]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79 }
80
81 /*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (ret) {
117 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 return ret;
119 }
120 xhci->xhc_state |= XHCI_STATE_HALTED;
121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 return ret;
123 }
124
125 /*
126 * Set the run bit and wait for the host to be running.
127 */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 /* clear state flags. Including dying, halted or removing */
151 xhci->xhc_state = 0;
152
153 return ret;
154 }
155
156 /*
157 * Reset a halted HC.
158 *
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
162 */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 u32 command;
166 u32 state;
167 int ret, i;
168
169 state = readl(&xhci->op_regs->status);
170
171 if (state == ~(u32)0) {
172 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 return -ENODEV;
174 }
175
176 if ((state & STS_HALT) == 0) {
177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 return 0;
179 }
180
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 command = readl(&xhci->op_regs->command);
183 command |= CMD_RESET;
184 writel(command, &xhci->op_regs->command);
185
186 /* Existing Intel xHCI controllers require a delay of 1 mS,
187 * after setting the CMD_RESET bit, and before accessing any
188 * HC registers. This allows the HC to complete the
189 * reset operation and be ready for HC register access.
190 * Without this delay, the subsequent HC register access,
191 * may result in a system hang very rarely.
192 */
193 if (xhci->quirks & XHCI_INTEL_HOST)
194 udelay(1000);
195
196 ret = xhci_handshake(&xhci->op_regs->command,
197 CMD_RESET, 0, 10 * 1000 * 1000);
198 if (ret)
199 return ret;
200
201 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 "Wait for controller to be ready for doorbell rings");
203 /*
204 * xHCI cannot write to any doorbells or operational registers other
205 * than status until the "Controller Not Ready" flag is cleared.
206 */
207 ret = xhci_handshake(&xhci->op_regs->status,
208 STS_CNR, 0, 10 * 1000 * 1000);
209
210 for (i = 0; i < 2; i++) {
211 xhci->bus_state[i].port_c_suspend = 0;
212 xhci->bus_state[i].suspended_ports = 0;
213 xhci->bus_state[i].resuming_ports = 0;
214 }
215
216 return ret;
217 }
218
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222 int i;
223
224 if (!xhci->msix_entries)
225 return -EINVAL;
226
227 for (i = 0; i < xhci->msix_count; i++)
228 if (xhci->msix_entries[i].vector)
229 free_irq(xhci->msix_entries[i].vector,
230 xhci_to_hcd(xhci));
231 return 0;
232 }
233
234 /*
235 * Set up MSI
236 */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239 int ret;
240 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241
242 ret = pci_enable_msi(pdev);
243 if (ret) {
244 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 "failed to allocate MSI entry");
246 return ret;
247 }
248
249 ret = request_irq(pdev->irq, xhci_msi_irq,
250 0, "xhci_hcd", xhci_to_hcd(xhci));
251 if (ret) {
252 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253 "disable MSI interrupt");
254 pci_disable_msi(pdev);
255 }
256
257 return ret;
258 }
259
260 /*
261 * Free IRQs
262 * free all IRQs request
263 */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267 int ret;
268
269 /* return if using legacy interrupt */
270 if (xhci_to_hcd(xhci)->irq > 0)
271 return;
272
273 ret = xhci_free_msi(xhci);
274 if (!ret)
275 return;
276 if (pdev->irq > 0)
277 free_irq(pdev->irq, xhci_to_hcd(xhci));
278
279 return;
280 }
281
282 /*
283 * Set up MSI-X
284 */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287 int i, ret = 0;
288 struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291 /*
292 * calculate number of msi-x vectors supported.
293 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294 * with max number of interrupters based on the xhci HCSPARAMS1.
295 * - num_online_cpus: maximum msi-x vectors per CPUs core.
296 * Add additional 1 vector to ensure always available interrupt.
297 */
298 xhci->msix_count = min(num_online_cpus() + 1,
299 HCS_MAX_INTRS(xhci->hcs_params1));
300
301 xhci->msix_entries =
302 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303 GFP_KERNEL);
304 if (!xhci->msix_entries)
305 return -ENOMEM;
306
307 for (i = 0; i < xhci->msix_count; i++) {
308 xhci->msix_entries[i].entry = i;
309 xhci->msix_entries[i].vector = 0;
310 }
311
312 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313 if (ret) {
314 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 "Failed to enable MSI-X");
316 goto free_entries;
317 }
318
319 for (i = 0; i < xhci->msix_count; i++) {
320 ret = request_irq(xhci->msix_entries[i].vector,
321 xhci_msi_irq,
322 0, "xhci_hcd", xhci_to_hcd(xhci));
323 if (ret)
324 goto disable_msix;
325 }
326
327 hcd->msix_enabled = 1;
328 return ret;
329
330 disable_msix:
331 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332 xhci_free_irq(xhci);
333 pci_disable_msix(pdev);
334 free_entries:
335 kfree(xhci->msix_entries);
336 xhci->msix_entries = NULL;
337 return ret;
338 }
339
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343 struct usb_hcd *hcd = xhci_to_hcd(xhci);
344 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345
346 if (xhci->quirks & XHCI_PLAT)
347 return;
348
349 xhci_free_irq(xhci);
350
351 if (xhci->msix_entries) {
352 pci_disable_msix(pdev);
353 kfree(xhci->msix_entries);
354 xhci->msix_entries = NULL;
355 } else {
356 pci_disable_msi(pdev);
357 }
358
359 hcd->msix_enabled = 0;
360 return;
361 }
362
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365 int i;
366
367 if (xhci->msix_entries) {
368 for (i = 0; i < xhci->msix_count; i++)
369 synchronize_irq(xhci->msix_entries[i].vector);
370 }
371 }
372
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376 struct pci_dev *pdev;
377 int ret;
378
379 /* The xhci platform device has set up IRQs through usb_add_hcd. */
380 if (xhci->quirks & XHCI_PLAT)
381 return 0;
382
383 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384 /*
385 * Some Fresco Logic host controllers advertise MSI, but fail to
386 * generate interrupts. Don't even try to enable MSI.
387 */
388 if (xhci->quirks & XHCI_BROKEN_MSI)
389 goto legacy_irq;
390
391 /* unregister the legacy interrupt */
392 if (hcd->irq)
393 free_irq(hcd->irq, hcd);
394 hcd->irq = 0;
395
396 ret = xhci_setup_msix(xhci);
397 if (ret)
398 /* fall back to msi*/
399 ret = xhci_setup_msi(xhci);
400
401 if (!ret)
402 /* hcd->irq is 0, we have MSI */
403 return 0;
404
405 if (!pdev->irq) {
406 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407 return -EINVAL;
408 }
409
410 legacy_irq:
411 if (!strlen(hcd->irq_descr))
412 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413 hcd->driver->description, hcd->self.busnum);
414
415 /* fall back to legacy interrupt*/
416 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417 hcd->irq_descr, hcd);
418 if (ret) {
419 xhci_err(xhci, "request interrupt %d failed\n",
420 pdev->irq);
421 return ret;
422 }
423 hcd->irq = pdev->irq;
424 return 0;
425 }
426
427 #else
428
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431 return 0;
432 }
433
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441
442 #endif
443
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446 struct xhci_hcd *xhci;
447 struct usb_hcd *hcd;
448 u32 temp;
449 int i;
450
451 xhci = (struct xhci_hcd *)arg;
452
453 for (i = 0; i < xhci->num_usb3_ports; i++) {
454 temp = readl(xhci->usb3_ports[i]);
455 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456 /*
457 * Compliance Mode Detected. Letting USB Core
458 * handle the Warm Reset
459 */
460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 "Compliance mode detected->port %d",
462 i + 1);
463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 "Attempting compliance mode recovery");
465 hcd = xhci->shared_hcd;
466
467 if (hcd->state == HC_STATE_SUSPENDED)
468 usb_hcd_resume_root_hub(hcd);
469
470 usb_hcd_poll_rh_status(hcd);
471 }
472 }
473
474 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475 mod_timer(&xhci->comp_mode_recovery_timer,
476 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478
479 /*
480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481 * that causes ports behind that hardware to enter compliance mode sometimes.
482 * The quirk creates a timer that polls every 2 seconds the link state of
483 * each host controller's port and recovers it by issuing a Warm reset
484 * if Compliance mode is detected, otherwise the port will become "dead" (no
485 * device connections or disconnections will be detected anymore). Becasue no
486 * status event is generated when entering compliance mode (per xhci spec),
487 * this quirk is needed on systems that have the failing hardware installed.
488 */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491 xhci->port_status_u0 = 0;
492 setup_timer(&xhci->comp_mode_recovery_timer,
493 compliance_mode_recovery, (unsigned long)xhci);
494 xhci->comp_mode_recovery_timer.expires = jiffies +
495 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496
497 add_timer(&xhci->comp_mode_recovery_timer);
498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 "Compliance mode recovery timer initialized");
500 }
501
502 /*
503 * This function identifies the systems that have installed the SN65LVPE502CP
504 * USB3.0 re-driver and that need the Compliance Mode Quirk.
505 * Systems:
506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507 */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510 const char *dmi_product_name, *dmi_sys_vendor;
511
512 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514 if (!dmi_product_name || !dmi_sys_vendor)
515 return false;
516
517 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518 return false;
519
520 if (strstr(dmi_product_name, "Z420") ||
521 strstr(dmi_product_name, "Z620") ||
522 strstr(dmi_product_name, "Z820") ||
523 strstr(dmi_product_name, "Z1 Workstation"))
524 return true;
525
526 return false;
527 }
528
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533
534
535 /*
536 * Initialize memory for HCD and xHC (one-time init).
537 *
538 * Program the PAGESIZE register, initialize the device context array, create
539 * device contexts (?), set up a command ring segment (or two?), create event
540 * ring (one for now).
541 */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 int retval = 0;
546
547 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548 spin_lock_init(&xhci->lock);
549 if (xhci->hci_version == 0x95 && link_quirk) {
550 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551 "QUIRK: Not clearing Link TRB chain bits.");
552 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553 } else {
554 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555 "xHCI doesn't need link TRB QUIRK");
556 }
557 retval = xhci_mem_init(xhci, GFP_KERNEL);
558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559
560 /* Initializing Compliance Mode Recovery Data If Needed */
561 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563 compliance_mode_recovery_timer_init(xhci);
564 }
565
566 return retval;
567 }
568
569 /*-------------------------------------------------------------------------*/
570
571
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574 if (xhci_start(xhci)) {
575 xhci_halt(xhci);
576 return -ENODEV;
577 }
578 xhci->shared_hcd->state = HC_STATE_RUNNING;
579 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580
581 if (xhci->quirks & XHCI_NEC_HOST)
582 xhci_ring_cmd_db(xhci);
583
584 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 "Finished xhci_run for USB3 roothub");
586 return 0;
587 }
588
589 /*
590 * Start the HC after it was halted.
591 *
592 * This function is called by the USB core when the HC driver is added.
593 * Its opposite is xhci_stop().
594 *
595 * xhci_init() must be called once before this function can be called.
596 * Reset the HC, enable device slot contexts, program DCBAAP, and
597 * set command ring pointer and event ring pointer.
598 *
599 * Setup MSI-X vectors and enable interrupts.
600 */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603 u32 temp;
604 u64 temp_64;
605 int ret;
606 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607
608 /* Start the xHCI host controller running only after the USB 2.0 roothub
609 * is setup.
610 */
611
612 hcd->uses_new_polling = 1;
613 if (!usb_hcd_is_primary_hcd(hcd))
614 return xhci_run_finished(xhci);
615
616 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617
618 ret = xhci_try_enable_msi(hcd);
619 if (ret)
620 return ret;
621
622 xhci_dbg(xhci, "Command ring memory map follows:\n");
623 xhci_debug_ring(xhci, xhci->cmd_ring);
624 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625 xhci_dbg_cmd_ptrs(xhci);
626
627 xhci_dbg(xhci, "ERST memory map follows:\n");
628 xhci_dbg_erst(xhci, &xhci->erst);
629 xhci_dbg(xhci, "Event ring:\n");
630 xhci_debug_ring(xhci, xhci->event_ring);
631 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633 temp_64 &= ~ERST_PTR_MASK;
634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636
637 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 "// Set the interrupt modulation register");
639 temp = readl(&xhci->ir_set->irq_control);
640 temp &= ~ER_IRQ_INTERVAL_MASK;
641 /*
642 * the increment interval is 8 times as much as that defined
643 * in xHCI spec on MTK's controller
644 */
645 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646 writel(temp, &xhci->ir_set->irq_control);
647
648 /* Set the HCD state before we enable the irqs */
649 temp = readl(&xhci->op_regs->command);
650 temp |= (CMD_EIE);
651 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652 "// Enable interrupts, cmd = 0x%x.", temp);
653 writel(temp, &xhci->op_regs->command);
654
655 temp = readl(&xhci->ir_set->irq_pending);
656 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660 xhci_print_ir_set(xhci, 0);
661
662 if (xhci->quirks & XHCI_NEC_HOST) {
663 struct xhci_command *command;
664 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665 if (!command)
666 return -ENOMEM;
667 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 TRB_TYPE(TRB_NEC_GET_FW));
669 }
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "Finished xhci_run for USB2 roothub");
672 return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675
676 /*
677 * Stop xHCI driver.
678 *
679 * This function is called by the USB core when the HC driver is removed.
680 * Its opposite is xhci_run().
681 *
682 * Disable device contexts, disable IRQs, and quiesce the HC.
683 * Reset the HC, finish any completed transactions, and cleanup memory.
684 */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687 u32 temp;
688 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689
690 mutex_lock(&xhci->mutex);
691
692 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693 spin_lock_irq(&xhci->lock);
694
695 xhci->xhc_state |= XHCI_STATE_HALTED;
696 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697 xhci_halt(xhci);
698 xhci_reset(xhci);
699 spin_unlock_irq(&xhci->lock);
700 }
701
702 if (!usb_hcd_is_primary_hcd(hcd)) {
703 mutex_unlock(&xhci->mutex);
704 return;
705 }
706
707 xhci_cleanup_msix(xhci);
708
709 /* Deleting Compliance Mode Recovery Timer */
710 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711 (!(xhci_all_ports_seen_u0(xhci)))) {
712 del_timer_sync(&xhci->comp_mode_recovery_timer);
713 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714 "%s: compliance mode recovery timer deleted",
715 __func__);
716 }
717
718 if (xhci->quirks & XHCI_AMD_PLL_FIX)
719 usb_amd_dev_put();
720
721 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 "// Disabling event ring interrupts");
723 temp = readl(&xhci->op_regs->status);
724 writel(temp & ~STS_EINT, &xhci->op_regs->status);
725 temp = readl(&xhci->ir_set->irq_pending);
726 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727 xhci_print_ir_set(xhci, 0);
728
729 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730 xhci_mem_cleanup(xhci);
731 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732 "xhci_stop completed - status = %x",
733 readl(&xhci->op_regs->status));
734 mutex_unlock(&xhci->mutex);
735 }
736
737 /*
738 * Shutdown HC (not bus-specific)
739 *
740 * This is called when the machine is rebooting or halting. We assume that the
741 * machine will be powered off, and the HC's internal state will be reset.
742 * Don't bother to free memory.
743 *
744 * This will only ever be called with the main usb_hcd (the USB3 roothub).
745 */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749
750 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752
753 spin_lock_irq(&xhci->lock);
754 xhci_halt(xhci);
755 /* Workaround for spurious wakeups at shutdown with HSW */
756 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757 xhci_reset(xhci);
758 spin_unlock_irq(&xhci->lock);
759
760 xhci_cleanup_msix(xhci);
761
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "xhci_shutdown completed - status = %x",
764 readl(&xhci->op_regs->status));
765
766 /* Yet another workaround for spurious wakeups at shutdown with HSW */
767 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774 xhci->s3.command = readl(&xhci->op_regs->command);
775 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787 writel(xhci->s3.command, &xhci->op_regs->command);
788 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800 u64 val_64;
801
802 /* step 2: initialize command ring buffer */
803 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806 xhci->cmd_ring->dequeue) &
807 (u64) ~CMD_RING_RSVD_BITS) |
808 xhci->cmd_ring->cycle_state;
809 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 "// Setting command ring address to 0x%llx",
811 (long unsigned long) val_64);
812 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814
815 /*
816 * The whole command ring must be cleared to zero when we suspend the host.
817 *
818 * The host doesn't save the command ring pointer in the suspend well, so we
819 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
820 * aligned, because of the reserved bits in the command ring dequeue pointer
821 * register. Therefore, we can't just set the dequeue pointer back in the
822 * middle of the ring (TRBs are 16-byte aligned).
823 */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826 struct xhci_ring *ring;
827 struct xhci_segment *seg;
828
829 ring = xhci->cmd_ring;
830 seg = ring->deq_seg;
831 do {
832 memset(seg->trbs, 0,
833 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835 cpu_to_le32(~TRB_CYCLE);
836 seg = seg->next;
837 } while (seg != ring->deq_seg);
838
839 /* Reset the software enqueue and dequeue pointers */
840 ring->deq_seg = ring->first_seg;
841 ring->dequeue = ring->first_seg->trbs;
842 ring->enq_seg = ring->deq_seg;
843 ring->enqueue = ring->dequeue;
844
845 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846 /*
847 * Ring is now zeroed, so the HW should look for change of ownership
848 * when the cycle bit is set to 1.
849 */
850 ring->cycle_state = 1;
851
852 /*
853 * Reset the hardware dequeue pointer.
854 * Yes, this will need to be re-written after resume, but we're paranoid
855 * and want to make sure the hardware doesn't access bogus memory
856 * because, say, the BIOS or an SMI started the host without changing
857 * the command ring pointers.
