]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci.c
Merge tag 'at91-ab-4.13-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/abellon...
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79 }
80
81 /*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (ret) {
117 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 return ret;
119 }
120 xhci->xhc_state |= XHCI_STATE_HALTED;
121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 return ret;
123 }
124
125 /*
126 * Set the run bit and wait for the host to be running.
127 */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 /* clear state flags. Including dying, halted or removing */
151 xhci->xhc_state = 0;
152
153 return ret;
154 }
155
156 /*
157 * Reset a halted HC.
158 *
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
162 */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 u32 command;
166 u32 state;
167 int ret, i;
168
169 state = readl(&xhci->op_regs->status);
170
171 if (state == ~(u32)0) {
172 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 return -ENODEV;
174 }
175
176 if ((state & STS_HALT) == 0) {
177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 return 0;
179 }
180
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 command = readl(&xhci->op_regs->command);
183 command |= CMD_RESET;
184 writel(command, &xhci->op_regs->command);
185
186 /* Existing Intel xHCI controllers require a delay of 1 mS,
187 * after setting the CMD_RESET bit, and before accessing any
188 * HC registers. This allows the HC to complete the
189 * reset operation and be ready for HC register access.
190 * Without this delay, the subsequent HC register access,
191 * may result in a system hang very rarely.
192 */
193 if (xhci->quirks & XHCI_INTEL_HOST)
194 udelay(1000);
195
196 ret = xhci_handshake(&xhci->op_regs->command,
197 CMD_RESET, 0, 10 * 1000 * 1000);
198 if (ret)
199 return ret;
200
201 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 "Wait for controller to be ready for doorbell rings");
203 /*
204 * xHCI cannot write to any doorbells or operational registers other
205 * than status until the "Controller Not Ready" flag is cleared.
206 */
207 ret = xhci_handshake(&xhci->op_regs->status,
208 STS_CNR, 0, 10 * 1000 * 1000);
209
210 for (i = 0; i < 2; i++) {
211 xhci->bus_state[i].port_c_suspend = 0;
212 xhci->bus_state[i].suspended_ports = 0;
213 xhci->bus_state[i].resuming_ports = 0;
214 }
215
216 return ret;
217 }
218
219
220 #ifdef CONFIG_USB_PCI
221 /*
222 * Set up MSI
223 */
224 static int xhci_setup_msi(struct xhci_hcd *xhci)
225 {
226 int ret;
227 /*
228 * TODO:Check with MSI Soc for sysdev
229 */
230 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
231
232 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
233 if (ret < 0) {
234 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235 "failed to allocate MSI entry");
236 return ret;
237 }
238
239 ret = request_irq(pdev->irq, xhci_msi_irq,
240 0, "xhci_hcd", xhci_to_hcd(xhci));
241 if (ret) {
242 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
243 "disable MSI interrupt");
244 pci_free_irq_vectors(pdev);
245 }
246
247 return ret;
248 }
249
250 /*
251 * Set up MSI-X
252 */
253 static int xhci_setup_msix(struct xhci_hcd *xhci)
254 {
255 int i, ret = 0;
256 struct usb_hcd *hcd = xhci_to_hcd(xhci);
257 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
258
259 /*
260 * calculate number of msi-x vectors supported.
261 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
262 * with max number of interrupters based on the xhci HCSPARAMS1.
263 * - num_online_cpus: maximum msi-x vectors per CPUs core.
264 * Add additional 1 vector to ensure always available interrupt.
265 */
266 xhci->msix_count = min(num_online_cpus() + 1,
267 HCS_MAX_INTRS(xhci->hcs_params1));
268
269 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
270 PCI_IRQ_MSIX);
271 if (ret < 0) {
272 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
273 "Failed to enable MSI-X");
274 return ret;
275 }
276
277 for (i = 0; i < xhci->msix_count; i++) {
278 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
279 "xhci_hcd", xhci_to_hcd(xhci));
280 if (ret)
281 goto disable_msix;
282 }
283
284 hcd->msix_enabled = 1;
285 return ret;
286
287 disable_msix:
288 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
289 while (--i >= 0)
290 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
291 pci_free_irq_vectors(pdev);
292 return ret;
293 }
294
295 /* Free any IRQs and disable MSI-X */
296 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
297 {
298 struct usb_hcd *hcd = xhci_to_hcd(xhci);
299 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
300
301 if (xhci->quirks & XHCI_PLAT)
302 return;
303
304 /* return if using legacy interrupt */
305 if (hcd->irq > 0)
306 return;
307
308 if (hcd->msix_enabled) {
309 int i;
310
311 for (i = 0; i < xhci->msix_count; i++)
312 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
313 } else {
314 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
315 }
316
317 pci_free_irq_vectors(pdev);
318 hcd->msix_enabled = 0;
319 }
320
321 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323 struct usb_hcd *hcd = xhci_to_hcd(xhci);
324
325 if (hcd->msix_enabled) {
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 int i;
328
329 for (i = 0; i < xhci->msix_count; i++)
330 synchronize_irq(pci_irq_vector(pdev, i));
331 }
332 }
333
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337 struct pci_dev *pdev;
338 int ret;
339
340 /* The xhci platform device has set up IRQs through usb_add_hcd. */
341 if (xhci->quirks & XHCI_PLAT)
342 return 0;
343
344 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345 /*
346 * Some Fresco Logic host controllers advertise MSI, but fail to
347 * generate interrupts. Don't even try to enable MSI.
348 */
349 if (xhci->quirks & XHCI_BROKEN_MSI)
350 goto legacy_irq;
351
352 /* unregister the legacy interrupt */
353 if (hcd->irq)
354 free_irq(hcd->irq, hcd);
355 hcd->irq = 0;
356
357 ret = xhci_setup_msix(xhci);
358 if (ret)
359 /* fall back to msi*/
360 ret = xhci_setup_msi(xhci);
361
362 if (!ret) {
363 hcd->msi_enabled = 1;
364 return 0;
365 }
366
367 if (!pdev->irq) {
368 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
369 return -EINVAL;
370 }
371
372 legacy_irq:
373 if (!strlen(hcd->irq_descr))
374 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
375 hcd->driver->description, hcd->self.busnum);
376
377 /* fall back to legacy interrupt*/
378 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
379 hcd->irq_descr, hcd);
380 if (ret) {
381 xhci_err(xhci, "request interrupt %d failed\n",
382 pdev->irq);
383 return ret;
384 }
385 hcd->irq = pdev->irq;
386 return 0;
387 }
388
389 #else
390
391 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
392 {
393 return 0;
394 }
395
396 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
397 {
398 }
399
400 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
401 {
402 }
403
404 #endif
405
406 static void compliance_mode_recovery(unsigned long arg)
407 {
408 struct xhci_hcd *xhci;
409 struct usb_hcd *hcd;
410 u32 temp;
411 int i;
412
413 xhci = (struct xhci_hcd *)arg;
414
415 for (i = 0; i < xhci->num_usb3_ports; i++) {
416 temp = readl(xhci->usb3_ports[i]);
417 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
418 /*
419 * Compliance Mode Detected. Letting USB Core
420 * handle the Warm Reset
421 */
422 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
423 "Compliance mode detected->port %d",
424 i + 1);
425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 "Attempting compliance mode recovery");
427 hcd = xhci->shared_hcd;
428
429 if (hcd->state == HC_STATE_SUSPENDED)
430 usb_hcd_resume_root_hub(hcd);
431
432 usb_hcd_poll_rh_status(hcd);
433 }
434 }
435
436 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
437 mod_timer(&xhci->comp_mode_recovery_timer,
438 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
439 }
440
441 /*
442 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
443 * that causes ports behind that hardware to enter compliance mode sometimes.
444 * The quirk creates a timer that polls every 2 seconds the link state of
445 * each host controller's port and recovers it by issuing a Warm reset
446 * if Compliance mode is detected, otherwise the port will become "dead" (no
447 * device connections or disconnections will be detected anymore). Becasue no
448 * status event is generated when entering compliance mode (per xhci spec),
449 * this quirk is needed on systems that have the failing hardware installed.
450 */
451 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
452 {
453 xhci->port_status_u0 = 0;
454 setup_timer(&xhci->comp_mode_recovery_timer,
455 compliance_mode_recovery, (unsigned long)xhci);
456 xhci->comp_mode_recovery_timer.expires = jiffies +
457 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
458
459 add_timer(&xhci->comp_mode_recovery_timer);
460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 "Compliance mode recovery timer initialized");
462 }
463
464 /*
465 * This function identifies the systems that have installed the SN65LVPE502CP
466 * USB3.0 re-driver and that need the Compliance Mode Quirk.
467 * Systems:
468 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
469 */
470 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
471 {
472 const char *dmi_product_name, *dmi_sys_vendor;
473
474 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
475 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
476 if (!dmi_product_name || !dmi_sys_vendor)
477 return false;
478
479 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
480 return false;
481
482 if (strstr(dmi_product_name, "Z420") ||
483 strstr(dmi_product_name, "Z620") ||
484 strstr(dmi_product_name, "Z820") ||
485 strstr(dmi_product_name, "Z1 Workstation"))
486 return true;
487
488 return false;
489 }
490
491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
492 {
493 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
494 }
495
496
497 /*
498 * Initialize memory for HCD and xHC (one-time init).
499 *
500 * Program the PAGESIZE register, initialize the device context array, create
501 * device contexts (?), set up a command ring segment (or two?), create event
502 * ring (one for now).
503 */
504 static int xhci_init(struct usb_hcd *hcd)
505 {
506 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507 int retval = 0;
508
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
510 spin_lock_init(&xhci->lock);
511 if (xhci->hci_version == 0x95 && link_quirk) {
512 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
513 "QUIRK: Not clearing Link TRB chain bits.");
514 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
515 } else {
516 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
517 "xHCI doesn't need link TRB QUIRK");
518 }
519 retval = xhci_mem_init(xhci, GFP_KERNEL);
520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
521
522 /* Initializing Compliance Mode Recovery Data If Needed */
523 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
524 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
525 compliance_mode_recovery_timer_init(xhci);
526 }
527
528 return retval;
529 }
530
531 /*-------------------------------------------------------------------------*/
532
533
534 static int xhci_run_finished(struct xhci_hcd *xhci)
535 {
536 if (xhci_start(xhci)) {
537 xhci_halt(xhci);
538 return -ENODEV;
539 }
540 xhci->shared_hcd->state = HC_STATE_RUNNING;
541 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
542
543 if (xhci->quirks & XHCI_NEC_HOST)
544 xhci_ring_cmd_db(xhci);
545
546 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 "Finished xhci_run for USB3 roothub");
548 return 0;
549 }
550
551 /*
552 * Start the HC after it was halted.
553 *
554 * This function is called by the USB core when the HC driver is added.
555 * Its opposite is xhci_stop().
556 *
557 * xhci_init() must be called once before this function can be called.
558 * Reset the HC, enable device slot contexts, program DCBAAP, and
559 * set command ring pointer and event ring pointer.
560 *
561 * Setup MSI-X vectors and enable interrupts.
562 */
563 int xhci_run(struct usb_hcd *hcd)
564 {
565 u32 temp;
566 u64 temp_64;
567 int ret;
568 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
569
570 /* Start the xHCI host controller running only after the USB 2.0 roothub
571 * is setup.
572 */
573
574 hcd->uses_new_polling = 1;
575 if (!usb_hcd_is_primary_hcd(hcd))
576 return xhci_run_finished(xhci);
577
578 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
579
580 ret = xhci_try_enable_msi(hcd);
581 if (ret)
582 return ret;
583
584 xhci_dbg_cmd_ptrs(xhci);
585
586 xhci_dbg(xhci, "ERST memory map follows:\n");
587 xhci_dbg_erst(xhci, &xhci->erst);
588 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
589 temp_64 &= ~ERST_PTR_MASK;
590 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
592
593 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594 "// Set the interrupt modulation register");
595 temp = readl(&xhci->ir_set->irq_control);
596 temp &= ~ER_IRQ_INTERVAL_MASK;
597 /*
598 * the increment interval is 8 times as much as that defined
599 * in xHCI spec on MTK's controller
600 */
601 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
602 writel(temp, &xhci->ir_set->irq_control);
603
604 /* Set the HCD state before we enable the irqs */
605 temp = readl(&xhci->op_regs->command);
606 temp |= (CMD_EIE);
607 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608 "// Enable interrupts, cmd = 0x%x.", temp);
609 writel(temp, &xhci->op_regs->command);
610
611 temp = readl(&xhci->ir_set->irq_pending);
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
614 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
615 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
616 xhci_print_ir_set(xhci, 0);
617
618 if (xhci->quirks & XHCI_NEC_HOST) {
619 struct xhci_command *command;
620
621 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
622 if (!command)
623 return -ENOMEM;
624
625 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
626 TRB_TYPE(TRB_NEC_GET_FW));
627 }
628 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629 "Finished xhci_run for USB2 roothub");
630 return 0;
631 }
632 EXPORT_SYMBOL_GPL(xhci_run);
633
634 /*
635 * Stop xHCI driver.
636 *
637 * This function is called by the USB core when the HC driver is removed.
638 * Its opposite is xhci_run().
639 *
640 * Disable device contexts, disable IRQs, and quiesce the HC.
641 * Reset the HC, finish any completed transactions, and cleanup memory.
642 */
643 static void xhci_stop(struct usb_hcd *hcd)
644 {
645 u32 temp;
646 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647
648 mutex_lock(&xhci->mutex);
649
650 /* Only halt host and free memory after both hcds are removed */
651 if (!usb_hcd_is_primary_hcd(hcd)) {
652 /* usb core will free this hcd shortly, unset pointer */
653 xhci->shared_hcd = NULL;
654 mutex_unlock(&xhci->mutex);
655 return;
656 }
657
658 spin_lock_irq(&xhci->lock);
659 xhci->xhc_state |= XHCI_STATE_HALTED;
660 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
661 xhci_halt(xhci);
662 xhci_reset(xhci);
663 spin_unlock_irq(&xhci->lock);
664
665 xhci_cleanup_msix(xhci);
666
667 /* Deleting Compliance Mode Recovery Timer */
668 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
669 (!(xhci_all_ports_seen_u0(xhci)))) {
670 del_timer_sync(&xhci->comp_mode_recovery_timer);
671 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
672 "%s: compliance mode recovery timer deleted",
673 __func__);
674 }
675
676 if (xhci->quirks & XHCI_AMD_PLL_FIX)
677 usb_amd_dev_put();
678
679 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 "// Disabling event ring interrupts");
681 temp = readl(&xhci->op_regs->status);
682 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
683 temp = readl(&xhci->ir_set->irq_pending);
684 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
685 xhci_print_ir_set(xhci, 0);
686
687 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
688 xhci_mem_cleanup(xhci);
689 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
690 "xhci_stop completed - status = %x",
691 readl(&xhci->op_regs->status));
692 mutex_unlock(&xhci->mutex);
693 }
694
695 /*
696 * Shutdown HC (not bus-specific)
697 *
698 * This is called when the machine is rebooting or halting. We assume that the
699 * machine will be powered off, and the HC's internal state will be reset.
700 * Don't bother to free memory.
701 *
702 * This will only ever be called with the main usb_hcd (the USB3 roothub).
703 */
704 static void xhci_shutdown(struct usb_hcd *hcd)
705 {
706 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
707
708 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
709 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
710
711 spin_lock_irq(&xhci->lock);
712 xhci_halt(xhci);
713 /* Workaround for spurious wakeups at shutdown with HSW */
714 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
715 xhci_reset(xhci);
716 spin_unlock_irq(&xhci->lock);
717
718 xhci_cleanup_msix(xhci);
719
720 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
721 "xhci_shutdown completed - status = %x",
722 readl(&xhci->op_regs->status));
723
724 /* Yet another workaround for spurious wakeups at shutdown with HSW */
725 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
726 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
727 }
728
729 #ifdef CONFIG_PM
730 static void xhci_save_registers(struct xhci_hcd *xhci)
731 {
732 xhci->s3.command = readl(&xhci->op_regs->command);
733 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
734 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
735 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
736 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
737 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
738 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
739 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
740 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
741 }
742
743 static void xhci_restore_registers(struct xhci_hcd *xhci)
744 {
745 writel(xhci->s3.command, &xhci->op_regs->command);
746 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
747 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
748 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
749 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
750 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
751 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
752 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
753 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
754 }
755
756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757 {
758 u64 val_64;
759
760 /* step 2: initialize command ring buffer */
761 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764 xhci->cmd_ring->dequeue) &
765 (u64) ~CMD_RING_RSVD_BITS) |
766 xhci->cmd_ring->cycle_state;
767 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 "// Setting command ring address to 0x%llx",
769 (long unsigned long) val_64);
770 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771 }
772
773 /*
774 * The whole command ring must be cleared to zero when we suspend the host.
775 *
776 * The host doesn't save the command ring pointer in the suspend well, so we
777 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
778 * aligned, because of the reserved bits in the command ring dequeue pointer
779 * register. Therefore, we can't just set the dequeue pointer back in the
780 * middle of the ring (TRBs are 16-byte aligned).
781 */
782 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783 {
784 struct xhci_ring *ring;
785 struct xhci_segment *seg;
786
787 ring = xhci->cmd_ring;
788 seg = ring->deq_seg;
789 do {
790 memset(seg->trbs, 0,
791 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793 cpu_to_le32(~TRB_CYCLE);
794 seg = seg->next;
795 } while (seg != ring->deq_seg);
796
797 /* Reset the software enqueue and dequeue pointers */
798 ring->deq_seg = ring->first_seg;
799 ring->dequeue = ring->first_seg->trbs;
800 ring->enq_seg = ring->deq_seg;
801 ring->enqueue = ring->dequeue;
802
803 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
804 /*
805 * Ring is now zeroed, so the HW should look for change of ownership
806 * when the cycle bit is set to 1.
807 */
808 ring->cycle_state = 1;
809
810 /*
811 * Reset the hardware dequeue pointer.
812 * Yes, this will need to be re-written after resume, but we're paranoid
813 * and want to make sure the hardware doesn't access bogus memory
814 * because, say, the BIOS or an SMI started the host without changing
815 * the command ring pointers.
