 * root port bandwidth domain. Include the number of active TTs
2258 * in the bandwidth used.
2259 */
2260 bw_used += TT_HS_OVERHEAD *
2261 xhci->rh_bw[port_index].num_active_tts;
2262 }
2263
2264 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2265 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2266 "Available: %u " "percent",
2267 bw_used, max_bandwidth, bw_reserved,
2268 (max_bandwidth - bw_used - bw_reserved) * 100 /
2269 max_bandwidth);
2270
2271 bw_used += bw_reserved;
2272 if (bw_used > max_bandwidth) {
2273 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2274 bw_used, max_bandwidth);
2275 return -ENOMEM;
2276 }
2277
2278 bw_table->bw_used = bw_used;
2279 return 0;
2280 }
2281
2282 static bool xhci_is_async_ep(unsigned int ep_type)
2283 {
2284 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2285 ep_type != ISOC_IN_EP &&
2286 ep_type != INT_IN_EP);
2287 }
2288
2289 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2290 {
2291 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2292 }
2293
2294 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2295 {
2296 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2297
2298 if (ep_bw->ep_interval == 0)
2299 return SS_OVERHEAD_BURST +
2300 (ep_bw->mult * ep_bw->num_packets *
2301 (SS_OVERHEAD + mps));
2302 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2303 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2304 1 << ep_bw->ep_interval);
2305
2306 }
2307
2308 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2309 struct xhci_bw_info *ep_bw,
2310 struct xhci_interval_bw_table *bw_table,
2311 struct usb_device *udev,
2312 struct xhci_virt_ep *virt_ep,
2313 struct xhci_tt_bw_info *tt_info)
2314 {
2315 struct xhci_interval_bw *interval_bw;
2316 int normalized_interval;
2317
2318 if (xhci_is_async_ep(ep_bw->type))
2319 return;
2320
2321 if (udev->speed >= USB_SPEED_SUPER) {
2322 if (xhci_is_sync_in_ep(ep_bw->type))
2323 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2324 xhci_get_ss_bw_consumed(ep_bw);
2325 else
2326 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2327 xhci_get_ss_bw_consumed(ep_bw);
2328 return;
2329 }
2330
2331 /* SuperSpeed endpoints never get added to intervals in the table, so
2332 * this check is only valid for HS/FS/LS devices.
2333 */
2334 if (list_empty(&virt_ep->bw_endpoint_list))
2335 return;
2336 /* For LS/FS devices, we need to translate the interval expressed in
2337 * microframes to frames.
2338 */
2339 if (udev->speed == USB_SPEED_HIGH)
2340 normalized_interval = ep_bw->ep_interval;
2341 else
2342 normalized_interval = ep_bw->ep_interval - 3;
2343
2344 if (normalized_interval == 0)
2345 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2346 interval_bw = &bw_table->interval_bw[normalized_interval];
2347 interval_bw->num_packets -= ep_bw->num_packets;
2348 switch (udev->speed) {
2349 case USB_SPEED_LOW:
2350 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2351 break;
2352 case USB_SPEED_FULL:
2353 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2354 break;
2355 case USB_SPEED_HIGH:
2356 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2357 break;
2358 case USB_SPEED_SUPER:
2359 case USB_SPEED_SUPER_PLUS:
2360 case USB_SPEED_UNKNOWN:
2361 case USB_SPEED_WIRELESS:
2362 /* Should never happen because only LS/FS/HS endpoints will get
2363 * added to the endpoint list.
2364 */
2365 return;
2366 }
2367 if (tt_info)
2368 tt_info->active_eps -= 1;
2369 list_del_init(&virt_ep->bw_endpoint_list);
2370 }
2371
2372 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2373 struct xhci_bw_info *ep_bw,
2374 struct xhci_interval_bw_table *bw_table,
2375 struct usb_device *udev,
2376 struct xhci_virt_ep *virt_ep,
2377 struct xhci_tt_bw_info *tt_info)
2378 {
2379 struct xhci_interval_bw *interval_bw;
2380 struct xhci_virt_ep *smaller_ep;
2381 int normalized_interval;
2382
2383 if (xhci_is_async_ep(ep_bw->type))
2384 return;
2385
2386 if (udev->speed == USB_SPEED_SUPER) {
2387 if (xhci_is_sync_in_ep(ep_bw->type))
2388 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2389 xhci_get_ss_bw_consumed(ep_bw);
2390 else
2391 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2392 xhci_get_ss_bw_consumed(ep_bw);
2393 return;
2394 }
2395
2396 /* For LS/FS devices, we need to translate the interval expressed in
2397 * microframes to frames.
2398 */
2399 if (udev->speed == USB_SPEED_HIGH)
2400 normalized_interval = ep_bw->ep_interval;
2401 else
2402 normalized_interval = ep_bw->ep_interval - 3;
2403
2404 if (normalized_interval == 0)
2405 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2406 interval_bw = &bw_table->interval_bw[normalized_interval];
2407 interval_bw->num_packets += ep_bw->num_packets;
2408 switch (udev->speed) {
2409 case USB_SPEED_LOW:
2410 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2411 break;
2412 case USB_SPEED_FULL:
2413 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2414 break;
2415 case USB_SPEED_HIGH:
2416 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2417 break;
2418 case USB_SPEED_SUPER:
2419 case USB_SPEED_SUPER_PLUS:
2420 case USB_SPEED_UNKNOWN:
2421 case USB_SPEED_WIRELESS:
2422 /* Should never happen because only LS/FS/HS endpoints will get
2423 * added to the endpoint list.
2424 */
2425 return;
2426 }
2427
2428 if (tt_info)
2429 tt_info->active_eps += 1;
2430 /* Insert the endpoint into the list, largest max packet size first. */
2431 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2432 bw_endpoint_list) {
2433 if (ep_bw->max_packet_size >=
2434 smaller_ep->bw_info.max_packet_size) {
2435 /* Add the new ep before the smaller endpoint */
2436 list_add_tail(&virt_ep->bw_endpoint_list,
2437 &smaller_ep->bw_endpoint_list);
2438 return;
2439 }
2440 }
2441 /* Add the new endpoint at the end of the list. */
2442 list_add_tail(&virt_ep->bw_endpoint_list,
2443 &interval_bw->endpoints);
2444 }
2445
2446 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2447 struct xhci_virt_device *virt_dev,
2448 int old_active_eps)
2449 {
2450 struct xhci_root_port_bw_info *rh_bw_info;
2451 if (!virt_dev->tt_info)
2452 return;
2453
2454 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2455 if (old_active_eps == 0 &&
2456 virt_dev->tt_info->active_eps != 0) {
2457 rh_bw_info->num_active_tts += 1;
2458 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2459 } else if (old_active_eps != 0 &&
2460 virt_dev->tt_info->active_eps == 0) {
2461 rh_bw_info->num_active_tts -= 1;
2462 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2463 }
2464 }
2465
2466 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2467 struct xhci_virt_device *virt_dev,
2468 struct xhci_container_ctx *in_ctx)
2469 {
2470 struct xhci_bw_info ep_bw_info[31];
2471 int i;
2472 struct xhci_input_control_ctx *ctrl_ctx;
2473 int old_active_eps = 0;
2474
2475 if (virt_dev->tt_info)
2476 old_active_eps = virt_dev->tt_info->active_eps;
2477
2478 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2479 if (!ctrl_ctx) {
2480 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2481 __func__);
2482 return -ENOMEM;
2483 }
2484
2485 for (i = 0; i < 31; i++) {
2486 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2487 continue;
2488
2489 /* Make a copy of the BW info in case we need to revert this */
2490 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2491 sizeof(ep_bw_info[i]));
2492 /* Drop the endpoint from the interval table if the endpoint is
2493 * being dropped or changed.
2494 */
2495 if (EP_IS_DROPPED(ctrl_ctx, i))
2496 xhci_drop_ep_from_interval_table(xhci,
2497 &virt_dev->eps[i].bw_info,
2498 virt_dev->bw_table,
2499 virt_dev->udev,
2500 &virt_dev->eps[i],
2501 virt_dev->tt_info);
2502 }
2503 /* Overwrite the information stored in the endpoints' bw_info */
2504 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2505 for (i = 0; i < 31; i++) {
2506 /* Add any changed or added endpoints to the interval table */
2507 if (EP_IS_ADDED(ctrl_ctx, i))
2508 xhci_add_ep_to_interval_table(xhci,
2509 &virt_dev->eps[i].bw_info,
2510 virt_dev->bw_table,
2511 virt_dev->udev,
2512 &virt_dev->eps[i],
2513 virt_dev->tt_info);
2514 }
2515
2516 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2517 /* Ok, this fits in the bandwidth we have.
2518 * Update the number of active TTs.
2519 */
2520 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2521 return 0;
2522 }
2523
2524 /* We don't have enough bandwidth for this, revert the stored info. */
2525 for (i = 0; i < 31; i++) {
2526 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2527 continue;
2528
2529 /* Drop the new copies of any added or changed endpoints from
2530 * the interval table.
2531 */
2532 if (EP_IS_ADDED(ctrl_ctx, i)) {
2533 xhci_drop_ep_from_interval_table(xhci,
2534 &virt_dev->eps[i].bw_info,
2535 virt_dev->bw_table,
2536 virt_dev->udev,
2537 &virt_dev->eps[i],
2538 virt_dev->tt_info);
2539 }
2540 /* Revert the endpoint back to its old information */
2541 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2542 sizeof(ep_bw_info[i]));
2543 /* Add any changed or dropped endpoints back into the table */
2544 if (EP_IS_DROPPED(ctrl_ctx, i))
2545 xhci_add_ep_to_interval_table(xhci,
2546 &virt_dev->eps[i].bw_info,
2547 virt_dev->bw_table,
2548 virt_dev->udev,
2549 &virt_dev->eps[i],
2550 virt_dev->tt_info);
2551 }
2552 return -ENOMEM;
2553 }
2554
2555
2556 /* Issue a configure endpoint command or evaluate context command
2557 * and wait for it to finish.
