]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci.c
xhci: Fix perceived dead host due to runtime suspend race with event handler
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42 * xhci_handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 u32 result;
57
58 do {
59 result = readl(ptr);
60 if (result == ~(u32)0) /* card removed */
61 return -ENODEV;
62 result &= mask;
63 if (result == done)
64 return 0;
65 udelay(1);
66 usec--;
67 } while (usec > 0);
68 return -ETIMEDOUT;
69 }
70
71 /*
72 * Disable interrupts and begin the xHCI halting process.
73 */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 u32 halted;
77 u32 cmd;
78 u32 mask;
79
80 mask = ~(XHCI_IRQS);
81 halted = readl(&xhci->op_regs->status) & STS_HALT;
82 if (!halted)
83 mask &= ~CMD_RUN;
84
85 cmd = readl(&xhci->op_regs->command);
86 cmd &= mask;
87 writel(cmd, &xhci->op_regs->command);
88 }
89
90 /*
91 * Force HC into halt state.
92 *
93 * Disable any IRQs and clear the run/stop bit.
94 * HC will complete any current and actively pipelined transactions, and
95 * should halt within 16 ms of the run/stop bit being cleared.
96 * Read HC Halted bit in the status register to see when the HC is finished.
97 */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 int ret;
101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 xhci_quiesce(xhci);
103
104 ret = xhci_handshake(&xhci->op_regs->status,
105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 if (ret) {
107 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 return ret;
109 }
110 xhci->xhc_state |= XHCI_STATE_HALTED;
111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 return ret;
113 }
114
115 /*
116 * Set the run bit and wait for the host to be running.
117 */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 u32 temp;
121 int ret;
122
123 temp = readl(&xhci->op_regs->command);
124 temp |= (CMD_RUN);
125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 temp);
127 writel(temp, &xhci->op_regs->command);
128
129 /*
130 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 * running.
132 */
133 ret = xhci_handshake(&xhci->op_regs->status,
134 STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 if (ret == -ETIMEDOUT)
136 xhci_err(xhci, "Host took too long to start, "
137 "waited %u microseconds.\n",
138 XHCI_MAX_HALT_USEC);
139 if (!ret)
140 /* clear state flags. Including dying, halted or removing */
141 xhci->xhc_state = 0;
142
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = readl(&xhci->op_regs->status);
160
161 if (state == ~(u32)0) {
162 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 return -ENODEV;
164 }
165
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
169 }
170
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
175
176 /* Existing Intel xHCI controllers require a delay of 1 mS,
177 * after setting the CMD_RESET bit, and before accessing any
178 * HC registers. This allows the HC to complete the
179 * reset operation and be ready for HC register access.
180 * Without this delay, the subsequent HC register access,
181 * may result in a system hang very rarely.
182 */
183 if (xhci->quirks & XHCI_INTEL_HOST)
184 udelay(1000);
185
186 ret = xhci_handshake(&xhci->op_regs->command,
187 CMD_RESET, 0, 10 * 1000 * 1000);
188 if (ret)
189 return ret;
190
191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; i++) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210 }
211
212
213 #ifdef CONFIG_USB_PCI
214 /*
215 * Set up MSI
216 */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 int ret;
220 /*
221 * TODO:Check with MSI Soc for sysdev
222 */
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224
225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 if (ret < 0) {
227 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 "failed to allocate MSI entry");
229 return ret;
230 }
231
232 ret = request_irq(pdev->irq, xhci_msi_irq,
233 0, "xhci_hcd", xhci_to_hcd(xhci));
234 if (ret) {
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "disable MSI interrupt");
237 pci_free_irq_vectors(pdev);
238 }
239
240 return ret;
241 }
242
243 /*
244 * Set up MSI-X
245 */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248 int i, ret = 0;
249 struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252 /*
253 * calculate number of msi-x vectors supported.
254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 * with max number of interrupters based on the xhci HCSPARAMS1.
256 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 * Add additional 1 vector to ensure always available interrupt.
258 */
259 xhci->msix_count = min(num_online_cpus() + 1,
260 HCS_MAX_INTRS(xhci->hcs_params1));
261
262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 PCI_IRQ_MSIX);
264 if (ret < 0) {
265 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 "Failed to enable MSI-X");
267 return ret;
268 }
269
270 for (i = 0; i < xhci->msix_count; i++) {
271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 "xhci_hcd", xhci_to_hcd(xhci));
273 if (ret)
274 goto disable_msix;
275 }
276
277 hcd->msix_enabled = 1;
278 return ret;
279
280 disable_msix:
281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 while (--i >= 0)
283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 pci_free_irq_vectors(pdev);
285 return ret;
286 }
287
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291 struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293
294 if (xhci->quirks & XHCI_PLAT)
295 return;
296
297 /* return if using legacy interrupt */
298 if (hcd->irq > 0)
299 return;
300
301 if (hcd->msix_enabled) {
302 int i;
303
304 for (i = 0; i < xhci->msix_count; i++)
305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 } else {
307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 }
309
310 pci_free_irq_vectors(pdev);
311 hcd->msix_enabled = 0;
312 }
313
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316 struct usb_hcd *hcd = xhci_to_hcd(xhci);
317
318 if (hcd->msix_enabled) {
319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 int i;
321
322 for (i = 0; i < xhci->msix_count; i++)
323 synchronize_irq(pci_irq_vector(pdev, i));
324 }
325 }
326
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 struct pci_dev *pdev;
331 int ret;
332
333 /* The xhci platform device has set up IRQs through usb_add_hcd. */
334 if (xhci->quirks & XHCI_PLAT)
335 return 0;
336
337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 /*
339 * Some Fresco Logic host controllers advertise MSI, but fail to
340 * generate interrupts. Don't even try to enable MSI.
341 */
342 if (xhci->quirks & XHCI_BROKEN_MSI)
343 goto legacy_irq;
344
345 /* unregister the legacy interrupt */
346 if (hcd->irq)
347 free_irq(hcd->irq, hcd);
348 hcd->irq = 0;
349
350 ret = xhci_setup_msix(xhci);
351 if (ret)
352 /* fall back to msi*/
353 ret = xhci_setup_msi(xhci);
354
355 if (!ret) {
356 hcd->msi_enabled = 1;
357 return 0;
358 }
359
360 if (!pdev->irq) {
361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 return -EINVAL;
363 }
364
365 legacy_irq:
366 if (!strlen(hcd->irq_descr))
367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 hcd->driver->description, hcd->self.busnum);
369
370 /* fall back to legacy interrupt*/
371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 hcd->irq_descr, hcd);
373 if (ret) {
374 xhci_err(xhci, "request interrupt %d failed\n",
375 pdev->irq);
376 return ret;
377 }
378 hcd->irq = pdev->irq;
379 return 0;
380 }
381
382 #else
383
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386 return 0;
387 }
388
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396
397 #endif
398
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401 struct xhci_hcd *xhci;
402 struct usb_hcd *hcd;
403 u32 temp;
404 int i;
405
406 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407
408 for (i = 0; i < xhci->num_usb3_ports; i++) {
409 temp = readl(xhci->usb3_ports[i]);
410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411 /*
412 * Compliance Mode Detected. Letting USB Core
413 * handle the Warm Reset
414 */
415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 "Compliance mode detected->port %d",
417 i + 1);
418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 "Attempting compliance mode recovery");
420 hcd = xhci->shared_hcd;
421
422 if (hcd->state == HC_STATE_SUSPENDED)
423 usb_hcd_resume_root_hub(hcd);
424
425 usb_hcd_poll_rh_status(hcd);
426 }
427 }
428
429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 mod_timer(&xhci->comp_mode_recovery_timer,
431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433
434 /*
435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436 * that causes ports behind that hardware to enter compliance mode sometimes.
437 * The quirk creates a timer that polls every 2 seconds the link state of
438 * each host controller's port and recovers it by issuing a Warm reset
439 * if Compliance mode is detected, otherwise the port will become "dead" (no
440 * device connections or disconnections will be detected anymore). Becasue no
441 * status event is generated when entering compliance mode (per xhci spec),
442 * this quirk is needed on systems that have the failing hardware installed.
443 */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446 xhci->port_status_u0 = 0;
447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448 0);
449 xhci->comp_mode_recovery_timer.expires = jiffies +
450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452 add_timer(&xhci->comp_mode_recovery_timer);
453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 "Compliance mode recovery timer initialized");
455 }
456
457 /*
458 * This function identifies the systems that have installed the SN65LVPE502CP
459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
460 * Systems:
461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462 */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465 const char *dmi_product_name, *dmi_sys_vendor;
466
467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 if (!dmi_product_name || !dmi_sys_vendor)
470 return false;
471
472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 return false;
474
475 if (strstr(dmi_product_name, "Z420") ||
476 strstr(dmi_product_name, "Z620") ||
477 strstr(dmi_product_name, "Z820") ||
478 strstr(dmi_product_name, "Z1 Workstation"))
479 return true;
480
481 return false;
482 }
483
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488
489
490 /*
491 * Initialize memory for HCD and xHC (one-time init).
492 *
493 * Program the PAGESIZE register, initialize the device context array, create
494 * device contexts (?), set up a command ring segment (or two?), create event
495 * ring (one for now).
496 */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 int retval = 0;
501
502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 spin_lock_init(&xhci->lock);
504 if (xhci->hci_version == 0x95 && link_quirk) {
505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 "QUIRK: Not clearing Link TRB chain bits.");
507 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 } else {
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 "xHCI doesn't need link TRB QUIRK");
511 }
512 retval = xhci_mem_init(xhci, GFP_KERNEL);
513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514
515 /* Initializing Compliance Mode Recovery Data If Needed */
516 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 compliance_mode_recovery_timer_init(xhci);
519 }
520
521 return retval;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529 if (xhci_start(xhci)) {
530 xhci_halt(xhci);
531 return -ENODEV;
532 }
533 xhci->shared_hcd->state = HC_STATE_RUNNING;
534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535
536 if (xhci->quirks & XHCI_NEC_HOST)
537 xhci_ring_cmd_db(xhci);
538
539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 "Finished xhci_run for USB3 roothub");
541 return 0;
542 }
543
544 /*
545 * Start the HC after it was halted.
546 *
547 * This function is called by the USB core when the HC driver is added.
548 * Its opposite is xhci_stop().
549 *
550 * xhci_init() must be called once before this function can be called.
551 * Reset the HC, enable device slot contexts, program DCBAAP, and
552 * set command ring pointer and event ring pointer.
553 *
554 * Setup MSI-X vectors and enable interrupts.
555 */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558 u32 temp;
559 u64 temp_64;
560 int ret;
561 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562
563 /* Start the xHCI host controller running only after the USB 2.0 roothub
564 * is setup.
565 */
566
567 hcd->uses_new_polling = 1;
568 if (!usb_hcd_is_primary_hcd(hcd))
569 return xhci_run_finished(xhci);
570
571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572
573 ret = xhci_try_enable_msi(hcd);
574 if (ret)
575 return ret;
576
577 xhci_dbg_cmd_ptrs(xhci);
578
579 xhci_dbg(xhci, "ERST memory map follows:\n");
580 xhci_dbg_erst(xhci, &xhci->erst);
581 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
582 temp_64 &= ~ERST_PTR_MASK;
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
584 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
585
586 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
587 "// Set the interrupt modulation register");
588 temp = readl(&xhci->ir_set->irq_control);
589 temp &= ~ER_IRQ_INTERVAL_MASK;
590 /*
591 * the increment interval is 8 times as much as that defined
592 * in xHCI spec on MTK's controller
593 */
594 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
595 writel(temp, &xhci->ir_set->irq_control);
596
597 /* Set the HCD state before we enable the irqs */
598 temp = readl(&xhci->op_regs->command);
599 temp |= (CMD_EIE);
600 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
601 "// Enable interrupts, cmd = 0x%x.", temp);
602 writel(temp, &xhci->op_regs->command);
603
604 temp = readl(&xhci->ir_set->irq_pending);
605 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
606 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
607 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
608 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
609 xhci_print_ir_set(xhci, 0);
610
611 if (xhci->quirks & XHCI_NEC_HOST) {
612 struct xhci_command *command;
613
614 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
615 if (!command)
616 return -ENOMEM;
617
618 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
619 TRB_TYPE(TRB_NEC_GET_FW));
620 if (ret)
621 xhci_free_command(xhci, command);
622 }
623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 "Finished xhci_run for USB2 roothub");
625
626 xhci_dbc_init(xhci);
627
628 xhci_debugfs_init(xhci);
629
630 return 0;
631 }
632 EXPORT_SYMBOL_GPL(xhci_run);
633
634 /*
635 * Stop xHCI driver.
636 *
637 * This function is called by the USB core when the HC driver is removed.
638 * Its opposite is xhci_run().
639 *
640 * Disable device contexts, disable IRQs, and quiesce the HC.
641 * Reset the HC, finish any completed transactions, and cleanup memory.
642 */
643 static void xhci_stop(struct usb_hcd *hcd)
644 {
645 u32 temp;
646 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647
648 mutex_lock(&xhci->mutex);
649
650 /* Only halt host and free memory after both hcds are removed */
651 if (!usb_hcd_is_primary_hcd(hcd)) {
652 /* usb core will free this hcd shortly, unset pointer */
653 xhci->shared_hcd = NULL;
654 mutex_unlock(&xhci->mutex);
655 return;
656 }
657
658 xhci_dbc_exit(xhci);
659
660 spin_lock_irq(&xhci->lock);
661 xhci->xhc_state |= XHCI_STATE_HALTED;
662 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
663 xhci_halt(xhci);
664 xhci_reset(xhci);
665 spin_unlock_irq(&xhci->lock);
666
667 xhci_cleanup_msix(xhci);
668
669 /* Deleting Compliance Mode Recovery Timer */
670 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
671 (!(xhci_all_ports_seen_u0(xhci)))) {
672 del_timer_sync(&xhci->comp_mode_recovery_timer);
673 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
674 "%s: compliance mode recovery timer deleted",
675 __func__);
676 }
677
678 if (xhci->quirks & XHCI_AMD_PLL_FIX)
679 usb_amd_dev_put();
680
681 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
682 "// Disabling event ring interrupts");
683 temp = readl(&xhci->op_regs->status);
684 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
685 temp = readl(&xhci->ir_set->irq_pending);
686 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
687 xhci_print_ir_set(xhci, 0);
688
689 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
690 xhci_mem_cleanup(xhci);
691 xhci_debugfs_exit(xhci);
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 "xhci_stop completed - status = %x",
694 readl(&xhci->op_regs->status));
695 mutex_unlock(&xhci->mutex);
696 }
697
698 /*
699 * Shutdown HC (not bus-specific)
700 *
701 * This is called when the machine is rebooting or halting. We assume that the
702 * machine will be powered off, and the HC's internal state will be reset.
703 * Don't bother to free memory.
704 *
705 * This will only ever be called with the main usb_hcd (the USB3 roothub).
706 */
707 static void xhci_shutdown(struct usb_hcd *hcd)
708 {
709 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
710
711 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
712 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
713
714 spin_lock_irq(&xhci->lock);
715 xhci_halt(xhci);
716 /* Workaround for spurious wakeups at shutdown with HSW */
717 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
718 xhci_reset(xhci);
719 spin_unlock_irq(&xhci->lock);
720
721 xhci_cleanup_msix(xhci);
722
723 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 "xhci_shutdown completed - status = %x",
725 readl(&xhci->op_regs->status));
726
727 /* Yet another workaround for spurious wakeups at shutdown with HSW */
728 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
729 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
730 }
731
732 #ifdef CONFIG_PM
733 static void xhci_save_registers(struct xhci_hcd *xhci)
734 {
735 xhci->s3.command = readl(&xhci->op_regs->command);
736 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
737 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
738 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
739 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
740 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
741 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
742 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
743 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
744 }
745
746 static void xhci_restore_registers(struct xhci_hcd *xhci)
747 {
748 writel(xhci->s3.command, &xhci->op_regs->command);
749 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
750 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
751 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
752 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
753 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
754 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
755 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
756 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
757 }
758
759 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
760 {
761 u64 val_64;
762
763 /* step 2: initialize command ring buffer */
764 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
765 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
766 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
767 xhci->cmd_ring->dequeue) &
768 (u64) ~CMD_RING_RSVD_BITS) |
769 xhci->cmd_ring->cycle_state;
770 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
771 "// Setting command ring address to 0x%llx",
772 (long unsigned long) val_64);
773 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
774 }
775
776 /*
777 * The whole command ring must be cleared to zero when we suspend the host.
778 *
779 * The host doesn't save the command ring pointer in the suspend well, so we
780 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
781 * aligned, because of the reserved bits in the command ring dequeue pointer
782 * register. Therefore, we can't just set the dequeue pointer back in the
783 * middle of the ring (TRBs are 16-byte aligned).
784 */
785 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
786 {
787 struct xhci_ring *ring;
788 struct xhci_segment *seg;
789
790 ring = xhci->cmd_ring;
791 seg = ring->deq_seg;
792 do {
793 memset(seg->trbs, 0,
794 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
795 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
796 cpu_to_le32(~TRB_CYCLE);
797 seg = seg->next;
798 } while (seg != ring->deq_seg);
799
800 /* Reset the software enqueue and dequeue pointers */
801 ring->deq_seg = ring->first_seg;
802 ring->dequeue = ring->first_seg->trbs;
803 ring->enq_seg = ring->deq_seg;
804 ring->enqueue = ring->dequeue;
805
806 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
807 /*
808 * Ring is now zeroed, so the HW should look for change of ownership
809 * when the cycle bit is set to 1.
810 */
811 ring->cycle_state = 1;
812
813 /*
814 * Reset the hardware dequeue pointer.
815 * Yes, this will need to be re-written after resume, but we're paranoid
816 * and want to make sure the hardware doesn't access bogus memory
817 * because, say, the BIOS or an SMI started the host without changing
818 * the command ring pointers.
