]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/usb/host/xhci.c
USB: add SPDX identifiers to all remaining files in drivers/usb/
[mirror_ubuntu-jammy-kernel.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24 #include <linux/pci.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 #include "xhci-mtk.h"
36 #include "xhci-debugfs.h"
37
38 #define DRIVER_AUTHOR "Sarah Sharp"
39 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
40
41 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
42
43 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
44 static int link_quirk;
45 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
46 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
47
48 static unsigned int quirks;
49 module_param(quirks, uint, S_IRUGO);
50 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
51
52 /* TODO: copied from ehci-hcd.c - can this be refactored? */
53 /*
54 * xhci_handshake - spin reading hc until handshake completes or fails
55 * @ptr: address of hc register to be read
56 * @mask: bits to look at in result of read
57 * @done: value of those bits when handshake succeeds
58 * @usec: timeout in microseconds
59 *
60 * Returns negative errno, or zero on success
61 *
62 * Success happens when the "mask" bits have the specified value (hardware
63 * handshake done). There are two failure modes: "usec" have passed (major
64 * hardware flakeout), or the register reads as all-ones (hardware removed).
65 */
66 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
67 {
68 u32 result;
69
70 do {
71 result = readl(ptr);
72 if (result == ~(u32)0) /* card removed */
73 return -ENODEV;
74 result &= mask;
75 if (result == done)
76 return 0;
77 udelay(1);
78 usec--;
79 } while (usec > 0);
80 return -ETIMEDOUT;
81 }
82
83 /*
84 * Disable interrupts and begin the xHCI halting process.
85 */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 u32 halted;
89 u32 cmd;
90 u32 mask;
91
92 mask = ~(XHCI_IRQS);
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
94 if (!halted)
95 mask &= ~CMD_RUN;
96
97 cmd = readl(&xhci->op_regs->command);
98 cmd &= mask;
99 writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103 * Force HC into halt state.
104 *
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
109 */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 int ret;
113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 xhci_quiesce(xhci);
115
116 ret = xhci_handshake(&xhci->op_regs->status,
117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 if (ret) {
119 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 return ret;
121 }
122 xhci->xhc_state |= XHCI_STATE_HALTED;
123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 return ret;
125 }
126
127 /*
128 * Set the run bit and wait for the host to be running.
129 */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 u32 temp;
133 int ret;
134
135 temp = readl(&xhci->op_regs->command);
136 temp |= (CMD_RUN);
137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 temp);
139 writel(temp, &xhci->op_regs->command);
140
141 /*
142 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 * running.
144 */
145 ret = xhci_handshake(&xhci->op_regs->status,
146 STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 if (ret == -ETIMEDOUT)
148 xhci_err(xhci, "Host took too long to start, "
149 "waited %u microseconds.\n",
150 XHCI_MAX_HALT_USEC);
151 if (!ret)
152 /* clear state flags. Including dying, halted or removing */
153 xhci->xhc_state = 0;
154
155 return ret;
156 }
157
158 /*
159 * Reset a halted HC.
160 *
161 * This resets pipelines, timers, counters, state machines, etc.
162 * Transactions will be terminated immediately, and operational registers
163 * will be set to their defaults.
164 */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167 u32 command;
168 u32 state;
169 int ret, i;
170
171 state = readl(&xhci->op_regs->status);
172
173 if (state == ~(u32)0) {
174 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 return -ENODEV;
176 }
177
178 if ((state & STS_HALT) == 0) {
179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 return 0;
181 }
182
183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 command = readl(&xhci->op_regs->command);
185 command |= CMD_RESET;
186 writel(command, &xhci->op_regs->command);
187
188 /* Existing Intel xHCI controllers require a delay of 1 mS,
189 * after setting the CMD_RESET bit, and before accessing any
190 * HC registers. This allows the HC to complete the
191 * reset operation and be ready for HC register access.
192 * Without this delay, the subsequent HC register access,
193 * may result in a system hang very rarely.
194 */
195 if (xhci->quirks & XHCI_INTEL_HOST)
196 udelay(1000);
197
198 ret = xhci_handshake(&xhci->op_regs->command,
199 CMD_RESET, 0, 10 * 1000 * 1000);
200 if (ret)
201 return ret;
202
203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 "Wait for controller to be ready for doorbell rings");
208 /*
209 * xHCI cannot write to any doorbells or operational registers other
210 * than status until the "Controller Not Ready" flag is cleared.
211 */
212 ret = xhci_handshake(&xhci->op_regs->status,
213 STS_CNR, 0, 10 * 1000 * 1000);
214
215 for (i = 0; i < 2; i++) {
216 xhci->bus_state[i].port_c_suspend = 0;
217 xhci->bus_state[i].suspended_ports = 0;
218 xhci->bus_state[i].resuming_ports = 0;
219 }
220
221 return ret;
222 }
223
224
225 #ifdef CONFIG_USB_PCI
226 /*
227 * Set up MSI
228 */
229 static int xhci_setup_msi(struct xhci_hcd *xhci)
230 {
231 int ret;
232 /*
233 * TODO:Check with MSI Soc for sysdev
234 */
235 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
236
237 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
238 if (ret < 0) {
239 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
240 "failed to allocate MSI entry");
241 return ret;
242 }
243
244 ret = request_irq(pdev->irq, xhci_msi_irq,
245 0, "xhci_hcd", xhci_to_hcd(xhci));
246 if (ret) {
247 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
248 "disable MSI interrupt");
249 pci_free_irq_vectors(pdev);
250 }
251
252 return ret;
253 }
254
255 /*
256 * Set up MSI-X
257 */
258 static int xhci_setup_msix(struct xhci_hcd *xhci)
259 {
260 int i, ret = 0;
261 struct usb_hcd *hcd = xhci_to_hcd(xhci);
262 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
263
264 /*
265 * calculate number of msi-x vectors supported.
266 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
267 * with max number of interrupters based on the xhci HCSPARAMS1.
268 * - num_online_cpus: maximum msi-x vectors per CPUs core.
269 * Add additional 1 vector to ensure always available interrupt.
270 */
271 xhci->msix_count = min(num_online_cpus() + 1,
272 HCS_MAX_INTRS(xhci->hcs_params1));
273
274 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
275 PCI_IRQ_MSIX);
276 if (ret < 0) {
277 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
278 "Failed to enable MSI-X");
279 return ret;
280 }
281
282 for (i = 0; i < xhci->msix_count; i++) {
283 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
284 "xhci_hcd", xhci_to_hcd(xhci));
285 if (ret)
286 goto disable_msix;
287 }
288
289 hcd->msix_enabled = 1;
290 return ret;
291
292 disable_msix:
293 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
294 while (--i >= 0)
295 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
296 pci_free_irq_vectors(pdev);
297 return ret;
298 }
299
300 /* Free any IRQs and disable MSI-X */
301 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
302 {
303 struct usb_hcd *hcd = xhci_to_hcd(xhci);
304 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
305
306 if (xhci->quirks & XHCI_PLAT)
307 return;
308
309 /* return if using legacy interrupt */
310 if (hcd->irq > 0)
311 return;
312
313 if (hcd->msix_enabled) {
314 int i;
315
316 for (i = 0; i < xhci->msix_count; i++)
317 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
318 } else {
319 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
320 }
321
322 pci_free_irq_vectors(pdev);
323 hcd->msix_enabled = 0;
324 }
325
326 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
327 {
328 struct usb_hcd *hcd = xhci_to_hcd(xhci);
329
330 if (hcd->msix_enabled) {
331 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
332 int i;
333
334 for (i = 0; i < xhci->msix_count; i++)
335 synchronize_irq(pci_irq_vector(pdev, i));
336 }
337 }
338
339 static int xhci_try_enable_msi(struct usb_hcd *hcd)
340 {
341 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
342 struct pci_dev *pdev;
343 int ret;
344
345 /* The xhci platform device has set up IRQs through usb_add_hcd. */
346 if (xhci->quirks & XHCI_PLAT)
347 return 0;
348
349 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
350 /*
351 * Some Fresco Logic host controllers advertise MSI, but fail to
352 * generate interrupts. Don't even try to enable MSI.
353 */
354 if (xhci->quirks & XHCI_BROKEN_MSI)
355 goto legacy_irq;
356
357 /* unregister the legacy interrupt */
358 if (hcd->irq)
359 free_irq(hcd->irq, hcd);
360 hcd->irq = 0;
361
362 ret = xhci_setup_msix(xhci);
363 if (ret)
364 /* fall back to msi*/
365 ret = xhci_setup_msi(xhci);
366
367 if (!ret) {
368 hcd->msi_enabled = 1;
369 return 0;
370 }
371
372 if (!pdev->irq) {
373 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
374 return -EINVAL;
375 }
376
377 legacy_irq:
378 if (!strlen(hcd->irq_descr))
379 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
380 hcd->driver->description, hcd->self.busnum);
381
382 /* fall back to legacy interrupt*/
383 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
384 hcd->irq_descr, hcd);
385 if (ret) {
386 xhci_err(xhci, "request interrupt %d failed\n",
387 pdev->irq);
388 return ret;
389 }
390 hcd->irq = pdev->irq;
391 return 0;
392 }
393
394 #else
395
396 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
397 {
398 return 0;
399 }
400
401 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
402 {
403 }
404
405 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
406 {
407 }
408
409 #endif
410
411 static void compliance_mode_recovery(unsigned long arg)
412 {
413 struct xhci_hcd *xhci;
414 struct usb_hcd *hcd;
415 u32 temp;
416 int i;
417
418 xhci = (struct xhci_hcd *)arg;
419
420 for (i = 0; i < xhci->num_usb3_ports; i++) {
421 temp = readl(xhci->usb3_ports[i]);
422 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
423 /*
424 * Compliance Mode Detected. Letting USB Core
425 * handle the Warm Reset
426 */
427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
428 "Compliance mode detected->port %d",
429 i + 1);
430 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
431 "Attempting compliance mode recovery");
432 hcd = xhci->shared_hcd;
433
434 if (hcd->state == HC_STATE_SUSPENDED)
435 usb_hcd_resume_root_hub(hcd);
436
437 usb_hcd_poll_rh_status(hcd);
438 }
439 }
440
441 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
442 mod_timer(&xhci->comp_mode_recovery_timer,
443 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
444 }
445
446 /*
447 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
448 * that causes ports behind that hardware to enter compliance mode sometimes.
449 * The quirk creates a timer that polls every 2 seconds the link state of
450 * each host controller's port and recovers it by issuing a Warm reset
451 * if Compliance mode is detected, otherwise the port will become "dead" (no
452 * device connections or disconnections will be detected anymore). Becasue no
453 * status event is generated when entering compliance mode (per xhci spec),
454 * this quirk is needed on systems that have the failing hardware installed.
455 */
456 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
457 {
458 xhci->port_status_u0 = 0;
459 setup_timer(&xhci->comp_mode_recovery_timer,
460 compliance_mode_recovery, (unsigned long)xhci);
461 xhci->comp_mode_recovery_timer.expires = jiffies +
462 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
463
464 add_timer(&xhci->comp_mode_recovery_timer);
465 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
466 "Compliance mode recovery timer initialized");
467 }
468
469 /*
470 * This function identifies the systems that have installed the SN65LVPE502CP
471 * USB3.0 re-driver and that need the Compliance Mode Quirk.
472 * Systems:
473 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
474 */
475 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
476 {
477 const char *dmi_product_name, *dmi_sys_vendor;
478
479 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
480 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
481 if (!dmi_product_name || !dmi_sys_vendor)
482 return false;
483
484 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
485 return false;
486
487 if (strstr(dmi_product_name, "Z420") ||
488 strstr(dmi_product_name, "Z620") ||
489 strstr(dmi_product_name, "Z820") ||
490 strstr(dmi_product_name, "Z1 Workstation"))
491 return true;
492
493 return false;
494 }
495
496 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
497 {
498 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
499 }
500
501
502 /*
503 * Initialize memory for HCD and xHC (one-time init).
504 *
505 * Program the PAGESIZE register, initialize the device context array, create
506 * device contexts (?), set up a command ring segment (or two?), create event
507 * ring (one for now).
508 */
509 static int xhci_init(struct usb_hcd *hcd)
510 {
511 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
512 int retval = 0;
513
514 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
515 spin_lock_init(&xhci->lock);
516 if (xhci->hci_version == 0x95 && link_quirk) {
517 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
518 "QUIRK: Not clearing Link TRB chain bits.");
519 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
520 } else {
521 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
522 "xHCI doesn't need link TRB QUIRK");
523 }
524 retval = xhci_mem_init(xhci, GFP_KERNEL);
525 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
526
527 /* Initializing Compliance Mode Recovery Data If Needed */
528 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
529 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
530 compliance_mode_recovery_timer_init(xhci);
531 }
532
533 return retval;
534 }
535
536 /*-------------------------------------------------------------------------*/
537
538
539 static int xhci_run_finished(struct xhci_hcd *xhci)
540 {
541 if (xhci_start(xhci)) {
542 xhci_halt(xhci);
543 return -ENODEV;
544 }
545 xhci->shared_hcd->state = HC_STATE_RUNNING;
546 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
547
548 if (xhci->quirks & XHCI_NEC_HOST)
549 xhci_ring_cmd_db(xhci);
550
551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 "Finished xhci_run for USB3 roothub");
553 return 0;
554 }
555
556 /*
557 * Start the HC after it was halted.
558 *
559 * This function is called by the USB core when the HC driver is added.
560 * Its opposite is xhci_stop().
561 *
562 * xhci_init() must be called once before this function can be called.
563 * Reset the HC, enable device slot contexts, program DCBAAP, and
564 * set command ring pointer and event ring pointer.
565 *
566 * Setup MSI-X vectors and enable interrupts.
567 */
568 int xhci_run(struct usb_hcd *hcd)
569 {
570 u32 temp;
571 u64 temp_64;
572 int ret;
573 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
574
575 /* Start the xHCI host controller running only after the USB 2.0 roothub
576 * is setup.
577 */
578
579 hcd->uses_new_polling = 1;
580 if (!usb_hcd_is_primary_hcd(hcd))
581 return xhci_run_finished(xhci);
582
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
584
585 ret = xhci_try_enable_msi(hcd);
586 if (ret)
587 return ret;
588
589 xhci_dbg_cmd_ptrs(xhci);
590
591 xhci_dbg(xhci, "ERST memory map follows:\n");
592 xhci_dbg_erst(xhci, &xhci->erst);
593 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
594 temp_64 &= ~ERST_PTR_MASK;
595 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
596 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
597
598 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
599 "// Set the interrupt modulation register");
600 temp = readl(&xhci->ir_set->irq_control);
601 temp &= ~ER_IRQ_INTERVAL_MASK;
602 /*
603 * the increment interval is 8 times as much as that defined
604 * in xHCI spec on MTK's controller
605 */
606 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
607 writel(temp, &xhci->ir_set->irq_control);
608
609 /* Set the HCD state before we enable the irqs */
610 temp = readl(&xhci->op_regs->command);
611 temp |= (CMD_EIE);
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 "// Enable interrupts, cmd = 0x%x.", temp);
614 writel(temp, &xhci->op_regs->command);
615
616 temp = readl(&xhci->ir_set->irq_pending);
617 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
619 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
620 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
621 xhci_print_ir_set(xhci, 0);
622
623 if (xhci->quirks & XHCI_NEC_HOST) {
624 struct xhci_command *command;
625
626 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
627 if (!command)
628 return -ENOMEM;
629
630 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
631 TRB_TYPE(TRB_NEC_GET_FW));
632 if (ret)
633 xhci_free_command(xhci, command);
634 }
635 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636 "Finished xhci_run for USB2 roothub");
637
638 xhci_debugfs_init(xhci);
639
640 return 0;
641 }
642 EXPORT_SYMBOL_GPL(xhci_run);
643
644 /*
645 * Stop xHCI driver.
646 *
647 * This function is called by the USB core when the HC driver is removed.
648 * Its opposite is xhci_run().
649 *
650 * Disable device contexts, disable IRQs, and quiesce the HC.
651 * Reset the HC, finish any completed transactions, and cleanup memory.
652 */
653 static void xhci_stop(struct usb_hcd *hcd)
654 {
655 u32 temp;
656 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
657
658 mutex_lock(&xhci->mutex);
659
660 /* Only halt host and free memory after both hcds are removed */
661 if (!usb_hcd_is_primary_hcd(hcd)) {
662 /* usb core will free this hcd shortly, unset pointer */
663 xhci->shared_hcd = NULL;
664 mutex_unlock(&xhci->mutex);
665 return;
666 }
667
668 xhci_debugfs_exit(xhci);
669
670 spin_lock_irq(&xhci->lock);
671 xhci->xhc_state |= XHCI_STATE_HALTED;
672 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
673 xhci_halt(xhci);
674 xhci_reset(xhci);
675 spin_unlock_irq(&xhci->lock);
676
677 xhci_cleanup_msix(xhci);
678
679 /* Deleting Compliance Mode Recovery Timer */
680 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
681 (!(xhci_all_ports_seen_u0(xhci)))) {
682 del_timer_sync(&xhci->comp_mode_recovery_timer);
683 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
684 "%s: compliance mode recovery timer deleted",
685 __func__);
686 }
687
688 if (xhci->quirks & XHCI_AMD_PLL_FIX)
689 usb_amd_dev_put();
690
691 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
692 "// Disabling event ring interrupts");
693 temp = readl(&xhci->op_regs->status);
694 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
695 temp = readl(&xhci->ir_set->irq_pending);
696 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
697 xhci_print_ir_set(xhci, 0);
698
699 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
700 xhci_mem_cleanup(xhci);
701 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
702 "xhci_stop completed - status = %x",
703 readl(&xhci->op_regs->status));
704 mutex_unlock(&xhci->mutex);
705 }
706
707 /*
708 * Shutdown HC (not bus-specific)
709 *
710 * This is called when the machine is rebooting or halting. We assume that the
711 * machine will be powered off, and the HC's internal state will be reset.
712 * Don't bother to free memory.
713 *
714 * This will only ever be called with the main usb_hcd (the USB3 roothub).