2558 */
2559 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2560 struct usb_device *udev,
2561 struct xhci_command *command,
2562 bool ctx_change, bool must_succeed)
2563 {
2564 int ret;
2565 unsigned long flags;
2566 struct xhci_input_control_ctx *ctrl_ctx;
2567 struct xhci_virt_device *virt_dev;
2568 struct xhci_slot_ctx *slot_ctx;
2569
2570 if (!command)
2571 return -EINVAL;
2572
2573 spin_lock_irqsave(&xhci->lock, flags);
2574
2575 if (xhci->xhc_state & XHCI_STATE_DYING) {
2576 spin_unlock_irqrestore(&xhci->lock, flags);
2577 return -ESHUTDOWN;
2578 }
2579
2580 virt_dev = xhci->devs[udev->slot_id];
2581
2582 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2583 if (!ctrl_ctx) {
2584 spin_unlock_irqrestore(&xhci->lock, flags);
2585 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2586 __func__);
2587 return -ENOMEM;
2588 }
2589
2590 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2591 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2592 spin_unlock_irqrestore(&xhci->lock, flags);
2593 xhci_warn(xhci, "Not enough host resources, "
2594 "active endpoint contexts = %u\n",
2595 xhci->num_active_eps);
2596 return -ENOMEM;
2597 }
2598 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2599 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2600 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2601 xhci_free_host_resources(xhci, ctrl_ctx);
2602 spin_unlock_irqrestore(&xhci->lock, flags);
2603 xhci_warn(xhci, "Not enough bandwidth\n");
2604 return -ENOMEM;
2605 }
2606
2607 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2608 trace_xhci_configure_endpoint(slot_ctx);
2609
2610 if (!ctx_change)
2611 ret = xhci_queue_configure_endpoint(xhci, command,
2612 command->in_ctx->dma,
2613 udev->slot_id, must_succeed);
2614 else
2615 ret = xhci_queue_evaluate_context(xhci, command,
2616 command->in_ctx->dma,
2617 udev->slot_id, must_succeed);
2618 if (ret < 0) {
2619 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2620 xhci_free_host_resources(xhci, ctrl_ctx);
2621 spin_unlock_irqrestore(&xhci->lock, flags);
2622 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2623 "FIXME allocate a new ring segment");
2624 return -ENOMEM;
2625 }
2626 xhci_ring_cmd_db(xhci);
2627 spin_unlock_irqrestore(&xhci->lock, flags);
2628
2629 /* Wait for the configure endpoint command to complete */
2630 wait_for_completion(command->completion);
2631
2632 if (!ctx_change)
2633 ret = xhci_configure_endpoint_result(xhci, udev,
2634 &command->status);
2635 else
2636 ret = xhci_evaluate_context_result(xhci, udev,
2637 &command->status);
2638
2639 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2640 spin_lock_irqsave(&xhci->lock, flags);
2641 /* If the command failed, remove the reserved resources.
2642 * Otherwise, clean up the estimate to include dropped eps.
2643 */
2644 if (ret)
2645 xhci_free_host_resources(xhci, ctrl_ctx);
2646 else
2647 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2648 spin_unlock_irqrestore(&xhci->lock, flags);
2649 }
2650 return ret;
2651 }
2652
2653 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2654 struct xhci_virt_device *vdev, int i)
2655 {
2656 struct xhci_virt_ep *ep = &vdev->eps[i];
2657
2658 if (ep->ep_state & EP_HAS_STREAMS) {
2659 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2660 xhci_get_endpoint_address(i));
2661 xhci_free_stream_info(xhci, ep->stream_info);
2662 ep->stream_info = NULL;
2663 ep->ep_state &= ~EP_HAS_STREAMS;
2664 }
2665 }
2666
2667 /* Called after one or more calls to xhci_add_endpoint() or
2668 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2669 * to call xhci_reset_bandwidth().
2670 *
2671 * Since we are in the middle of changing either configuration or
2672 * installing a new alt setting, the USB core won't allow URBs to be
2673 * enqueued for any endpoint on the old config or interface. Nothing
2674 * else should be touching the xhci->devs[slot_id] structure, so we
2675 * don't need to take the xhci->lock for manipulating that.
2676 */
2677 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2678 {
2679 int i;
2680 int ret = 0;
2681 struct xhci_hcd *xhci;
2682 struct xhci_virt_device *virt_dev;
2683 struct xhci_input_control_ctx *ctrl_ctx;
2684 struct xhci_slot_ctx *slot_ctx;
2685 struct xhci_command *command;
2686
2687 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2688 if (ret <= 0)
2689 return ret;
2690 xhci = hcd_to_xhci(hcd);
2691 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2692 (xhci->xhc_state & XHCI_STATE_REMOVING))
2693 return -ENODEV;
2694
2695 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2696 virt_dev = xhci->devs[udev->slot_id];
2697
2698 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2699 if (!command)
2700 return -ENOMEM;
2701
2702 command->in_ctx = virt_dev->in_ctx;
2703
2704 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2705 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2706 if (!ctrl_ctx) {
2707 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2708 __func__);
2709 ret = -ENOMEM;
2710 goto command_cleanup;
2711 }
2712 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2713 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2714 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2715
2716 /* Don't issue the command if there's no endpoints to update. */
2717 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2718 ctrl_ctx->drop_flags == 0) {
2719 ret = 0;
2720 goto command_cleanup;
2721 }
2722 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2723 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2724 for (i = 31; i >= 1; i--) {
2725 __le32 le32 = cpu_to_le32(BIT(i));
2726
2727 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2728 || (ctrl_ctx->add_flags & le32) || i == 1) {
2729 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2730 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2731 break;
2732 }
2733 }
2734
2735 ret = xhci_configure_endpoint(xhci, udev, command,
2736 false, false);
2737 if (ret)
2738 /* Callee should call reset_bandwidth() */
2739 goto command_cleanup;
2740
2741 /* Free any rings that were dropped, but not changed. */
2742 for (i = 1; i < 31; i++) {
2743 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2744 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2745 xhci_free_endpoint_ring(xhci, virt_dev, i);
2746 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2747 }
2748 }
2749 xhci_zero_in_ctx(xhci, virt_dev);
2750 /*
2751 * Install any rings for completely new endpoints or changed endpoints,
2752 * and free any old rings from changed endpoints.
2753 */
2754 for (i = 1; i < 31; i++) {
2755 if (!virt_dev->eps[i].new_ring)
2756 continue;
2757 /* Only free the old ring if it exists.
2758 * It may not if this is the first add of an endpoint.
2759 */
2760 if (virt_dev->eps[i].ring) {
2761 xhci_free_endpoint_ring(xhci, virt_dev, i);
2762 }
2763 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2764 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2765 virt_dev->eps[i].new_ring = NULL;
2766 }
2767 command_cleanup:
2768 kfree(command->completion);
2769 kfree(command);
2770
2771 return ret;
2772 }
2773
2774 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2775 {
2776 struct xhci_hcd *xhci;
2777 struct xhci_virt_device *virt_dev;
2778 int i, ret;
2779
2780 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2781 if (ret <= 0)
2782 return;
2783 xhci = hcd_to_xhci(hcd);
2784
2785 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2786 virt_dev = xhci->devs[udev->slot_id];
2787 /* Free any rings allocated for added endpoints */
2788 for (i = 0; i < 31; i++) {
2789 if (virt_dev->eps[i].new_ring) {
2790 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2791 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2792 virt_dev->eps[i].new_ring = NULL;
2793 }
2794 }
2795 xhci_zero_in_ctx(xhci, virt_dev);
2796 }
2797
2798 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2799 struct xhci_container_ctx *in_ctx,
2800 struct xhci_container_ctx *out_ctx,
2801 struct xhci_input_control_ctx *ctrl_ctx,
2802 u32 add_flags, u32 drop_flags)
2803 {
2804 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2805 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2806 xhci_slot_copy(xhci, in_ctx, out_ctx);
2807 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2808 }
2809
2810 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2811 unsigned int slot_id, unsigned int ep_index,
2812 struct xhci_dequeue_state *deq_state)
2813 {
2814 struct xhci_input_control_ctx *ctrl_ctx;
2815 struct xhci_container_ctx *in_ctx;
2816 struct xhci_ep_ctx *ep_ctx;
2817 u32 added_ctxs;
2818 dma_addr_t addr;
2819
2820 in_ctx = xhci->devs[slot_id]->in_ctx;
2821 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2822 if (!ctrl_ctx) {
2823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2824 __func__);
2825 return;
2826 }
2827
2828 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2829 xhci->devs[slot_id]->out_ctx, ep_index);
2830 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2831 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2832 deq_state->new_deq_ptr);
2833 if (addr == 0) {
2834 xhci_warn(xhci, "WARN Cannot submit config ep after "
2835 "reset ep command\n");
2836 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2837 deq_state->new_deq_seg,
2838 deq_state->new_deq_ptr);
2839 return;
2840 }
2841 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2842
2843 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2844 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2845 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2846 added_ctxs, added_ctxs);
2847 }
2848
2849 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2850 unsigned int stream_id, struct xhci_td *td)
2851 {
2852 struct xhci_dequeue_state deq_state;
2853 struct xhci_virt_ep *ep;
2854 struct usb_device *udev = td->urb->dev;
2855
2856 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2857 "Cleaning up stalled endpoint ring");
2858 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2859 /* We need to move the HW's dequeue pointer past this TD,
2860 * or it will attempt to resend it on the next doorbell ring.
2861 */
2862 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2863 ep_index, stream_id, td, &deq_state);
2864
2865 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2866 return;
2867
2868 /* HW with the reset endpoint quirk will use the saved dequeue state to
2869 * issue a configure endpoint command later.
2870 */
2871 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2872 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2873 "Queueing new dequeue state");
2874 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2875 ep_index, &deq_state);
2876 } else {
2877 /* Better hope no one uses the input context between now and the
2878 * reset endpoint completion!
2879 * XXX: No idea how this hardware will react when stream rings
2880 * are enabled.
2881 */
2882 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2883 "Setting up input context for "
2884 "configure endpoint command");
2885 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2886 ep_index, &deq_state);
2887 }
2888 }
2889
2890 /* Called when clearing halted device. The core should have sent the control
2891 * message to clear the device halt condition. The host side of the halt should
2892 * already be cleared with a reset endpoint command issued when the STALL tx
2893 * event was received.
2894 *
2895 * Context: in_interrupt
2896 */
2897
2898 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2899 struct usb_host_endpoint *ep)
2900 {
2901 struct xhci_hcd *xhci;
2902
2903 xhci = hcd_to_xhci(hcd);
2904
2905 /*
2906 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2907 * The Reset Endpoint Command may only be issued to endpoints in the
2908 * Halted state. If software wishes reset the Data Toggle or Sequence
2909 * Number of an endpoint that isn't in the Halted state, then software
2910 * may issue a Configure Endpoint Command with the Drop and Add bits set
2911 * for the target endpoint. that is in the Stopped state.