819 */
820 xhci_set_cmd_ring_deq(xhci);
821 }
822
823 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
824 {
825 int port_index;
826 __le32 __iomem **port_array;
827 unsigned long flags;
828 u32 t1, t2;
829
830 spin_lock_irqsave(&xhci->lock, flags);
831
832 /* disable usb3 ports Wake bits */
833 port_index = xhci->num_usb3_ports;
834 port_array = xhci->usb3_ports;
835 while (port_index--) {
836 t1 = readl(port_array[port_index]);
837 t1 = xhci_port_state_to_neutral(t1);
838 t2 = t1 & ~PORT_WAKE_BITS;
839 if (t1 != t2)
840 writel(t2, port_array[port_index]);
841 }
842
843 /* disable usb2 ports Wake bits */
844 port_index = xhci->num_usb2_ports;
845 port_array = xhci->usb2_ports;
846 while (port_index--) {
847 t1 = readl(port_array[port_index]);
848 t1 = xhci_port_state_to_neutral(t1);
849 t2 = t1 & ~PORT_WAKE_BITS;
850 if (t1 != t2)
851 writel(t2, port_array[port_index]);
852 }
853
854 spin_unlock_irqrestore(&xhci->lock, flags);
855 }
856
857 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
858 {
859 __le32 __iomem **port_array;
860 int port_index;
861 u32 status;
862 u32 portsc;
863
864 status = readl(&xhci->op_regs->status);
865 if (status & STS_EINT)
866 return true;
867 /*
868 * Checking STS_EINT is not enough as there is a lag between a change
869 * bit being set and the Port Status Change Event that it generated
870 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
871 */
872
873 port_index = xhci->num_usb2_ports;
874 port_array = xhci->usb2_ports;
875 while (port_index--) {
876 portsc = readl(port_array[port_index]);
877 if (portsc & PORT_CHANGE_MASK ||
878 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
879 return true;
880 }
881 port_index = xhci->num_usb3_ports;
882 port_array = xhci->usb3_ports;
883 while (port_index--) {
884 portsc = readl(port_array[port_index]);
885 if (portsc & PORT_CHANGE_MASK ||
886 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
887 return true;
888 }
889 return false;
890 }
891
892 /*
893 * Stop HC (not bus-specific)
894 *
895 * This is called when the machine transition into S3/S4 mode.
896 *
897 */
898 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
899 {
900 int rc = 0;
901 unsigned int delay = XHCI_MAX_HALT_USEC;
902 struct usb_hcd *hcd = xhci_to_hcd(xhci);
903 u32 command;
904 u32 res;
905
906 if (!hcd->state)
907 return 0;
908
909 if (hcd->state != HC_STATE_SUSPENDED ||
910 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
911 return -EINVAL;
912
913 xhci_dbc_suspend(xhci);
914
915 /* Clear root port wake on bits if wakeup not allowed. */
916 if (!do_wakeup)
917 xhci_disable_port_wake_on_bits(xhci);
918
919 /* Don't poll the roothubs on bus suspend. */
920 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
921 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
922 del_timer_sync(&hcd->rh_timer);
923 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
924 del_timer_sync(&xhci->shared_hcd->rh_timer);
925
926 if (xhci->quirks & XHCI_SUSPEND_DELAY)
927 usleep_range(1000, 1500);
928
929 spin_lock_irq(&xhci->lock);
930 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
931 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
932 /* step 1: stop endpoint */
933 /* skipped assuming that port suspend has done */
934
935 /* step 2: clear Run/Stop bit */
936 command = readl(&xhci->op_regs->command);
937 command &= ~CMD_RUN;
938 writel(command, &xhci->op_regs->command);
939
940 /* Some chips from Fresco Logic need an extraordinary delay */
941 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
942
943 if (xhci_handshake(&xhci->op_regs->status,
944 STS_HALT, STS_HALT, delay)) {
945 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
946 spin_unlock_irq(&xhci->lock);
947 return -ETIMEDOUT;
948 }
949 xhci_clear_command_ring(xhci);
950
951 /* step 3: save registers */
952 xhci_save_registers(xhci);
953
954 /* step 4: set CSS flag */
955 command = readl(&xhci->op_regs->command);
956 command |= CMD_CSS;
957 writel(command, &xhci->op_regs->command);
958 xhci->broken_suspend = 0;
959 if (xhci_handshake(&xhci->op_regs->status,
960 STS_SAVE, 0, 10 * 1000)) {
961 /*
962 * AMD SNPS xHC 3.0 occasionally does not clear the
963 * SSS bit of USBSTS and when driver tries to poll
964 * to see if the xHC clears BIT(8) which never happens
965 * and driver assumes that controller is not responding
966 * and times out. To workaround this, its good to check
967 * if SRE and HCE bits are not set (as per xhci
968 * Section 5.4.2) and bypass the timeout.
969 */
970 res = readl(&xhci->op_regs->status);
971 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
972 (((res & STS_SRE) == 0) &&
973 ((res & STS_HCE) == 0))) {
974 xhci->broken_suspend = 1;
975 } else {
976 xhci_warn(xhci, "WARN: xHC save state timeout\n");
977 spin_unlock_irq(&xhci->lock);
978 return -ETIMEDOUT;
979 }
980 }
981 spin_unlock_irq(&xhci->lock);
982
983 /*
984 * Deleting Compliance Mode Recovery Timer because the xHCI Host
985 * is about to be suspended.
986 */
987 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
988 (!(xhci_all_ports_seen_u0(xhci)))) {
989 del_timer_sync(&xhci->comp_mode_recovery_timer);
990 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
991 "%s: compliance mode recovery timer deleted",
992 __func__);
993 }
994
995 /* step 5: remove core well power */
996 /* synchronize irq when using MSI-X */
997 xhci_msix_sync_irqs(xhci);
998
999 return rc;
1000 }
1001 EXPORT_SYMBOL_GPL(xhci_suspend);
1002
1003 /*
1004 * start xHC (not bus-specific)
1005 *
1006 * This is called when the machine transition from S3/S4 mode.
1007 *
1008 */
1009 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1010 {
1011 u32 command, temp = 0;
1012 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1013 struct usb_hcd *secondary_hcd;
1014 int retval = 0;
1015 bool comp_timer_running = false;
1016
1017 if (!hcd->state)
1018 return 0;
1019
1020 /* Wait a bit if either of the roothubs need to settle from the
1021 * transition into bus suspend.
1022 */
1023 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1024 time_before(jiffies,
1025 xhci->bus_state[1].next_statechange))
1026 msleep(100);
1027
1028 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1029 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1030
1031 spin_lock_irq(&xhci->lock);
1032 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1033 hibernated = true;
1034
1035 if (!hibernated) {
1036 /* step 1: restore register */
1037 xhci_restore_registers(xhci);
1038 /* step 2: initialize command ring buffer */
1039 xhci_set_cmd_ring_deq(xhci);
1040 /* step 3: restore state and start state*/
1041 /* step 3: set CRS flag */
1042 command = readl(&xhci->op_regs->command);
1043 command |= CMD_CRS;
1044 writel(command, &xhci->op_regs->command);
1045 if (xhci_handshake(&xhci->op_regs->status,
1046 STS_RESTORE, 0, 10 * 1000)) {
1047 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1048 spin_unlock_irq(&xhci->lock);
1049 return -ETIMEDOUT;
1050 }
1051 temp = readl(&xhci->op_regs->status);
1052 }
1053
1054 /* If restore operation fails, re-initialize the HC during resume */
1055 if ((temp & STS_SRE) || hibernated) {
1056
1057 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1058 !(xhci_all_ports_seen_u0(xhci))) {
1059 del_timer_sync(&xhci->comp_mode_recovery_timer);
1060 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1061 "Compliance Mode Recovery Timer deleted!");
1062 }
1063
1064 /* Let the USB core know _both_ roothubs lost power. */
1065 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1066 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1067
1068 xhci_dbg(xhci, "Stop HCD\n");
1069 xhci_halt(xhci);
1070 xhci_reset(xhci);
1071 spin_unlock_irq(&xhci->lock);
1072 xhci_cleanup_msix(xhci);
1073
1074 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1075 temp = readl(&xhci->op_regs->status);
1076 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1077 temp = readl(&xhci->ir_set->irq_pending);
1078 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1079 xhci_print_ir_set(xhci, 0);
1080
1081 xhci_dbg(xhci, "cleaning up memory\n");
1082 xhci_mem_cleanup(xhci);
1083 xhci_debugfs_exit(xhci);
1084 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1085 readl(&xhci->op_regs->status));
1086
1087 /* USB core calls the PCI reinit and start functions twice:
1088 * first with the primary HCD, and then with the secondary HCD.
1089 * If we don't do the same, the host will never be started.
1090 */
1091 if (!usb_hcd_is_primary_hcd(hcd))
1092 secondary_hcd = hcd;
1093 else
1094 secondary_hcd = xhci->shared_hcd;
1095
1096 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1097 retval = xhci_init(hcd->primary_hcd);
1098 if (retval)
1099 return retval;
1100 comp_timer_running = true;
1101
1102 xhci_dbg(xhci, "Start the primary HCD\n");
1103 retval = xhci_run(hcd->primary_hcd);
1104 if (!retval) {
1105 xhci_dbg(xhci, "Start the secondary HCD\n");
1106 retval = xhci_run(secondary_hcd);
1107 }
1108 hcd->state = HC_STATE_SUSPENDED;
1109 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1110 goto done;
1111 }
1112
1113 /* step 4: set Run/Stop bit */
1114 command = readl(&xhci->op_regs->command);
1115 command |= CMD_RUN;
1116 writel(command, &xhci->op_regs->command);
1117 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1118 0, 250 * 1000);
1119
1120 /* step 5: walk topology and initialize portsc,
1121 * portpmsc and portli
1122 */
1123 /* this is done in bus_resume */
1124
1125 /* step 6: restart each of the previously
1126 * Running endpoints by ringing their doorbells
1127 */
1128
1129 spin_unlock_irq(&xhci->lock);
1130
1131 xhci_dbc_resume(xhci);
1132
1133 done:
1134 if (retval == 0) {
1135 /* Resume root hubs only when have pending events. */
1136 if (xhci_pending_portevent(xhci)) {
1137 usb_hcd_resume_root_hub(xhci->shared_hcd);
1138 usb_hcd_resume_root_hub(hcd);
1139 }
1140 }
1141
1142 /*
1143 * If system is subject to the Quirk, Compliance Mode Timer needs to
1144 * be re-initialized Always after a system resume. Ports are subject
1145 * to suffer the Compliance Mode issue again. It doesn't matter if
1146 * ports have entered previously to U0 before system's suspension.
1147 */
1148 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1149 compliance_mode_recovery_timer_init(xhci);
1150
1151 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1152 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1153
1154 /* Re-enable port polling. */
1155 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1156 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1157 usb_hcd_poll_rh_status(xhci->shared_hcd);
1158 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1159 usb_hcd_poll_rh_status(hcd);
1160
1161 return retval;
1162 }
1163 EXPORT_SYMBOL_GPL(xhci_resume);
1164 #endif /* CONFIG_PM */
1165
1166 /*-------------------------------------------------------------------------*/
1167
1168 /**
1169 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1170 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1171 * value to right shift 1 for the bitmask.
1172 *
1173 * Index = (epnum * 2) + direction - 1,
1174 * where direction = 0 for OUT, 1 for IN.
1175 * For control endpoints, the IN index is used (OUT index is unused), so
1176 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1177 */
1178 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1179 {
1180 unsigned int index;
1181 if (usb_endpoint_xfer_control(desc))
1182 index = (unsigned int) (usb_endpoint_num(desc)*2);
1183 else
1184 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1185 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1186 return index;
1187 }
1188
1189 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1190 * address from the XHCI endpoint index.
1191 */
1192 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1193 {
1194 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1195 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1196 return direction | number;
1197 }
1198
1199 /* Find the flag for this endpoint (for use in the control context). Use the
1200 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1201 * bit 1, etc.
1202 */
1203 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1204 {
1205 return 1 << (xhci_get_endpoint_index(desc) + 1);
1206 }
1207
1208 /* Find the flag for this endpoint (for use in the control context). Use the
1209 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1210 * bit 1, etc.
1211 */
1212 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1213 {
1214 return 1 << (ep_index + 1);
1215 }
1216
1217 /* Compute the last valid endpoint context index. Basically, this is the
1218 * endpoint index plus one. For slot contexts with more than valid endpoint,
1219 * we find the most significant bit set in the added contexts flags.
1220 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1221 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1222 */
1223 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1224 {
1225 return fls(added_ctxs) - 1;
1226 }
1227
1228 /* Returns 1 if the arguments are OK;
1229 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1230 */
1231 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1232 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1233 const char *func) {
1234 struct xhci_hcd *xhci;
1235 struct xhci_virt_device *virt_dev;
1236
1237 if (!hcd || (check_ep && !ep) || !udev) {
1238 pr_debug("xHCI %s called with invalid args\n", func);
1239 return -EINVAL;
1240 }
1241 if (!udev->parent) {
1242 pr_debug("xHCI %s called for root hub\n", func);
1243 return 0;
1244 }
1245
1246 xhci = hcd_to_xhci(hcd);
1247 if (check_virt_dev) {
1248 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1249 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1250 func);
1251 return -EINVAL;
1252 }
1253
1254 virt_dev = xhci->devs[udev->slot_id];
1255 if (virt_dev->udev != udev) {
1256 xhci_dbg(xhci, "xHCI %s called with udev and "
1257 "virt_dev does not match\n", func);
1258 return -EINVAL;
1259 }
1260 }
1261
1262 if (xhci->xhc_state & XHCI_STATE_HALTED)
1263 return -ENODEV;
1264
1265 return 1;
1266 }
1267
1268 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1269 struct usb_device *udev, struct xhci_command *command,
1270 bool ctx_change, bool must_succeed);
1271
1272 /*
1273 * Full speed devices may have a max packet size greater than 8 bytes, but the
1274 * USB core doesn't know that until it reads the first 8 bytes of the
1275 * descriptor. If the usb_device's max packet size changes after that point,
1276 * we need to issue an evaluate context command and wait on it.
1277 */
1278 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1279 unsigned int ep_index, struct urb *urb)
1280 {
1281 struct xhci_container_ctx *out_ctx;
1282 struct xhci_input_control_ctx *ctrl_ctx;
1283 struct xhci_ep_ctx *ep_ctx;
1284 struct xhci_command *command;
1285 int max_packet_size;
1286 int hw_max_packet_size;
1287 int ret = 0;
1288
1289 out_ctx = xhci->devs[slot_id]->out_ctx;
1290 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1291 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1292 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1293 if (hw_max_packet_size != max_packet_size) {
1294 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1295 "Max Packet Size for ep 0 changed.");
1296 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1297 "Max packet size in usb_device = %d",
1298 max_packet_size);
1299 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1300 "Max packet size in xHCI HW = %d",
1301 hw_max_packet_size);
1302 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1303 "Issuing evaluate context command.");
1304
1305 /* Set up the input context flags for the command */
1306 /* FIXME: This won't work if a non-default control endpoint
1307 * changes max packet sizes.
1308 */
1309
1310 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1311 if (!command)
1312 return -ENOMEM;
1313
1314 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1315 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1316 if (!ctrl_ctx) {
1317 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1318 __func__);
1319 ret = -ENOMEM;
1320 goto command_cleanup;
1321 }
1322 /* Set up the modified control endpoint 0 */
1323 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1324 xhci->devs[slot_id]->out_ctx, ep_index);
1325
1326 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1327 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1328 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1329
1330 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1331 ctrl_ctx->drop_flags = 0;
1332
1333 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1334 true, false);
1335
1336 /* Clean up the input context for later use by bandwidth
1337 * functions.
1338 */
1339 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1340 command_cleanup:
1341 kfree(command->completion);
1342 kfree(command);
1343 }
1344 return ret;
1345 }
1346
1347 /*
1348 * non-error returns are a promise to giveback() the urb later
1349 * we drop ownership so next owner (or urb unlink) can get it
1350 */
1351 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1352 {
1353 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1354 unsigned long flags;
1355 int ret = 0;
1356 unsigned int slot_id, ep_index, ep_state;
1357 struct urb_priv *urb_priv;
1358 int num_tds;
1359
1360 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1361 true, true, __func__) <= 0)
1362 return -EINVAL;
1363
1364 slot_id = urb->dev->slot_id;
1365 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1366
1367 if (!HCD_HW_ACCESSIBLE(hcd)) {
1368 if (!in_interrupt())
1369 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1370 return -ESHUTDOWN;
1371 }
1372
1373 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1374 num_tds = urb->number_of_packets;
1375 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1376 urb->transfer_buffer_length > 0 &&
1377 urb->transfer_flags & URB_ZERO_PACKET &&
1378 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1379 num_tds = 2;
1380 else
1381 num_tds = 1;
1382
1383 urb_priv = kzalloc(sizeof(struct urb_priv) +
1384 num_tds * sizeof(struct xhci_td), mem_flags);
1385 if (!urb_priv)
1386 return -ENOMEM;
1387
1388 urb_priv->num_tds = num_tds;
1389 urb_priv->num_tds_done = 0;
1390 urb->hcpriv = urb_priv;
1391
1392 trace_xhci_urb_enqueue(urb);
1393
1394 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1395 /* Check to see if the max packet size for the default control
1396 * endpoint changed during FS device enumeration
1397 */
1398 if (urb->dev->speed == USB_SPEED_FULL) {
1399 ret = xhci_check_maxpacket(xhci, slot_id,
1400 ep_index, urb);
1401 if (ret < 0) {
1402 xhci_urb_free_priv(urb_priv);
1403 urb->hcpriv = NULL;
1404 return ret;
1405 }
1406 }
1407 }
1408
1409 spin_lock_irqsave(&xhci->lock, flags);
1410
1411 if (xhci->xhc_state & XHCI_STATE_DYING) {
1412 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1413 urb->ep->desc.bEndpointAddress, urb);
1414 ret = -ESHUTDOWN;
1415 goto free_priv;
1416 }
1417
1418 switch (usb_endpoint_type(&urb->ep->desc)) {
1419
1420 case USB_ENDPOINT_XFER_CONTROL:
1421 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1422 slot_id, ep_index);
1423 break;
1424 case USB_ENDPOINT_XFER_BULK:
1425 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1426 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1427 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1428 ep_state);
1429 ret = -EINVAL;
1430 break;
1431 }
1432 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1433 slot_id, ep_index);
1434 break;
1435
1436
1437 case USB_ENDPOINT_XFER_INT:
1438 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1439 slot_id, ep_index);
1440 break;
1441
1442 case USB_ENDPOINT_XFER_ISOC:
1443 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1444 slot_id, ep_index);
1445 }
1446
1447 if (ret) {
1448 free_priv:
1449 xhci_urb_free_priv(urb_priv);
1450 urb->hcpriv = NULL;
1451 }
1452 spin_unlock_irqrestore(&xhci->lock, flags);
1453 return ret;
1454 }
1455
1456 /*
1457 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1458 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1459 * should pick up where it left off in the TD, unless a Set Transfer Ring
1460 * Dequeue Pointer is issued.
1461 *
1462 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1463 * the ring. Since the ring is a contiguous structure, they can't be physically
1464 * removed. Instead, there are two options:
1465 *
1466 * 1) If the HC is in the middle of processing the URB to be canceled, we
1467 * simply move the ring's dequeue pointer past those TRBs using the Set
1468 * Transfer Ring Dequeue Pointer command. This will be the common case,
1469 * when drivers timeout on the last submitted URB and attempt to cancel.