715 */
716 static void xhci_shutdown(struct usb_hcd *hcd)
717 {
718 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719
720 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
721 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
722
723 spin_lock_irq(&xhci->lock);
724 xhci_halt(xhci);
725 /* Workaround for spurious wakeups at shutdown with HSW */
726 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
727 xhci_reset(xhci);
728 spin_unlock_irq(&xhci->lock);
729
730 xhci_cleanup_msix(xhci);
731
732 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
733 "xhci_shutdown completed - status = %x",
734 readl(&xhci->op_regs->status));
735
736 /* Yet another workaround for spurious wakeups at shutdown with HSW */
737 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
738 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
739 }
740
741 #ifdef CONFIG_PM
742 static void xhci_save_registers(struct xhci_hcd *xhci)
743 {
744 xhci->s3.command = readl(&xhci->op_regs->command);
745 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
746 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
747 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
748 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
749 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
750 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
751 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
752 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
753 }
754
755 static void xhci_restore_registers(struct xhci_hcd *xhci)
756 {
757 writel(xhci->s3.command, &xhci->op_regs->command);
758 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
759 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
760 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
761 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
762 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
763 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
764 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
765 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
766 }
767
768 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
769 {
770 u64 val_64;
771
772 /* step 2: initialize command ring buffer */
773 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
774 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
775 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
776 xhci->cmd_ring->dequeue) &
777 (u64) ~CMD_RING_RSVD_BITS) |
778 xhci->cmd_ring->cycle_state;
779 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
780 "// Setting command ring address to 0x%llx",
781 (long unsigned long) val_64);
782 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
783 }
784
785 /*
786 * The whole command ring must be cleared to zero when we suspend the host.
787 *
788 * The host doesn't save the command ring pointer in the suspend well, so we
789 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
790 * aligned, because of the reserved bits in the command ring dequeue pointer
791 * register. Therefore, we can't just set the dequeue pointer back in the
792 * middle of the ring (TRBs are 16-byte aligned).
793 */
794 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
795 {
796 struct xhci_ring *ring;
797 struct xhci_segment *seg;
798
799 ring = xhci->cmd_ring;
800 seg = ring->deq_seg;
801 do {
802 memset(seg->trbs, 0,
803 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
804 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
805 cpu_to_le32(~TRB_CYCLE);
806 seg = seg->next;
807 } while (seg != ring->deq_seg);
808
809 /* Reset the software enqueue and dequeue pointers */
810 ring->deq_seg = ring->first_seg;
811 ring->dequeue = ring->first_seg->trbs;
812 ring->enq_seg = ring->deq_seg;
813 ring->enqueue = ring->dequeue;
814
815 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
816 /*
817 * Ring is now zeroed, so the HW should look for change of ownership
818 * when the cycle bit is set to 1.
819 */
820 ring->cycle_state = 1;
821
822 /*
823 * Reset the hardware dequeue pointer.
824 * Yes, this will need to be re-written after resume, but we're paranoid
825 * and want to make sure the hardware doesn't access bogus memory
826 * because, say, the BIOS or an SMI started the host without changing
827 * the command ring pointers.
828 */
829 xhci_set_cmd_ring_deq(xhci);
830 }
831
832 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
833 {
834 int port_index;
835 __le32 __iomem **port_array;
836 unsigned long flags;
837 u32 t1, t2;
838
839 spin_lock_irqsave(&xhci->lock, flags);
840
841 /* disable usb3 ports Wake bits */
842 port_index = xhci->num_usb3_ports;
843 port_array = xhci->usb3_ports;
844 while (port_index--) {
845 t1 = readl(port_array[port_index]);
846 t1 = xhci_port_state_to_neutral(t1);
847 t2 = t1 & ~PORT_WAKE_BITS;
848 if (t1 != t2)
849 writel(t2, port_array[port_index]);
850 }
851
852 /* disable usb2 ports Wake bits */
853 port_index = xhci->num_usb2_ports;
854 port_array = xhci->usb2_ports;
855 while (port_index--) {
856 t1 = readl(port_array[port_index]);
857 t1 = xhci_port_state_to_neutral(t1);
858 t2 = t1 & ~PORT_WAKE_BITS;
859 if (t1 != t2)
860 writel(t2, port_array[port_index]);
861 }
862
863 spin_unlock_irqrestore(&xhci->lock, flags);
864 }
865
866 /*
867 * Stop HC (not bus-specific)
868 *
869 * This is called when the machine transition into S3/S4 mode.
870 *
871 */
872 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
873 {
874 int rc = 0;
875 unsigned int delay = XHCI_MAX_HALT_USEC;
876 struct usb_hcd *hcd = xhci_to_hcd(xhci);
877 u32 command;
878
879 if (!hcd->state)
880 return 0;
881
882 if (hcd->state != HC_STATE_SUSPENDED ||
883 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
884 return -EINVAL;
885
886 /* Clear root port wake on bits if wakeup not allowed. */
887 if (!do_wakeup)
888 xhci_disable_port_wake_on_bits(xhci);
889
890 /* Don't poll the roothubs on bus suspend. */
891 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
892 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
893 del_timer_sync(&hcd->rh_timer);
894 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
895 del_timer_sync(&xhci->shared_hcd->rh_timer);
896
897 spin_lock_irq(&xhci->lock);
898 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
899 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
900 /* step 1: stop endpoint */
901 /* skipped assuming that port suspend has done */
902
903 /* step 2: clear Run/Stop bit */
904 command = readl(&xhci->op_regs->command);
905 command &= ~CMD_RUN;
906 writel(command, &xhci->op_regs->command);
907
908 /* Some chips from Fresco Logic need an extraordinary delay */
909 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
910
911 if (xhci_handshake(&xhci->op_regs->status,
912 STS_HALT, STS_HALT, delay)) {
913 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
914 spin_unlock_irq(&xhci->lock);
915 return -ETIMEDOUT;
916 }
917 xhci_clear_command_ring(xhci);
918
919 /* step 3: save registers */
920 xhci_save_registers(xhci);
921
922 /* step 4: set CSS flag */
923 command = readl(&xhci->op_regs->command);
924 command |= CMD_CSS;
925 writel(command, &xhci->op_regs->command);
926 if (xhci_handshake(&xhci->op_regs->status,
927 STS_SAVE, 0, 10 * 1000)) {
928 xhci_warn(xhci, "WARN: xHC save state timeout\n");
929 spin_unlock_irq(&xhci->lock);
930 return -ETIMEDOUT;
931 }
932 spin_unlock_irq(&xhci->lock);
933
934 /*
935 * Deleting Compliance Mode Recovery Timer because the xHCI Host
936 * is about to be suspended.
937 */
938 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
939 (!(xhci_all_ports_seen_u0(xhci)))) {
940 del_timer_sync(&xhci->comp_mode_recovery_timer);
941 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
942 "%s: compliance mode recovery timer deleted",
943 __func__);
944 }
945
946 /* step 5: remove core well power */
947 /* synchronize irq when using MSI-X */
948 xhci_msix_sync_irqs(xhci);
949
950 return rc;
951 }
952 EXPORT_SYMBOL_GPL(xhci_suspend);
953
954 /*
955 * start xHC (not bus-specific)
956 *
957 * This is called when the machine transition from S3/S4 mode.
958 *
959 */
960 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
961 {
962 u32 command, temp = 0, status;
963 struct usb_hcd *hcd = xhci_to_hcd(xhci);
964 struct usb_hcd *secondary_hcd;
965 int retval = 0;
966 bool comp_timer_running = false;
967
968 if (!hcd->state)
969 return 0;
970
971 /* Wait a bit if either of the roothubs need to settle from the
972 * transition into bus suspend.
973 */
974 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
975 time_before(jiffies,
976 xhci->bus_state[1].next_statechange))
977 msleep(100);
978
979 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
980 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
981
982 spin_lock_irq(&xhci->lock);
983 if (xhci->quirks & XHCI_RESET_ON_RESUME)
984 hibernated = true;
985
986 if (!hibernated) {
987 /* step 1: restore register */
988 xhci_restore_registers(xhci);
989 /* step 2: initialize command ring buffer */
990 xhci_set_cmd_ring_deq(xhci);
991 /* step 3: restore state and start state*/
992 /* step 3: set CRS flag */
993 command = readl(&xhci->op_regs->command);
994 command |= CMD_CRS;
995 writel(command, &xhci->op_regs->command);
996 if (xhci_handshake(&xhci->op_regs->status,
997 STS_RESTORE, 0, 10 * 1000)) {
998 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
999 spin_unlock_irq(&xhci->lock);
1000 return -ETIMEDOUT;
1001 }
1002 temp = readl(&xhci->op_regs->status);
1003 }
1004
1005 /* If restore operation fails, re-initialize the HC during resume */
1006 if ((temp & STS_SRE) || hibernated) {
1007
1008 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1009 !(xhci_all_ports_seen_u0(xhci))) {
1010 del_timer_sync(&xhci->comp_mode_recovery_timer);
1011 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1012 "Compliance Mode Recovery Timer deleted!");
1013 }
1014
1015 /* Let the USB core know _both_ roothubs lost power. */
1016 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1017 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1018
1019 xhci_dbg(xhci, "Stop HCD\n");
1020 xhci_halt(xhci);
1021 xhci_reset(xhci);
1022 spin_unlock_irq(&xhci->lock);
1023 xhci_cleanup_msix(xhci);
1024
1025 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1026 temp = readl(&xhci->op_regs->status);
1027 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1028 temp = readl(&xhci->ir_set->irq_pending);
1029 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1030 xhci_print_ir_set(xhci, 0);
1031
1032 xhci_dbg(xhci, "cleaning up memory\n");
1033 xhci_mem_cleanup(xhci);
1034 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1035 readl(&xhci->op_regs->status));
1036
1037 /* USB core calls the PCI reinit and start functions twice:
1038 * first with the primary HCD, and then with the secondary HCD.
1039 * If we don't do the same, the host will never be started.
1040 */
1041 if (!usb_hcd_is_primary_hcd(hcd))
1042 secondary_hcd = hcd;
1043 else
1044 secondary_hcd = xhci->shared_hcd;
1045
1046 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1047 retval = xhci_init(hcd->primary_hcd);
1048 if (retval)
1049 return retval;
1050 comp_timer_running = true;
1051
1052 xhci_dbg(xhci, "Start the primary HCD\n");
1053 retval = xhci_run(hcd->primary_hcd);
1054 if (!retval) {
1055 xhci_dbg(xhci, "Start the secondary HCD\n");
1056 retval = xhci_run(secondary_hcd);
1057 }
1058 hcd->state = HC_STATE_SUSPENDED;
1059 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1060 goto done;
1061 }
1062
1063 /* step 4: set Run/Stop bit */
1064 command = readl(&xhci->op_regs->command);
1065 command |= CMD_RUN;
1066 writel(command, &xhci->op_regs->command);
1067 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1068 0, 250 * 1000);
1069
1070 /* step 5: walk topology and initialize portsc,
1071 * portpmsc and portli
1072 */
1073 /* this is done in bus_resume */
1074
1075 /* step 6: restart each of the previously
1076 * Running endpoints by ringing their doorbells
1077 */
1078
1079 spin_unlock_irq(&xhci->lock);
1080
1081 done:
1082 if (retval == 0) {
1083 /* Resume root hubs only when have pending events. */
1084 status = readl(&xhci->op_regs->status);
1085 if (status & STS_EINT) {
1086 usb_hcd_resume_root_hub(xhci->shared_hcd);
1087 usb_hcd_resume_root_hub(hcd);
1088 }
1089 }
1090
1091 /*
1092 * If system is subject to the Quirk, Compliance Mode Timer needs to
1093 * be re-initialized Always after a system resume. Ports are subject
1094 * to suffer the Compliance Mode issue again. It doesn't matter if
1095 * ports have entered previously to U0 before system's suspension.
1096 */
1097 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1098 compliance_mode_recovery_timer_init(xhci);
1099
1100 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1101 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1102
1103 /* Re-enable port polling. */
1104 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1105 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1106 usb_hcd_poll_rh_status(xhci->shared_hcd);
1107 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1108 usb_hcd_poll_rh_status(hcd);
1109
1110 return retval;
1111 }
1112 EXPORT_SYMBOL_GPL(xhci_resume);
1113 #endif /* CONFIG_PM */
1114
1115 /*-------------------------------------------------------------------------*/
1116
1117 /**
1118 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1119 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1120 * value to right shift 1 for the bitmask.
1121 *
1122 * Index = (epnum * 2) + direction - 1,
1123 * where direction = 0 for OUT, 1 for IN.
1124 * For control endpoints, the IN index is used (OUT index is unused), so
1125 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1126 */
1127 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1128 {
1129 unsigned int index;
1130 if (usb_endpoint_xfer_control(desc))
1131 index = (unsigned int) (usb_endpoint_num(desc)*2);
1132 else
1133 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1134 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1135 return index;
1136 }
1137
1138 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1139 * address from the XHCI endpoint index.
1140 */
1141 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1142 {
1143 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1144 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1145 return direction | number;
1146 }
1147
1148 /* Find the flag for this endpoint (for use in the control context). Use the
1149 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1150 * bit 1, etc.
1151 */
1152 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1153 {
1154 return 1 << (xhci_get_endpoint_index(desc) + 1);
1155 }
1156
1157 /* Find the flag for this endpoint (for use in the control context). Use the
1158 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1159 * bit 1, etc.
1160 */
1161 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1162 {
1163 return 1 << (ep_index + 1);
1164 }
1165
1166 /* Compute the last valid endpoint context index. Basically, this is the
1167 * endpoint index plus one. For slot contexts with more than valid endpoint,
1168 * we find the most significant bit set in the added contexts flags.
1169 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1170 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1171 */
1172 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1173 {
1174 return fls(added_ctxs) - 1;
1175 }
1176
1177 /* Returns 1 if the arguments are OK;
1178 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1179 */
1180 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1181 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1182 const char *func) {
1183 struct xhci_hcd *xhci;
1184 struct xhci_virt_device *virt_dev;
1185
1186 if (!hcd || (check_ep && !ep) || !udev) {
1187 pr_debug("xHCI %s called with invalid args\n", func);
1188 return -EINVAL;
1189 }
1190 if (!udev->parent) {
1191 pr_debug("xHCI %s called for root hub\n", func);
1192 return 0;
1193 }
1194
1195 xhci = hcd_to_xhci(hcd);
1196 if (check_virt_dev) {
1197 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1198 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1199 func);
1200 return -EINVAL;
1201 }
1202
1203 virt_dev = xhci->devs[udev->slot_id];
1204 if (virt_dev->udev != udev) {
1205 xhci_dbg(xhci, "xHCI %s called with udev and "
1206 "virt_dev does not match\n", func);
1207 return -EINVAL;
1208 }
1209 }
1210
1211 if (xhci->xhc_state & XHCI_STATE_HALTED)
1212 return -ENODEV;
1213
1214 return 1;
1215 }
1216
1217 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1218 struct usb_device *udev, struct xhci_command *command,
1219 bool ctx_change, bool must_succeed);
1220
1221 /*
1222 * Full speed devices may have a max packet size greater than 8 bytes, but the
1223 * USB core doesn't know that until it reads the first 8 bytes of the
1224 * descriptor. If the usb_device's max packet size changes after that point,
1225 * we need to issue an evaluate context command and wait on it.
1226 */
1227 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1228 unsigned int ep_index, struct urb *urb)
1229 {
1230 struct xhci_container_ctx *out_ctx;
1231 struct xhci_input_control_ctx *ctrl_ctx;
1232 struct xhci_ep_ctx *ep_ctx;
1233 struct xhci_command *command;
1234 int max_packet_size;
1235 int hw_max_packet_size;
1236 int ret = 0;
1237
1238 out_ctx = xhci->devs[slot_id]->out_ctx;
1239 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1240 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1241 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1242 if (hw_max_packet_size != max_packet_size) {
1243 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1244 "Max Packet Size for ep 0 changed.");
1245 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1246 "Max packet size in usb_device = %d",
1247 max_packet_size);
1248 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1249 "Max packet size in xHCI HW = %d",
1250 hw_max_packet_size);
1251 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1252 "Issuing evaluate context command.");
1253
1254 /* Set up the input context flags for the command */
1255 /* FIXME: This won't work if a non-default control endpoint
1256 * changes max packet sizes.
1257 */
1258
1259 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1260 if (!command)
1261 return -ENOMEM;
1262
1263 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1264 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1265 if (!ctrl_ctx) {
1266 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1267 __func__);
1268 ret = -ENOMEM;
1269 goto command_cleanup;
1270 }
1271 /* Set up the modified control endpoint 0 */
1272 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1273 xhci->devs[slot_id]->out_ctx, ep_index);
1274
1275 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1276 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1277 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1278
1279 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1280 ctrl_ctx->drop_flags = 0;
1281
1282 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1283 true, false);
1284
1285 /* Clean up the input context for later use by bandwidth
1286 * functions.
1287 */
1288 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1289 command_cleanup:
1290 kfree(command->completion);
1291 kfree(command);
1292 }
1293 return ret;
1294 }
1295
1296 /*
1297 * non-error returns are a promise to giveback() the urb later
1298 * we drop ownership so next owner (or urb unlink) can get it
1299 */
1300 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1301 {
1302 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1303 unsigned long flags;
1304 int ret = 0;
1305 unsigned int slot_id, ep_index, ep_state;
1306 struct urb_priv *urb_priv;
1307 int num_tds;
1308
1309 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1310 true, true, __func__) <= 0)
1311 return -EINVAL;
1312
1313 slot_id = urb->dev->slot_id;
1314 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1315
1316 if (!HCD_HW_ACCESSIBLE(hcd)) {
1317 if (!in_interrupt())
1318 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1319 return -ESHUTDOWN;
1320 }
1321
1322 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1323 num_tds = urb->number_of_packets;
1324 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1325 urb->transfer_buffer_length > 0 &&
1326 urb->transfer_flags & URB_ZERO_PACKET &&
1327 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1328 num_tds = 2;
1329 else
1330 num_tds = 1;
1331
1332 urb_priv = kzalloc(sizeof(struct urb_priv) +
1333 num_tds * sizeof(struct xhci_td), mem_flags);
1334 if (!urb_priv)
1335 return -ENOMEM;
1336
1337 urb_priv->num_tds = num_tds;
1338 urb_priv->num_tds_done = 0;
1339 urb->hcpriv = urb_priv;
1340
1341 trace_xhci_urb_enqueue(urb);
1342
1343 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1344 /* Check to see if the max packet size for the default control
1345 * endpoint changed during FS device enumeration
1346 */
1347 if (urb->dev->speed == USB_SPEED_FULL) {
1348 ret = xhci_check_maxpacket(xhci, slot_id,
1349 ep_index, urb);
1350 if (ret < 0) {
1351 xhci_urb_free_priv(urb_priv);
1352 urb->hcpriv = NULL;
1353 return ret;
1354 }
1355 }
1356 }
1357
1358 spin_lock_irqsave(&xhci->lock, flags);
1359
1360 if (xhci->xhc_state & XHCI_STATE_DYING) {
1361 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1362 urb->ep->desc.bEndpointAddress, urb);
1363 ret = -ESHUTDOWN;
1364 goto free_priv;
1365 }
1366
1367 switch (usb_endpoint_type(&urb->ep->desc)) {
1368
1369 case USB_ENDPOINT_XFER_CONTROL:
1370 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1371 slot_id, ep_index);
1372 break;
1373 case USB_ENDPOINT_XFER_BULK:
1374 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1375 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1376 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1377 ep_state);
1378 ret = -EINVAL;
1379 break;
1380 }
1381 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1382 slot_id, ep_index);
1383 break;
1384
1385
1386 case USB_ENDPOINT_XFER_INT:
1387 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1388 slot_id, ep_index);
1389 break;
1390
1391 case USB_ENDPOINT_XFER_ISOC:
1392 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1393 slot_id, ep_index);
1394 }
1395
1396 if (ret) {
1397 free_priv:
1398 xhci_urb_free_priv(urb_priv);
1399 urb->hcpriv = NULL;
1400 }
1401 spin_unlock_irqrestore(&xhci->lock, flags);
1402 return ret;
1403 }
1404
1405 /*
1406 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1407 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1408 * should pick up where it left off in the TD, unless a Set Transfer Ring
1409 * Dequeue Pointer is issued.