2912 */
2913
2914 /* For now just print debug to follow the situation */
2915 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2916 ep->desc.bEndpointAddress);
2917 }
2918
2919 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2920 struct usb_device *udev, struct usb_host_endpoint *ep,
2921 unsigned int slot_id)
2922 {
2923 int ret;
2924 unsigned int ep_index;
2925 unsigned int ep_state;
2926
2927 if (!ep)
2928 return -EINVAL;
2929 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2930 if (ret <= 0)
2931 return -EINVAL;
2932 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2933 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2934 " descriptor for ep 0x%x does not support streams\n",
2935 ep->desc.bEndpointAddress);
2936 return -EINVAL;
2937 }
2938
2939 ep_index = xhci_get_endpoint_index(&ep->desc);
2940 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2941 if (ep_state & EP_HAS_STREAMS ||
2942 ep_state & EP_GETTING_STREAMS) {
2943 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2944 "already has streams set up.\n",
2945 ep->desc.bEndpointAddress);
2946 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2947 "dynamic stream context array reallocation.\n");
2948 return -EINVAL;
2949 }
2950 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2951 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2952 "endpoint 0x%x; URBs are pending.\n",
2953 ep->desc.bEndpointAddress);
2954 return -EINVAL;
2955 }
2956 return 0;
2957 }
2958
2959 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2960 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2961 {
2962 unsigned int max_streams;
2963
2964 /* The stream context array size must be a power of two */
2965 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2966 /*
2967 * Find out how many primary stream array entries the host controller
2968 * supports. Later we may use secondary stream arrays (similar to 2nd
2969 * level page entries), but that's an optional feature for xHCI host
2970 * controllers. xHCs must support at least 4 stream IDs.
2971 */
2972 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2973 if (*num_stream_ctxs > max_streams) {
2974 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2975 max_streams);
2976 *num_stream_ctxs = max_streams;
2977 *num_streams = max_streams;
2978 }
2979 }
2980
2981 /* Returns an error code if one of the endpoint already has streams.
2982 * This does not change any data structures, it only checks and gathers
2983 * information.
2984 */
2985 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2986 struct usb_device *udev,
2987 struct usb_host_endpoint **eps, unsigned int num_eps,
2988 unsigned int *num_streams, u32 *changed_ep_bitmask)
2989 {
2990 unsigned int max_streams;
2991 unsigned int endpoint_flag;
2992 int i;
2993 int ret;
2994
2995 for (i = 0; i < num_eps; i++) {
2996 ret = xhci_check_streams_endpoint(xhci, udev,
2997 eps[i], udev->slot_id);
2998 if (ret < 0)
2999 return ret;
3000
3001 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3002 if (max_streams < (*num_streams - 1)) {
3003 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3004 eps[i]->desc.bEndpointAddress,
3005 max_streams);
3006 *num_streams = max_streams+1;
3007 }
3008
3009 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3010 if (*changed_ep_bitmask & endpoint_flag)
3011 return -EINVAL;
3012 *changed_ep_bitmask |= endpoint_flag;
3013 }
3014 return 0;
3015 }
3016
3017 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3018 struct usb_device *udev,
3019 struct usb_host_endpoint **eps, unsigned int num_eps)
3020 {
3021 u32 changed_ep_bitmask = 0;
3022 unsigned int slot_id;
3023 unsigned int ep_index;
3024 unsigned int ep_state;
3025 int i;
3026
3027 slot_id = udev->slot_id;
3028 if (!xhci->devs[slot_id])
3029 return 0;
3030
3031 for (i = 0; i < num_eps; i++) {
3032 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3033 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3034 /* Are streams already being freed for the endpoint? */
3035 if (ep_state & EP_GETTING_NO_STREAMS) {
3036 xhci_warn(xhci, "WARN Can't disable streams for "
3037 "endpoint 0x%x, "
3038 "streams are being disabled already\n",
3039 eps[i]->desc.bEndpointAddress);
3040 return 0;
3041 }
3042 /* Are there actually any streams to free? */
3043 if (!(ep_state & EP_HAS_STREAMS) &&
3044 !(ep_state & EP_GETTING_STREAMS)) {
3045 xhci_warn(xhci, "WARN Can't disable streams for "
3046 "endpoint 0x%x, "
3047 "streams are already disabled!\n",
3048 eps[i]->desc.bEndpointAddress);
3049 xhci_warn(xhci, "WARN xhci_free_streams() called "
3050 "with non-streams endpoint\n");
3051 return 0;
3052 }
3053 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3054 }
3055 return changed_ep_bitmask;
3056 }
3057
3058 /*
3059 * The USB device drivers use this function (through the HCD interface in USB
3060 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3061 * coordinate mass storage command queueing across multiple endpoints (basically
3062 * a stream ID == a task ID).
3063 *
3064 * Setting up streams involves allocating the same size stream context array
3065 * for each endpoint and issuing a configure endpoint command for all endpoints.
3066 *
3067 * Don't allow the call to succeed if one endpoint only supports one stream
3068 * (which means it doesn't support streams at all).
3069 *
3070 * Drivers may get less stream IDs than they asked for, if the host controller
3071 * hardware or endpoints claim they can't support the number of requested
3072 * stream IDs.
3073 */
3074 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3075 struct usb_host_endpoint **eps, unsigned int num_eps,
3076 unsigned int num_streams, gfp_t mem_flags)
3077 {
3078 int i, ret;
3079 struct xhci_hcd *xhci;
3080 struct xhci_virt_device *vdev;
3081 struct xhci_command *config_cmd;
3082 struct xhci_input_control_ctx *ctrl_ctx;
3083 unsigned int ep_index;
3084 unsigned int num_stream_ctxs;
3085 unsigned int max_packet;
3086 unsigned long flags;
3087 u32 changed_ep_bitmask = 0;
3088
3089 if (!eps)
3090 return -EINVAL;
3091
3092 /* Add one to the number of streams requested to account for
3093 * stream 0 that is reserved for xHCI usage.
3094 */
3095 num_streams += 1;
3096 xhci = hcd_to_xhci(hcd);
3097 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3098 num_streams);
3099
3100 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3101 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3102 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3103 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3104 return -ENOSYS;
3105 }
3106
3107 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3108 if (!config_cmd)
3109 return -ENOMEM;
3110
3111 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3112 if (!ctrl_ctx) {
3113 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3114 __func__);
3115 xhci_free_command(xhci, config_cmd);
3116 return -ENOMEM;
3117 }
3118
3119 /* Check to make sure all endpoints are not already configured for
3120 * streams. While we're at it, find the maximum number of streams that
3121 * all the endpoints will support and check for duplicate endpoints.
3122 */
3123 spin_lock_irqsave(&xhci->lock, flags);
3124 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3125 num_eps, &num_streams, &changed_ep_bitmask);
3126 if (ret < 0) {
3127 xhci_free_command(xhci, config_cmd);
3128 spin_unlock_irqrestore(&xhci->lock, flags);
3129 return ret;
3130 }
3131 if (num_streams <= 1) {
3132 xhci_warn(xhci, "WARN: endpoints can't handle "
3133 "more than one stream.\n");
3134 xhci_free_command(xhci, config_cmd);
3135 spin_unlock_irqrestore(&xhci->lock, flags);
3136 return -EINVAL;
3137 }
3138 vdev = xhci->devs[udev->slot_id];
3139 /* Mark each endpoint as being in transition, so
3140 * xhci_urb_enqueue() will reject all URBs.
3141 */
3142 for (i = 0; i < num_eps; i++) {
3143 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3144 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3145 }
3146 spin_unlock_irqrestore(&xhci->lock, flags);
3147
3148 /* Setup internal data structures and allocate HW data structures for
3149 * streams (but don't install the HW structures in the input context
3150 * until we're sure all memory allocation succeeded).
3151 */
3152 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3153 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3154 num_stream_ctxs, num_streams);
3155
3156 for (i = 0; i < num_eps; i++) {
3157 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3158 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3159 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3160 num_stream_ctxs,
3161 num_streams,
3162 max_packet, mem_flags);
3163 if (!vdev->eps[ep_index].stream_info)
3164 goto cleanup;
3165 /* Set maxPstreams in endpoint context and update deq ptr to
3166 * point to stream context array. FIXME
3167 */
3168 }
3169
3170 /* Set up the input context for a configure endpoint command. */
3171 for (i = 0; i < num_eps; i++) {
3172 struct xhci_ep_ctx *ep_ctx;
3173
3174 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3175 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3176
3177 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3178 vdev->out_ctx, ep_index);
3179 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3180 vdev->eps[ep_index].stream_info);
3181 }
3182 /* Tell the HW to drop its old copy of the endpoint context info
3183 * and add the updated copy from the input context.
3184 */
3185 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3186 vdev->out_ctx, ctrl_ctx,
3187 changed_ep_bitmask, changed_ep_bitmask);
3188
3189 /* Issue and wait for the configure endpoint command */
3190 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3191 false, false);
3192
3193 /* xHC rejected the configure endpoint command for some reason, so we
3194 * leave the old ring intact and free our internal streams data
3195 * structure.
3196 */
3197 if (ret < 0)
3198 goto cleanup;
3199
3200 spin_lock_irqsave(&xhci->lock, flags);
3201 for (i = 0; i < num_eps; i++) {
3202 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3204 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3205 udev->slot_id, ep_index);
3206 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3207 }
3208 xhci_free_command(xhci, config_cmd);
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3210
3211 /* Subtract 1 for stream 0, which drivers can't use */
3212 return num_streams - 1;
3213
3214 cleanup:
3215 /* If it didn't work, free the streams! */
3216 for (i = 0; i < num_eps; i++) {
3217 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3219 vdev->eps[ep_index].stream_info = NULL;
3220 /* FIXME Unset maxPstreams in endpoint context and
3221 * update deq ptr to point to normal string ring.
3222 */
3223 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3224 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3225 xhci_endpoint_zero(xhci, vdev, eps[i]);
3226 }
3227 xhci_free_command(xhci, config_cmd);
3228 return -ENOMEM;
3229 }
3230
3231 /* Transition the endpoint from using streams to being a "normal" endpoint
3232 * without streams.
3233 *
3234 * Modify the endpoint context state, submit a configure endpoint command,
3235 * and free all endpoint rings for streams if that completes successfully.
3236 */
3237 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3238 struct usb_host_endpoint **eps, unsigned int num_eps,
3239 gfp_t mem_flags)
3240 {
3241 int i, ret;
3242 struct xhci_hcd *xhci;
3243 struct xhci_virt_device *vdev;
3244 struct xhci_command *command;
3245 struct xhci_input_control_ctx *ctrl_ctx;
3246 unsigned int ep_index;
3247 unsigned long flags;
3248 u32 changed_ep_bitmask;
3249
3250 xhci = hcd_to_xhci(hcd);
3251 vdev = xhci->devs[udev->slot_id];
3252
3253 /* Set up a configure endpoint command to remove the streams rings */
3254 spin_lock_irqsave(&xhci->lock, flags);
3255 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3256 udev, eps, num_eps);
3257 if (changed_ep_bitmask == 0) {
3258 spin_unlock_irqrestore(&xhci->lock, flags);
3259 return -EINVAL;
3260 }
3261
3262 /* Use the xhci_command structure from the first endpoint. We may have
3263 * allocated too many, but the driver may call xhci_free_streams() for
3264 * each endpoint it grouped into one call to xhci_alloc_streams().