858 */
859 xhci_set_cmd_ring_deq(xhci);
860 }
861
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864 int port_index;
865 __le32 __iomem **port_array;
866 unsigned long flags;
867 u32 t1, t2;
868
869 spin_lock_irqsave(&xhci->lock, flags);
870
871 /* disable usb3 ports Wake bits */
872 port_index = xhci->num_usb3_ports;
873 port_array = xhci->usb3_ports;
874 while (port_index--) {
875 t1 = readl(port_array[port_index]);
876 t1 = xhci_port_state_to_neutral(t1);
877 t2 = t1 & ~PORT_WAKE_BITS;
878 if (t1 != t2)
879 writel(t2, port_array[port_index]);
880 }
881
882 /* disable usb2 ports Wake bits */
883 port_index = xhci->num_usb2_ports;
884 port_array = xhci->usb2_ports;
885 while (port_index--) {
886 t1 = readl(port_array[port_index]);
887 t1 = xhci_port_state_to_neutral(t1);
888 t2 = t1 & ~PORT_WAKE_BITS;
889 if (t1 != t2)
890 writel(t2, port_array[port_index]);
891 }
892
893 spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895
896 /*
897 * Stop HC (not bus-specific)
898 *
899 * This is called when the machine transition into S3/S4 mode.
900 *
901 */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904 int rc = 0;
905 unsigned int delay = XHCI_MAX_HALT_USEC;
906 struct usb_hcd *hcd = xhci_to_hcd(xhci);
907 u32 command;
908
909 if (!hcd->state)
910 return 0;
911
912 if (hcd->state != HC_STATE_SUSPENDED ||
913 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914 return -EINVAL;
915
916 /* Clear root port wake on bits if wakeup not allowed. */
917 if (!do_wakeup)
918 xhci_disable_port_wake_on_bits(xhci);
919
920 /* Don't poll the roothubs on bus suspend. */
921 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923 del_timer_sync(&hcd->rh_timer);
924 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925 del_timer_sync(&xhci->shared_hcd->rh_timer);
926
927 spin_lock_irq(&xhci->lock);
928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930 /* step 1: stop endpoint */
931 /* skipped assuming that port suspend has done */
932
933 /* step 2: clear Run/Stop bit */
934 command = readl(&xhci->op_regs->command);
935 command &= ~CMD_RUN;
936 writel(command, &xhci->op_regs->command);
937
938 /* Some chips from Fresco Logic need an extraordinary delay */
939 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940
941 if (xhci_handshake(&xhci->op_regs->status,
942 STS_HALT, STS_HALT, delay)) {
943 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944 spin_unlock_irq(&xhci->lock);
945 return -ETIMEDOUT;
946 }
947 xhci_clear_command_ring(xhci);
948
949 /* step 3: save registers */
950 xhci_save_registers(xhci);
951
952 /* step 4: set CSS flag */
953 command = readl(&xhci->op_regs->command);
954 command |= CMD_CSS;
955 writel(command, &xhci->op_regs->command);
956 if (xhci_handshake(&xhci->op_regs->status,
957 STS_SAVE, 0, 10 * 1000)) {
958 xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 spin_unlock_irq(&xhci->lock);
960 return -ETIMEDOUT;
961 }
962 spin_unlock_irq(&xhci->lock);
963
964 /*
965 * Deleting Compliance Mode Recovery Timer because the xHCI Host
966 * is about to be suspended.
967 */
968 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969 (!(xhci_all_ports_seen_u0(xhci)))) {
970 del_timer_sync(&xhci->comp_mode_recovery_timer);
971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972 "%s: compliance mode recovery timer deleted",
973 __func__);
974 }
975
976 /* step 5: remove core well power */
977 /* synchronize irq when using MSI-X */
978 xhci_msix_sync_irqs(xhci);
979
980 return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983
984 /*
985 * start xHC (not bus-specific)
986 *
987 * This is called when the machine transition from S3/S4 mode.
988 *
989 */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992 u32 command, temp = 0, status;
993 struct usb_hcd *hcd = xhci_to_hcd(xhci);
994 struct usb_hcd *secondary_hcd;
995 int retval = 0;
996 bool comp_timer_running = false;
997
998 if (!hcd->state)
999 return 0;
1000
1001 /* Wait a bit if either of the roothubs need to settle from the
1002 * transition into bus suspend.
1003 */
1004 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005 time_before(jiffies,
1006 xhci->bus_state[1].next_statechange))
1007 msleep(100);
1008
1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011
1012 spin_lock_irq(&xhci->lock);
1013 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014 hibernated = true;
1015
1016 if (!hibernated) {
1017 /* step 1: restore register */
1018 xhci_restore_registers(xhci);
1019 /* step 2: initialize command ring buffer */
1020 xhci_set_cmd_ring_deq(xhci);
1021 /* step 3: restore state and start state*/
1022 /* step 3: set CRS flag */
1023 command = readl(&xhci->op_regs->command);
1024 command |= CMD_CRS;
1025 writel(command, &xhci->op_regs->command);
1026 if (xhci_handshake(&xhci->op_regs->status,
1027 STS_RESTORE, 0, 10 * 1000)) {
1028 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029 spin_unlock_irq(&xhci->lock);
1030 return -ETIMEDOUT;
1031 }
1032 temp = readl(&xhci->op_regs->status);
1033 }
1034
1035 /* If restore operation fails, re-initialize the HC during resume */
1036 if ((temp & STS_SRE) || hibernated) {
1037
1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039 !(xhci_all_ports_seen_u0(xhci))) {
1040 del_timer_sync(&xhci->comp_mode_recovery_timer);
1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042 "Compliance Mode Recovery Timer deleted!");
1043 }
1044
1045 /* Let the USB core know _both_ roothubs lost power. */
1046 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048
1049 xhci_dbg(xhci, "Stop HCD\n");
1050 xhci_halt(xhci);
1051 xhci_reset(xhci);
1052 spin_unlock_irq(&xhci->lock);
1053 xhci_cleanup_msix(xhci);
1054
1055 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056 temp = readl(&xhci->op_regs->status);
1057 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058 temp = readl(&xhci->ir_set->irq_pending);
1059 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060 xhci_print_ir_set(xhci, 0);
1061
1062 xhci_dbg(xhci, "cleaning up memory\n");
1063 xhci_mem_cleanup(xhci);
1064 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065 readl(&xhci->op_regs->status));
1066
1067 /* USB core calls the PCI reinit and start functions twice:
1068 * first with the primary HCD, and then with the secondary HCD.
1069 * If we don't do the same, the host will never be started.
1070 */
1071 if (!usb_hcd_is_primary_hcd(hcd))
1072 secondary_hcd = hcd;
1073 else
1074 secondary_hcd = xhci->shared_hcd;
1075
1076 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 retval = xhci_init(hcd->primary_hcd);
1078 if (retval)
1079 return retval;
1080 comp_timer_running = true;
1081
1082 xhci_dbg(xhci, "Start the primary HCD\n");
1083 retval = xhci_run(hcd->primary_hcd);
1084 if (!retval) {
1085 xhci_dbg(xhci, "Start the secondary HCD\n");
1086 retval = xhci_run(secondary_hcd);
1087 }
1088 hcd->state = HC_STATE_SUSPENDED;
1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 goto done;
1091 }
1092
1093 /* step 4: set Run/Stop bit */
1094 command = readl(&xhci->op_regs->command);
1095 command |= CMD_RUN;
1096 writel(command, &xhci->op_regs->command);
1097 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 0, 250 * 1000);
1099
1100 /* step 5: walk topology and initialize portsc,
1101 * portpmsc and portli
1102 */
1103 /* this is done in bus_resume */
1104
1105 /* step 6: restart each of the previously
1106 * Running endpoints by ringing their doorbells
1107 */
1108
1109 spin_unlock_irq(&xhci->lock);
1110
1111 done:
1112 if (retval == 0) {
1113 /* Resume root hubs only when have pending events. */
1114 status = readl(&xhci->op_regs->status);
1115 if (status & STS_EINT) {
1116 usb_hcd_resume_root_hub(xhci->shared_hcd);
1117 usb_hcd_resume_root_hub(hcd);
1118 }
1119 }
1120
1121 /*
1122 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123 * be re-initialized Always after a system resume. Ports are subject
1124 * to suffer the Compliance Mode issue again. It doesn't matter if
1125 * ports have entered previously to U0 before system's suspension.
1126 */
1127 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128 compliance_mode_recovery_timer_init(xhci);
1129
1130 /* Re-enable port polling. */
1131 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133 usb_hcd_poll_rh_status(xhci->shared_hcd);
1134 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135 usb_hcd_poll_rh_status(hcd);
1136
1137 return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif /* CONFIG_PM */
1141
1142 /*-------------------------------------------------------------------------*/
1143
1144 /**
1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1147 * value to right shift 1 for the bitmask.
1148 *
1149 * Index = (epnum * 2) + direction - 1,
1150 * where direction = 0 for OUT, 1 for IN.
1151 * For control endpoints, the IN index is used (OUT index is unused), so
1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153 */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156 unsigned int index;
1157 if (usb_endpoint_xfer_control(desc))
1158 index = (unsigned int) (usb_endpoint_num(desc)*2);
1159 else
1160 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162 return index;
1163 }
1164
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166 * address from the XHCI endpoint index.
1167 */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172 return direction | number;
1173 }
1174
1175 /* Find the flag for this endpoint (for use in the control context). Use the
1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1177 * bit 1, etc.
1178 */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181 return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183
1184 /* Find the flag for this endpoint (for use in the control context). Use the
1185 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1186 * bit 1, etc.
1187 */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190 return 1 << (ep_index + 1);
1191 }
1192
1193 /* Compute the last valid endpoint context index. Basically, this is the
1194 * endpoint index plus one. For slot contexts with more than valid endpoint,
1195 * we find the most significant bit set in the added contexts flags.
1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198 */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201 return fls(added_ctxs) - 1;
1202 }
1203
1204 /* Returns 1 if the arguments are OK;
1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206 */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209 const char *func) {
1210 struct xhci_hcd *xhci;
1211 struct xhci_virt_device *virt_dev;
1212
1213 if (!hcd || (check_ep && !ep) || !udev) {
1214 pr_debug("xHCI %s called with invalid args\n", func);
1215 return -EINVAL;
1216 }
1217 if (!udev->parent) {
1218 pr_debug("xHCI %s called for root hub\n", func);
1219 return 0;
1220 }
1221
1222 xhci = hcd_to_xhci(hcd);
1223 if (check_virt_dev) {
1224 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226 func);
1227 return -EINVAL;
1228 }
1229
1230 virt_dev = xhci->devs[udev->slot_id];
1231 if (virt_dev->udev != udev) {
1232 xhci_dbg(xhci, "xHCI %s called with udev and "
1233 "virt_dev does not match\n", func);
1234 return -EINVAL;
1235 }
1236 }
1237
1238 if (xhci->xhc_state & XHCI_STATE_HALTED)
1239 return -ENODEV;
1240
1241 return 1;
1242 }
1243
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245 struct usb_device *udev, struct xhci_command *command,
1246 bool ctx_change, bool must_succeed);
1247
1248 /*
1249 * Full speed devices may have a max packet size greater than 8 bytes, but the
1250 * USB core doesn't know that until it reads the first 8 bytes of the
1251 * descriptor. If the usb_device's max packet size changes after that point,
1252 * we need to issue an evaluate context command and wait on it.
1253 */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255 unsigned int ep_index, struct urb *urb)
1256 {
1257 struct xhci_container_ctx *out_ctx;
1258 struct xhci_input_control_ctx *ctrl_ctx;
1259 struct xhci_ep_ctx *ep_ctx;
1260 struct xhci_command *command;
1261 int max_packet_size;
1262 int hw_max_packet_size;
1263 int ret = 0;
1264
1265 out_ctx = xhci->devs[slot_id]->out_ctx;
1266 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269 if (hw_max_packet_size != max_packet_size) {
1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1271 "Max Packet Size for ep 0 changed.");
1272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1273 "Max packet size in usb_device = %d",
1274 max_packet_size);
1275 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1276 "Max packet size in xHCI HW = %d",
1277 hw_max_packet_size);
1278 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1279 "Issuing evaluate context command.");
1280
1281 /* Set up the input context flags for the command */
1282 /* FIXME: This won't work if a non-default control endpoint
1283 * changes max packet sizes.
1284 */
1285
1286 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287 if (!command)
1288 return -ENOMEM;
1289
1290 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292 if (!ctrl_ctx) {
1293 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294 __func__);
1295 ret = -ENOMEM;
1296 goto command_cleanup;
1297 }
1298 /* Set up the modified control endpoint 0 */
1299 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300 xhci->devs[slot_id]->out_ctx, ep_index);
1301
1302 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305
1306 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307 ctrl_ctx->drop_flags = 0;
1308
1309 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313
1314 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315 true, false);
1316
1317 /* Clean up the input context for later use by bandwidth
1318 * functions.
1319 */
1320 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322 kfree(command->completion);
1323 kfree(command);
1324 }
1325 return ret;
1326 }
1327
1328 /*
1329 * non-error returns are a promise to giveback() the urb later
1330 * we drop ownership so next owner (or urb unlink) can get it
1331 */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335 unsigned long flags;
1336 int ret = 0;
1337 unsigned int slot_id, ep_index, ep_state;
1338 struct urb_priv *urb_priv;
1339 int num_tds;
1340
1341 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1342 true, true, __func__) <= 0)
1343 return -EINVAL;
1344
1345 slot_id = urb->dev->slot_id;
1346 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347
1348 if (!HCD_HW_ACCESSIBLE(hcd)) {
1349 if (!in_interrupt())
1350 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1351 return -ESHUTDOWN;
1352 }
1353
1354 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1355 num_tds = urb->number_of_packets;
1356 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1357 urb->transfer_buffer_length > 0 &&
1358 urb->transfer_flags & URB_ZERO_PACKET &&
1359 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1360 num_tds = 2;
1361 else
1362 num_tds = 1;
1363
1364 urb_priv = kzalloc(sizeof(struct urb_priv) +
1365 num_tds * sizeof(struct xhci_td), mem_flags);
1366 if (!urb_priv)
1367 return -ENOMEM;
1368
1369 urb_priv->num_tds = num_tds;
1370 urb_priv->num_tds_done = 0;
1371 urb->hcpriv = urb_priv;
1372
1373 trace_xhci_urb_enqueue(urb);
1374
1375 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1376 /* Check to see if the max packet size for the default control
1377 * endpoint changed during FS device enumeration
1378 */
1379 if (urb->dev->speed == USB_SPEED_FULL) {
1380 ret = xhci_check_maxpacket(xhci, slot_id,
1381 ep_index, urb);
1382 if (ret < 0) {
1383 xhci_urb_free_priv(urb_priv);
1384 urb->hcpriv = NULL;
1385 return ret;
1386 }
1387 }
1388 }
1389
1390 spin_lock_irqsave(&xhci->lock, flags);
1391
1392 if (xhci->xhc_state & XHCI_STATE_DYING) {
1393 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1394 urb->ep->desc.bEndpointAddress, urb);
1395 ret = -ESHUTDOWN;
1396 goto free_priv;
1397 }
1398
1399 switch (usb_endpoint_type(&urb->ep->desc)) {
1400
1401 case USB_ENDPOINT_XFER_CONTROL:
1402 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403 slot_id, ep_index);
1404 break;
1405 case USB_ENDPOINT_XFER_BULK:
1406 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1407 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1408 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1409 ep_state);
1410 ret = -EINVAL;
1411 break;
1412 }
1413 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1414 slot_id, ep_index);
1415 break;
1416
1417
1418 case USB_ENDPOINT_XFER_INT:
1419 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1420 slot_id, ep_index);
1421 break;
1422
1423 case USB_ENDPOINT_XFER_ISOC:
1424 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1425 slot_id, ep_index);
1426 }
1427
1428 if (ret) {
1429 free_priv:
1430 xhci_urb_free_priv(urb_priv);
1431 urb->hcpriv = NULL;
1432 }
1433 spin_unlock_irqrestore(&xhci->lock, flags);
1434 return ret;
1435 }
1436
1437 /*
1438 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1439 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1440 * should pick up where it left off in the TD, unless a Set Transfer Ring
1441 * Dequeue Pointer is issued.
1442 *
1443 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1444 * the ring. Since the ring is a contiguous structure, they can't be physically
1445 * removed. Instead, there are two options:
1446 *
1447 * 1) If the HC is in the middle of processing the URB to be canceled, we
1448 * simply move the ring's dequeue pointer past those TRBs using the Set
1449 * Transfer Ring Dequeue Pointer command. This will be the common case,
1450 * when drivers timeout on the last submitted URB and attempt to cancel.
1451 *
1452 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1453 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1454 * HC will need to invalidate the any TRBs it has cached after the stop
1455 * endpoint command, as noted in the xHCI 0.95 errata.
1456 *
1457 * 3) The TD may have completed by the time the Stop Endpoint Command
1458 * completes, so software needs to handle that case too.
1459 *
1460 * This function should protect against the TD enqueueing code ringing the
1461 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1462 * It also needs to account for multiple cancellations on happening at the same
1463 * time for the same endpoint.
1464 *
1465 * Note that this function can be called in any context, or so says
1466 * usb_hcd_unlink_urb()
1467 */
1468 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1469 {
1470 unsigned long flags;
1471 int ret, i;
1472 u32 temp;
1473 struct xhci_hcd *xhci;
1474 struct urb_priv *urb_priv;
1475 struct xhci_td *td;
1476 unsigned int ep_index;
1477 struct xhci_ring *ep_ring;
1478 struct xhci_virt_ep *ep;
1479 struct xhci_command *command;
1480 struct xhci_virt_device *vdev;
1481
1482 xhci = hcd_to_xhci(hcd);
1483 spin_lock_irqsave(&xhci->lock, flags);
1484
1485 trace_xhci_urb_dequeue(urb);
1486
1487 /* Make sure the URB hasn't completed or been unlinked already */
1488 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1489 if (ret)
1490 goto done;
1491
1492 /* give back URB now if we can't queue it for cancel */
1493 vdev = xhci->devs[urb->dev->slot_id];
1494 urb_priv = urb->hcpriv;
1495 if (!vdev || !urb_priv)
1496 goto err_giveback;
1497
1498 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1499 ep = &vdev->eps[ep_index];
1500 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1501 if (!ep || !ep_ring)
1502 goto err_giveback;
1503
1504 temp = readl(&xhci->op_regs->status);
1505 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1506 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1507 "HW died, freeing TD.");
1508 for (i = urb_priv->num_tds_done;
1509 i < urb_priv->num_tds;
1510 i++) {
1511 td = &urb_priv->td[i];
1512 if (!list_empty(&td->td_list))
1513 list_del_init(&td->td_list);
1514 if (!list_empty(&td->cancelled_td_list))
1515 list_del_init(&td->cancelled_td_list);
1516 }
1517 goto err_giveback;
1518 }
1519
1520 i = urb_priv->num_tds_done;
1521 if (i < urb_priv->num_tds)
1522 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1523 "Cancel URB %p, dev %s, ep 0x%x, "
1524 "starting at offset 0x%llx",
1525 urb, urb->dev->devpath,
1526 urb->ep->desc.bEndpointAddress,
1527 (unsigned long long) xhci_trb_virt_to_dma(
1528 urb_priv->td[i].start_seg,
1529 urb_priv->td[i].first_trb));
1530
1531 for (; i < urb_priv->num_tds; i++) {
1532 td = &urb_priv->td[i];
1533 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1534 }
1535
1536 /* Queue a stop endpoint command, but only if this is
1537 * the first cancellation to be handled.