1410 *
1411 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1412 * the ring. Since the ring is a contiguous structure, they can't be physically
1413 * removed. Instead, there are two options:
1414 *
1415 * 1) If the HC is in the middle of processing the URB to be canceled, we
1416 * simply move the ring's dequeue pointer past those TRBs using the Set
1417 * Transfer Ring Dequeue Pointer command. This will be the common case,
1418 * when drivers timeout on the last submitted URB and attempt to cancel.
1419 *
1420 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1421 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1422 * HC will need to invalidate the any TRBs it has cached after the stop
1423 * endpoint command, as noted in the xHCI 0.95 errata.
1424 *
1425 * 3) The TD may have completed by the time the Stop Endpoint Command
1426 * completes, so software needs to handle that case too.
1427 *
1428 * This function should protect against the TD enqueueing code ringing the
1429 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1430 * It also needs to account for multiple cancellations on happening at the same
1431 * time for the same endpoint.
1432 *
1433 * Note that this function can be called in any context, or so says
1434 * usb_hcd_unlink_urb()
1435 */
1436 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1437 {
1438 unsigned long flags;
1439 int ret, i;
1440 u32 temp;
1441 struct xhci_hcd *xhci;
1442 struct urb_priv *urb_priv;
1443 struct xhci_td *td;
1444 unsigned int ep_index;
1445 struct xhci_ring *ep_ring;
1446 struct xhci_virt_ep *ep;
1447 struct xhci_command *command;
1448 struct xhci_virt_device *vdev;
1449
1450 xhci = hcd_to_xhci(hcd);
1451 spin_lock_irqsave(&xhci->lock, flags);
1452
1453 trace_xhci_urb_dequeue(urb);
1454
1455 /* Make sure the URB hasn't completed or been unlinked already */
1456 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1457 if (ret)
1458 goto done;
1459
1460 /* give back URB now if we can't queue it for cancel */
1461 vdev = xhci->devs[urb->dev->slot_id];
1462 urb_priv = urb->hcpriv;
1463 if (!vdev || !urb_priv)
1464 goto err_giveback;
1465
1466 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1467 ep = &vdev->eps[ep_index];
1468 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1469 if (!ep || !ep_ring)
1470 goto err_giveback;
1471
1472 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1473 temp = readl(&xhci->op_regs->status);
1474 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1475 xhci_hc_died(xhci);
1476 goto done;
1477 }
1478
1479 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1480 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1481 "HC halted, freeing TD manually.");
1482 for (i = urb_priv->num_tds_done;
1483 i < urb_priv->num_tds;
1484 i++) {
1485 td = &urb_priv->td[i];
1486 if (!list_empty(&td->td_list))
1487 list_del_init(&td->td_list);
1488 if (!list_empty(&td->cancelled_td_list))
1489 list_del_init(&td->cancelled_td_list);
1490 }
1491 goto err_giveback;
1492 }
1493
1494 i = urb_priv->num_tds_done;
1495 if (i < urb_priv->num_tds)
1496 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497 "Cancel URB %p, dev %s, ep 0x%x, "
1498 "starting at offset 0x%llx",
1499 urb, urb->dev->devpath,
1500 urb->ep->desc.bEndpointAddress,
1501 (unsigned long long) xhci_trb_virt_to_dma(
1502 urb_priv->td[i].start_seg,
1503 urb_priv->td[i].first_trb));
1504
1505 for (; i < urb_priv->num_tds; i++) {
1506 td = &urb_priv->td[i];
1507 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1508 }
1509
1510 /* Queue a stop endpoint command, but only if this is
1511 * the first cancellation to be handled.
1512 */
1513 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1514 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1515 if (!command) {
1516 ret = -ENOMEM;
1517 goto done;
1518 }
1519 ep->ep_state |= EP_STOP_CMD_PENDING;
1520 ep->stop_cmd_timer.expires = jiffies +
1521 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1522 add_timer(&ep->stop_cmd_timer);
1523 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1524 ep_index, 0);
1525 xhci_ring_cmd_db(xhci);
1526 }
1527 done:
1528 spin_unlock_irqrestore(&xhci->lock, flags);
1529 return ret;
1530
1531 err_giveback:
1532 if (urb_priv)
1533 xhci_urb_free_priv(urb_priv);
1534 usb_hcd_unlink_urb_from_ep(hcd, urb);
1535 spin_unlock_irqrestore(&xhci->lock, flags);
1536 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1537 return ret;
1538 }
1539
1540 /* Drop an endpoint from a new bandwidth configuration for this device.
1541 * Only one call to this function is allowed per endpoint before
1542 * check_bandwidth() or reset_bandwidth() must be called.
1543 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1544 * add the endpoint to the schedule with possibly new parameters denoted by a
1545 * different endpoint descriptor in usb_host_endpoint.
1546 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1547 * not allowed.
1548 *
1549 * The USB core will not allow URBs to be queued to an endpoint that is being
1550 * disabled, so there's no need for mutual exclusion to protect
1551 * the xhci->devs[slot_id] structure.
1552 */
1553 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1554 struct usb_host_endpoint *ep)
1555 {
1556 struct xhci_hcd *xhci;
1557 struct xhci_container_ctx *in_ctx, *out_ctx;
1558 struct xhci_input_control_ctx *ctrl_ctx;
1559 unsigned int ep_index;
1560 struct xhci_ep_ctx *ep_ctx;
1561 u32 drop_flag;
1562 u32 new_add_flags, new_drop_flags;
1563 int ret;
1564
1565 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1566 if (ret <= 0)
1567 return ret;
1568 xhci = hcd_to_xhci(hcd);
1569 if (xhci->xhc_state & XHCI_STATE_DYING)
1570 return -ENODEV;
1571
1572 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1573 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1574 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1575 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1576 __func__, drop_flag);
1577 return 0;
1578 }
1579
1580 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1581 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1582 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1583 if (!ctrl_ctx) {
1584 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1585 __func__);
1586 return 0;
1587 }
1588
1589 ep_index = xhci_get_endpoint_index(&ep->desc);
1590 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1591 /* If the HC already knows the endpoint is disabled,
1592 * or the HCD has noted it is disabled, ignore this request
1593 */
1594 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1595 le32_to_cpu(ctrl_ctx->drop_flags) &
1596 xhci_get_endpoint_flag(&ep->desc)) {
1597 /* Do not warn when called after a usb_device_reset */
1598 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1599 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1600 __func__, ep);
1601 return 0;
1602 }
1603
1604 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1605 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1606
1607 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1608 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1609
1610 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1611
1612 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1613
1614 if (xhci->quirks & XHCI_MTK_HOST)
1615 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1616
1617 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1618 (unsigned int) ep->desc.bEndpointAddress,
1619 udev->slot_id,
1620 (unsigned int) new_drop_flags,
1621 (unsigned int) new_add_flags);
1622 return 0;
1623 }
1624
1625 /* Add an endpoint to a new possible bandwidth configuration for this device.
1626 * Only one call to this function is allowed per endpoint before
1627 * check_bandwidth() or reset_bandwidth() must be called.
1628 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1629 * add the endpoint to the schedule with possibly new parameters denoted by a
1630 * different endpoint descriptor in usb_host_endpoint.
1631 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1632 * not allowed.
1633 *
1634 * The USB core will not allow URBs to be queued to an endpoint until the
1635 * configuration or alt setting is installed in the device, so there's no need
1636 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1637 */
1638 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1639 struct usb_host_endpoint *ep)
1640 {
1641 struct xhci_hcd *xhci;
1642 struct xhci_container_ctx *in_ctx;
1643 unsigned int ep_index;
1644 struct xhci_input_control_ctx *ctrl_ctx;
1645 u32 added_ctxs;
1646 u32 new_add_flags, new_drop_flags;
1647 struct xhci_virt_device *virt_dev;
1648 int ret = 0;
1649
1650 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1651 if (ret <= 0) {
1652 /* So we won't queue a reset ep command for a root hub */
1653 ep->hcpriv = NULL;
1654 return ret;
1655 }
1656 xhci = hcd_to_xhci(hcd);
1657 if (xhci->xhc_state & XHCI_STATE_DYING)
1658 return -ENODEV;
1659
1660 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1661 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1662 /* FIXME when we have to issue an evaluate endpoint command to
1663 * deal with ep0 max packet size changing once we get the
1664 * descriptors
1665 */
1666 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1667 __func__, added_ctxs);
1668 return 0;
1669 }
1670
1671 virt_dev = xhci->devs[udev->slot_id];
1672 in_ctx = virt_dev->in_ctx;
1673 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1674 if (!ctrl_ctx) {
1675 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1676 __func__);
1677 return 0;
1678 }
1679
1680 ep_index = xhci_get_endpoint_index(&ep->desc);
1681 /* If this endpoint is already in use, and the upper layers are trying
1682 * to add it again without dropping it, reject the addition.
1683 */
1684 if (virt_dev->eps[ep_index].ring &&
1685 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1686 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1687 "without dropping it.\n",
1688 (unsigned int) ep->desc.bEndpointAddress);
1689 return -EINVAL;
1690 }
1691
1692 /* If the HCD has already noted the endpoint is enabled,
1693 * ignore this request.
1694 */
1695 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1696 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1697 __func__, ep);
1698 return 0;
1699 }
1700
1701 /*
1702 * Configuration and alternate setting changes must be done in
1703 * process context, not interrupt context (or so documenation
1704 * for usb_set_interface() and usb_set_configuration() claim).
1705 */
1706 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1707 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1708 __func__, ep->desc.bEndpointAddress);
1709 return -ENOMEM;
1710 }
1711
1712 if (xhci->quirks & XHCI_MTK_HOST) {
1713 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1714 if (ret < 0) {
1715 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1716 virt_dev->eps[ep_index].new_ring = NULL;
1717 return ret;
1718 }
1719 }
1720
1721 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1722 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1723
1724 /* If xhci_endpoint_disable() was called for this endpoint, but the
1725 * xHC hasn't been notified yet through the check_bandwidth() call,
1726 * this re-adds a new state for the endpoint from the new endpoint
1727 * descriptors. We must drop and re-add this endpoint, so we leave the
1728 * drop flags alone.
1729 */
1730 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1731
1732 /* Store the usb_device pointer for later use */
1733 ep->hcpriv = udev;
1734
1735 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1736
1737 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1738 (unsigned int) ep->desc.bEndpointAddress,
1739 udev->slot_id,
1740 (unsigned int) new_drop_flags,
1741 (unsigned int) new_add_flags);
1742 return 0;
1743 }
1744
1745 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1746 {
1747 struct xhci_input_control_ctx *ctrl_ctx;
1748 struct xhci_ep_ctx *ep_ctx;
1749 struct xhci_slot_ctx *slot_ctx;
1750 int i;
1751
1752 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1753 if (!ctrl_ctx) {
1754 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1755 __func__);
1756 return;
1757 }
1758
1759 /* When a device's add flag and drop flag are zero, any subsequent
1760 * configure endpoint command will leave that endpoint's state
1761 * untouched. Make sure we don't leave any old state in the input
1762 * endpoint contexts.
1763 */
1764 ctrl_ctx->drop_flags = 0;
1765 ctrl_ctx->add_flags = 0;
1766 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1767 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1768 /* Endpoint 0 is always valid */
1769 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1770 for (i = 1; i < 31; i++) {
1771 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1772 ep_ctx->ep_info = 0;
1773 ep_ctx->ep_info2 = 0;
1774 ep_ctx->deq = 0;
1775 ep_ctx->tx_info = 0;
1776 }
1777 }
1778
1779 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1780 struct usb_device *udev, u32 *cmd_status)
1781 {
1782 int ret;
1783
1784 switch (*cmd_status) {
1785 case COMP_COMMAND_ABORTED:
1786 case COMP_COMMAND_RING_STOPPED:
1787 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1788 ret = -ETIME;
1789 break;
1790 case COMP_RESOURCE_ERROR:
1791 dev_warn(&udev->dev,
1792 "Not enough host controller resources for new device state.\n");
1793 ret = -ENOMEM;
1794 /* FIXME: can we allocate more resources for the HC? */
1795 break;
1796 case COMP_BANDWIDTH_ERROR:
1797 case COMP_SECONDARY_BANDWIDTH_ERROR:
1798 dev_warn(&udev->dev,
1799 "Not enough bandwidth for new device state.\n");
1800 ret = -ENOSPC;
1801 /* FIXME: can we go back to the old state? */
1802 break;
1803 case COMP_TRB_ERROR:
1804 /* the HCD set up something wrong */
1805 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1806 "add flag = 1, "
1807 "and endpoint is not disabled.\n");
1808 ret = -EINVAL;
1809 break;
1810 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1811 dev_warn(&udev->dev,
1812 "ERROR: Incompatible device for endpoint configure command.\n");
1813 ret = -ENODEV;
1814 break;
1815 case COMP_SUCCESS:
1816 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1817 "Successful Endpoint Configure command");
1818 ret = 0;
1819 break;
1820 default:
1821 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1822 *cmd_status);
1823 ret = -EINVAL;
1824 break;
1825 }
1826 return ret;
1827 }
1828
1829 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1830 struct usb_device *udev, u32 *cmd_status)
1831 {
1832 int ret;
1833
1834 switch (*cmd_status) {
1835 case COMP_COMMAND_ABORTED:
1836 case COMP_COMMAND_RING_STOPPED:
1837 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1838 ret = -ETIME;
1839 break;
1840 case COMP_PARAMETER_ERROR:
1841 dev_warn(&udev->dev,
1842 "WARN: xHCI driver setup invalid evaluate context command.\n");
1843 ret = -EINVAL;
1844 break;
1845 case COMP_SLOT_NOT_ENABLED_ERROR:
1846 dev_warn(&udev->dev,
1847 "WARN: slot not enabled for evaluate context command.\n");
1848 ret = -EINVAL;
1849 break;
1850 case COMP_CONTEXT_STATE_ERROR:
1851 dev_warn(&udev->dev,
1852 "WARN: invalid context state for evaluate context command.\n");
1853 ret = -EINVAL;
1854 break;
1855 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1856 dev_warn(&udev->dev,
1857 "ERROR: Incompatible device for evaluate context command.\n");
1858 ret = -ENODEV;
1859 break;
1860 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1861 /* Max Exit Latency too large error */
1862 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1863 ret = -EINVAL;
1864 break;
1865 case COMP_SUCCESS:
1866 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1867 "Successful evaluate context command");
1868 ret = 0;
1869 break;
1870 default:
1871 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1872 *cmd_status);
1873 ret = -EINVAL;
1874 break;
1875 }
1876 return ret;
1877 }
1878
1879 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1880 struct xhci_input_control_ctx *ctrl_ctx)
1881 {
1882 u32 valid_add_flags;
1883 u32 valid_drop_flags;
1884
1885 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1886 * (bit 1). The default control endpoint is added during the Address
1887 * Device command and is never removed until the slot is disabled.
1888 */
1889 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1890 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1891
1892 /* Use hweight32 to count the number of ones in the add flags, or
1893 * number of endpoints added. Don't count endpoints that are changed
1894 * (both added and dropped).
1895 */
1896 return hweight32(valid_add_flags) -
1897 hweight32(valid_add_flags & valid_drop_flags);
1898 }
1899
1900 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1901 struct xhci_input_control_ctx *ctrl_ctx)
1902 {
1903 u32 valid_add_flags;
1904 u32 valid_drop_flags;
1905
1906 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1907 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1908
1909 return hweight32(valid_drop_flags) -
1910 hweight32(valid_add_flags & valid_drop_flags);
1911 }
1912
1913 /*
1914 * We need to reserve the new number of endpoints before the configure endpoint
1915 * command completes. We can't subtract the dropped endpoints from the number
1916 * of active endpoints until the command completes because we can oversubscribe
1917 * the host in this case:
1918 *
1919 * - the first configure endpoint command drops more endpoints than it adds
1920 * - a second configure endpoint command that adds more endpoints is queued
1921 * - the first configure endpoint command fails, so the config is unchanged
1922 * - the second command may succeed, even though there isn't enough resources
1923 *
1924 * Must be called with xhci->lock held.
1925 */
1926 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1927 struct xhci_input_control_ctx *ctrl_ctx)
1928 {
1929 u32 added_eps;
1930
1931 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1932 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1933 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1934 "Not enough ep ctxs: "
1935 "%u active, need to add %u, limit is %u.",
1936 xhci->num_active_eps, added_eps,
1937 xhci->limit_active_eps);
1938 return -ENOMEM;
1939 }
1940 xhci->num_active_eps += added_eps;
1941 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1942 "Adding %u ep ctxs, %u now active.", added_eps,
1943 xhci->num_active_eps);
1944 return 0;
1945 }
1946
1947 /*
1948 * The configure endpoint was failed by the xHC for some other reason, so we
1949 * need to revert the resources that failed configuration would have used.
1950 *
1951 * Must be called with xhci->lock held.
1952 */
1953 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1954 struct xhci_input_control_ctx *ctrl_ctx)
1955 {
1956 u32 num_failed_eps;
1957
1958 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1959 xhci->num_active_eps -= num_failed_eps;
1960 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1961 "Removing %u failed ep ctxs, %u now active.",
1962 num_failed_eps,
1963 xhci->num_active_eps);
1964 }
1965
1966 /*
1967 * Now that the command has completed, clean up the active endpoint count by
1968 * subtracting out the endpoints that were dropped (but not changed).
1969 *
1970 * Must be called with xhci->lock held.