816 */
817 xhci_set_cmd_ring_deq(xhci);
818 }
819
820 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
821 {
822 int port_index;
823 __le32 __iomem **port_array;
824 unsigned long flags;
825 u32 t1, t2;
826
827 spin_lock_irqsave(&xhci->lock, flags);
828
829 /* disable usb3 ports Wake bits */
830 port_index = xhci->num_usb3_ports;
831 port_array = xhci->usb3_ports;
832 while (port_index--) {
833 t1 = readl(port_array[port_index]);
834 t1 = xhci_port_state_to_neutral(t1);
835 t2 = t1 & ~PORT_WAKE_BITS;
836 if (t1 != t2)
837 writel(t2, port_array[port_index]);
838 }
839
840 /* disable usb2 ports Wake bits */
841 port_index = xhci->num_usb2_ports;
842 port_array = xhci->usb2_ports;
843 while (port_index--) {
844 t1 = readl(port_array[port_index]);
845 t1 = xhci_port_state_to_neutral(t1);
846 t2 = t1 & ~PORT_WAKE_BITS;
847 if (t1 != t2)
848 writel(t2, port_array[port_index]);
849 }
850
851 spin_unlock_irqrestore(&xhci->lock, flags);
852 }
853
854 /*
855 * Stop HC (not bus-specific)
856 *
857 * This is called when the machine transition into S3/S4 mode.
858 *
859 */
860 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
861 {
862 int rc = 0;
863 unsigned int delay = XHCI_MAX_HALT_USEC;
864 struct usb_hcd *hcd = xhci_to_hcd(xhci);
865 u32 command;
866
867 if (!hcd->state)
868 return 0;
869
870 if (hcd->state != HC_STATE_SUSPENDED ||
871 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
872 return -EINVAL;
873
874 /* Clear root port wake on bits if wakeup not allowed. */
875 if (!do_wakeup)
876 xhci_disable_port_wake_on_bits(xhci);
877
878 /* Don't poll the roothubs on bus suspend. */
879 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
880 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
881 del_timer_sync(&hcd->rh_timer);
882 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
883 del_timer_sync(&xhci->shared_hcd->rh_timer);
884
885 spin_lock_irq(&xhci->lock);
886 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
888 /* step 1: stop endpoint */
889 /* skipped assuming that port suspend has done */
890
891 /* step 2: clear Run/Stop bit */
892 command = readl(&xhci->op_regs->command);
893 command &= ~CMD_RUN;
894 writel(command, &xhci->op_regs->command);
895
896 /* Some chips from Fresco Logic need an extraordinary delay */
897 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
898
899 if (xhci_handshake(&xhci->op_regs->status,
900 STS_HALT, STS_HALT, delay)) {
901 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
902 spin_unlock_irq(&xhci->lock);
903 return -ETIMEDOUT;
904 }
905 xhci_clear_command_ring(xhci);
906
907 /* step 3: save registers */
908 xhci_save_registers(xhci);
909
910 /* step 4: set CSS flag */
911 command = readl(&xhci->op_regs->command);
912 command |= CMD_CSS;
913 writel(command, &xhci->op_regs->command);
914 if (xhci_handshake(&xhci->op_regs->status,
915 STS_SAVE, 0, 10 * 1000)) {
916 xhci_warn(xhci, "WARN: xHC save state timeout\n");
917 spin_unlock_irq(&xhci->lock);
918 return -ETIMEDOUT;
919 }
920 spin_unlock_irq(&xhci->lock);
921
922 /*
923 * Deleting Compliance Mode Recovery Timer because the xHCI Host
924 * is about to be suspended.
925 */
926 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
927 (!(xhci_all_ports_seen_u0(xhci)))) {
928 del_timer_sync(&xhci->comp_mode_recovery_timer);
929 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
930 "%s: compliance mode recovery timer deleted",
931 __func__);
932 }
933
934 /* step 5: remove core well power */
935 /* synchronize irq when using MSI-X */
936 xhci_msix_sync_irqs(xhci);
937
938 return rc;
939 }
940 EXPORT_SYMBOL_GPL(xhci_suspend);
941
942 /*
943 * start xHC (not bus-specific)
944 *
945 * This is called when the machine transition from S3/S4 mode.
946 *
947 */
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
949 {
950 u32 command, temp = 0, status;
951 struct usb_hcd *hcd = xhci_to_hcd(xhci);
952 struct usb_hcd *secondary_hcd;
953 int retval = 0;
954 bool comp_timer_running = false;
955
956 if (!hcd->state)
957 return 0;
958
959 /* Wait a bit if either of the roothubs need to settle from the
960 * transition into bus suspend.
961 */
962 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
963 time_before(jiffies,
964 xhci->bus_state[1].next_statechange))
965 msleep(100);
966
967 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
968 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
969
970 spin_lock_irq(&xhci->lock);
971 if (xhci->quirks & XHCI_RESET_ON_RESUME)
972 hibernated = true;
973
974 if (!hibernated) {
975 /* step 1: restore register */
976 xhci_restore_registers(xhci);
977 /* step 2: initialize command ring buffer */
978 xhci_set_cmd_ring_deq(xhci);
979 /* step 3: restore state and start state*/
980 /* step 3: set CRS flag */
981 command = readl(&xhci->op_regs->command);
982 command |= CMD_CRS;
983 writel(command, &xhci->op_regs->command);
984 if (xhci_handshake(&xhci->op_regs->status,
985 STS_RESTORE, 0, 10 * 1000)) {
986 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
987 spin_unlock_irq(&xhci->lock);
988 return -ETIMEDOUT;
989 }
990 temp = readl(&xhci->op_regs->status);
991 }
992
993 /* If restore operation fails, re-initialize the HC during resume */
994 if ((temp & STS_SRE) || hibernated) {
995
996 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
997 !(xhci_all_ports_seen_u0(xhci))) {
998 del_timer_sync(&xhci->comp_mode_recovery_timer);
999 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1000 "Compliance Mode Recovery Timer deleted!");
1001 }
1002
1003 /* Let the USB core know _both_ roothubs lost power. */
1004 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1005 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1006
1007 xhci_dbg(xhci, "Stop HCD\n");
1008 xhci_halt(xhci);
1009 xhci_reset(xhci);
1010 spin_unlock_irq(&xhci->lock);
1011 xhci_cleanup_msix(xhci);
1012
1013 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1014 temp = readl(&xhci->op_regs->status);
1015 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1016 temp = readl(&xhci->ir_set->irq_pending);
1017 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1018 xhci_print_ir_set(xhci, 0);
1019
1020 xhci_dbg(xhci, "cleaning up memory\n");
1021 xhci_mem_cleanup(xhci);
1022 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1023 readl(&xhci->op_regs->status));
1024
1025 /* USB core calls the PCI reinit and start functions twice:
1026 * first with the primary HCD, and then with the secondary HCD.
1027 * If we don't do the same, the host will never be started.
1028 */
1029 if (!usb_hcd_is_primary_hcd(hcd))
1030 secondary_hcd = hcd;
1031 else
1032 secondary_hcd = xhci->shared_hcd;
1033
1034 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1035 retval = xhci_init(hcd->primary_hcd);
1036 if (retval)
1037 return retval;
1038 comp_timer_running = true;
1039
1040 xhci_dbg(xhci, "Start the primary HCD\n");
1041 retval = xhci_run(hcd->primary_hcd);
1042 if (!retval) {
1043 xhci_dbg(xhci, "Start the secondary HCD\n");
1044 retval = xhci_run(secondary_hcd);
1045 }
1046 hcd->state = HC_STATE_SUSPENDED;
1047 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1048 goto done;
1049 }
1050
1051 /* step 4: set Run/Stop bit */
1052 command = readl(&xhci->op_regs->command);
1053 command |= CMD_RUN;
1054 writel(command, &xhci->op_regs->command);
1055 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1056 0, 250 * 1000);
1057
1058 /* step 5: walk topology and initialize portsc,
1059 * portpmsc and portli
1060 */
1061 /* this is done in bus_resume */
1062
1063 /* step 6: restart each of the previously
1064 * Running endpoints by ringing their doorbells
1065 */
1066
1067 spin_unlock_irq(&xhci->lock);
1068
1069 done:
1070 if (retval == 0) {
1071 /* Resume root hubs only when have pending events. */
1072 status = readl(&xhci->op_regs->status);
1073 if (status & STS_EINT) {
1074 usb_hcd_resume_root_hub(xhci->shared_hcd);
1075 usb_hcd_resume_root_hub(hcd);
1076 }
1077 }
1078
1079 /*
1080 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081 * be re-initialized Always after a system resume. Ports are subject
1082 * to suffer the Compliance Mode issue again. It doesn't matter if
1083 * ports have entered previously to U0 before system's suspension.
1084 */
1085 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086 compliance_mode_recovery_timer_init(xhci);
1087
1088 /* Re-enable port polling. */
1089 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1090 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1091 usb_hcd_poll_rh_status(xhci->shared_hcd);
1092 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093 usb_hcd_poll_rh_status(hcd);
1094
1095 return retval;
1096 }
1097 EXPORT_SYMBOL_GPL(xhci_resume);
1098 #endif /* CONFIG_PM */
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /**
1103 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1104 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1105 * value to right shift 1 for the bitmask.
1106 *
1107 * Index = (epnum * 2) + direction - 1,
1108 * where direction = 0 for OUT, 1 for IN.
1109 * For control endpoints, the IN index is used (OUT index is unused), so
1110 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1111 */
1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1113 {
1114 unsigned int index;
1115 if (usb_endpoint_xfer_control(desc))
1116 index = (unsigned int) (usb_endpoint_num(desc)*2);
1117 else
1118 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1119 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1120 return index;
1121 }
1122
1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1124 * address from the XHCI endpoint index.
1125 */
1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1127 {
1128 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1129 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1130 return direction | number;
1131 }
1132
1133 /* Find the flag for this endpoint (for use in the control context). Use the
1134 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1135 * bit 1, etc.
1136 */
1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1138 {
1139 return 1 << (xhci_get_endpoint_index(desc) + 1);
1140 }
1141
1142 /* Find the flag for this endpoint (for use in the control context). Use the
1143 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1144 * bit 1, etc.
1145 */
1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1147 {
1148 return 1 << (ep_index + 1);
1149 }
1150
1151 /* Compute the last valid endpoint context index. Basically, this is the
1152 * endpoint index plus one. For slot contexts with more than valid endpoint,
1153 * we find the most significant bit set in the added contexts flags.
1154 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1155 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1156 */
1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1158 {
1159 return fls(added_ctxs) - 1;
1160 }
1161
1162 /* Returns 1 if the arguments are OK;
1163 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1164 */
1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1166 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1167 const char *func) {
1168 struct xhci_hcd *xhci;
1169 struct xhci_virt_device *virt_dev;
1170
1171 if (!hcd || (check_ep && !ep) || !udev) {
1172 pr_debug("xHCI %s called with invalid args\n", func);
1173 return -EINVAL;
1174 }
1175 if (!udev->parent) {
1176 pr_debug("xHCI %s called for root hub\n", func);
1177 return 0;
1178 }
1179
1180 xhci = hcd_to_xhci(hcd);
1181 if (check_virt_dev) {
1182 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1183 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1184 func);
1185 return -EINVAL;
1186 }
1187
1188 virt_dev = xhci->devs[udev->slot_id];
1189 if (virt_dev->udev != udev) {
1190 xhci_dbg(xhci, "xHCI %s called with udev and "
1191 "virt_dev does not match\n", func);
1192 return -EINVAL;
1193 }
1194 }
1195
1196 if (xhci->xhc_state & XHCI_STATE_HALTED)
1197 return -ENODEV;
1198
1199 return 1;
1200 }
1201
1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1203 struct usb_device *udev, struct xhci_command *command,
1204 bool ctx_change, bool must_succeed);
1205
1206 /*
1207 * Full speed devices may have a max packet size greater than 8 bytes, but the
1208 * USB core doesn't know that until it reads the first 8 bytes of the
1209 * descriptor. If the usb_device's max packet size changes after that point,
1210 * we need to issue an evaluate context command and wait on it.
1211 */
1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1213 unsigned int ep_index, struct urb *urb)
1214 {
1215 struct xhci_container_ctx *out_ctx;
1216 struct xhci_input_control_ctx *ctrl_ctx;
1217 struct xhci_ep_ctx *ep_ctx;
1218 struct xhci_command *command;
1219 int max_packet_size;
1220 int hw_max_packet_size;
1221 int ret = 0;
1222
1223 out_ctx = xhci->devs[slot_id]->out_ctx;
1224 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1225 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1226 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1227 if (hw_max_packet_size != max_packet_size) {
1228 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1229 "Max Packet Size for ep 0 changed.");
1230 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1231 "Max packet size in usb_device = %d",
1232 max_packet_size);
1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1234 "Max packet size in xHCI HW = %d",
1235 hw_max_packet_size);
1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1237 "Issuing evaluate context command.");
1238
1239 /* Set up the input context flags for the command */
1240 /* FIXME: This won't work if a non-default control endpoint
1241 * changes max packet sizes.
1242 */
1243
1244 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1245 if (!command)
1246 return -ENOMEM;
1247
1248 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1249 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1250 if (!ctrl_ctx) {
1251 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1252 __func__);
1253 ret = -ENOMEM;
1254 goto command_cleanup;
1255 }
1256 /* Set up the modified control endpoint 0 */
1257 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1258 xhci->devs[slot_id]->out_ctx, ep_index);
1259
1260 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1261 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1262 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1263
1264 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1265 ctrl_ctx->drop_flags = 0;
1266
1267 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1268 true, false);
1269
1270 /* Clean up the input context for later use by bandwidth
1271 * functions.
1272 */
1273 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1274 command_cleanup:
1275 kfree(command->completion);
1276 kfree(command);
1277 }
1278 return ret;
1279 }
1280
1281 /*
1282 * non-error returns are a promise to giveback() the urb later
1283 * we drop ownership so next owner (or urb unlink) can get it
1284 */
1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1286 {
1287 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1288 unsigned long flags;
1289 int ret = 0;
1290 unsigned int slot_id, ep_index, ep_state;
1291 struct urb_priv *urb_priv;
1292 int num_tds;
1293
1294 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1295 true, true, __func__) <= 0)
1296 return -EINVAL;
1297
1298 slot_id = urb->dev->slot_id;
1299 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1300
1301 if (!HCD_HW_ACCESSIBLE(hcd)) {
1302 if (!in_interrupt())
1303 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1304 return -ESHUTDOWN;
1305 }
1306
1307 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1308 num_tds = urb->number_of_packets;
1309 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1310 urb->transfer_buffer_length > 0 &&
1311 urb->transfer_flags & URB_ZERO_PACKET &&
1312 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1313 num_tds = 2;
1314 else
1315 num_tds = 1;
1316
1317 urb_priv = kzalloc(sizeof(struct urb_priv) +
1318 num_tds * sizeof(struct xhci_td), mem_flags);
1319 if (!urb_priv)
1320 return -ENOMEM;
1321
1322 urb_priv->num_tds = num_tds;
1323 urb_priv->num_tds_done = 0;
1324 urb->hcpriv = urb_priv;
1325
1326 trace_xhci_urb_enqueue(urb);
1327
1328 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329 /* Check to see if the max packet size for the default control
1330 * endpoint changed during FS device enumeration
1331 */
1332 if (urb->dev->speed == USB_SPEED_FULL) {
1333 ret = xhci_check_maxpacket(xhci, slot_id,
1334 ep_index, urb);
1335 if (ret < 0) {
1336 xhci_urb_free_priv(urb_priv);
1337 urb->hcpriv = NULL;
1338 return ret;
1339 }
1340 }
1341 }
1342
1343 spin_lock_irqsave(&xhci->lock, flags);
1344
1345 if (xhci->xhc_state & XHCI_STATE_DYING) {
1346 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1347 urb->ep->desc.bEndpointAddress, urb);
1348 ret = -ESHUTDOWN;
1349 goto free_priv;
1350 }
1351
1352 switch (usb_endpoint_type(&urb->ep->desc)) {
1353
1354 case USB_ENDPOINT_XFER_CONTROL:
1355 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1356 slot_id, ep_index);
1357 break;
1358 case USB_ENDPOINT_XFER_BULK:
1359 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1360 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1361 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362 ep_state);
1363 ret = -EINVAL;
1364 break;
1365 }
1366 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367 slot_id, ep_index);
1368 break;
1369
1370
1371 case USB_ENDPOINT_XFER_INT:
1372 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1373 slot_id, ep_index);
1374 break;
1375
1376 case USB_ENDPOINT_XFER_ISOC:
1377 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1378 slot_id, ep_index);
1379 }
1380
1381 if (ret) {
1382 free_priv:
1383 xhci_urb_free_priv(urb_priv);
1384 urb->hcpriv = NULL;
1385 }
1386 spin_unlock_irqrestore(&xhci->lock, flags);
1387 return ret;
1388 }
1389
1390 /*
1391 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1392 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1393 * should pick up where it left off in the TD, unless a Set Transfer Ring
1394 * Dequeue Pointer is issued.
1395 *
1396 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1397 * the ring. Since the ring is a contiguous structure, they can't be physically
1398 * removed. Instead, there are two options:
1399 *
1400 * 1) If the HC is in the middle of processing the URB to be canceled, we
1401 * simply move the ring's dequeue pointer past those TRBs using the Set
1402 * Transfer Ring Dequeue Pointer command. This will be the common case,
1403 * when drivers timeout on the last submitted URB and attempt to cancel.
1404 *
1405 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1406 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1407 * HC will need to invalidate the any TRBs it has cached after the stop
1408 * endpoint command, as noted in the xHCI 0.95 errata.
1409 *
1410 * 3) The TD may have completed by the time the Stop Endpoint Command
1411 * completes, so software needs to handle that case too.
1412 *
1413 * This function should protect against the TD enqueueing code ringing the
1414 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1415 * It also needs to account for multiple cancellations on happening at the same
1416 * time for the same endpoint.