1538 */
1539 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1540 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1541 if (!command) {
1542 ret = -ENOMEM;
1543 goto done;
1544 }
1545 ep->ep_state |= EP_STOP_CMD_PENDING;
1546 ep->stop_cmd_timer.expires = jiffies +
1547 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1548 add_timer(&ep->stop_cmd_timer);
1549 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1550 ep_index, 0);
1551 xhci_ring_cmd_db(xhci);
1552 }
1553 done:
1554 spin_unlock_irqrestore(&xhci->lock, flags);
1555 return ret;
1556
1557 err_giveback:
1558 if (urb_priv)
1559 xhci_urb_free_priv(urb_priv);
1560 usb_hcd_unlink_urb_from_ep(hcd, urb);
1561 spin_unlock_irqrestore(&xhci->lock, flags);
1562 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1563 return ret;
1564 }
1565
1566 /* Drop an endpoint from a new bandwidth configuration for this device.
1567 * Only one call to this function is allowed per endpoint before
1568 * check_bandwidth() or reset_bandwidth() must be called.
1569 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1570 * add the endpoint to the schedule with possibly new parameters denoted by a
1571 * different endpoint descriptor in usb_host_endpoint.
1572 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1573 * not allowed.
1574 *
1575 * The USB core will not allow URBs to be queued to an endpoint that is being
1576 * disabled, so there's no need for mutual exclusion to protect
1577 * the xhci->devs[slot_id] structure.
1578 */
1579 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1580 struct usb_host_endpoint *ep)
1581 {
1582 struct xhci_hcd *xhci;
1583 struct xhci_container_ctx *in_ctx, *out_ctx;
1584 struct xhci_input_control_ctx *ctrl_ctx;
1585 unsigned int ep_index;
1586 struct xhci_ep_ctx *ep_ctx;
1587 u32 drop_flag;
1588 u32 new_add_flags, new_drop_flags;
1589 int ret;
1590
1591 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1592 if (ret <= 0)
1593 return ret;
1594 xhci = hcd_to_xhci(hcd);
1595 if (xhci->xhc_state & XHCI_STATE_DYING)
1596 return -ENODEV;
1597
1598 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1599 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1600 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1601 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1602 __func__, drop_flag);
1603 return 0;
1604 }
1605
1606 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1607 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1608 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1609 if (!ctrl_ctx) {
1610 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1611 __func__);
1612 return 0;
1613 }
1614
1615 ep_index = xhci_get_endpoint_index(&ep->desc);
1616 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1617 /* If the HC already knows the endpoint is disabled,
1618 * or the HCD has noted it is disabled, ignore this request
1619 */
1620 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1621 le32_to_cpu(ctrl_ctx->drop_flags) &
1622 xhci_get_endpoint_flag(&ep->desc)) {
1623 /* Do not warn when called after a usb_device_reset */
1624 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1625 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1626 __func__, ep);
1627 return 0;
1628 }
1629
1630 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1631 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1632
1633 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1634 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1635
1636 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1637
1638 if (xhci->quirks & XHCI_MTK_HOST)
1639 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1640
1641 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1642 (unsigned int) ep->desc.bEndpointAddress,
1643 udev->slot_id,
1644 (unsigned int) new_drop_flags,
1645 (unsigned int) new_add_flags);
1646 return 0;
1647 }
1648
1649 /* Add an endpoint to a new possible bandwidth configuration for this device.
1650 * Only one call to this function is allowed per endpoint before
1651 * check_bandwidth() or reset_bandwidth() must be called.
1652 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1653 * add the endpoint to the schedule with possibly new parameters denoted by a
1654 * different endpoint descriptor in usb_host_endpoint.
1655 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1656 * not allowed.
1657 *
1658 * The USB core will not allow URBs to be queued to an endpoint until the
1659 * configuration or alt setting is installed in the device, so there's no need
1660 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1661 */
1662 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1663 struct usb_host_endpoint *ep)
1664 {
1665 struct xhci_hcd *xhci;
1666 struct xhci_container_ctx *in_ctx;
1667 unsigned int ep_index;
1668 struct xhci_input_control_ctx *ctrl_ctx;
1669 u32 added_ctxs;
1670 u32 new_add_flags, new_drop_flags;
1671 struct xhci_virt_device *virt_dev;
1672 int ret = 0;
1673
1674 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1675 if (ret <= 0) {
1676 /* So we won't queue a reset ep command for a root hub */
1677 ep->hcpriv = NULL;
1678 return ret;
1679 }
1680 xhci = hcd_to_xhci(hcd);
1681 if (xhci->xhc_state & XHCI_STATE_DYING)
1682 return -ENODEV;
1683
1684 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1685 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1686 /* FIXME when we have to issue an evaluate endpoint command to
1687 * deal with ep0 max packet size changing once we get the
1688 * descriptors
1689 */
1690 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1691 __func__, added_ctxs);
1692 return 0;
1693 }
1694
1695 virt_dev = xhci->devs[udev->slot_id];
1696 in_ctx = virt_dev->in_ctx;
1697 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1698 if (!ctrl_ctx) {
1699 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1700 __func__);
1701 return 0;
1702 }
1703
1704 ep_index = xhci_get_endpoint_index(&ep->desc);
1705 /* If this endpoint is already in use, and the upper layers are trying
1706 * to add it again without dropping it, reject the addition.
1707 */
1708 if (virt_dev->eps[ep_index].ring &&
1709 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1710 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1711 "without dropping it.\n",
1712 (unsigned int) ep->desc.bEndpointAddress);
1713 return -EINVAL;
1714 }
1715
1716 /* If the HCD has already noted the endpoint is enabled,
1717 * ignore this request.
1718 */
1719 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1720 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1721 __func__, ep);
1722 return 0;
1723 }
1724
1725 /*
1726 * Configuration and alternate setting changes must be done in
1727 * process context, not interrupt context (or so documenation
1728 * for usb_set_interface() and usb_set_configuration() claim).
1729 */
1730 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1731 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1732 __func__, ep->desc.bEndpointAddress);
1733 return -ENOMEM;
1734 }
1735
1736 if (xhci->quirks & XHCI_MTK_HOST) {
1737 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1738 if (ret < 0) {
1739 xhci_free_or_cache_endpoint_ring(xhci,
1740 virt_dev, ep_index);
1741 return ret;
1742 }
1743 }
1744
1745 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1746 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1747
1748 /* If xhci_endpoint_disable() was called for this endpoint, but the
1749 * xHC hasn't been notified yet through the check_bandwidth() call,
1750 * this re-adds a new state for the endpoint from the new endpoint
1751 * descriptors. We must drop and re-add this endpoint, so we leave the
1752 * drop flags alone.
1753 */
1754 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1755
1756 /* Store the usb_device pointer for later use */
1757 ep->hcpriv = udev;
1758
1759 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1760 (unsigned int) ep->desc.bEndpointAddress,
1761 udev->slot_id,
1762 (unsigned int) new_drop_flags,
1763 (unsigned int) new_add_flags);
1764 return 0;
1765 }
1766
1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768 {
1769 struct xhci_input_control_ctx *ctrl_ctx;
1770 struct xhci_ep_ctx *ep_ctx;
1771 struct xhci_slot_ctx *slot_ctx;
1772 int i;
1773
1774 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1775 if (!ctrl_ctx) {
1776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777 __func__);
1778 return;
1779 }
1780
1781 /* When a device's add flag and drop flag are zero, any subsequent
1782 * configure endpoint command will leave that endpoint's state
1783 * untouched. Make sure we don't leave any old state in the input
1784 * endpoint contexts.
1785 */
1786 ctrl_ctx->drop_flags = 0;
1787 ctrl_ctx->add_flags = 0;
1788 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790 /* Endpoint 0 is always valid */
1791 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792 for (i = 1; i < 31; i++) {
1793 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794 ep_ctx->ep_info = 0;
1795 ep_ctx->ep_info2 = 0;
1796 ep_ctx->deq = 0;
1797 ep_ctx->tx_info = 0;
1798 }
1799 }
1800
1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802 struct usb_device *udev, u32 *cmd_status)
1803 {
1804 int ret;
1805
1806 switch (*cmd_status) {
1807 case COMP_COMMAND_ABORTED:
1808 case COMP_STOPPED:
1809 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1810 ret = -ETIME;
1811 break;
1812 case COMP_RESOURCE_ERROR:
1813 dev_warn(&udev->dev,
1814 "Not enough host controller resources for new device state.\n");
1815 ret = -ENOMEM;
1816 /* FIXME: can we allocate more resources for the HC? */
1817 break;
1818 case COMP_BANDWIDTH_ERROR:
1819 case COMP_SECONDARY_BANDWIDTH_ERROR:
1820 dev_warn(&udev->dev,
1821 "Not enough bandwidth for new device state.\n");
1822 ret = -ENOSPC;
1823 /* FIXME: can we go back to the old state? */
1824 break;
1825 case COMP_TRB_ERROR:
1826 /* the HCD set up something wrong */
1827 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1828 "add flag = 1, "
1829 "and endpoint is not disabled.\n");
1830 ret = -EINVAL;
1831 break;
1832 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1833 dev_warn(&udev->dev,
1834 "ERROR: Incompatible device for endpoint configure command.\n");
1835 ret = -ENODEV;
1836 break;
1837 case COMP_SUCCESS:
1838 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1839 "Successful Endpoint Configure command");
1840 ret = 0;
1841 break;
1842 default:
1843 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1844 *cmd_status);
1845 ret = -EINVAL;
1846 break;
1847 }
1848 return ret;
1849 }
1850
1851 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1852 struct usb_device *udev, u32 *cmd_status)
1853 {
1854 int ret;
1855 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1856
1857 switch (*cmd_status) {
1858 case COMP_COMMAND_ABORTED:
1859 case COMP_STOPPED:
1860 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1861 ret = -ETIME;
1862 break;
1863 case COMP_PARAMETER_ERROR:
1864 dev_warn(&udev->dev,
1865 "WARN: xHCI driver setup invalid evaluate context command.\n");
1866 ret = -EINVAL;
1867 break;
1868 case COMP_SLOT_NOT_ENABLED_ERROR:
1869 dev_warn(&udev->dev,
1870 "WARN: slot not enabled for evaluate context command.\n");
1871 ret = -EINVAL;
1872 break;
1873 case COMP_CONTEXT_STATE_ERROR:
1874 dev_warn(&udev->dev,
1875 "WARN: invalid context state for evaluate context command.\n");
1876 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1877 ret = -EINVAL;
1878 break;
1879 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1880 dev_warn(&udev->dev,
1881 "ERROR: Incompatible device for evaluate context command.\n");
1882 ret = -ENODEV;
1883 break;
1884 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1885 /* Max Exit Latency too large error */
1886 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1887 ret = -EINVAL;
1888 break;
1889 case COMP_SUCCESS:
1890 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1891 "Successful evaluate context command");
1892 ret = 0;
1893 break;
1894 default:
1895 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1896 *cmd_status);
1897 ret = -EINVAL;
1898 break;
1899 }
1900 return ret;
1901 }
1902
1903 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1904 struct xhci_input_control_ctx *ctrl_ctx)
1905 {
1906 u32 valid_add_flags;
1907 u32 valid_drop_flags;
1908
1909 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1910 * (bit 1). The default control endpoint is added during the Address
1911 * Device command and is never removed until the slot is disabled.
1912 */
1913 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1914 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1915
1916 /* Use hweight32 to count the number of ones in the add flags, or
1917 * number of endpoints added. Don't count endpoints that are changed
1918 * (both added and dropped).
1919 */
1920 return hweight32(valid_add_flags) -
1921 hweight32(valid_add_flags & valid_drop_flags);
1922 }
1923
1924 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1925 struct xhci_input_control_ctx *ctrl_ctx)
1926 {
1927 u32 valid_add_flags;
1928 u32 valid_drop_flags;
1929
1930 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1931 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1932
1933 return hweight32(valid_drop_flags) -
1934 hweight32(valid_add_flags & valid_drop_flags);
1935 }
1936
1937 /*
1938 * We need to reserve the new number of endpoints before the configure endpoint
1939 * command completes. We can't subtract the dropped endpoints from the number
1940 * of active endpoints until the command completes because we can oversubscribe
1941 * the host in this case:
1942 *
1943 * - the first configure endpoint command drops more endpoints than it adds
1944 * - a second configure endpoint command that adds more endpoints is queued
1945 * - the first configure endpoint command fails, so the config is unchanged
1946 * - the second command may succeed, even though there isn't enough resources
1947 *
1948 * Must be called with xhci->lock held.
1949 */
1950 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1951 struct xhci_input_control_ctx *ctrl_ctx)
1952 {
1953 u32 added_eps;
1954
1955 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1956 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1957 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1958 "Not enough ep ctxs: "
1959 "%u active, need to add %u, limit is %u.",
1960 xhci->num_active_eps, added_eps,
1961 xhci->limit_active_eps);
1962 return -ENOMEM;
1963 }
1964 xhci->num_active_eps += added_eps;
1965 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1966 "Adding %u ep ctxs, %u now active.", added_eps,
1967 xhci->num_active_eps);
1968 return 0;
1969 }
1970
1971 /*
1972 * The configure endpoint was failed by the xHC for some other reason, so we
1973 * need to revert the resources that failed configuration would have used.
1974 *
1975 * Must be called with xhci->lock held.
1976 */
1977 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1978 struct xhci_input_control_ctx *ctrl_ctx)
1979 {
1980 u32 num_failed_eps;
1981
1982 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1983 xhci->num_active_eps -= num_failed_eps;
1984 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1985 "Removing %u failed ep ctxs, %u now active.",
1986 num_failed_eps,
1987 xhci->num_active_eps);
1988 }
1989
1990 /*
1991 * Now that the command has completed, clean up the active endpoint count by
1992 * subtracting out the endpoints that were dropped (but not changed).
1993 *
1994 * Must be called with xhci->lock held.
1995 */
1996 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1997 struct xhci_input_control_ctx *ctrl_ctx)
1998 {
1999 u32 num_dropped_eps;
2000
2001 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2002 xhci->num_active_eps -= num_dropped_eps;
2003 if (num_dropped_eps)
2004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005 "Removing %u dropped ep ctxs, %u now active.",
2006 num_dropped_eps,
2007 xhci->num_active_eps);
2008 }
2009
2010 static unsigned int xhci_get_block_size(struct usb_device *udev)
2011 {
2012 switch (udev->speed) {
2013 case USB_SPEED_LOW:
2014 case USB_SPEED_FULL:
2015 return FS_BLOCK;
2016 case USB_SPEED_HIGH:
2017 return HS_BLOCK;
2018 case USB_SPEED_SUPER:
2019 case USB_SPEED_SUPER_PLUS:
2020 return SS_BLOCK;
2021 case USB_SPEED_UNKNOWN:
2022 case USB_SPEED_WIRELESS:
2023 default:
2024 /* Should never happen */
2025 return 1;
2026 }
2027 }
2028
2029 static unsigned int
2030 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2031 {
2032 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2033 return LS_OVERHEAD;
2034 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2035 return FS_OVERHEAD;
2036 return HS_OVERHEAD;
2037 }
2038
2039 /* If we are changing a LS/FS device under a HS hub,
2040 * make sure (if we are activating a new TT) that the HS bus has enough
2041 * bandwidth for this new TT.
2042 */
2043 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2044 struct xhci_virt_device *virt_dev,
2045 int old_active_eps)
2046 {
2047 struct xhci_interval_bw_table *bw_table;
2048 struct xhci_tt_bw_info *tt_info;
2049
2050 /* Find the bandwidth table for the root port this TT is attached to. */
2051 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2052 tt_info = virt_dev->tt_info;
2053 /* If this TT already had active endpoints, the bandwidth for this TT
2054 * has already been added. Removing all periodic endpoints (and thus
2055 * making the TT enactive) will only decrease the bandwidth used.
2056 */
2057 if (old_active_eps)
2058 return 0;
2059 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2060 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2061 return -ENOMEM;
2062 return 0;
2063 }
2064 /* Not sure why we would have no new active endpoints...
2065 *
2066 * Maybe because of an Evaluate Context change for a hub update or a
2067 * control endpoint 0 max packet size change?
2068 * FIXME: skip the bandwidth calculation in that case.
2069 */
2070 return 0;
2071 }
2072
2073 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2074 struct xhci_virt_device *virt_dev)
2075 {
2076 unsigned int bw_reserved;
2077
2078 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2079 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2080 return -ENOMEM;
2081
2082 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2083 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2084 return -ENOMEM;
2085
2086 return 0;
2087 }
2088
2089 /*
2090 * This algorithm is a very conservative estimate of the worst-case scheduling
2091 * scenario for any one interval. The hardware dynamically schedules the
2092 * packets, so we can't tell which microframe could be the limiting factor in
2093 * the bandwidth scheduling. This only takes into account periodic endpoints.