1971 */
1972 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1973 struct xhci_input_control_ctx *ctrl_ctx)
1974 {
1975 u32 num_dropped_eps;
1976
1977 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1978 xhci->num_active_eps -= num_dropped_eps;
1979 if (num_dropped_eps)
1980 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1981 "Removing %u dropped ep ctxs, %u now active.",
1982 num_dropped_eps,
1983 xhci->num_active_eps);
1984 }
1985
1986 static unsigned int xhci_get_block_size(struct usb_device *udev)
1987 {
1988 switch (udev->speed) {
1989 case USB_SPEED_LOW:
1990 case USB_SPEED_FULL:
1991 return FS_BLOCK;
1992 case USB_SPEED_HIGH:
1993 return HS_BLOCK;
1994 case USB_SPEED_SUPER:
1995 case USB_SPEED_SUPER_PLUS:
1996 return SS_BLOCK;
1997 case USB_SPEED_UNKNOWN:
1998 case USB_SPEED_WIRELESS:
1999 default:
2000 /* Should never happen */
2001 return 1;
2002 }
2003 }
2004
2005 static unsigned int
2006 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2007 {
2008 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2009 return LS_OVERHEAD;
2010 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2011 return FS_OVERHEAD;
2012 return HS_OVERHEAD;
2013 }
2014
2015 /* If we are changing a LS/FS device under a HS hub,
2016 * make sure (if we are activating a new TT) that the HS bus has enough
2017 * bandwidth for this new TT.
2018 */
2019 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2020 struct xhci_virt_device *virt_dev,
2021 int old_active_eps)
2022 {
2023 struct xhci_interval_bw_table *bw_table;
2024 struct xhci_tt_bw_info *tt_info;
2025
2026 /* Find the bandwidth table for the root port this TT is attached to. */
2027 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2028 tt_info = virt_dev->tt_info;
2029 /* If this TT already had active endpoints, the bandwidth for this TT
2030 * has already been added. Removing all periodic endpoints (and thus
2031 * making the TT enactive) will only decrease the bandwidth used.
2032 */
2033 if (old_active_eps)
2034 return 0;
2035 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2036 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2037 return -ENOMEM;
2038 return 0;
2039 }
2040 /* Not sure why we would have no new active endpoints...
2041 *
2042 * Maybe because of an Evaluate Context change for a hub update or a
2043 * control endpoint 0 max packet size change?
2044 * FIXME: skip the bandwidth calculation in that case.
2045 */
2046 return 0;
2047 }
2048
2049 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2050 struct xhci_virt_device *virt_dev)
2051 {
2052 unsigned int bw_reserved;
2053
2054 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2055 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2056 return -ENOMEM;
2057
2058 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2059 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2060 return -ENOMEM;
2061
2062 return 0;
2063 }
2064
2065 /*
2066 * This algorithm is a very conservative estimate of the worst-case scheduling
2067 * scenario for any one interval. The hardware dynamically schedules the
2068 * packets, so we can't tell which microframe could be the limiting factor in
2069 * the bandwidth scheduling. This only takes into account periodic endpoints.
2070 *
2071 * Obviously, we can't solve an NP complete problem to find the minimum worst
2072 * case scenario. Instead, we come up with an estimate that is no less than
2073 * the worst case bandwidth used for any one microframe, but may be an
2074 * over-estimate.
2075 *
2076 * We walk the requirements for each endpoint by interval, starting with the
2077 * smallest interval, and place packets in the schedule where there is only one
2078 * possible way to schedule packets for that interval. In order to simplify
2079 * this algorithm, we record the largest max packet size for each interval, and
2080 * assume all packets will be that size.
2081 *
2082 * For interval 0, we obviously must schedule all packets for each interval.
2083 * The bandwidth for interval 0 is just the amount of data to be transmitted
2084 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2085 * the number of packets).
2086 *
2087 * For interval 1, we have two possible microframes to schedule those packets
2088 * in. For this algorithm, if we can schedule the same number of packets for
2089 * each possible scheduling opportunity (each microframe), we will do so. The
2090 * remaining number of packets will be saved to be transmitted in the gaps in
2091 * the next interval's scheduling sequence.
2092 *
2093 * As we move those remaining packets to be scheduled with interval 2 packets,
2094 * we have to double the number of remaining packets to transmit. This is
2095 * because the intervals are actually powers of 2, and we would be transmitting
2096 * the previous interval's packets twice in this interval. We also have to be
2097 * sure that when we look at the largest max packet size for this interval, we
2098 * also look at the largest max packet size for the remaining packets and take
2099 * the greater of the two.
2100 *
2101 * The algorithm continues to evenly distribute packets in each scheduling
2102 * opportunity, and push the remaining packets out, until we get to the last
2103 * interval. Then those packets and their associated overhead are just added
2104 * to the bandwidth used.
2105 */
2106 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2107 struct xhci_virt_device *virt_dev,
2108 int old_active_eps)
2109 {
2110 unsigned int bw_reserved;
2111 unsigned int max_bandwidth;
2112 unsigned int bw_used;
2113 unsigned int block_size;
2114 struct xhci_interval_bw_table *bw_table;
2115 unsigned int packet_size = 0;
2116 unsigned int overhead = 0;
2117 unsigned int packets_transmitted = 0;
2118 unsigned int packets_remaining = 0;
2119 unsigned int i;
2120
2121 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2122 return xhci_check_ss_bw(xhci, virt_dev);
2123
2124 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2125 max_bandwidth = HS_BW_LIMIT;
2126 /* Convert percent of bus BW reserved to blocks reserved */
2127 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2128 } else {
2129 max_bandwidth = FS_BW_LIMIT;
2130 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2131 }
2132
2133 bw_table = virt_dev->bw_table;
2134 /* We need to translate the max packet size and max ESIT payloads into
2135 * the units the hardware uses.
2136 */
2137 block_size = xhci_get_block_size(virt_dev->udev);
2138
2139 /* If we are manipulating a LS/FS device under a HS hub, double check
2140 * that the HS bus has enough bandwidth if we are activing a new TT.
2141 */
2142 if (virt_dev->tt_info) {
2143 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144 "Recalculating BW for rootport %u",
2145 virt_dev->real_port);
2146 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2147 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2148 "newly activated TT.\n");
2149 return -ENOMEM;
2150 }
2151 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2152 "Recalculating BW for TT slot %u port %u",
2153 virt_dev->tt_info->slot_id,
2154 virt_dev->tt_info->ttport);
2155 } else {
2156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 "Recalculating BW for rootport %u",
2158 virt_dev->real_port);
2159 }
2160
2161 /* Add in how much bandwidth will be used for interval zero, or the
2162 * rounded max ESIT payload + number of packets * largest overhead.
2163 */
2164 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2165 bw_table->interval_bw[0].num_packets *
2166 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2167
2168 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2169 unsigned int bw_added;
2170 unsigned int largest_mps;
2171 unsigned int interval_overhead;
2172
2173 /*
2174 * How many packets could we transmit in this interval?
2175 * If packets didn't fit in the previous interval, we will need
2176 * to transmit that many packets twice within this interval.
2177 */
2178 packets_remaining = 2 * packets_remaining +
2179 bw_table->interval_bw[i].num_packets;
2180
2181 /* Find the largest max packet size of this or the previous
2182 * interval.
2183 */
2184 if (list_empty(&bw_table->interval_bw[i].endpoints))
2185 largest_mps = 0;
2186 else {
2187 struct xhci_virt_ep *virt_ep;
2188 struct list_head *ep_entry;
2189
2190 ep_entry = bw_table->interval_bw[i].endpoints.next;
2191 virt_ep = list_entry(ep_entry,
2192 struct xhci_virt_ep, bw_endpoint_list);
2193 /* Convert to blocks, rounding up */
2194 largest_mps = DIV_ROUND_UP(
2195 virt_ep->bw_info.max_packet_size,
2196 block_size);
2197 }
2198 if (largest_mps > packet_size)
2199 packet_size = largest_mps;
2200
2201 /* Use the larger overhead of this or the previous interval. */
2202 interval_overhead = xhci_get_largest_overhead(
2203 &bw_table->interval_bw[i]);
2204 if (interval_overhead > overhead)
2205 overhead = interval_overhead;
2206
2207 /* How many packets can we evenly distribute across
2208 * (1 << (i + 1)) possible scheduling opportunities?
2209 */
2210 packets_transmitted = packets_remaining >> (i + 1);
2211
2212 /* Add in the bandwidth used for those scheduled packets */
2213 bw_added = packets_transmitted * (overhead + packet_size);
2214
2215 /* How many packets do we have remaining to transmit? */
2216 packets_remaining = packets_remaining % (1 << (i + 1));
2217
2218 /* What largest max packet size should those packets have? */
2219 /* If we've transmitted all packets, don't carry over the
2220 * largest packet size.
2221 */
2222 if (packets_remaining == 0) {
2223 packet_size = 0;
2224 overhead = 0;
2225 } else if (packets_transmitted > 0) {
2226 /* Otherwise if we do have remaining packets, and we've
2227 * scheduled some packets in this interval, take the
2228 * largest max packet size from endpoints with this
2229 * interval.
2230 */
2231 packet_size = largest_mps;
2232 overhead = interval_overhead;
2233 }
2234 /* Otherwise carry over packet_size and overhead from the last
2235 * time we had a remainder.
2236 */
2237 bw_used += bw_added;
2238 if (bw_used > max_bandwidth) {
2239 xhci_warn(xhci, "Not enough bandwidth. "
2240 "Proposed: %u, Max: %u\n",
2241 bw_used, max_bandwidth);
2242 return -ENOMEM;
2243 }
2244 }
2245 /*
2246 * Ok, we know we have some packets left over after even-handedly
2247 * scheduling interval 15. We don't know which microframes they will
2248 * fit into, so we over-schedule and say they will be scheduled every
2249 * microframe.
2250 */
2251 if (packets_remaining > 0)
2252 bw_used += overhead + packet_size;
2253
2254 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2255 unsigned int port_index = virt_dev->real_port - 1;
2256
2257 /* OK, we're manipulating a HS device attached to a
2258 * root port bandwidth domain. Include the number of active TTs
2259 * in the bandwidth used.
2260 */
2261 bw_used += TT_HS_OVERHEAD *
2262 xhci->rh_bw[port_index].num_active_tts;
2263 }
2264
2265 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2266 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2267 "Available: %u " "percent",
2268 bw_used, max_bandwidth, bw_reserved,
2269 (max_bandwidth - bw_used - bw_reserved) * 100 /
2270 max_bandwidth);
2271
2272 bw_used += bw_reserved;
2273 if (bw_used > max_bandwidth) {
2274 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2275 bw_used, max_bandwidth);
2276 return -ENOMEM;
2277 }
2278
2279 bw_table->bw_used = bw_used;
2280 return 0;
2281 }
2282
2283 static bool xhci_is_async_ep(unsigned int ep_type)
2284 {
2285 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2286 ep_type != ISOC_IN_EP &&
2287 ep_type != INT_IN_EP);
2288 }
2289
2290 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2291 {
2292 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2293 }
2294
2295 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2296 {
2297 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2298
2299 if (ep_bw->ep_interval == 0)
2300 return SS_OVERHEAD_BURST +
2301 (ep_bw->mult * ep_bw->num_packets *
2302 (SS_OVERHEAD + mps));
2303 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2304 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2305 1 << ep_bw->ep_interval);
2306
2307 }
2308
2309 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2310 struct xhci_bw_info *ep_bw,
2311 struct xhci_interval_bw_table *bw_table,
2312 struct usb_device *udev,
2313 struct xhci_virt_ep *virt_ep,
2314 struct xhci_tt_bw_info *tt_info)
2315 {
2316 struct xhci_interval_bw *interval_bw;
2317 int normalized_interval;
2318
2319 if (xhci_is_async_ep(ep_bw->type))
2320 return;
2321
2322 if (udev->speed >= USB_SPEED_SUPER) {
2323 if (xhci_is_sync_in_ep(ep_bw->type))
2324 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2325 xhci_get_ss_bw_consumed(ep_bw);
2326 else
2327 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2328 xhci_get_ss_bw_consumed(ep_bw);
2329 return;
2330 }
2331
2332 /* SuperSpeed endpoints never get added to intervals in the table, so
2333 * this check is only valid for HS/FS/LS devices.
2334 */
2335 if (list_empty(&virt_ep->bw_endpoint_list))
2336 return;
2337 /* For LS/FS devices, we need to translate the interval expressed in
2338 * microframes to frames.
2339 */
2340 if (udev->speed == USB_SPEED_HIGH)
2341 normalized_interval = ep_bw->ep_interval;
2342 else
2343 normalized_interval = ep_bw->ep_interval - 3;
2344
2345 if (normalized_interval == 0)
2346 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2347 interval_bw = &bw_table->interval_bw[normalized_interval];
2348 interval_bw->num_packets -= ep_bw->num_packets;
2349 switch (udev->speed) {
2350 case USB_SPEED_LOW:
2351 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2352 break;
2353 case USB_SPEED_FULL:
2354 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2355 break;
2356 case USB_SPEED_HIGH:
2357 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2358 break;
2359 case USB_SPEED_SUPER:
2360 case USB_SPEED_SUPER_PLUS:
2361 case USB_SPEED_UNKNOWN:
2362 case USB_SPEED_WIRELESS:
2363 /* Should never happen because only LS/FS/HS endpoints will get
2364 * added to the endpoint list.
2365 */
2366 return;
2367 }
2368 if (tt_info)
2369 tt_info->active_eps -= 1;
2370 list_del_init(&virt_ep->bw_endpoint_list);
2371 }
2372
2373 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2374 struct xhci_bw_info *ep_bw,
2375 struct xhci_interval_bw_table *bw_table,
2376 struct usb_device *udev,
2377 struct xhci_virt_ep *virt_ep,
2378 struct xhci_tt_bw_info *tt_info)
2379 {
2380 struct xhci_interval_bw *interval_bw;
2381 struct xhci_virt_ep *smaller_ep;
2382 int normalized_interval;
2383
2384 if (xhci_is_async_ep(ep_bw->type))
2385 return;
2386
2387 if (udev->speed == USB_SPEED_SUPER) {
2388 if (xhci_is_sync_in_ep(ep_bw->type))
2389 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2390 xhci_get_ss_bw_consumed(ep_bw);
2391 else
2392 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2393 xhci_get_ss_bw_consumed(ep_bw);
2394 return;
2395 }
2396
2397 /* For LS/FS devices, we need to translate the interval expressed in
2398 * microframes to frames.
2399 */
2400 if (udev->speed == USB_SPEED_HIGH)
2401 normalized_interval = ep_bw->ep_interval;
2402 else
2403 normalized_interval = ep_bw->ep_interval - 3;
2404
2405 if (normalized_interval == 0)
2406 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2407 interval_bw = &bw_table->interval_bw[normalized_interval];
2408 interval_bw->num_packets += ep_bw->num_packets;
2409 switch (udev->speed) {
2410 case USB_SPEED_LOW:
2411 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2412 break;
2413 case USB_SPEED_FULL:
2414 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2415 break;
2416 case USB_SPEED_HIGH:
2417 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2418 break;
2419 case USB_SPEED_SUPER:
2420 case USB_SPEED_SUPER_PLUS:
2421 case USB_SPEED_UNKNOWN:
2422 case USB_SPEED_WIRELESS:
2423 /* Should never happen because only LS/FS/HS endpoints will get
2424 * added to the endpoint list.
2425 */
2426 return;
2427 }
2428
2429 if (tt_info)
2430 tt_info->active_eps += 1;
2431 /* Insert the endpoint into the list, largest max packet size first. */
2432 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2433 bw_endpoint_list) {
2434 if (ep_bw->max_packet_size >=
2435 smaller_ep->bw_info.max_packet_size) {
2436 /* Add the new ep before the smaller endpoint */
2437 list_add_tail(&virt_ep->bw_endpoint_list,
2438 &smaller_ep->bw_endpoint_list);
2439 return;
2440 }
2441 }
2442 /* Add the new endpoint at the end of the list. */
2443 list_add_tail(&virt_ep->bw_endpoint_list,
2444 &interval_bw->endpoints);
2445 }
2446
2447 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2448 struct xhci_virt_device *virt_dev,
2449 int old_active_eps)
2450 {
2451 struct xhci_root_port_bw_info *rh_bw_info;
2452 if (!virt_dev->tt_info)
2453 return;
2454
2455 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2456 if (old_active_eps == 0 &&
2457 virt_dev->tt_info->active_eps != 0) {
2458 rh_bw_info->num_active_tts += 1;
2459 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2460 } else if (old_active_eps != 0 &&
2461 virt_dev->tt_info->active_eps == 0) {
2462 rh_bw_info->num_active_tts -= 1;
2463 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2464 }
2465 }
2466
2467 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2468 struct xhci_virt_device *virt_dev,
2469 struct xhci_container_ctx *in_ctx)
2470 {
2471 struct xhci_bw_info ep_bw_info[31];
2472 int i;
2473 struct xhci_input_control_ctx *ctrl_ctx;
2474 int old_active_eps = 0;
2475
2476 if (virt_dev->tt_info)
2477 old_active_eps = virt_dev->tt_info->active_eps;
2478
2479 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2480 if (!ctrl_ctx) {
2481 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2482 __func__);
2483 return -ENOMEM;
2484 }
2485
2486 for (i = 0; i < 31; i++) {
2487 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2488 continue;
2489
2490 /* Make a copy of the BW info in case we need to revert this */
2491 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2492 sizeof(ep_bw_info[i]));
2493 /* Drop the endpoint from the interval table if the endpoint is
2494 * being dropped or changed.
2495 */
2496 if (EP_IS_DROPPED(ctrl_ctx, i))
2497 xhci_drop_ep_from_interval_table(xhci,
2498 &virt_dev->eps[i].bw_info,
2499 virt_dev->bw_table,
2500 virt_dev->udev,
2501 &virt_dev->eps[i],
2502 virt_dev->tt_info);
2503 }
2504 /* Overwrite the information stored in the endpoints' bw_info */
2505 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2506 for (i = 0; i < 31; i++) {
2507 /* Add any changed or added endpoints to the interval table */
2508 if (EP_IS_ADDED(ctrl_ctx, i))
2509 xhci_add_ep_to_interval_table(xhci,
2510 &virt_dev->eps[i].bw_info,
2511 virt_dev->bw_table,
2512 virt_dev->udev,
2513 &virt_dev->eps[i],
2514 virt_dev->tt_info);
2515 }
2516
2517 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2518 /* Ok, this fits in the bandwidth we have.
2519 * Update the number of active TTs.
2520 */
2521 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2522 return 0;
2523 }
2524
2525 /* We don't have enough bandwidth for this, revert the stored info. */
2526 for (i = 0; i < 31; i++) {
2527 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2528 continue;
2529
2530 /* Drop the new copies of any added or changed endpoints from
2531 * the interval table.