1470 *
1471 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1472 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1473 * HC will need to invalidate the any TRBs it has cached after the stop
1474 * endpoint command, as noted in the xHCI 0.95 errata.
1475 *
1476 * 3) The TD may have completed by the time the Stop Endpoint Command
1477 * completes, so software needs to handle that case too.
1478 *
1479 * This function should protect against the TD enqueueing code ringing the
1480 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1481 * It also needs to account for multiple cancellations on happening at the same
1482 * time for the same endpoint.
1483 *
1484 * Note that this function can be called in any context, or so says
1485 * usb_hcd_unlink_urb()
1486 */
1487 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1488 {
1489 unsigned long flags;
1490 int ret, i;
1491 u32 temp;
1492 struct xhci_hcd *xhci;
1493 struct urb_priv *urb_priv;
1494 struct xhci_td *td;
1495 unsigned int ep_index;
1496 struct xhci_ring *ep_ring;
1497 struct xhci_virt_ep *ep;
1498 struct xhci_command *command;
1499 struct xhci_virt_device *vdev;
1500
1501 xhci = hcd_to_xhci(hcd);
1502 spin_lock_irqsave(&xhci->lock, flags);
1503
1504 trace_xhci_urb_dequeue(urb);
1505
1506 /* Make sure the URB hasn't completed or been unlinked already */
1507 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1508 if (ret)
1509 goto done;
1510
1511 /* give back URB now if we can't queue it for cancel */
1512 vdev = xhci->devs[urb->dev->slot_id];
1513 urb_priv = urb->hcpriv;
1514 if (!vdev || !urb_priv)
1515 goto err_giveback;
1516
1517 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1518 ep = &vdev->eps[ep_index];
1519 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1520 if (!ep || !ep_ring)
1521 goto err_giveback;
1522
1523 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1524 temp = readl(&xhci->op_regs->status);
1525 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1526 xhci_hc_died(xhci);
1527 goto done;
1528 }
1529
1530 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1531 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1532 "HC halted, freeing TD manually.");
1533 for (i = urb_priv->num_tds_done;
1534 i < urb_priv->num_tds;
1535 i++) {
1536 td = &urb_priv->td[i];
1537 if (!list_empty(&td->td_list))
1538 list_del_init(&td->td_list);
1539 if (!list_empty(&td->cancelled_td_list))
1540 list_del_init(&td->cancelled_td_list);
1541 }
1542 goto err_giveback;
1543 }
1544
1545 i = urb_priv->num_tds_done;
1546 if (i < urb_priv->num_tds)
1547 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1548 "Cancel URB %p, dev %s, ep 0x%x, "
1549 "starting at offset 0x%llx",
1550 urb, urb->dev->devpath,
1551 urb->ep->desc.bEndpointAddress,
1552 (unsigned long long) xhci_trb_virt_to_dma(
1553 urb_priv->td[i].start_seg,
1554 urb_priv->td[i].first_trb));
1555
1556 for (; i < urb_priv->num_tds; i++) {
1557 td = &urb_priv->td[i];
1558 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1559 }
1560
1561 /* Queue a stop endpoint command, but only if this is
1562 * the first cancellation to be handled.
1563 */
1564 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1565 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1566 if (!command) {
1567 ret = -ENOMEM;
1568 goto done;
1569 }
1570 ep->ep_state |= EP_STOP_CMD_PENDING;
1571 ep->stop_cmd_timer.expires = jiffies +
1572 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1573 add_timer(&ep->stop_cmd_timer);
1574 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1575 ep_index, 0);
1576 xhci_ring_cmd_db(xhci);
1577 }
1578 done:
1579 spin_unlock_irqrestore(&xhci->lock, flags);
1580 return ret;
1581
1582 err_giveback:
1583 if (urb_priv)
1584 xhci_urb_free_priv(urb_priv);
1585 usb_hcd_unlink_urb_from_ep(hcd, urb);
1586 spin_unlock_irqrestore(&xhci->lock, flags);
1587 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1588 return ret;
1589 }
1590
1591 /* Drop an endpoint from a new bandwidth configuration for this device.
1592 * Only one call to this function is allowed per endpoint before
1593 * check_bandwidth() or reset_bandwidth() must be called.
1594 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1595 * add the endpoint to the schedule with possibly new parameters denoted by a
1596 * different endpoint descriptor in usb_host_endpoint.
1597 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1598 * not allowed.
1599 *
1600 * The USB core will not allow URBs to be queued to an endpoint that is being
1601 * disabled, so there's no need for mutual exclusion to protect
1602 * the xhci->devs[slot_id] structure.
1603 */
1604 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1605 struct usb_host_endpoint *ep)
1606 {
1607 struct xhci_hcd *xhci;
1608 struct xhci_container_ctx *in_ctx, *out_ctx;
1609 struct xhci_input_control_ctx *ctrl_ctx;
1610 unsigned int ep_index;
1611 struct xhci_ep_ctx *ep_ctx;
1612 u32 drop_flag;
1613 u32 new_add_flags, new_drop_flags;
1614 int ret;
1615
1616 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1617 if (ret <= 0)
1618 return ret;
1619 xhci = hcd_to_xhci(hcd);
1620 if (xhci->xhc_state & XHCI_STATE_DYING)
1621 return -ENODEV;
1622
1623 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1624 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1625 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1626 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1627 __func__, drop_flag);
1628 return 0;
1629 }
1630
1631 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1632 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1633 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1634 if (!ctrl_ctx) {
1635 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1636 __func__);
1637 return 0;
1638 }
1639
1640 ep_index = xhci_get_endpoint_index(&ep->desc);
1641 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1642 /* If the HC already knows the endpoint is disabled,
1643 * or the HCD has noted it is disabled, ignore this request
1644 */
1645 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1646 le32_to_cpu(ctrl_ctx->drop_flags) &
1647 xhci_get_endpoint_flag(&ep->desc)) {
1648 /* Do not warn when called after a usb_device_reset */
1649 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1650 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1651 __func__, ep);
1652 return 0;
1653 }
1654
1655 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1656 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1657
1658 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1659 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1660
1661 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1662
1663 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1664
1665 if (xhci->quirks & XHCI_MTK_HOST)
1666 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1667
1668 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1669 (unsigned int) ep->desc.bEndpointAddress,
1670 udev->slot_id,
1671 (unsigned int) new_drop_flags,
1672 (unsigned int) new_add_flags);
1673 return 0;
1674 }
1675
1676 /* Add an endpoint to a new possible bandwidth configuration for this device.
1677 * Only one call to this function is allowed per endpoint before
1678 * check_bandwidth() or reset_bandwidth() must be called.
1679 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1680 * add the endpoint to the schedule with possibly new parameters denoted by a
1681 * different endpoint descriptor in usb_host_endpoint.
1682 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1683 * not allowed.
1684 *
1685 * The USB core will not allow URBs to be queued to an endpoint until the
1686 * configuration or alt setting is installed in the device, so there's no need
1687 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1688 */
1689 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1690 struct usb_host_endpoint *ep)
1691 {
1692 struct xhci_hcd *xhci;
1693 struct xhci_container_ctx *in_ctx;
1694 unsigned int ep_index;
1695 struct xhci_input_control_ctx *ctrl_ctx;
1696 u32 added_ctxs;
1697 u32 new_add_flags, new_drop_flags;
1698 struct xhci_virt_device *virt_dev;
1699 int ret = 0;
1700
1701 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1702 if (ret <= 0) {
1703 /* So we won't queue a reset ep command for a root hub */
1704 ep->hcpriv = NULL;
1705 return ret;
1706 }
1707 xhci = hcd_to_xhci(hcd);
1708 if (xhci->xhc_state & XHCI_STATE_DYING)
1709 return -ENODEV;
1710
1711 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1712 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1713 /* FIXME when we have to issue an evaluate endpoint command to
1714 * deal with ep0 max packet size changing once we get the
1715 * descriptors
1716 */
1717 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1718 __func__, added_ctxs);
1719 return 0;
1720 }
1721
1722 virt_dev = xhci->devs[udev->slot_id];
1723 in_ctx = virt_dev->in_ctx;
1724 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1725 if (!ctrl_ctx) {
1726 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1727 __func__);
1728 return 0;
1729 }
1730
1731 ep_index = xhci_get_endpoint_index(&ep->desc);
1732 /* If this endpoint is already in use, and the upper layers are trying
1733 * to add it again without dropping it, reject the addition.
1734 */
1735 if (virt_dev->eps[ep_index].ring &&
1736 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1737 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1738 "without dropping it.\n",
1739 (unsigned int) ep->desc.bEndpointAddress);
1740 return -EINVAL;
1741 }
1742
1743 /* If the HCD has already noted the endpoint is enabled,
1744 * ignore this request.
1745 */
1746 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1747 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1748 __func__, ep);
1749 return 0;
1750 }
1751
1752 /*
1753 * Configuration and alternate setting changes must be done in
1754 * process context, not interrupt context (or so documenation
1755 * for usb_set_interface() and usb_set_configuration() claim).
1756 */
1757 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1758 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1759 __func__, ep->desc.bEndpointAddress);
1760 return -ENOMEM;
1761 }
1762
1763 if (xhci->quirks & XHCI_MTK_HOST) {
1764 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1765 if (ret < 0) {
1766 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1767 virt_dev->eps[ep_index].new_ring = NULL;
1768 return ret;
1769 }
1770 }
1771
1772 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1773 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1774
1775 /* If xhci_endpoint_disable() was called for this endpoint, but the
1776 * xHC hasn't been notified yet through the check_bandwidth() call,
1777 * this re-adds a new state for the endpoint from the new endpoint
1778 * descriptors. We must drop and re-add this endpoint, so we leave the
1779 * drop flags alone.
1780 */
1781 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1782
1783 /* Store the usb_device pointer for later use */
1784 ep->hcpriv = udev;
1785
1786 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1787
1788 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1789 (unsigned int) ep->desc.bEndpointAddress,
1790 udev->slot_id,
1791 (unsigned int) new_drop_flags,
1792 (unsigned int) new_add_flags);
1793 return 0;
1794 }
1795
1796 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1797 {
1798 struct xhci_input_control_ctx *ctrl_ctx;
1799 struct xhci_ep_ctx *ep_ctx;
1800 struct xhci_slot_ctx *slot_ctx;
1801 int i;
1802
1803 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1804 if (!ctrl_ctx) {
1805 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1806 __func__);
1807 return;
1808 }
1809
1810 /* When a device's add flag and drop flag are zero, any subsequent
1811 * configure endpoint command will leave that endpoint's state
1812 * untouched. Make sure we don't leave any old state in the input
1813 * endpoint contexts.
1814 */
1815 ctrl_ctx->drop_flags = 0;
1816 ctrl_ctx->add_flags = 0;
1817 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1818 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1819 /* Endpoint 0 is always valid */
1820 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1821 for (i = 1; i < 31; i++) {
1822 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1823 ep_ctx->ep_info = 0;
1824 ep_ctx->ep_info2 = 0;
1825 ep_ctx->deq = 0;
1826 ep_ctx->tx_info = 0;
1827 }
1828 }
1829
1830 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1831 struct usb_device *udev, u32 *cmd_status)
1832 {
1833 int ret;
1834
1835 switch (*cmd_status) {
1836 case COMP_COMMAND_ABORTED:
1837 case COMP_COMMAND_RING_STOPPED:
1838 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1839 ret = -ETIME;
1840 break;
1841 case COMP_RESOURCE_ERROR:
1842 dev_warn(&udev->dev,
1843 "Not enough host controller resources for new device state.\n");
1844 ret = -ENOMEM;
1845 /* FIXME: can we allocate more resources for the HC? */
1846 break;
1847 case COMP_BANDWIDTH_ERROR:
1848 case COMP_SECONDARY_BANDWIDTH_ERROR:
1849 dev_warn(&udev->dev,
1850 "Not enough bandwidth for new device state.\n");
1851 ret = -ENOSPC;
1852 /* FIXME: can we go back to the old state? */
1853 break;
1854 case COMP_TRB_ERROR:
1855 /* the HCD set up something wrong */
1856 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1857 "add flag = 1, "
1858 "and endpoint is not disabled.\n");
1859 ret = -EINVAL;
1860 break;
1861 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1862 dev_warn(&udev->dev,
1863 "ERROR: Incompatible device for endpoint configure command.\n");
1864 ret = -ENODEV;
1865 break;
1866 case COMP_SUCCESS:
1867 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1868 "Successful Endpoint Configure command");
1869 ret = 0;
1870 break;
1871 default:
1872 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1873 *cmd_status);
1874 ret = -EINVAL;
1875 break;
1876 }
1877 return ret;
1878 }
1879
1880 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1881 struct usb_device *udev, u32 *cmd_status)
1882 {
1883 int ret;
1884
1885 switch (*cmd_status) {
1886 case COMP_COMMAND_ABORTED:
1887 case COMP_COMMAND_RING_STOPPED:
1888 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1889 ret = -ETIME;
1890 break;
1891 case COMP_PARAMETER_ERROR:
1892 dev_warn(&udev->dev,
1893 "WARN: xHCI driver setup invalid evaluate context command.\n");
1894 ret = -EINVAL;
1895 break;
1896 case COMP_SLOT_NOT_ENABLED_ERROR:
1897 dev_warn(&udev->dev,
1898 "WARN: slot not enabled for evaluate context command.\n");
1899 ret = -EINVAL;
1900 break;
1901 case COMP_CONTEXT_STATE_ERROR:
1902 dev_warn(&udev->dev,
1903 "WARN: invalid context state for evaluate context command.\n");
1904 ret = -EINVAL;
1905 break;
1906 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1907 dev_warn(&udev->dev,
1908 "ERROR: Incompatible device for evaluate context command.\n");
1909 ret = -ENODEV;
1910 break;
1911 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1912 /* Max Exit Latency too large error */
1913 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1914 ret = -EINVAL;
1915 break;
1916 case COMP_SUCCESS:
1917 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1918 "Successful evaluate context command");
1919 ret = 0;
1920 break;
1921 default:
1922 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1923 *cmd_status);
1924 ret = -EINVAL;
1925 break;
1926 }
1927 return ret;
1928 }
1929
1930 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1931 struct xhci_input_control_ctx *ctrl_ctx)
1932 {
1933 u32 valid_add_flags;
1934 u32 valid_drop_flags;
1935
1936 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1937 * (bit 1). The default control endpoint is added during the Address
1938 * Device command and is never removed until the slot is disabled.
1939 */
1940 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1941 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1942
1943 /* Use hweight32 to count the number of ones in the add flags, or
1944 * number of endpoints added. Don't count endpoints that are changed
1945 * (both added and dropped).
1946 */
1947 return hweight32(valid_add_flags) -
1948 hweight32(valid_add_flags & valid_drop_flags);
1949 }
1950
1951 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1952 struct xhci_input_control_ctx *ctrl_ctx)
1953 {
1954 u32 valid_add_flags;
1955 u32 valid_drop_flags;
1956
1957 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1958 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1959
1960 return hweight32(valid_drop_flags) -
1961 hweight32(valid_add_flags & valid_drop_flags);
1962 }
1963
1964 /*
1965 * We need to reserve the new number of endpoints before the configure endpoint
1966 * command completes. We can't subtract the dropped endpoints from the number
1967 * of active endpoints until the command completes because we can oversubscribe
1968 * the host in this case:
1969 *
1970 * - the first configure endpoint command drops more endpoints than it adds
1971 * - a second configure endpoint command that adds more endpoints is queued
1972 * - the first configure endpoint command fails, so the config is unchanged
1973 * - the second command may succeed, even though there isn't enough resources
1974 *
1975 * Must be called with xhci->lock held.
1976 */
1977 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1978 struct xhci_input_control_ctx *ctrl_ctx)
1979 {
1980 u32 added_eps;
1981
1982 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1983 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1984 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1985 "Not enough ep ctxs: "
1986 "%u active, need to add %u, limit is %u.",
1987 xhci->num_active_eps, added_eps,
1988 xhci->limit_active_eps);
1989 return -ENOMEM;
1990 }
1991 xhci->num_active_eps += added_eps;
1992 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1993 "Adding %u ep ctxs, %u now active.", added_eps,
1994 xhci->num_active_eps);
1995 return 0;
1996 }
1997
1998 /*
1999 * The configure endpoint was failed by the xHC for some other reason, so we
2000 * need to revert the resources that failed configuration would have used.
2001 *
2002 * Must be called with xhci->lock held.
2003 */
2004 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2005 struct xhci_input_control_ctx *ctrl_ctx)
2006 {
2007 u32 num_failed_eps;
2008
2009 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2010 xhci->num_active_eps -= num_failed_eps;
2011 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2012 "Removing %u failed ep ctxs, %u now active.",
2013 num_failed_eps,
2014 xhci->num_active_eps);
2015 }
2016
2017 /*
2018 * Now that the command has completed, clean up the active endpoint count by
2019 * subtracting out the endpoints that were dropped (but not changed).
2020 *
2021 * Must be called with xhci->lock held.
2022 */
2023 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2024 struct xhci_input_control_ctx *ctrl_ctx)
2025 {
2026 u32 num_dropped_eps;
2027
2028 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2029 xhci->num_active_eps -= num_dropped_eps;
2030 if (num_dropped_eps)
2031 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2032 "Removing %u dropped ep ctxs, %u now active.",
2033 num_dropped_eps,
2034 xhci->num_active_eps);
2035 }
2036
2037 static unsigned int xhci_get_block_size(struct usb_device *udev)
2038 {
2039 switch (udev->speed) {
2040 case USB_SPEED_LOW:
2041 case USB_SPEED_FULL:
2042 return FS_BLOCK;
2043 case USB_SPEED_HIGH:
2044 return HS_BLOCK;
2045 case USB_SPEED_SUPER:
2046 case USB_SPEED_SUPER_PLUS:
2047 return SS_BLOCK;
2048 case USB_SPEED_UNKNOWN:
2049 case USB_SPEED_WIRELESS:
2050 default:
2051 /* Should never happen */
2052 return 1;
2053 }
2054 }
2055
2056 static unsigned int
2057 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2058 {
2059 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2060 return LS_OVERHEAD;
2061 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2062 return FS_OVERHEAD;
2063 return HS_OVERHEAD;
2064 }
2065
2066 /* If we are changing a LS/FS device under a HS hub,
2067 * make sure (if we are activating a new TT) that the HS bus has enough
2068 * bandwidth for this new TT.