2094 *
2095 * Obviously, we can't solve an NP complete problem to find the minimum worst
2096 * case scenario. Instead, we come up with an estimate that is no less than
2097 * the worst case bandwidth used for any one microframe, but may be an
2098 * over-estimate.
2099 *
2100 * We walk the requirements for each endpoint by interval, starting with the
2101 * smallest interval, and place packets in the schedule where there is only one
2102 * possible way to schedule packets for that interval. In order to simplify
2103 * this algorithm, we record the largest max packet size for each interval, and
2104 * assume all packets will be that size.
2105 *
2106 * For interval 0, we obviously must schedule all packets for each interval.
2107 * The bandwidth for interval 0 is just the amount of data to be transmitted
2108 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2109 * the number of packets).
2110 *
2111 * For interval 1, we have two possible microframes to schedule those packets
2112 * in. For this algorithm, if we can schedule the same number of packets for
2113 * each possible scheduling opportunity (each microframe), we will do so. The
2114 * remaining number of packets will be saved to be transmitted in the gaps in
2115 * the next interval's scheduling sequence.
2116 *
2117 * As we move those remaining packets to be scheduled with interval 2 packets,
2118 * we have to double the number of remaining packets to transmit. This is
2119 * because the intervals are actually powers of 2, and we would be transmitting
2120 * the previous interval's packets twice in this interval. We also have to be
2121 * sure that when we look at the largest max packet size for this interval, we
2122 * also look at the largest max packet size for the remaining packets and take
2123 * the greater of the two.
2124 *
2125 * The algorithm continues to evenly distribute packets in each scheduling
2126 * opportunity, and push the remaining packets out, until we get to the last
2127 * interval. Then those packets and their associated overhead are just added
2128 * to the bandwidth used.
2129 */
2130 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2131 struct xhci_virt_device *virt_dev,
2132 int old_active_eps)
2133 {
2134 unsigned int bw_reserved;
2135 unsigned int max_bandwidth;
2136 unsigned int bw_used;
2137 unsigned int block_size;
2138 struct xhci_interval_bw_table *bw_table;
2139 unsigned int packet_size = 0;
2140 unsigned int overhead = 0;
2141 unsigned int packets_transmitted = 0;
2142 unsigned int packets_remaining = 0;
2143 unsigned int i;
2144
2145 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2146 return xhci_check_ss_bw(xhci, virt_dev);
2147
2148 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2149 max_bandwidth = HS_BW_LIMIT;
2150 /* Convert percent of bus BW reserved to blocks reserved */
2151 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2152 } else {
2153 max_bandwidth = FS_BW_LIMIT;
2154 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2155 }
2156
2157 bw_table = virt_dev->bw_table;
2158 /* We need to translate the max packet size and max ESIT payloads into
2159 * the units the hardware uses.
2160 */
2161 block_size = xhci_get_block_size(virt_dev->udev);
2162
2163 /* If we are manipulating a LS/FS device under a HS hub, double check
2164 * that the HS bus has enough bandwidth if we are activing a new TT.
2165 */
2166 if (virt_dev->tt_info) {
2167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2168 "Recalculating BW for rootport %u",
2169 virt_dev->real_port);
2170 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2171 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2172 "newly activated TT.\n");
2173 return -ENOMEM;
2174 }
2175 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2176 "Recalculating BW for TT slot %u port %u",
2177 virt_dev->tt_info->slot_id,
2178 virt_dev->tt_info->ttport);
2179 } else {
2180 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2181 "Recalculating BW for rootport %u",
2182 virt_dev->real_port);
2183 }
2184
2185 /* Add in how much bandwidth will be used for interval zero, or the
2186 * rounded max ESIT payload + number of packets * largest overhead.
2187 */
2188 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2189 bw_table->interval_bw[0].num_packets *
2190 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2191
2192 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2193 unsigned int bw_added;
2194 unsigned int largest_mps;
2195 unsigned int interval_overhead;
2196
2197 /*
2198 * How many packets could we transmit in this interval?
2199 * If packets didn't fit in the previous interval, we will need
2200 * to transmit that many packets twice within this interval.
2201 */
2202 packets_remaining = 2 * packets_remaining +
2203 bw_table->interval_bw[i].num_packets;
2204
2205 /* Find the largest max packet size of this or the previous
2206 * interval.
2207 */
2208 if (list_empty(&bw_table->interval_bw[i].endpoints))
2209 largest_mps = 0;
2210 else {
2211 struct xhci_virt_ep *virt_ep;
2212 struct list_head *ep_entry;
2213
2214 ep_entry = bw_table->interval_bw[i].endpoints.next;
2215 virt_ep = list_entry(ep_entry,
2216 struct xhci_virt_ep, bw_endpoint_list);
2217 /* Convert to blocks, rounding up */
2218 largest_mps = DIV_ROUND_UP(
2219 virt_ep->bw_info.max_packet_size,
2220 block_size);
2221 }
2222 if (largest_mps > packet_size)
2223 packet_size = largest_mps;
2224
2225 /* Use the larger overhead of this or the previous interval. */
2226 interval_overhead = xhci_get_largest_overhead(
2227 &bw_table->interval_bw[i]);
2228 if (interval_overhead > overhead)
2229 overhead = interval_overhead;
2230
2231 /* How many packets can we evenly distribute across
2232 * (1 << (i + 1)) possible scheduling opportunities?
2233 */
2234 packets_transmitted = packets_remaining >> (i + 1);
2235
2236 /* Add in the bandwidth used for those scheduled packets */
2237 bw_added = packets_transmitted * (overhead + packet_size);
2238
2239 /* How many packets do we have remaining to transmit? */
2240 packets_remaining = packets_remaining % (1 << (i + 1));
2241
2242 /* What largest max packet size should those packets have? */
2243 /* If we've transmitted all packets, don't carry over the
2244 * largest packet size.
2245 */
2246 if (packets_remaining == 0) {
2247 packet_size = 0;
2248 overhead = 0;
2249 } else if (packets_transmitted > 0) {
2250 /* Otherwise if we do have remaining packets, and we've
2251 * scheduled some packets in this interval, take the
2252 * largest max packet size from endpoints with this
2253 * interval.
2254 */
2255 packet_size = largest_mps;
2256 overhead = interval_overhead;
2257 }
2258 /* Otherwise carry over packet_size and overhead from the last
2259 * time we had a remainder.
2260 */
2261 bw_used += bw_added;
2262 if (bw_used > max_bandwidth) {
2263 xhci_warn(xhci, "Not enough bandwidth. "
2264 "Proposed: %u, Max: %u\n",
2265 bw_used, max_bandwidth);
2266 return -ENOMEM;
2267 }
2268 }
2269 /*
2270 * Ok, we know we have some packets left over after even-handedly
2271 * scheduling interval 15. We don't know which microframes they will
2272 * fit into, so we over-schedule and say they will be scheduled every
2273 * microframe.
2274 */
2275 if (packets_remaining > 0)
2276 bw_used += overhead + packet_size;
2277
2278 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2279 unsigned int port_index = virt_dev->real_port - 1;
2280
2281 /* OK, we're manipulating a HS device attached to a
2282 * root port bandwidth domain. Include the number of active TTs
2283 * in the bandwidth used.
2284 */
2285 bw_used += TT_HS_OVERHEAD *
2286 xhci->rh_bw[port_index].num_active_tts;
2287 }
2288
2289 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2290 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2291 "Available: %u " "percent",
2292 bw_used, max_bandwidth, bw_reserved,
2293 (max_bandwidth - bw_used - bw_reserved) * 100 /
2294 max_bandwidth);
2295
2296 bw_used += bw_reserved;
2297 if (bw_used > max_bandwidth) {
2298 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2299 bw_used, max_bandwidth);
2300 return -ENOMEM;
2301 }
2302
2303 bw_table->bw_used = bw_used;
2304 return 0;
2305 }
2306
2307 static bool xhci_is_async_ep(unsigned int ep_type)
2308 {
2309 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2310 ep_type != ISOC_IN_EP &&
2311 ep_type != INT_IN_EP);
2312 }
2313
2314 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2315 {
2316 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2317 }
2318
2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2320 {
2321 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2322
2323 if (ep_bw->ep_interval == 0)
2324 return SS_OVERHEAD_BURST +
2325 (ep_bw->mult * ep_bw->num_packets *
2326 (SS_OVERHEAD + mps));
2327 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2328 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2329 1 << ep_bw->ep_interval);
2330
2331 }
2332
2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2334 struct xhci_bw_info *ep_bw,
2335 struct xhci_interval_bw_table *bw_table,
2336 struct usb_device *udev,
2337 struct xhci_virt_ep *virt_ep,
2338 struct xhci_tt_bw_info *tt_info)
2339 {
2340 struct xhci_interval_bw *interval_bw;
2341 int normalized_interval;
2342
2343 if (xhci_is_async_ep(ep_bw->type))
2344 return;
2345
2346 if (udev->speed >= USB_SPEED_SUPER) {
2347 if (xhci_is_sync_in_ep(ep_bw->type))
2348 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2349 xhci_get_ss_bw_consumed(ep_bw);
2350 else
2351 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2352 xhci_get_ss_bw_consumed(ep_bw);
2353 return;
2354 }
2355
2356 /* SuperSpeed endpoints never get added to intervals in the table, so
2357 * this check is only valid for HS/FS/LS devices.
2358 */
2359 if (list_empty(&virt_ep->bw_endpoint_list))
2360 return;
2361 /* For LS/FS devices, we need to translate the interval expressed in
2362 * microframes to frames.
2363 */
2364 if (udev->speed == USB_SPEED_HIGH)
2365 normalized_interval = ep_bw->ep_interval;
2366 else
2367 normalized_interval = ep_bw->ep_interval - 3;
2368
2369 if (normalized_interval == 0)
2370 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2371 interval_bw = &bw_table->interval_bw[normalized_interval];
2372 interval_bw->num_packets -= ep_bw->num_packets;
2373 switch (udev->speed) {
2374 case USB_SPEED_LOW:
2375 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2376 break;
2377 case USB_SPEED_FULL:
2378 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2379 break;
2380 case USB_SPEED_HIGH:
2381 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2382 break;
2383 case USB_SPEED_SUPER:
2384 case USB_SPEED_SUPER_PLUS:
2385 case USB_SPEED_UNKNOWN:
2386 case USB_SPEED_WIRELESS:
2387 /* Should never happen because only LS/FS/HS endpoints will get
2388 * added to the endpoint list.
2389 */
2390 return;
2391 }
2392 if (tt_info)
2393 tt_info->active_eps -= 1;
2394 list_del_init(&virt_ep->bw_endpoint_list);
2395 }
2396
2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2398 struct xhci_bw_info *ep_bw,
2399 struct xhci_interval_bw_table *bw_table,
2400 struct usb_device *udev,
2401 struct xhci_virt_ep *virt_ep,
2402 struct xhci_tt_bw_info *tt_info)
2403 {
2404 struct xhci_interval_bw *interval_bw;
2405 struct xhci_virt_ep *smaller_ep;
2406 int normalized_interval;
2407
2408 if (xhci_is_async_ep(ep_bw->type))
2409 return;
2410
2411 if (udev->speed == USB_SPEED_SUPER) {
2412 if (xhci_is_sync_in_ep(ep_bw->type))
2413 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2414 xhci_get_ss_bw_consumed(ep_bw);
2415 else
2416 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2417 xhci_get_ss_bw_consumed(ep_bw);
2418 return;
2419 }
2420
2421 /* For LS/FS devices, we need to translate the interval expressed in
2422 * microframes to frames.
2423 */
2424 if (udev->speed == USB_SPEED_HIGH)
2425 normalized_interval = ep_bw->ep_interval;
2426 else
2427 normalized_interval = ep_bw->ep_interval - 3;
2428
2429 if (normalized_interval == 0)
2430 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2431 interval_bw = &bw_table->interval_bw[normalized_interval];
2432 interval_bw->num_packets += ep_bw->num_packets;
2433 switch (udev->speed) {
2434 case USB_SPEED_LOW:
2435 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2436 break;
2437 case USB_SPEED_FULL:
2438 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2439 break;
2440 case USB_SPEED_HIGH:
2441 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2442 break;
2443 case USB_SPEED_SUPER:
2444 case USB_SPEED_SUPER_PLUS:
2445 case USB_SPEED_UNKNOWN:
2446 case USB_SPEED_WIRELESS:
2447 /* Should never happen because only LS/FS/HS endpoints will get
2448 * added to the endpoint list.
2449 */
2450 return;
2451 }
2452
2453 if (tt_info)
2454 tt_info->active_eps += 1;
2455 /* Insert the endpoint into the list, largest max packet size first. */
2456 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2457 bw_endpoint_list) {
2458 if (ep_bw->max_packet_size >=
2459 smaller_ep->bw_info.max_packet_size) {
2460 /* Add the new ep before the smaller endpoint */
2461 list_add_tail(&virt_ep->bw_endpoint_list,
2462 &smaller_ep->bw_endpoint_list);
2463 return;
2464 }
2465 }
2466 /* Add the new endpoint at the end of the list. */
2467 list_add_tail(&virt_ep->bw_endpoint_list,
2468 &interval_bw->endpoints);
2469 }
2470
2471 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2472 struct xhci_virt_device *virt_dev,
2473 int old_active_eps)
2474 {
2475 struct xhci_root_port_bw_info *rh_bw_info;
2476 if (!virt_dev->tt_info)
2477 return;
2478
2479 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2480 if (old_active_eps == 0 &&
2481 virt_dev->tt_info->active_eps != 0) {
2482 rh_bw_info->num_active_tts += 1;
2483 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2484 } else if (old_active_eps != 0 &&
2485 virt_dev->tt_info->active_eps == 0) {
2486 rh_bw_info->num_active_tts -= 1;
2487 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2488 }
2489 }
2490
2491 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2492 struct xhci_virt_device *virt_dev,
2493 struct xhci_container_ctx *in_ctx)
2494 {
2495 struct xhci_bw_info ep_bw_info[31];
2496 int i;
2497 struct xhci_input_control_ctx *ctrl_ctx;
2498 int old_active_eps = 0;
2499
2500 if (virt_dev->tt_info)
2501 old_active_eps = virt_dev->tt_info->active_eps;
2502
2503 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2504 if (!ctrl_ctx) {
2505 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2506 __func__);
2507 return -ENOMEM;
2508 }
2509
2510 for (i = 0; i < 31; i++) {
2511 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2512 continue;
2513
2514 /* Make a copy of the BW info in case we need to revert this */
2515 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2516 sizeof(ep_bw_info[i]));
2517 /* Drop the endpoint from the interval table if the endpoint is
2518 * being dropped or changed.
2519 */
2520 if (EP_IS_DROPPED(ctrl_ctx, i))
2521 xhci_drop_ep_from_interval_table(xhci,
2522 &virt_dev->eps[i].bw_info,
2523 virt_dev->bw_table,
2524 virt_dev->udev,
2525 &virt_dev->eps[i],
2526 virt_dev->tt_info);
2527 }
2528 /* Overwrite the information stored in the endpoints' bw_info */
2529 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2530 for (i = 0; i < 31; i++) {
2531 /* Add any changed or added endpoints to the interval table */
2532 if (EP_IS_ADDED(ctrl_ctx, i))
2533 xhci_add_ep_to_interval_table(xhci,
2534 &virt_dev->eps[i].bw_info,
2535 virt_dev->bw_table,
2536 virt_dev->udev,
2537 &virt_dev->eps[i],
2538 virt_dev->tt_info);
2539 }
2540
2541 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2542 /* Ok, this fits in the bandwidth we have.
2543 * Update the number of active TTs.
2544 */
2545 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2546 return 0;
2547 }
2548
2549 /* We don't have enough bandwidth for this, revert the stored info. */
2550 for (i = 0; i < 31; i++) {
2551 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2552 continue;
2553
2554 /* Drop the new copies of any added or changed endpoints from
2555 * the interval table.
2556 */
2557 if (EP_IS_ADDED(ctrl_ctx, i)) {
2558 xhci_drop_ep_from_interval_table(xhci,
2559 &virt_dev->eps[i].bw_info,
2560 virt_dev->bw_table,
2561 virt_dev->udev,
2562 &virt_dev->eps[i],
2563 virt_dev->tt_info);
2564 }
2565 /* Revert the endpoint back to its old information */
2566 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2567 sizeof(ep_bw_info[i]));
2568 /* Add any changed or dropped endpoints back into the table */
2569 if (EP_IS_DROPPED(ctrl_ctx, i))
2570 xhci_add_ep_to_interval_table(xhci,
2571 &virt_dev->eps[i].bw_info,
2572 virt_dev->bw_table,
2573 virt_dev->udev,
2574 &virt_dev->eps[i],
2575 virt_dev->tt_info);
2576 }
2577 return -ENOMEM;
2578 }
2579
2580
2581 /* Issue a configure endpoint command or evaluate context command
2582 * and wait for it to finish.
2583 */
2584 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2585 struct usb_device *udev,
2586 struct xhci_command *command,
2587 bool ctx_change, bool must_succeed)
2588 {
2589 int ret;
2590 unsigned long flags;
2591 struct xhci_input_control_ctx *ctrl_ctx;
2592 struct xhci_virt_device *virt_dev;
2593
2594 if (!command)
2595 return -EINVAL;
2596
2597 spin_lock_irqsave(&xhci->lock, flags);
2598 virt_dev = xhci->devs[udev->slot_id];
2599
2600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2601 if (!ctrl_ctx) {
2602 spin_unlock_irqrestore(&xhci->lock, flags);
2603 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2604 __func__);
2605 return -ENOMEM;
2606 }
2607
2608 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2609 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2610 spin_unlock_irqrestore(&xhci->lock, flags);
2611 xhci_warn(xhci, "Not enough host resources, "
2612 "active endpoint contexts = %u\n",
2613 xhci->num_active_eps);
2614 return -ENOMEM;
2615 }
2616 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2617 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2618 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2619 xhci_free_host_resources(xhci, ctrl_ctx);
2620 spin_unlock_irqrestore(&xhci->lock, flags);
2621 xhci_warn(xhci, "Not enough bandwidth\n");
2622 return -ENOMEM;
2623 }
2624
2625 if (!ctx_change)
2626 ret = xhci_queue_configure_endpoint(xhci, command,
2627 command->in_ctx->dma,
2628 udev->slot_id, must_succeed);
2629 else
2630 ret = xhci_queue_evaluate_context(xhci, command,
2631 command->in_ctx->dma,
2632 udev->slot_id, must_succeed);
2633 if (ret < 0) {
2634 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2635 xhci_free_host_resources(xhci, ctrl_ctx);
2636 spin_unlock_irqrestore(&xhci->lock, flags);
2637 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2638 "FIXME allocate a new ring segment");
2639 return -ENOMEM;
2640 }
2641 xhci_ring_cmd_db(xhci);
2642 spin_unlock_irqrestore(&xhci->lock, flags);
2643
2644 /* Wait for the configure endpoint command to complete */
2645 wait_for_completion(command->completion);
2646
2647 if (!ctx_change)
2648 ret = xhci_configure_endpoint_result(xhci, udev,
2649 &command->status);
2650 else
2651 ret = xhci_evaluate_context_result(xhci, udev,
2652 &command->status);
2653
2654 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2655 spin_lock_irqsave(&xhci->lock, flags);
2656 /* If the command failed, remove the reserved resources.