2532 */
2533 if (EP_IS_ADDED(ctrl_ctx, i)) {
2534 xhci_drop_ep_from_interval_table(xhci,
2535 &virt_dev->eps[i].bw_info,
2536 virt_dev->bw_table,
2537 virt_dev->udev,
2538 &virt_dev->eps[i],
2539 virt_dev->tt_info);
2540 }
2541 /* Revert the endpoint back to its old information */
2542 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2543 sizeof(ep_bw_info[i]));
2544 /* Add any changed or dropped endpoints back into the table */
2545 if (EP_IS_DROPPED(ctrl_ctx, i))
2546 xhci_add_ep_to_interval_table(xhci,
2547 &virt_dev->eps[i].bw_info,
2548 virt_dev->bw_table,
2549 virt_dev->udev,
2550 &virt_dev->eps[i],
2551 virt_dev->tt_info);
2552 }
2553 return -ENOMEM;
2554 }
2555
2556
2557 /* Issue a configure endpoint command or evaluate context command
2558 * and wait for it to finish.
2559 */
2560 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2561 struct usb_device *udev,
2562 struct xhci_command *command,
2563 bool ctx_change, bool must_succeed)
2564 {
2565 int ret;
2566 unsigned long flags;
2567 struct xhci_input_control_ctx *ctrl_ctx;
2568 struct xhci_virt_device *virt_dev;
2569 struct xhci_slot_ctx *slot_ctx;
2570
2571 if (!command)
2572 return -EINVAL;
2573
2574 spin_lock_irqsave(&xhci->lock, flags);
2575
2576 if (xhci->xhc_state & XHCI_STATE_DYING) {
2577 spin_unlock_irqrestore(&xhci->lock, flags);
2578 return -ESHUTDOWN;
2579 }
2580
2581 virt_dev = xhci->devs[udev->slot_id];
2582
2583 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2584 if (!ctrl_ctx) {
2585 spin_unlock_irqrestore(&xhci->lock, flags);
2586 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2587 __func__);
2588 return -ENOMEM;
2589 }
2590
2591 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2592 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2593 spin_unlock_irqrestore(&xhci->lock, flags);
2594 xhci_warn(xhci, "Not enough host resources, "
2595 "active endpoint contexts = %u\n",
2596 xhci->num_active_eps);
2597 return -ENOMEM;
2598 }
2599 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2600 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2601 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2602 xhci_free_host_resources(xhci, ctrl_ctx);
2603 spin_unlock_irqrestore(&xhci->lock, flags);
2604 xhci_warn(xhci, "Not enough bandwidth\n");
2605 return -ENOMEM;
2606 }
2607
2608 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2609 trace_xhci_configure_endpoint(slot_ctx);
2610
2611 if (!ctx_change)
2612 ret = xhci_queue_configure_endpoint(xhci, command,
2613 command->in_ctx->dma,
2614 udev->slot_id, must_succeed);
2615 else
2616 ret = xhci_queue_evaluate_context(xhci, command,
2617 command->in_ctx->dma,
2618 udev->slot_id, must_succeed);
2619 if (ret < 0) {
2620 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2621 xhci_free_host_resources(xhci, ctrl_ctx);
2622 spin_unlock_irqrestore(&xhci->lock, flags);
2623 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2624 "FIXME allocate a new ring segment");
2625 return -ENOMEM;
2626 }
2627 xhci_ring_cmd_db(xhci);
2628 spin_unlock_irqrestore(&xhci->lock, flags);
2629
2630 /* Wait for the configure endpoint command to complete */
2631 wait_for_completion(command->completion);
2632
2633 if (!ctx_change)
2634 ret = xhci_configure_endpoint_result(xhci, udev,
2635 &command->status);
2636 else
2637 ret = xhci_evaluate_context_result(xhci, udev,
2638 &command->status);
2639
2640 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2641 spin_lock_irqsave(&xhci->lock, flags);
2642 /* If the command failed, remove the reserved resources.
2643 * Otherwise, clean up the estimate to include dropped eps.
2644 */
2645 if (ret)
2646 xhci_free_host_resources(xhci, ctrl_ctx);
2647 else
2648 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2649 spin_unlock_irqrestore(&xhci->lock, flags);
2650 }
2651 return ret;
2652 }
2653
2654 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2655 struct xhci_virt_device *vdev, int i)
2656 {
2657 struct xhci_virt_ep *ep = &vdev->eps[i];
2658
2659 if (ep->ep_state & EP_HAS_STREAMS) {
2660 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2661 xhci_get_endpoint_address(i));
2662 xhci_free_stream_info(xhci, ep->stream_info);
2663 ep->stream_info = NULL;
2664 ep->ep_state &= ~EP_HAS_STREAMS;
2665 }
2666 }
2667
2668 /* Called after one or more calls to xhci_add_endpoint() or
2669 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2670 * to call xhci_reset_bandwidth().
2671 *
2672 * Since we are in the middle of changing either configuration or
2673 * installing a new alt setting, the USB core won't allow URBs to be
2674 * enqueued for any endpoint on the old config or interface. Nothing
2675 * else should be touching the xhci->devs[slot_id] structure, so we
2676 * don't need to take the xhci->lock for manipulating that.
2677 */
2678 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2679 {
2680 int i;
2681 int ret = 0;
2682 struct xhci_hcd *xhci;
2683 struct xhci_virt_device *virt_dev;
2684 struct xhci_input_control_ctx *ctrl_ctx;
2685 struct xhci_slot_ctx *slot_ctx;
2686 struct xhci_command *command;
2687
2688 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2689 if (ret <= 0)
2690 return ret;
2691 xhci = hcd_to_xhci(hcd);
2692 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2693 (xhci->xhc_state & XHCI_STATE_REMOVING))
2694 return -ENODEV;
2695
2696 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2697 virt_dev = xhci->devs[udev->slot_id];
2698
2699 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2700 if (!command)
2701 return -ENOMEM;
2702
2703 command->in_ctx = virt_dev->in_ctx;
2704
2705 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2706 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2707 if (!ctrl_ctx) {
2708 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2709 __func__);
2710 ret = -ENOMEM;
2711 goto command_cleanup;
2712 }
2713 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2714 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2715 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2716
2717 /* Don't issue the command if there's no endpoints to update. */
2718 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2719 ctrl_ctx->drop_flags == 0) {
2720 ret = 0;
2721 goto command_cleanup;
2722 }
2723 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2724 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2725 for (i = 31; i >= 1; i--) {
2726 __le32 le32 = cpu_to_le32(BIT(i));
2727
2728 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2729 || (ctrl_ctx->add_flags & le32) || i == 1) {
2730 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2731 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2732 break;
2733 }
2734 }
2735
2736 ret = xhci_configure_endpoint(xhci, udev, command,
2737 false, false);
2738 if (ret)
2739 /* Callee should call reset_bandwidth() */
2740 goto command_cleanup;
2741
2742 /* Free any rings that were dropped, but not changed. */
2743 for (i = 1; i < 31; i++) {
2744 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2745 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2746 xhci_free_endpoint_ring(xhci, virt_dev, i);
2747 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2748 }
2749 }
2750 xhci_zero_in_ctx(xhci, virt_dev);
2751 /*
2752 * Install any rings for completely new endpoints or changed endpoints,
2753 * and free any old rings from changed endpoints.
2754 */
2755 for (i = 1; i < 31; i++) {
2756 if (!virt_dev->eps[i].new_ring)
2757 continue;
2758 /* Only free the old ring if it exists.
2759 * It may not if this is the first add of an endpoint.
2760 */
2761 if (virt_dev->eps[i].ring) {
2762 xhci_free_endpoint_ring(xhci, virt_dev, i);
2763 }
2764 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2765 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2766 virt_dev->eps[i].new_ring = NULL;
2767 }
2768 command_cleanup:
2769 kfree(command->completion);
2770 kfree(command);
2771
2772 return ret;
2773 }
2774
2775 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2776 {
2777 struct xhci_hcd *xhci;
2778 struct xhci_virt_device *virt_dev;
2779 int i, ret;
2780
2781 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2782 if (ret <= 0)
2783 return;
2784 xhci = hcd_to_xhci(hcd);
2785
2786 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2787 virt_dev = xhci->devs[udev->slot_id];
2788 /* Free any rings allocated for added endpoints */
2789 for (i = 0; i < 31; i++) {
2790 if (virt_dev->eps[i].new_ring) {
2791 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2792 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2793 virt_dev->eps[i].new_ring = NULL;
2794 }
2795 }
2796 xhci_zero_in_ctx(xhci, virt_dev);
2797 }
2798
2799 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2800 struct xhci_container_ctx *in_ctx,
2801 struct xhci_container_ctx *out_ctx,
2802 struct xhci_input_control_ctx *ctrl_ctx,
2803 u32 add_flags, u32 drop_flags)
2804 {
2805 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2806 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2807 xhci_slot_copy(xhci, in_ctx, out_ctx);
2808 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2809 }
2810
2811 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2812 unsigned int slot_id, unsigned int ep_index,
2813 struct xhci_dequeue_state *deq_state)
2814 {
2815 struct xhci_input_control_ctx *ctrl_ctx;
2816 struct xhci_container_ctx *in_ctx;
2817 struct xhci_ep_ctx *ep_ctx;
2818 u32 added_ctxs;
2819 dma_addr_t addr;
2820
2821 in_ctx = xhci->devs[slot_id]->in_ctx;
2822 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2823 if (!ctrl_ctx) {
2824 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2825 __func__);
2826 return;
2827 }
2828
2829 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2830 xhci->devs[slot_id]->out_ctx, ep_index);
2831 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2832 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2833 deq_state->new_deq_ptr);
2834 if (addr == 0) {
2835 xhci_warn(xhci, "WARN Cannot submit config ep after "
2836 "reset ep command\n");
2837 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2838 deq_state->new_deq_seg,
2839 deq_state->new_deq_ptr);
2840 return;
2841 }
2842 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2843
2844 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2845 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2846 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2847 added_ctxs, added_ctxs);
2848 }
2849
2850 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2851 unsigned int stream_id, struct xhci_td *td)
2852 {
2853 struct xhci_dequeue_state deq_state;
2854 struct xhci_virt_ep *ep;
2855 struct usb_device *udev = td->urb->dev;
2856
2857 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2858 "Cleaning up stalled endpoint ring");
2859 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2860 /* We need to move the HW's dequeue pointer past this TD,
2861 * or it will attempt to resend it on the next doorbell ring.
2862 */
2863 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2864 ep_index, stream_id, td, &deq_state);
2865
2866 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2867 return;
2868
2869 /* HW with the reset endpoint quirk will use the saved dequeue state to
2870 * issue a configure endpoint command later.
2871 */
2872 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2873 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874 "Queueing new dequeue state");
2875 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2876 ep_index, &deq_state);
2877 } else {
2878 /* Better hope no one uses the input context between now and the
2879 * reset endpoint completion!
2880 * XXX: No idea how this hardware will react when stream rings
2881 * are enabled.
2882 */
2883 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2884 "Setting up input context for "
2885 "configure endpoint command");
2886 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2887 ep_index, &deq_state);
2888 }
2889 }
2890
2891 /* Called when clearing halted device. The core should have sent the control
2892 * message to clear the device halt condition. The host side of the halt should
2893 * already be cleared with a reset endpoint command issued when the STALL tx
2894 * event was received.
2895 *
2896 * Context: in_interrupt
2897 */
2898
2899 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2900 struct usb_host_endpoint *ep)
2901 {
2902 struct xhci_hcd *xhci;
2903
2904 xhci = hcd_to_xhci(hcd);
2905
2906 /*
2907 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2908 * The Reset Endpoint Command may only be issued to endpoints in the
2909 * Halted state. If software wishes reset the Data Toggle or Sequence
2910 * Number of an endpoint that isn't in the Halted state, then software
2911 * may issue a Configure Endpoint Command with the Drop and Add bits set
2912 * for the target endpoint. that is in the Stopped state.
2913 */
2914
2915 /* For now just print debug to follow the situation */
2916 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2917 ep->desc.bEndpointAddress);
2918 }
2919
2920 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2921 struct usb_device *udev, struct usb_host_endpoint *ep,
2922 unsigned int slot_id)
2923 {
2924 int ret;
2925 unsigned int ep_index;
2926 unsigned int ep_state;
2927
2928 if (!ep)
2929 return -EINVAL;
2930 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2931 if (ret <= 0)
2932 return -EINVAL;
2933 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2934 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2935 " descriptor for ep 0x%x does not support streams\n",
2936 ep->desc.bEndpointAddress);
2937 return -EINVAL;
2938 }
2939
2940 ep_index = xhci_get_endpoint_index(&ep->desc);
2941 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2942 if (ep_state & EP_HAS_STREAMS ||
2943 ep_state & EP_GETTING_STREAMS) {
2944 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2945 "already has streams set up.\n",
2946 ep->desc.bEndpointAddress);
2947 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2948 "dynamic stream context array reallocation.\n");
2949 return -EINVAL;
2950 }
2951 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2952 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2953 "endpoint 0x%x; URBs are pending.\n",
2954 ep->desc.bEndpointAddress);
2955 return -EINVAL;
2956 }
2957 return 0;
2958 }
2959
2960 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2961 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2962 {
2963 unsigned int max_streams;
2964
2965 /* The stream context array size must be a power of two */
2966 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2967 /*
2968 * Find out how many primary stream array entries the host controller
2969 * supports. Later we may use secondary stream arrays (similar to 2nd
2970 * level page entries), but that's an optional feature for xHCI host
2971 * controllers. xHCs must support at least 4 stream IDs.
2972 */
2973 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2974 if (*num_stream_ctxs > max_streams) {
2975 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2976 max_streams);
2977 *num_stream_ctxs = max_streams;
2978 *num_streams = max_streams;
2979 }
2980 }
2981
2982 /* Returns an error code if one of the endpoint already has streams.
2983 * This does not change any data structures, it only checks and gathers
2984 * information.
2985 */
2986 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2987 struct usb_device *udev,
2988 struct usb_host_endpoint **eps, unsigned int num_eps,
2989 unsigned int *num_streams, u32 *changed_ep_bitmask)
2990 {
2991 unsigned int max_streams;
2992 unsigned int endpoint_flag;
2993 int i;
2994 int ret;
2995
2996 for (i = 0; i < num_eps; i++) {
2997 ret = xhci_check_streams_endpoint(xhci, udev,
2998 eps[i], udev->slot_id);
2999 if (ret < 0)
3000 return ret;
3001
3002 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3003 if (max_streams < (*num_streams - 1)) {
3004 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3005 eps[i]->desc.bEndpointAddress,
3006 max_streams);
3007 *num_streams = max_streams+1;
3008 }
3009
3010 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3011 if (*changed_ep_bitmask & endpoint_flag)
3012 return -EINVAL;
3013 *changed_ep_bitmask |= endpoint_flag;
3014 }
3015 return 0;
3016 }
3017
3018 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3019 struct usb_device *udev,
3020 struct usb_host_endpoint **eps, unsigned int num_eps)
3021 {
3022 u32 changed_ep_bitmask = 0;
3023 unsigned int slot_id;
3024 unsigned int ep_index;
3025 unsigned int ep_state;
3026 int i;
3027
3028 slot_id = udev->slot_id;
3029 if (!xhci->devs[slot_id])
3030 return 0;
3031
3032 for (i = 0; i < num_eps; i++) {
3033 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3034 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3035 /* Are streams already being freed for the endpoint? */
3036 if (ep_state & EP_GETTING_NO_STREAMS) {
3037 xhci_warn(xhci, "WARN Can't disable streams for "
3038 "endpoint 0x%x, "
3039 "streams are being disabled already\n",
3040 eps[i]->desc.bEndpointAddress);
3041 return 0;
3042 }
3043 /* Are there actually any streams to free? */
3044 if (!(ep_state & EP_HAS_STREAMS) &&
3045 !(ep_state & EP_GETTING_STREAMS)) {
3046 xhci_warn(xhci, "WARN Can't disable streams for "
3047 "endpoint 0x%x, "
3048 "streams are already disabled!\n",
3049 eps[i]->desc.bEndpointAddress);
3050 xhci_warn(xhci, "WARN xhci_free_streams() called "
3051 "with non-streams endpoint\n");
3052 return 0;
3053 }
3054 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3055 }
3056 return changed_ep_bitmask;
3057 }
3058
3059 /*
3060 * The USB device drivers use this function (through the HCD interface in USB
3061 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3062 * coordinate mass storage command queueing across multiple endpoints (basically
3063 * a stream ID == a task ID).
3064 *
3065 * Setting up streams involves allocating the same size stream context array
3066 * for each endpoint and issuing a configure endpoint command for all endpoints.
3067 *
3068 * Don't allow the call to succeed if one endpoint only supports one stream
3069 * (which means it doesn't support streams at all).
3070 *
3071 * Drivers may get less stream IDs than they asked for, if the host controller
3072 * hardware or endpoints claim they can't support the number of requested
3073 * stream IDs.
3074 */
3075 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3076 struct usb_host_endpoint **eps, unsigned int num_eps,
3077 unsigned int num_streams, gfp_t mem_flags)
3078 {
3079 int i, ret;
3080 struct xhci_hcd *xhci;
3081 struct xhci_virt_device *vdev;
3082 struct xhci_command *config_cmd;
3083 struct xhci_input_control_ctx *ctrl_ctx;
3084 unsigned int ep_index;
3085 unsigned int num_stream_ctxs;
3086 unsigned int max_packet;
3087 unsigned long flags;
3088 u32 changed_ep_bitmask = 0;
3089
3090 if (!eps)
3091 return -EINVAL;
3092
3093 /* Add one to the number of streams requested to account for
3094 * stream 0 that is reserved for xHCI usage.
3095 */
3096 num_streams += 1;
3097 xhci = hcd_to_xhci(hcd);
3098 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3099 num_streams);
3100
3101 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3102 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3103 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3104 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3105 return -ENOSYS;
3106 }
3107
3108 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3109 if (!config_cmd)
3110 return -ENOMEM;
3111
3112 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3113 if (!ctrl_ctx) {
3114 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3115 __func__);
3116 xhci_free_command(xhci, config_cmd);
3117 return -ENOMEM;
3118 }
3119
3120 /* Check to make sure all endpoints are not already configured for
3121 * streams. While we're at it, find the maximum number of streams that
3122 * all the endpoints will support and check for duplicate endpoints.
3123 */
3124 spin_lock_irqsave(&xhci->lock, flags);
3125 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3126 num_eps, &num_streams, &changed_ep_bitmask);
3127 if (ret < 0) {
3128 xhci_free_command(xhci, config_cmd);
3129 spin_unlock_irqrestore(&xhci->lock, flags);
3130 return ret;
3131 }
3132 if (num_streams <= 1) {
3133 xhci_warn(xhci, "WARN: endpoints can't handle "
3134 "more than one stream.\n");
3135 xhci_free_command(xhci, config_cmd);
3136 spin_unlock_irqrestore(&xhci->lock, flags);
3137 return -EINVAL;
3138 }
3139 vdev = xhci->devs[udev->slot_id];
3140 /* Mark each endpoint as being in transition, so
3141 * xhci_urb_enqueue() will reject all URBs.