2069 */
2070 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2071 struct xhci_virt_device *virt_dev,
2072 int old_active_eps)
2073 {
2074 struct xhci_interval_bw_table *bw_table;
2075 struct xhci_tt_bw_info *tt_info;
2076
2077 /* Find the bandwidth table for the root port this TT is attached to. */
2078 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2079 tt_info = virt_dev->tt_info;
2080 /* If this TT already had active endpoints, the bandwidth for this TT
2081 * has already been added. Removing all periodic endpoints (and thus
2082 * making the TT enactive) will only decrease the bandwidth used.
2083 */
2084 if (old_active_eps)
2085 return 0;
2086 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2087 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2088 return -ENOMEM;
2089 return 0;
2090 }
2091 /* Not sure why we would have no new active endpoints...
2092 *
2093 * Maybe because of an Evaluate Context change for a hub update or a
2094 * control endpoint 0 max packet size change?
2095 * FIXME: skip the bandwidth calculation in that case.
2096 */
2097 return 0;
2098 }
2099
2100 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2101 struct xhci_virt_device *virt_dev)
2102 {
2103 unsigned int bw_reserved;
2104
2105 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2106 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2107 return -ENOMEM;
2108
2109 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2110 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2111 return -ENOMEM;
2112
2113 return 0;
2114 }
2115
2116 /*
2117 * This algorithm is a very conservative estimate of the worst-case scheduling
2118 * scenario for any one interval. The hardware dynamically schedules the
2119 * packets, so we can't tell which microframe could be the limiting factor in
2120 * the bandwidth scheduling. This only takes into account periodic endpoints.
2121 *
2122 * Obviously, we can't solve an NP complete problem to find the minimum worst
2123 * case scenario. Instead, we come up with an estimate that is no less than
2124 * the worst case bandwidth used for any one microframe, but may be an
2125 * over-estimate.
2126 *
2127 * We walk the requirements for each endpoint by interval, starting with the
2128 * smallest interval, and place packets in the schedule where there is only one
2129 * possible way to schedule packets for that interval. In order to simplify
2130 * this algorithm, we record the largest max packet size for each interval, and
2131 * assume all packets will be that size.
2132 *
2133 * For interval 0, we obviously must schedule all packets for each interval.
2134 * The bandwidth for interval 0 is just the amount of data to be transmitted
2135 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2136 * the number of packets).
2137 *
2138 * For interval 1, we have two possible microframes to schedule those packets
2139 * in. For this algorithm, if we can schedule the same number of packets for
2140 * each possible scheduling opportunity (each microframe), we will do so. The
2141 * remaining number of packets will be saved to be transmitted in the gaps in
2142 * the next interval's scheduling sequence.
2143 *
2144 * As we move those remaining packets to be scheduled with interval 2 packets,
2145 * we have to double the number of remaining packets to transmit. This is
2146 * because the intervals are actually powers of 2, and we would be transmitting
2147 * the previous interval's packets twice in this interval. We also have to be
2148 * sure that when we look at the largest max packet size for this interval, we
2149 * also look at the largest max packet size for the remaining packets and take
2150 * the greater of the two.
2151 *
2152 * The algorithm continues to evenly distribute packets in each scheduling
2153 * opportunity, and push the remaining packets out, until we get to the last
2154 * interval. Then those packets and their associated overhead are just added
2155 * to the bandwidth used.
2156 */
2157 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2158 struct xhci_virt_device *virt_dev,
2159 int old_active_eps)
2160 {
2161 unsigned int bw_reserved;
2162 unsigned int max_bandwidth;
2163 unsigned int bw_used;
2164 unsigned int block_size;
2165 struct xhci_interval_bw_table *bw_table;
2166 unsigned int packet_size = 0;
2167 unsigned int overhead = 0;
2168 unsigned int packets_transmitted = 0;
2169 unsigned int packets_remaining = 0;
2170 unsigned int i;
2171
2172 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2173 return xhci_check_ss_bw(xhci, virt_dev);
2174
2175 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2176 max_bandwidth = HS_BW_LIMIT;
2177 /* Convert percent of bus BW reserved to blocks reserved */
2178 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2179 } else {
2180 max_bandwidth = FS_BW_LIMIT;
2181 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2182 }
2183
2184 bw_table = virt_dev->bw_table;
2185 /* We need to translate the max packet size and max ESIT payloads into
2186 * the units the hardware uses.
2187 */
2188 block_size = xhci_get_block_size(virt_dev->udev);
2189
2190 /* If we are manipulating a LS/FS device under a HS hub, double check
2191 * that the HS bus has enough bandwidth if we are activing a new TT.
2192 */
2193 if (virt_dev->tt_info) {
2194 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2195 "Recalculating BW for rootport %u",
2196 virt_dev->real_port);
2197 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2198 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2199 "newly activated TT.\n");
2200 return -ENOMEM;
2201 }
2202 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2203 "Recalculating BW for TT slot %u port %u",
2204 virt_dev->tt_info->slot_id,
2205 virt_dev->tt_info->ttport);
2206 } else {
2207 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2208 "Recalculating BW for rootport %u",
2209 virt_dev->real_port);
2210 }
2211
2212 /* Add in how much bandwidth will be used for interval zero, or the
2213 * rounded max ESIT payload + number of packets * largest overhead.
2214 */
2215 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2216 bw_table->interval_bw[0].num_packets *
2217 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2218
2219 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2220 unsigned int bw_added;
2221 unsigned int largest_mps;
2222 unsigned int interval_overhead;
2223
2224 /*
2225 * How many packets could we transmit in this interval?
2226 * If packets didn't fit in the previous interval, we will need
2227 * to transmit that many packets twice within this interval.
2228 */
2229 packets_remaining = 2 * packets_remaining +
2230 bw_table->interval_bw[i].num_packets;
2231
2232 /* Find the largest max packet size of this or the previous
2233 * interval.
2234 */
2235 if (list_empty(&bw_table->interval_bw[i].endpoints))
2236 largest_mps = 0;
2237 else {
2238 struct xhci_virt_ep *virt_ep;
2239 struct list_head *ep_entry;
2240
2241 ep_entry = bw_table->interval_bw[i].endpoints.next;
2242 virt_ep = list_entry(ep_entry,
2243 struct xhci_virt_ep, bw_endpoint_list);
2244 /* Convert to blocks, rounding up */
2245 largest_mps = DIV_ROUND_UP(
2246 virt_ep->bw_info.max_packet_size,
2247 block_size);
2248 }
2249 if (largest_mps > packet_size)
2250 packet_size = largest_mps;
2251
2252 /* Use the larger overhead of this or the previous interval. */
2253 interval_overhead = xhci_get_largest_overhead(
2254 &bw_table->interval_bw[i]);
2255 if (interval_overhead > overhead)
2256 overhead = interval_overhead;
2257
2258 /* How many packets can we evenly distribute across
2259 * (1 << (i + 1)) possible scheduling opportunities?
2260 */
2261 packets_transmitted = packets_remaining >> (i + 1);
2262
2263 /* Add in the bandwidth used for those scheduled packets */
2264 bw_added = packets_transmitted * (overhead + packet_size);
2265
2266 /* How many packets do we have remaining to transmit? */
2267 packets_remaining = packets_remaining % (1 << (i + 1));
2268
2269 /* What largest max packet size should those packets have? */
2270 /* If we've transmitted all packets, don't carry over the
2271 * largest packet size.
2272 */
2273 if (packets_remaining == 0) {
2274 packet_size = 0;
2275 overhead = 0;
2276 } else if (packets_transmitted > 0) {
2277 /* Otherwise if we do have remaining packets, and we've
2278 * scheduled some packets in this interval, take the
2279 * largest max packet size from endpoints with this
2280 * interval.
2281 */
2282 packet_size = largest_mps;
2283 overhead = interval_overhead;
2284 }
2285 /* Otherwise carry over packet_size and overhead from the last
2286 * time we had a remainder.
2287 */
2288 bw_used += bw_added;
2289 if (bw_used > max_bandwidth) {
2290 xhci_warn(xhci, "Not enough bandwidth. "
2291 "Proposed: %u, Max: %u\n",
2292 bw_used, max_bandwidth);
2293 return -ENOMEM;
2294 }
2295 }
2296 /*
2297 * Ok, we know we have some packets left over after even-handedly
2298 * scheduling interval 15. We don't know which microframes they will
2299 * fit into, so we over-schedule and say they will be scheduled every
2300 * microframe.
2301 */
2302 if (packets_remaining > 0)
2303 bw_used += overhead + packet_size;
2304
2305 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2306 unsigned int port_index = virt_dev->real_port - 1;
2307
2308 /* OK, we're manipulating a HS device attached to a
2309 * root port bandwidth domain. Include the number of active TTs
2310 * in the bandwidth used.
2311 */
2312 bw_used += TT_HS_OVERHEAD *
2313 xhci->rh_bw[port_index].num_active_tts;
2314 }
2315
2316 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2317 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2318 "Available: %u " "percent",
2319 bw_used, max_bandwidth, bw_reserved,
2320 (max_bandwidth - bw_used - bw_reserved) * 100 /
2321 max_bandwidth);
2322
2323 bw_used += bw_reserved;
2324 if (bw_used > max_bandwidth) {
2325 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2326 bw_used, max_bandwidth);
2327 return -ENOMEM;
2328 }
2329
2330 bw_table->bw_used = bw_used;
2331 return 0;
2332 }
2333
2334 static bool xhci_is_async_ep(unsigned int ep_type)
2335 {
2336 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2337 ep_type != ISOC_IN_EP &&
2338 ep_type != INT_IN_EP);
2339 }
2340
2341 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2342 {
2343 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2344 }
2345
2346 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2347 {
2348 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2349
2350 if (ep_bw->ep_interval == 0)
2351 return SS_OVERHEAD_BURST +
2352 (ep_bw->mult * ep_bw->num_packets *
2353 (SS_OVERHEAD + mps));
2354 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2355 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2356 1 << ep_bw->ep_interval);
2357
2358 }
2359
2360 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2361 struct xhci_bw_info *ep_bw,
2362 struct xhci_interval_bw_table *bw_table,
2363 struct usb_device *udev,
2364 struct xhci_virt_ep *virt_ep,
2365 struct xhci_tt_bw_info *tt_info)
2366 {
2367 struct xhci_interval_bw *interval_bw;
2368 int normalized_interval;
2369
2370 if (xhci_is_async_ep(ep_bw->type))
2371 return;
2372
2373 if (udev->speed >= USB_SPEED_SUPER) {
2374 if (xhci_is_sync_in_ep(ep_bw->type))
2375 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2376 xhci_get_ss_bw_consumed(ep_bw);
2377 else
2378 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2379 xhci_get_ss_bw_consumed(ep_bw);
2380 return;
2381 }
2382
2383 /* SuperSpeed endpoints never get added to intervals in the table, so
2384 * this check is only valid for HS/FS/LS devices.
2385 */
2386 if (list_empty(&virt_ep->bw_endpoint_list))
2387 return;
2388 /* For LS/FS devices, we need to translate the interval expressed in
2389 * microframes to frames.
2390 */
2391 if (udev->speed == USB_SPEED_HIGH)
2392 normalized_interval = ep_bw->ep_interval;
2393 else
2394 normalized_interval = ep_bw->ep_interval - 3;
2395
2396 if (normalized_interval == 0)
2397 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2398 interval_bw = &bw_table->interval_bw[normalized_interval];
2399 interval_bw->num_packets -= ep_bw->num_packets;
2400 switch (udev->speed) {
2401 case USB_SPEED_LOW:
2402 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2403 break;
2404 case USB_SPEED_FULL:
2405 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2406 break;
2407 case USB_SPEED_HIGH:
2408 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2409 break;
2410 case USB_SPEED_SUPER:
2411 case USB_SPEED_SUPER_PLUS:
2412 case USB_SPEED_UNKNOWN:
2413 case USB_SPEED_WIRELESS:
2414 /* Should never happen because only LS/FS/HS endpoints will get
2415 * added to the endpoint list.
2416 */
2417 return;
2418 }
2419 if (tt_info)
2420 tt_info->active_eps -= 1;
2421 list_del_init(&virt_ep->bw_endpoint_list);
2422 }
2423
2424 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2425 struct xhci_bw_info *ep_bw,
2426 struct xhci_interval_bw_table *bw_table,
2427 struct usb_device *udev,
2428 struct xhci_virt_ep *virt_ep,
2429 struct xhci_tt_bw_info *tt_info)
2430 {
2431 struct xhci_interval_bw *interval_bw;
2432 struct xhci_virt_ep *smaller_ep;
2433 int normalized_interval;
2434
2435 if (xhci_is_async_ep(ep_bw->type))
2436 return;
2437
2438 if (udev->speed == USB_SPEED_SUPER) {
2439 if (xhci_is_sync_in_ep(ep_bw->type))
2440 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2441 xhci_get_ss_bw_consumed(ep_bw);
2442 else
2443 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2444 xhci_get_ss_bw_consumed(ep_bw);
2445 return;
2446 }
2447
2448 /* For LS/FS devices, we need to translate the interval expressed in
2449 * microframes to frames.
2450 */
2451 if (udev->speed == USB_SPEED_HIGH)
2452 normalized_interval = ep_bw->ep_interval;
2453 else
2454 normalized_interval = ep_bw->ep_interval - 3;
2455
2456 if (normalized_interval == 0)
2457 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2458 interval_bw = &bw_table->interval_bw[normalized_interval];
2459 interval_bw->num_packets += ep_bw->num_packets;
2460 switch (udev->speed) {
2461 case USB_SPEED_LOW:
2462 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2463 break;
2464 case USB_SPEED_FULL:
2465 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2466 break;
2467 case USB_SPEED_HIGH:
2468 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2469 break;
2470 case USB_SPEED_SUPER:
2471 case USB_SPEED_SUPER_PLUS:
2472 case USB_SPEED_UNKNOWN:
2473 case USB_SPEED_WIRELESS:
2474 /* Should never happen because only LS/FS/HS endpoints will get
2475 * added to the endpoint list.
2476 */
2477 return;
2478 }
2479
2480 if (tt_info)
2481 tt_info->active_eps += 1;
2482 /* Insert the endpoint into the list, largest max packet size first. */
2483 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2484 bw_endpoint_list) {
2485 if (ep_bw->max_packet_size >=
2486 smaller_ep->bw_info.max_packet_size) {
2487 /* Add the new ep before the smaller endpoint */
2488 list_add_tail(&virt_ep->bw_endpoint_list,
2489 &smaller_ep->bw_endpoint_list);
2490 return;
2491 }
2492 }
2493 /* Add the new endpoint at the end of the list. */
2494 list_add_tail(&virt_ep->bw_endpoint_list,
2495 &interval_bw->endpoints);
2496 }
2497
2498 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2499 struct xhci_virt_device *virt_dev,
2500 int old_active_eps)
2501 {
2502 struct xhci_root_port_bw_info *rh_bw_info;
2503 if (!virt_dev->tt_info)
2504 return;
2505
2506 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2507 if (old_active_eps == 0 &&
2508 virt_dev->tt_info->active_eps != 0) {
2509 rh_bw_info->num_active_tts += 1;
2510 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2511 } else if (old_active_eps != 0 &&
2512 virt_dev->tt_info->active_eps == 0) {
2513 rh_bw_info->num_active_tts -= 1;
2514 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2515 }
2516 }
2517
2518 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2519 struct xhci_virt_device *virt_dev,
2520 struct xhci_container_ctx *in_ctx)
2521 {
2522 struct xhci_bw_info ep_bw_info[31];
2523 int i;
2524 struct xhci_input_control_ctx *ctrl_ctx;
2525 int old_active_eps = 0;
2526
2527 if (virt_dev->tt_info)
2528 old_active_eps = virt_dev->tt_info->active_eps;
2529
2530 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2531 if (!ctrl_ctx) {
2532 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2533 __func__);
2534 return -ENOMEM;
2535 }
2536
2537 for (i = 0; i < 31; i++) {
2538 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539 continue;
2540
2541 /* Make a copy of the BW info in case we need to revert this */
2542 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2543 sizeof(ep_bw_info[i]));
2544 /* Drop the endpoint from the interval table if the endpoint is
2545 * being dropped or changed.
2546 */
2547 if (EP_IS_DROPPED(ctrl_ctx, i))
2548 xhci_drop_ep_from_interval_table(xhci,
2549 &virt_dev->eps[i].bw_info,
2550 virt_dev->bw_table,
2551 virt_dev->udev,
2552 &virt_dev->eps[i],
2553 virt_dev->tt_info);
2554 }
2555 /* Overwrite the information stored in the endpoints' bw_info */
2556 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2557 for (i = 0; i < 31; i++) {
2558 /* Add any changed or added endpoints to the interval table */
2559 if (EP_IS_ADDED(ctrl_ctx, i))
2560 xhci_add_ep_to_interval_table(xhci,
2561 &virt_dev->eps[i].bw_info,
2562 virt_dev->bw_table,
2563 virt_dev->udev,
2564 &virt_dev->eps[i],
2565 virt_dev->tt_info);
2566 }
2567
2568 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2569 /* Ok, this fits in the bandwidth we have.
2570 * Update the number of active TTs.
2571 */
2572 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2573 return 0;
2574 }
2575
2576 /* We don't have enough bandwidth for this, revert the stored info. */
2577 for (i = 0; i < 31; i++) {
2578 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2579 continue;
2580
2581 /* Drop the new copies of any added or changed endpoints from
2582 * the interval table.
2583 */
2584 if (EP_IS_ADDED(ctrl_ctx, i)) {
2585 xhci_drop_ep_from_interval_table(xhci,
2586 &virt_dev->eps[i].bw_info,
2587 virt_dev->bw_table,
2588 virt_dev->udev,
2589 &virt_dev->eps[i],
2590 virt_dev->tt_info);
2591 }
2592 /* Revert the endpoint back to its old information */
2593 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2594 sizeof(ep_bw_info[i]));
2595 /* Add any changed or dropped endpoints back into the table */
2596 if (EP_IS_DROPPED(ctrl_ctx, i))
2597 xhci_add_ep_to_interval_table(xhci,
2598 &virt_dev->eps[i].bw_info,
2599 virt_dev->bw_table,
2600 virt_dev->udev,
2601 &virt_dev->eps[i],
2602 virt_dev->tt_info);
2603 }
2604 return -ENOMEM;
2605 }
2606
2607
2608 /* Issue a configure endpoint command or evaluate context command
2609 * and wait for it to finish.