1417 *
1418 * Note that this function can be called in any context, or so says
1419 * usb_hcd_unlink_urb()
1420 */
1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1422 {
1423 unsigned long flags;
1424 int ret, i;
1425 u32 temp;
1426 struct xhci_hcd *xhci;
1427 struct urb_priv *urb_priv;
1428 struct xhci_td *td;
1429 unsigned int ep_index;
1430 struct xhci_ring *ep_ring;
1431 struct xhci_virt_ep *ep;
1432 struct xhci_command *command;
1433 struct xhci_virt_device *vdev;
1434
1435 xhci = hcd_to_xhci(hcd);
1436 spin_lock_irqsave(&xhci->lock, flags);
1437
1438 trace_xhci_urb_dequeue(urb);
1439
1440 /* Make sure the URB hasn't completed or been unlinked already */
1441 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1442 if (ret)
1443 goto done;
1444
1445 /* give back URB now if we can't queue it for cancel */
1446 vdev = xhci->devs[urb->dev->slot_id];
1447 urb_priv = urb->hcpriv;
1448 if (!vdev || !urb_priv)
1449 goto err_giveback;
1450
1451 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1452 ep = &vdev->eps[ep_index];
1453 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1454 if (!ep || !ep_ring)
1455 goto err_giveback;
1456
1457 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1458 temp = readl(&xhci->op_regs->status);
1459 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1460 xhci_hc_died(xhci);
1461 goto done;
1462 }
1463
1464 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1465 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1466 "HC halted, freeing TD manually.");
1467 for (i = urb_priv->num_tds_done;
1468 i < urb_priv->num_tds;
1469 i++) {
1470 td = &urb_priv->td[i];
1471 if (!list_empty(&td->td_list))
1472 list_del_init(&td->td_list);
1473 if (!list_empty(&td->cancelled_td_list))
1474 list_del_init(&td->cancelled_td_list);
1475 }
1476 goto err_giveback;
1477 }
1478
1479 i = urb_priv->num_tds_done;
1480 if (i < urb_priv->num_tds)
1481 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1482 "Cancel URB %p, dev %s, ep 0x%x, "
1483 "starting at offset 0x%llx",
1484 urb, urb->dev->devpath,
1485 urb->ep->desc.bEndpointAddress,
1486 (unsigned long long) xhci_trb_virt_to_dma(
1487 urb_priv->td[i].start_seg,
1488 urb_priv->td[i].first_trb));
1489
1490 for (; i < urb_priv->num_tds; i++) {
1491 td = &urb_priv->td[i];
1492 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1493 }
1494
1495 /* Queue a stop endpoint command, but only if this is
1496 * the first cancellation to be handled.
1497 */
1498 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1499 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1500 if (!command) {
1501 ret = -ENOMEM;
1502 goto done;
1503 }
1504 ep->ep_state |= EP_STOP_CMD_PENDING;
1505 ep->stop_cmd_timer.expires = jiffies +
1506 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1507 add_timer(&ep->stop_cmd_timer);
1508 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1509 ep_index, 0);
1510 xhci_ring_cmd_db(xhci);
1511 }
1512 done:
1513 spin_unlock_irqrestore(&xhci->lock, flags);
1514 return ret;
1515
1516 err_giveback:
1517 if (urb_priv)
1518 xhci_urb_free_priv(urb_priv);
1519 usb_hcd_unlink_urb_from_ep(hcd, urb);
1520 spin_unlock_irqrestore(&xhci->lock, flags);
1521 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1522 return ret;
1523 }
1524
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526 * Only one call to this function is allowed per endpoint before
1527 * check_bandwidth() or reset_bandwidth() must be called.
1528 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529 * add the endpoint to the schedule with possibly new parameters denoted by a
1530 * different endpoint descriptor in usb_host_endpoint.
1531 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532 * not allowed.
1533 *
1534 * The USB core will not allow URBs to be queued to an endpoint that is being
1535 * disabled, so there's no need for mutual exclusion to protect
1536 * the xhci->devs[slot_id] structure.
1537 */
1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539 struct usb_host_endpoint *ep)
1540 {
1541 struct xhci_hcd *xhci;
1542 struct xhci_container_ctx *in_ctx, *out_ctx;
1543 struct xhci_input_control_ctx *ctrl_ctx;
1544 unsigned int ep_index;
1545 struct xhci_ep_ctx *ep_ctx;
1546 u32 drop_flag;
1547 u32 new_add_flags, new_drop_flags;
1548 int ret;
1549
1550 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1551 if (ret <= 0)
1552 return ret;
1553 xhci = hcd_to_xhci(hcd);
1554 if (xhci->xhc_state & XHCI_STATE_DYING)
1555 return -ENODEV;
1556
1557 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1558 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1559 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1560 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1561 __func__, drop_flag);
1562 return 0;
1563 }
1564
1565 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1566 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1567 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1568 if (!ctrl_ctx) {
1569 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570 __func__);
1571 return 0;
1572 }
1573
1574 ep_index = xhci_get_endpoint_index(&ep->desc);
1575 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576 /* If the HC already knows the endpoint is disabled,
1577 * or the HCD has noted it is disabled, ignore this request
1578 */
1579 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1580 le32_to_cpu(ctrl_ctx->drop_flags) &
1581 xhci_get_endpoint_flag(&ep->desc)) {
1582 /* Do not warn when called after a usb_device_reset */
1583 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1584 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585 __func__, ep);
1586 return 0;
1587 }
1588
1589 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591
1592 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594
1595 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1596
1597 if (xhci->quirks & XHCI_MTK_HOST)
1598 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1599
1600 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1601 (unsigned int) ep->desc.bEndpointAddress,
1602 udev->slot_id,
1603 (unsigned int) new_drop_flags,
1604 (unsigned int) new_add_flags);
1605 return 0;
1606 }
1607
1608 /* Add an endpoint to a new possible bandwidth configuration for this device.
1609 * Only one call to this function is allowed per endpoint before
1610 * check_bandwidth() or reset_bandwidth() must be called.
1611 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1612 * add the endpoint to the schedule with possibly new parameters denoted by a
1613 * different endpoint descriptor in usb_host_endpoint.
1614 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1615 * not allowed.
1616 *
1617 * The USB core will not allow URBs to be queued to an endpoint until the
1618 * configuration or alt setting is installed in the device, so there's no need
1619 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1620 */
1621 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1622 struct usb_host_endpoint *ep)
1623 {
1624 struct xhci_hcd *xhci;
1625 struct xhci_container_ctx *in_ctx;
1626 unsigned int ep_index;
1627 struct xhci_input_control_ctx *ctrl_ctx;
1628 u32 added_ctxs;
1629 u32 new_add_flags, new_drop_flags;
1630 struct xhci_virt_device *virt_dev;
1631 int ret = 0;
1632
1633 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1634 if (ret <= 0) {
1635 /* So we won't queue a reset ep command for a root hub */
1636 ep->hcpriv = NULL;
1637 return ret;
1638 }
1639 xhci = hcd_to_xhci(hcd);
1640 if (xhci->xhc_state & XHCI_STATE_DYING)
1641 return -ENODEV;
1642
1643 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1644 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1645 /* FIXME when we have to issue an evaluate endpoint command to
1646 * deal with ep0 max packet size changing once we get the
1647 * descriptors
1648 */
1649 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1650 __func__, added_ctxs);
1651 return 0;
1652 }
1653
1654 virt_dev = xhci->devs[udev->slot_id];
1655 in_ctx = virt_dev->in_ctx;
1656 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1657 if (!ctrl_ctx) {
1658 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1659 __func__);
1660 return 0;
1661 }
1662
1663 ep_index = xhci_get_endpoint_index(&ep->desc);
1664 /* If this endpoint is already in use, and the upper layers are trying
1665 * to add it again without dropping it, reject the addition.
1666 */
1667 if (virt_dev->eps[ep_index].ring &&
1668 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1669 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1670 "without dropping it.\n",
1671 (unsigned int) ep->desc.bEndpointAddress);
1672 return -EINVAL;
1673 }
1674
1675 /* If the HCD has already noted the endpoint is enabled,
1676 * ignore this request.
1677 */
1678 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1679 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1680 __func__, ep);
1681 return 0;
1682 }
1683
1684 /*
1685 * Configuration and alternate setting changes must be done in
1686 * process context, not interrupt context (or so documenation
1687 * for usb_set_interface() and usb_set_configuration() claim).
1688 */
1689 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1690 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1691 __func__, ep->desc.bEndpointAddress);
1692 return -ENOMEM;
1693 }
1694
1695 if (xhci->quirks & XHCI_MTK_HOST) {
1696 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1697 if (ret < 0) {
1698 xhci_free_or_cache_endpoint_ring(xhci,
1699 virt_dev, ep_index);
1700 return ret;
1701 }
1702 }
1703
1704 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1705 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706
1707 /* If xhci_endpoint_disable() was called for this endpoint, but the
1708 * xHC hasn't been notified yet through the check_bandwidth() call,
1709 * this re-adds a new state for the endpoint from the new endpoint
1710 * descriptors. We must drop and re-add this endpoint, so we leave the
1711 * drop flags alone.
1712 */
1713 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1714
1715 /* Store the usb_device pointer for later use */
1716 ep->hcpriv = udev;
1717
1718 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1719 (unsigned int) ep->desc.bEndpointAddress,
1720 udev->slot_id,
1721 (unsigned int) new_drop_flags,
1722 (unsigned int) new_add_flags);
1723 return 0;
1724 }
1725
1726 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1727 {
1728 struct xhci_input_control_ctx *ctrl_ctx;
1729 struct xhci_ep_ctx *ep_ctx;
1730 struct xhci_slot_ctx *slot_ctx;
1731 int i;
1732
1733 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1734 if (!ctrl_ctx) {
1735 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1736 __func__);
1737 return;
1738 }
1739
1740 /* When a device's add flag and drop flag are zero, any subsequent
1741 * configure endpoint command will leave that endpoint's state
1742 * untouched. Make sure we don't leave any old state in the input
1743 * endpoint contexts.
1744 */
1745 ctrl_ctx->drop_flags = 0;
1746 ctrl_ctx->add_flags = 0;
1747 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749 /* Endpoint 0 is always valid */
1750 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751 for (i = 1; i < 31; i++) {
1752 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753 ep_ctx->ep_info = 0;
1754 ep_ctx->ep_info2 = 0;
1755 ep_ctx->deq = 0;
1756 ep_ctx->tx_info = 0;
1757 }
1758 }
1759
1760 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761 struct usb_device *udev, u32 *cmd_status)
1762 {
1763 int ret;
1764
1765 switch (*cmd_status) {
1766 case COMP_COMMAND_ABORTED:
1767 case COMP_COMMAND_RING_STOPPED:
1768 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1769 ret = -ETIME;
1770 break;
1771 case COMP_RESOURCE_ERROR:
1772 dev_warn(&udev->dev,
1773 "Not enough host controller resources for new device state.\n");
1774 ret = -ENOMEM;
1775 /* FIXME: can we allocate more resources for the HC? */
1776 break;
1777 case COMP_BANDWIDTH_ERROR:
1778 case COMP_SECONDARY_BANDWIDTH_ERROR:
1779 dev_warn(&udev->dev,
1780 "Not enough bandwidth for new device state.\n");
1781 ret = -ENOSPC;
1782 /* FIXME: can we go back to the old state? */
1783 break;
1784 case COMP_TRB_ERROR:
1785 /* the HCD set up something wrong */
1786 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1787 "add flag = 1, "
1788 "and endpoint is not disabled.\n");
1789 ret = -EINVAL;
1790 break;
1791 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1792 dev_warn(&udev->dev,
1793 "ERROR: Incompatible device for endpoint configure command.\n");
1794 ret = -ENODEV;
1795 break;
1796 case COMP_SUCCESS:
1797 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1798 "Successful Endpoint Configure command");
1799 ret = 0;
1800 break;
1801 default:
1802 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1803 *cmd_status);
1804 ret = -EINVAL;
1805 break;
1806 }
1807 return ret;
1808 }
1809
1810 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1811 struct usb_device *udev, u32 *cmd_status)
1812 {
1813 int ret;
1814
1815 switch (*cmd_status) {
1816 case COMP_COMMAND_ABORTED:
1817 case COMP_COMMAND_RING_STOPPED:
1818 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1819 ret = -ETIME;
1820 break;
1821 case COMP_PARAMETER_ERROR:
1822 dev_warn(&udev->dev,
1823 "WARN: xHCI driver setup invalid evaluate context command.\n");
1824 ret = -EINVAL;
1825 break;
1826 case COMP_SLOT_NOT_ENABLED_ERROR:
1827 dev_warn(&udev->dev,
1828 "WARN: slot not enabled for evaluate context command.\n");
1829 ret = -EINVAL;
1830 break;
1831 case COMP_CONTEXT_STATE_ERROR:
1832 dev_warn(&udev->dev,
1833 "WARN: invalid context state for evaluate context command.\n");
1834 ret = -EINVAL;
1835 break;
1836 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1837 dev_warn(&udev->dev,
1838 "ERROR: Incompatible device for evaluate context command.\n");
1839 ret = -ENODEV;
1840 break;
1841 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1842 /* Max Exit Latency too large error */
1843 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1844 ret = -EINVAL;
1845 break;
1846 case COMP_SUCCESS:
1847 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1848 "Successful evaluate context command");
1849 ret = 0;
1850 break;
1851 default:
1852 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1853 *cmd_status);
1854 ret = -EINVAL;
1855 break;
1856 }
1857 return ret;
1858 }
1859
1860 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1861 struct xhci_input_control_ctx *ctrl_ctx)
1862 {
1863 u32 valid_add_flags;
1864 u32 valid_drop_flags;
1865
1866 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1867 * (bit 1). The default control endpoint is added during the Address
1868 * Device command and is never removed until the slot is disabled.
1869 */
1870 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1871 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1872
1873 /* Use hweight32 to count the number of ones in the add flags, or
1874 * number of endpoints added. Don't count endpoints that are changed
1875 * (both added and dropped).
1876 */
1877 return hweight32(valid_add_flags) -
1878 hweight32(valid_add_flags & valid_drop_flags);
1879 }
1880
1881 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1882 struct xhci_input_control_ctx *ctrl_ctx)
1883 {
1884 u32 valid_add_flags;
1885 u32 valid_drop_flags;
1886
1887 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1888 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1889
1890 return hweight32(valid_drop_flags) -
1891 hweight32(valid_add_flags & valid_drop_flags);
1892 }
1893
1894 /*
1895 * We need to reserve the new number of endpoints before the configure endpoint
1896 * command completes. We can't subtract the dropped endpoints from the number
1897 * of active endpoints until the command completes because we can oversubscribe
1898 * the host in this case:
1899 *
1900 * - the first configure endpoint command drops more endpoints than it adds
1901 * - a second configure endpoint command that adds more endpoints is queued
1902 * - the first configure endpoint command fails, so the config is unchanged
1903 * - the second command may succeed, even though there isn't enough resources
1904 *
1905 * Must be called with xhci->lock held.
1906 */
1907 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1908 struct xhci_input_control_ctx *ctrl_ctx)
1909 {
1910 u32 added_eps;
1911
1912 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1913 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1914 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1915 "Not enough ep ctxs: "
1916 "%u active, need to add %u, limit is %u.",
1917 xhci->num_active_eps, added_eps,
1918 xhci->limit_active_eps);
1919 return -ENOMEM;
1920 }
1921 xhci->num_active_eps += added_eps;
1922 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1923 "Adding %u ep ctxs, %u now active.", added_eps,
1924 xhci->num_active_eps);
1925 return 0;
1926 }
1927
1928 /*
1929 * The configure endpoint was failed by the xHC for some other reason, so we
1930 * need to revert the resources that failed configuration would have used.
1931 *
1932 * Must be called with xhci->lock held.
1933 */
1934 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1935 struct xhci_input_control_ctx *ctrl_ctx)
1936 {
1937 u32 num_failed_eps;
1938
1939 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1940 xhci->num_active_eps -= num_failed_eps;
1941 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1942 "Removing %u failed ep ctxs, %u now active.",
1943 num_failed_eps,
1944 xhci->num_active_eps);
1945 }
1946
1947 /*
1948 * Now that the command has completed, clean up the active endpoint count by
1949 * subtracting out the endpoints that were dropped (but not changed).
1950 *
1951 * Must be called with xhci->lock held.
1952 */
1953 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1954 struct xhci_input_control_ctx *ctrl_ctx)
1955 {
1956 u32 num_dropped_eps;
1957
1958 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1959 xhci->num_active_eps -= num_dropped_eps;
1960 if (num_dropped_eps)
1961 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1962 "Removing %u dropped ep ctxs, %u now active.",
1963 num_dropped_eps,
1964 xhci->num_active_eps);
1965 }
1966
1967 static unsigned int xhci_get_block_size(struct usb_device *udev)
1968 {
1969 switch (udev->speed) {
1970 case USB_SPEED_LOW:
1971 case USB_SPEED_FULL:
1972 return FS_BLOCK;
1973 case USB_SPEED_HIGH:
1974 return HS_BLOCK;
1975 case USB_SPEED_SUPER:
1976 case USB_SPEED_SUPER_PLUS:
1977 return SS_BLOCK;
1978 case USB_SPEED_UNKNOWN:
1979 case USB_SPEED_WIRELESS:
1980 default:
1981 /* Should never happen */
1982 return 1;
1983 }
1984 }
1985
1986 static unsigned int
1987 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1988 {
1989 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1990 return LS_OVERHEAD;
1991 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1992 return FS_OVERHEAD;
1993 return HS_OVERHEAD;
1994 }
1995
1996 /* If we are changing a LS/FS device under a HS hub,
1997 * make sure (if we are activating a new TT) that the HS bus has enough
1998 * bandwidth for this new TT.
1999 */
2000 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2001 struct xhci_virt_device *virt_dev,
2002 int old_active_eps)
2003 {
2004 struct xhci_interval_bw_table *bw_table;
2005 struct xhci_tt_bw_info *tt_info;
2006
2007 /* Find the bandwidth table for the root port this TT is attached to. */
2008 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2009 tt_info = virt_dev->tt_info;
2010 /* If this TT already had active endpoints, the bandwidth for this TT
2011 * has already been added. Removing all periodic endpoints (and thus
2012 * making the TT enactive) will only decrease the bandwidth used.
2013 */
2014 if (old_active_eps)
2015 return 0;
2016 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2017 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2018 return -ENOMEM;
2019 return 0;
2020 }
2021 /* Not sure why we would have no new active endpoints...
2022 *
2023 * Maybe because of an Evaluate Context change for a hub update or a
2024 * control endpoint 0 max packet size change?
2025 * FIXME: skip the bandwidth calculation in that case.