2657 * Otherwise, clean up the estimate to include dropped eps.
2658 */
2659 if (ret)
2660 xhci_free_host_resources(xhci, ctrl_ctx);
2661 else
2662 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2663 spin_unlock_irqrestore(&xhci->lock, flags);
2664 }
2665 return ret;
2666 }
2667
2668 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2669 struct xhci_virt_device *vdev, int i)
2670 {
2671 struct xhci_virt_ep *ep = &vdev->eps[i];
2672
2673 if (ep->ep_state & EP_HAS_STREAMS) {
2674 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2675 xhci_get_endpoint_address(i));
2676 xhci_free_stream_info(xhci, ep->stream_info);
2677 ep->stream_info = NULL;
2678 ep->ep_state &= ~EP_HAS_STREAMS;
2679 }
2680 }
2681
2682 /* Called after one or more calls to xhci_add_endpoint() or
2683 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2684 * to call xhci_reset_bandwidth().
2685 *
2686 * Since we are in the middle of changing either configuration or
2687 * installing a new alt setting, the USB core won't allow URBs to be
2688 * enqueued for any endpoint on the old config or interface. Nothing
2689 * else should be touching the xhci->devs[slot_id] structure, so we
2690 * don't need to take the xhci->lock for manipulating that.
2691 */
2692 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2693 {
2694 int i;
2695 int ret = 0;
2696 struct xhci_hcd *xhci;
2697 struct xhci_virt_device *virt_dev;
2698 struct xhci_input_control_ctx *ctrl_ctx;
2699 struct xhci_slot_ctx *slot_ctx;
2700 struct xhci_command *command;
2701
2702 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2703 if (ret <= 0)
2704 return ret;
2705 xhci = hcd_to_xhci(hcd);
2706 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2707 (xhci->xhc_state & XHCI_STATE_REMOVING))
2708 return -ENODEV;
2709
2710 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2711 virt_dev = xhci->devs[udev->slot_id];
2712
2713 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2714 if (!command)
2715 return -ENOMEM;
2716
2717 command->in_ctx = virt_dev->in_ctx;
2718
2719 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2720 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2721 if (!ctrl_ctx) {
2722 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2723 __func__);
2724 ret = -ENOMEM;
2725 goto command_cleanup;
2726 }
2727 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2728 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2729 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2730
2731 /* Don't issue the command if there's no endpoints to update. */
2732 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2733 ctrl_ctx->drop_flags == 0) {
2734 ret = 0;
2735 goto command_cleanup;
2736 }
2737 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2738 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2739 for (i = 31; i >= 1; i--) {
2740 __le32 le32 = cpu_to_le32(BIT(i));
2741
2742 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2743 || (ctrl_ctx->add_flags & le32) || i == 1) {
2744 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2745 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2746 break;
2747 }
2748 }
2749 xhci_dbg(xhci, "New Input Control Context:\n");
2750 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2751 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2752
2753 ret = xhci_configure_endpoint(xhci, udev, command,
2754 false, false);
2755 if (ret)
2756 /* Callee should call reset_bandwidth() */
2757 goto command_cleanup;
2758
2759 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2760 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2761 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2762
2763 /* Free any rings that were dropped, but not changed. */
2764 for (i = 1; i < 31; i++) {
2765 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2766 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2767 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2768 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2769 }
2770 }
2771 xhci_zero_in_ctx(xhci, virt_dev);
2772 /*
2773 * Install any rings for completely new endpoints or changed endpoints,
2774 * and free or cache any old rings from changed endpoints.
2775 */
2776 for (i = 1; i < 31; i++) {
2777 if (!virt_dev->eps[i].new_ring)
2778 continue;
2779 /* Only cache or free the old ring if it exists.
2780 * It may not if this is the first add of an endpoint.
2781 */
2782 if (virt_dev->eps[i].ring) {
2783 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2784 }
2785 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2786 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2787 virt_dev->eps[i].new_ring = NULL;
2788 }
2789 command_cleanup:
2790 kfree(command->completion);
2791 kfree(command);
2792
2793 return ret;
2794 }
2795
2796 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2797 {
2798 struct xhci_hcd *xhci;
2799 struct xhci_virt_device *virt_dev;
2800 int i, ret;
2801
2802 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2803 if (ret <= 0)
2804 return;
2805 xhci = hcd_to_xhci(hcd);
2806
2807 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2808 virt_dev = xhci->devs[udev->slot_id];
2809 /* Free any rings allocated for added endpoints */
2810 for (i = 0; i < 31; i++) {
2811 if (virt_dev->eps[i].new_ring) {
2812 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2813 virt_dev->eps[i].new_ring = NULL;
2814 }
2815 }
2816 xhci_zero_in_ctx(xhci, virt_dev);
2817 }
2818
2819 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2820 struct xhci_container_ctx *in_ctx,
2821 struct xhci_container_ctx *out_ctx,
2822 struct xhci_input_control_ctx *ctrl_ctx,
2823 u32 add_flags, u32 drop_flags)
2824 {
2825 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2826 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2827 xhci_slot_copy(xhci, in_ctx, out_ctx);
2828 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2829
2830 xhci_dbg(xhci, "Input Context:\n");
2831 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2832 }
2833
2834 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2835 unsigned int slot_id, unsigned int ep_index,
2836 struct xhci_dequeue_state *deq_state)
2837 {
2838 struct xhci_input_control_ctx *ctrl_ctx;
2839 struct xhci_container_ctx *in_ctx;
2840 struct xhci_ep_ctx *ep_ctx;
2841 u32 added_ctxs;
2842 dma_addr_t addr;
2843
2844 in_ctx = xhci->devs[slot_id]->in_ctx;
2845 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2846 if (!ctrl_ctx) {
2847 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2848 __func__);
2849 return;
2850 }
2851
2852 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2853 xhci->devs[slot_id]->out_ctx, ep_index);
2854 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2855 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2856 deq_state->new_deq_ptr);
2857 if (addr == 0) {
2858 xhci_warn(xhci, "WARN Cannot submit config ep after "
2859 "reset ep command\n");
2860 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2861 deq_state->new_deq_seg,
2862 deq_state->new_deq_ptr);
2863 return;
2864 }
2865 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2866
2867 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2868 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2869 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2870 added_ctxs, added_ctxs);
2871 }
2872
2873 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2874 unsigned int ep_index, struct xhci_td *td)
2875 {
2876 struct xhci_dequeue_state deq_state;
2877 struct xhci_virt_ep *ep;
2878 struct usb_device *udev = td->urb->dev;
2879
2880 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2881 "Cleaning up stalled endpoint ring");
2882 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2883 /* We need to move the HW's dequeue pointer past this TD,
2884 * or it will attempt to resend it on the next doorbell ring.
2885 */
2886 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2887 ep_index, ep->stopped_stream, td, &deq_state);
2888
2889 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2890 return;
2891
2892 /* HW with the reset endpoint quirk will use the saved dequeue state to
2893 * issue a configure endpoint command later.
2894 */
2895 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2896 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2897 "Queueing new dequeue state");
2898 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2899 ep_index, ep->stopped_stream, &deq_state);
2900 } else {
2901 /* Better hope no one uses the input context between now and the
2902 * reset endpoint completion!
2903 * XXX: No idea how this hardware will react when stream rings
2904 * are enabled.
2905 */
2906 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2907 "Setting up input context for "
2908 "configure endpoint command");
2909 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2910 ep_index, &deq_state);
2911 }
2912 }
2913
2914 /* Called when clearing halted device. The core should have sent the control
2915 * message to clear the device halt condition. The host side of the halt should
2916 * already be cleared with a reset endpoint command issued when the STALL tx
2917 * event was received.
2918 *
2919 * Context: in_interrupt
2920 */
2921
2922 void xhci_endpoint_reset(struct usb_hcd *hcd,
2923 struct usb_host_endpoint *ep)
2924 {
2925 struct xhci_hcd *xhci;
2926
2927 xhci = hcd_to_xhci(hcd);
2928
2929 /*
2930 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2931 * The Reset Endpoint Command may only be issued to endpoints in the
2932 * Halted state. If software wishes reset the Data Toggle or Sequence
2933 * Number of an endpoint that isn't in the Halted state, then software
2934 * may issue a Configure Endpoint Command with the Drop and Add bits set
2935 * for the target endpoint. that is in the Stopped state.
2936 */
2937
2938 /* For now just print debug to follow the situation */
2939 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2940 ep->desc.bEndpointAddress);
2941 }
2942
2943 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2944 struct usb_device *udev, struct usb_host_endpoint *ep,
2945 unsigned int slot_id)
2946 {
2947 int ret;
2948 unsigned int ep_index;
2949 unsigned int ep_state;
2950
2951 if (!ep)
2952 return -EINVAL;
2953 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2954 if (ret <= 0)
2955 return -EINVAL;
2956 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2957 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2958 " descriptor for ep 0x%x does not support streams\n",
2959 ep->desc.bEndpointAddress);
2960 return -EINVAL;
2961 }
2962
2963 ep_index = xhci_get_endpoint_index(&ep->desc);
2964 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2965 if (ep_state & EP_HAS_STREAMS ||
2966 ep_state & EP_GETTING_STREAMS) {
2967 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2968 "already has streams set up.\n",
2969 ep->desc.bEndpointAddress);
2970 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2971 "dynamic stream context array reallocation.\n");
2972 return -EINVAL;
2973 }
2974 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2975 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2976 "endpoint 0x%x; URBs are pending.\n",
2977 ep->desc.bEndpointAddress);
2978 return -EINVAL;
2979 }
2980 return 0;
2981 }
2982
2983 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2984 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2985 {
2986 unsigned int max_streams;
2987
2988 /* The stream context array size must be a power of two */
2989 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2990 /*
2991 * Find out how many primary stream array entries the host controller
2992 * supports. Later we may use secondary stream arrays (similar to 2nd
2993 * level page entries), but that's an optional feature for xHCI host
2994 * controllers. xHCs must support at least 4 stream IDs.
2995 */
2996 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2997 if (*num_stream_ctxs > max_streams) {
2998 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2999 max_streams);
3000 *num_stream_ctxs = max_streams;
3001 *num_streams = max_streams;
3002 }
3003 }
3004
3005 /* Returns an error code if one of the endpoint already has streams.
3006 * This does not change any data structures, it only checks and gathers
3007 * information.
3008 */
3009 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3010 struct usb_device *udev,
3011 struct usb_host_endpoint **eps, unsigned int num_eps,
3012 unsigned int *num_streams, u32 *changed_ep_bitmask)
3013 {
3014 unsigned int max_streams;
3015 unsigned int endpoint_flag;
3016 int i;
3017 int ret;
3018
3019 for (i = 0; i < num_eps; i++) {
3020 ret = xhci_check_streams_endpoint(xhci, udev,
3021 eps[i], udev->slot_id);
3022 if (ret < 0)
3023 return ret;
3024
3025 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3026 if (max_streams < (*num_streams - 1)) {
3027 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3028 eps[i]->desc.bEndpointAddress,
3029 max_streams);
3030 *num_streams = max_streams+1;
3031 }
3032
3033 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3034 if (*changed_ep_bitmask & endpoint_flag)
3035 return -EINVAL;
3036 *changed_ep_bitmask |= endpoint_flag;
3037 }
3038 return 0;
3039 }
3040
3041 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3042 struct usb_device *udev,
3043 struct usb_host_endpoint **eps, unsigned int num_eps)
3044 {
3045 u32 changed_ep_bitmask = 0;
3046 unsigned int slot_id;
3047 unsigned int ep_index;
3048 unsigned int ep_state;
3049 int i;
3050
3051 slot_id = udev->slot_id;
3052 if (!xhci->devs[slot_id])
3053 return 0;
3054
3055 for (i = 0; i < num_eps; i++) {
3056 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3057 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3058 /* Are streams already being freed for the endpoint? */
3059 if (ep_state & EP_GETTING_NO_STREAMS) {
3060 xhci_warn(xhci, "WARN Can't disable streams for "
3061 "endpoint 0x%x, "
3062 "streams are being disabled already\n",
3063 eps[i]->desc.bEndpointAddress);
3064 return 0;
3065 }
3066 /* Are there actually any streams to free? */
3067 if (!(ep_state & EP_HAS_STREAMS) &&
3068 !(ep_state & EP_GETTING_STREAMS)) {
3069 xhci_warn(xhci, "WARN Can't disable streams for "
3070 "endpoint 0x%x, "
3071 "streams are already disabled!\n",
3072 eps[i]->desc.bEndpointAddress);
3073 xhci_warn(xhci, "WARN xhci_free_streams() called "
3074 "with non-streams endpoint\n");
3075 return 0;
3076 }
3077 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3078 }
3079 return changed_ep_bitmask;
3080 }
3081
3082 /*
3083 * The USB device drivers use this function (through the HCD interface in USB
3084 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3085 * coordinate mass storage command queueing across multiple endpoints (basically
3086 * a stream ID == a task ID).
3087 *
3088 * Setting up streams involves allocating the same size stream context array
3089 * for each endpoint and issuing a configure endpoint command for all endpoints.
3090 *
3091 * Don't allow the call to succeed if one endpoint only supports one stream
3092 * (which means it doesn't support streams at all).
3093 *
3094 * Drivers may get less stream IDs than they asked for, if the host controller
3095 * hardware or endpoints claim they can't support the number of requested
3096 * stream IDs.
3097 */
3098 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3099 struct usb_host_endpoint **eps, unsigned int num_eps,
3100 unsigned int num_streams, gfp_t mem_flags)
3101 {
3102 int i, ret;
3103 struct xhci_hcd *xhci;
3104 struct xhci_virt_device *vdev;
3105 struct xhci_command *config_cmd;
3106 struct xhci_input_control_ctx *ctrl_ctx;
3107 unsigned int ep_index;
3108 unsigned int num_stream_ctxs;
3109 unsigned int max_packet;
3110 unsigned long flags;
3111 u32 changed_ep_bitmask = 0;
3112
3113 if (!eps)
3114 return -EINVAL;
3115
3116 /* Add one to the number of streams requested to account for
3117 * stream 0 that is reserved for xHCI usage.
3118 */
3119 num_streams += 1;
3120 xhci = hcd_to_xhci(hcd);
3121 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3122 num_streams);
3123
3124 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3125 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3126 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3127 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3128 return -ENOSYS;
3129 }
3130
3131 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3132 if (!config_cmd) {
3133 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3134 return -ENOMEM;
3135 }
3136 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3137 if (!ctrl_ctx) {
3138 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3139 __func__);
3140 xhci_free_command(xhci, config_cmd);
3141 return -ENOMEM;
3142 }
3143
3144 /* Check to make sure all endpoints are not already configured for
3145 * streams. While we're at it, find the maximum number of streams that
3146 * all the endpoints will support and check for duplicate endpoints.
3147 */
3148 spin_lock_irqsave(&xhci->lock, flags);
3149 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3150 num_eps, &num_streams, &changed_ep_bitmask);
3151 if (ret < 0) {
3152 xhci_free_command(xhci, config_cmd);
3153 spin_unlock_irqrestore(&xhci->lock, flags);
3154 return ret;
3155 }
3156 if (num_streams <= 1) {
3157 xhci_warn(xhci, "WARN: endpoints can't handle "
3158 "more than one stream.\n");
3159 xhci_free_command(xhci, config_cmd);
3160 spin_unlock_irqrestore(&xhci->lock, flags);
3161 return -EINVAL;
3162 }
3163 vdev = xhci->devs[udev->slot_id];
3164 /* Mark each endpoint as being in transition, so
3165 * xhci_urb_enqueue() will reject all URBs.
3166 */
3167 for (i = 0; i < num_eps; i++) {
3168 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3169 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3170 }
3171 spin_unlock_irqrestore(&xhci->lock, flags);
3172
3173 /* Setup internal data structures and allocate HW data structures for
3174 * streams (but don't install the HW structures in the input context
3175 * until we're sure all memory allocation succeeded).
3176 */
3177 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3178 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3179 num_stream_ctxs, num_streams);
3180
3181 for (i = 0; i < num_eps; i++) {
3182 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3183 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3184 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3185 num_stream_ctxs,
3186 num_streams,
3187 max_packet, mem_flags);
3188 if (!vdev->eps[ep_index].stream_info)
3189 goto cleanup;
3190 /* Set maxPstreams in endpoint context and update deq ptr to
3191 * point to stream context array. FIXME
3192 */
3193 }
3194
3195 /* Set up the input context for a configure endpoint command. */
3196 for (i = 0; i < num_eps; i++) {
3197 struct xhci_ep_ctx *ep_ctx;
3198
3199 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3200 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3201
3202 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3203 vdev->out_ctx, ep_index);
3204 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3205 vdev->eps[ep_index].stream_info);
3206 }
3207 /* Tell the HW to drop its old copy of the endpoint context info
3208 * and add the updated copy from the input context.