3142 */
3143 for (i = 0; i < num_eps; i++) {
3144 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3145 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3146 }
3147 spin_unlock_irqrestore(&xhci->lock, flags);
3148
3149 /* Setup internal data structures and allocate HW data structures for
3150 * streams (but don't install the HW structures in the input context
3151 * until we're sure all memory allocation succeeded).
3152 */
3153 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3154 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3155 num_stream_ctxs, num_streams);
3156
3157 for (i = 0; i < num_eps; i++) {
3158 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3159 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3160 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3161 num_stream_ctxs,
3162 num_streams,
3163 max_packet, mem_flags);
3164 if (!vdev->eps[ep_index].stream_info)
3165 goto cleanup;
3166 /* Set maxPstreams in endpoint context and update deq ptr to
3167 * point to stream context array. FIXME
3168 */
3169 }
3170
3171 /* Set up the input context for a configure endpoint command. */
3172 for (i = 0; i < num_eps; i++) {
3173 struct xhci_ep_ctx *ep_ctx;
3174
3175 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3176 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3177
3178 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3179 vdev->out_ctx, ep_index);
3180 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3181 vdev->eps[ep_index].stream_info);
3182 }
3183 /* Tell the HW to drop its old copy of the endpoint context info
3184 * and add the updated copy from the input context.
3185 */
3186 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3187 vdev->out_ctx, ctrl_ctx,
3188 changed_ep_bitmask, changed_ep_bitmask);
3189
3190 /* Issue and wait for the configure endpoint command */
3191 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3192 false, false);
3193
3194 /* xHC rejected the configure endpoint command for some reason, so we
3195 * leave the old ring intact and free our internal streams data
3196 * structure.
3197 */
3198 if (ret < 0)
3199 goto cleanup;
3200
3201 spin_lock_irqsave(&xhci->lock, flags);
3202 for (i = 0; i < num_eps; i++) {
3203 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3205 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3206 udev->slot_id, ep_index);
3207 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3208 }
3209 xhci_free_command(xhci, config_cmd);
3210 spin_unlock_irqrestore(&xhci->lock, flags);
3211
3212 /* Subtract 1 for stream 0, which drivers can't use */
3213 return num_streams - 1;
3214
3215 cleanup:
3216 /* If it didn't work, free the streams! */
3217 for (i = 0; i < num_eps; i++) {
3218 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3220 vdev->eps[ep_index].stream_info = NULL;
3221 /* FIXME Unset maxPstreams in endpoint context and
3222 * update deq ptr to point to normal string ring.
3223 */
3224 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3225 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3226 xhci_endpoint_zero(xhci, vdev, eps[i]);
3227 }
3228 xhci_free_command(xhci, config_cmd);
3229 return -ENOMEM;
3230 }
3231
3232 /* Transition the endpoint from using streams to being a "normal" endpoint
3233 * without streams.
3234 *
3235 * Modify the endpoint context state, submit a configure endpoint command,
3236 * and free all endpoint rings for streams if that completes successfully.
3237 */
3238 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3239 struct usb_host_endpoint **eps, unsigned int num_eps,
3240 gfp_t mem_flags)
3241 {
3242 int i, ret;
3243 struct xhci_hcd *xhci;
3244 struct xhci_virt_device *vdev;
3245 struct xhci_command *command;
3246 struct xhci_input_control_ctx *ctrl_ctx;
3247 unsigned int ep_index;
3248 unsigned long flags;
3249 u32 changed_ep_bitmask;
3250
3251 xhci = hcd_to_xhci(hcd);
3252 vdev = xhci->devs[udev->slot_id];
3253
3254 /* Set up a configure endpoint command to remove the streams rings */
3255 spin_lock_irqsave(&xhci->lock, flags);
3256 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3257 udev, eps, num_eps);
3258 if (changed_ep_bitmask == 0) {
3259 spin_unlock_irqrestore(&xhci->lock, flags);
3260 return -EINVAL;
3261 }
3262
3263 /* Use the xhci_command structure from the first endpoint. We may have
3264 * allocated too many, but the driver may call xhci_free_streams() for
3265 * each endpoint it grouped into one call to xhci_alloc_streams().
3266 */
3267 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3268 command = vdev->eps[ep_index].stream_info->free_streams_command;
3269 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3270 if (!ctrl_ctx) {
3271 spin_unlock_irqrestore(&xhci->lock, flags);
3272 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3273 __func__);
3274 return -EINVAL;
3275 }
3276
3277 for (i = 0; i < num_eps; i++) {
3278 struct xhci_ep_ctx *ep_ctx;
3279
3280 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3281 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3282 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3283 EP_GETTING_NO_STREAMS;
3284
3285 xhci_endpoint_copy(xhci, command->in_ctx,
3286 vdev->out_ctx, ep_index);
3287 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3288 &vdev->eps[ep_index]);
3289 }
3290 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3291 vdev->out_ctx, ctrl_ctx,
3292 changed_ep_bitmask, changed_ep_bitmask);
3293 spin_unlock_irqrestore(&xhci->lock, flags);
3294
3295 /* Issue and wait for the configure endpoint command,
3296 * which must succeed.
3297 */
3298 ret = xhci_configure_endpoint(xhci, udev, command,
3299 false, true);
3300
3301 /* xHC rejected the configure endpoint command for some reason, so we
3302 * leave the streams rings intact.
3303 */
3304 if (ret < 0)
3305 return ret;
3306
3307 spin_lock_irqsave(&xhci->lock, flags);
3308 for (i = 0; i < num_eps; i++) {
3309 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3310 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3311 vdev->eps[ep_index].stream_info = NULL;
3312 /* FIXME Unset maxPstreams in endpoint context and
3313 * update deq ptr to point to normal string ring.
3314 */
3315 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3316 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3317 }
3318 spin_unlock_irqrestore(&xhci->lock, flags);
3319
3320 return 0;
3321 }
3322
3323 /*
3324 * Deletes endpoint resources for endpoints that were active before a Reset
3325 * Device command, or a Disable Slot command. The Reset Device command leaves
3326 * the control endpoint intact, whereas the Disable Slot command deletes it.
3327 *
3328 * Must be called with xhci->lock held.
3329 */
3330 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3331 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3332 {
3333 int i;
3334 unsigned int num_dropped_eps = 0;
3335 unsigned int drop_flags = 0;
3336
3337 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3338 if (virt_dev->eps[i].ring) {
3339 drop_flags |= 1 << i;
3340 num_dropped_eps++;
3341 }
3342 }
3343 xhci->num_active_eps -= num_dropped_eps;
3344 if (num_dropped_eps)
3345 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3346 "Dropped %u ep ctxs, flags = 0x%x, "
3347 "%u now active.",
3348 num_dropped_eps, drop_flags,
3349 xhci->num_active_eps);
3350 }
3351
3352 /*
3353 * This submits a Reset Device Command, which will set the device state to 0,
3354 * set the device address to 0, and disable all the endpoints except the default
3355 * control endpoint. The USB core should come back and call
3356 * xhci_address_device(), and then re-set up the configuration. If this is
3357 * called because of a usb_reset_and_verify_device(), then the old alternate
3358 * settings will be re-installed through the normal bandwidth allocation
3359 * functions.
3360 *
3361 * Wait for the Reset Device command to finish. Remove all structures
3362 * associated with the endpoints that were disabled. Clear the input device
3363 * structure? Reset the control endpoint 0 max packet size?
3364 *
3365 * If the virt_dev to be reset does not exist or does not match the udev,
3366 * it means the device is lost, possibly due to the xHC restore error and
3367 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3368 * re-allocate the device.
3369 */
3370 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3371 struct usb_device *udev)
3372 {
3373 int ret, i;
3374 unsigned long flags;
3375 struct xhci_hcd *xhci;
3376 unsigned int slot_id;
3377 struct xhci_virt_device *virt_dev;
3378 struct xhci_command *reset_device_cmd;
3379 int last_freed_endpoint;
3380 struct xhci_slot_ctx *slot_ctx;
3381 int old_active_eps = 0;
3382
3383 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3384 if (ret <= 0)
3385 return ret;
3386 xhci = hcd_to_xhci(hcd);
3387 slot_id = udev->slot_id;
3388 virt_dev = xhci->devs[slot_id];
3389 if (!virt_dev) {
3390 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3391 "not exist. Re-allocate the device\n", slot_id);
3392 ret = xhci_alloc_dev(hcd, udev);
3393 if (ret == 1)
3394 return 0;
3395 else
3396 return -EINVAL;
3397 }
3398
3399 if (virt_dev->tt_info)
3400 old_active_eps = virt_dev->tt_info->active_eps;
3401
3402 if (virt_dev->udev != udev) {
3403 /* If the virt_dev and the udev does not match, this virt_dev
3404 * may belong to another udev.
3405 * Re-allocate the device.
3406 */
3407 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3408 "not match the udev. Re-allocate the device\n",
3409 slot_id);
3410 ret = xhci_alloc_dev(hcd, udev);
3411 if (ret == 1)
3412 return 0;
3413 else
3414 return -EINVAL;
3415 }
3416
3417 /* If device is not setup, there is no point in resetting it */
3418 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3419 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3420 SLOT_STATE_DISABLED)
3421 return 0;
3422
3423 trace_xhci_discover_or_reset_device(slot_ctx);
3424
3425 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3426 /* Allocate the command structure that holds the struct completion.
3427 * Assume we're in process context, since the normal device reset
3428 * process has to wait for the device anyway. Storage devices are
3429 * reset as part of error handling, so use GFP_NOIO instead of
3430 * GFP_KERNEL.
3431 */
3432 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3433 if (!reset_device_cmd) {
3434 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3435 return -ENOMEM;
3436 }
3437
3438 /* Attempt to submit the Reset Device command to the command ring */
3439 spin_lock_irqsave(&xhci->lock, flags);
3440
3441 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3442 if (ret) {
3443 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3444 spin_unlock_irqrestore(&xhci->lock, flags);
3445 goto command_cleanup;
3446 }
3447 xhci_ring_cmd_db(xhci);
3448 spin_unlock_irqrestore(&xhci->lock, flags);
3449
3450 /* Wait for the Reset Device command to finish */
3451 wait_for_completion(reset_device_cmd->completion);
3452
3453 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3454 * unless we tried to reset a slot ID that wasn't enabled,
3455 * or the device wasn't in the addressed or configured state.
3456 */
3457 ret = reset_device_cmd->status;
3458 switch (ret) {
3459 case COMP_COMMAND_ABORTED:
3460 case COMP_COMMAND_RING_STOPPED:
3461 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3462 ret = -ETIME;
3463 goto command_cleanup;
3464 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3465 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3466 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3467 slot_id,
3468 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3469 xhci_dbg(xhci, "Not freeing device rings.\n");
3470 /* Don't treat this as an error. May change my mind later. */
3471 ret = 0;
3472 goto command_cleanup;
3473 case COMP_SUCCESS:
3474 xhci_dbg(xhci, "Successful reset device command.\n");
3475 break;
3476 default:
3477 if (xhci_is_vendor_info_code(xhci, ret))
3478 break;
3479 xhci_warn(xhci, "Unknown completion code %u for "
3480 "reset device command.\n", ret);
3481 ret = -EINVAL;
3482 goto command_cleanup;
3483 }
3484
3485 /* Free up host controller endpoint resources */
3486 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3487 spin_lock_irqsave(&xhci->lock, flags);
3488 /* Don't delete the default control endpoint resources */
3489 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3490 spin_unlock_irqrestore(&xhci->lock, flags);
3491 }
3492
3493 /* Everything but endpoint 0 is disabled, so free the rings. */
3494 last_freed_endpoint = 1;
3495 for (i = 1; i < 31; i++) {
3496 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3497
3498 if (ep->ep_state & EP_HAS_STREAMS) {
3499 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3500 xhci_get_endpoint_address(i));
3501 xhci_free_stream_info(xhci, ep->stream_info);
3502 ep->stream_info = NULL;
3503 ep->ep_state &= ~EP_HAS_STREAMS;
3504 }
3505
3506 if (ep->ring) {
3507 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3508 xhci_free_endpoint_ring(xhci, virt_dev, i);
3509 last_freed_endpoint = i;
3510 }
3511 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3512 xhci_drop_ep_from_interval_table(xhci,
3513 &virt_dev->eps[i].bw_info,
3514 virt_dev->bw_table,
3515 udev,
3516 &virt_dev->eps[i],
3517 virt_dev->tt_info);
3518 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3519 }
3520 /* If necessary, update the number of active TTs on this root port */
3521 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3522 ret = 0;
3523
3524 command_cleanup:
3525 xhci_free_command(xhci, reset_device_cmd);
3526 return ret;
3527 }
3528
3529 /*
3530 * At this point, the struct usb_device is about to go away, the device has
3531 * disconnected, and all traffic has been stopped and the endpoints have been
3532 * disabled. Free any HC data structures associated with that device.
3533 */
3534 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3535 {
3536 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3537 struct xhci_virt_device *virt_dev;
3538 struct xhci_slot_ctx *slot_ctx;
3539 int i, ret;
3540
3541 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3542
3543 #ifndef CONFIG_USB_DEFAULT_PERSIST
3544 /*
3545 * We called pm_runtime_get_noresume when the device was attached.
3546 * Decrement the counter here to allow controller to runtime suspend
3547 * if no devices remain.
3548 */
3549 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3550 pm_runtime_put_noidle(hcd->self.controller);
3551 #endif
3552
3553 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3554 /* If the host is halted due to driver unload, we still need to free the
3555 * device.
3556 */
3557 if (ret <= 0 && ret != -ENODEV)
3558 return;
3559
3560 virt_dev = xhci->devs[udev->slot_id];
3561 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3562 trace_xhci_free_dev(slot_ctx);
3563
3564 /* Stop any wayward timer functions (which may grab the lock) */
3565 for (i = 0; i < 31; i++) {
3566 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3567 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3568 }
3569
3570 ret = xhci_disable_slot(xhci, udev->slot_id);
3571 if (ret)
3572 xhci_free_virt_device(xhci, udev->slot_id);
3573 }
3574
3575 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3576 {
3577 struct xhci_command *command;
3578 unsigned long flags;
3579 u32 state;
3580 int ret = 0;
3581
3582 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3583 if (!command)
3584 return -ENOMEM;
3585
3586 spin_lock_irqsave(&xhci->lock, flags);
3587 /* Don't disable the slot if the host controller is dead. */
3588 state = readl(&xhci->op_regs->status);
3589 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3590 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3591 spin_unlock_irqrestore(&xhci->lock, flags);
3592 kfree(command);
3593 return -ENODEV;
3594 }
3595
3596 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3597 slot_id);
3598 if (ret) {
3599 spin_unlock_irqrestore(&xhci->lock, flags);
3600 kfree(command);
3601 return ret;
3602 }
3603 xhci_ring_cmd_db(xhci);
3604 spin_unlock_irqrestore(&xhci->lock, flags);
3605 return ret;
3606 }
3607
3608 /*
3609 * Checks if we have enough host controller resources for the default control
3610 * endpoint.
3611 *
3612 * Must be called with xhci->lock held.
3613 */
3614 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3615 {
3616 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3617 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3618 "Not enough ep ctxs: "
3619 "%u active, need to add 1, limit is %u.",
3620 xhci->num_active_eps, xhci->limit_active_eps);
3621 return -ENOMEM;
3622 }
3623 xhci->num_active_eps += 1;
3624 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3625 "Adding 1 ep ctx, %u now active.",
3626 xhci->num_active_eps);
3627 return 0;
3628 }
3629
3630
3631 /*
3632 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3633 * timed out, or allocating memory failed. Returns 1 on success.
3634 */
3635 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3636 {
3637 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3638 struct xhci_virt_device *vdev;
3639 struct xhci_slot_ctx *slot_ctx;
3640 unsigned long flags;
3641 int ret, slot_id;
3642 struct xhci_command *command;
3643
3644 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3645 if (!command)
3646 return 0;
3647
3648 spin_lock_irqsave(&xhci->lock, flags);
3649 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3650 if (ret) {
3651 spin_unlock_irqrestore(&xhci->lock, flags);
3652 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3653 xhci_free_command(xhci, command);
3654 return 0;
3655 }
3656 xhci_ring_cmd_db(xhci);
3657 spin_unlock_irqrestore(&xhci->lock, flags);
3658
3659 wait_for_completion(command->completion);
3660 slot_id = command->slot_id;
3661
3662 if (!slot_id || command->status != COMP_SUCCESS) {
3663 xhci_err(xhci, "Error while assigning device slot ID\n");
3664 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3665 HCS_MAX_SLOTS(
3666 readl(&xhci->cap_regs->hcs_params1)));
3667 xhci_free_command(xhci, command);
3668 return 0;
3669 }
3670
3671 xhci_free_command(xhci, command);
3672
3673 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3674 spin_lock_irqsave(&xhci->lock, flags);
3675 ret = xhci_reserve_host_control_ep_resources(xhci);
3676 if (ret) {
3677 spin_unlock_irqrestore(&xhci->lock, flags);
3678 xhci_warn(xhci, "Not enough host resources, "
3679 "active endpoint contexts = %u\n",
3680 xhci->num_active_eps);
3681 goto disable_slot;
3682 }
3683 spin_unlock_irqrestore(&xhci->lock, flags);
3684 }
3685 /* Use GFP_NOIO, since this function can be called from
3686 * xhci_discover_or_reset_device(), which may be called as part of
3687 * mass storage driver error handling.
3688 */
3689 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3690 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3691 goto disable_slot;
3692 }
3693 vdev = xhci->devs[slot_id];
3694 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3695 trace_xhci_alloc_dev(slot_ctx);
3696
3697 udev->slot_id = slot_id;
3698
3699 xhci_debugfs_create_slot(xhci, slot_id);
3700
3701 #ifndef CONFIG_USB_DEFAULT_PERSIST
3702 /*
3703 * If resetting upon resume, we can't put the controller into runtime
3704 * suspend if there is a device attached.
3705 */
3706 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3707 pm_runtime_get_noresume(hcd->self.controller);
3708 #endif
3709
3710 /* Is this a LS or FS device under a HS hub? */
3711 /* Hub or peripherial? */
3712 return 1;
3713
3714 disable_slot:
3715 ret = xhci_disable_slot(xhci, udev->slot_id);
3716 if (ret)
3717 xhci_free_virt_device(xhci, udev->slot_id);
3718
3719 return 0;
3720 }
3721
3722 /*
3723 * Issue an Address Device command and optionally send a corresponding
3724 * SetAddress request to the device.
