]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/host/xhci.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79 }
80
81 /*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (ret) {
117 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 return ret;
119 }
120 xhci->xhc_state |= XHCI_STATE_HALTED;
121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 return ret;
123 }
124
125 /*
126 * Set the run bit and wait for the host to be running.
127 */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 /* clear state flags. Including dying, halted or removing */
151 xhci->xhc_state = 0;
152
153 return ret;
154 }
155
156 /*
157 * Reset a halted HC.
158 *
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
162 */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 u32 command;
166 u32 state;
167 int ret, i;
168
169 state = readl(&xhci->op_regs->status);
170
171 if (state == ~(u32)0) {
172 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 return -ENODEV;
174 }
175
176 if ((state & STS_HALT) == 0) {
177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 return 0;
179 }
180
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 command = readl(&xhci->op_regs->command);
183 command |= CMD_RESET;
184 writel(command, &xhci->op_regs->command);
185
186 /* Existing Intel xHCI controllers require a delay of 1 mS,
187 * after setting the CMD_RESET bit, and before accessing any
188 * HC registers. This allows the HC to complete the
189 * reset operation and be ready for HC register access.
190 * Without this delay, the subsequent HC register access,
191 * may result in a system hang very rarely.
192 */
193 if (xhci->quirks & XHCI_INTEL_HOST)
194 udelay(1000);
195
196 ret = xhci_handshake(&xhci->op_regs->command,
197 CMD_RESET, 0, 10 * 1000 * 1000);
198 if (ret)
199 return ret;
200
201 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
202 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
203
204 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
205 "Wait for controller to be ready for doorbell rings");
206 /*
207 * xHCI cannot write to any doorbells or operational registers other
208 * than status until the "Controller Not Ready" flag is cleared.
209 */
210 ret = xhci_handshake(&xhci->op_regs->status,
211 STS_CNR, 0, 10 * 1000 * 1000);
212
213 for (i = 0; i < 2; i++) {
214 xhci->bus_state[i].port_c_suspend = 0;
215 xhci->bus_state[i].suspended_ports = 0;
216 xhci->bus_state[i].resuming_ports = 0;
217 }
218
219 return ret;
220 }
221
222
223 #ifdef CONFIG_USB_PCI
224 /*
225 * Set up MSI
226 */
227 static int xhci_setup_msi(struct xhci_hcd *xhci)
228 {
229 int ret;
230 /*
231 * TODO:Check with MSI Soc for sysdev
232 */
233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
236 if (ret < 0) {
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "failed to allocate MSI entry");
239 return ret;
240 }
241
242 ret = request_irq(pdev->irq, xhci_msi_irq,
243 0, "xhci_hcd", xhci_to_hcd(xhci));
244 if (ret) {
245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 "disable MSI interrupt");
247 pci_free_irq_vectors(pdev);
248 }
249
250 return ret;
251 }
252
253 /*
254 * Set up MSI-X
255 */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
273 PCI_IRQ_MSIX);
274 if (ret < 0) {
275 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
276 "Failed to enable MSI-X");
277 return ret;
278 }
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
282 "xhci_hcd", xhci_to_hcd(xhci));
283 if (ret)
284 goto disable_msix;
285 }
286
287 hcd->msix_enabled = 1;
288 return ret;
289
290 disable_msix:
291 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
292 while (--i >= 0)
293 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
294 pci_free_irq_vectors(pdev);
295 return ret;
296 }
297
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301 struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303
304 if (xhci->quirks & XHCI_PLAT)
305 return;
306
307 /* return if using legacy interrupt */
308 if (hcd->irq > 0)
309 return;
310
311 if (hcd->msix_enabled) {
312 int i;
313
314 for (i = 0; i < xhci->msix_count; i++)
315 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
316 } else {
317 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
318 }
319
320 pci_free_irq_vectors(pdev);
321 hcd->msix_enabled = 0;
322 }
323
324 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
325 {
326 struct usb_hcd *hcd = xhci_to_hcd(xhci);
327
328 if (hcd->msix_enabled) {
329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 int i;
331
332 for (i = 0; i < xhci->msix_count; i++)
333 synchronize_irq(pci_irq_vector(pdev, i));
334 }
335 }