2610 */
2611 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2612 struct usb_device *udev,
2613 struct xhci_command *command,
2614 bool ctx_change, bool must_succeed)
2615 {
2616 int ret;
2617 unsigned long flags;
2618 struct xhci_input_control_ctx *ctrl_ctx;
2619 struct xhci_virt_device *virt_dev;
2620 struct xhci_slot_ctx *slot_ctx;
2621
2622 if (!command)
2623 return -EINVAL;
2624
2625 spin_lock_irqsave(&xhci->lock, flags);
2626
2627 if (xhci->xhc_state & XHCI_STATE_DYING) {
2628 spin_unlock_irqrestore(&xhci->lock, flags);
2629 return -ESHUTDOWN;
2630 }
2631
2632 virt_dev = xhci->devs[udev->slot_id];
2633
2634 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2635 if (!ctrl_ctx) {
2636 spin_unlock_irqrestore(&xhci->lock, flags);
2637 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2638 __func__);
2639 return -ENOMEM;
2640 }
2641
2642 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2643 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2644 spin_unlock_irqrestore(&xhci->lock, flags);
2645 xhci_warn(xhci, "Not enough host resources, "
2646 "active endpoint contexts = %u\n",
2647 xhci->num_active_eps);
2648 return -ENOMEM;
2649 }
2650 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2651 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2652 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2653 xhci_free_host_resources(xhci, ctrl_ctx);
2654 spin_unlock_irqrestore(&xhci->lock, flags);
2655 xhci_warn(xhci, "Not enough bandwidth\n");
2656 return -ENOMEM;
2657 }
2658
2659 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2660 trace_xhci_configure_endpoint(slot_ctx);
2661
2662 if (!ctx_change)
2663 ret = xhci_queue_configure_endpoint(xhci, command,
2664 command->in_ctx->dma,
2665 udev->slot_id, must_succeed);
2666 else
2667 ret = xhci_queue_evaluate_context(xhci, command,
2668 command->in_ctx->dma,
2669 udev->slot_id, must_succeed);
2670 if (ret < 0) {
2671 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2672 xhci_free_host_resources(xhci, ctrl_ctx);
2673 spin_unlock_irqrestore(&xhci->lock, flags);
2674 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2675 "FIXME allocate a new ring segment");
2676 return -ENOMEM;
2677 }
2678 xhci_ring_cmd_db(xhci);
2679 spin_unlock_irqrestore(&xhci->lock, flags);
2680
2681 /* Wait for the configure endpoint command to complete */
2682 wait_for_completion(command->completion);
2683
2684 if (!ctx_change)
2685 ret = xhci_configure_endpoint_result(xhci, udev,
2686 &command->status);
2687 else
2688 ret = xhci_evaluate_context_result(xhci, udev,
2689 &command->status);
2690
2691 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2692 spin_lock_irqsave(&xhci->lock, flags);
2693 /* If the command failed, remove the reserved resources.
2694 * Otherwise, clean up the estimate to include dropped eps.
2695 */
2696 if (ret)
2697 xhci_free_host_resources(xhci, ctrl_ctx);
2698 else
2699 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2700 spin_unlock_irqrestore(&xhci->lock, flags);
2701 }
2702 return ret;
2703 }
2704
2705 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2706 struct xhci_virt_device *vdev, int i)
2707 {
2708 struct xhci_virt_ep *ep = &vdev->eps[i];
2709
2710 if (ep->ep_state & EP_HAS_STREAMS) {
2711 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2712 xhci_get_endpoint_address(i));
2713 xhci_free_stream_info(xhci, ep->stream_info);
2714 ep->stream_info = NULL;
2715 ep->ep_state &= ~EP_HAS_STREAMS;
2716 }
2717 }
2718
2719 /* Called after one or more calls to xhci_add_endpoint() or
2720 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2721 * to call xhci_reset_bandwidth().
2722 *
2723 * Since we are in the middle of changing either configuration or
2724 * installing a new alt setting, the USB core won't allow URBs to be
2725 * enqueued for any endpoint on the old config or interface. Nothing
2726 * else should be touching the xhci->devs[slot_id] structure, so we
2727 * don't need to take the xhci->lock for manipulating that.
2728 */
2729 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2730 {
2731 int i;
2732 int ret = 0;
2733 struct xhci_hcd *xhci;
2734 struct xhci_virt_device *virt_dev;
2735 struct xhci_input_control_ctx *ctrl_ctx;
2736 struct xhci_slot_ctx *slot_ctx;
2737 struct xhci_command *command;
2738
2739 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2740 if (ret <= 0)
2741 return ret;
2742 xhci = hcd_to_xhci(hcd);
2743 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2744 (xhci->xhc_state & XHCI_STATE_REMOVING))
2745 return -ENODEV;
2746
2747 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2748 virt_dev = xhci->devs[udev->slot_id];
2749
2750 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2751 if (!command)
2752 return -ENOMEM;
2753
2754 command->in_ctx = virt_dev->in_ctx;
2755
2756 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2757 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2758 if (!ctrl_ctx) {
2759 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2760 __func__);
2761 ret = -ENOMEM;
2762 goto command_cleanup;
2763 }
2764 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2765 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2766 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2767
2768 /* Don't issue the command if there's no endpoints to update. */
2769 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2770 ctrl_ctx->drop_flags == 0) {
2771 ret = 0;
2772 goto command_cleanup;
2773 }
2774 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2775 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2776 for (i = 31; i >= 1; i--) {
2777 __le32 le32 = cpu_to_le32(BIT(i));
2778
2779 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2780 || (ctrl_ctx->add_flags & le32) || i == 1) {
2781 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2782 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2783 break;
2784 }
2785 }
2786
2787 ret = xhci_configure_endpoint(xhci, udev, command,
2788 false, false);
2789 if (ret)
2790 /* Callee should call reset_bandwidth() */
2791 goto command_cleanup;
2792
2793 /* Free any rings that were dropped, but not changed. */
2794 for (i = 1; i < 31; i++) {
2795 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2796 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2797 xhci_free_endpoint_ring(xhci, virt_dev, i);
2798 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2799 }
2800 }
2801 xhci_zero_in_ctx(xhci, virt_dev);
2802 /*
2803 * Install any rings for completely new endpoints or changed endpoints,
2804 * and free any old rings from changed endpoints.
2805 */
2806 for (i = 1; i < 31; i++) {
2807 if (!virt_dev->eps[i].new_ring)
2808 continue;
2809 /* Only free the old ring if it exists.
2810 * It may not if this is the first add of an endpoint.
2811 */
2812 if (virt_dev->eps[i].ring) {
2813 xhci_free_endpoint_ring(xhci, virt_dev, i);
2814 }
2815 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2816 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2817 virt_dev->eps[i].new_ring = NULL;
2818 }
2819 command_cleanup:
2820 kfree(command->completion);
2821 kfree(command);
2822
2823 return ret;
2824 }
2825
2826 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2827 {
2828 struct xhci_hcd *xhci;
2829 struct xhci_virt_device *virt_dev;
2830 int i, ret;
2831
2832 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2833 if (ret <= 0)
2834 return;
2835 xhci = hcd_to_xhci(hcd);
2836
2837 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2838 virt_dev = xhci->devs[udev->slot_id];
2839 /* Free any rings allocated for added endpoints */
2840 for (i = 0; i < 31; i++) {
2841 if (virt_dev->eps[i].new_ring) {
2842 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2843 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2844 virt_dev->eps[i].new_ring = NULL;
2845 }
2846 }
2847 xhci_zero_in_ctx(xhci, virt_dev);
2848 }
2849
2850 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2851 struct xhci_container_ctx *in_ctx,
2852 struct xhci_container_ctx *out_ctx,
2853 struct xhci_input_control_ctx *ctrl_ctx,
2854 u32 add_flags, u32 drop_flags)
2855 {
2856 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2857 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2858 xhci_slot_copy(xhci, in_ctx, out_ctx);
2859 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2860 }
2861
2862 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2863 unsigned int slot_id, unsigned int ep_index,
2864 struct xhci_dequeue_state *deq_state)
2865 {
2866 struct xhci_input_control_ctx *ctrl_ctx;
2867 struct xhci_container_ctx *in_ctx;
2868 struct xhci_ep_ctx *ep_ctx;
2869 u32 added_ctxs;
2870 dma_addr_t addr;
2871
2872 in_ctx = xhci->devs[slot_id]->in_ctx;
2873 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2874 if (!ctrl_ctx) {
2875 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2876 __func__);
2877 return;
2878 }
2879
2880 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2881 xhci->devs[slot_id]->out_ctx, ep_index);
2882 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2883 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2884 deq_state->new_deq_ptr);
2885 if (addr == 0) {
2886 xhci_warn(xhci, "WARN Cannot submit config ep after "
2887 "reset ep command\n");
2888 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2889 deq_state->new_deq_seg,
2890 deq_state->new_deq_ptr);
2891 return;
2892 }
2893 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2894
2895 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2896 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2897 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2898 added_ctxs, added_ctxs);
2899 }
2900
2901 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2902 unsigned int stream_id, struct xhci_td *td)
2903 {
2904 struct xhci_dequeue_state deq_state;
2905 struct xhci_virt_ep *ep;
2906 struct usb_device *udev = td->urb->dev;
2907
2908 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2909 "Cleaning up stalled endpoint ring");
2910 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2911 /* We need to move the HW's dequeue pointer past this TD,
2912 * or it will attempt to resend it on the next doorbell ring.
2913 */
2914 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2915 ep_index, stream_id, td, &deq_state);
2916
2917 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2918 return;
2919
2920 /* HW with the reset endpoint quirk will use the saved dequeue state to
2921 * issue a configure endpoint command later.
2922 */
2923 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2924 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2925 "Queueing new dequeue state");
2926 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2927 ep_index, &deq_state);
2928 } else {
2929 /* Better hope no one uses the input context between now and the
2930 * reset endpoint completion!
2931 * XXX: No idea how this hardware will react when stream rings
2932 * are enabled.
2933 */
2934 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2935 "Setting up input context for "
2936 "configure endpoint command");
2937 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2938 ep_index, &deq_state);
2939 }
2940 }
2941
2942 /* Called when clearing halted device. The core should have sent the control
2943 * message to clear the device halt condition. The host side of the halt should
2944 * already be cleared with a reset endpoint command issued when the STALL tx
2945 * event was received.
2946 *
2947 * Context: in_interrupt
2948 */
2949
2950 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2951 struct usb_host_endpoint *ep)
2952 {
2953 struct xhci_hcd *xhci;
2954
2955 xhci = hcd_to_xhci(hcd);
2956
2957 /*
2958 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2959 * The Reset Endpoint Command may only be issued to endpoints in the
2960 * Halted state. If software wishes reset the Data Toggle or Sequence
2961 * Number of an endpoint that isn't in the Halted state, then software
2962 * may issue a Configure Endpoint Command with the Drop and Add bits set
2963 * for the target endpoint. that is in the Stopped state.
2964 */
2965
2966 /* For now just print debug to follow the situation */
2967 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2968 ep->desc.bEndpointAddress);
2969 }
2970
2971 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2972 struct usb_device *udev, struct usb_host_endpoint *ep,
2973 unsigned int slot_id)
2974 {
2975 int ret;
2976 unsigned int ep_index;
2977 unsigned int ep_state;
2978
2979 if (!ep)
2980 return -EINVAL;
2981 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2982 if (ret <= 0)
2983 return -EINVAL;
2984 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2985 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2986 " descriptor for ep 0x%x does not support streams\n",
2987 ep->desc.bEndpointAddress);
2988 return -EINVAL;
2989 }
2990
2991 ep_index = xhci_get_endpoint_index(&ep->desc);
2992 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2993 if (ep_state & EP_HAS_STREAMS ||
2994 ep_state & EP_GETTING_STREAMS) {
2995 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2996 "already has streams set up.\n",
2997 ep->desc.bEndpointAddress);
2998 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2999 "dynamic stream context array reallocation.\n");
3000 return -EINVAL;
3001 }
3002 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3003 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3004 "endpoint 0x%x; URBs are pending.\n",
3005 ep->desc.bEndpointAddress);
3006 return -EINVAL;
3007 }
3008 return 0;
3009 }
3010
3011 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3012 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3013 {
3014 unsigned int max_streams;
3015
3016 /* The stream context array size must be a power of two */
3017 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3018 /*
3019 * Find out how many primary stream array entries the host controller
3020 * supports. Later we may use secondary stream arrays (similar to 2nd
3021 * level page entries), but that's an optional feature for xHCI host
3022 * controllers. xHCs must support at least 4 stream IDs.
3023 */
3024 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3025 if (*num_stream_ctxs > max_streams) {
3026 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3027 max_streams);
3028 *num_stream_ctxs = max_streams;
3029 *num_streams = max_streams;
3030 }
3031 }
3032
3033 /* Returns an error code if one of the endpoint already has streams.
3034 * This does not change any data structures, it only checks and gathers
3035 * information.
3036 */
3037 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3038 struct usb_device *udev,
3039 struct usb_host_endpoint **eps, unsigned int num_eps,
3040 unsigned int *num_streams, u32 *changed_ep_bitmask)
3041 {
3042 unsigned int max_streams;
3043 unsigned int endpoint_flag;
3044 int i;
3045 int ret;
3046
3047 for (i = 0; i < num_eps; i++) {
3048 ret = xhci_check_streams_endpoint(xhci, udev,
3049 eps[i], udev->slot_id);
3050 if (ret < 0)
3051 return ret;
3052
3053 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3054 if (max_streams < (*num_streams - 1)) {
3055 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3056 eps[i]->desc.bEndpointAddress,
3057 max_streams);
3058 *num_streams = max_streams+1;
3059 }
3060
3061 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3062 if (*changed_ep_bitmask & endpoint_flag)
3063 return -EINVAL;
3064 *changed_ep_bitmask |= endpoint_flag;
3065 }
3066 return 0;
3067 }
3068
3069 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3070 struct usb_device *udev,
3071 struct usb_host_endpoint **eps, unsigned int num_eps)
3072 {
3073 u32 changed_ep_bitmask = 0;
3074 unsigned int slot_id;
3075 unsigned int ep_index;
3076 unsigned int ep_state;
3077 int i;
3078
3079 slot_id = udev->slot_id;
3080 if (!xhci->devs[slot_id])
3081 return 0;
3082
3083 for (i = 0; i < num_eps; i++) {
3084 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3085 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3086 /* Are streams already being freed for the endpoint? */
3087 if (ep_state & EP_GETTING_NO_STREAMS) {
3088 xhci_warn(xhci, "WARN Can't disable streams for "
3089 "endpoint 0x%x, "
3090 "streams are being disabled already\n",
3091 eps[i]->desc.bEndpointAddress);
3092 return 0;
3093 }
3094 /* Are there actually any streams to free? */
3095 if (!(ep_state & EP_HAS_STREAMS) &&
3096 !(ep_state & EP_GETTING_STREAMS)) {
3097 xhci_warn(xhci, "WARN Can't disable streams for "
3098 "endpoint 0x%x, "
3099 "streams are already disabled!\n",
3100 eps[i]->desc.bEndpointAddress);
3101 xhci_warn(xhci, "WARN xhci_free_streams() called "
3102 "with non-streams endpoint\n");
3103 return 0;
3104 }
3105 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3106 }
3107 return changed_ep_bitmask;
3108 }
3109
3110 /*
3111 * The USB device drivers use this function (through the HCD interface in USB
3112 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3113 * coordinate mass storage command queueing across multiple endpoints (basically
3114 * a stream ID == a task ID).
3115 *
3116 * Setting up streams involves allocating the same size stream context array
3117 * for each endpoint and issuing a configure endpoint command for all endpoints.
3118 *
3119 * Don't allow the call to succeed if one endpoint only supports one stream
3120 * (which means it doesn't support streams at all).
3121 *
3122 * Drivers may get less stream IDs than they asked for, if the host controller
3123 * hardware or endpoints claim they can't support the number of requested
3124 * stream IDs.
3125 */
3126 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3127 struct usb_host_endpoint **eps, unsigned int num_eps,
3128 unsigned int num_streams, gfp_t mem_flags)
3129 {
3130 int i, ret;
3131 struct xhci_hcd *xhci;
3132 struct xhci_virt_device *vdev;
3133 struct xhci_command *config_cmd;
3134 struct xhci_input_control_ctx *ctrl_ctx;
3135 unsigned int ep_index;
3136 unsigned int num_stream_ctxs;
3137 unsigned int max_packet;
3138 unsigned long flags;
3139 u32 changed_ep_bitmask = 0;
3140
3141 if (!eps)
3142 return -EINVAL;
3143
3144 /* Add one to the number of streams requested to account for
3145 * stream 0 that is reserved for xHCI usage.
3146 */
3147 num_streams += 1;
3148 xhci = hcd_to_xhci(hcd);
3149 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3150 num_streams);
3151
3152 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3153 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3154 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3155 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3156 return -ENOSYS;
3157 }
3158
3159 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3160 if (!config_cmd)
3161 return -ENOMEM;
3162
3163 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3164 if (!ctrl_ctx) {
3165 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3166 __func__);
3167 xhci_free_command(xhci, config_cmd);
3168 return -ENOMEM;
3169 }
3170
3171 /* Check to make sure all endpoints are not already configured for
3172 * streams. While we're at it, find the maximum number of streams that
3173 * all the endpoints will support and check for duplicate endpoints.
3174 */
3175 spin_lock_irqsave(&xhci->lock, flags);
3176 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3177 num_eps, &num_streams, &changed_ep_bitmask);
3178 if (ret < 0) {
3179 xhci_free_command(xhci, config_cmd);
3180 spin_unlock_irqrestore(&xhci->lock, flags);
3181 return ret;
3182 }
3183 if (num_streams <= 1) {
3184 xhci_warn(xhci, "WARN: endpoints can't handle "
3185 "more than one stream.\n");
3186 xhci_free_command(xhci, config_cmd);
3187 spin_unlock_irqrestore(&xhci->lock, flags);
3188 return -EINVAL;
3189 }
3190 vdev = xhci->devs[udev->slot_id];
3191 /* Mark each endpoint as being in transition, so
3192 * xhci_urb_enqueue() will reject all URBs.
3193 */
3194 for (i = 0; i < num_eps; i++) {
3195 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3196 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3197 }
3198 spin_unlock_irqrestore(&xhci->lock, flags);
3199
3200 /* Setup internal data structures and allocate HW data structures for
3201 * streams (but don't install the HW structures in the input context
3202 * until we're sure all memory allocation succeeded).