3209 */
3210 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3211 vdev->out_ctx, ctrl_ctx,
3212 changed_ep_bitmask, changed_ep_bitmask);
3213
3214 /* Issue and wait for the configure endpoint command */
3215 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3216 false, false);
3217
3218 /* xHC rejected the configure endpoint command for some reason, so we
3219 * leave the old ring intact and free our internal streams data
3220 * structure.
3221 */
3222 if (ret < 0)
3223 goto cleanup;
3224
3225 spin_lock_irqsave(&xhci->lock, flags);
3226 for (i = 0; i < num_eps; i++) {
3227 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3229 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3230 udev->slot_id, ep_index);
3231 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3232 }
3233 xhci_free_command(xhci, config_cmd);
3234 spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236 /* Subtract 1 for stream 0, which drivers can't use */
3237 return num_streams - 1;
3238
3239 cleanup:
3240 /* If it didn't work, free the streams! */
3241 for (i = 0; i < num_eps; i++) {
3242 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3243 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3244 vdev->eps[ep_index].stream_info = NULL;
3245 /* FIXME Unset maxPstreams in endpoint context and
3246 * update deq ptr to point to normal string ring.
3247 */
3248 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3249 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3250 xhci_endpoint_zero(xhci, vdev, eps[i]);
3251 }
3252 xhci_free_command(xhci, config_cmd);
3253 return -ENOMEM;
3254 }
3255
3256 /* Transition the endpoint from using streams to being a "normal" endpoint
3257 * without streams.
3258 *
3259 * Modify the endpoint context state, submit a configure endpoint command,
3260 * and free all endpoint rings for streams if that completes successfully.
3261 */
3262 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3263 struct usb_host_endpoint **eps, unsigned int num_eps,
3264 gfp_t mem_flags)
3265 {
3266 int i, ret;
3267 struct xhci_hcd *xhci;
3268 struct xhci_virt_device *vdev;
3269 struct xhci_command *command;
3270 struct xhci_input_control_ctx *ctrl_ctx;
3271 unsigned int ep_index;
3272 unsigned long flags;
3273 u32 changed_ep_bitmask;
3274
3275 xhci = hcd_to_xhci(hcd);
3276 vdev = xhci->devs[udev->slot_id];
3277
3278 /* Set up a configure endpoint command to remove the streams rings */
3279 spin_lock_irqsave(&xhci->lock, flags);
3280 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3281 udev, eps, num_eps);
3282 if (changed_ep_bitmask == 0) {
3283 spin_unlock_irqrestore(&xhci->lock, flags);
3284 return -EINVAL;
3285 }
3286
3287 /* Use the xhci_command structure from the first endpoint. We may have
3288 * allocated too many, but the driver may call xhci_free_streams() for
3289 * each endpoint it grouped into one call to xhci_alloc_streams().
3290 */
3291 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3292 command = vdev->eps[ep_index].stream_info->free_streams_command;
3293 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3294 if (!ctrl_ctx) {
3295 spin_unlock_irqrestore(&xhci->lock, flags);
3296 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3297 __func__);
3298 return -EINVAL;
3299 }
3300
3301 for (i = 0; i < num_eps; i++) {
3302 struct xhci_ep_ctx *ep_ctx;
3303
3304 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3305 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3306 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3307 EP_GETTING_NO_STREAMS;
3308
3309 xhci_endpoint_copy(xhci, command->in_ctx,
3310 vdev->out_ctx, ep_index);
3311 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3312 &vdev->eps[ep_index]);
3313 }
3314 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3315 vdev->out_ctx, ctrl_ctx,
3316 changed_ep_bitmask, changed_ep_bitmask);
3317 spin_unlock_irqrestore(&xhci->lock, flags);
3318
3319 /* Issue and wait for the configure endpoint command,
3320 * which must succeed.
3321 */
3322 ret = xhci_configure_endpoint(xhci, udev, command,
3323 false, true);
3324
3325 /* xHC rejected the configure endpoint command for some reason, so we
3326 * leave the streams rings intact.
3327 */
3328 if (ret < 0)
3329 return ret;
3330
3331 spin_lock_irqsave(&xhci->lock, flags);
3332 for (i = 0; i < num_eps; i++) {
3333 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3334 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3335 vdev->eps[ep_index].stream_info = NULL;
3336 /* FIXME Unset maxPstreams in endpoint context and
3337 * update deq ptr to point to normal string ring.
3338 */
3339 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3340 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3341 }
3342 spin_unlock_irqrestore(&xhci->lock, flags);
3343
3344 return 0;
3345 }
3346
3347 /*
3348 * Deletes endpoint resources for endpoints that were active before a Reset
3349 * Device command, or a Disable Slot command. The Reset Device command leaves
3350 * the control endpoint intact, whereas the Disable Slot command deletes it.
3351 *
3352 * Must be called with xhci->lock held.
3353 */
3354 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3355 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3356 {
3357 int i;
3358 unsigned int num_dropped_eps = 0;
3359 unsigned int drop_flags = 0;
3360
3361 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3362 if (virt_dev->eps[i].ring) {
3363 drop_flags |= 1 << i;
3364 num_dropped_eps++;
3365 }
3366 }
3367 xhci->num_active_eps -= num_dropped_eps;
3368 if (num_dropped_eps)
3369 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3370 "Dropped %u ep ctxs, flags = 0x%x, "
3371 "%u now active.",
3372 num_dropped_eps, drop_flags,
3373 xhci->num_active_eps);
3374 }
3375
3376 /*
3377 * This submits a Reset Device Command, which will set the device state to 0,
3378 * set the device address to 0, and disable all the endpoints except the default
3379 * control endpoint. The USB core should come back and call
3380 * xhci_address_device(), and then re-set up the configuration. If this is
3381 * called because of a usb_reset_and_verify_device(), then the old alternate
3382 * settings will be re-installed through the normal bandwidth allocation
3383 * functions.
3384 *
3385 * Wait for the Reset Device command to finish. Remove all structures
3386 * associated with the endpoints that were disabled. Clear the input device
3387 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3388 *
3389 * If the virt_dev to be reset does not exist or does not match the udev,
3390 * it means the device is lost, possibly due to the xHC restore error and
3391 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3392 * re-allocate the device.
3393 */
3394 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3395 {
3396 int ret, i;
3397 unsigned long flags;
3398 struct xhci_hcd *xhci;
3399 unsigned int slot_id;
3400 struct xhci_virt_device *virt_dev;
3401 struct xhci_command *reset_device_cmd;
3402 int last_freed_endpoint;
3403 struct xhci_slot_ctx *slot_ctx;
3404 int old_active_eps = 0;
3405
3406 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3407 if (ret <= 0)
3408 return ret;
3409 xhci = hcd_to_xhci(hcd);
3410 slot_id = udev->slot_id;
3411 virt_dev = xhci->devs[slot_id];
3412 if (!virt_dev) {
3413 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3414 "not exist. Re-allocate the device\n", slot_id);
3415 ret = xhci_alloc_dev(hcd, udev);
3416 if (ret == 1)
3417 return 0;
3418 else
3419 return -EINVAL;
3420 }
3421
3422 if (virt_dev->tt_info)
3423 old_active_eps = virt_dev->tt_info->active_eps;
3424
3425 if (virt_dev->udev != udev) {
3426 /* If the virt_dev and the udev does not match, this virt_dev
3427 * may belong to another udev.
3428 * Re-allocate the device.
3429 */
3430 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3431 "not match the udev. Re-allocate the device\n",
3432 slot_id);
3433 ret = xhci_alloc_dev(hcd, udev);
3434 if (ret == 1)
3435 return 0;
3436 else
3437 return -EINVAL;
3438 }
3439
3440 /* If device is not setup, there is no point in resetting it */
3441 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3442 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3443 SLOT_STATE_DISABLED)
3444 return 0;
3445
3446 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3447 /* Allocate the command structure that holds the struct completion.
3448 * Assume we're in process context, since the normal device reset
3449 * process has to wait for the device anyway. Storage devices are
3450 * reset as part of error handling, so use GFP_NOIO instead of
3451 * GFP_KERNEL.
3452 */
3453 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3454 if (!reset_device_cmd) {
3455 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3456 return -ENOMEM;
3457 }
3458
3459 /* Attempt to submit the Reset Device command to the command ring */
3460 spin_lock_irqsave(&xhci->lock, flags);
3461
3462 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3463 if (ret) {
3464 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3465 spin_unlock_irqrestore(&xhci->lock, flags);
3466 goto command_cleanup;
3467 }
3468 xhci_ring_cmd_db(xhci);
3469 spin_unlock_irqrestore(&xhci->lock, flags);
3470
3471 /* Wait for the Reset Device command to finish */
3472 wait_for_completion(reset_device_cmd->completion);
3473
3474 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3475 * unless we tried to reset a slot ID that wasn't enabled,
3476 * or the device wasn't in the addressed or configured state.
3477 */
3478 ret = reset_device_cmd->status;
3479 switch (ret) {
3480 case COMP_COMMAND_ABORTED:
3481 case COMP_STOPPED:
3482 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3483 ret = -ETIME;
3484 goto command_cleanup;
3485 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3486 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3487 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3488 slot_id,
3489 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3490 xhci_dbg(xhci, "Not freeing device rings.\n");
3491 /* Don't treat this as an error. May change my mind later. */
3492 ret = 0;
3493 goto command_cleanup;
3494 case COMP_SUCCESS:
3495 xhci_dbg(xhci, "Successful reset device command.\n");
3496 break;
3497 default:
3498 if (xhci_is_vendor_info_code(xhci, ret))
3499 break;
3500 xhci_warn(xhci, "Unknown completion code %u for "
3501 "reset device command.\n", ret);
3502 ret = -EINVAL;
3503 goto command_cleanup;
3504 }
3505
3506 /* Free up host controller endpoint resources */
3507 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3508 spin_lock_irqsave(&xhci->lock, flags);
3509 /* Don't delete the default control endpoint resources */
3510 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3511 spin_unlock_irqrestore(&xhci->lock, flags);
3512 }
3513
3514 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3515 last_freed_endpoint = 1;
3516 for (i = 1; i < 31; i++) {
3517 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3518
3519 if (ep->ep_state & EP_HAS_STREAMS) {
3520 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3521 xhci_get_endpoint_address(i));
3522 xhci_free_stream_info(xhci, ep->stream_info);
3523 ep->stream_info = NULL;
3524 ep->ep_state &= ~EP_HAS_STREAMS;
3525 }
3526
3527 if (ep->ring) {
3528 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3529 last_freed_endpoint = i;
3530 }
3531 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3532 xhci_drop_ep_from_interval_table(xhci,
3533 &virt_dev->eps[i].bw_info,
3534 virt_dev->bw_table,
3535 udev,
3536 &virt_dev->eps[i],
3537 virt_dev->tt_info);
3538 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3539 }
3540 /* If necessary, update the number of active TTs on this root port */
3541 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3542
3543 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3544 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3545 ret = 0;
3546
3547 command_cleanup:
3548 xhci_free_command(xhci, reset_device_cmd);
3549 return ret;
3550 }
3551
3552 /*
3553 * At this point, the struct usb_device is about to go away, the device has
3554 * disconnected, and all traffic has been stopped and the endpoints have been
3555 * disabled. Free any HC data structures associated with that device.
3556 */
3557 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3558 {
3559 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3560 struct xhci_virt_device *virt_dev;
3561 unsigned long flags;
3562 u32 state;
3563 int i, ret;
3564 struct xhci_command *command;
3565
3566 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3567 if (!command)
3568 return;
3569
3570 #ifndef CONFIG_USB_DEFAULT_PERSIST
3571 /*
3572 * We called pm_runtime_get_noresume when the device was attached.
3573 * Decrement the counter here to allow controller to runtime suspend
3574 * if no devices remain.
3575 */
3576 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3577 pm_runtime_put_noidle(hcd->self.controller);
3578 #endif
3579
3580 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3581 /* If the host is halted due to driver unload, we still need to free the
3582 * device.
3583 */
3584 if (ret <= 0 && ret != -ENODEV) {
3585 kfree(command);
3586 return;
3587 }
3588
3589 virt_dev = xhci->devs[udev->slot_id];
3590
3591 /* Stop any wayward timer functions (which may grab the lock) */
3592 for (i = 0; i < 31; i++) {
3593 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3594 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3595 }
3596
3597 spin_lock_irqsave(&xhci->lock, flags);
3598 /* Don't disable the slot if the host controller is dead. */
3599 state = readl(&xhci->op_regs->status);
3600 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3601 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3602 xhci_free_virt_device(xhci, udev->slot_id);
3603 spin_unlock_irqrestore(&xhci->lock, flags);
3604 kfree(command);
3605 return;
3606 }
3607
3608 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3609 udev->slot_id)) {
3610 spin_unlock_irqrestore(&xhci->lock, flags);
3611 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3612 return;
3613 }
3614 xhci_ring_cmd_db(xhci);
3615 spin_unlock_irqrestore(&xhci->lock, flags);
3616
3617 /*
3618 * Event command completion handler will free any data structures
3619 * associated with the slot. XXX Can free sleep?
3620 */
3621 }
3622
3623 /*
3624 * Checks if we have enough host controller resources for the default control
3625 * endpoint.
3626 *
3627 * Must be called with xhci->lock held.
3628 */
3629 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3630 {
3631 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3632 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3633 "Not enough ep ctxs: "
3634 "%u active, need to add 1, limit is %u.",
3635 xhci->num_active_eps, xhci->limit_active_eps);
3636 return -ENOMEM;
3637 }
3638 xhci->num_active_eps += 1;
3639 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3640 "Adding 1 ep ctx, %u now active.",
3641 xhci->num_active_eps);
3642 return 0;
3643 }
3644
3645
3646 /*
3647 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3648 * timed out, or allocating memory failed. Returns 1 on success.
3649 */
3650 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3651 {
3652 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3653 unsigned long flags;
3654 int ret, slot_id;
3655 struct xhci_command *command;
3656
3657 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3658 if (!command)
3659 return 0;
3660
3661 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3662 mutex_lock(&xhci->mutex);
3663 spin_lock_irqsave(&xhci->lock, flags);
3664 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3665 if (ret) {
3666 spin_unlock_irqrestore(&xhci->lock, flags);
3667 mutex_unlock(&xhci->mutex);
3668 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3669 xhci_free_command(xhci, command);
3670 return 0;
3671 }
3672 xhci_ring_cmd_db(xhci);
3673 spin_unlock_irqrestore(&xhci->lock, flags);
3674
3675 wait_for_completion(command->completion);
3676 slot_id = command->slot_id;
3677 mutex_unlock(&xhci->mutex);
3678
3679 if (!slot_id || command->status != COMP_SUCCESS) {
3680 xhci_err(xhci, "Error while assigning device slot ID\n");
3681 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3682 HCS_MAX_SLOTS(
3683 readl(&xhci->cap_regs->hcs_params1)));
3684 xhci_free_command(xhci, command);
3685 return 0;
3686 }
3687
3688 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3689 spin_lock_irqsave(&xhci->lock, flags);
3690 ret = xhci_reserve_host_control_ep_resources(xhci);
3691 if (ret) {
3692 spin_unlock_irqrestore(&xhci->lock, flags);
3693 xhci_warn(xhci, "Not enough host resources, "
3694 "active endpoint contexts = %u\n",
3695 xhci->num_active_eps);
3696 goto disable_slot;
3697 }
3698 spin_unlock_irqrestore(&xhci->lock, flags);
3699 }
3700 /* Use GFP_NOIO, since this function can be called from
3701 * xhci_discover_or_reset_device(), which may be called as part of
3702 * mass storage driver error handling.
3703 */
3704 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3705 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3706 goto disable_slot;
3707 }
3708 udev->slot_id = slot_id;
3709
3710 #ifndef CONFIG_USB_DEFAULT_PERSIST
3711 /*
3712 * If resetting upon resume, we can't put the controller into runtime
3713 * suspend if there is a device attached.
3714 */
3715 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3716 pm_runtime_get_noresume(hcd->self.controller);
3717 #endif
3718
3719
3720 xhci_free_command(xhci, command);
3721 /* Is this a LS or FS device under a HS hub? */
3722 /* Hub or peripherial? */
3723 return 1;
3724
3725 disable_slot:
3726 /* Disable slot, if we can do it without mem alloc */
3727 spin_lock_irqsave(&xhci->lock, flags);
3728 kfree(command->completion);
3729 command->completion = NULL;
3730 command->status = 0;
3731 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3732 udev->slot_id))
3733 xhci_ring_cmd_db(xhci);
3734 spin_unlock_irqrestore(&xhci->lock, flags);
3735 return 0;
3736 }
3737
3738 /*
3739 * Issue an Address Device command and optionally send a corresponding
3740 * SetAddress request to the device.
3741 */
3742 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3743 enum xhci_setup_dev setup)
3744 {
3745 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3746 unsigned long flags;
3747 struct xhci_virt_device *virt_dev;
3748 int ret = 0;
3749 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3750 struct xhci_slot_ctx *slot_ctx;
3751 struct xhci_input_control_ctx *ctrl_ctx;
3752 u64 temp_64;
3753 struct xhci_command *command = NULL;
3754
3755 mutex_lock(&xhci->mutex);
3756
3757 if (xhci->xhc_state) { /* dying, removing or halted */
3758 ret = -ESHUTDOWN;
3759 goto out;
3760 }
3761
3762 if (!udev->slot_id) {
3763 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3764 "Bad Slot ID %d", udev->slot_id);
3765 ret = -EINVAL;
3766 goto out;
3767 }
3768
3769 virt_dev = xhci->devs[udev->slot_id];
3770
3771 if (WARN_ON(!virt_dev)) {
3772 /*
3773 * In plug/unplug torture test with an NEC controller,
3774 * a zero-dereference was observed once due to virt_dev = 0.
3775 * Print useful debug rather than crash if it is observed again!