2026 */
2027 return 0;
2028 }
2029
2030 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2031 struct xhci_virt_device *virt_dev)
2032 {
2033 unsigned int bw_reserved;
2034
2035 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2036 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2037 return -ENOMEM;
2038
2039 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2040 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2041 return -ENOMEM;
2042
2043 return 0;
2044 }
2045
2046 /*
2047 * This algorithm is a very conservative estimate of the worst-case scheduling
2048 * scenario for any one interval. The hardware dynamically schedules the
2049 * packets, so we can't tell which microframe could be the limiting factor in
2050 * the bandwidth scheduling. This only takes into account periodic endpoints.
2051 *
2052 * Obviously, we can't solve an NP complete problem to find the minimum worst
2053 * case scenario. Instead, we come up with an estimate that is no less than
2054 * the worst case bandwidth used for any one microframe, but may be an
2055 * over-estimate.
2056 *
2057 * We walk the requirements for each endpoint by interval, starting with the
2058 * smallest interval, and place packets in the schedule where there is only one
2059 * possible way to schedule packets for that interval. In order to simplify
2060 * this algorithm, we record the largest max packet size for each interval, and
2061 * assume all packets will be that size.
2062 *
2063 * For interval 0, we obviously must schedule all packets for each interval.
2064 * The bandwidth for interval 0 is just the amount of data to be transmitted
2065 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2066 * the number of packets).
2067 *
2068 * For interval 1, we have two possible microframes to schedule those packets
2069 * in. For this algorithm, if we can schedule the same number of packets for
2070 * each possible scheduling opportunity (each microframe), we will do so. The
2071 * remaining number of packets will be saved to be transmitted in the gaps in
2072 * the next interval's scheduling sequence.
2073 *
2074 * As we move those remaining packets to be scheduled with interval 2 packets,
2075 * we have to double the number of remaining packets to transmit. This is
2076 * because the intervals are actually powers of 2, and we would be transmitting
2077 * the previous interval's packets twice in this interval. We also have to be
2078 * sure that when we look at the largest max packet size for this interval, we
2079 * also look at the largest max packet size for the remaining packets and take
2080 * the greater of the two.
2081 *
2082 * The algorithm continues to evenly distribute packets in each scheduling
2083 * opportunity, and push the remaining packets out, until we get to the last
2084 * interval. Then those packets and their associated overhead are just added
2085 * to the bandwidth used.
2086 */
2087 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2088 struct xhci_virt_device *virt_dev,
2089 int old_active_eps)
2090 {
2091 unsigned int bw_reserved;
2092 unsigned int max_bandwidth;
2093 unsigned int bw_used;
2094 unsigned int block_size;
2095 struct xhci_interval_bw_table *bw_table;
2096 unsigned int packet_size = 0;
2097 unsigned int overhead = 0;
2098 unsigned int packets_transmitted = 0;
2099 unsigned int packets_remaining = 0;
2100 unsigned int i;
2101
2102 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2103 return xhci_check_ss_bw(xhci, virt_dev);
2104
2105 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2106 max_bandwidth = HS_BW_LIMIT;
2107 /* Convert percent of bus BW reserved to blocks reserved */
2108 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2109 } else {
2110 max_bandwidth = FS_BW_LIMIT;
2111 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2112 }
2113
2114 bw_table = virt_dev->bw_table;
2115 /* We need to translate the max packet size and max ESIT payloads into
2116 * the units the hardware uses.
2117 */
2118 block_size = xhci_get_block_size(virt_dev->udev);
2119
2120 /* If we are manipulating a LS/FS device under a HS hub, double check
2121 * that the HS bus has enough bandwidth if we are activing a new TT.
2122 */
2123 if (virt_dev->tt_info) {
2124 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125 "Recalculating BW for rootport %u",
2126 virt_dev->real_port);
2127 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2128 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2129 "newly activated TT.\n");
2130 return -ENOMEM;
2131 }
2132 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2133 "Recalculating BW for TT slot %u port %u",
2134 virt_dev->tt_info->slot_id,
2135 virt_dev->tt_info->ttport);
2136 } else {
2137 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2138 "Recalculating BW for rootport %u",
2139 virt_dev->real_port);
2140 }
2141
2142 /* Add in how much bandwidth will be used for interval zero, or the
2143 * rounded max ESIT payload + number of packets * largest overhead.
2144 */
2145 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2146 bw_table->interval_bw[0].num_packets *
2147 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2148
2149 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2150 unsigned int bw_added;
2151 unsigned int largest_mps;
2152 unsigned int interval_overhead;
2153
2154 /*
2155 * How many packets could we transmit in this interval?
2156 * If packets didn't fit in the previous interval, we will need
2157 * to transmit that many packets twice within this interval.
2158 */
2159 packets_remaining = 2 * packets_remaining +
2160 bw_table->interval_bw[i].num_packets;
2161
2162 /* Find the largest max packet size of this or the previous
2163 * interval.
2164 */
2165 if (list_empty(&bw_table->interval_bw[i].endpoints))
2166 largest_mps = 0;
2167 else {
2168 struct xhci_virt_ep *virt_ep;
2169 struct list_head *ep_entry;
2170
2171 ep_entry = bw_table->interval_bw[i].endpoints.next;
2172 virt_ep = list_entry(ep_entry,
2173 struct xhci_virt_ep, bw_endpoint_list);
2174 /* Convert to blocks, rounding up */
2175 largest_mps = DIV_ROUND_UP(
2176 virt_ep->bw_info.max_packet_size,
2177 block_size);
2178 }
2179 if (largest_mps > packet_size)
2180 packet_size = largest_mps;
2181
2182 /* Use the larger overhead of this or the previous interval. */
2183 interval_overhead = xhci_get_largest_overhead(
2184 &bw_table->interval_bw[i]);
2185 if (interval_overhead > overhead)
2186 overhead = interval_overhead;
2187
2188 /* How many packets can we evenly distribute across
2189 * (1 << (i + 1)) possible scheduling opportunities?
2190 */
2191 packets_transmitted = packets_remaining >> (i + 1);
2192
2193 /* Add in the bandwidth used for those scheduled packets */
2194 bw_added = packets_transmitted * (overhead + packet_size);
2195
2196 /* How many packets do we have remaining to transmit? */
2197 packets_remaining = packets_remaining % (1 << (i + 1));
2198
2199 /* What largest max packet size should those packets have? */
2200 /* If we've transmitted all packets, don't carry over the
2201 * largest packet size.
2202 */
2203 if (packets_remaining == 0) {
2204 packet_size = 0;
2205 overhead = 0;
2206 } else if (packets_transmitted > 0) {
2207 /* Otherwise if we do have remaining packets, and we've
2208 * scheduled some packets in this interval, take the
2209 * largest max packet size from endpoints with this
2210 * interval.
2211 */
2212 packet_size = largest_mps;
2213 overhead = interval_overhead;
2214 }
2215 /* Otherwise carry over packet_size and overhead from the last
2216 * time we had a remainder.
2217 */
2218 bw_used += bw_added;
2219 if (bw_used > max_bandwidth) {
2220 xhci_warn(xhci, "Not enough bandwidth. "
2221 "Proposed: %u, Max: %u\n",
2222 bw_used, max_bandwidth);
2223 return -ENOMEM;
2224 }
2225 }
2226 /*
2227 * Ok, we know we have some packets left over after even-handedly
2228 * scheduling interval 15. We don't know which microframes they will
2229 * fit into, so we over-schedule and say they will be scheduled every
2230 * microframe.
2231 */
2232 if (packets_remaining > 0)
2233 bw_used += overhead + packet_size;
2234
2235 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2236 unsigned int port_index = virt_dev->real_port - 1;
2237
2238 /* OK, we're manipulating a HS device attached to a
2239 * root port bandwidth domain. Include the number of active TTs
2240 * in the bandwidth used.
2241 */
2242 bw_used += TT_HS_OVERHEAD *
2243 xhci->rh_bw[port_index].num_active_tts;
2244 }
2245
2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2248 "Available: %u " "percent",
2249 bw_used, max_bandwidth, bw_reserved,
2250 (max_bandwidth - bw_used - bw_reserved) * 100 /
2251 max_bandwidth);
2252
2253 bw_used += bw_reserved;
2254 if (bw_used > max_bandwidth) {
2255 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2256 bw_used, max_bandwidth);
2257 return -ENOMEM;
2258 }
2259
2260 bw_table->bw_used = bw_used;
2261 return 0;
2262 }
2263
2264 static bool xhci_is_async_ep(unsigned int ep_type)
2265 {
2266 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2267 ep_type != ISOC_IN_EP &&
2268 ep_type != INT_IN_EP);
2269 }
2270
2271 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2272 {
2273 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2274 }
2275
2276 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2277 {
2278 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2279
2280 if (ep_bw->ep_interval == 0)
2281 return SS_OVERHEAD_BURST +
2282 (ep_bw->mult * ep_bw->num_packets *
2283 (SS_OVERHEAD + mps));
2284 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2285 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2286 1 << ep_bw->ep_interval);
2287
2288 }
2289
2290 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2291 struct xhci_bw_info *ep_bw,
2292 struct xhci_interval_bw_table *bw_table,
2293 struct usb_device *udev,
2294 struct xhci_virt_ep *virt_ep,
2295 struct xhci_tt_bw_info *tt_info)
2296 {
2297 struct xhci_interval_bw *interval_bw;
2298 int normalized_interval;
2299
2300 if (xhci_is_async_ep(ep_bw->type))
2301 return;
2302
2303 if (udev->speed >= USB_SPEED_SUPER) {
2304 if (xhci_is_sync_in_ep(ep_bw->type))
2305 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2306 xhci_get_ss_bw_consumed(ep_bw);
2307 else
2308 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2309 xhci_get_ss_bw_consumed(ep_bw);
2310 return;
2311 }
2312
2313 /* SuperSpeed endpoints never get added to intervals in the table, so
2314 * this check is only valid for HS/FS/LS devices.
2315 */
2316 if (list_empty(&virt_ep->bw_endpoint_list))
2317 return;
2318 /* For LS/FS devices, we need to translate the interval expressed in
2319 * microframes to frames.
2320 */
2321 if (udev->speed == USB_SPEED_HIGH)
2322 normalized_interval = ep_bw->ep_interval;
2323 else
2324 normalized_interval = ep_bw->ep_interval - 3;
2325
2326 if (normalized_interval == 0)
2327 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2328 interval_bw = &bw_table->interval_bw[normalized_interval];
2329 interval_bw->num_packets -= ep_bw->num_packets;
2330 switch (udev->speed) {
2331 case USB_SPEED_LOW:
2332 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2333 break;
2334 case USB_SPEED_FULL:
2335 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2336 break;
2337 case USB_SPEED_HIGH:
2338 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2339 break;
2340 case USB_SPEED_SUPER:
2341 case USB_SPEED_SUPER_PLUS:
2342 case USB_SPEED_UNKNOWN:
2343 case USB_SPEED_WIRELESS:
2344 /* Should never happen because only LS/FS/HS endpoints will get
2345 * added to the endpoint list.
2346 */
2347 return;
2348 }
2349 if (tt_info)
2350 tt_info->active_eps -= 1;
2351 list_del_init(&virt_ep->bw_endpoint_list);
2352 }
2353
2354 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2355 struct xhci_bw_info *ep_bw,
2356 struct xhci_interval_bw_table *bw_table,
2357 struct usb_device *udev,
2358 struct xhci_virt_ep *virt_ep,
2359 struct xhci_tt_bw_info *tt_info)
2360 {
2361 struct xhci_interval_bw *interval_bw;
2362 struct xhci_virt_ep *smaller_ep;
2363 int normalized_interval;
2364
2365 if (xhci_is_async_ep(ep_bw->type))
2366 return;
2367
2368 if (udev->speed == USB_SPEED_SUPER) {
2369 if (xhci_is_sync_in_ep(ep_bw->type))
2370 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2371 xhci_get_ss_bw_consumed(ep_bw);
2372 else
2373 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2374 xhci_get_ss_bw_consumed(ep_bw);
2375 return;
2376 }
2377
2378 /* For LS/FS devices, we need to translate the interval expressed in
2379 * microframes to frames.
2380 */
2381 if (udev->speed == USB_SPEED_HIGH)
2382 normalized_interval = ep_bw->ep_interval;
2383 else
2384 normalized_interval = ep_bw->ep_interval - 3;
2385
2386 if (normalized_interval == 0)
2387 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2388 interval_bw = &bw_table->interval_bw[normalized_interval];
2389 interval_bw->num_packets += ep_bw->num_packets;
2390 switch (udev->speed) {
2391 case USB_SPEED_LOW:
2392 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2393 break;
2394 case USB_SPEED_FULL:
2395 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2396 break;
2397 case USB_SPEED_HIGH:
2398 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2399 break;
2400 case USB_SPEED_SUPER:
2401 case USB_SPEED_SUPER_PLUS:
2402 case USB_SPEED_UNKNOWN:
2403 case USB_SPEED_WIRELESS:
2404 /* Should never happen because only LS/FS/HS endpoints will get
2405 * added to the endpoint list.
2406 */
2407 return;
2408 }
2409
2410 if (tt_info)
2411 tt_info->active_eps += 1;
2412 /* Insert the endpoint into the list, largest max packet size first. */
2413 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2414 bw_endpoint_list) {
2415 if (ep_bw->max_packet_size >=
2416 smaller_ep->bw_info.max_packet_size) {
2417 /* Add the new ep before the smaller endpoint */
2418 list_add_tail(&virt_ep->bw_endpoint_list,
2419 &smaller_ep->bw_endpoint_list);
2420 return;
2421 }
2422 }
2423 /* Add the new endpoint at the end of the list. */
2424 list_add_tail(&virt_ep->bw_endpoint_list,
2425 &interval_bw->endpoints);
2426 }
2427
2428 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2429 struct xhci_virt_device *virt_dev,
2430 int old_active_eps)
2431 {
2432 struct xhci_root_port_bw_info *rh_bw_info;
2433 if (!virt_dev->tt_info)
2434 return;
2435
2436 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2437 if (old_active_eps == 0 &&
2438 virt_dev->tt_info->active_eps != 0) {
2439 rh_bw_info->num_active_tts += 1;
2440 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2441 } else if (old_active_eps != 0 &&
2442 virt_dev->tt_info->active_eps == 0) {
2443 rh_bw_info->num_active_tts -= 1;
2444 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2445 }
2446 }
2447
2448 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2449 struct xhci_virt_device *virt_dev,
2450 struct xhci_container_ctx *in_ctx)
2451 {
2452 struct xhci_bw_info ep_bw_info[31];
2453 int i;
2454 struct xhci_input_control_ctx *ctrl_ctx;
2455 int old_active_eps = 0;
2456
2457 if (virt_dev->tt_info)
2458 old_active_eps = virt_dev->tt_info->active_eps;
2459
2460 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2461 if (!ctrl_ctx) {
2462 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2463 __func__);
2464 return -ENOMEM;
2465 }
2466
2467 for (i = 0; i < 31; i++) {
2468 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2469 continue;
2470
2471 /* Make a copy of the BW info in case we need to revert this */
2472 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2473 sizeof(ep_bw_info[i]));
2474 /* Drop the endpoint from the interval table if the endpoint is
2475 * being dropped or changed.
2476 */
2477 if (EP_IS_DROPPED(ctrl_ctx, i))
2478 xhci_drop_ep_from_interval_table(xhci,
2479 &virt_dev->eps[i].bw_info,
2480 virt_dev->bw_table,
2481 virt_dev->udev,
2482 &virt_dev->eps[i],
2483 virt_dev->tt_info);
2484 }
2485 /* Overwrite the information stored in the endpoints' bw_info */
2486 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2487 for (i = 0; i < 31; i++) {
2488 /* Add any changed or added endpoints to the interval table */
2489 if (EP_IS_ADDED(ctrl_ctx, i))
2490 xhci_add_ep_to_interval_table(xhci,
2491 &virt_dev->eps[i].bw_info,
2492 virt_dev->bw_table,
2493 virt_dev->udev,
2494 &virt_dev->eps[i],
2495 virt_dev->tt_info);
2496 }
2497
2498 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2499 /* Ok, this fits in the bandwidth we have.
2500 * Update the number of active TTs.
2501 */
2502 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2503 return 0;
2504 }
2505
2506 /* We don't have enough bandwidth for this, revert the stored info. */
2507 for (i = 0; i < 31; i++) {
2508 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2509 continue;
2510
2511 /* Drop the new copies of any added or changed endpoints from
2512 * the interval table.
2513 */
2514 if (EP_IS_ADDED(ctrl_ctx, i)) {
2515 xhci_drop_ep_from_interval_table(xhci,
2516 &virt_dev->eps[i].bw_info,
2517 virt_dev->bw_table,
2518 virt_dev->udev,
2519 &virt_dev->eps[i],
2520 virt_dev->tt_info);
2521 }
2522 /* Revert the endpoint back to its old information */
2523 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2524 sizeof(ep_bw_info[i]));
2525 /* Add any changed or dropped endpoints back into the table */
2526 if (EP_IS_DROPPED(ctrl_ctx, i))
2527 xhci_add_ep_to_interval_table(xhci,
2528 &virt_dev->eps[i].bw_info,
2529 virt_dev->bw_table,
2530 virt_dev->udev,
2531 &virt_dev->eps[i],
2532 virt_dev->tt_info);
2533 }
2534 return -ENOMEM;
2535 }
2536
2537
2538 /* Issue a configure endpoint command or evaluate context command
2539 * and wait for it to finish.