3265 */
3266 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3267 command = vdev->eps[ep_index].stream_info->free_streams_command;
3268 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3269 if (!ctrl_ctx) {
3270 spin_unlock_irqrestore(&xhci->lock, flags);
3271 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3272 __func__);
3273 return -EINVAL;
3274 }
3275
3276 for (i = 0; i < num_eps; i++) {
3277 struct xhci_ep_ctx *ep_ctx;
3278
3279 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3280 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3281 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3282 EP_GETTING_NO_STREAMS;
3283
3284 xhci_endpoint_copy(xhci, command->in_ctx,
3285 vdev->out_ctx, ep_index);
3286 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3287 &vdev->eps[ep_index]);
3288 }
3289 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3290 vdev->out_ctx, ctrl_ctx,
3291 changed_ep_bitmask, changed_ep_bitmask);
3292 spin_unlock_irqrestore(&xhci->lock, flags);
3293
3294 /* Issue and wait for the configure endpoint command,
3295 * which must succeed.
3296 */
3297 ret = xhci_configure_endpoint(xhci, udev, command,
3298 false, true);
3299
3300 /* xHC rejected the configure endpoint command for some reason, so we
3301 * leave the streams rings intact.
3302 */
3303 if (ret < 0)
3304 return ret;
3305
3306 spin_lock_irqsave(&xhci->lock, flags);
3307 for (i = 0; i < num_eps; i++) {
3308 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3310 vdev->eps[ep_index].stream_info = NULL;
3311 /* FIXME Unset maxPstreams in endpoint context and
3312 * update deq ptr to point to normal string ring.
3313 */
3314 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3315 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3316 }
3317 spin_unlock_irqrestore(&xhci->lock, flags);
3318
3319 return 0;
3320 }
3321
3322 /*
3323 * Deletes endpoint resources for endpoints that were active before a Reset
3324 * Device command, or a Disable Slot command. The Reset Device command leaves
3325 * the control endpoint intact, whereas the Disable Slot command deletes it.
3326 *
3327 * Must be called with xhci->lock held.
3328 */
3329 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3330 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3331 {
3332 int i;
3333 unsigned int num_dropped_eps = 0;
3334 unsigned int drop_flags = 0;
3335
3336 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3337 if (virt_dev->eps[i].ring) {
3338 drop_flags |= 1 << i;
3339 num_dropped_eps++;
3340 }
3341 }
3342 xhci->num_active_eps -= num_dropped_eps;
3343 if (num_dropped_eps)
3344 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3345 "Dropped %u ep ctxs, flags = 0x%x, "
3346 "%u now active.",
3347 num_dropped_eps, drop_flags,
3348 xhci->num_active_eps);
3349 }
3350
3351 /*
3352 * This submits a Reset Device Command, which will set the device state to 0,
3353 * set the device address to 0, and disable all the endpoints except the default
3354 * control endpoint. The USB core should come back and call
3355 * xhci_address_device(), and then re-set up the configuration. If this is
3356 * called because of a usb_reset_and_verify_device(), then the old alternate
3357 * settings will be re-installed through the normal bandwidth allocation
3358 * functions.
3359 *
3360 * Wait for the Reset Device command to finish. Remove all structures
3361 * associated with the endpoints that were disabled. Clear the input device
3362 * structure? Reset the control endpoint 0 max packet size?
3363 *
3364 * If the virt_dev to be reset does not exist or does not match the udev,
3365 * it means the device is lost, possibly due to the xHC restore error and
3366 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3367 * re-allocate the device.
3368 */
3369 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3370 struct usb_device *udev)
3371 {
3372 int ret, i;
3373 unsigned long flags;
3374 struct xhci_hcd *xhci;
3375 unsigned int slot_id;
3376 struct xhci_virt_device *virt_dev;
3377 struct xhci_command *reset_device_cmd;
3378 int last_freed_endpoint;
3379 struct xhci_slot_ctx *slot_ctx;
3380 int old_active_eps = 0;
3381
3382 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3383 if (ret <= 0)
3384 return ret;
3385 xhci = hcd_to_xhci(hcd);
3386 slot_id = udev->slot_id;
3387 virt_dev = xhci->devs[slot_id];
3388 if (!virt_dev) {
3389 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3390 "not exist. Re-allocate the device\n", slot_id);
3391 ret = xhci_alloc_dev(hcd, udev);
3392 if (ret == 1)
3393 return 0;
3394 else
3395 return -EINVAL;
3396 }
3397
3398 if (virt_dev->tt_info)
3399 old_active_eps = virt_dev->tt_info->active_eps;
3400
3401 if (virt_dev->udev != udev) {
3402 /* If the virt_dev and the udev does not match, this virt_dev
3403 * may belong to another udev.
3404 * Re-allocate the device.
3405 */
3406 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3407 "not match the udev. Re-allocate the device\n",
3408 slot_id);
3409 ret = xhci_alloc_dev(hcd, udev);
3410 if (ret == 1)
3411 return 0;
3412 else
3413 return -EINVAL;
3414 }
3415
3416 /* If device is not setup, there is no point in resetting it */
3417 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3418 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3419 SLOT_STATE_DISABLED)
3420 return 0;
3421
3422 trace_xhci_discover_or_reset_device(slot_ctx);
3423
3424 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3425 /* Allocate the command structure that holds the struct completion.
3426 * Assume we're in process context, since the normal device reset
3427 * process has to wait for the device anyway. Storage devices are
3428 * reset as part of error handling, so use GFP_NOIO instead of
3429 * GFP_KERNEL.
3430 */
3431 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3432 if (!reset_device_cmd) {
3433 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3434 return -ENOMEM;
3435 }
3436
3437 /* Attempt to submit the Reset Device command to the command ring */
3438 spin_lock_irqsave(&xhci->lock, flags);
3439
3440 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3441 if (ret) {
3442 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3443 spin_unlock_irqrestore(&xhci->lock, flags);
3444 goto command_cleanup;
3445 }
3446 xhci_ring_cmd_db(xhci);
3447 spin_unlock_irqrestore(&xhci->lock, flags);
3448
3449 /* Wait for the Reset Device command to finish */
3450 wait_for_completion(reset_device_cmd->completion);
3451
3452 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3453 * unless we tried to reset a slot ID that wasn't enabled,
3454 * or the device wasn't in the addressed or configured state.
3455 */
3456 ret = reset_device_cmd->status;
3457 switch (ret) {
3458 case COMP_COMMAND_ABORTED:
3459 case COMP_COMMAND_RING_STOPPED:
3460 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3461 ret = -ETIME;
3462 goto command_cleanup;
3463 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3464 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3465 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3466 slot_id,
3467 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3468 xhci_dbg(xhci, "Not freeing device rings.\n");
3469 /* Don't treat this as an error. May change my mind later. */
3470 ret = 0;
3471 goto command_cleanup;
3472 case COMP_SUCCESS:
3473 xhci_dbg(xhci, "Successful reset device command.\n");
3474 break;
3475 default:
3476 if (xhci_is_vendor_info_code(xhci, ret))
3477 break;
3478 xhci_warn(xhci, "Unknown completion code %u for "
3479 "reset device command.\n", ret);
3480 ret = -EINVAL;
3481 goto command_cleanup;
3482 }
3483
3484 /* Free up host controller endpoint resources */
3485 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3486 spin_lock_irqsave(&xhci->lock, flags);
3487 /* Don't delete the default control endpoint resources */
3488 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3489 spin_unlock_irqrestore(&xhci->lock, flags);
3490 }
3491
3492 /* Everything but endpoint 0 is disabled, so free the rings. */
3493 last_freed_endpoint = 1;
3494 for (i = 1; i < 31; i++) {
3495 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3496
3497 if (ep->ep_state & EP_HAS_STREAMS) {
3498 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3499 xhci_get_endpoint_address(i));
3500 xhci_free_stream_info(xhci, ep->stream_info);
3501 ep->stream_info = NULL;
3502 ep->ep_state &= ~EP_HAS_STREAMS;
3503 }
3504
3505 if (ep->ring) {
3506 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3507 xhci_free_endpoint_ring(xhci, virt_dev, i);
3508 last_freed_endpoint = i;
3509 }
3510 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3511 xhci_drop_ep_from_interval_table(xhci,
3512 &virt_dev->eps[i].bw_info,
3513 virt_dev->bw_table,
3514 udev,
3515 &virt_dev->eps[i],
3516 virt_dev->tt_info);
3517 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3518 }
3519 /* If necessary, update the number of active TTs on this root port */
3520 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3521 ret = 0;
3522
3523 command_cleanup:
3524 xhci_free_command(xhci, reset_device_cmd);
3525 return ret;
3526 }
3527
3528 /*
3529 * At this point, the struct usb_device is about to go away, the device has
3530 * disconnected, and all traffic has been stopped and the endpoints have been
3531 * disabled. Free any HC data structures associated with that device.
3532 */
3533 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3534 {
3535 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3536 struct xhci_virt_device *virt_dev;
3537 struct xhci_slot_ctx *slot_ctx;
3538 int i, ret;
3539
3540 #ifndef CONFIG_USB_DEFAULT_PERSIST
3541 /*
3542 * We called pm_runtime_get_noresume when the device was attached.
3543 * Decrement the counter here to allow controller to runtime suspend
3544 * if no devices remain.
3545 */
3546 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3547 pm_runtime_put_noidle(hcd->self.controller);
3548 #endif
3549
3550 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3551 /* If the host is halted due to driver unload, we still need to free the
3552 * device.
3553 */
3554 if (ret <= 0 && ret != -ENODEV)
3555 return;
3556
3557 virt_dev = xhci->devs[udev->slot_id];
3558 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3559 trace_xhci_free_dev(slot_ctx);
3560
3561 /* Stop any wayward timer functions (which may grab the lock) */
3562 for (i = 0; i < 31; i++) {
3563 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3564 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3565 }
3566 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3567 virt_dev->udev = NULL;
3568 ret = xhci_disable_slot(xhci, udev->slot_id);
3569 if (ret)
3570 xhci_free_virt_device(xhci, udev->slot_id);
3571 }
3572
3573 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3574 {
3575 struct xhci_command *command;
3576 unsigned long flags;
3577 u32 state;
3578 int ret = 0;
3579
3580 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3581 if (!command)
3582 return -ENOMEM;
3583
3584 spin_lock_irqsave(&xhci->lock, flags);
3585 /* Don't disable the slot if the host controller is dead. */
3586 state = readl(&xhci->op_regs->status);
3587 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3588 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3589 spin_unlock_irqrestore(&xhci->lock, flags);
3590 kfree(command);
3591 return -ENODEV;
3592 }
3593
3594 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3595 slot_id);
3596 if (ret) {
3597 spin_unlock_irqrestore(&xhci->lock, flags);
3598 kfree(command);
3599 return ret;
3600 }
3601 xhci_ring_cmd_db(xhci);
3602 spin_unlock_irqrestore(&xhci->lock, flags);
3603 return ret;
3604 }
3605
3606 /*
3607 * Checks if we have enough host controller resources for the default control
3608 * endpoint.