3203 */
3204 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3205 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3206 num_stream_ctxs, num_streams);
3207
3208 for (i = 0; i < num_eps; i++) {
3209 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3210 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3211 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3212 num_stream_ctxs,
3213 num_streams,
3214 max_packet, mem_flags);
3215 if (!vdev->eps[ep_index].stream_info)
3216 goto cleanup;
3217 /* Set maxPstreams in endpoint context and update deq ptr to
3218 * point to stream context array. FIXME
3219 */
3220 }
3221
3222 /* Set up the input context for a configure endpoint command. */
3223 for (i = 0; i < num_eps; i++) {
3224 struct xhci_ep_ctx *ep_ctx;
3225
3226 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3227 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3228
3229 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3230 vdev->out_ctx, ep_index);
3231 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3232 vdev->eps[ep_index].stream_info);
3233 }
3234 /* Tell the HW to drop its old copy of the endpoint context info
3235 * and add the updated copy from the input context.
3236 */
3237 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3238 vdev->out_ctx, ctrl_ctx,
3239 changed_ep_bitmask, changed_ep_bitmask);
3240
3241 /* Issue and wait for the configure endpoint command */
3242 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3243 false, false);
3244
3245 /* xHC rejected the configure endpoint command for some reason, so we
3246 * leave the old ring intact and free our internal streams data
3247 * structure.
3248 */
3249 if (ret < 0)
3250 goto cleanup;
3251
3252 spin_lock_irqsave(&xhci->lock, flags);
3253 for (i = 0; i < num_eps; i++) {
3254 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3255 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3256 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3257 udev->slot_id, ep_index);
3258 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3259 }
3260 xhci_free_command(xhci, config_cmd);
3261 spin_unlock_irqrestore(&xhci->lock, flags);
3262
3263 /* Subtract 1 for stream 0, which drivers can't use */
3264 return num_streams - 1;
3265
3266 cleanup:
3267 /* If it didn't work, free the streams! */
3268 for (i = 0; i < num_eps; i++) {
3269 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3270 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3271 vdev->eps[ep_index].stream_info = NULL;
3272 /* FIXME Unset maxPstreams in endpoint context and
3273 * update deq ptr to point to normal string ring.
3274 */
3275 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3276 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3277 xhci_endpoint_zero(xhci, vdev, eps[i]);
3278 }
3279 xhci_free_command(xhci, config_cmd);
3280 return -ENOMEM;
3281 }
3282
3283 /* Transition the endpoint from using streams to being a "normal" endpoint
3284 * without streams.
3285 *
3286 * Modify the endpoint context state, submit a configure endpoint command,
3287 * and free all endpoint rings for streams if that completes successfully.
3288 */
3289 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3290 struct usb_host_endpoint **eps, unsigned int num_eps,
3291 gfp_t mem_flags)
3292 {
3293 int i, ret;
3294 struct xhci_hcd *xhci;
3295 struct xhci_virt_device *vdev;
3296 struct xhci_command *command;
3297 struct xhci_input_control_ctx *ctrl_ctx;
3298 unsigned int ep_index;
3299 unsigned long flags;
3300 u32 changed_ep_bitmask;
3301
3302 xhci = hcd_to_xhci(hcd);
3303 vdev = xhci->devs[udev->slot_id];
3304
3305 /* Set up a configure endpoint command to remove the streams rings */
3306 spin_lock_irqsave(&xhci->lock, flags);
3307 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3308 udev, eps, num_eps);
3309 if (changed_ep_bitmask == 0) {
3310 spin_unlock_irqrestore(&xhci->lock, flags);
3311 return -EINVAL;
3312 }
3313
3314 /* Use the xhci_command structure from the first endpoint. We may have
3315 * allocated too many, but the driver may call xhci_free_streams() for
3316 * each endpoint it grouped into one call to xhci_alloc_streams().
3317 */
3318 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3319 command = vdev->eps[ep_index].stream_info->free_streams_command;
3320 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3321 if (!ctrl_ctx) {
3322 spin_unlock_irqrestore(&xhci->lock, flags);
3323 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324 __func__);
3325 return -EINVAL;
3326 }
3327
3328 for (i = 0; i < num_eps; i++) {
3329 struct xhci_ep_ctx *ep_ctx;
3330
3331 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3332 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3333 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3334 EP_GETTING_NO_STREAMS;
3335
3336 xhci_endpoint_copy(xhci, command->in_ctx,
3337 vdev->out_ctx, ep_index);
3338 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3339 &vdev->eps[ep_index]);
3340 }
3341 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3342 vdev->out_ctx, ctrl_ctx,
3343 changed_ep_bitmask, changed_ep_bitmask);
3344 spin_unlock_irqrestore(&xhci->lock, flags);
3345
3346 /* Issue and wait for the configure endpoint command,
3347 * which must succeed.
3348 */
3349 ret = xhci_configure_endpoint(xhci, udev, command,
3350 false, true);
3351
3352 /* xHC rejected the configure endpoint command for some reason, so we
3353 * leave the streams rings intact.
3354 */
3355 if (ret < 0)
3356 return ret;
3357
3358 spin_lock_irqsave(&xhci->lock, flags);
3359 for (i = 0; i < num_eps; i++) {
3360 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3362 vdev->eps[ep_index].stream_info = NULL;
3363 /* FIXME Unset maxPstreams in endpoint context and
3364 * update deq ptr to point to normal string ring.
3365 */
3366 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3367 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3368 }
3369 spin_unlock_irqrestore(&xhci->lock, flags);
3370
3371 return 0;
3372 }
3373
3374 /*
3375 * Deletes endpoint resources for endpoints that were active before a Reset
3376 * Device command, or a Disable Slot command. The Reset Device command leaves
3377 * the control endpoint intact, whereas the Disable Slot command deletes it.
3378 *
3379 * Must be called with xhci->lock held.
3380 */
3381 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3382 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3383 {
3384 int i;
3385 unsigned int num_dropped_eps = 0;
3386 unsigned int drop_flags = 0;
3387
3388 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3389 if (virt_dev->eps[i].ring) {
3390 drop_flags |= 1 << i;
3391 num_dropped_eps++;
3392 }
3393 }
3394 xhci->num_active_eps -= num_dropped_eps;
3395 if (num_dropped_eps)
3396 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3397 "Dropped %u ep ctxs, flags = 0x%x, "
3398 "%u now active.",
3399 num_dropped_eps, drop_flags,
3400 xhci->num_active_eps);
3401 }
3402
3403 /*
3404 * This submits a Reset Device Command, which will set the device state to 0,
3405 * set the device address to 0, and disable all the endpoints except the default
3406 * control endpoint. The USB core should come back and call
3407 * xhci_address_device(), and then re-set up the configuration. If this is
3408 * called because of a usb_reset_and_verify_device(), then the old alternate
3409 * settings will be re-installed through the normal bandwidth allocation
3410 * functions.
3411 *
3412 * Wait for the Reset Device command to finish. Remove all structures
3413 * associated with the endpoints that were disabled. Clear the input device
3414 * structure? Reset the control endpoint 0 max packet size?
3415 *
3416 * If the virt_dev to be reset does not exist or does not match the udev,
3417 * it means the device is lost, possibly due to the xHC restore error and
3418 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3419 * re-allocate the device.
3420 */
3421 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3422 struct usb_device *udev)
3423 {
3424 int ret, i;
3425 unsigned long flags;
3426 struct xhci_hcd *xhci;
3427 unsigned int slot_id;
3428 struct xhci_virt_device *virt_dev;
3429 struct xhci_command *reset_device_cmd;
3430 int last_freed_endpoint;
3431 struct xhci_slot_ctx *slot_ctx;
3432 int old_active_eps = 0;
3433
3434 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3435 if (ret <= 0)
3436 return ret;
3437 xhci = hcd_to_xhci(hcd);
3438 slot_id = udev->slot_id;
3439 virt_dev = xhci->devs[slot_id];
3440 if (!virt_dev) {
3441 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3442 "not exist. Re-allocate the device\n", slot_id);
3443 ret = xhci_alloc_dev(hcd, udev);
3444 if (ret == 1)
3445 return 0;
3446 else
3447 return -EINVAL;
3448 }
3449
3450 if (virt_dev->tt_info)
3451 old_active_eps = virt_dev->tt_info->active_eps;
3452
3453 if (virt_dev->udev != udev) {
3454 /* If the virt_dev and the udev does not match, this virt_dev
3455 * may belong to another udev.
3456 * Re-allocate the device.
3457 */
3458 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3459 "not match the udev. Re-allocate the device\n",
3460 slot_id);
3461 ret = xhci_alloc_dev(hcd, udev);
3462 if (ret == 1)
3463 return 0;
3464 else
3465 return -EINVAL;
3466 }
3467
3468 /* If device is not setup, there is no point in resetting it */
3469 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3470 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3471 SLOT_STATE_DISABLED)
3472 return 0;
3473
3474 trace_xhci_discover_or_reset_device(slot_ctx);
3475
3476 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3477 /* Allocate the command structure that holds the struct completion.
3478 * Assume we're in process context, since the normal device reset
3479 * process has to wait for the device anyway. Storage devices are
3480 * reset as part of error handling, so use GFP_NOIO instead of
3481 * GFP_KERNEL.
3482 */
3483 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3484 if (!reset_device_cmd) {
3485 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3486 return -ENOMEM;
3487 }
3488
3489 /* Attempt to submit the Reset Device command to the command ring */
3490 spin_lock_irqsave(&xhci->lock, flags);
3491
3492 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3493 if (ret) {
3494 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3495 spin_unlock_irqrestore(&xhci->lock, flags);
3496 goto command_cleanup;
3497 }
3498 xhci_ring_cmd_db(xhci);
3499 spin_unlock_irqrestore(&xhci->lock, flags);
3500
3501 /* Wait for the Reset Device command to finish */
3502 wait_for_completion(reset_device_cmd->completion);
3503
3504 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3505 * unless we tried to reset a slot ID that wasn't enabled,
3506 * or the device wasn't in the addressed or configured state.
3507 */
3508 ret = reset_device_cmd->status;
3509 switch (ret) {
3510 case COMP_COMMAND_ABORTED:
3511 case COMP_COMMAND_RING_STOPPED:
3512 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3513 ret = -ETIME;
3514 goto command_cleanup;
3515 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3516 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3517 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3518 slot_id,
3519 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3520 xhci_dbg(xhci, "Not freeing device rings.\n");
3521 /* Don't treat this as an error. May change my mind later. */
3522 ret = 0;
3523 goto command_cleanup;
3524 case COMP_SUCCESS:
3525 xhci_dbg(xhci, "Successful reset device command.\n");
3526 break;
3527 default:
3528 if (xhci_is_vendor_info_code(xhci, ret))
3529 break;
3530 xhci_warn(xhci, "Unknown completion code %u for "
3531 "reset device command.\n", ret);
3532 ret = -EINVAL;
3533 goto command_cleanup;
3534 }
3535
3536 /* Free up host controller endpoint resources */
3537 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3538 spin_lock_irqsave(&xhci->lock, flags);
3539 /* Don't delete the default control endpoint resources */
3540 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3541 spin_unlock_irqrestore(&xhci->lock, flags);
3542 }
3543
3544 /* Everything but endpoint 0 is disabled, so free the rings. */
3545 last_freed_endpoint = 1;
3546 for (i = 1; i < 31; i++) {
3547 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3548
3549 if (ep->ep_state & EP_HAS_STREAMS) {
3550 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3551 xhci_get_endpoint_address(i));
3552 xhci_free_stream_info(xhci, ep->stream_info);
3553 ep->stream_info = NULL;
3554 ep->ep_state &= ~EP_HAS_STREAMS;
3555 }
3556
3557 if (ep->ring) {
3558 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3559 xhci_free_endpoint_ring(xhci, virt_dev, i);
3560 last_freed_endpoint = i;
3561 }
3562 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3563 xhci_drop_ep_from_interval_table(xhci,
3564 &virt_dev->eps[i].bw_info,
3565 virt_dev->bw_table,
3566 udev,
3567 &virt_dev->eps[i],
3568 virt_dev->tt_info);
3569 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3570 }
3571 /* If necessary, update the number of active TTs on this root port */
3572 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3573 ret = 0;
3574
3575 command_cleanup:
3576 xhci_free_command(xhci, reset_device_cmd);
3577 return ret;
3578 }
3579
3580 /*
3581 * At this point, the struct usb_device is about to go away, the device has
3582 * disconnected, and all traffic has been stopped and the endpoints have been
3583 * disabled. Free any HC data structures associated with that device.
3584 */
3585 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3586 {
3587 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3588 struct xhci_virt_device *virt_dev;
3589 struct xhci_slot_ctx *slot_ctx;
3590 int i, ret;
3591
3592 #ifndef CONFIG_USB_DEFAULT_PERSIST
3593 /*
3594 * We called pm_runtime_get_noresume when the device was attached.
3595 * Decrement the counter here to allow controller to runtime suspend
3596 * if no devices remain.
3597 */
3598 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3599 pm_runtime_put_noidle(hcd->self.controller);
3600 #endif
3601
3602 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3603 /* If the host is halted due to driver unload, we still need to free the
3604 * device.
3605 */
3606 if (ret <= 0 && ret != -ENODEV)
3607 return;
3608
3609 virt_dev = xhci->devs[udev->slot_id];
3610 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3611 trace_xhci_free_dev(slot_ctx);
3612
3613 /* Stop any wayward timer functions (which may grab the lock) */
3614 for (i = 0; i < 31; i++) {
3615 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3616 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3617 }
3618 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3619 virt_dev->udev = NULL;
3620 ret = xhci_disable_slot(xhci, udev->slot_id);
3621 if (ret)
3622 xhci_free_virt_device(xhci, udev->slot_id);
3623 }
3624
3625 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3626 {
3627 struct xhci_command *command;
3628 unsigned long flags;
3629 u32 state;
3630 int ret = 0;
3631
3632 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3633 if (!command)
3634 return -ENOMEM;
3635
3636 spin_lock_irqsave(&xhci->lock, flags);
3637 /* Don't disable the slot if the host controller is dead. */
3638 state = readl(&xhci->op_regs->status);
3639 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3640 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3641 spin_unlock_irqrestore(&xhci->lock, flags);
3642 kfree(command);
3643 return -ENODEV;
3644 }
3645
3646 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3647 slot_id);
3648 if (ret) {
3649 spin_unlock_irqrestore(&xhci->lock, flags);
3650 kfree(command);
3651 return ret;
3652 }
3653 xhci_ring_cmd_db(xhci);
3654 spin_unlock_irqrestore(&xhci->lock, flags);
3655 return ret;
3656 }
3657
3658 /*
3659 * Checks if we have enough host controller resources for the default control
3660 * endpoint.
3661 *
3662 * Must be called with xhci->lock held.
3663 */
3664 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3665 {
3666 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3667 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668 "Not enough ep ctxs: "
3669 "%u active, need to add 1, limit is %u.",
3670 xhci->num_active_eps, xhci->limit_active_eps);
3671 return -ENOMEM;
3672 }
3673 xhci->num_active_eps += 1;
3674 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3675 "Adding 1 ep ctx, %u now active.",
3676 xhci->num_active_eps);
3677 return 0;
3678 }
3679
3680
3681 /*
3682 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3683 * timed out, or allocating memory failed. Returns 1 on success.
3684 */
3685 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3686 {
3687 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3688 struct xhci_virt_device *vdev;
3689 struct xhci_slot_ctx *slot_ctx;
3690 unsigned long flags;
3691 int ret, slot_id;
3692 struct xhci_command *command;
3693
3694 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3695 if (!command)
3696 return 0;
3697
3698 spin_lock_irqsave(&xhci->lock, flags);
3699 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3700 if (ret) {
3701 spin_unlock_irqrestore(&xhci->lock, flags);
3702 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3703 xhci_free_command(xhci, command);
3704 return 0;
3705 }
3706 xhci_ring_cmd_db(xhci);
3707 spin_unlock_irqrestore(&xhci->lock, flags);
3708
3709 wait_for_completion(command->completion);
3710 slot_id = command->slot_id;
3711
3712 if (!slot_id || command->status != COMP_SUCCESS) {
3713 xhci_err(xhci, "Error while assigning device slot ID\n");
3714 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3715 HCS_MAX_SLOTS(
3716 readl(&xhci->cap_regs->hcs_params1)));
3717 xhci_free_command(xhci, command);
3718 return 0;
3719 }
3720
3721 xhci_free_command(xhci, command);
3722
3723 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3724 spin_lock_irqsave(&xhci->lock, flags);
3725 ret = xhci_reserve_host_control_ep_resources(xhci);
3726 if (ret) {
3727 spin_unlock_irqrestore(&xhci->lock, flags);
3728 xhci_warn(xhci, "Not enough host resources, "
3729 "active endpoint contexts = %u\n",
3730 xhci->num_active_eps);
3731 goto disable_slot;
3732 }
3733 spin_unlock_irqrestore(&xhci->lock, flags);
3734 }
3735 /* Use GFP_NOIO, since this function can be called from
3736 * xhci_discover_or_reset_device(), which may be called as part of
3737 * mass storage driver error handling.
3738 */
3739 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3740 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3741 goto disable_slot;
3742 }
3743 vdev = xhci->devs[slot_id];
3744 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3745 trace_xhci_alloc_dev(slot_ctx);
3746
3747 udev->slot_id = slot_id;
3748
3749 xhci_debugfs_create_slot(xhci, slot_id);
3750
3751 #ifndef CONFIG_USB_DEFAULT_PERSIST
3752 /*
3753 * If resetting upon resume, we can't put the controller into runtime
3754 * suspend if there is a device attached.
3755 */
3756 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3757 pm_runtime_get_noresume(hcd->self.controller);
3758 #endif
3759
3760 /* Is this a LS or FS device under a HS hub? */
3761 /* Hub or peripherial? */
3762 return 1;
3763
3764 disable_slot:
3765 ret = xhci_disable_slot(xhci, udev->slot_id);
3766 if (ret)
3767 xhci_free_virt_device(xhci, udev->slot_id);
3768
3769 return 0;
3770 }
3771
3772 /*
3773 * Issue an Address Device command and optionally send a corresponding
3774 * SetAddress request to the device.
3775 */
3776 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3777 enum xhci_setup_dev setup)
3778 {
3779 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3780 unsigned long flags;
3781 struct xhci_virt_device *virt_dev;
3782 int ret = 0;
3783 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3784 struct xhci_slot_ctx *slot_ctx;
3785 struct xhci_input_control_ctx *ctrl_ctx;
3786 u64 temp_64;
3787 struct xhci_command *command = NULL;
3788
3789 mutex_lock(&xhci->mutex);
3790
3791 if (xhci->xhc_state) { /* dying, removing or halted */
3792 ret = -ESHUTDOWN;
3793 goto out;
3794 }
3795
3796 if (!udev->slot_id) {
3797 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3798 "Bad Slot ID %d", udev->slot_id);
3799 ret = -EINVAL;
3800 goto out;
3801 }
3802
3803 virt_dev = xhci->devs[udev->slot_id];
3804
3805 if (WARN_ON(!virt_dev)) {
3806 /*
3807 * In plug/unplug torture test with an NEC controller,
3808 * a zero-dereference was observed once due to virt_dev = 0.