2540 */
2541 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2542 struct usb_device *udev,
2543 struct xhci_command *command,
2544 bool ctx_change, bool must_succeed)
2545 {
2546 int ret;
2547 unsigned long flags;
2548 struct xhci_input_control_ctx *ctrl_ctx;
2549 struct xhci_virt_device *virt_dev;
2550
2551 if (!command)
2552 return -EINVAL;
2553
2554 spin_lock_irqsave(&xhci->lock, flags);
2555
2556 if (xhci->xhc_state & XHCI_STATE_DYING) {
2557 spin_unlock_irqrestore(&xhci->lock, flags);
2558 return -ESHUTDOWN;
2559 }
2560
2561 virt_dev = xhci->devs[udev->slot_id];
2562
2563 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2564 if (!ctrl_ctx) {
2565 spin_unlock_irqrestore(&xhci->lock, flags);
2566 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2567 __func__);
2568 return -ENOMEM;
2569 }
2570
2571 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2572 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2573 spin_unlock_irqrestore(&xhci->lock, flags);
2574 xhci_warn(xhci, "Not enough host resources, "
2575 "active endpoint contexts = %u\n",
2576 xhci->num_active_eps);
2577 return -ENOMEM;
2578 }
2579 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2580 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2581 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2582 xhci_free_host_resources(xhci, ctrl_ctx);
2583 spin_unlock_irqrestore(&xhci->lock, flags);
2584 xhci_warn(xhci, "Not enough bandwidth\n");
2585 return -ENOMEM;
2586 }
2587
2588 if (!ctx_change)
2589 ret = xhci_queue_configure_endpoint(xhci, command,
2590 command->in_ctx->dma,
2591 udev->slot_id, must_succeed);
2592 else
2593 ret = xhci_queue_evaluate_context(xhci, command,
2594 command->in_ctx->dma,
2595 udev->slot_id, must_succeed);
2596 if (ret < 0) {
2597 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2598 xhci_free_host_resources(xhci, ctrl_ctx);
2599 spin_unlock_irqrestore(&xhci->lock, flags);
2600 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2601 "FIXME allocate a new ring segment");
2602 return -ENOMEM;
2603 }
2604 xhci_ring_cmd_db(xhci);
2605 spin_unlock_irqrestore(&xhci->lock, flags);
2606
2607 /* Wait for the configure endpoint command to complete */
2608 wait_for_completion(command->completion);
2609
2610 if (!ctx_change)
2611 ret = xhci_configure_endpoint_result(xhci, udev,
2612 &command->status);
2613 else
2614 ret = xhci_evaluate_context_result(xhci, udev,
2615 &command->status);
2616
2617 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2618 spin_lock_irqsave(&xhci->lock, flags);
2619 /* If the command failed, remove the reserved resources.
2620 * Otherwise, clean up the estimate to include dropped eps.
2621 */
2622 if (ret)
2623 xhci_free_host_resources(xhci, ctrl_ctx);
2624 else
2625 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2626 spin_unlock_irqrestore(&xhci->lock, flags);
2627 }
2628 return ret;
2629 }
2630
2631 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2632 struct xhci_virt_device *vdev, int i)
2633 {
2634 struct xhci_virt_ep *ep = &vdev->eps[i];
2635
2636 if (ep->ep_state & EP_HAS_STREAMS) {
2637 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2638 xhci_get_endpoint_address(i));
2639 xhci_free_stream_info(xhci, ep->stream_info);
2640 ep->stream_info = NULL;
2641 ep->ep_state &= ~EP_HAS_STREAMS;
2642 }
2643 }
2644
2645 /* Called after one or more calls to xhci_add_endpoint() or
2646 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2647 * to call xhci_reset_bandwidth().
2648 *
2649 * Since we are in the middle of changing either configuration or
2650 * installing a new alt setting, the USB core won't allow URBs to be
2651 * enqueued for any endpoint on the old config or interface. Nothing
2652 * else should be touching the xhci->devs[slot_id] structure, so we
2653 * don't need to take the xhci->lock for manipulating that.
2654 */
2655 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2656 {
2657 int i;
2658 int ret = 0;
2659 struct xhci_hcd *xhci;
2660 struct xhci_virt_device *virt_dev;
2661 struct xhci_input_control_ctx *ctrl_ctx;
2662 struct xhci_slot_ctx *slot_ctx;
2663 struct xhci_command *command;
2664
2665 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2666 if (ret <= 0)
2667 return ret;
2668 xhci = hcd_to_xhci(hcd);
2669 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2670 (xhci->xhc_state & XHCI_STATE_REMOVING))
2671 return -ENODEV;
2672
2673 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2674 virt_dev = xhci->devs[udev->slot_id];
2675
2676 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2677 if (!command)
2678 return -ENOMEM;
2679
2680 command->in_ctx = virt_dev->in_ctx;
2681
2682 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2683 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2684 if (!ctrl_ctx) {
2685 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2686 __func__);
2687 ret = -ENOMEM;
2688 goto command_cleanup;
2689 }
2690 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2691 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2692 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2693
2694 /* Don't issue the command if there's no endpoints to update. */
2695 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2696 ctrl_ctx->drop_flags == 0) {
2697 ret = 0;
2698 goto command_cleanup;
2699 }
2700 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2701 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2702 for (i = 31; i >= 1; i--) {
2703 __le32 le32 = cpu_to_le32(BIT(i));
2704
2705 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2706 || (ctrl_ctx->add_flags & le32) || i == 1) {
2707 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2708 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2709 break;
2710 }
2711 }
2712
2713 ret = xhci_configure_endpoint(xhci, udev, command,
2714 false, false);
2715 if (ret)
2716 /* Callee should call reset_bandwidth() */
2717 goto command_cleanup;
2718
2719 /* Free any rings that were dropped, but not changed. */
2720 for (i = 1; i < 31; i++) {
2721 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2722 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2723 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2724 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2725 }
2726 }
2727 xhci_zero_in_ctx(xhci, virt_dev);
2728 /*
2729 * Install any rings for completely new endpoints or changed endpoints,
2730 * and free or cache any old rings from changed endpoints.
2731 */
2732 for (i = 1; i < 31; i++) {
2733 if (!virt_dev->eps[i].new_ring)
2734 continue;
2735 /* Only cache or free the old ring if it exists.
2736 * It may not if this is the first add of an endpoint.
2737 */
2738 if (virt_dev->eps[i].ring) {
2739 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2740 }
2741 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2742 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2743 virt_dev->eps[i].new_ring = NULL;
2744 }
2745 command_cleanup:
2746 kfree(command->completion);
2747 kfree(command);
2748
2749 return ret;
2750 }
2751
2752 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2753 {
2754 struct xhci_hcd *xhci;
2755 struct xhci_virt_device *virt_dev;
2756 int i, ret;
2757
2758 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2759 if (ret <= 0)
2760 return;
2761 xhci = hcd_to_xhci(hcd);
2762
2763 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2764 virt_dev = xhci->devs[udev->slot_id];
2765 /* Free any rings allocated for added endpoints */
2766 for (i = 0; i < 31; i++) {
2767 if (virt_dev->eps[i].new_ring) {
2768 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2769 virt_dev->eps[i].new_ring = NULL;
2770 }
2771 }
2772 xhci_zero_in_ctx(xhci, virt_dev);
2773 }
2774
2775 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2776 struct xhci_container_ctx *in_ctx,
2777 struct xhci_container_ctx *out_ctx,
2778 struct xhci_input_control_ctx *ctrl_ctx,
2779 u32 add_flags, u32 drop_flags)
2780 {
2781 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2782 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2783 xhci_slot_copy(xhci, in_ctx, out_ctx);
2784 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2785 }
2786
2787 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2788 unsigned int slot_id, unsigned int ep_index,
2789 struct xhci_dequeue_state *deq_state)
2790 {
2791 struct xhci_input_control_ctx *ctrl_ctx;
2792 struct xhci_container_ctx *in_ctx;
2793 struct xhci_ep_ctx *ep_ctx;
2794 u32 added_ctxs;
2795 dma_addr_t addr;
2796
2797 in_ctx = xhci->devs[slot_id]->in_ctx;
2798 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2799 if (!ctrl_ctx) {
2800 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2801 __func__);
2802 return;
2803 }
2804
2805 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2806 xhci->devs[slot_id]->out_ctx, ep_index);
2807 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2808 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2809 deq_state->new_deq_ptr);
2810 if (addr == 0) {
2811 xhci_warn(xhci, "WARN Cannot submit config ep after "
2812 "reset ep command\n");
2813 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2814 deq_state->new_deq_seg,
2815 deq_state->new_deq_ptr);
2816 return;
2817 }
2818 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2819
2820 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2821 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2822 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2823 added_ctxs, added_ctxs);
2824 }
2825
2826 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2827 unsigned int ep_index, struct xhci_td *td)
2828 {
2829 struct xhci_dequeue_state deq_state;
2830 struct xhci_virt_ep *ep;
2831 struct usb_device *udev = td->urb->dev;
2832
2833 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2834 "Cleaning up stalled endpoint ring");
2835 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2836 /* We need to move the HW's dequeue pointer past this TD,
2837 * or it will attempt to resend it on the next doorbell ring.
2838 */
2839 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2840 ep_index, ep->stopped_stream, td, &deq_state);
2841
2842 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2843 return;
2844
2845 /* HW with the reset endpoint quirk will use the saved dequeue state to
2846 * issue a configure endpoint command later.
2847 */
2848 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2849 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2850 "Queueing new dequeue state");
2851 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2852 ep_index, ep->stopped_stream, &deq_state);
2853 } else {
2854 /* Better hope no one uses the input context between now and the
2855 * reset endpoint completion!
2856 * XXX: No idea how this hardware will react when stream rings
2857 * are enabled.
2858 */
2859 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2860 "Setting up input context for "
2861 "configure endpoint command");
2862 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2863 ep_index, &deq_state);
2864 }
2865 }
2866
2867 /* Called when clearing halted device. The core should have sent the control
2868 * message to clear the device halt condition. The host side of the halt should
2869 * already be cleared with a reset endpoint command issued when the STALL tx
2870 * event was received.
2871 *
2872 * Context: in_interrupt
2873 */
2874
2875 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2876 struct usb_host_endpoint *ep)
2877 {
2878 struct xhci_hcd *xhci;
2879
2880 xhci = hcd_to_xhci(hcd);
2881
2882 /*
2883 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2884 * The Reset Endpoint Command may only be issued to endpoints in the
2885 * Halted state. If software wishes reset the Data Toggle or Sequence
2886 * Number of an endpoint that isn't in the Halted state, then software
2887 * may issue a Configure Endpoint Command with the Drop and Add bits set
2888 * for the target endpoint. that is in the Stopped state.
2889 */
2890
2891 /* For now just print debug to follow the situation */
2892 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2893 ep->desc.bEndpointAddress);
2894 }
2895
2896 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2897 struct usb_device *udev, struct usb_host_endpoint *ep,
2898 unsigned int slot_id)
2899 {
2900 int ret;
2901 unsigned int ep_index;
2902 unsigned int ep_state;
2903
2904 if (!ep)
2905 return -EINVAL;
2906 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2907 if (ret <= 0)
2908 return -EINVAL;
2909 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2910 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2911 " descriptor for ep 0x%x does not support streams\n",
2912 ep->desc.bEndpointAddress);
2913 return -EINVAL;
2914 }
2915
2916 ep_index = xhci_get_endpoint_index(&ep->desc);
2917 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2918 if (ep_state & EP_HAS_STREAMS ||
2919 ep_state & EP_GETTING_STREAMS) {
2920 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2921 "already has streams set up.\n",
2922 ep->desc.bEndpointAddress);
2923 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2924 "dynamic stream context array reallocation.\n");
2925 return -EINVAL;
2926 }
2927 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2928 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2929 "endpoint 0x%x; URBs are pending.\n",
2930 ep->desc.bEndpointAddress);
2931 return -EINVAL;
2932 }
2933 return 0;
2934 }
2935
2936 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2937 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2938 {
2939 unsigned int max_streams;
2940
2941 /* The stream context array size must be a power of two */
2942 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2943 /*
2944 * Find out how many primary stream array entries the host controller
2945 * supports. Later we may use secondary stream arrays (similar to 2nd
2946 * level page entries), but that's an optional feature for xHCI host
2947 * controllers. xHCs must support at least 4 stream IDs.
2948 */
2949 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2950 if (*num_stream_ctxs > max_streams) {
2951 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2952 max_streams);
2953 *num_stream_ctxs = max_streams;
2954 *num_streams = max_streams;
2955 }
2956 }
2957
2958 /* Returns an error code if one of the endpoint already has streams.
2959 * This does not change any data structures, it only checks and gathers
2960 * information.
2961 */
2962 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2963 struct usb_device *udev,
2964 struct usb_host_endpoint **eps, unsigned int num_eps,
2965 unsigned int *num_streams, u32 *changed_ep_bitmask)
2966 {
2967 unsigned int max_streams;
2968 unsigned int endpoint_flag;
2969 int i;
2970 int ret;
2971
2972 for (i = 0; i < num_eps; i++) {
2973 ret = xhci_check_streams_endpoint(xhci, udev,
2974 eps[i], udev->slot_id);
2975 if (ret < 0)
2976 return ret;
2977
2978 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2979 if (max_streams < (*num_streams - 1)) {
2980 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2981 eps[i]->desc.bEndpointAddress,
2982 max_streams);
2983 *num_streams = max_streams+1;
2984 }
2985
2986 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2987 if (*changed_ep_bitmask & endpoint_flag)
2988 return -EINVAL;
2989 *changed_ep_bitmask |= endpoint_flag;
2990 }
2991 return 0;
2992 }
2993
2994 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2995 struct usb_device *udev,
2996 struct usb_host_endpoint **eps, unsigned int num_eps)
2997 {
2998 u32 changed_ep_bitmask = 0;
2999 unsigned int slot_id;
3000 unsigned int ep_index;
3001 unsigned int ep_state;
3002 int i;
3003
3004 slot_id = udev->slot_id;
3005 if (!xhci->devs[slot_id])
3006 return 0;
3007
3008 for (i = 0; i < num_eps; i++) {
3009 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3010 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3011 /* Are streams already being freed for the endpoint? */
3012 if (ep_state & EP_GETTING_NO_STREAMS) {
3013 xhci_warn(xhci, "WARN Can't disable streams for "
3014 "endpoint 0x%x, "
3015 "streams are being disabled already\n",
3016 eps[i]->desc.bEndpointAddress);
3017 return 0;
3018 }
3019 /* Are there actually any streams to free? */
3020 if (!(ep_state & EP_HAS_STREAMS) &&
3021 !(ep_state & EP_GETTING_STREAMS)) {
3022 xhci_warn(xhci, "WARN Can't disable streams for "
3023 "endpoint 0x%x, "
3024 "streams are already disabled!\n",
3025 eps[i]->desc.bEndpointAddress);
3026 xhci_warn(xhci, "WARN xhci_free_streams() called "
3027 "with non-streams endpoint\n");
3028 return 0;
3029 }
3030 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3031 }
3032 return changed_ep_bitmask;
3033 }
3034
3035 /*
3036 * The USB device drivers use this function (through the HCD interface in USB
3037 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3038 * coordinate mass storage command queueing across multiple endpoints (basically
3039 * a stream ID == a task ID).
3040 *
3041 * Setting up streams involves allocating the same size stream context array
3042 * for each endpoint and issuing a configure endpoint command for all endpoints.
3043 *
3044 * Don't allow the call to succeed if one endpoint only supports one stream
3045 * (which means it doesn't support streams at all).
3046 *
3047 * Drivers may get less stream IDs than they asked for, if the host controller
3048 * hardware or endpoints claim they can't support the number of requested
3049 * stream IDs.
3050 */
3051 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3052 struct usb_host_endpoint **eps, unsigned int num_eps,
3053 unsigned int num_streams, gfp_t mem_flags)
3054 {
3055 int i, ret;
3056 struct xhci_hcd *xhci;
3057 struct xhci_virt_device *vdev;
3058 struct xhci_command *config_cmd;
3059 struct xhci_input_control_ctx *ctrl_ctx;
3060 unsigned int ep_index;
3061 unsigned int num_stream_ctxs;
3062 unsigned int max_packet;
3063 unsigned long flags;
3064 u32 changed_ep_bitmask = 0;
3065
3066 if (!eps)
3067 return -EINVAL;
3068
3069 /* Add one to the number of streams requested to account for
3070 * stream 0 that is reserved for xHCI usage.
3071 */
3072 num_streams += 1;
3073 xhci = hcd_to_xhci(hcd);
3074 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3075 num_streams);
3076
3077 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3078 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3079 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3080 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3081 return -ENOSYS;
3082 }
3083
3084 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3085 if (!config_cmd)
3086 return -ENOMEM;
3087
3088 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3089 if (!ctrl_ctx) {
3090 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3091 __func__);
3092 xhci_free_command(xhci, config_cmd);
3093 return -ENOMEM;
3094 }
3095
3096 /* Check to make sure all endpoints are not already configured for
3097 * streams. While we're at it, find the maximum number of streams that
3098 * all the endpoints will support and check for duplicate endpoints.
3099 */
3100 spin_lock_irqsave(&xhci->lock, flags);
3101 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3102 num_eps, &num_streams, &changed_ep_bitmask);
3103 if (ret < 0) {
3104 xhci_free_command(xhci, config_cmd);
3105 spin_unlock_irqrestore(&xhci->lock, flags);
3106 return ret;
3107 }
3108 if (num_streams <= 1) {
3109 xhci_warn(xhci, "WARN: endpoints can't handle "
3110 "more than one stream.\n");
3111 xhci_free_command(xhci, config_cmd);
3112 spin_unlock_irqrestore(&xhci->lock, flags);
3113 return -EINVAL;
3114 }
3115 vdev = xhci->devs[udev->slot_id];
3116 /* Mark each endpoint as being in transition, so
3117 * xhci_urb_enqueue() will reject all URBs.
3118 */
3119 for (i = 0; i < num_eps; i++) {
3120 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3122 }
3123 spin_unlock_irqrestore(&xhci->lock, flags);
3124
3125 /* Setup internal data structures and allocate HW data structures for
3126 * streams (but don't install the HW structures in the input context
3127 * until we're sure all memory allocation succeeded).
3128 */
3129 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3130 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3131 num_stream_ctxs, num_streams);
3132
3133 for (i = 0; i < num_eps; i++) {
3134 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3135 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3136 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3137 num_stream_ctxs,
3138 num_streams,
3139 max_packet, mem_flags);
3140 if (!vdev->eps[ep_index].stream_info)
3141 goto cleanup;
3142 /* Set maxPstreams in endpoint context and update deq ptr to
3143 * point to stream context array. FIXME
3144 */
3145 }
3146
3147 /* Set up the input context for a configure endpoint command. */
3148 for (i = 0; i < num_eps; i++) {
3149 struct xhci_ep_ctx *ep_ctx;
3150
3151 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3152 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3153
3154 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3155 vdev->out_ctx, ep_index);
3156 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3157 vdev->eps[ep_index].stream_info);
3158 }
3159 /* Tell the HW to drop its old copy of the endpoint context info
3160 * and add the updated copy from the input context.