3609 *
3610 * Must be called with xhci->lock held.
3611 */
3612 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3613 {
3614 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3615 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3616 "Not enough ep ctxs: "
3617 "%u active, need to add 1, limit is %u.",
3618 xhci->num_active_eps, xhci->limit_active_eps);
3619 return -ENOMEM;
3620 }
3621 xhci->num_active_eps += 1;
3622 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3623 "Adding 1 ep ctx, %u now active.",
3624 xhci->num_active_eps);
3625 return 0;
3626 }
3627
3628
3629 /*
3630 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3631 * timed out, or allocating memory failed. Returns 1 on success.
3632 */
3633 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3634 {
3635 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3636 struct xhci_virt_device *vdev;
3637 struct xhci_slot_ctx *slot_ctx;
3638 unsigned long flags;
3639 int ret, slot_id;
3640 struct xhci_command *command;
3641
3642 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3643 if (!command)
3644 return 0;
3645
3646 spin_lock_irqsave(&xhci->lock, flags);
3647 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3648 if (ret) {
3649 spin_unlock_irqrestore(&xhci->lock, flags);
3650 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3651 xhci_free_command(xhci, command);
3652 return 0;
3653 }
3654 xhci_ring_cmd_db(xhci);
3655 spin_unlock_irqrestore(&xhci->lock, flags);
3656
3657 wait_for_completion(command->completion);
3658 slot_id = command->slot_id;
3659
3660 if (!slot_id || command->status != COMP_SUCCESS) {
3661 xhci_err(xhci, "Error while assigning device slot ID\n");
3662 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3663 HCS_MAX_SLOTS(
3664 readl(&xhci->cap_regs->hcs_params1)));
3665 xhci_free_command(xhci, command);
3666 return 0;
3667 }
3668
3669 xhci_free_command(xhci, command);
3670
3671 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3672 spin_lock_irqsave(&xhci->lock, flags);
3673 ret = xhci_reserve_host_control_ep_resources(xhci);
3674 if (ret) {
3675 spin_unlock_irqrestore(&xhci->lock, flags);
3676 xhci_warn(xhci, "Not enough host resources, "
3677 "active endpoint contexts = %u\n",
3678 xhci->num_active_eps);
3679 goto disable_slot;
3680 }
3681 spin_unlock_irqrestore(&xhci->lock, flags);
3682 }
3683 /* Use GFP_NOIO, since this function can be called from
3684 * xhci_discover_or_reset_device(), which may be called as part of
3685 * mass storage driver error handling.
3686 */
3687 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3688 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3689 goto disable_slot;
3690 }
3691 vdev = xhci->devs[slot_id];
3692 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3693 trace_xhci_alloc_dev(slot_ctx);
3694
3695 udev->slot_id = slot_id;
3696
3697 xhci_debugfs_create_slot(xhci, slot_id);
3698
3699 #ifndef CONFIG_USB_DEFAULT_PERSIST
3700 /*
3701 * If resetting upon resume, we can't put the controller into runtime
3702 * suspend if there is a device attached.
3703 */
3704 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3705 pm_runtime_get_noresume(hcd->self.controller);
3706 #endif
3707
3708 /* Is this a LS or FS device under a HS hub? */
3709 /* Hub or peripherial? */
3710 return 1;
3711
3712 disable_slot:
3713 ret = xhci_disable_slot(xhci, udev->slot_id);
3714 if (ret)
3715 xhci_free_virt_device(xhci, udev->slot_id);
3716
3717 return 0;
3718 }
3719
3720 /*
3721 * Issue an Address Device command and optionally send a corresponding
3722 * SetAddress request to the device.
3723 */
3724 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3725 enum xhci_setup_dev setup)
3726 {
3727 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3728 unsigned long flags;
3729 struct xhci_virt_device *virt_dev;
3730 int ret = 0;
3731 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3732 struct xhci_slot_ctx *slot_ctx;
3733 struct xhci_input_control_ctx *ctrl_ctx;
3734 u64 temp_64;
3735 struct xhci_command *command = NULL;
3736
3737 mutex_lock(&xhci->mutex);
3738
3739 if (xhci->xhc_state) { /* dying, removing or halted */
3740 ret = -ESHUTDOWN;
3741 goto out;
3742 }
3743
3744 if (!udev->slot_id) {
3745 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3746 "Bad Slot ID %d", udev->slot_id);
3747 ret = -EINVAL;
3748 goto out;
3749 }
3750
3751 virt_dev = xhci->devs[udev->slot_id];
3752
3753 if (WARN_ON(!virt_dev)) {
3754 /*
3755 * In plug/unplug torture test with an NEC controller,
3756 * a zero-dereference was observed once due to virt_dev = 0.
3757 * Print useful debug rather than crash if it is observed again!
3758 */
3759 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3760 udev->slot_id);
3761 ret = -EINVAL;
3762 goto out;
3763 }
3764 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3765 trace_xhci_setup_device_slot(slot_ctx);
3766
3767 if (setup == SETUP_CONTEXT_ONLY) {
3768 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3769 SLOT_STATE_DEFAULT) {
3770 xhci_dbg(xhci, "Slot already in default state\n");
3771 goto out;
3772 }
3773 }
3774
3775 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3776 if (!command) {
3777 ret = -ENOMEM;
3778 goto out;
3779 }
3780
3781 command->in_ctx = virt_dev->in_ctx;
3782
3783 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3784 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3785 if (!ctrl_ctx) {
3786 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3787 __func__);
3788 ret = -EINVAL;
3789 goto out;
3790 }
3791 /*
3792 * If this is the first Set Address since device plug-in or
3793 * virt_device realloaction after a resume with an xHCI power loss,
3794 * then set up the slot context.
3795 */
3796 if (!slot_ctx->dev_info)
3797 xhci_setup_addressable_virt_dev(xhci, udev);
3798 /* Otherwise, update the control endpoint ring enqueue pointer. */
3799 else
3800 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3801 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3802 ctrl_ctx->drop_flags = 0;
3803
3804 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3805 le32_to_cpu(slot_ctx->dev_info) >> 27);
3806
3807 spin_lock_irqsave(&xhci->lock, flags);
3808 trace_xhci_setup_device(virt_dev);
3809 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3810 udev->slot_id, setup);
3811 if (ret) {
3812 spin_unlock_irqrestore(&xhci->lock, flags);
3813 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3814 "FIXME: allocate a command ring segment");
3815 goto out;
3816 }
3817 xhci_ring_cmd_db(xhci);
3818 spin_unlock_irqrestore(&xhci->lock, flags);
3819
3820 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3821 wait_for_completion(command->completion);
3822
3823 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3824 * the SetAddress() "recovery interval" required by USB and aborting the
3825 * command on a timeout.
3826 */
3827 switch (command->status) {
3828 case COMP_COMMAND_ABORTED:
3829 case COMP_COMMAND_RING_STOPPED:
3830 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3831 ret = -ETIME;
3832 break;
3833 case COMP_CONTEXT_STATE_ERROR:
3834 case COMP_SLOT_NOT_ENABLED_ERROR:
3835 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3836 act, udev->slot_id);
3837 ret = -EINVAL;
3838 break;
3839 case COMP_USB_TRANSACTION_ERROR:
3840 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3841
3842 mutex_unlock(&xhci->mutex);
3843 ret = xhci_disable_slot(xhci, udev->slot_id);
3844 if (!ret)
3845 xhci_alloc_dev(hcd, udev);
3846 kfree(command->completion);
3847 kfree(command);
3848 return -EPROTO;
3849 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3850 dev_warn(&udev->dev,
3851 "ERROR: Incompatible device for setup %s command\n", act);
3852 ret = -ENODEV;
3853 break;
3854 case COMP_SUCCESS:
3855 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3856 "Successful setup %s command", act);
3857 break;
3858 default:
3859 xhci_err(xhci,
3860 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3861 act, command->status);
3862 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3863 ret = -EINVAL;
3864 break;
3865 }
3866 if (ret)
3867 goto out;
3868 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3869 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3870 "Op regs DCBAA ptr = %#016llx", temp_64);
3871 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3872 "Slot ID %d dcbaa entry @%p = %#016llx",
3873 udev->slot_id,
3874 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3875 (unsigned long long)
3876 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3877 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878 "Output Context DMA address = %#08llx",
3879 (unsigned long long)virt_dev->out_ctx->dma);
3880 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3881 le32_to_cpu(slot_ctx->dev_info) >> 27);
3882 /*
3883 * USB core uses address 1 for the roothubs, so we add one to the
3884 * address given back to us by the HC.
3885 */
3886 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3887 le32_to_cpu(slot_ctx->dev_info) >> 27);
3888 /* Zero the input context control for later use */
3889 ctrl_ctx->add_flags = 0;
3890 ctrl_ctx->drop_flags = 0;
3891
3892 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3893 "Internal device address = %d",
3894 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3895 out:
3896 mutex_unlock(&xhci->mutex);
3897 if (command) {
3898 kfree(command->completion);
3899 kfree(command);
3900 }
3901 return ret;
3902 }
3903
3904 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3905 {
3906 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3907 }
3908
3909 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3910 {
3911 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3912 }
3913
3914 /*
3915 * Transfer the port index into real index in the HW port status
3916 * registers. Caculate offset between the port's PORTSC register
3917 * and port status base. Divide the number of per port register
3918 * to get the real index. The raw port number bases 1.