3809 * Print useful debug rather than crash if it is observed again!
3810 */
3811 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3812 udev->slot_id);
3813 ret = -EINVAL;
3814 goto out;
3815 }
3816 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3817 trace_xhci_setup_device_slot(slot_ctx);
3818
3819 if (setup == SETUP_CONTEXT_ONLY) {
3820 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3821 SLOT_STATE_DEFAULT) {
3822 xhci_dbg(xhci, "Slot already in default state\n");
3823 goto out;
3824 }
3825 }
3826
3827 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3828 if (!command) {
3829 ret = -ENOMEM;
3830 goto out;
3831 }
3832
3833 command->in_ctx = virt_dev->in_ctx;
3834
3835 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3836 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3837 if (!ctrl_ctx) {
3838 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3839 __func__);
3840 ret = -EINVAL;
3841 goto out;
3842 }
3843 /*
3844 * If this is the first Set Address since device plug-in or
3845 * virt_device realloaction after a resume with an xHCI power loss,
3846 * then set up the slot context.
3847 */
3848 if (!slot_ctx->dev_info)
3849 xhci_setup_addressable_virt_dev(xhci, udev);
3850 /* Otherwise, update the control endpoint ring enqueue pointer. */
3851 else
3852 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3853 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3854 ctrl_ctx->drop_flags = 0;
3855
3856 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3857 le32_to_cpu(slot_ctx->dev_info) >> 27);
3858
3859 spin_lock_irqsave(&xhci->lock, flags);
3860 trace_xhci_setup_device(virt_dev);
3861 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3862 udev->slot_id, setup);
3863 if (ret) {
3864 spin_unlock_irqrestore(&xhci->lock, flags);
3865 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3866 "FIXME: allocate a command ring segment");
3867 goto out;
3868 }
3869 xhci_ring_cmd_db(xhci);
3870 spin_unlock_irqrestore(&xhci->lock, flags);
3871
3872 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3873 wait_for_completion(command->completion);
3874
3875 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3876 * the SetAddress() "recovery interval" required by USB and aborting the
3877 * command on a timeout.
3878 */
3879 switch (command->status) {
3880 case COMP_COMMAND_ABORTED:
3881 case COMP_COMMAND_RING_STOPPED:
3882 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3883 ret = -ETIME;
3884 break;
3885 case COMP_CONTEXT_STATE_ERROR:
3886 case COMP_SLOT_NOT_ENABLED_ERROR:
3887 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3888 act, udev->slot_id);
3889 ret = -EINVAL;
3890 break;
3891 case COMP_USB_TRANSACTION_ERROR:
3892 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3893
3894 mutex_unlock(&xhci->mutex);
3895 ret = xhci_disable_slot(xhci, udev->slot_id);
3896 if (!ret)
3897 xhci_alloc_dev(hcd, udev);
3898 kfree(command->completion);
3899 kfree(command);
3900 return -EPROTO;
3901 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3902 dev_warn(&udev->dev,
3903 "ERROR: Incompatible device for setup %s command\n", act);
3904 ret = -ENODEV;
3905 break;
3906 case COMP_SUCCESS:
3907 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3908 "Successful setup %s command", act);
3909 break;
3910 default:
3911 xhci_err(xhci,
3912 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3913 act, command->status);
3914 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3915 ret = -EINVAL;
3916 break;
3917 }
3918 if (ret)
3919 goto out;
3920 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3921 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3922 "Op regs DCBAA ptr = %#016llx", temp_64);
3923 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3924 "Slot ID %d dcbaa entry @%p = %#016llx",
3925 udev->slot_id,
3926 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3927 (unsigned long long)
3928 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3929 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3930 "Output Context DMA address = %#08llx",
3931 (unsigned long long)virt_dev->out_ctx->dma);
3932 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3933 le32_to_cpu(slot_ctx->dev_info) >> 27);
3934 /*
3935 * USB core uses address 1 for the roothubs, so we add one to the
3936 * address given back to us by the HC.
3937 */
3938 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3939 le32_to_cpu(slot_ctx->dev_info) >> 27);
3940 /* Zero the input context control for later use */
3941 ctrl_ctx->add_flags = 0;
3942 ctrl_ctx->drop_flags = 0;
3943
3944 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3945 "Internal device address = %d",
3946 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3947 out:
3948 mutex_unlock(&xhci->mutex);
3949 if (command) {
3950 kfree(command->completion);
3951 kfree(command);
3952 }
3953 return ret;
3954 }
3955
3956 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3957 {
3958 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3959 }
3960
3961 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3962 {
3963 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3964 }
3965
3966 /*
3967 * Transfer the port index into real index in the HW port status
3968 * registers. Caculate offset between the port's PORTSC register
3969 * and port status base. Divide the number of per port register
3970 * to get the real index. The raw port number bases 1.
3971 */
3972 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3973 {
3974 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3975 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3976 __le32 __iomem *addr;
3977 int raw_port;
3978
3979 if (hcd->speed < HCD_USB3)
3980 addr = xhci->usb2_ports[port1 - 1];
3981 else
3982 addr = xhci->usb3_ports[port1 - 1];
3983
3984 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3985 return raw_port;
3986 }
3987
3988 /*
3989 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3990 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3991 */
3992 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3993 struct usb_device *udev, u16 max_exit_latency)
3994 {
3995 struct xhci_virt_device *virt_dev;
3996 struct xhci_command *command;
3997 struct xhci_input_control_ctx *ctrl_ctx;
3998 struct xhci_slot_ctx *slot_ctx;
3999 unsigned long flags;
4000 int ret;
4001
4002 spin_lock_irqsave(&xhci->lock, flags);
4003
4004 virt_dev = xhci->devs[udev->slot_id];
4005
4006 /*
4007 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4008 * xHC was re-initialized. Exit latency will be set later after
4009 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4010 */
4011
4012 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4013 spin_unlock_irqrestore(&xhci->lock, flags);
4014 return 0;
4015 }
4016
4017 /* Attempt to issue an Evaluate Context command to change the MEL. */
4018 command = xhci->lpm_command;
4019 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4020 if (!ctrl_ctx) {
4021 spin_unlock_irqrestore(&xhci->lock, flags);
4022 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4023 __func__);
4024 return -ENOMEM;
4025 }
4026
4027 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4028 spin_unlock_irqrestore(&xhci->lock, flags);
4029
4030 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4031 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4032 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4033 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4034 slot_ctx->dev_state = 0;
4035
4036 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4037 "Set up evaluate context for LPM MEL change.");
4038
4039 /* Issue and wait for the evaluate context command. */
4040 ret = xhci_configure_endpoint(xhci, udev, command,
4041 true, true);
4042
4043 if (!ret) {
4044 spin_lock_irqsave(&xhci->lock, flags);
4045 virt_dev->current_mel = max_exit_latency;
4046 spin_unlock_irqrestore(&xhci->lock, flags);
4047 }
4048 return ret;
4049 }
4050
4051 #ifdef CONFIG_PM
4052
4053 /* BESL to HIRD Encoding array for USB2 LPM */
4054 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4055 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4056
4057 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4058 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4059 struct usb_device *udev)
4060 {
4061 int u2del, besl, besl_host;
4062 int besl_device = 0;
4063 u32 field;
4064
4065 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4066 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4067
4068 if (field & USB_BESL_SUPPORT) {
4069 for (besl_host = 0; besl_host < 16; besl_host++) {
4070 if (xhci_besl_encoding[besl_host] >= u2del)
4071 break;
4072 }
4073 /* Use baseline BESL value as default */
4074 if (field & USB_BESL_BASELINE_VALID)
4075 besl_device = USB_GET_BESL_BASELINE(field);
4076 else if (field & USB_BESL_DEEP_VALID)
4077 besl_device = USB_GET_BESL_DEEP(field);
4078 } else {
4079 if (u2del <= 50)
4080 besl_host = 0;
4081 else
4082 besl_host = (u2del - 51) / 75 + 1;
4083 }
4084
4085 besl = besl_host + besl_device;
4086 if (besl > 15)
4087 besl = 15;
4088
4089 return besl;
4090 }
4091
4092 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4093 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4094 {
4095 u32 field;
4096 int l1;
4097 int besld = 0;
4098 int hirdm = 0;
4099
4100 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4101
4102 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4103 l1 = udev->l1_params.timeout / 256;
4104
4105 /* device has preferred BESLD */
4106 if (field & USB_BESL_DEEP_VALID) {
4107 besld = USB_GET_BESL_DEEP(field);
4108 hirdm = 1;
4109 }
4110
4111 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4112 }
4113
4114 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4115 struct usb_device *udev, int enable)
4116 {
4117 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4118 __le32 __iomem **port_array;
4119 __le32 __iomem *pm_addr, *hlpm_addr;
4120 u32 pm_val, hlpm_val, field;
4121 unsigned int port_num;
4122 unsigned long flags;
4123 int hird, exit_latency;
4124 int ret;
4125
4126 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4127 !udev->lpm_capable)
4128 return -EPERM;
4129
4130 if (!udev->parent || udev->parent->parent ||
4131 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4132 return -EPERM;
4133
4134 if (udev->usb2_hw_lpm_capable != 1)
4135 return -EPERM;
4136
4137 spin_lock_irqsave(&xhci->lock, flags);
4138
4139 port_array = xhci->usb2_ports;
4140 port_num = udev->portnum - 1;
4141 pm_addr = port_array[port_num] + PORTPMSC;
4142 pm_val = readl(pm_addr);
4143 hlpm_addr = port_array[port_num] + PORTHLPMC;
4144 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4145
4146 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4147 enable ? "enable" : "disable", port_num + 1);
4148
4149 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4150 /* Host supports BESL timeout instead of HIRD */
4151 if (udev->usb2_hw_lpm_besl_capable) {
4152 /* if device doesn't have a preferred BESL value use a
4153 * default one which works with mixed HIRD and BESL
4154 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4155 */
4156 if ((field & USB_BESL_SUPPORT) &&
4157 (field & USB_BESL_BASELINE_VALID))
4158 hird = USB_GET_BESL_BASELINE(field);
4159 else
4160 hird = udev->l1_params.besl;
4161
4162 exit_latency = xhci_besl_encoding[hird];
4163 spin_unlock_irqrestore(&xhci->lock, flags);
4164
4165 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4166 * input context for link powermanagement evaluate
4167 * context commands. It is protected by hcd->bandwidth
4168 * mutex and is shared by all devices. We need to set
4169 * the max ext latency in USB 2 BESL LPM as well, so
4170 * use the same mutex and xhci_change_max_exit_latency()
4171 */
4172 mutex_lock(hcd->bandwidth_mutex);
4173 ret = xhci_change_max_exit_latency(xhci, udev,
4174 exit_latency);
4175 mutex_unlock(hcd->bandwidth_mutex);
4176
4177 if (ret < 0)
4178 return ret;
4179 spin_lock_irqsave(&xhci->lock, flags);
4180
4181 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4182 writel(hlpm_val, hlpm_addr);
4183 /* flush write */
4184 readl(hlpm_addr);
4185 } else {
4186 hird = xhci_calculate_hird_besl(xhci, udev);
4187 }
4188
4189 pm_val &= ~PORT_HIRD_MASK;
4190 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4191 writel(pm_val, pm_addr);
4192 pm_val = readl(pm_addr);
4193 pm_val |= PORT_HLE;
4194 writel(pm_val, pm_addr);
4195 /* flush write */
4196 readl(pm_addr);
4197 } else {
4198 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4199 writel(pm_val, pm_addr);
4200 /* flush write */
4201 readl(pm_addr);
4202 if (udev->usb2_hw_lpm_besl_capable) {
4203 spin_unlock_irqrestore(&xhci->lock, flags);
4204 mutex_lock(hcd->bandwidth_mutex);
4205 xhci_change_max_exit_latency(xhci, udev, 0);
4206 mutex_unlock(hcd->bandwidth_mutex);
4207 return 0;
4208 }
4209 }
4210
4211 spin_unlock_irqrestore(&xhci->lock, flags);
4212 return 0;
4213 }
4214
4215 /* check if a usb2 port supports a given extened capability protocol
4216 * only USB2 ports extended protocol capability values are cached.
4217 * Return 1 if capability is supported
4218 */
4219 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4220 unsigned capability)
4221 {
4222 u32 port_offset, port_count;
4223 int i;
4224
4225 for (i = 0; i < xhci->num_ext_caps; i++) {
4226 if (xhci->ext_caps[i] & capability) {
4227 /* port offsets starts at 1 */
4228 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4229 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4230 if (port >= port_offset &&
4231 port < port_offset + port_count)
4232 return 1;
4233 }
4234 }
4235 return 0;
4236 }
4237
4238 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4239 {
4240 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4241 int portnum = udev->portnum - 1;
4242
4243 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4244 !udev->lpm_capable)
4245 return 0;
4246
4247 /* we only support lpm for non-hub device connected to root hub yet */
4248 if (!udev->parent || udev->parent->parent ||
4249 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4250 return 0;
4251
4252 if (xhci->hw_lpm_support == 1 &&
4253 xhci_check_usb2_port_capability(
4254 xhci, portnum, XHCI_HLC)) {
4255 udev->usb2_hw_lpm_capable = 1;
4256 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4257 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4258 if (xhci_check_usb2_port_capability(xhci, portnum,
4259 XHCI_BLC))
4260 udev->usb2_hw_lpm_besl_capable = 1;
4261 }
4262
4263 return 0;
4264 }
4265
4266 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4267
4268 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4269 static unsigned long long xhci_service_interval_to_ns(
4270 struct usb_endpoint_descriptor *desc)
4271 {
4272 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4273 }
4274
4275 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4276 enum usb3_link_state state)
4277 {
4278 unsigned long long sel;
4279 unsigned long long pel;
4280 unsigned int max_sel_pel;
4281 char *state_name;
4282
4283 switch (state) {
4284 case USB3_LPM_U1:
4285 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4286 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4287 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4288 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4289 state_name = "U1";
4290 break;
4291 case USB3_LPM_U2:
4292 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4293 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4294 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4295 state_name = "U2";
4296 break;
4297 default:
4298 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4299 __func__);
4300 return USB3_LPM_DISABLED;
4301 }
4302
4303 if (sel <= max_sel_pel && pel <= max_sel_pel)
4304 return USB3_LPM_DEVICE_INITIATED;
4305
4306 if (sel > max_sel_pel)
4307 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4308 "due to long SEL %llu ms\n",
4309 state_name, sel);
4310 else
4311 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4312 "due to long PEL %llu ms\n",
4313 state_name, pel);
4314 return USB3_LPM_DISABLED;
4315 }
4316
4317 /* The U1 timeout should be the maximum of the following values:
4318 * - For control endpoints, U1 system exit latency (SEL) * 3
4319 * - For bulk endpoints, U1 SEL * 5
4320 * - For interrupt endpoints:
4321 * - Notification EPs, U1 SEL * 3
4322 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4323 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4324 */
4325 static unsigned long long xhci_calculate_intel_u1_timeout(
4326 struct usb_device *udev,
4327 struct usb_endpoint_descriptor *desc)
4328 {
4329 unsigned long long timeout_ns;
4330 int ep_type;
4331 int intr_type;
4332
4333 ep_type = usb_endpoint_type(desc);
4334 switch (ep_type) {
4335 case USB_ENDPOINT_XFER_CONTROL:
4336 timeout_ns = udev->u1_params.sel * 3;
4337 break;
4338 case USB_ENDPOINT_XFER_BULK:
4339 timeout_ns = udev->u1_params.sel * 5;
4340 break;
4341 case USB_ENDPOINT_XFER_INT:
4342 intr_type = usb_endpoint_interrupt_type(desc);
4343 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4344 timeout_ns = udev->u1_params.sel * 3;
4345 break;
4346 }
4347 /* Otherwise the calculation is the same as isoc eps */
4348 /* fall through */
4349 case USB_ENDPOINT_XFER_ISOC:
4350 timeout_ns = xhci_service_interval_to_ns(desc);
4351 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4352 if (timeout_ns < udev->u1_params.sel * 2)
4353 timeout_ns = udev->u1_params.sel * 2;
4354 break;
4355 default:
4356 return 0;
4357 }
4358
4359 return timeout_ns;
4360 }
4361
4362 /* Returns the hub-encoded U1 timeout value. */
4363 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4364 struct usb_device *udev,
4365 struct usb_endpoint_descriptor *desc)
4366 {
4367 unsigned long long timeout_ns;
4368
4369 if (xhci->quirks & XHCI_INTEL_HOST)
4370 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4371 else
4372 timeout_ns = udev->u1_params.sel;
4373
4374 /* The U1 timeout is encoded in 1us intervals.
4375 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4376 */
4377 if (timeout_ns == USB3_LPM_DISABLED)
4378 timeout_ns = 1;
4379 else
4380 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4381
4382 /* If the necessary timeout value is bigger than what we can set in the
4383 * USB 3.0 hub, we have to disable hub-initiated U1.
4384 */
4385 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4386 return timeout_ns;
4387 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4388 "due to long timeout %llu ms\n", timeout_ns);
4389 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4390 }
4391
4392 /* The U2 timeout should be the maximum of:
4393 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4394 * - largest bInterval of any active periodic endpoint (to avoid going
4395 * into lower power link states between intervals).
4396 * - the U2 Exit Latency of the device
4397 */
4398 static unsigned long long xhci_calculate_intel_u2_timeout(
4399 struct usb_device *udev,
4400 struct usb_endpoint_descriptor *desc)
4401 {
4402 unsigned long long timeout_ns;
4403 unsigned long long u2_del_ns;
4404
4405 timeout_ns = 10 * 1000 * 1000;
4406
4407 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4408 (xhci_service_interval_to_ns(desc) > timeout_ns))
4409 timeout_ns = xhci_service_interval_to_ns(desc);
4410
4411 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4412 if (u2_del_ns > timeout_ns)
4413 timeout_ns = u2_del_ns;
4414
4415 return timeout_ns;
4416 }
4417
4418 /* Returns the hub-encoded U2 timeout value. */
4419 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4420 struct usb_device *udev,
4421 struct usb_endpoint_descriptor *desc)
4422 {
4423 unsigned long long timeout_ns;
4424
4425 if (xhci->quirks & XHCI_INTEL_HOST)
4426 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4427 else
4428 timeout_ns = udev->u2_params.sel;
4429
4430 /* The U2 timeout is encoded in 256us intervals */
4431 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4432 /* If the necessary timeout value is bigger than what we can set in the
4433 * USB 3.0 hub, we have to disable hub-initiated U2.