3161 */
3162 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3163 vdev->out_ctx, ctrl_ctx,
3164 changed_ep_bitmask, changed_ep_bitmask);
3165
3166 /* Issue and wait for the configure endpoint command */
3167 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3168 false, false);
3169
3170 /* xHC rejected the configure endpoint command for some reason, so we
3171 * leave the old ring intact and free our internal streams data
3172 * structure.
3173 */
3174 if (ret < 0)
3175 goto cleanup;
3176
3177 spin_lock_irqsave(&xhci->lock, flags);
3178 for (i = 0; i < num_eps; i++) {
3179 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3180 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3181 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3182 udev->slot_id, ep_index);
3183 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3184 }
3185 xhci_free_command(xhci, config_cmd);
3186 spin_unlock_irqrestore(&xhci->lock, flags);
3187
3188 /* Subtract 1 for stream 0, which drivers can't use */
3189 return num_streams - 1;
3190
3191 cleanup:
3192 /* If it didn't work, free the streams! */
3193 for (i = 0; i < num_eps; i++) {
3194 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3195 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3196 vdev->eps[ep_index].stream_info = NULL;
3197 /* FIXME Unset maxPstreams in endpoint context and
3198 * update deq ptr to point to normal string ring.
3199 */
3200 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3201 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3202 xhci_endpoint_zero(xhci, vdev, eps[i]);
3203 }
3204 xhci_free_command(xhci, config_cmd);
3205 return -ENOMEM;
3206 }
3207
3208 /* Transition the endpoint from using streams to being a "normal" endpoint
3209 * without streams.
3210 *
3211 * Modify the endpoint context state, submit a configure endpoint command,
3212 * and free all endpoint rings for streams if that completes successfully.
3213 */
3214 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3215 struct usb_host_endpoint **eps, unsigned int num_eps,
3216 gfp_t mem_flags)
3217 {
3218 int i, ret;
3219 struct xhci_hcd *xhci;
3220 struct xhci_virt_device *vdev;
3221 struct xhci_command *command;
3222 struct xhci_input_control_ctx *ctrl_ctx;
3223 unsigned int ep_index;
3224 unsigned long flags;
3225 u32 changed_ep_bitmask;
3226
3227 xhci = hcd_to_xhci(hcd);
3228 vdev = xhci->devs[udev->slot_id];
3229
3230 /* Set up a configure endpoint command to remove the streams rings */
3231 spin_lock_irqsave(&xhci->lock, flags);
3232 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3233 udev, eps, num_eps);
3234 if (changed_ep_bitmask == 0) {
3235 spin_unlock_irqrestore(&xhci->lock, flags);
3236 return -EINVAL;
3237 }
3238
3239 /* Use the xhci_command structure from the first endpoint. We may have
3240 * allocated too many, but the driver may call xhci_free_streams() for
3241 * each endpoint it grouped into one call to xhci_alloc_streams().
3242 */
3243 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3244 command = vdev->eps[ep_index].stream_info->free_streams_command;
3245 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3246 if (!ctrl_ctx) {
3247 spin_unlock_irqrestore(&xhci->lock, flags);
3248 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3249 __func__);
3250 return -EINVAL;
3251 }
3252
3253 for (i = 0; i < num_eps; i++) {
3254 struct xhci_ep_ctx *ep_ctx;
3255
3256 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3257 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3258 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3259 EP_GETTING_NO_STREAMS;
3260
3261 xhci_endpoint_copy(xhci, command->in_ctx,
3262 vdev->out_ctx, ep_index);
3263 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3264 &vdev->eps[ep_index]);
3265 }
3266 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3267 vdev->out_ctx, ctrl_ctx,
3268 changed_ep_bitmask, changed_ep_bitmask);
3269 spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271 /* Issue and wait for the configure endpoint command,
3272 * which must succeed.
3273 */
3274 ret = xhci_configure_endpoint(xhci, udev, command,
3275 false, true);
3276
3277 /* xHC rejected the configure endpoint command for some reason, so we
3278 * leave the streams rings intact.
3279 */
3280 if (ret < 0)
3281 return ret;
3282
3283 spin_lock_irqsave(&xhci->lock, flags);
3284 for (i = 0; i < num_eps; i++) {
3285 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3286 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3287 vdev->eps[ep_index].stream_info = NULL;
3288 /* FIXME Unset maxPstreams in endpoint context and
3289 * update deq ptr to point to normal string ring.
3290 */
3291 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3292 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3293 }
3294 spin_unlock_irqrestore(&xhci->lock, flags);
3295
3296 return 0;
3297 }
3298
3299 /*
3300 * Deletes endpoint resources for endpoints that were active before a Reset
3301 * Device command, or a Disable Slot command. The Reset Device command leaves
3302 * the control endpoint intact, whereas the Disable Slot command deletes it.
3303 *
3304 * Must be called with xhci->lock held.
3305 */
3306 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3307 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3308 {
3309 int i;
3310 unsigned int num_dropped_eps = 0;
3311 unsigned int drop_flags = 0;
3312
3313 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3314 if (virt_dev->eps[i].ring) {
3315 drop_flags |= 1 << i;
3316 num_dropped_eps++;
3317 }
3318 }
3319 xhci->num_active_eps -= num_dropped_eps;
3320 if (num_dropped_eps)
3321 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3322 "Dropped %u ep ctxs, flags = 0x%x, "
3323 "%u now active.",
3324 num_dropped_eps, drop_flags,
3325 xhci->num_active_eps);
3326 }
3327
3328 /*
3329 * This submits a Reset Device Command, which will set the device state to 0,
3330 * set the device address to 0, and disable all the endpoints except the default
3331 * control endpoint. The USB core should come back and call
3332 * xhci_address_device(), and then re-set up the configuration. If this is
3333 * called because of a usb_reset_and_verify_device(), then the old alternate
3334 * settings will be re-installed through the normal bandwidth allocation
3335 * functions.
3336 *
3337 * Wait for the Reset Device command to finish. Remove all structures
3338 * associated with the endpoints that were disabled. Clear the input device
3339 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3340 *
3341 * If the virt_dev to be reset does not exist or does not match the udev,
3342 * it means the device is lost, possibly due to the xHC restore error and
3343 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3344 * re-allocate the device.
3345 */
3346 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3347 struct usb_device *udev)
3348 {
3349 int ret, i;
3350 unsigned long flags;
3351 struct xhci_hcd *xhci;
3352 unsigned int slot_id;
3353 struct xhci_virt_device *virt_dev;
3354 struct xhci_command *reset_device_cmd;
3355 int last_freed_endpoint;
3356 struct xhci_slot_ctx *slot_ctx;
3357 int old_active_eps = 0;
3358
3359 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3360 if (ret <= 0)
3361 return ret;
3362 xhci = hcd_to_xhci(hcd);
3363 slot_id = udev->slot_id;
3364 virt_dev = xhci->devs[slot_id];
3365 if (!virt_dev) {
3366 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3367 "not exist. Re-allocate the device\n", slot_id);
3368 ret = xhci_alloc_dev(hcd, udev);
3369 if (ret == 1)
3370 return 0;
3371 else
3372 return -EINVAL;
3373 }
3374
3375 if (virt_dev->tt_info)
3376 old_active_eps = virt_dev->tt_info->active_eps;
3377
3378 if (virt_dev->udev != udev) {
3379 /* If the virt_dev and the udev does not match, this virt_dev
3380 * may belong to another udev.
3381 * Re-allocate the device.
3382 */
3383 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3384 "not match the udev. Re-allocate the device\n",
3385 slot_id);
3386 ret = xhci_alloc_dev(hcd, udev);
3387 if (ret == 1)
3388 return 0;
3389 else
3390 return -EINVAL;
3391 }
3392
3393 /* If device is not setup, there is no point in resetting it */
3394 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3395 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3396 SLOT_STATE_DISABLED)
3397 return 0;
3398
3399 trace_xhci_discover_or_reset_device(slot_ctx);
3400
3401 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3402 /* Allocate the command structure that holds the struct completion.
3403 * Assume we're in process context, since the normal device reset
3404 * process has to wait for the device anyway. Storage devices are
3405 * reset as part of error handling, so use GFP_NOIO instead of
3406 * GFP_KERNEL.
3407 */
3408 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3409 if (!reset_device_cmd) {
3410 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3411 return -ENOMEM;
3412 }
3413
3414 /* Attempt to submit the Reset Device command to the command ring */
3415 spin_lock_irqsave(&xhci->lock, flags);
3416
3417 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3418 if (ret) {
3419 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3420 spin_unlock_irqrestore(&xhci->lock, flags);
3421 goto command_cleanup;
3422 }
3423 xhci_ring_cmd_db(xhci);
3424 spin_unlock_irqrestore(&xhci->lock, flags);
3425
3426 /* Wait for the Reset Device command to finish */
3427 wait_for_completion(reset_device_cmd->completion);
3428
3429 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3430 * unless we tried to reset a slot ID that wasn't enabled,
3431 * or the device wasn't in the addressed or configured state.
3432 */
3433 ret = reset_device_cmd->status;
3434 switch (ret) {
3435 case COMP_COMMAND_ABORTED:
3436 case COMP_COMMAND_RING_STOPPED:
3437 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3438 ret = -ETIME;
3439 goto command_cleanup;
3440 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3441 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3442 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3443 slot_id,
3444 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3445 xhci_dbg(xhci, "Not freeing device rings.\n");
3446 /* Don't treat this as an error. May change my mind later. */
3447 ret = 0;
3448 goto command_cleanup;
3449 case COMP_SUCCESS:
3450 xhci_dbg(xhci, "Successful reset device command.\n");
3451 break;
3452 default:
3453 if (xhci_is_vendor_info_code(xhci, ret))
3454 break;
3455 xhci_warn(xhci, "Unknown completion code %u for "
3456 "reset device command.\n", ret);
3457 ret = -EINVAL;
3458 goto command_cleanup;
3459 }
3460
3461 /* Free up host controller endpoint resources */
3462 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3463 spin_lock_irqsave(&xhci->lock, flags);
3464 /* Don't delete the default control endpoint resources */
3465 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3466 spin_unlock_irqrestore(&xhci->lock, flags);
3467 }
3468
3469 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3470 last_freed_endpoint = 1;
3471 for (i = 1; i < 31; i++) {
3472 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3473
3474 if (ep->ep_state & EP_HAS_STREAMS) {
3475 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3476 xhci_get_endpoint_address(i));
3477 xhci_free_stream_info(xhci, ep->stream_info);
3478 ep->stream_info = NULL;
3479 ep->ep_state &= ~EP_HAS_STREAMS;
3480 }
3481
3482 if (ep->ring) {
3483 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3484 last_freed_endpoint = i;
3485 }
3486 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3487 xhci_drop_ep_from_interval_table(xhci,
3488 &virt_dev->eps[i].bw_info,
3489 virt_dev->bw_table,
3490 udev,
3491 &virt_dev->eps[i],
3492 virt_dev->tt_info);
3493 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3494 }
3495 /* If necessary, update the number of active TTs on this root port */
3496 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3497 ret = 0;
3498
3499 command_cleanup:
3500 xhci_free_command(xhci, reset_device_cmd);
3501 return ret;
3502 }
3503
3504 /*
3505 * At this point, the struct usb_device is about to go away, the device has
3506 * disconnected, and all traffic has been stopped and the endpoints have been
3507 * disabled. Free any HC data structures associated with that device.
3508 */
3509 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3510 {
3511 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3512 struct xhci_virt_device *virt_dev;
3513 struct xhci_slot_ctx *slot_ctx;
3514 int i, ret;
3515 struct xhci_command *command;
3516
3517 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3518 if (!command)
3519 return;
3520
3521 #ifndef CONFIG_USB_DEFAULT_PERSIST
3522 /*
3523 * We called pm_runtime_get_noresume when the device was attached.
3524 * Decrement the counter here to allow controller to runtime suspend
3525 * if no devices remain.
3526 */
3527 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3528 pm_runtime_put_noidle(hcd->self.controller);
3529 #endif
3530
3531 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3532 /* If the host is halted due to driver unload, we still need to free the
3533 * device.
3534 */
3535 if (ret <= 0 && ret != -ENODEV) {
3536 kfree(command);
3537 return;
3538 }
3539
3540 virt_dev = xhci->devs[udev->slot_id];
3541 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3542 trace_xhci_free_dev(slot_ctx);
3543
3544 /* Stop any wayward timer functions (which may grab the lock) */
3545 for (i = 0; i < 31; i++) {
3546 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3547 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3548 }
3549
3550 xhci_disable_slot(xhci, command, udev->slot_id);
3551 /*
3552 * Event command completion handler will free any data structures
3553 * associated with the slot. XXX Can free sleep?
3554 */
3555 }
3556
3557 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3558 u32 slot_id)
3559 {
3560 unsigned long flags;
3561 u32 state;
3562 int ret = 0;
3563 struct xhci_virt_device *virt_dev;
3564
3565 virt_dev = xhci->devs[slot_id];
3566 if (!virt_dev)
3567 return -EINVAL;
3568 if (!command)
3569 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3570 if (!command)
3571 return -ENOMEM;
3572
3573 spin_lock_irqsave(&xhci->lock, flags);
3574 /* Don't disable the slot if the host controller is dead. */
3575 state = readl(&xhci->op_regs->status);
3576 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3577 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3578 xhci_free_virt_device(xhci, slot_id);
3579 spin_unlock_irqrestore(&xhci->lock, flags);
3580 kfree(command);
3581 return ret;
3582 }
3583
3584 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3585 slot_id);
3586 if (ret) {
3587 spin_unlock_irqrestore(&xhci->lock, flags);
3588 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3589 return ret;
3590 }
3591 xhci_ring_cmd_db(xhci);
3592 spin_unlock_irqrestore(&xhci->lock, flags);
3593 return ret;
3594 }
3595
3596 /*
3597 * Checks if we have enough host controller resources for the default control
3598 * endpoint.
3599 *
3600 * Must be called with xhci->lock held.
3601 */
3602 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3603 {
3604 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3605 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3606 "Not enough ep ctxs: "
3607 "%u active, need to add 1, limit is %u.",
3608 xhci->num_active_eps, xhci->limit_active_eps);
3609 return -ENOMEM;
3610 }
3611 xhci->num_active_eps += 1;
3612 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3613 "Adding 1 ep ctx, %u now active.",
3614 xhci->num_active_eps);
3615 return 0;
3616 }
3617
3618
3619 /*
3620 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3621 * timed out, or allocating memory failed. Returns 1 on success.
3622 */
3623 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3624 {
3625 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3626 struct xhci_virt_device *vdev;
3627 struct xhci_slot_ctx *slot_ctx;
3628 unsigned long flags;
3629 int ret, slot_id;
3630 struct xhci_command *command;
3631
3632 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3633 if (!command)
3634 return 0;
3635
3636 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3637 mutex_lock(&xhci->mutex);
3638 spin_lock_irqsave(&xhci->lock, flags);
3639 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3640 if (ret) {
3641 spin_unlock_irqrestore(&xhci->lock, flags);
3642 mutex_unlock(&xhci->mutex);
3643 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3644 xhci_free_command(xhci, command);
3645 return 0;
3646 }
3647 xhci_ring_cmd_db(xhci);
3648 spin_unlock_irqrestore(&xhci->lock, flags);
3649
3650 wait_for_completion(command->completion);
3651 slot_id = command->slot_id;
3652 mutex_unlock(&xhci->mutex);
3653
3654 if (!slot_id || command->status != COMP_SUCCESS) {
3655 xhci_err(xhci, "Error while assigning device slot ID\n");
3656 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3657 HCS_MAX_SLOTS(
3658 readl(&xhci->cap_regs->hcs_params1)));
3659 xhci_free_command(xhci, command);
3660 return 0;
3661 }
3662
3663 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3664 spin_lock_irqsave(&xhci->lock, flags);
3665 ret = xhci_reserve_host_control_ep_resources(xhci);
3666 if (ret) {
3667 spin_unlock_irqrestore(&xhci->lock, flags);
3668 xhci_warn(xhci, "Not enough host resources, "
3669 "active endpoint contexts = %u\n",
3670 xhci->num_active_eps);
3671 goto disable_slot;
3672 }
3673 spin_unlock_irqrestore(&xhci->lock, flags);
3674 }
3675 /* Use GFP_NOIO, since this function can be called from
3676 * xhci_discover_or_reset_device(), which may be called as part of
3677 * mass storage driver error handling.
3678 */
3679 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3680 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3681 goto disable_slot;
3682 }
3683 vdev = xhci->devs[slot_id];
3684 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3685 trace_xhci_alloc_dev(slot_ctx);
3686
3687 udev->slot_id = slot_id;
3688
3689 #ifndef CONFIG_USB_DEFAULT_PERSIST
3690 /*
3691 * If resetting upon resume, we can't put the controller into runtime
3692 * suspend if there is a device attached.
3693 */
3694 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3695 pm_runtime_get_noresume(hcd->self.controller);
3696 #endif
3697
3698
3699 xhci_free_command(xhci, command);
3700 /* Is this a LS or FS device under a HS hub? */
3701 /* Hub or peripherial? */
3702 return 1;
3703
3704 disable_slot:
3705 /* Disable slot, if we can do it without mem alloc */
3706 kfree(command->completion);
3707 command->completion = NULL;
3708 command->status = 0;
3709 return xhci_disable_slot(xhci, command, udev->slot_id);
3710 }
3711
3712 /*
3713 * Issue an Address Device command and optionally send a corresponding
3714 * SetAddress request to the device.
3715 */
3716 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3717 enum xhci_setup_dev setup)
3718 {
3719 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3720 unsigned long flags;
3721 struct xhci_virt_device *virt_dev;
3722 int ret = 0;
3723 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3724 struct xhci_slot_ctx *slot_ctx;
3725 struct xhci_input_control_ctx *ctrl_ctx;
3726 u64 temp_64;
3727 struct xhci_command *command = NULL;
3728
3729 mutex_lock(&xhci->mutex);
3730
3731 if (xhci->xhc_state) { /* dying, removing or halted */
3732 ret = -ESHUTDOWN;
3733 goto out;
3734 }
3735
3736 if (!udev->slot_id) {
3737 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3738 "Bad Slot ID %d", udev->slot_id);
3739 ret = -EINVAL;
3740 goto out;
3741 }
3742
3743 virt_dev = xhci->devs[udev->slot_id];
3744
3745 if (WARN_ON(!virt_dev)) {
3746 /*
3747 * In plug/unplug torture test with an NEC controller,
3748 * a zero-dereference was observed once due to virt_dev = 0.