3725 */
3726 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3727 enum xhci_setup_dev setup)
3728 {
3729 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3730 unsigned long flags;
3731 struct xhci_virt_device *virt_dev;
3732 int ret = 0;
3733 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3734 struct xhci_slot_ctx *slot_ctx;
3735 struct xhci_input_control_ctx *ctrl_ctx;
3736 u64 temp_64;
3737 struct xhci_command *command = NULL;
3738
3739 mutex_lock(&xhci->mutex);
3740
3741 if (xhci->xhc_state) { /* dying, removing or halted */
3742 ret = -ESHUTDOWN;
3743 goto out;
3744 }
3745
3746 if (!udev->slot_id) {
3747 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3748 "Bad Slot ID %d", udev->slot_id);
3749 ret = -EINVAL;
3750 goto out;
3751 }
3752
3753 virt_dev = xhci->devs[udev->slot_id];
3754
3755 if (WARN_ON(!virt_dev)) {
3756 /*
3757 * In plug/unplug torture test with an NEC controller,
3758 * a zero-dereference was observed once due to virt_dev = 0.
3759 * Print useful debug rather than crash if it is observed again!
3760 */
3761 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3762 udev->slot_id);
3763 ret = -EINVAL;
3764 goto out;
3765 }
3766 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3767 trace_xhci_setup_device_slot(slot_ctx);
3768
3769 if (setup == SETUP_CONTEXT_ONLY) {
3770 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3771 SLOT_STATE_DEFAULT) {
3772 xhci_dbg(xhci, "Slot already in default state\n");
3773 goto out;
3774 }
3775 }
3776
3777 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3778 if (!command) {
3779 ret = -ENOMEM;
3780 goto out;
3781 }
3782
3783 command->in_ctx = virt_dev->in_ctx;
3784
3785 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3786 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3787 if (!ctrl_ctx) {
3788 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3789 __func__);
3790 ret = -EINVAL;
3791 goto out;
3792 }
3793 /*
3794 * If this is the first Set Address since device plug-in or
3795 * virt_device realloaction after a resume with an xHCI power loss,
3796 * then set up the slot context.
3797 */
3798 if (!slot_ctx->dev_info)
3799 xhci_setup_addressable_virt_dev(xhci, udev);
3800 /* Otherwise, update the control endpoint ring enqueue pointer. */
3801 else
3802 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3803 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3804 ctrl_ctx->drop_flags = 0;
3805
3806 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3807 le32_to_cpu(slot_ctx->dev_info) >> 27);
3808
3809 spin_lock_irqsave(&xhci->lock, flags);
3810 trace_xhci_setup_device(virt_dev);
3811 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3812 udev->slot_id, setup);
3813 if (ret) {
3814 spin_unlock_irqrestore(&xhci->lock, flags);
3815 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3816 "FIXME: allocate a command ring segment");
3817 goto out;
3818 }
3819 xhci_ring_cmd_db(xhci);
3820 spin_unlock_irqrestore(&xhci->lock, flags);
3821
3822 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3823 wait_for_completion(command->completion);
3824
3825 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3826 * the SetAddress() "recovery interval" required by USB and aborting the
3827 * command on a timeout.
3828 */
3829 switch (command->status) {
3830 case COMP_COMMAND_ABORTED:
3831 case COMP_COMMAND_RING_STOPPED:
3832 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3833 ret = -ETIME;
3834 break;
3835 case COMP_CONTEXT_STATE_ERROR:
3836 case COMP_SLOT_NOT_ENABLED_ERROR:
3837 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3838 act, udev->slot_id);
3839 ret = -EINVAL;
3840 break;
3841 case COMP_USB_TRANSACTION_ERROR:
3842 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3843
3844 mutex_unlock(&xhci->mutex);
3845 ret = xhci_disable_slot(xhci, udev->slot_id);
3846 if (!ret)
3847 xhci_alloc_dev(hcd, udev);
3848 kfree(command->completion);
3849 kfree(command);
3850 return -EPROTO;
3851 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3852 dev_warn(&udev->dev,
3853 "ERROR: Incompatible device for setup %s command\n", act);
3854 ret = -ENODEV;
3855 break;
3856 case COMP_SUCCESS:
3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 "Successful setup %s command", act);
3859 break;
3860 default:
3861 xhci_err(xhci,
3862 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3863 act, command->status);
3864 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3865 ret = -EINVAL;
3866 break;
3867 }
3868 if (ret)
3869 goto out;
3870 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3871 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3872 "Op regs DCBAA ptr = %#016llx", temp_64);
3873 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3874 "Slot ID %d dcbaa entry @%p = %#016llx",
3875 udev->slot_id,
3876 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3877 (unsigned long long)
3878 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3879 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3880 "Output Context DMA address = %#08llx",
3881 (unsigned long long)virt_dev->out_ctx->dma);
3882 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3883 le32_to_cpu(slot_ctx->dev_info) >> 27);
3884 /*
3885 * USB core uses address 1 for the roothubs, so we add one to the
3886 * address given back to us by the HC.
3887 */
3888 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3889 le32_to_cpu(slot_ctx->dev_info) >> 27);
3890 /* Zero the input context control for later use */
3891 ctrl_ctx->add_flags = 0;
3892 ctrl_ctx->drop_flags = 0;
3893
3894 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3895 "Internal device address = %d",
3896 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3897 out:
3898 mutex_unlock(&xhci->mutex);
3899 if (command) {
3900 kfree(command->completion);
3901 kfree(command);
3902 }
3903 return ret;
3904 }
3905
3906 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3907 {
3908 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3909 }
3910
3911 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3912 {
3913 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3914 }
3915
3916 /*
3917 * Transfer the port index into real index in the HW port status
3918 * registers. Caculate offset between the port's PORTSC register
3919 * and port status base. Divide the number of per port register
3920 * to get the real index. The raw port number bases 1.
3921 */
3922 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3923 {
3924 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3925 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3926 __le32 __iomem *addr;
3927 int raw_port;
3928
3929 if (hcd->speed < HCD_USB3)
3930 addr = xhci->usb2_ports[port1 - 1];
3931 else
3932 addr = xhci->usb3_ports[port1 - 1];
3933
3934 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3935 return raw_port;
3936 }
3937
3938 /*
3939 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3940 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3941 */
3942 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3943 struct usb_device *udev, u16 max_exit_latency)
3944 {
3945 struct xhci_virt_device *virt_dev;
3946 struct xhci_command *command;
3947 struct xhci_input_control_ctx *ctrl_ctx;
3948 struct xhci_slot_ctx *slot_ctx;
3949 unsigned long flags;
3950 int ret;
3951
3952 spin_lock_irqsave(&xhci->lock, flags);
3953
3954 virt_dev = xhci->devs[udev->slot_id];
3955
3956 /*
3957 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3958 * xHC was re-initialized. Exit latency will be set later after
3959 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3960 */
3961
3962 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3963 spin_unlock_irqrestore(&xhci->lock, flags);
3964 return 0;
3965 }
3966
3967 /* Attempt to issue an Evaluate Context command to change the MEL. */
3968 command = xhci->lpm_command;
3969 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3970 if (!ctrl_ctx) {
3971 spin_unlock_irqrestore(&xhci->lock, flags);
3972 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3973 __func__);
3974 return -ENOMEM;
3975 }
3976
3977 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3978 spin_unlock_irqrestore(&xhci->lock, flags);
3979
3980 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3981 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3982 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3983 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3984 slot_ctx->dev_state = 0;
3985
3986 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3987 "Set up evaluate context for LPM MEL change.");
3988
3989 /* Issue and wait for the evaluate context command. */
3990 ret = xhci_configure_endpoint(xhci, udev, command,
3991 true, true);
3992
3993 if (!ret) {
3994 spin_lock_irqsave(&xhci->lock, flags);
3995 virt_dev->current_mel = max_exit_latency;
3996 spin_unlock_irqrestore(&xhci->lock, flags);
3997 }
3998 return ret;
3999 }
4000
4001 #ifdef CONFIG_PM
4002
4003 /* BESL to HIRD Encoding array for USB2 LPM */
4004 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4005 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4006
4007 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4008 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4009 struct usb_device *udev)
4010 {
4011 int u2del, besl, besl_host;
4012 int besl_device = 0;
4013 u32 field;
4014
4015 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4016 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4017
4018 if (field & USB_BESL_SUPPORT) {
4019 for (besl_host = 0; besl_host < 16; besl_host++) {
4020 if (xhci_besl_encoding[besl_host] >= u2del)
4021 break;
4022 }
4023 /* Use baseline BESL value as default */
4024 if (field & USB_BESL_BASELINE_VALID)
4025 besl_device = USB_GET_BESL_BASELINE(field);
4026 else if (field & USB_BESL_DEEP_VALID)
4027 besl_device = USB_GET_BESL_DEEP(field);
4028 } else {
4029 if (u2del <= 50)
4030 besl_host = 0;
4031 else
4032 besl_host = (u2del - 51) / 75 + 1;
4033 }
4034
4035 besl = besl_host + besl_device;
4036 if (besl > 15)
4037 besl = 15;
4038
4039 return besl;
4040 }
4041
4042 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4043 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4044 {
4045 u32 field;
4046 int l1;
4047 int besld = 0;
4048 int hirdm = 0;
4049
4050 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4051
4052 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4053 l1 = udev->l1_params.timeout / 256;
4054
4055 /* device has preferred BESLD */
4056 if (field & USB_BESL_DEEP_VALID) {
4057 besld = USB_GET_BESL_DEEP(field);
4058 hirdm = 1;
4059 }
4060
4061 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4062 }
4063
4064 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4065 struct usb_device *udev, int enable)
4066 {
4067 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4068 __le32 __iomem **port_array;
4069 __le32 __iomem *pm_addr, *hlpm_addr;
4070 u32 pm_val, hlpm_val, field;
4071 unsigned int port_num;
4072 unsigned long flags;
4073 int hird, exit_latency;
4074 int ret;
4075
4076 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4077 !udev->lpm_capable)
4078 return -EPERM;
4079
4080 if (!udev->parent || udev->parent->parent ||
4081 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4082 return -EPERM;
4083
4084 if (udev->usb2_hw_lpm_capable != 1)
4085 return -EPERM;
4086
4087 spin_lock_irqsave(&xhci->lock, flags);
4088
4089 port_array = xhci->usb2_ports;
4090 port_num = udev->portnum - 1;
4091 pm_addr = port_array[port_num] + PORTPMSC;
4092 pm_val = readl(pm_addr);
4093 hlpm_addr = port_array[port_num] + PORTHLPMC;
4094 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4095
4096 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4097 enable ? "enable" : "disable", port_num + 1);
4098
4099 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4100 /* Host supports BESL timeout instead of HIRD */
4101 if (udev->usb2_hw_lpm_besl_capable) {
4102 /* if device doesn't have a preferred BESL value use a
4103 * default one which works with mixed HIRD and BESL
4104 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4105 */
4106 if ((field & USB_BESL_SUPPORT) &&
4107 (field & USB_BESL_BASELINE_VALID))
4108 hird = USB_GET_BESL_BASELINE(field);
4109 else
4110 hird = udev->l1_params.besl;
4111
4112 exit_latency = xhci_besl_encoding[hird];
4113 spin_unlock_irqrestore(&xhci->lock, flags);
4114
4115 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4116 * input context for link powermanagement evaluate
4117 * context commands. It is protected by hcd->bandwidth
4118 * mutex and is shared by all devices. We need to set
4119 * the max ext latency in USB 2 BESL LPM as well, so
4120 * use the same mutex and xhci_change_max_exit_latency()
4121 */
4122 mutex_lock(hcd->bandwidth_mutex);
4123 ret = xhci_change_max_exit_latency(xhci, udev,
4124 exit_latency);
4125 mutex_unlock(hcd->bandwidth_mutex);
4126
4127 if (ret < 0)
4128 return ret;
4129 spin_lock_irqsave(&xhci->lock, flags);
4130
4131 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4132 writel(hlpm_val, hlpm_addr);
4133 /* flush write */
4134 readl(hlpm_addr);
4135 } else {
4136 hird = xhci_calculate_hird_besl(xhci, udev);
4137 }
4138
4139 pm_val &= ~PORT_HIRD_MASK;
4140 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4141 writel(pm_val, pm_addr);
4142 pm_val = readl(pm_addr);
4143 pm_val |= PORT_HLE;
4144 writel(pm_val, pm_addr);
4145 /* flush write */
4146 readl(pm_addr);
4147 } else {
4148 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4149 writel(pm_val, pm_addr);
4150 /* flush write */
4151 readl(pm_addr);
4152 if (udev->usb2_hw_lpm_besl_capable) {
4153 spin_unlock_irqrestore(&xhci->lock, flags);
4154 mutex_lock(hcd->bandwidth_mutex);
4155 xhci_change_max_exit_latency(xhci, udev, 0);
4156 mutex_unlock(hcd->bandwidth_mutex);
4157 return 0;
4158 }
4159 }
4160
4161 spin_unlock_irqrestore(&xhci->lock, flags);
4162 return 0;
4163 }
4164
4165 /* check if a usb2 port supports a given extened capability protocol
4166 * only USB2 ports extended protocol capability values are cached.
4167 * Return 1 if capability is supported
4168 */
4169 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4170 unsigned capability)
4171 {
4172 u32 port_offset, port_count;
4173 int i;
4174
4175 for (i = 0; i < xhci->num_ext_caps; i++) {
4176 if (xhci->ext_caps[i] & capability) {
4177 /* port offsets starts at 1 */
4178 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4179 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4180 if (port >= port_offset &&
4181 port < port_offset + port_count)
4182 return 1;
4183 }
4184 }
4185 return 0;
4186 }
4187
4188 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4189 {
4190 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4191 int portnum = udev->portnum - 1;
4192
4193 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4194 !udev->lpm_capable)
4195 return 0;
4196
4197 /* we only support lpm for non-hub device connected to root hub yet */
4198 if (!udev->parent || udev->parent->parent ||
4199 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4200 return 0;
4201
4202 if (xhci->hw_lpm_support == 1 &&
4203 xhci_check_usb2_port_capability(
4204 xhci, portnum, XHCI_HLC)) {
4205 udev->usb2_hw_lpm_capable = 1;
4206 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4207 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4208 if (xhci_check_usb2_port_capability(xhci, portnum,
4209 XHCI_BLC))
4210 udev->usb2_hw_lpm_besl_capable = 1;
4211 }
4212
4213 return 0;
4214 }
4215
4216 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4217
4218 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4219 static unsigned long long xhci_service_interval_to_ns(
4220 struct usb_endpoint_descriptor *desc)
4221 {
4222 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4223 }
4224
4225 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4226 enum usb3_link_state state)
4227 {
4228 unsigned long long sel;
4229 unsigned long long pel;
4230 unsigned int max_sel_pel;
4231 char *state_name;
4232
4233 switch (state) {
4234 case USB3_LPM_U1:
4235 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4236 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4237 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4238 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4239 state_name = "U1";
4240 break;
4241 case USB3_LPM_U2:
4242 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4243 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4244 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4245 state_name = "U2";
4246 break;
4247 default:
4248 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4249 __func__);
4250 return USB3_LPM_DISABLED;
4251 }
4252
4253 if (sel <= max_sel_pel && pel <= max_sel_pel)
4254 return USB3_LPM_DEVICE_INITIATED;
4255
4256 if (sel > max_sel_pel)
4257 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4258 "due to long SEL %llu ms\n",
4259 state_name, sel);
4260 else
4261 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4262 "due to long PEL %llu ms\n",
4263 state_name, pel);
4264 return USB3_LPM_DISABLED;
4265 }
4266
4267 /* The U1 timeout should be the maximum of the following values:
4268 * - For control endpoints, U1 system exit latency (SEL) * 3
4269 * - For bulk endpoints, U1 SEL * 5
4270 * - For interrupt endpoints:
4271 * - Notification EPs, U1 SEL * 3
4272 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4273 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4274 */
4275 static unsigned long long xhci_calculate_intel_u1_timeout(
4276 struct usb_device *udev,
4277 struct usb_endpoint_descriptor *desc)
4278 {
4279 unsigned long long timeout_ns;
4280 int ep_type;
4281 int intr_type;
4282
4283 ep_type = usb_endpoint_type(desc);
4284 switch (ep_type) {
4285 case USB_ENDPOINT_XFER_CONTROL:
4286 timeout_ns = udev->u1_params.sel * 3;
4287 break;
4288 case USB_ENDPOINT_XFER_BULK:
4289 timeout_ns = udev->u1_params.sel * 5;
4290 break;
4291 case USB_ENDPOINT_XFER_INT:
4292 intr_type = usb_endpoint_interrupt_type(desc);
4293 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4294 timeout_ns = udev->u1_params.sel * 3;
4295 break;
4296 }
4297 /* Otherwise the calculation is the same as isoc eps */
4298 /* fall through */
4299 case USB_ENDPOINT_XFER_ISOC:
4300 timeout_ns = xhci_service_interval_to_ns(desc);
4301 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4302 if (timeout_ns < udev->u1_params.sel * 2)
4303 timeout_ns = udev->u1_params.sel * 2;
4304 break;
4305 default:
4306 return 0;
4307 }
4308
4309 return timeout_ns;
4310 }
4311
4312 /* Returns the hub-encoded U1 timeout value. */
4313 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4314 struct usb_device *udev,
4315 struct usb_endpoint_descriptor *desc)
4316 {
4317 unsigned long long timeout_ns;
4318
4319 if (xhci->quirks & XHCI_INTEL_HOST)
4320 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4321 else
4322 timeout_ns = udev->u1_params.sel;
4323
4324 /* The U1 timeout is encoded in 1us intervals.
4325 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4326 */
4327 if (timeout_ns == USB3_LPM_DISABLED)
4328 timeout_ns = 1;
4329 else
4330 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4331
4332 /* If the necessary timeout value is bigger than what we can set in the
4333 * USB 3.0 hub, we have to disable hub-initiated U1.
4334 */
4335 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4336 return timeout_ns;
4337 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4338 "due to long timeout %llu ms\n", timeout_ns);
4339 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4340 }
4341
4342 /* The U2 timeout should be the maximum of:
4343 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4344 * - largest bInterval of any active periodic endpoint (to avoid going
4345 * into lower power link states between intervals).
4346 * - the U2 Exit Latency of the device
4347 */
4348 static unsigned long long xhci_calculate_intel_u2_timeout(
4349 struct usb_device *udev,
4350 struct usb_endpoint_descriptor *desc)
4351 {
4352 unsigned long long timeout_ns;
4353 unsigned long long u2_del_ns;
4354
4355 timeout_ns = 10 * 1000 * 1000;
4356
4357 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4358 (xhci_service_interval_to_ns(desc) > timeout_ns))
4359 timeout_ns = xhci_service_interval_to_ns(desc);
4360
4361 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4362 if (u2_del_ns > timeout_ns)
4363 timeout_ns = u2_del_ns;
4364
4365 return timeout_ns;
4366 }
4367
4368 /* Returns the hub-encoded U2 timeout value. */
4369 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4370 struct usb_device *udev,
4371 struct usb_endpoint_descriptor *desc)
4372 {
4373 unsigned long long timeout_ns;
4374
4375 if (xhci->quirks & XHCI_INTEL_HOST)
4376 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4377 else
4378 timeout_ns = udev->u2_params.sel;
4379
4380 /* The U2 timeout is encoded in 256us intervals */
4381 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4382 /* If the necessary timeout value is bigger than what we can set in the
4383 * USB 3.0 hub, we have to disable hub-initiated U2.