3776 */
3777 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3778 udev->slot_id);
3779 ret = -EINVAL;
3780 goto out;
3781 }
3782
3783 if (setup == SETUP_CONTEXT_ONLY) {
3784 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3785 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3786 SLOT_STATE_DEFAULT) {
3787 xhci_dbg(xhci, "Slot already in default state\n");
3788 goto out;
3789 }
3790 }
3791
3792 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3793 if (!command) {
3794 ret = -ENOMEM;
3795 goto out;
3796 }
3797
3798 command->in_ctx = virt_dev->in_ctx;
3799
3800 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3801 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3802 if (!ctrl_ctx) {
3803 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3804 __func__);
3805 ret = -EINVAL;
3806 goto out;
3807 }
3808 /*
3809 * If this is the first Set Address since device plug-in or
3810 * virt_device realloaction after a resume with an xHCI power loss,
3811 * then set up the slot context.
3812 */
3813 if (!slot_ctx->dev_info)
3814 xhci_setup_addressable_virt_dev(xhci, udev);
3815 /* Otherwise, update the control endpoint ring enqueue pointer. */
3816 else
3817 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3818 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3819 ctrl_ctx->drop_flags = 0;
3820
3821 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3822 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3823 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3824 le32_to_cpu(slot_ctx->dev_info) >> 27);
3825
3826 spin_lock_irqsave(&xhci->lock, flags);
3827 trace_xhci_setup_device(virt_dev);
3828 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3829 udev->slot_id, setup);
3830 if (ret) {
3831 spin_unlock_irqrestore(&xhci->lock, flags);
3832 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3833 "FIXME: allocate a command ring segment");
3834 goto out;
3835 }
3836 xhci_ring_cmd_db(xhci);
3837 spin_unlock_irqrestore(&xhci->lock, flags);
3838
3839 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3840 wait_for_completion(command->completion);
3841
3842 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3843 * the SetAddress() "recovery interval" required by USB and aborting the
3844 * command on a timeout.
3845 */
3846 switch (command->status) {
3847 case COMP_COMMAND_ABORTED:
3848 case COMP_STOPPED:
3849 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3850 ret = -ETIME;
3851 break;
3852 case COMP_CONTEXT_STATE_ERROR:
3853 case COMP_SLOT_NOT_ENABLED_ERROR:
3854 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3855 act, udev->slot_id);
3856 ret = -EINVAL;
3857 break;
3858 case COMP_USB_TRANSACTION_ERROR:
3859 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3860 ret = -EPROTO;
3861 break;
3862 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3863 dev_warn(&udev->dev,
3864 "ERROR: Incompatible device for setup %s command\n", act);
3865 ret = -ENODEV;
3866 break;
3867 case COMP_SUCCESS:
3868 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3869 "Successful setup %s command", act);
3870 break;
3871 default:
3872 xhci_err(xhci,
3873 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3874 act, command->status);
3875 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3876 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3877 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3878 ret = -EINVAL;
3879 break;
3880 }
3881 if (ret)
3882 goto out;
3883 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3884 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3885 "Op regs DCBAA ptr = %#016llx", temp_64);
3886 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3887 "Slot ID %d dcbaa entry @%p = %#016llx",
3888 udev->slot_id,
3889 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3890 (unsigned long long)
3891 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3892 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3893 "Output Context DMA address = %#08llx",
3894 (unsigned long long)virt_dev->out_ctx->dma);
3895 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3896 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3897 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3898 le32_to_cpu(slot_ctx->dev_info) >> 27);
3899 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3900 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3901 /*
3902 * USB core uses address 1 for the roothubs, so we add one to the
3903 * address given back to us by the HC.
3904 */
3905 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3906 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3907 le32_to_cpu(slot_ctx->dev_info) >> 27);
3908 /* Zero the input context control for later use */
3909 ctrl_ctx->add_flags = 0;
3910 ctrl_ctx->drop_flags = 0;
3911
3912 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913 "Internal device address = %d",
3914 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3915 out:
3916 mutex_unlock(&xhci->mutex);
3917 if (command) {
3918 kfree(command->completion);
3919 kfree(command);
3920 }
3921 return ret;
3922 }
3923
3924 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3925 {
3926 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3927 }
3928
3929 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3930 {
3931 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3932 }
3933
3934 /*
3935 * Transfer the port index into real index in the HW port status
3936 * registers. Caculate offset between the port's PORTSC register
3937 * and port status base. Divide the number of per port register
3938 * to get the real index. The raw port number bases 1.
3939 */
3940 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3941 {
3942 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3944 __le32 __iomem *addr;
3945 int raw_port;
3946
3947 if (hcd->speed < HCD_USB3)
3948 addr = xhci->usb2_ports[port1 - 1];
3949 else
3950 addr = xhci->usb3_ports[port1 - 1];
3951
3952 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3953 return raw_port;
3954 }
3955
3956 /*
3957 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3958 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3959 */
3960 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3961 struct usb_device *udev, u16 max_exit_latency)
3962 {
3963 struct xhci_virt_device *virt_dev;
3964 struct xhci_command *command;
3965 struct xhci_input_control_ctx *ctrl_ctx;
3966 struct xhci_slot_ctx *slot_ctx;
3967 unsigned long flags;
3968 int ret;
3969
3970 spin_lock_irqsave(&xhci->lock, flags);
3971
3972 virt_dev = xhci->devs[udev->slot_id];
3973
3974 /*
3975 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3976 * xHC was re-initialized. Exit latency will be set later after
3977 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3978 */
3979
3980 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3981 spin_unlock_irqrestore(&xhci->lock, flags);
3982 return 0;
3983 }
3984
3985 /* Attempt to issue an Evaluate Context command to change the MEL. */
3986 command = xhci->lpm_command;
3987 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3988 if (!ctrl_ctx) {
3989 spin_unlock_irqrestore(&xhci->lock, flags);
3990 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3991 __func__);
3992 return -ENOMEM;
3993 }
3994
3995 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3996 spin_unlock_irqrestore(&xhci->lock, flags);
3997
3998 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3999 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4000 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4001 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4002 slot_ctx->dev_state = 0;
4003
4004 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4005 "Set up evaluate context for LPM MEL change.");
4006 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4007 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4008
4009 /* Issue and wait for the evaluate context command. */
4010 ret = xhci_configure_endpoint(xhci, udev, command,
4011 true, true);
4012 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4013 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4014
4015 if (!ret) {
4016 spin_lock_irqsave(&xhci->lock, flags);
4017 virt_dev->current_mel = max_exit_latency;
4018 spin_unlock_irqrestore(&xhci->lock, flags);
4019 }
4020 return ret;
4021 }
4022
4023 #ifdef CONFIG_PM
4024
4025 /* BESL to HIRD Encoding array for USB2 LPM */
4026 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4027 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4028
4029 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4030 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4031 struct usb_device *udev)
4032 {
4033 int u2del, besl, besl_host;
4034 int besl_device = 0;
4035 u32 field;
4036
4037 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4038 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4039
4040 if (field & USB_BESL_SUPPORT) {
4041 for (besl_host = 0; besl_host < 16; besl_host++) {
4042 if (xhci_besl_encoding[besl_host] >= u2del)
4043 break;
4044 }
4045 /* Use baseline BESL value as default */
4046 if (field & USB_BESL_BASELINE_VALID)
4047 besl_device = USB_GET_BESL_BASELINE(field);
4048 else if (field & USB_BESL_DEEP_VALID)
4049 besl_device = USB_GET_BESL_DEEP(field);
4050 } else {
4051 if (u2del <= 50)
4052 besl_host = 0;
4053 else
4054 besl_host = (u2del - 51) / 75 + 1;
4055 }
4056
4057 besl = besl_host + besl_device;
4058 if (besl > 15)
4059 besl = 15;
4060
4061 return besl;
4062 }
4063
4064 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4065 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4066 {
4067 u32 field;
4068 int l1;
4069 int besld = 0;
4070 int hirdm = 0;
4071
4072 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4073
4074 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4075 l1 = udev->l1_params.timeout / 256;
4076
4077 /* device has preferred BESLD */
4078 if (field & USB_BESL_DEEP_VALID) {
4079 besld = USB_GET_BESL_DEEP(field);
4080 hirdm = 1;
4081 }
4082
4083 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4084 }
4085
4086 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4087 struct usb_device *udev, int enable)
4088 {
4089 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4090 __le32 __iomem **port_array;
4091 __le32 __iomem *pm_addr, *hlpm_addr;
4092 u32 pm_val, hlpm_val, field;
4093 unsigned int port_num;
4094 unsigned long flags;
4095 int hird, exit_latency;
4096 int ret;
4097
4098 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4099 !udev->lpm_capable)
4100 return -EPERM;
4101
4102 if (!udev->parent || udev->parent->parent ||
4103 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4104 return -EPERM;
4105
4106 if (udev->usb2_hw_lpm_capable != 1)
4107 return -EPERM;
4108
4109 spin_lock_irqsave(&xhci->lock, flags);
4110
4111 port_array = xhci->usb2_ports;
4112 port_num = udev->portnum - 1;
4113 pm_addr = port_array[port_num] + PORTPMSC;
4114 pm_val = readl(pm_addr);
4115 hlpm_addr = port_array[port_num] + PORTHLPMC;
4116 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4117
4118 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4119 enable ? "enable" : "disable", port_num + 1);
4120
4121 if (enable) {
4122 /* Host supports BESL timeout instead of HIRD */
4123 if (udev->usb2_hw_lpm_besl_capable) {
4124 /* if device doesn't have a preferred BESL value use a
4125 * default one which works with mixed HIRD and BESL
4126 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4127 */
4128 if ((field & USB_BESL_SUPPORT) &&
4129 (field & USB_BESL_BASELINE_VALID))
4130 hird = USB_GET_BESL_BASELINE(field);
4131 else
4132 hird = udev->l1_params.besl;
4133
4134 exit_latency = xhci_besl_encoding[hird];
4135 spin_unlock_irqrestore(&xhci->lock, flags);
4136
4137 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4138 * input context for link powermanagement evaluate
4139 * context commands. It is protected by hcd->bandwidth
4140 * mutex and is shared by all devices. We need to set
4141 * the max ext latency in USB 2 BESL LPM as well, so
4142 * use the same mutex and xhci_change_max_exit_latency()
4143 */
4144 mutex_lock(hcd->bandwidth_mutex);
4145 ret = xhci_change_max_exit_latency(xhci, udev,
4146 exit_latency);
4147 mutex_unlock(hcd->bandwidth_mutex);
4148
4149 if (ret < 0)
4150 return ret;
4151 spin_lock_irqsave(&xhci->lock, flags);
4152
4153 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4154 writel(hlpm_val, hlpm_addr);
4155 /* flush write */
4156 readl(hlpm_addr);
4157 } else {
4158 hird = xhci_calculate_hird_besl(xhci, udev);
4159 }
4160
4161 pm_val &= ~PORT_HIRD_MASK;
4162 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4163 writel(pm_val, pm_addr);
4164 pm_val = readl(pm_addr);
4165 pm_val |= PORT_HLE;
4166 writel(pm_val, pm_addr);
4167 /* flush write */
4168 readl(pm_addr);
4169 } else {
4170 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4171 writel(pm_val, pm_addr);
4172 /* flush write */
4173 readl(pm_addr);
4174 if (udev->usb2_hw_lpm_besl_capable) {
4175 spin_unlock_irqrestore(&xhci->lock, flags);
4176 mutex_lock(hcd->bandwidth_mutex);
4177 xhci_change_max_exit_latency(xhci, udev, 0);
4178 mutex_unlock(hcd->bandwidth_mutex);
4179 return 0;
4180 }
4181 }
4182
4183 spin_unlock_irqrestore(&xhci->lock, flags);
4184 return 0;
4185 }
4186
4187 /* check if a usb2 port supports a given extened capability protocol
4188 * only USB2 ports extended protocol capability values are cached.
4189 * Return 1 if capability is supported
4190 */
4191 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4192 unsigned capability)
4193 {
4194 u32 port_offset, port_count;
4195 int i;
4196
4197 for (i = 0; i < xhci->num_ext_caps; i++) {
4198 if (xhci->ext_caps[i] & capability) {
4199 /* port offsets starts at 1 */
4200 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4201 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4202 if (port >= port_offset &&
4203 port < port_offset + port_count)
4204 return 1;
4205 }
4206 }
4207 return 0;
4208 }
4209
4210 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4211 {
4212 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4213 int portnum = udev->portnum - 1;
4214
4215 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4216 !udev->lpm_capable)
4217 return 0;
4218
4219 /* we only support lpm for non-hub device connected to root hub yet */
4220 if (!udev->parent || udev->parent->parent ||
4221 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4222 return 0;
4223
4224 if (xhci->hw_lpm_support == 1 &&
4225 xhci_check_usb2_port_capability(
4226 xhci, portnum, XHCI_HLC)) {
4227 udev->usb2_hw_lpm_capable = 1;
4228 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4229 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4230 if (xhci_check_usb2_port_capability(xhci, portnum,
4231 XHCI_BLC))
4232 udev->usb2_hw_lpm_besl_capable = 1;
4233 }
4234
4235 return 0;
4236 }
4237
4238 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4239
4240 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4241 static unsigned long long xhci_service_interval_to_ns(
4242 struct usb_endpoint_descriptor *desc)
4243 {
4244 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4245 }
4246
4247 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4248 enum usb3_link_state state)
4249 {
4250 unsigned long long sel;
4251 unsigned long long pel;
4252 unsigned int max_sel_pel;
4253 char *state_name;
4254
4255 switch (state) {
4256 case USB3_LPM_U1:
4257 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4258 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4259 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4260 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4261 state_name = "U1";
4262 break;
4263 case USB3_LPM_U2:
4264 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4265 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4266 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4267 state_name = "U2";
4268 break;
4269 default:
4270 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4271 __func__);
4272 return USB3_LPM_DISABLED;
4273 }
4274
4275 if (sel <= max_sel_pel && pel <= max_sel_pel)
4276 return USB3_LPM_DEVICE_INITIATED;
4277
4278 if (sel > max_sel_pel)
4279 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4280 "due to long SEL %llu ms\n",
4281 state_name, sel);
4282 else
4283 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4284 "due to long PEL %llu ms\n",
4285 state_name, pel);
4286 return USB3_LPM_DISABLED;
4287 }
4288
4289 /* The U1 timeout should be the maximum of the following values:
4290 * - For control endpoints, U1 system exit latency (SEL) * 3
4291 * - For bulk endpoints, U1 SEL * 5
4292 * - For interrupt endpoints:
4293 * - Notification EPs, U1 SEL * 3
4294 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4295 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4296 */
4297 static unsigned long long xhci_calculate_intel_u1_timeout(
4298 struct usb_device *udev,
4299 struct usb_endpoint_descriptor *desc)
4300 {
4301 unsigned long long timeout_ns;
4302 int ep_type;
4303 int intr_type;
4304
4305 ep_type = usb_endpoint_type(desc);
4306 switch (ep_type) {
4307 case USB_ENDPOINT_XFER_CONTROL:
4308 timeout_ns = udev->u1_params.sel * 3;
4309 break;
4310 case USB_ENDPOINT_XFER_BULK:
4311 timeout_ns = udev->u1_params.sel * 5;
4312 break;
4313 case USB_ENDPOINT_XFER_INT:
4314 intr_type = usb_endpoint_interrupt_type(desc);
4315 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4316 timeout_ns = udev->u1_params.sel * 3;
4317 break;
4318 }
4319 /* Otherwise the calculation is the same as isoc eps */
4320 case USB_ENDPOINT_XFER_ISOC:
4321 timeout_ns = xhci_service_interval_to_ns(desc);
4322 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4323 if (timeout_ns < udev->u1_params.sel * 2)
4324 timeout_ns = udev->u1_params.sel * 2;
4325 break;
4326 default:
4327 return 0;
4328 }
4329
4330 return timeout_ns;
4331 }
4332
4333 /* Returns the hub-encoded U1 timeout value. */
4334 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4335 struct usb_device *udev,
4336 struct usb_endpoint_descriptor *desc)
4337 {
4338 unsigned long long timeout_ns;
4339
4340 if (xhci->quirks & XHCI_INTEL_HOST)
4341 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4342 else
4343 timeout_ns = udev->u1_params.sel;
4344
4345 /* The U1 timeout is encoded in 1us intervals.
4346 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4347 */
4348 if (timeout_ns == USB3_LPM_DISABLED)
4349 timeout_ns = 1;
4350 else
4351 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4352
4353 /* If the necessary timeout value is bigger than what we can set in the
4354 * USB 3.0 hub, we have to disable hub-initiated U1.
4355 */
4356 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4357 return timeout_ns;
4358 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4359 "due to long timeout %llu ms\n", timeout_ns);
4360 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4361 }
4362
4363 /* The U2 timeout should be the maximum of:
4364 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4365 * - largest bInterval of any active periodic endpoint (to avoid going
4366 * into lower power link states between intervals).
4367 * - the U2 Exit Latency of the device
4368 */
4369 static unsigned long long xhci_calculate_intel_u2_timeout(
4370 struct usb_device *udev,
4371 struct usb_endpoint_descriptor *desc)
4372 {
4373 unsigned long long timeout_ns;
4374 unsigned long long u2_del_ns;
4375
4376 timeout_ns = 10 * 1000 * 1000;
4377
4378 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4379 (xhci_service_interval_to_ns(desc) > timeout_ns))
4380 timeout_ns = xhci_service_interval_to_ns(desc);
4381
4382 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4383 if (u2_del_ns > timeout_ns)
4384 timeout_ns = u2_del_ns;
4385
4386 return timeout_ns;
4387 }
4388
4389 /* Returns the hub-encoded U2 timeout value. */
4390 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4391 struct usb_device *udev,
4392 struct usb_endpoint_descriptor *desc)
4393 {
4394 unsigned long long timeout_ns;
4395
4396 if (xhci->quirks & XHCI_INTEL_HOST)
4397 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4398 else
4399 timeout_ns = udev->u2_params.sel;
4400
4401 /* The U2 timeout is encoded in 256us intervals */
4402 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4403 /* If the necessary timeout value is bigger than what we can set in the
4404 * USB 3.0 hub, we have to disable hub-initiated U2.