3749 * Print useful debug rather than crash if it is observed again!
3750 */
3751 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3752 udev->slot_id);
3753 ret = -EINVAL;
3754 goto out;
3755 }
3756 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3757 trace_xhci_setup_device_slot(slot_ctx);
3758
3759 if (setup == SETUP_CONTEXT_ONLY) {
3760 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3761 SLOT_STATE_DEFAULT) {
3762 xhci_dbg(xhci, "Slot already in default state\n");
3763 goto out;
3764 }
3765 }
3766
3767 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3768 if (!command) {
3769 ret = -ENOMEM;
3770 goto out;
3771 }
3772
3773 command->in_ctx = virt_dev->in_ctx;
3774
3775 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3776 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3777 if (!ctrl_ctx) {
3778 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3779 __func__);
3780 ret = -EINVAL;
3781 goto out;
3782 }
3783 /*
3784 * If this is the first Set Address since device plug-in or
3785 * virt_device realloaction after a resume with an xHCI power loss,
3786 * then set up the slot context.
3787 */
3788 if (!slot_ctx->dev_info)
3789 xhci_setup_addressable_virt_dev(xhci, udev);
3790 /* Otherwise, update the control endpoint ring enqueue pointer. */
3791 else
3792 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3793 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3794 ctrl_ctx->drop_flags = 0;
3795
3796 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3797 le32_to_cpu(slot_ctx->dev_info) >> 27);
3798
3799 spin_lock_irqsave(&xhci->lock, flags);
3800 trace_xhci_setup_device(virt_dev);
3801 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3802 udev->slot_id, setup);
3803 if (ret) {
3804 spin_unlock_irqrestore(&xhci->lock, flags);
3805 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3806 "FIXME: allocate a command ring segment");
3807 goto out;
3808 }
3809 xhci_ring_cmd_db(xhci);
3810 spin_unlock_irqrestore(&xhci->lock, flags);
3811
3812 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3813 wait_for_completion(command->completion);
3814
3815 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3816 * the SetAddress() "recovery interval" required by USB and aborting the
3817 * command on a timeout.
3818 */
3819 switch (command->status) {
3820 case COMP_COMMAND_ABORTED:
3821 case COMP_COMMAND_RING_STOPPED:
3822 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3823 ret = -ETIME;
3824 break;
3825 case COMP_CONTEXT_STATE_ERROR:
3826 case COMP_SLOT_NOT_ENABLED_ERROR:
3827 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3828 act, udev->slot_id);
3829 ret = -EINVAL;
3830 break;
3831 case COMP_USB_TRANSACTION_ERROR:
3832 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3833 ret = -EPROTO;
3834 break;
3835 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3836 dev_warn(&udev->dev,
3837 "ERROR: Incompatible device for setup %s command\n", act);
3838 ret = -ENODEV;
3839 break;
3840 case COMP_SUCCESS:
3841 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3842 "Successful setup %s command", act);
3843 break;
3844 default:
3845 xhci_err(xhci,
3846 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3847 act, command->status);
3848 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3849 ret = -EINVAL;
3850 break;
3851 }
3852 if (ret)
3853 goto out;
3854 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3855 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3856 "Op regs DCBAA ptr = %#016llx", temp_64);
3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 "Slot ID %d dcbaa entry @%p = %#016llx",
3859 udev->slot_id,
3860 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3861 (unsigned long long)
3862 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3863 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3864 "Output Context DMA address = %#08llx",
3865 (unsigned long long)virt_dev->out_ctx->dma);
3866 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3867 le32_to_cpu(slot_ctx->dev_info) >> 27);
3868 /*
3869 * USB core uses address 1 for the roothubs, so we add one to the
3870 * address given back to us by the HC.
3871 */
3872 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3873 le32_to_cpu(slot_ctx->dev_info) >> 27);
3874 /* Zero the input context control for later use */
3875 ctrl_ctx->add_flags = 0;
3876 ctrl_ctx->drop_flags = 0;
3877
3878 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3879 "Internal device address = %d",
3880 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3881 out:
3882 mutex_unlock(&xhci->mutex);
3883 if (command) {
3884 kfree(command->completion);
3885 kfree(command);
3886 }
3887 return ret;
3888 }
3889
3890 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3891 {
3892 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3893 }
3894
3895 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3896 {
3897 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3898 }
3899
3900 /*
3901 * Transfer the port index into real index in the HW port status
3902 * registers. Caculate offset between the port's PORTSC register
3903 * and port status base. Divide the number of per port register
3904 * to get the real index. The raw port number bases 1.
3905 */
3906 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3907 {
3908 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3909 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3910 __le32 __iomem *addr;
3911 int raw_port;
3912
3913 if (hcd->speed < HCD_USB3)
3914 addr = xhci->usb2_ports[port1 - 1];
3915 else
3916 addr = xhci->usb3_ports[port1 - 1];
3917
3918 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3919 return raw_port;
3920 }
3921
3922 /*
3923 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3924 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3925 */
3926 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3927 struct usb_device *udev, u16 max_exit_latency)
3928 {
3929 struct xhci_virt_device *virt_dev;
3930 struct xhci_command *command;
3931 struct xhci_input_control_ctx *ctrl_ctx;
3932 struct xhci_slot_ctx *slot_ctx;
3933 unsigned long flags;
3934 int ret;
3935
3936 spin_lock_irqsave(&xhci->lock, flags);
3937
3938 virt_dev = xhci->devs[udev->slot_id];
3939
3940 /*
3941 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3942 * xHC was re-initialized. Exit latency will be set later after
3943 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3944 */
3945
3946 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3947 spin_unlock_irqrestore(&xhci->lock, flags);
3948 return 0;
3949 }
3950
3951 /* Attempt to issue an Evaluate Context command to change the MEL. */
3952 command = xhci->lpm_command;
3953 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3954 if (!ctrl_ctx) {
3955 spin_unlock_irqrestore(&xhci->lock, flags);
3956 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3957 __func__);
3958 return -ENOMEM;
3959 }
3960
3961 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3962 spin_unlock_irqrestore(&xhci->lock, flags);
3963
3964 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3965 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3966 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3967 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3968 slot_ctx->dev_state = 0;
3969
3970 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3971 "Set up evaluate context for LPM MEL change.");
3972
3973 /* Issue and wait for the evaluate context command. */
3974 ret = xhci_configure_endpoint(xhci, udev, command,
3975 true, true);
3976
3977 if (!ret) {
3978 spin_lock_irqsave(&xhci->lock, flags);
3979 virt_dev->current_mel = max_exit_latency;
3980 spin_unlock_irqrestore(&xhci->lock, flags);
3981 }
3982 return ret;
3983 }
3984
3985 #ifdef CONFIG_PM
3986
3987 /* BESL to HIRD Encoding array for USB2 LPM */
3988 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3989 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3990
3991 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3992 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3993 struct usb_device *udev)
3994 {
3995 int u2del, besl, besl_host;
3996 int besl_device = 0;
3997 u32 field;
3998
3999 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4000 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4001
4002 if (field & USB_BESL_SUPPORT) {
4003 for (besl_host = 0; besl_host < 16; besl_host++) {
4004 if (xhci_besl_encoding[besl_host] >= u2del)
4005 break;
4006 }
4007 /* Use baseline BESL value as default */
4008 if (field & USB_BESL_BASELINE_VALID)
4009 besl_device = USB_GET_BESL_BASELINE(field);
4010 else if (field & USB_BESL_DEEP_VALID)
4011 besl_device = USB_GET_BESL_DEEP(field);
4012 } else {
4013 if (u2del <= 50)
4014 besl_host = 0;
4015 else
4016 besl_host = (u2del - 51) / 75 + 1;
4017 }
4018
4019 besl = besl_host + besl_device;
4020 if (besl > 15)
4021 besl = 15;
4022
4023 return besl;
4024 }
4025
4026 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4027 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4028 {
4029 u32 field;
4030 int l1;
4031 int besld = 0;
4032 int hirdm = 0;
4033
4034 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4035
4036 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4037 l1 = udev->l1_params.timeout / 256;
4038
4039 /* device has preferred BESLD */
4040 if (field & USB_BESL_DEEP_VALID) {
4041 besld = USB_GET_BESL_DEEP(field);
4042 hirdm = 1;
4043 }
4044
4045 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4046 }
4047
4048 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4049 struct usb_device *udev, int enable)
4050 {
4051 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4052 __le32 __iomem **port_array;
4053 __le32 __iomem *pm_addr, *hlpm_addr;
4054 u32 pm_val, hlpm_val, field;
4055 unsigned int port_num;
4056 unsigned long flags;
4057 int hird, exit_latency;
4058 int ret;
4059
4060 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4061 !udev->lpm_capable)
4062 return -EPERM;
4063
4064 if (!udev->parent || udev->parent->parent ||
4065 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4066 return -EPERM;
4067
4068 if (udev->usb2_hw_lpm_capable != 1)
4069 return -EPERM;
4070
4071 spin_lock_irqsave(&xhci->lock, flags);
4072
4073 port_array = xhci->usb2_ports;
4074 port_num = udev->portnum - 1;
4075 pm_addr = port_array[port_num] + PORTPMSC;
4076 pm_val = readl(pm_addr);
4077 hlpm_addr = port_array[port_num] + PORTHLPMC;
4078 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4079
4080 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4081 enable ? "enable" : "disable", port_num + 1);
4082
4083 if (enable) {
4084 /* Host supports BESL timeout instead of HIRD */
4085 if (udev->usb2_hw_lpm_besl_capable) {
4086 /* if device doesn't have a preferred BESL value use a
4087 * default one which works with mixed HIRD and BESL
4088 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4089 */
4090 if ((field & USB_BESL_SUPPORT) &&
4091 (field & USB_BESL_BASELINE_VALID))
4092 hird = USB_GET_BESL_BASELINE(field);
4093 else
4094 hird = udev->l1_params.besl;
4095
4096 exit_latency = xhci_besl_encoding[hird];
4097 spin_unlock_irqrestore(&xhci->lock, flags);
4098
4099 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4100 * input context for link powermanagement evaluate
4101 * context commands. It is protected by hcd->bandwidth
4102 * mutex and is shared by all devices. We need to set
4103 * the max ext latency in USB 2 BESL LPM as well, so
4104 * use the same mutex and xhci_change_max_exit_latency()
4105 */
4106 mutex_lock(hcd->bandwidth_mutex);
4107 ret = xhci_change_max_exit_latency(xhci, udev,
4108 exit_latency);
4109 mutex_unlock(hcd->bandwidth_mutex);
4110
4111 if (ret < 0)
4112 return ret;
4113 spin_lock_irqsave(&xhci->lock, flags);
4114
4115 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4116 writel(hlpm_val, hlpm_addr);
4117 /* flush write */
4118 readl(hlpm_addr);
4119 } else {
4120 hird = xhci_calculate_hird_besl(xhci, udev);
4121 }
4122
4123 pm_val &= ~PORT_HIRD_MASK;
4124 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4125 writel(pm_val, pm_addr);
4126 pm_val = readl(pm_addr);
4127 pm_val |= PORT_HLE;
4128 writel(pm_val, pm_addr);
4129 /* flush write */
4130 readl(pm_addr);
4131 } else {
4132 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4133 writel(pm_val, pm_addr);
4134 /* flush write */
4135 readl(pm_addr);
4136 if (udev->usb2_hw_lpm_besl_capable) {
4137 spin_unlock_irqrestore(&xhci->lock, flags);
4138 mutex_lock(hcd->bandwidth_mutex);
4139 xhci_change_max_exit_latency(xhci, udev, 0);
4140 mutex_unlock(hcd->bandwidth_mutex);
4141 return 0;
4142 }
4143 }
4144
4145 spin_unlock_irqrestore(&xhci->lock, flags);
4146 return 0;
4147 }
4148
4149 /* check if a usb2 port supports a given extened capability protocol
4150 * only USB2 ports extended protocol capability values are cached.
4151 * Return 1 if capability is supported
4152 */
4153 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4154 unsigned capability)
4155 {
4156 u32 port_offset, port_count;
4157 int i;
4158
4159 for (i = 0; i < xhci->num_ext_caps; i++) {
4160 if (xhci->ext_caps[i] & capability) {
4161 /* port offsets starts at 1 */
4162 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4163 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4164 if (port >= port_offset &&
4165 port < port_offset + port_count)
4166 return 1;
4167 }
4168 }
4169 return 0;
4170 }
4171
4172 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4173 {
4174 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4175 int portnum = udev->portnum - 1;
4176
4177 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4178 !udev->lpm_capable)
4179 return 0;
4180
4181 /* we only support lpm for non-hub device connected to root hub yet */
4182 if (!udev->parent || udev->parent->parent ||
4183 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4184 return 0;
4185
4186 if (xhci->hw_lpm_support == 1 &&
4187 xhci_check_usb2_port_capability(
4188 xhci, portnum, XHCI_HLC)) {
4189 udev->usb2_hw_lpm_capable = 1;
4190 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4191 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4192 if (xhci_check_usb2_port_capability(xhci, portnum,
4193 XHCI_BLC))
4194 udev->usb2_hw_lpm_besl_capable = 1;
4195 }
4196
4197 return 0;
4198 }
4199
4200 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4201
4202 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4203 static unsigned long long xhci_service_interval_to_ns(
4204 struct usb_endpoint_descriptor *desc)
4205 {
4206 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4207 }
4208
4209 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4210 enum usb3_link_state state)
4211 {
4212 unsigned long long sel;
4213 unsigned long long pel;
4214 unsigned int max_sel_pel;
4215 char *state_name;
4216
4217 switch (state) {
4218 case USB3_LPM_U1:
4219 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4220 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4221 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4222 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4223 state_name = "U1";
4224 break;
4225 case USB3_LPM_U2:
4226 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4227 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4228 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4229 state_name = "U2";
4230 break;
4231 default:
4232 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4233 __func__);
4234 return USB3_LPM_DISABLED;
4235 }
4236
4237 if (sel <= max_sel_pel && pel <= max_sel_pel)
4238 return USB3_LPM_DEVICE_INITIATED;
4239
4240 if (sel > max_sel_pel)
4241 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4242 "due to long SEL %llu ms\n",
4243 state_name, sel);
4244 else
4245 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4246 "due to long PEL %llu ms\n",
4247 state_name, pel);
4248 return USB3_LPM_DISABLED;
4249 }
4250
4251 /* The U1 timeout should be the maximum of the following values:
4252 * - For control endpoints, U1 system exit latency (SEL) * 3
4253 * - For bulk endpoints, U1 SEL * 5
4254 * - For interrupt endpoints:
4255 * - Notification EPs, U1 SEL * 3
4256 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4257 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4258 */
4259 static unsigned long long xhci_calculate_intel_u1_timeout(
4260 struct usb_device *udev,
4261 struct usb_endpoint_descriptor *desc)
4262 {
4263 unsigned long long timeout_ns;
4264 int ep_type;
4265 int intr_type;
4266
4267 ep_type = usb_endpoint_type(desc);
4268 switch (ep_type) {
4269 case USB_ENDPOINT_XFER_CONTROL:
4270 timeout_ns = udev->u1_params.sel * 3;
4271 break;
4272 case USB_ENDPOINT_XFER_BULK:
4273 timeout_ns = udev->u1_params.sel * 5;
4274 break;
4275 case USB_ENDPOINT_XFER_INT:
4276 intr_type = usb_endpoint_interrupt_type(desc);
4277 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4278 timeout_ns = udev->u1_params.sel * 3;
4279 break;
4280 }
4281 /* Otherwise the calculation is the same as isoc eps */
4282 case USB_ENDPOINT_XFER_ISOC:
4283 timeout_ns = xhci_service_interval_to_ns(desc);
4284 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4285 if (timeout_ns < udev->u1_params.sel * 2)
4286 timeout_ns = udev->u1_params.sel * 2;
4287 break;
4288 default:
4289 return 0;
4290 }
4291
4292 return timeout_ns;
4293 }
4294
4295 /* Returns the hub-encoded U1 timeout value. */
4296 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4297 struct usb_device *udev,
4298 struct usb_endpoint_descriptor *desc)
4299 {
4300 unsigned long long timeout_ns;
4301
4302 if (xhci->quirks & XHCI_INTEL_HOST)
4303 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4304 else
4305 timeout_ns = udev->u1_params.sel;
4306
4307 /* The U1 timeout is encoded in 1us intervals.
4308 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4309 */
4310 if (timeout_ns == USB3_LPM_DISABLED)
4311 timeout_ns = 1;
4312 else
4313 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4314
4315 /* If the necessary timeout value is bigger than what we can set in the
4316 * USB 3.0 hub, we have to disable hub-initiated U1.
4317 */
4318 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4319 return timeout_ns;
4320 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4321 "due to long timeout %llu ms\n", timeout_ns);
4322 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4323 }
4324
4325 /* The U2 timeout should be the maximum of:
4326 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4327 * - largest bInterval of any active periodic endpoint (to avoid going
4328 * into lower power link states between intervals).
4329 * - the U2 Exit Latency of the device
4330 */
4331 static unsigned long long xhci_calculate_intel_u2_timeout(
4332 struct usb_device *udev,
4333 struct usb_endpoint_descriptor *desc)
4334 {
4335 unsigned long long timeout_ns;
4336 unsigned long long u2_del_ns;
4337
4338 timeout_ns = 10 * 1000 * 1000;
4339
4340 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4341 (xhci_service_interval_to_ns(desc) > timeout_ns))
4342 timeout_ns = xhci_service_interval_to_ns(desc);
4343
4344 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4345 if (u2_del_ns > timeout_ns)
4346 timeout_ns = u2_del_ns;
4347
4348 return timeout_ns;
4349 }
4350
4351 /* Returns the hub-encoded U2 timeout value. */
4352 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4353 struct usb_device *udev,
4354 struct usb_endpoint_descriptor *desc)
4355 {
4356 unsigned long long timeout_ns;
4357
4358 if (xhci->quirks & XHCI_INTEL_HOST)
4359 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4360 else
4361 timeout_ns = udev->u2_params.sel;
4362
4363 /* The U2 timeout is encoded in 256us intervals */
4364 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4365 /* If the necessary timeout value is bigger than what we can set in the
4366 * USB 3.0 hub, we have to disable hub-initiated U2.