4434 */
4435 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4436 return timeout_ns;
4437 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4438 "due to long timeout %llu ms\n", timeout_ns);
4439 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4440 }
4441
4442 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4443 struct usb_device *udev,
4444 struct usb_endpoint_descriptor *desc,
4445 enum usb3_link_state state,
4446 u16 *timeout)
4447 {
4448 if (state == USB3_LPM_U1)
4449 return xhci_calculate_u1_timeout(xhci, udev, desc);
4450 else if (state == USB3_LPM_U2)
4451 return xhci_calculate_u2_timeout(xhci, udev, desc);
4452
4453 return USB3_LPM_DISABLED;
4454 }
4455
4456 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4457 struct usb_device *udev,
4458 struct usb_endpoint_descriptor *desc,
4459 enum usb3_link_state state,
4460 u16 *timeout)
4461 {
4462 u16 alt_timeout;
4463
4464 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4465 desc, state, timeout);
4466
4467 /* If we found we can't enable hub-initiated LPM, or
4468 * the U1 or U2 exit latency was too high to allow
4469 * device-initiated LPM as well, just stop searching.
4470 */
4471 if (alt_timeout == USB3_LPM_DISABLED ||
4472 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4473 *timeout = alt_timeout;
4474 return -E2BIG;
4475 }
4476 if (alt_timeout > *timeout)
4477 *timeout = alt_timeout;
4478 return 0;
4479 }
4480
4481 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4482 struct usb_device *udev,
4483 struct usb_host_interface *alt,
4484 enum usb3_link_state state,
4485 u16 *timeout)
4486 {
4487 int j;
4488
4489 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4490 if (xhci_update_timeout_for_endpoint(xhci, udev,
4491 &alt->endpoint[j].desc, state, timeout))
4492 return -E2BIG;
4493 continue;
4494 }
4495 return 0;
4496 }
4497
4498 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4499 enum usb3_link_state state)
4500 {
4501 struct usb_device *parent;
4502 unsigned int num_hubs;
4503
4504 if (state == USB3_LPM_U2)
4505 return 0;
4506
4507 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4508 for (parent = udev->parent, num_hubs = 0; parent->parent;
4509 parent = parent->parent)
4510 num_hubs++;
4511
4512 if (num_hubs < 2)
4513 return 0;
4514
4515 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4516 " below second-tier hub.\n");
4517 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4518 "to decrease power consumption.\n");
4519 return -E2BIG;
4520 }
4521
4522 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4523 struct usb_device *udev,
4524 enum usb3_link_state state)
4525 {
4526 if (xhci->quirks & XHCI_INTEL_HOST)
4527 return xhci_check_intel_tier_policy(udev, state);
4528 else
4529 return 0;
4530 }
4531
4532 /* Returns the U1 or U2 timeout that should be enabled.
4533 * If the tier check or timeout setting functions return with a non-zero exit
4534 * code, that means the timeout value has been finalized and we shouldn't look
4535 * at any more endpoints.
4536 */
4537 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4538 struct usb_device *udev, enum usb3_link_state state)
4539 {
4540 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4541 struct usb_host_config *config;
4542 char *state_name;
4543 int i;
4544 u16 timeout = USB3_LPM_DISABLED;
4545
4546 if (state == USB3_LPM_U1)
4547 state_name = "U1";
4548 else if (state == USB3_LPM_U2)
4549 state_name = "U2";
4550 else {
4551 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4552 state);
4553 return timeout;
4554 }
4555
4556 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4557 return timeout;
4558
4559 /* Gather some information about the currently installed configuration
4560 * and alternate interface settings.
4561 */
4562 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4563 state, &timeout))
4564 return timeout;
4565
4566 config = udev->actconfig;
4567 if (!config)
4568 return timeout;
4569
4570 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4571 struct usb_driver *driver;
4572 struct usb_interface *intf = config->interface[i];
4573
4574 if (!intf)
4575 continue;
4576
4577 /* Check if any currently bound drivers want hub-initiated LPM
4578 * disabled.
4579 */
4580 if (intf->dev.driver) {
4581 driver = to_usb_driver(intf->dev.driver);
4582 if (driver && driver->disable_hub_initiated_lpm) {
4583 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4584 "at request of driver %s\n",
4585 state_name, driver->name);
4586 return xhci_get_timeout_no_hub_lpm(udev, state);
4587 }
4588 }
4589
4590 /* Not sure how this could happen... */
4591 if (!intf->cur_altsetting)
4592 continue;
4593
4594 if (xhci_update_timeout_for_interface(xhci, udev,
4595 intf->cur_altsetting,
4596 state, &timeout))
4597 return timeout;
4598 }
4599 return timeout;
4600 }
4601
4602 static int calculate_max_exit_latency(struct usb_device *udev,
4603 enum usb3_link_state state_changed,
4604 u16 hub_encoded_timeout)
4605 {
4606 unsigned long long u1_mel_us = 0;
4607 unsigned long long u2_mel_us = 0;
4608 unsigned long long mel_us = 0;
4609 bool disabling_u1;
4610 bool disabling_u2;
4611 bool enabling_u1;
4612 bool enabling_u2;
4613
4614 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4615 hub_encoded_timeout == USB3_LPM_DISABLED);
4616 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4617 hub_encoded_timeout == USB3_LPM_DISABLED);
4618
4619 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4620 hub_encoded_timeout != USB3_LPM_DISABLED);
4621 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4622 hub_encoded_timeout != USB3_LPM_DISABLED);
4623
4624 /* If U1 was already enabled and we're not disabling it,
4625 * or we're going to enable U1, account for the U1 max exit latency.
4626 */
4627 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4628 enabling_u1)
4629 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4630 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4631 enabling_u2)
4632 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4633
4634 if (u1_mel_us > u2_mel_us)
4635 mel_us = u1_mel_us;
4636 else
4637 mel_us = u2_mel_us;
4638 /* xHCI host controller max exit latency field is only 16 bits wide. */
4639 if (mel_us > MAX_EXIT) {
4640 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4641 "is too big.\n", mel_us);
4642 return -E2BIG;
4643 }
4644 return mel_us;
4645 }
4646
4647 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4648 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4649 struct usb_device *udev, enum usb3_link_state state)
4650 {
4651 struct xhci_hcd *xhci;
4652 u16 hub_encoded_timeout;
4653 int mel;
4654 int ret;
4655
4656 xhci = hcd_to_xhci(hcd);
4657 /* The LPM timeout values are pretty host-controller specific, so don't
4658 * enable hub-initiated timeouts unless the vendor has provided
4659 * information about their timeout algorithm.
4660 */
4661 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4662 !xhci->devs[udev->slot_id])
4663 return USB3_LPM_DISABLED;
4664
4665 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4666 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4667 if (mel < 0) {
4668 /* Max Exit Latency is too big, disable LPM. */
4669 hub_encoded_timeout = USB3_LPM_DISABLED;
4670 mel = 0;
4671 }
4672
4673 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4674 if (ret)
4675 return ret;
4676 return hub_encoded_timeout;
4677 }
4678
4679 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4680 struct usb_device *udev, enum usb3_link_state state)
4681 {
4682 struct xhci_hcd *xhci;
4683 u16 mel;
4684
4685 xhci = hcd_to_xhci(hcd);
4686 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4687 !xhci->devs[udev->slot_id])
4688 return 0;
4689
4690 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4691 return xhci_change_max_exit_latency(xhci, udev, mel);
4692 }
4693 #else /* CONFIG_PM */
4694
4695 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4696 struct usb_device *udev, int enable)
4697 {
4698 return 0;
4699 }
4700
4701 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4702 {
4703 return 0;
4704 }
4705
4706 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707 struct usb_device *udev, enum usb3_link_state state)
4708 {
4709 return USB3_LPM_DISABLED;
4710 }
4711
4712 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4713 struct usb_device *udev, enum usb3_link_state state)
4714 {
4715 return 0;
4716 }
4717 #endif /* CONFIG_PM */
4718
4719 /*-------------------------------------------------------------------------*/
4720
4721 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4722 * internal data structures for the device.
4723 */
4724 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4725 struct usb_tt *tt, gfp_t mem_flags)
4726 {
4727 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4728 struct xhci_virt_device *vdev;
4729 struct xhci_command *config_cmd;
4730 struct xhci_input_control_ctx *ctrl_ctx;
4731 struct xhci_slot_ctx *slot_ctx;
4732 unsigned long flags;
4733 unsigned think_time;
4734 int ret;
4735
4736 /* Ignore root hubs */
4737 if (!hdev->parent)
4738 return 0;
4739
4740 vdev = xhci->devs[hdev->slot_id];
4741 if (!vdev) {
4742 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4743 return -EINVAL;
4744 }
4745
4746 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4747 if (!config_cmd)
4748 return -ENOMEM;
4749
4750 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4751 if (!ctrl_ctx) {
4752 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4753 __func__);
4754 xhci_free_command(xhci, config_cmd);
4755 return -ENOMEM;
4756 }
4757
4758 spin_lock_irqsave(&xhci->lock, flags);
4759 if (hdev->speed == USB_SPEED_HIGH &&
4760 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4761 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4762 xhci_free_command(xhci, config_cmd);
4763 spin_unlock_irqrestore(&xhci->lock, flags);
4764 return -ENOMEM;
4765 }
4766
4767 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4768 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4769 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4770 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4771 /*
4772 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4773 * but it may be already set to 1 when setup an xHCI virtual
4774 * device, so clear it anyway.
4775 */
4776 if (tt->multi)
4777 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4778 else if (hdev->speed == USB_SPEED_FULL)
4779 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4780
4781 if (xhci->hci_version > 0x95) {
4782 xhci_dbg(xhci, "xHCI version %x needs hub "
4783 "TT think time and number of ports\n",
4784 (unsigned int) xhci->hci_version);
4785 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4786 /* Set TT think time - convert from ns to FS bit times.
4787 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4788 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4789 *
4790 * xHCI 1.0: this field shall be 0 if the device is not a
4791 * High-spped hub.
4792 */
4793 think_time = tt->think_time;
4794 if (think_time != 0)
4795 think_time = (think_time / 666) - 1;
4796 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4797 slot_ctx->tt_info |=
4798 cpu_to_le32(TT_THINK_TIME(think_time));
4799 } else {
4800 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4801 "TT think time or number of ports\n",
4802 (unsigned int) xhci->hci_version);
4803 }
4804 slot_ctx->dev_state = 0;
4805 spin_unlock_irqrestore(&xhci->lock, flags);
4806
4807 xhci_dbg(xhci, "Set up %s for hub device.\n",
4808 (xhci->hci_version > 0x95) ?
4809 "configure endpoint" : "evaluate context");
4810
4811 /* Issue and wait for the configure endpoint or
4812 * evaluate context command.
4813 */
4814 if (xhci->hci_version > 0x95)
4815 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4816 false, false);
4817 else
4818 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4819 true, false);
4820
4821 xhci_free_command(xhci, config_cmd);
4822 return ret;
4823 }
4824
4825 static int xhci_get_frame(struct usb_hcd *hcd)
4826 {
4827 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4828 /* EHCI mods by the periodic size. Why? */
4829 return readl(&xhci->run_regs->microframe_index) >> 3;
4830 }
4831
4832 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4833 {
4834 struct xhci_hcd *xhci;
4835 /*
4836 * TODO: Check with DWC3 clients for sysdev according to
4837 * quirks
4838 */
4839 struct device *dev = hcd->self.sysdev;
4840 unsigned int minor_rev;
4841 int retval;
4842
4843 /* Accept arbitrarily long scatter-gather lists */
4844 hcd->self.sg_tablesize = ~0;
4845
4846 /* support to build packet from discontinuous buffers */
4847 hcd->self.no_sg_constraint = 1;
4848
4849 /* XHCI controllers don't stop the ep queue on short packets :| */
4850 hcd->self.no_stop_on_short = 1;
4851
4852 xhci = hcd_to_xhci(hcd);
4853
4854 if (usb_hcd_is_primary_hcd(hcd)) {
4855 xhci->main_hcd = hcd;
4856 /* Mark the first roothub as being USB 2.0.
4857 * The xHCI driver will register the USB 3.0 roothub.
4858 */
4859 hcd->speed = HCD_USB2;
4860 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4861 /*
4862 * USB 2.0 roothub under xHCI has an integrated TT,
4863 * (rate matching hub) as opposed to having an OHCI/UHCI
4864 * companion controller.
4865 */
4866 hcd->has_tt = 1;
4867 } else {
4868 /*
4869 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4870 * minor revision instead of sbrn
4871 */
4872 minor_rev = xhci->usb3_rhub.min_rev;
4873 if (minor_rev) {
4874 hcd->speed = HCD_USB31;
4875 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4876 }
4877 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4878 minor_rev,
4879 minor_rev ? "Enhanced" : "");
4880
4881 /* xHCI private pointer was set in xhci_pci_probe for the second
4882 * registered roothub.
4883 */
4884 return 0;
4885 }
4886
4887 mutex_init(&xhci->mutex);
4888 xhci->cap_regs = hcd->regs;
4889 xhci->op_regs = hcd->regs +
4890 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4891 xhci->run_regs = hcd->regs +
4892 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4893 /* Cache read-only capability registers */
4894 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4895 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4896 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4897 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4898 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4899 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4900 if (xhci->hci_version > 0x100)
4901 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4902 xhci_print_registers(xhci);
4903
4904 xhci->quirks |= quirks;
4905
4906 get_quirks(dev, xhci);
4907
4908 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4909 * success event after a short transfer. This quirk will ignore such
4910 * spurious event.
4911 */
4912 if (xhci->hci_version > 0x96)
4913 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4914
4915 /* Make sure the HC is halted. */
4916 retval = xhci_halt(xhci);
4917 if (retval)
4918 return retval;
4919
4920 xhci_dbg(xhci, "Resetting HCD\n");
4921 /* Reset the internal HC memory state and registers. */
4922 retval = xhci_reset(xhci);
4923 if (retval)
4924 return retval;
4925 xhci_dbg(xhci, "Reset complete\n");
4926
4927 /*
4928 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4929 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4930 * address memory pointers actually. So, this driver clears the AC64
4931 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4932 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4933 */
4934 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4935 xhci->hcc_params &= ~BIT(0);
4936
4937 /* Set dma_mask and coherent_dma_mask to 64-bits,
4938 * if xHC supports 64-bit addressing */
4939 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4940 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4941 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4942 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4943 } else {
4944 /*
4945 * This is to avoid error in cases where a 32-bit USB
4946 * controller is used on a 64-bit capable system.
4947 */
4948 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4949 if (retval)
4950 return retval;
4951 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4952 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4953 }
4954
4955 xhci_dbg(xhci, "Calling HCD init\n");
4956 /* Initialize HCD and host controller data structures. */
4957 retval = xhci_init(hcd);
4958 if (retval)
4959 return retval;
4960 xhci_dbg(xhci, "Called HCD init\n");
4961
4962 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
4963 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4964
4965 return 0;
4966 }
4967 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4968
4969 static const struct hc_driver xhci_hc_driver = {
4970 .description = "xhci-hcd",
4971 .product_desc = "xHCI Host Controller",
4972 .hcd_priv_size = sizeof(struct xhci_hcd),
4973
4974 /*
4975 * generic hardware linkage
4976 */
4977 .irq = xhci_irq,
4978 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4979
4980 /*
4981 * basic lifecycle operations
4982 */
4983 .reset = NULL, /* set in xhci_init_driver() */
4984 .start = xhci_run,
4985 .stop = xhci_stop,
4986 .shutdown = xhci_shutdown,
4987
4988 /*
4989 * managing i/o requests and associated device resources
4990 */
4991 .urb_enqueue = xhci_urb_enqueue,
4992 .urb_dequeue = xhci_urb_dequeue,
4993 .alloc_dev = xhci_alloc_dev,
4994 .free_dev = xhci_free_dev,
4995 .alloc_streams = xhci_alloc_streams,
4996 .free_streams = xhci_free_streams,
4997 .add_endpoint = xhci_add_endpoint,
4998 .drop_endpoint = xhci_drop_endpoint,
4999 .endpoint_reset = xhci_endpoint_reset,
5000 .check_bandwidth = xhci_check_bandwidth,
5001 .reset_bandwidth = xhci_reset_bandwidth,
5002 .address_device = xhci_address_device,
5003 .enable_device = xhci_enable_device,
5004 .update_hub_device = xhci_update_hub_device,
5005 .reset_device = xhci_discover_or_reset_device,
5006
5007 /*
5008 * scheduling support
5009 */
5010 .get_frame_number = xhci_get_frame,
5011
5012 /*
5013 * root hub support
5014 */
5015 .hub_control = xhci_hub_control,
5016 .hub_status_data = xhci_hub_status_data,
5017 .bus_suspend = xhci_bus_suspend,
5018 .bus_resume = xhci_bus_resume,
5019
5020 /*
5021 * call back when device connected and addressed
5022 */
5023 .update_device = xhci_update_device,
5024 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5025 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5026 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5027 .find_raw_port_number = xhci_find_raw_port_number,
5028 };
5029
5030 void xhci_init_driver(struct hc_driver *drv,
5031 const struct xhci_driver_overrides *over)
5032 {
5033 BUG_ON(!over);
5034
5035 /* Copy the generic table to drv then apply the overrides */
5036 *drv = xhci_hc_driver;
5037
5038 if (over) {
5039 drv->hcd_priv_size += over->extra_priv_size;
5040 if (over->reset)
5041 drv->reset = over->reset;
5042 if (over->start)
5043 drv->start = over->start;
5044 }
5045 }
5046 EXPORT_SYMBOL_GPL(xhci_init_driver);
5047
5048 MODULE_DESCRIPTION(DRIVER_DESC);
5049 MODULE_AUTHOR(DRIVER_AUTHOR);
5050 MODULE_LICENSE("GPL");
5051
5052 static int __init xhci_hcd_init(void)
5053 {
5054 /*
5055 * Check the compiler generated sizes of structures that must be laid
5056 * out in specific ways for hardware access.
5057 */
5058 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5059 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5060 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5061 /* xhci_device_control has eight fields, and also
5062 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5063 */
5064 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5065 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5066 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5067 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5068 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5069 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5070 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5071
5072 if (usb_disabled())
5073 return -ENODEV;
5074
5075 xhci_debugfs_create_root();
5076
5077 return 0;
5078 }
5079
5080 /*
5081 * If an init function is provided, an exit function must also be provided
5082 * to allow module unload.
5083 */
5084 static void __exit xhci_hcd_fini(void)
5085 {
5086 xhci_debugfs_remove_root();
5087 }
5088
5089 module_init(xhci_hcd_init);
5090 module_exit(xhci_hcd_fini);