3919 */
3920 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3921 {
3922 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3923 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3924 __le32 __iomem *addr;
3925 int raw_port;
3926
3927 if (hcd->speed < HCD_USB3)
3928 addr = xhci->usb2_ports[port1 - 1];
3929 else
3930 addr = xhci->usb3_ports[port1 - 1];
3931
3932 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3933 return raw_port;
3934 }
3935
3936 /*
3937 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3938 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3939 */
3940 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3941 struct usb_device *udev, u16 max_exit_latency)
3942 {
3943 struct xhci_virt_device *virt_dev;
3944 struct xhci_command *command;
3945 struct xhci_input_control_ctx *ctrl_ctx;
3946 struct xhci_slot_ctx *slot_ctx;
3947 unsigned long flags;
3948 int ret;
3949
3950 spin_lock_irqsave(&xhci->lock, flags);
3951
3952 virt_dev = xhci->devs[udev->slot_id];
3953
3954 /*
3955 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3956 * xHC was re-initialized. Exit latency will be set later after
3957 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3958 */
3959
3960 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3961 spin_unlock_irqrestore(&xhci->lock, flags);
3962 return 0;
3963 }
3964
3965 /* Attempt to issue an Evaluate Context command to change the MEL. */
3966 command = xhci->lpm_command;
3967 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3968 if (!ctrl_ctx) {
3969 spin_unlock_irqrestore(&xhci->lock, flags);
3970 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3971 __func__);
3972 return -ENOMEM;
3973 }
3974
3975 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3976 spin_unlock_irqrestore(&xhci->lock, flags);
3977
3978 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3979 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3980 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3981 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3982 slot_ctx->dev_state = 0;
3983
3984 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3985 "Set up evaluate context for LPM MEL change.");
3986
3987 /* Issue and wait for the evaluate context command. */
3988 ret = xhci_configure_endpoint(xhci, udev, command,
3989 true, true);
3990
3991 if (!ret) {
3992 spin_lock_irqsave(&xhci->lock, flags);
3993 virt_dev->current_mel = max_exit_latency;
3994 spin_unlock_irqrestore(&xhci->lock, flags);
3995 }
3996 return ret;
3997 }
3998
3999 #ifdef CONFIG_PM
4000
4001 /* BESL to HIRD Encoding array for USB2 LPM */
4002 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4003 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4004
4005 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4006 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4007 struct usb_device *udev)
4008 {
4009 int u2del, besl, besl_host;
4010 int besl_device = 0;
4011 u32 field;
4012
4013 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4014 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4015
4016 if (field & USB_BESL_SUPPORT) {
4017 for (besl_host = 0; besl_host < 16; besl_host++) {
4018 if (xhci_besl_encoding[besl_host] >= u2del)
4019 break;
4020 }
4021 /* Use baseline BESL value as default */
4022 if (field & USB_BESL_BASELINE_VALID)
4023 besl_device = USB_GET_BESL_BASELINE(field);
4024 else if (field & USB_BESL_DEEP_VALID)
4025 besl_device = USB_GET_BESL_DEEP(field);
4026 } else {
4027 if (u2del <= 50)
4028 besl_host = 0;
4029 else
4030 besl_host = (u2del - 51) / 75 + 1;
4031 }
4032
4033 besl = besl_host + besl_device;
4034 if (besl > 15)
4035 besl = 15;
4036
4037 return besl;
4038 }
4039
4040 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4041 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4042 {
4043 u32 field;
4044 int l1;
4045 int besld = 0;
4046 int hirdm = 0;
4047
4048 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4049
4050 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4051 l1 = udev->l1_params.timeout / 256;
4052
4053 /* device has preferred BESLD */
4054 if (field & USB_BESL_DEEP_VALID) {
4055 besld = USB_GET_BESL_DEEP(field);
4056 hirdm = 1;
4057 }
4058
4059 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4060 }
4061
4062 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4063 struct usb_device *udev, int enable)
4064 {
4065 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4066 __le32 __iomem **port_array;
4067 __le32 __iomem *pm_addr, *hlpm_addr;
4068 u32 pm_val, hlpm_val, field;
4069 unsigned int port_num;
4070 unsigned long flags;
4071 int hird, exit_latency;
4072 int ret;
4073
4074 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4075 !udev->lpm_capable)
4076 return -EPERM;
4077
4078 if (!udev->parent || udev->parent->parent ||
4079 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4080 return -EPERM;
4081
4082 if (udev->usb2_hw_lpm_capable != 1)
4083 return -EPERM;
4084
4085 spin_lock_irqsave(&xhci->lock, flags);
4086
4087 port_array = xhci->usb2_ports;
4088 port_num = udev->portnum - 1;
4089 pm_addr = port_array[port_num] + PORTPMSC;
4090 pm_val = readl(pm_addr);
4091 hlpm_addr = port_array[port_num] + PORTHLPMC;
4092 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4093
4094 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4095 enable ? "enable" : "disable", port_num + 1);
4096
4097 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4098 /* Host supports BESL timeout instead of HIRD */
4099 if (udev->usb2_hw_lpm_besl_capable) {
4100 /* if device doesn't have a preferred BESL value use a
4101 * default one which works with mixed HIRD and BESL
4102 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4103 */
4104 if ((field & USB_BESL_SUPPORT) &&
4105 (field & USB_BESL_BASELINE_VALID))
4106 hird = USB_GET_BESL_BASELINE(field);
4107 else
4108 hird = udev->l1_params.besl;
4109
4110 exit_latency = xhci_besl_encoding[hird];
4111 spin_unlock_irqrestore(&xhci->lock, flags);
4112
4113 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4114 * input context for link powermanagement evaluate
4115 * context commands. It is protected by hcd->bandwidth
4116 * mutex and is shared by all devices. We need to set
4117 * the max ext latency in USB 2 BESL LPM as well, so
4118 * use the same mutex and xhci_change_max_exit_latency()
4119 */
4120 mutex_lock(hcd->bandwidth_mutex);
4121 ret = xhci_change_max_exit_latency(xhci, udev,
4122 exit_latency);
4123 mutex_unlock(hcd->bandwidth_mutex);
4124
4125 if (ret < 0)
4126 return ret;
4127 spin_lock_irqsave(&xhci->lock, flags);
4128
4129 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4130 writel(hlpm_val, hlpm_addr);
4131 /* flush write */
4132 readl(hlpm_addr);
4133 } else {
4134 hird = xhci_calculate_hird_besl(xhci, udev);
4135 }
4136
4137 pm_val &= ~PORT_HIRD_MASK;
4138 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4139 writel(pm_val, pm_addr);
4140 pm_val = readl(pm_addr);
4141 pm_val |= PORT_HLE;
4142 writel(pm_val, pm_addr);
4143 /* flush write */
4144 readl(pm_addr);
4145 } else {
4146 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4147 writel(pm_val, pm_addr);
4148 /* flush write */
4149 readl(pm_addr);
4150 if (udev->usb2_hw_lpm_besl_capable) {
4151 spin_unlock_irqrestore(&xhci->lock, flags);
4152 mutex_lock(hcd->bandwidth_mutex);
4153 xhci_change_max_exit_latency(xhci, udev, 0);
4154 mutex_unlock(hcd->bandwidth_mutex);
4155 return 0;
4156 }
4157 }
4158
4159 spin_unlock_irqrestore(&xhci->lock, flags);
4160 return 0;
4161 }
4162
4163 /* check if a usb2 port supports a given extened capability protocol
4164 * only USB2 ports extended protocol capability values are cached.
4165 * Return 1 if capability is supported
4166 */
4167 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4168 unsigned capability)
4169 {
4170 u32 port_offset, port_count;
4171 int i;
4172
4173 for (i = 0; i < xhci->num_ext_caps; i++) {
4174 if (xhci->ext_caps[i] & capability) {
4175 /* port offsets starts at 1 */
4176 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4177 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4178 if (port >= port_offset &&
4179 port < port_offset + port_count)
4180 return 1;
4181 }
4182 }
4183 return 0;
4184 }
4185
4186 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4187 {
4188 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4189 int portnum = udev->portnum - 1;
4190
4191 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4192 !udev->lpm_capable)
4193 return 0;
4194
4195 /* we only support lpm for non-hub device connected to root hub yet */
4196 if (!udev->parent || udev->parent->parent ||
4197 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4198 return 0;
4199
4200 if (xhci->hw_lpm_support == 1 &&
4201 xhci_check_usb2_port_capability(
4202 xhci, portnum, XHCI_HLC)) {
4203 udev->usb2_hw_lpm_capable = 1;
4204 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4205 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4206 if (xhci_check_usb2_port_capability(xhci, portnum,
4207 XHCI_BLC))
4208 udev->usb2_hw_lpm_besl_capable = 1;
4209 }
4210
4211 return 0;
4212 }
4213
4214 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4215
4216 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4217 static unsigned long long xhci_service_interval_to_ns(
4218 struct usb_endpoint_descriptor *desc)
4219 {
4220 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4221 }
4222
4223 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4224 enum usb3_link_state state)
4225 {
4226 unsigned long long sel;
4227 unsigned long long pel;
4228 unsigned int max_sel_pel;
4229 char *state_name;
4230
4231 switch (state) {
4232 case USB3_LPM_U1:
4233 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4234 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4235 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4236 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4237 state_name = "U1";
4238 break;
4239 case USB3_LPM_U2:
4240 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4241 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4242 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4243 state_name = "U2";
4244 break;
4245 default:
4246 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4247 __func__);
4248 return USB3_LPM_DISABLED;
4249 }
4250
4251 if (sel <= max_sel_pel && pel <= max_sel_pel)
4252 return USB3_LPM_DEVICE_INITIATED;
4253
4254 if (sel > max_sel_pel)
4255 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4256 "due to long SEL %llu ms\n",
4257 state_name, sel);
4258 else
4259 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4260 "due to long PEL %llu ms\n",
4261 state_name, pel);
4262 return USB3_LPM_DISABLED;
4263 }
4264
4265 /* The U1 timeout should be the maximum of the following values:
4266 * - For control endpoints, U1 system exit latency (SEL) * 3
4267 * - For bulk endpoints, U1 SEL * 5
4268 * - For interrupt endpoints:
4269 * - Notification EPs, U1 SEL * 3
4270 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4271 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4272 */
4273 static unsigned long long xhci_calculate_intel_u1_timeout(
4274 struct usb_device *udev,
4275 struct usb_endpoint_descriptor *desc)
4276 {
4277 unsigned long long timeout_ns;
4278 int ep_type;
4279 int intr_type;
4280
4281 ep_type = usb_endpoint_type(desc);
4282 switch (ep_type) {
4283 case USB_ENDPOINT_XFER_CONTROL:
4284 timeout_ns = udev->u1_params.sel * 3;
4285 break;
4286 case USB_ENDPOINT_XFER_BULK:
4287 timeout_ns = udev->u1_params.sel * 5;
4288 break;
4289 case USB_ENDPOINT_XFER_INT:
4290 intr_type = usb_endpoint_interrupt_type(desc);
4291 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4292 timeout_ns = udev->u1_params.sel * 3;
4293 break;
4294 }
4295 /* Otherwise the calculation is the same as isoc eps */
4296 /* fall through */
4297 case USB_ENDPOINT_XFER_ISOC:
4298 timeout_ns = xhci_service_interval_to_ns(desc);
4299 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4300 if (timeout_ns < udev->u1_params.sel * 2)
4301 timeout_ns = udev->u1_params.sel * 2;
4302 break;
4303 default:
4304 return 0;
4305 }
4306
4307 return timeout_ns;
4308 }
4309
4310 /* Returns the hub-encoded U1 timeout value. */
4311 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4312 struct usb_device *udev,
4313 struct usb_endpoint_descriptor *desc)
4314 {
4315 unsigned long long timeout_ns;
4316
4317 if (xhci->quirks & XHCI_INTEL_HOST)
4318 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4319 else
4320 timeout_ns = udev->u1_params.sel;
4321
4322 /* The U1 timeout is encoded in 1us intervals.