4384 */
4385 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4386 return timeout_ns;
4387 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4388 "due to long timeout %llu ms\n", timeout_ns);
4389 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4390 }
4391
4392 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4393 struct usb_device *udev,
4394 struct usb_endpoint_descriptor *desc,
4395 enum usb3_link_state state,
4396 u16 *timeout)
4397 {
4398 if (state == USB3_LPM_U1)
4399 return xhci_calculate_u1_timeout(xhci, udev, desc);
4400 else if (state == USB3_LPM_U2)
4401 return xhci_calculate_u2_timeout(xhci, udev, desc);
4402
4403 return USB3_LPM_DISABLED;
4404 }
4405
4406 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4407 struct usb_device *udev,
4408 struct usb_endpoint_descriptor *desc,
4409 enum usb3_link_state state,
4410 u16 *timeout)
4411 {
4412 u16 alt_timeout;
4413
4414 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4415 desc, state, timeout);
4416
4417 /* If we found we can't enable hub-initiated LPM, or
4418 * the U1 or U2 exit latency was too high to allow
4419 * device-initiated LPM as well, just stop searching.
4420 */
4421 if (alt_timeout == USB3_LPM_DISABLED ||
4422 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4423 *timeout = alt_timeout;
4424 return -E2BIG;
4425 }
4426 if (alt_timeout > *timeout)
4427 *timeout = alt_timeout;
4428 return 0;
4429 }
4430
4431 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4432 struct usb_device *udev,
4433 struct usb_host_interface *alt,
4434 enum usb3_link_state state,
4435 u16 *timeout)
4436 {
4437 int j;
4438
4439 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4440 if (xhci_update_timeout_for_endpoint(xhci, udev,
4441 &alt->endpoint[j].desc, state, timeout))
4442 return -E2BIG;
4443 continue;
4444 }
4445 return 0;
4446 }
4447
4448 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4449 enum usb3_link_state state)
4450 {
4451 struct usb_device *parent;
4452 unsigned int num_hubs;
4453
4454 if (state == USB3_LPM_U2)
4455 return 0;
4456
4457 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4458 for (parent = udev->parent, num_hubs = 0; parent->parent;
4459 parent = parent->parent)
4460 num_hubs++;
4461
4462 if (num_hubs < 2)
4463 return 0;
4464
4465 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4466 " below second-tier hub.\n");
4467 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4468 "to decrease power consumption.\n");
4469 return -E2BIG;
4470 }
4471
4472 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4473 struct usb_device *udev,
4474 enum usb3_link_state state)
4475 {
4476 if (xhci->quirks & XHCI_INTEL_HOST)
4477 return xhci_check_intel_tier_policy(udev, state);
4478 else
4479 return 0;
4480 }
4481
4482 /* Returns the U1 or U2 timeout that should be enabled.
4483 * If the tier check or timeout setting functions return with a non-zero exit
4484 * code, that means the timeout value has been finalized and we shouldn't look
4485 * at any more endpoints.
4486 */
4487 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4488 struct usb_device *udev, enum usb3_link_state state)
4489 {
4490 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4491 struct usb_host_config *config;
4492 char *state_name;
4493 int i;
4494 u16 timeout = USB3_LPM_DISABLED;
4495
4496 if (state == USB3_LPM_U1)
4497 state_name = "U1";
4498 else if (state == USB3_LPM_U2)
4499 state_name = "U2";
4500 else {
4501 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4502 state);
4503 return timeout;
4504 }
4505
4506 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4507 return timeout;
4508
4509 /* Gather some information about the currently installed configuration
4510 * and alternate interface settings.
4511 */
4512 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4513 state, &timeout))
4514 return timeout;
4515
4516 config = udev->actconfig;
4517 if (!config)
4518 return timeout;
4519
4520 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4521 struct usb_driver *driver;
4522 struct usb_interface *intf = config->interface[i];
4523
4524 if (!intf)
4525 continue;
4526
4527 /* Check if any currently bound drivers want hub-initiated LPM
4528 * disabled.
4529 */
4530 if (intf->dev.driver) {
4531 driver = to_usb_driver(intf->dev.driver);
4532 if (driver && driver->disable_hub_initiated_lpm) {
4533 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4534 "at request of driver %s\n",
4535 state_name, driver->name);
4536 return xhci_get_timeout_no_hub_lpm(udev, state);
4537 }
4538 }
4539
4540 /* Not sure how this could happen... */
4541 if (!intf->cur_altsetting)
4542 continue;
4543
4544 if (xhci_update_timeout_for_interface(xhci, udev,
4545 intf->cur_altsetting,
4546 state, &timeout))
4547 return timeout;
4548 }
4549 return timeout;
4550 }
4551
4552 static int calculate_max_exit_latency(struct usb_device *udev,
4553 enum usb3_link_state state_changed,
4554 u16 hub_encoded_timeout)
4555 {
4556 unsigned long long u1_mel_us = 0;
4557 unsigned long long u2_mel_us = 0;
4558 unsigned long long mel_us = 0;
4559 bool disabling_u1;
4560 bool disabling_u2;
4561 bool enabling_u1;
4562 bool enabling_u2;
4563
4564 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4565 hub_encoded_timeout == USB3_LPM_DISABLED);
4566 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4567 hub_encoded_timeout == USB3_LPM_DISABLED);
4568
4569 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4570 hub_encoded_timeout != USB3_LPM_DISABLED);
4571 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4572 hub_encoded_timeout != USB3_LPM_DISABLED);
4573
4574 /* If U1 was already enabled and we're not disabling it,
4575 * or we're going to enable U1, account for the U1 max exit latency.
4576 */
4577 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4578 enabling_u1)
4579 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4580 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4581 enabling_u2)
4582 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4583
4584 if (u1_mel_us > u2_mel_us)
4585 mel_us = u1_mel_us;
4586 else
4587 mel_us = u2_mel_us;
4588 /* xHCI host controller max exit latency field is only 16 bits wide. */
4589 if (mel_us > MAX_EXIT) {
4590 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4591 "is too big.\n", mel_us);
4592 return -E2BIG;
4593 }
4594 return mel_us;
4595 }
4596
4597 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4598 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4599 struct usb_device *udev, enum usb3_link_state state)
4600 {
4601 struct xhci_hcd *xhci;
4602 u16 hub_encoded_timeout;
4603 int mel;
4604 int ret;
4605
4606 xhci = hcd_to_xhci(hcd);
4607 /* The LPM timeout values are pretty host-controller specific, so don't
4608 * enable hub-initiated timeouts unless the vendor has provided
4609 * information about their timeout algorithm.
4610 */
4611 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4612 !xhci->devs[udev->slot_id])
4613 return USB3_LPM_DISABLED;
4614
4615 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4616 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4617 if (mel < 0) {
4618 /* Max Exit Latency is too big, disable LPM. */
4619 hub_encoded_timeout = USB3_LPM_DISABLED;
4620 mel = 0;
4621 }
4622
4623 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4624 if (ret)
4625 return ret;
4626 return hub_encoded_timeout;
4627 }
4628
4629 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4630 struct usb_device *udev, enum usb3_link_state state)
4631 {
4632 struct xhci_hcd *xhci;
4633 u16 mel;
4634
4635 xhci = hcd_to_xhci(hcd);
4636 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4637 !xhci->devs[udev->slot_id])
4638 return 0;
4639
4640 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4641 return xhci_change_max_exit_latency(xhci, udev, mel);
4642 }
4643 #else /* CONFIG_PM */
4644
4645 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4646 struct usb_device *udev, int enable)
4647 {
4648 return 0;
4649 }
4650
4651 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4652 {
4653 return 0;
4654 }
4655
4656 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4657 struct usb_device *udev, enum usb3_link_state state)
4658 {
4659 return USB3_LPM_DISABLED;
4660 }
4661
4662 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4663 struct usb_device *udev, enum usb3_link_state state)
4664 {
4665 return 0;
4666 }
4667 #endif /* CONFIG_PM */
4668
4669 /*-------------------------------------------------------------------------*/
4670
4671 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4672 * internal data structures for the device.
4673 */
4674 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4675 struct usb_tt *tt, gfp_t mem_flags)
4676 {
4677 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4678 struct xhci_virt_device *vdev;
4679 struct xhci_command *config_cmd;
4680 struct xhci_input_control_ctx *ctrl_ctx;
4681 struct xhci_slot_ctx *slot_ctx;
4682 unsigned long flags;
4683 unsigned think_time;
4684 int ret;
4685
4686 /* Ignore root hubs */
4687 if (!hdev->parent)
4688 return 0;
4689
4690 vdev = xhci->devs[hdev->slot_id];
4691 if (!vdev) {
4692 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4693 return -EINVAL;
4694 }
4695
4696 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4697 if (!config_cmd)
4698 return -ENOMEM;
4699
4700 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4701 if (!ctrl_ctx) {
4702 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4703 __func__);
4704 xhci_free_command(xhci, config_cmd);
4705 return -ENOMEM;
4706 }
4707
4708 spin_lock_irqsave(&xhci->lock, flags);
4709 if (hdev->speed == USB_SPEED_HIGH &&
4710 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4711 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4712 xhci_free_command(xhci, config_cmd);
4713 spin_unlock_irqrestore(&xhci->lock, flags);
4714 return -ENOMEM;
4715 }
4716
4717 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4718 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4719 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4720 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4721 /*
4722 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4723 * but it may be already set to 1 when setup an xHCI virtual
4724 * device, so clear it anyway.
4725 */
4726 if (tt->multi)
4727 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4728 else if (hdev->speed == USB_SPEED_FULL)
4729 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4730
4731 if (xhci->hci_version > 0x95) {
4732 xhci_dbg(xhci, "xHCI version %x needs hub "
4733 "TT think time and number of ports\n",
4734 (unsigned int) xhci->hci_version);
4735 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4736 /* Set TT think time - convert from ns to FS bit times.
4737 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4738 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4739 *
4740 * xHCI 1.0: this field shall be 0 if the device is not a
4741 * High-spped hub.
4742 */
4743 think_time = tt->think_time;
4744 if (think_time != 0)
4745 think_time = (think_time / 666) - 1;
4746 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4747 slot_ctx->tt_info |=
4748 cpu_to_le32(TT_THINK_TIME(think_time));
4749 } else {
4750 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4751 "TT think time or number of ports\n",
4752 (unsigned int) xhci->hci_version);
4753 }
4754 slot_ctx->dev_state = 0;
4755 spin_unlock_irqrestore(&xhci->lock, flags);
4756
4757 xhci_dbg(xhci, "Set up %s for hub device.\n",
4758 (xhci->hci_version > 0x95) ?
4759 "configure endpoint" : "evaluate context");
4760
4761 /* Issue and wait for the configure endpoint or
4762 * evaluate context command.
4763 */
4764 if (xhci->hci_version > 0x95)
4765 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4766 false, false);
4767 else
4768 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4769 true, false);
4770
4771 xhci_free_command(xhci, config_cmd);
4772 return ret;
4773 }
4774
4775 static int xhci_get_frame(struct usb_hcd *hcd)
4776 {
4777 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4778 /* EHCI mods by the periodic size. Why? */
4779 return readl(&xhci->run_regs->microframe_index) >> 3;
4780 }
4781
4782 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4783 {
4784 struct xhci_hcd *xhci;
4785 /*
4786 * TODO: Check with DWC3 clients for sysdev according to
4787 * quirks
4788 */
4789 struct device *dev = hcd->self.sysdev;
4790 int retval;
4791
4792 /* Accept arbitrarily long scatter-gather lists */
4793 hcd->self.sg_tablesize = ~0;
4794
4795 /* support to build packet from discontinuous buffers */
4796 hcd->self.no_sg_constraint = 1;
4797
4798 /* XHCI controllers don't stop the ep queue on short packets :| */
4799 hcd->self.no_stop_on_short = 1;
4800
4801 xhci = hcd_to_xhci(hcd);
4802
4803 if (usb_hcd_is_primary_hcd(hcd)) {
4804 xhci->main_hcd = hcd;
4805 /* Mark the first roothub as being USB 2.0.
4806 * The xHCI driver will register the USB 3.0 roothub.
4807 */
4808 hcd->speed = HCD_USB2;
4809 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4810 /*
4811 * USB 2.0 roothub under xHCI has an integrated TT,
4812 * (rate matching hub) as opposed to having an OHCI/UHCI
4813 * companion controller.
4814 */
4815 hcd->has_tt = 1;
4816 } else {
4817 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4818 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4819 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4820 hcd->speed = HCD_USB31;
4821 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4822 }
4823 /* xHCI private pointer was set in xhci_pci_probe for the second
4824 * registered roothub.
4825 */
4826 return 0;
4827 }
4828
4829 mutex_init(&xhci->mutex);
4830 xhci->cap_regs = hcd->regs;
4831 xhci->op_regs = hcd->regs +
4832 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4833 xhci->run_regs = hcd->regs +
4834 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4835 /* Cache read-only capability registers */
4836 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4837 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4838 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4839 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4840 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4841 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4842 if (xhci->hci_version > 0x100)
4843 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4844 xhci_print_registers(xhci);
4845
4846 xhci->quirks |= quirks;
4847
4848 get_quirks(dev, xhci);
4849
4850 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4851 * success event after a short transfer. This quirk will ignore such
4852 * spurious event.
4853 */
4854 if (xhci->hci_version > 0x96)
4855 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4856
4857 /* Make sure the HC is halted. */
4858 retval = xhci_halt(xhci);
4859 if (retval)
4860 return retval;
4861
4862 xhci_dbg(xhci, "Resetting HCD\n");
4863 /* Reset the internal HC memory state and registers. */
4864 retval = xhci_reset(xhci);
4865 if (retval)
4866 return retval;
4867 xhci_dbg(xhci, "Reset complete\n");
4868
4869 /*
4870 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4871 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4872 * address memory pointers actually. So, this driver clears the AC64
4873 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4874 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4875 */
4876 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4877 xhci->hcc_params &= ~BIT(0);
4878
4879 /* Set dma_mask and coherent_dma_mask to 64-bits,
4880 * if xHC supports 64-bit addressing */
4881 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4882 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4883 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4884 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4885 } else {
4886 /*
4887 * This is to avoid error in cases where a 32-bit USB
4888 * controller is used on a 64-bit capable system.
4889 */
4890 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4891 if (retval)
4892 return retval;
4893 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4894 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4895 }
4896
4897 xhci_dbg(xhci, "Calling HCD init\n");
4898 /* Initialize HCD and host controller data structures. */
4899 retval = xhci_init(hcd);
4900 if (retval)
4901 return retval;
4902 xhci_dbg(xhci, "Called HCD init\n");
4903
4904 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4905 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4906
4907 return 0;
4908 }
4909 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4910
4911 static const struct hc_driver xhci_hc_driver = {
4912 .description = "xhci-hcd",
4913 .product_desc = "xHCI Host Controller",
4914 .hcd_priv_size = sizeof(struct xhci_hcd),
4915
4916 /*
4917 * generic hardware linkage
4918 */
4919 .irq = xhci_irq,
4920 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4921
4922 /*
4923 * basic lifecycle operations
4924 */
4925 .reset = NULL, /* set in xhci_init_driver() */
4926 .start = xhci_run,
4927 .stop = xhci_stop,
4928 .shutdown = xhci_shutdown,
4929
4930 /*
4931 * managing i/o requests and associated device resources
4932 */
4933 .urb_enqueue = xhci_urb_enqueue,
4934 .urb_dequeue = xhci_urb_dequeue,
4935 .alloc_dev = xhci_alloc_dev,
4936 .free_dev = xhci_free_dev,
4937 .alloc_streams = xhci_alloc_streams,
4938 .free_streams = xhci_free_streams,
4939 .add_endpoint = xhci_add_endpoint,
4940 .drop_endpoint = xhci_drop_endpoint,
4941 .endpoint_reset = xhci_endpoint_reset,
4942 .check_bandwidth = xhci_check_bandwidth,
4943 .reset_bandwidth = xhci_reset_bandwidth,
4944 .address_device = xhci_address_device,
4945 .enable_device = xhci_enable_device,
4946 .update_hub_device = xhci_update_hub_device,
4947 .reset_device = xhci_discover_or_reset_device,
4948
4949 /*
4950 * scheduling support
4951 */
4952 .get_frame_number = xhci_get_frame,
4953
4954 /*
4955 * root hub support
4956 */
4957 .hub_control = xhci_hub_control,
4958 .hub_status_data = xhci_hub_status_data,
4959 .bus_suspend = xhci_bus_suspend,
4960 .bus_resume = xhci_bus_resume,
4961
4962 /*
4963 * call back when device connected and addressed
4964 */
4965 .update_device = xhci_update_device,
4966 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4967 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4968 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4969 .find_raw_port_number = xhci_find_raw_port_number,
4970 };
4971
4972 void xhci_init_driver(struct hc_driver *drv,
4973 const struct xhci_driver_overrides *over)
4974 {
4975 BUG_ON(!over);
4976
4977 /* Copy the generic table to drv then apply the overrides */
4978 *drv = xhci_hc_driver;
4979
4980 if (over) {
4981 drv->hcd_priv_size += over->extra_priv_size;
4982 if (over->reset)
4983 drv->reset = over->reset;
4984 if (over->start)
4985 drv->start = over->start;
4986 }
4987 }
4988 EXPORT_SYMBOL_GPL(xhci_init_driver);
4989
4990 MODULE_DESCRIPTION(DRIVER_DESC);
4991 MODULE_AUTHOR(DRIVER_AUTHOR);
4992 MODULE_LICENSE("GPL");
4993
4994 static int __init xhci_hcd_init(void)
4995 {
4996 /*
4997 * Check the compiler generated sizes of structures that must be laid
4998 * out in specific ways for hardware access.
4999 */
5000 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5001 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5002 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5003 /* xhci_device_control has eight fields, and also
5004 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5005 */
5006 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5007 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5008 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5009 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5010 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5011 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5012 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5013
5014 if (usb_disabled())
5015 return -ENODEV;
5016
5017 xhci_debugfs_create_root();
5018
5019 return 0;
5020 }
5021
5022 /*
5023 * If an init function is provided, an exit function must also be provided
5024 * to allow module unload.
5025 */
5026 static void __exit xhci_hcd_fini(void)
5027 {
5028 xhci_debugfs_remove_root();
5029 }
5030
5031 module_init(xhci_hcd_init);
5032 module_exit(xhci_hcd_fini);