4367 */
4368 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4369 return timeout_ns;
4370 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4371 "due to long timeout %llu ms\n", timeout_ns);
4372 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4373 }
4374
4375 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4376 struct usb_device *udev,
4377 struct usb_endpoint_descriptor *desc,
4378 enum usb3_link_state state,
4379 u16 *timeout)
4380 {
4381 if (state == USB3_LPM_U1)
4382 return xhci_calculate_u1_timeout(xhci, udev, desc);
4383 else if (state == USB3_LPM_U2)
4384 return xhci_calculate_u2_timeout(xhci, udev, desc);
4385
4386 return USB3_LPM_DISABLED;
4387 }
4388
4389 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4390 struct usb_device *udev,
4391 struct usb_endpoint_descriptor *desc,
4392 enum usb3_link_state state,
4393 u16 *timeout)
4394 {
4395 u16 alt_timeout;
4396
4397 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4398 desc, state, timeout);
4399
4400 /* If we found we can't enable hub-initiated LPM, or
4401 * the U1 or U2 exit latency was too high to allow
4402 * device-initiated LPM as well, just stop searching.
4403 */
4404 if (alt_timeout == USB3_LPM_DISABLED ||
4405 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4406 *timeout = alt_timeout;
4407 return -E2BIG;
4408 }
4409 if (alt_timeout > *timeout)
4410 *timeout = alt_timeout;
4411 return 0;
4412 }
4413
4414 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4415 struct usb_device *udev,
4416 struct usb_host_interface *alt,
4417 enum usb3_link_state state,
4418 u16 *timeout)
4419 {
4420 int j;
4421
4422 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4423 if (xhci_update_timeout_for_endpoint(xhci, udev,
4424 &alt->endpoint[j].desc, state, timeout))
4425 return -E2BIG;
4426 continue;
4427 }
4428 return 0;
4429 }
4430
4431 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4432 enum usb3_link_state state)
4433 {
4434 struct usb_device *parent;
4435 unsigned int num_hubs;
4436
4437 if (state == USB3_LPM_U2)
4438 return 0;
4439
4440 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4441 for (parent = udev->parent, num_hubs = 0; parent->parent;
4442 parent = parent->parent)
4443 num_hubs++;
4444
4445 if (num_hubs < 2)
4446 return 0;
4447
4448 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4449 " below second-tier hub.\n");
4450 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4451 "to decrease power consumption.\n");
4452 return -E2BIG;
4453 }
4454
4455 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4456 struct usb_device *udev,
4457 enum usb3_link_state state)
4458 {
4459 if (xhci->quirks & XHCI_INTEL_HOST)
4460 return xhci_check_intel_tier_policy(udev, state);
4461 else
4462 return 0;
4463 }
4464
4465 /* Returns the U1 or U2 timeout that should be enabled.
4466 * If the tier check or timeout setting functions return with a non-zero exit
4467 * code, that means the timeout value has been finalized and we shouldn't look
4468 * at any more endpoints.
4469 */
4470 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4471 struct usb_device *udev, enum usb3_link_state state)
4472 {
4473 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474 struct usb_host_config *config;
4475 char *state_name;
4476 int i;
4477 u16 timeout = USB3_LPM_DISABLED;
4478
4479 if (state == USB3_LPM_U1)
4480 state_name = "U1";
4481 else if (state == USB3_LPM_U2)
4482 state_name = "U2";
4483 else {
4484 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4485 state);
4486 return timeout;
4487 }
4488
4489 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4490 return timeout;
4491
4492 /* Gather some information about the currently installed configuration
4493 * and alternate interface settings.
4494 */
4495 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4496 state, &timeout))
4497 return timeout;
4498
4499 config = udev->actconfig;
4500 if (!config)
4501 return timeout;
4502
4503 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4504 struct usb_driver *driver;
4505 struct usb_interface *intf = config->interface[i];
4506
4507 if (!intf)
4508 continue;
4509
4510 /* Check if any currently bound drivers want hub-initiated LPM
4511 * disabled.
4512 */
4513 if (intf->dev.driver) {
4514 driver = to_usb_driver(intf->dev.driver);
4515 if (driver && driver->disable_hub_initiated_lpm) {
4516 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4517 "at request of driver %s\n",
4518 state_name, driver->name);
4519 return xhci_get_timeout_no_hub_lpm(udev, state);
4520 }
4521 }
4522
4523 /* Not sure how this could happen... */
4524 if (!intf->cur_altsetting)
4525 continue;
4526
4527 if (xhci_update_timeout_for_interface(xhci, udev,
4528 intf->cur_altsetting,
4529 state, &timeout))
4530 return timeout;
4531 }
4532 return timeout;
4533 }
4534
4535 static int calculate_max_exit_latency(struct usb_device *udev,
4536 enum usb3_link_state state_changed,
4537 u16 hub_encoded_timeout)
4538 {
4539 unsigned long long u1_mel_us = 0;
4540 unsigned long long u2_mel_us = 0;
4541 unsigned long long mel_us = 0;
4542 bool disabling_u1;
4543 bool disabling_u2;
4544 bool enabling_u1;
4545 bool enabling_u2;
4546
4547 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4548 hub_encoded_timeout == USB3_LPM_DISABLED);
4549 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4550 hub_encoded_timeout == USB3_LPM_DISABLED);
4551
4552 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4553 hub_encoded_timeout != USB3_LPM_DISABLED);
4554 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4555 hub_encoded_timeout != USB3_LPM_DISABLED);
4556
4557 /* If U1 was already enabled and we're not disabling it,
4558 * or we're going to enable U1, account for the U1 max exit latency.
4559 */
4560 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4561 enabling_u1)
4562 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4563 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4564 enabling_u2)
4565 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4566
4567 if (u1_mel_us > u2_mel_us)
4568 mel_us = u1_mel_us;
4569 else
4570 mel_us = u2_mel_us;
4571 /* xHCI host controller max exit latency field is only 16 bits wide. */
4572 if (mel_us > MAX_EXIT) {
4573 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4574 "is too big.\n", mel_us);
4575 return -E2BIG;
4576 }
4577 return mel_us;
4578 }
4579
4580 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4581 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4582 struct usb_device *udev, enum usb3_link_state state)
4583 {
4584 struct xhci_hcd *xhci;
4585 u16 hub_encoded_timeout;
4586 int mel;
4587 int ret;
4588
4589 xhci = hcd_to_xhci(hcd);
4590 /* The LPM timeout values are pretty host-controller specific, so don't
4591 * enable hub-initiated timeouts unless the vendor has provided
4592 * information about their timeout algorithm.
4593 */
4594 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4595 !xhci->devs[udev->slot_id])
4596 return USB3_LPM_DISABLED;
4597
4598 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4599 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4600 if (mel < 0) {
4601 /* Max Exit Latency is too big, disable LPM. */
4602 hub_encoded_timeout = USB3_LPM_DISABLED;
4603 mel = 0;
4604 }
4605
4606 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4607 if (ret)
4608 return ret;
4609 return hub_encoded_timeout;
4610 }
4611
4612 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613 struct usb_device *udev, enum usb3_link_state state)
4614 {
4615 struct xhci_hcd *xhci;
4616 u16 mel;
4617
4618 xhci = hcd_to_xhci(hcd);
4619 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4620 !xhci->devs[udev->slot_id])
4621 return 0;
4622
4623 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4624 return xhci_change_max_exit_latency(xhci, udev, mel);
4625 }
4626 #else /* CONFIG_PM */
4627
4628 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4629 struct usb_device *udev, int enable)
4630 {
4631 return 0;
4632 }
4633
4634 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4635 {
4636 return 0;
4637 }
4638
4639 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640 struct usb_device *udev, enum usb3_link_state state)
4641 {
4642 return USB3_LPM_DISABLED;
4643 }
4644
4645 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4646 struct usb_device *udev, enum usb3_link_state state)
4647 {
4648 return 0;
4649 }
4650 #endif /* CONFIG_PM */
4651
4652 /*-------------------------------------------------------------------------*/
4653
4654 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4655 * internal data structures for the device.
4656 */
4657 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4658 struct usb_tt *tt, gfp_t mem_flags)
4659 {
4660 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4661 struct xhci_virt_device *vdev;
4662 struct xhci_command *config_cmd;
4663 struct xhci_input_control_ctx *ctrl_ctx;
4664 struct xhci_slot_ctx *slot_ctx;
4665 unsigned long flags;
4666 unsigned think_time;
4667 int ret;
4668
4669 /* Ignore root hubs */
4670 if (!hdev->parent)
4671 return 0;
4672
4673 vdev = xhci->devs[hdev->slot_id];
4674 if (!vdev) {
4675 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4676 return -EINVAL;
4677 }
4678
4679 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4680 if (!config_cmd)
4681 return -ENOMEM;
4682
4683 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4684 if (!ctrl_ctx) {
4685 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4686 __func__);
4687 xhci_free_command(xhci, config_cmd);
4688 return -ENOMEM;
4689 }
4690
4691 spin_lock_irqsave(&xhci->lock, flags);
4692 if (hdev->speed == USB_SPEED_HIGH &&
4693 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4694 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4695 xhci_free_command(xhci, config_cmd);
4696 spin_unlock_irqrestore(&xhci->lock, flags);
4697 return -ENOMEM;
4698 }
4699
4700 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4701 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4702 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4703 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4704 /*
4705 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4706 * but it may be already set to 1 when setup an xHCI virtual
4707 * device, so clear it anyway.
4708 */
4709 if (tt->multi)
4710 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4711 else if (hdev->speed == USB_SPEED_FULL)
4712 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4713
4714 if (xhci->hci_version > 0x95) {
4715 xhci_dbg(xhci, "xHCI version %x needs hub "
4716 "TT think time and number of ports\n",
4717 (unsigned int) xhci->hci_version);
4718 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4719 /* Set TT think time - convert from ns to FS bit times.
4720 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4721 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4722 *
4723 * xHCI 1.0: this field shall be 0 if the device is not a
4724 * High-spped hub.
4725 */
4726 think_time = tt->think_time;
4727 if (think_time != 0)
4728 think_time = (think_time / 666) - 1;
4729 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4730 slot_ctx->tt_info |=
4731 cpu_to_le32(TT_THINK_TIME(think_time));
4732 } else {
4733 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4734 "TT think time or number of ports\n",
4735 (unsigned int) xhci->hci_version);
4736 }
4737 slot_ctx->dev_state = 0;
4738 spin_unlock_irqrestore(&xhci->lock, flags);
4739
4740 xhci_dbg(xhci, "Set up %s for hub device.\n",
4741 (xhci->hci_version > 0x95) ?
4742 "configure endpoint" : "evaluate context");
4743
4744 /* Issue and wait for the configure endpoint or
4745 * evaluate context command.
4746 */
4747 if (xhci->hci_version > 0x95)
4748 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4749 false, false);
4750 else
4751 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4752 true, false);
4753
4754 xhci_free_command(xhci, config_cmd);
4755 return ret;
4756 }
4757
4758 static int xhci_get_frame(struct usb_hcd *hcd)
4759 {
4760 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4761 /* EHCI mods by the periodic size. Why? */
4762 return readl(&xhci->run_regs->microframe_index) >> 3;
4763 }
4764
4765 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4766 {
4767 struct xhci_hcd *xhci;
4768 /*
4769 * TODO: Check with DWC3 clients for sysdev according to
4770 * quirks
4771 */
4772 struct device *dev = hcd->self.sysdev;
4773 int retval;
4774
4775 /* Accept arbitrarily long scatter-gather lists */
4776 hcd->self.sg_tablesize = ~0;
4777
4778 /* support to build packet from discontinuous buffers */
4779 hcd->self.no_sg_constraint = 1;
4780
4781 /* XHCI controllers don't stop the ep queue on short packets :| */
4782 hcd->self.no_stop_on_short = 1;
4783
4784 xhci = hcd_to_xhci(hcd);
4785
4786 if (usb_hcd_is_primary_hcd(hcd)) {
4787 xhci->main_hcd = hcd;
4788 /* Mark the first roothub as being USB 2.0.
4789 * The xHCI driver will register the USB 3.0 roothub.
4790 */
4791 hcd->speed = HCD_USB2;
4792 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4793 /*
4794 * USB 2.0 roothub under xHCI has an integrated TT,
4795 * (rate matching hub) as opposed to having an OHCI/UHCI
4796 * companion controller.
4797 */
4798 hcd->has_tt = 1;
4799 } else {
4800 if (xhci->sbrn == 0x31) {
4801 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4802 hcd->speed = HCD_USB31;
4803 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4804 }
4805 /* xHCI private pointer was set in xhci_pci_probe for the second
4806 * registered roothub.
4807 */
4808 return 0;
4809 }
4810
4811 mutex_init(&xhci->mutex);
4812 xhci->cap_regs = hcd->regs;
4813 xhci->op_regs = hcd->regs +
4814 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4815 xhci->run_regs = hcd->regs +
4816 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4817 /* Cache read-only capability registers */
4818 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4819 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4820 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4821 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4822 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4823 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4824 if (xhci->hci_version > 0x100)
4825 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4826 xhci_print_registers(xhci);
4827
4828 xhci->quirks |= quirks;
4829
4830 get_quirks(dev, xhci);
4831
4832 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4833 * success event after a short transfer. This quirk will ignore such
4834 * spurious event.
4835 */
4836 if (xhci->hci_version > 0x96)
4837 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4838
4839 /* Make sure the HC is halted. */
4840 retval = xhci_halt(xhci);
4841 if (retval)
4842 return retval;
4843
4844 xhci_dbg(xhci, "Resetting HCD\n");
4845 /* Reset the internal HC memory state and registers. */
4846 retval = xhci_reset(xhci);
4847 if (retval)
4848 return retval;
4849 xhci_dbg(xhci, "Reset complete\n");
4850
4851 /*
4852 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4853 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4854 * address memory pointers actually. So, this driver clears the AC64
4855 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4856 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4857 */
4858 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4859 xhci->hcc_params &= ~BIT(0);
4860
4861 /* Set dma_mask and coherent_dma_mask to 64-bits,
4862 * if xHC supports 64-bit addressing */
4863 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4864 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4865 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4866 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4867 } else {
4868 /*
4869 * This is to avoid error in cases where a 32-bit USB
4870 * controller is used on a 64-bit capable system.
4871 */
4872 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4873 if (retval)
4874 return retval;
4875 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4876 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4877 }
4878
4879 xhci_dbg(xhci, "Calling HCD init\n");
4880 /* Initialize HCD and host controller data structures. */
4881 retval = xhci_init(hcd);
4882 if (retval)
4883 return retval;
4884 xhci_dbg(xhci, "Called HCD init\n");
4885
4886 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4887 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4888
4889 return 0;
4890 }
4891 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4892
4893 static const struct hc_driver xhci_hc_driver = {
4894 .description = "xhci-hcd",
4895 .product_desc = "xHCI Host Controller",
4896 .hcd_priv_size = sizeof(struct xhci_hcd),
4897
4898 /*
4899 * generic hardware linkage
4900 */
4901 .irq = xhci_irq,
4902 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4903
4904 /*
4905 * basic lifecycle operations
4906 */
4907 .reset = NULL, /* set in xhci_init_driver() */
4908 .start = xhci_run,
4909 .stop = xhci_stop,
4910 .shutdown = xhci_shutdown,
4911
4912 /*
4913 * managing i/o requests and associated device resources
4914 */
4915 .urb_enqueue = xhci_urb_enqueue,
4916 .urb_dequeue = xhci_urb_dequeue,
4917 .alloc_dev = xhci_alloc_dev,
4918 .free_dev = xhci_free_dev,
4919 .alloc_streams = xhci_alloc_streams,
4920 .free_streams = xhci_free_streams,
4921 .add_endpoint = xhci_add_endpoint,
4922 .drop_endpoint = xhci_drop_endpoint,
4923 .endpoint_reset = xhci_endpoint_reset,
4924 .check_bandwidth = xhci_check_bandwidth,
4925 .reset_bandwidth = xhci_reset_bandwidth,
4926 .address_device = xhci_address_device,
4927 .enable_device = xhci_enable_device,
4928 .update_hub_device = xhci_update_hub_device,
4929 .reset_device = xhci_discover_or_reset_device,
4930
4931 /*
4932 * scheduling support
4933 */
4934 .get_frame_number = xhci_get_frame,
4935
4936 /*
4937 * root hub support
4938 */
4939 .hub_control = xhci_hub_control,
4940 .hub_status_data = xhci_hub_status_data,
4941 .bus_suspend = xhci_bus_suspend,
4942 .bus_resume = xhci_bus_resume,
4943
4944 /*
4945 * call back when device connected and addressed
4946 */
4947 .update_device = xhci_update_device,
4948 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4949 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4950 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4951 .find_raw_port_number = xhci_find_raw_port_number,
4952 };
4953
4954 void xhci_init_driver(struct hc_driver *drv,
4955 const struct xhci_driver_overrides *over)
4956 {
4957 BUG_ON(!over);
4958
4959 /* Copy the generic table to drv then apply the overrides */
4960 *drv = xhci_hc_driver;
4961
4962 if (over) {
4963 drv->hcd_priv_size += over->extra_priv_size;
4964 if (over->reset)
4965 drv->reset = over->reset;
4966 if (over->start)
4967 drv->start = over->start;
4968 }
4969 }
4970 EXPORT_SYMBOL_GPL(xhci_init_driver);
4971
4972 MODULE_DESCRIPTION(DRIVER_DESC);
4973 MODULE_AUTHOR(DRIVER_AUTHOR);
4974 MODULE_LICENSE("GPL");
4975
4976 static int __init xhci_hcd_init(void)
4977 {
4978 /*
4979 * Check the compiler generated sizes of structures that must be laid
4980 * out in specific ways for hardware access.
4981 */
4982 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4983 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4984 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4985 /* xhci_device_control has eight fields, and also
4986 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4987 */
4988 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4989 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4990 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4991 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4992 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4993 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4994 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4995
4996 if (usb_disabled())
4997 return -ENODEV;
4998
4999 return 0;
5000 }
5001
5002 /*
5003 * If an init function is provided, an exit function must also be provided
5004 * to allow module unload.
5005 */
5006 static void __exit xhci_hcd_fini(void) { }
5007
5008 module_init(xhci_hcd_init);
5009 module_exit(xhci_hcd_fini);