4323 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4324 */
4325 if (timeout_ns == USB3_LPM_DISABLED)
4326 timeout_ns = 1;
4327 else
4328 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4329
4330 /* If the necessary timeout value is bigger than what we can set in the
4331 * USB 3.0 hub, we have to disable hub-initiated U1.
4332 */
4333 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4334 return timeout_ns;
4335 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4336 "due to long timeout %llu ms\n", timeout_ns);
4337 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4338 }
4339
4340 /* The U2 timeout should be the maximum of:
4341 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4342 * - largest bInterval of any active periodic endpoint (to avoid going
4343 * into lower power link states between intervals).
4344 * - the U2 Exit Latency of the device
4345 */
4346 static unsigned long long xhci_calculate_intel_u2_timeout(
4347 struct usb_device *udev,
4348 struct usb_endpoint_descriptor *desc)
4349 {
4350 unsigned long long timeout_ns;
4351 unsigned long long u2_del_ns;
4352
4353 timeout_ns = 10 * 1000 * 1000;
4354
4355 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4356 (xhci_service_interval_to_ns(desc) > timeout_ns))
4357 timeout_ns = xhci_service_interval_to_ns(desc);
4358
4359 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4360 if (u2_del_ns > timeout_ns)
4361 timeout_ns = u2_del_ns;
4362
4363 return timeout_ns;
4364 }
4365
4366 /* Returns the hub-encoded U2 timeout value. */
4367 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4368 struct usb_device *udev,
4369 struct usb_endpoint_descriptor *desc)
4370 {
4371 unsigned long long timeout_ns;
4372
4373 if (xhci->quirks & XHCI_INTEL_HOST)
4374 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4375 else
4376 timeout_ns = udev->u2_params.sel;
4377
4378 /* The U2 timeout is encoded in 256us intervals */
4379 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4380 /* If the necessary timeout value is bigger than what we can set in the
4381 * USB 3.0 hub, we have to disable hub-initiated U2.
4382 */
4383 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4384 return timeout_ns;
4385 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4386 "due to long timeout %llu ms\n", timeout_ns);
4387 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4388 }
4389
4390 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4391 struct usb_device *udev,
4392 struct usb_endpoint_descriptor *desc,
4393 enum usb3_link_state state,
4394 u16 *timeout)
4395 {
4396 if (state == USB3_LPM_U1)
4397 return xhci_calculate_u1_timeout(xhci, udev, desc);
4398 else if (state == USB3_LPM_U2)
4399 return xhci_calculate_u2_timeout(xhci, udev, desc);
4400
4401 return USB3_LPM_DISABLED;
4402 }
4403
4404 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4405 struct usb_device *udev,
4406 struct usb_endpoint_descriptor *desc,
4407 enum usb3_link_state state,
4408 u16 *timeout)
4409 {
4410 u16 alt_timeout;
4411
4412 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4413 desc, state, timeout);
4414
4415 /* If we found we can't enable hub-initiated LPM, or
4416 * the U1 or U2 exit latency was too high to allow
4417 * device-initiated LPM as well, just stop searching.
4418 */
4419 if (alt_timeout == USB3_LPM_DISABLED ||
4420 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4421 *timeout = alt_timeout;
4422 return -E2BIG;
4423 }
4424 if (alt_timeout > *timeout)
4425 *timeout = alt_timeout;
4426 return 0;
4427 }
4428
4429 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4430 struct usb_device *udev,
4431 struct usb_host_interface *alt,
4432 enum usb3_link_state state,
4433 u16 *timeout)
4434 {
4435 int j;
4436
4437 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4438 if (xhci_update_timeout_for_endpoint(xhci, udev,
4439 &alt->endpoint[j].desc, state, timeout))
4440 return -E2BIG;
4441 continue;
4442 }
4443 return 0;
4444 }
4445
4446 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4447 enum usb3_link_state state)
4448 {
4449 struct usb_device *parent;
4450 unsigned int num_hubs;
4451
4452 if (state == USB3_LPM_U2)
4453 return 0;
4454
4455 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4456 for (parent = udev->parent, num_hubs = 0; parent->parent;
4457 parent = parent->parent)
4458 num_hubs++;
4459
4460 if (num_hubs < 2)
4461 return 0;
4462
4463 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4464 " below second-tier hub.\n");
4465 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4466 "to decrease power consumption.\n");
4467 return -E2BIG;
4468 }
4469
4470 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4471 struct usb_device *udev,
4472 enum usb3_link_state state)
4473 {
4474 if (xhci->quirks & XHCI_INTEL_HOST)
4475 return xhci_check_intel_tier_policy(udev, state);
4476 else
4477 return 0;
4478 }
4479
4480 /* Returns the U1 or U2 timeout that should be enabled.
4481 * If the tier check or timeout setting functions return with a non-zero exit
4482 * code, that means the timeout value has been finalized and we shouldn't look
4483 * at any more endpoints.
4484 */
4485 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4486 struct usb_device *udev, enum usb3_link_state state)
4487 {
4488 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4489 struct usb_host_config *config;
4490 char *state_name;
4491 int i;
4492 u16 timeout = USB3_LPM_DISABLED;
4493
4494 if (state == USB3_LPM_U1)
4495 state_name = "U1";
4496 else if (state == USB3_LPM_U2)
4497 state_name = "U2";
4498 else {
4499 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4500 state);
4501 return timeout;
4502 }
4503
4504 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4505 return timeout;
4506
4507 /* Gather some information about the currently installed configuration
4508 * and alternate interface settings.
4509 */
4510 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4511 state, &timeout))
4512 return timeout;
4513
4514 config = udev->actconfig;
4515 if (!config)
4516 return timeout;
4517
4518 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4519 struct usb_driver *driver;
4520 struct usb_interface *intf = config->interface[i];
4521
4522 if (!intf)
4523 continue;
4524
4525 /* Check if any currently bound drivers want hub-initiated LPM
4526 * disabled.
4527 */
4528 if (intf->dev.driver) {
4529 driver = to_usb_driver(intf->dev.driver);
4530 if (driver && driver->disable_hub_initiated_lpm) {
4531 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4532 "at request of driver %s\n",
4533 state_name, driver->name);
4534 return xhci_get_timeout_no_hub_lpm(udev, state);
4535 }
4536 }
4537
4538 /* Not sure how this could happen... */
4539 if (!intf->cur_altsetting)
4540 continue;
4541
4542 if (xhci_update_timeout_for_interface(xhci, udev,
4543 intf->cur_altsetting,
4544 state, &timeout))
4545 return timeout;
4546 }
4547 return timeout;
4548 }
4549
4550 static int calculate_max_exit_latency(struct usb_device *udev,
4551 enum usb3_link_state state_changed,
4552 u16 hub_encoded_timeout)
4553 {
4554 unsigned long long u1_mel_us = 0;
4555 unsigned long long u2_mel_us = 0;
4556 unsigned long long mel_us = 0;
4557 bool disabling_u1;
4558 bool disabling_u2;
4559 bool enabling_u1;
4560 bool enabling_u2;
4561
4562 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4563 hub_encoded_timeout == USB3_LPM_DISABLED);
4564 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4565 hub_encoded_timeout == USB3_LPM_DISABLED);
4566
4567 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4568 hub_encoded_timeout != USB3_LPM_DISABLED);
4569 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4570 hub_encoded_timeout != USB3_LPM_DISABLED);
4571
4572 /* If U1 was already enabled and we're not disabling it,
4573 * or we're going to enable U1, account for the U1 max exit latency.
4574 */
4575 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4576 enabling_u1)
4577 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4578 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4579 enabling_u2)
4580 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4581
4582 if (u1_mel_us > u2_mel_us)
4583 mel_us = u1_mel_us;
4584 else
4585 mel_us = u2_mel_us;
4586 /* xHCI host controller max exit latency field is only 16 bits wide. */
4587 if (mel_us > MAX_EXIT) {
4588 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4589 "is too big.\n", mel_us);
4590 return -E2BIG;
4591 }
4592 return mel_us;
4593 }
4594
4595 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4596 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4597 struct usb_device *udev, enum usb3_link_state state)
4598 {
4599 struct xhci_hcd *xhci;
4600 u16 hub_encoded_timeout;
4601 int mel;
4602 int ret;
4603
4604 xhci = hcd_to_xhci(hcd);
4605 /* The LPM timeout values are pretty host-controller specific, so don't
4606 * enable hub-initiated timeouts unless the vendor has provided
4607 * information about their timeout algorithm.
4608 */
4609 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4610 !xhci->devs[udev->slot_id])
4611 return USB3_LPM_DISABLED;
4612
4613 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4614 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4615 if (mel < 0) {
4616 /* Max Exit Latency is too big, disable LPM. */
4617 hub_encoded_timeout = USB3_LPM_DISABLED;
4618 mel = 0;
4619 }
4620
4621 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4622 if (ret)
4623 return ret;
4624 return hub_encoded_timeout;
4625 }
4626
4627 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4628 struct usb_device *udev, enum usb3_link_state state)
4629 {
4630 struct xhci_hcd *xhci;
4631 u16 mel;
4632
4633 xhci = hcd_to_xhci(hcd);
4634 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4635 !xhci->devs[udev->slot_id])
4636 return 0;
4637
4638 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4639 return xhci_change_max_exit_latency(xhci, udev, mel);
4640 }
4641 #else /* CONFIG_PM */
4642
4643 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4644 struct usb_device *udev, int enable)
4645 {
4646 return 0;
4647 }
4648
4649 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4650 {
4651 return 0;
4652 }
4653
4654 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4655 struct usb_device *udev, enum usb3_link_state state)
4656 {
4657 return USB3_LPM_DISABLED;
4658 }
4659
4660 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4661 struct usb_device *udev, enum usb3_link_state state)
4662 {
4663 return 0;
4664 }
4665 #endif /* CONFIG_PM */
4666
4667 /*-------------------------------------------------------------------------*/
4668
4669 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4670 * internal data structures for the device.