4405 */
4406 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4407 return timeout_ns;
4408 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4409 "due to long timeout %llu ms\n", timeout_ns);
4410 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4411 }
4412
4413 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4414 struct usb_device *udev,
4415 struct usb_endpoint_descriptor *desc,
4416 enum usb3_link_state state,
4417 u16 *timeout)
4418 {
4419 if (state == USB3_LPM_U1)
4420 return xhci_calculate_u1_timeout(xhci, udev, desc);
4421 else if (state == USB3_LPM_U2)
4422 return xhci_calculate_u2_timeout(xhci, udev, desc);
4423
4424 return USB3_LPM_DISABLED;
4425 }
4426
4427 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4428 struct usb_device *udev,
4429 struct usb_endpoint_descriptor *desc,
4430 enum usb3_link_state state,
4431 u16 *timeout)
4432 {
4433 u16 alt_timeout;
4434
4435 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4436 desc, state, timeout);
4437
4438 /* If we found we can't enable hub-initiated LPM, or
4439 * the U1 or U2 exit latency was too high to allow
4440 * device-initiated LPM as well, just stop searching.
4441 */
4442 if (alt_timeout == USB3_LPM_DISABLED ||
4443 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4444 *timeout = alt_timeout;
4445 return -E2BIG;
4446 }
4447 if (alt_timeout > *timeout)
4448 *timeout = alt_timeout;
4449 return 0;
4450 }
4451
4452 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4453 struct usb_device *udev,
4454 struct usb_host_interface *alt,
4455 enum usb3_link_state state,
4456 u16 *timeout)
4457 {
4458 int j;
4459
4460 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4461 if (xhci_update_timeout_for_endpoint(xhci, udev,
4462 &alt->endpoint[j].desc, state, timeout))
4463 return -E2BIG;
4464 continue;
4465 }
4466 return 0;
4467 }
4468
4469 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4470 enum usb3_link_state state)
4471 {
4472 struct usb_device *parent;
4473 unsigned int num_hubs;
4474
4475 if (state == USB3_LPM_U2)
4476 return 0;
4477
4478 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4479 for (parent = udev->parent, num_hubs = 0; parent->parent;
4480 parent = parent->parent)
4481 num_hubs++;
4482
4483 if (num_hubs < 2)
4484 return 0;
4485
4486 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4487 " below second-tier hub.\n");
4488 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4489 "to decrease power consumption.\n");
4490 return -E2BIG;
4491 }
4492
4493 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4494 struct usb_device *udev,
4495 enum usb3_link_state state)
4496 {
4497 if (xhci->quirks & XHCI_INTEL_HOST)
4498 return xhci_check_intel_tier_policy(udev, state);
4499 else
4500 return 0;
4501 }
4502
4503 /* Returns the U1 or U2 timeout that should be enabled.
4504 * If the tier check or timeout setting functions return with a non-zero exit
4505 * code, that means the timeout value has been finalized and we shouldn't look
4506 * at any more endpoints.
4507 */
4508 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4509 struct usb_device *udev, enum usb3_link_state state)
4510 {
4511 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4512 struct usb_host_config *config;
4513 char *state_name;
4514 int i;
4515 u16 timeout = USB3_LPM_DISABLED;
4516
4517 if (state == USB3_LPM_U1)
4518 state_name = "U1";
4519 else if (state == USB3_LPM_U2)
4520 state_name = "U2";
4521 else {
4522 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4523 state);
4524 return timeout;
4525 }
4526
4527 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4528 return timeout;
4529
4530 /* Gather some information about the currently installed configuration
4531 * and alternate interface settings.
4532 */
4533 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4534 state, &timeout))
4535 return timeout;
4536
4537 config = udev->actconfig;
4538 if (!config)
4539 return timeout;
4540
4541 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4542 struct usb_driver *driver;
4543 struct usb_interface *intf = config->interface[i];
4544
4545 if (!intf)
4546 continue;
4547
4548 /* Check if any currently bound drivers want hub-initiated LPM
4549 * disabled.
4550 */
4551 if (intf->dev.driver) {
4552 driver = to_usb_driver(intf->dev.driver);
4553 if (driver && driver->disable_hub_initiated_lpm) {
4554 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4555 "at request of driver %s\n",
4556 state_name, driver->name);
4557 return xhci_get_timeout_no_hub_lpm(udev, state);
4558 }
4559 }
4560
4561 /* Not sure how this could happen... */
4562 if (!intf->cur_altsetting)
4563 continue;
4564
4565 if (xhci_update_timeout_for_interface(xhci, udev,
4566 intf->cur_altsetting,
4567 state, &timeout))
4568 return timeout;
4569 }
4570 return timeout;
4571 }
4572
4573 static int calculate_max_exit_latency(struct usb_device *udev,
4574 enum usb3_link_state state_changed,
4575 u16 hub_encoded_timeout)
4576 {
4577 unsigned long long u1_mel_us = 0;
4578 unsigned long long u2_mel_us = 0;
4579 unsigned long long mel_us = 0;
4580 bool disabling_u1;
4581 bool disabling_u2;
4582 bool enabling_u1;
4583 bool enabling_u2;
4584
4585 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4586 hub_encoded_timeout == USB3_LPM_DISABLED);
4587 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4588 hub_encoded_timeout == USB3_LPM_DISABLED);
4589
4590 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4591 hub_encoded_timeout != USB3_LPM_DISABLED);
4592 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4593 hub_encoded_timeout != USB3_LPM_DISABLED);
4594
4595 /* If U1 was already enabled and we're not disabling it,
4596 * or we're going to enable U1, account for the U1 max exit latency.
4597 */
4598 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4599 enabling_u1)
4600 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4601 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4602 enabling_u2)
4603 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4604
4605 if (u1_mel_us > u2_mel_us)
4606 mel_us = u1_mel_us;
4607 else
4608 mel_us = u2_mel_us;
4609 /* xHCI host controller max exit latency field is only 16 bits wide. */
4610 if (mel_us > MAX_EXIT) {
4611 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4612 "is too big.\n", mel_us);
4613 return -E2BIG;
4614 }
4615 return mel_us;
4616 }
4617
4618 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4619 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4620 struct usb_device *udev, enum usb3_link_state state)
4621 {
4622 struct xhci_hcd *xhci;
4623 u16 hub_encoded_timeout;
4624 int mel;
4625 int ret;
4626
4627 xhci = hcd_to_xhci(hcd);
4628 /* The LPM timeout values are pretty host-controller specific, so don't
4629 * enable hub-initiated timeouts unless the vendor has provided
4630 * information about their timeout algorithm.
4631 */
4632 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4633 !xhci->devs[udev->slot_id])
4634 return USB3_LPM_DISABLED;
4635
4636 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4637 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4638 if (mel < 0) {
4639 /* Max Exit Latency is too big, disable LPM. */
4640 hub_encoded_timeout = USB3_LPM_DISABLED;
4641 mel = 0;
4642 }
4643
4644 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4645 if (ret)
4646 return ret;
4647 return hub_encoded_timeout;
4648 }
4649
4650 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4651 struct usb_device *udev, enum usb3_link_state state)
4652 {
4653 struct xhci_hcd *xhci;
4654 u16 mel;
4655
4656 xhci = hcd_to_xhci(hcd);
4657 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4658 !xhci->devs[udev->slot_id])
4659 return 0;
4660
4661 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4662 return xhci_change_max_exit_latency(xhci, udev, mel);
4663 }
4664 #else /* CONFIG_PM */
4665
4666 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4667 struct usb_device *udev, int enable)
4668 {
4669 return 0;
4670 }
4671
4672 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4673 {
4674 return 0;
4675 }
4676
4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4678 struct usb_device *udev, enum usb3_link_state state)
4679 {
4680 return USB3_LPM_DISABLED;
4681 }
4682
4683 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4684 struct usb_device *udev, enum usb3_link_state state)
4685 {
4686 return 0;
4687 }
4688 #endif /* CONFIG_PM */
4689
4690 /*-------------------------------------------------------------------------*/
4691
4692 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4693 * internal data structures for the device.
4694 */
4695 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4696 struct usb_tt *tt, gfp_t mem_flags)
4697 {
4698 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4699 struct xhci_virt_device *vdev;
4700 struct xhci_command *config_cmd;
4701 struct xhci_input_control_ctx *ctrl_ctx;
4702 struct xhci_slot_ctx *slot_ctx;
4703 unsigned long flags;
4704 unsigned think_time;
4705 int ret;
4706
4707 /* Ignore root hubs */
4708 if (!hdev->parent)
4709 return 0;
4710
4711 vdev = xhci->devs[hdev->slot_id];
4712 if (!vdev) {
4713 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4714 return -EINVAL;
4715 }
4716 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4717 if (!config_cmd) {
4718 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4719 return -ENOMEM;
4720 }
4721 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4722 if (!ctrl_ctx) {
4723 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4724 __func__);
4725 xhci_free_command(xhci, config_cmd);
4726 return -ENOMEM;
4727 }
4728
4729 spin_lock_irqsave(&xhci->lock, flags);
4730 if (hdev->speed == USB_SPEED_HIGH &&
4731 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4732 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4733 xhci_free_command(xhci, config_cmd);
4734 spin_unlock_irqrestore(&xhci->lock, flags);
4735 return -ENOMEM;
4736 }
4737
4738 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4739 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4740 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4741 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4742 /*
4743 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4744 * but it may be already set to 1 when setup an xHCI virtual
4745 * device, so clear it anyway.
4746 */
4747 if (tt->multi)
4748 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4749 else if (hdev->speed == USB_SPEED_FULL)
4750 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4751
4752 if (xhci->hci_version > 0x95) {
4753 xhci_dbg(xhci, "xHCI version %x needs hub "
4754 "TT think time and number of ports\n",
4755 (unsigned int) xhci->hci_version);
4756 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4757 /* Set TT think time - convert from ns to FS bit times.
4758 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4759 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4760 *
4761 * xHCI 1.0: this field shall be 0 if the device is not a
4762 * High-spped hub.
4763 */
4764 think_time = tt->think_time;
4765 if (think_time != 0)
4766 think_time = (think_time / 666) - 1;
4767 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4768 slot_ctx->tt_info |=
4769 cpu_to_le32(TT_THINK_TIME(think_time));
4770 } else {
4771 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4772 "TT think time or number of ports\n",
4773 (unsigned int) xhci->hci_version);
4774 }
4775 slot_ctx->dev_state = 0;
4776 spin_unlock_irqrestore(&xhci->lock, flags);
4777
4778 xhci_dbg(xhci, "Set up %s for hub device.\n",
4779 (xhci->hci_version > 0x95) ?
4780 "configure endpoint" : "evaluate context");
4781 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4782 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4783
4784 /* Issue and wait for the configure endpoint or
4785 * evaluate context command.
4786 */
4787 if (xhci->hci_version > 0x95)
4788 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4789 false, false);
4790 else
4791 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4792 true, false);
4793
4794 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4795 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4796
4797 xhci_free_command(xhci, config_cmd);
4798 return ret;
4799 }
4800
4801 int xhci_get_frame(struct usb_hcd *hcd)
4802 {
4803 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4804 /* EHCI mods by the periodic size. Why? */
4805 return readl(&xhci->run_regs->microframe_index) >> 3;
4806 }
4807
4808 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4809 {
4810 struct xhci_hcd *xhci;
4811 struct device *dev = hcd->self.controller;
4812 int retval;
4813
4814 /* Accept arbitrarily long scatter-gather lists */
4815 hcd->self.sg_tablesize = ~0;
4816
4817 /* support to build packet from discontinuous buffers */
4818 hcd->self.no_sg_constraint = 1;
4819
4820 /* XHCI controllers don't stop the ep queue on short packets :| */
4821 hcd->self.no_stop_on_short = 1;
4822
4823 xhci = hcd_to_xhci(hcd);
4824
4825 if (usb_hcd_is_primary_hcd(hcd)) {
4826 xhci->main_hcd = hcd;
4827 /* Mark the first roothub as being USB 2.0.
4828 * The xHCI driver will register the USB 3.0 roothub.
4829 */
4830 hcd->speed = HCD_USB2;
4831 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4832 /*
4833 * USB 2.0 roothub under xHCI has an integrated TT,
4834 * (rate matching hub) as opposed to having an OHCI/UHCI
4835 * companion controller.
4836 */
4837 hcd->has_tt = 1;
4838 } else {
4839 if (xhci->sbrn == 0x31) {
4840 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4841 hcd->speed = HCD_USB31;
4842 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4843 }
4844 /* xHCI private pointer was set in xhci_pci_probe for the second
4845 * registered roothub.
4846 */
4847 return 0;
4848 }
4849
4850 mutex_init(&xhci->mutex);
4851 xhci->cap_regs = hcd->regs;
4852 xhci->op_regs = hcd->regs +
4853 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4854 xhci->run_regs = hcd->regs +
4855 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4856 /* Cache read-only capability registers */
4857 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4858 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4859 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4860 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4861 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4862 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4863 if (xhci->hci_version > 0x100)
4864 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4865 xhci_print_registers(xhci);
4866
4867 xhci->quirks |= quirks;
4868
4869 get_quirks(dev, xhci);
4870
4871 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4872 * success event after a short transfer. This quirk will ignore such
4873 * spurious event.
4874 */
4875 if (xhci->hci_version > 0x96)
4876 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4877
4878 /* Make sure the HC is halted. */
4879 retval = xhci_halt(xhci);
4880 if (retval)
4881 return retval;
4882
4883 xhci_dbg(xhci, "Resetting HCD\n");
4884 /* Reset the internal HC memory state and registers. */
4885 retval = xhci_reset(xhci);
4886 if (retval)
4887 return retval;
4888 xhci_dbg(xhci, "Reset complete\n");
4889
4890 /*
4891 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4892 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4893 * address memory pointers actually. So, this driver clears the AC64
4894 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4895 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4896 */
4897 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4898 xhci->hcc_params &= ~BIT(0);
4899
4900 /* Set dma_mask and coherent_dma_mask to 64-bits,
4901 * if xHC supports 64-bit addressing */
4902 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4903 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4904 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4905 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4906 } else {
4907 /*
4908 * This is to avoid error in cases where a 32-bit USB
4909 * controller is used on a 64-bit capable system.
4910 */
4911 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4912 if (retval)
4913 return retval;
4914 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4915 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4916 }
4917
4918 xhci_dbg(xhci, "Calling HCD init\n");
4919 /* Initialize HCD and host controller data structures. */
4920 retval = xhci_init(hcd);
4921 if (retval)
4922 return retval;
4923 xhci_dbg(xhci, "Called HCD init\n");
4924
4925 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4926 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4927
4928 return 0;
4929 }
4930 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4931
4932 static const struct hc_driver xhci_hc_driver = {
4933 .description = "xhci-hcd",
4934 .product_desc = "xHCI Host Controller",
4935 .hcd_priv_size = sizeof(struct xhci_hcd),
4936
4937 /*
4938 * generic hardware linkage
4939 */
4940 .irq = xhci_irq,
4941 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4942
4943 /*
4944 * basic lifecycle operations
4945 */
4946 .reset = NULL, /* set in xhci_init_driver() */
4947 .start = xhci_run,
4948 .stop = xhci_stop,
4949 .shutdown = xhci_shutdown,
4950
4951 /*
4952 * managing i/o requests and associated device resources
4953 */
4954 .urb_enqueue = xhci_urb_enqueue,
4955 .urb_dequeue = xhci_urb_dequeue,
4956 .alloc_dev = xhci_alloc_dev,
4957 .free_dev = xhci_free_dev,
4958 .alloc_streams = xhci_alloc_streams,
4959 .free_streams = xhci_free_streams,
4960 .add_endpoint = xhci_add_endpoint,
4961 .drop_endpoint = xhci_drop_endpoint,
4962 .endpoint_reset = xhci_endpoint_reset,
4963 .check_bandwidth = xhci_check_bandwidth,
4964 .reset_bandwidth = xhci_reset_bandwidth,
4965 .address_device = xhci_address_device,
4966 .enable_device = xhci_enable_device,
4967 .update_hub_device = xhci_update_hub_device,
4968 .reset_device = xhci_discover_or_reset_device,
4969
4970 /*
4971 * scheduling support
4972 */
4973 .get_frame_number = xhci_get_frame,
4974
4975 /*
4976 * root hub support
4977 */
4978 .hub_control = xhci_hub_control,
4979 .hub_status_data = xhci_hub_status_data,
4980 .bus_suspend = xhci_bus_suspend,
4981 .bus_resume = xhci_bus_resume,
4982
4983 /*
4984 * call back when device connected and addressed
4985 */
4986 .update_device = xhci_update_device,
4987 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4988 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4989 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4990 .find_raw_port_number = xhci_find_raw_port_number,
4991 };
4992
4993 void xhci_init_driver(struct hc_driver *drv,
4994 const struct xhci_driver_overrides *over)
4995 {
4996 BUG_ON(!over);
4997
4998 /* Copy the generic table to drv then apply the overrides */
4999 *drv = xhci_hc_driver;
5000
5001 if (over) {
5002 drv->hcd_priv_size += over->extra_priv_size;
5003 if (over->reset)
5004 drv->reset = over->reset;
5005 if (over->start)
5006 drv->start = over->start;
5007 }
5008 }
5009 EXPORT_SYMBOL_GPL(xhci_init_driver);
5010
5011 MODULE_DESCRIPTION(DRIVER_DESC);
5012 MODULE_AUTHOR(DRIVER_AUTHOR);
5013 MODULE_LICENSE("GPL");
5014
5015 static int __init xhci_hcd_init(void)
5016 {
5017 /*
5018 * Check the compiler generated sizes of structures that must be laid
5019 * out in specific ways for hardware access.
5020 */
5021 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5022 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5023 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5024 /* xhci_device_control has eight fields, and also
5025 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5026 */
5027 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5028 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5029 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5030 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5031 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5032 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5033 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5034
5035 if (usb_disabled())
5036 return -ENODEV;
5037
5038 return 0;
5039 }
5040
5041 /*
5042 * If an init function is provided, an exit function must also be provided
5043 * to allow module unload.
5044 */
5045 static void __exit xhci_hcd_fini(void) { }
5046
5047 module_init(xhci_hcd_init);
5048 module_exit(xhci_hcd_fini);