4671 */
4672 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4673 struct usb_tt *tt, gfp_t mem_flags)
4674 {
4675 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4676 struct xhci_virt_device *vdev;
4677 struct xhci_command *config_cmd;
4678 struct xhci_input_control_ctx *ctrl_ctx;
4679 struct xhci_slot_ctx *slot_ctx;
4680 unsigned long flags;
4681 unsigned think_time;
4682 int ret;
4683
4684 /* Ignore root hubs */
4685 if (!hdev->parent)
4686 return 0;
4687
4688 vdev = xhci->devs[hdev->slot_id];
4689 if (!vdev) {
4690 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4691 return -EINVAL;
4692 }
4693
4694 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4695 if (!config_cmd)
4696 return -ENOMEM;
4697
4698 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4699 if (!ctrl_ctx) {
4700 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4701 __func__);
4702 xhci_free_command(xhci, config_cmd);
4703 return -ENOMEM;
4704 }
4705
4706 spin_lock_irqsave(&xhci->lock, flags);
4707 if (hdev->speed == USB_SPEED_HIGH &&
4708 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4709 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4710 xhci_free_command(xhci, config_cmd);
4711 spin_unlock_irqrestore(&xhci->lock, flags);
4712 return -ENOMEM;
4713 }
4714
4715 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4716 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4717 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4718 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4719 /*
4720 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4721 * but it may be already set to 1 when setup an xHCI virtual
4722 * device, so clear it anyway.
4723 */
4724 if (tt->multi)
4725 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4726 else if (hdev->speed == USB_SPEED_FULL)
4727 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4728
4729 if (xhci->hci_version > 0x95) {
4730 xhci_dbg(xhci, "xHCI version %x needs hub "
4731 "TT think time and number of ports\n",
4732 (unsigned int) xhci->hci_version);
4733 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4734 /* Set TT think time - convert from ns to FS bit times.
4735 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4736 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4737 *
4738 * xHCI 1.0: this field shall be 0 if the device is not a
4739 * High-spped hub.
4740 */
4741 think_time = tt->think_time;
4742 if (think_time != 0)
4743 think_time = (think_time / 666) - 1;
4744 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4745 slot_ctx->tt_info |=
4746 cpu_to_le32(TT_THINK_TIME(think_time));
4747 } else {
4748 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4749 "TT think time or number of ports\n",
4750 (unsigned int) xhci->hci_version);
4751 }
4752 slot_ctx->dev_state = 0;
4753 spin_unlock_irqrestore(&xhci->lock, flags);
4754
4755 xhci_dbg(xhci, "Set up %s for hub device.\n",
4756 (xhci->hci_version > 0x95) ?
4757 "configure endpoint" : "evaluate context");
4758
4759 /* Issue and wait for the configure endpoint or
4760 * evaluate context command.
4761 */
4762 if (xhci->hci_version > 0x95)
4763 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4764 false, false);
4765 else
4766 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4767 true, false);
4768
4769 xhci_free_command(xhci, config_cmd);
4770 return ret;
4771 }
4772
4773 static int xhci_get_frame(struct usb_hcd *hcd)
4774 {
4775 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4776 /* EHCI mods by the periodic size. Why? */
4777 return readl(&xhci->run_regs->microframe_index) >> 3;
4778 }
4779
4780 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4781 {
4782 struct xhci_hcd *xhci;
4783 /*
4784 * TODO: Check with DWC3 clients for sysdev according to
4785 * quirks
4786 */
4787 struct device *dev = hcd->self.sysdev;
4788 unsigned int minor_rev;
4789 int retval;
4790
4791 /* Accept arbitrarily long scatter-gather lists */
4792 hcd->self.sg_tablesize = ~0;
4793
4794 /* support to build packet from discontinuous buffers */
4795 hcd->self.no_sg_constraint = 1;
4796
4797 /* XHCI controllers don't stop the ep queue on short packets :| */
4798 hcd->self.no_stop_on_short = 1;
4799
4800 xhci = hcd_to_xhci(hcd);
4801
4802 if (usb_hcd_is_primary_hcd(hcd)) {
4803 xhci->main_hcd = hcd;
4804 /* Mark the first roothub as being USB 2.0.
4805 * The xHCI driver will register the USB 3.0 roothub.
4806 */
4807 hcd->speed = HCD_USB2;
4808 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4809 /*
4810 * USB 2.0 roothub under xHCI has an integrated TT,
4811 * (rate matching hub) as opposed to having an OHCI/UHCI
4812 * companion controller.
4813 */
4814 hcd->has_tt = 1;
4815 } else {
4816 /*
4817 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4818 * minor revision instead of sbrn
4819 */
4820 minor_rev = xhci->usb3_rhub.min_rev;
4821 if (minor_rev) {
4822 hcd->speed = HCD_USB31;
4823 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4824 }
4825 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4826 minor_rev,
4827 minor_rev ? "Enhanced" : "");
4828
4829 /* xHCI private pointer was set in xhci_pci_probe for the second
4830 * registered roothub.
4831 */
4832 return 0;
4833 }
4834
4835 mutex_init(&xhci->mutex);
4836 xhci->cap_regs = hcd->regs;
4837 xhci->op_regs = hcd->regs +
4838 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4839 xhci->run_regs = hcd->regs +
4840 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4841 /* Cache read-only capability registers */
4842 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4843 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4844 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4845 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4846 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4847 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4848 if (xhci->hci_version > 0x100)
4849 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4850 xhci_print_registers(xhci);
4851
4852 xhci->quirks |= quirks;
4853
4854 get_quirks(dev, xhci);
4855
4856 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4857 * success event after a short transfer. This quirk will ignore such
4858 * spurious event.
4859 */
4860 if (xhci->hci_version > 0x96)
4861 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4862
4863 /* Make sure the HC is halted. */
4864 retval = xhci_halt(xhci);
4865 if (retval)
4866 return retval;
4867
4868 xhci_dbg(xhci, "Resetting HCD\n");
4869 /* Reset the internal HC memory state and registers. */
4870 retval = xhci_reset(xhci);
4871 if (retval)
4872 return retval;
4873 xhci_dbg(xhci, "Reset complete\n");
4874
4875 /*
4876 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4877 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4878 * address memory pointers actually. So, this driver clears the AC64
4879 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4880 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4881 */
4882 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4883 xhci->hcc_params &= ~BIT(0);
4884
4885 /* Set dma_mask and coherent_dma_mask to 64-bits,
4886 * if xHC supports 64-bit addressing */
4887 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4888 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4889 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4890 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4891 } else {
4892 /*
4893 * This is to avoid error in cases where a 32-bit USB
4894 * controller is used on a 64-bit capable system.
4895 */
4896 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4897 if (retval)
4898 return retval;
4899 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4900 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4901 }
4902
4903 xhci_dbg(xhci, "Calling HCD init\n");
4904 /* Initialize HCD and host controller data structures. */
4905 retval = xhci_init(hcd);
4906 if (retval)
4907 return retval;
4908 xhci_dbg(xhci, "Called HCD init\n");
4909
4910 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
4911 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4912
4913 return 0;
4914 }
4915 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4916
4917 static const struct hc_driver xhci_hc_driver = {
4918 .description = "xhci-hcd",
4919 .product_desc = "xHCI Host Controller",
4920 .hcd_priv_size = sizeof(struct xhci_hcd),
4921
4922 /*
4923 * generic hardware linkage
4924 */
4925 .irq = xhci_irq,
4926 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4927
4928 /*
4929 * basic lifecycle operations
4930 */
4931 .reset = NULL, /* set in xhci_init_driver() */
4932 .start = xhci_run,
4933 .stop = xhci_stop,
4934 .shutdown = xhci_shutdown,
4935
4936 /*
4937 * managing i/o requests and associated device resources
4938 */
4939 .urb_enqueue = xhci_urb_enqueue,
4940 .urb_dequeue = xhci_urb_dequeue,
4941 .alloc_dev = xhci_alloc_dev,
4942 .free_dev = xhci_free_dev,
4943 .alloc_streams = xhci_alloc_streams,
4944 .free_streams = xhci_free_streams,
4945 .add_endpoint = xhci_add_endpoint,
4946 .drop_endpoint = xhci_drop_endpoint,
4947 .endpoint_reset = xhci_endpoint_reset,
4948 .check_bandwidth = xhci_check_bandwidth,
4949 .reset_bandwidth = xhci_reset_bandwidth,
4950 .address_device = xhci_address_device,
4951 .enable_device = xhci_enable_device,
4952 .update_hub_device = xhci_update_hub_device,
4953 .reset_device = xhci_discover_or_reset_device,
4954
4955 /*
4956 * scheduling support
4957 */
4958 .get_frame_number = xhci_get_frame,
4959
4960 /*
4961 * root hub support
4962 */
4963 .hub_control = xhci_hub_control,
4964 .hub_status_data = xhci_hub_status_data,
4965 .bus_suspend = xhci_bus_suspend,
4966 .bus_resume = xhci_bus_resume,
4967
4968 /*
4969 * call back when device connected and addressed
4970 */
4971 .update_device = xhci_update_device,
4972 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4973 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4974 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4975 .find_raw_port_number = xhci_find_raw_port_number,
4976 };
4977
4978 void xhci_init_driver(struct hc_driver *drv,
4979 const struct xhci_driver_overrides *over)
4980 {
4981 BUG_ON(!over);
4982
4983 /* Copy the generic table to drv then apply the overrides */
4984 *drv = xhci_hc_driver;
4985
4986 if (over) {
4987 drv->hcd_priv_size += over->extra_priv_size;
4988 if (over->reset)
4989 drv->reset = over->reset;
4990 if (over->start)
4991 drv->start = over->start;
4992 }
4993 }
4994 EXPORT_SYMBOL_GPL(xhci_init_driver);
4995
4996 MODULE_DESCRIPTION(DRIVER_DESC);
4997 MODULE_AUTHOR(DRIVER_AUTHOR);
4998 MODULE_LICENSE("GPL");
4999
5000 static int __init xhci_hcd_init(void)
5001 {
5002 /*
5003 * Check the compiler generated sizes of structures that must be laid
5004 * out in specific ways for hardware access.
5005 */
5006 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5007 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5008 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5009 /* xhci_device_control has eight fields, and also
5010 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5011 */
5012 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5013 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5014 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5015 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5016 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5017 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5018 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5019
5020 if (usb_disabled())
5021 return -ENODEV;
5022
5023 xhci_debugfs_create_root();
5024
5025 return 0;
5026 }
5027
5028 /*
5029 * If an init function is provided, an exit function must also be provided
5030 * to allow module unload.
5031 */
5032 static void __exit xhci_hcd_fini(void)
5033 {
5034 xhci_debugfs_remove_root();
5035 }
5036
5037 module_init(xhci_hcd_init);
5038 module_exit(xhci_hcd_fini);