336
337 static int xhci_try_enable_msi(struct usb_hcd *hcd)
338 {
339 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
340 struct pci_dev *pdev;
341 int ret;
342
343 /* The xhci platform device has set up IRQs through usb_add_hcd. */
344 if (xhci->quirks & XHCI_PLAT)
345 return 0;
346
347 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
348 /*
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
351 */
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 goto legacy_irq;
354
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
358 hcd->irq = 0;
359
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
364
365 if (!ret) {
366 hcd->msi_enabled = 1;
367 return 0;
368 }
369
370 if (!pdev->irq) {
371 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
372 return -EINVAL;
373 }
374
375 legacy_irq:
376 if (!strlen(hcd->irq_descr))
377 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
378 hcd->driver->description, hcd->self.busnum);
379
380 /* fall back to legacy interrupt*/
381 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382 hcd->irq_descr, hcd);
383 if (ret) {
384 xhci_err(xhci, "request interrupt %d failed\n",
385 pdev->irq);
386 return ret;
387 }
388 hcd->irq = pdev->irq;
389 return 0;
390 }
391
392 #else
393
394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
395 {
396 return 0;
397 }
398
399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
400 {
401 }
402
403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
404 {
405 }
406
407 #endif
408
409 static void compliance_mode_recovery(unsigned long arg)
410 {
411 struct xhci_hcd *xhci;
412 struct usb_hcd *hcd;
413 u32 temp;
414 int i;
415
416 xhci = (struct xhci_hcd *)arg;
417
418 for (i = 0; i < xhci->num_usb3_ports; i++) {
419 temp = readl(xhci->usb3_ports[i]);
420 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
421 /*
422 * Compliance Mode Detected. Letting USB Core
423 * handle the Warm Reset
424 */
425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 "Compliance mode detected->port %d",
427 i + 1);
428 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
429 "Attempting compliance mode recovery");
430 hcd = xhci->shared_hcd;
431
432 if (hcd->state == HC_STATE_SUSPENDED)
433 usb_hcd_resume_root_hub(hcd);
434
435 usb_hcd_poll_rh_status(hcd);
436 }
437 }
438
439 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
440 mod_timer(&xhci->comp_mode_recovery_timer,
441 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
442 }
443
444 /*
445 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
446 * that causes ports behind that hardware to enter compliance mode sometimes.
447 * The quirk creates a timer that polls every 2 seconds the link state of
448 * each host controller's port and recovers it by issuing a Warm reset
449 * if Compliance mode is detected, otherwise the port will become "dead" (no
450 * device connections or disconnections will be detected anymore). Becasue no
451 * status event is generated when entering compliance mode (per xhci spec),
452 * this quirk is needed on systems that have the failing hardware installed.
453 */
454 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
455 {
456 xhci->port_status_u0 = 0;
457 setup_timer(&xhci->comp_mode_recovery_timer,
458 compliance_mode_recovery, (unsigned long)xhci);
459 xhci->comp_mode_recovery_timer.expires = jiffies +
460 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
461
462 add_timer(&xhci->comp_mode_recovery_timer);
463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 "Compliance mode recovery timer initialized");
465 }
466
467 /*
468 * This function identifies the systems that have installed the SN65LVPE502CP
469 * USB3.0 re-driver and that need the Compliance Mode Quirk.
470 * Systems:
471 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
472 */
473 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
474 {
475 const char *dmi_product_name, *dmi_sys_vendor;
476
477 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
478 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
479 if (!dmi_product_name || !dmi_sys_vendor)
480 return false;
481
482 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
483 return false;
484
485 if (strstr(dmi_product_name, "Z420") ||
486 strstr(dmi_product_name, "Z620") ||
487 strstr(dmi_product_name, "Z820") ||
488 strstr(dmi_product_name, "Z1 Workstation"))
489 return true;
490
491 return false;
492 }
493
494 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
495 {
496 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
497 }
498
499
500 /*
501 * Initialize memory for HCD and xHC (one-time init).
502 *
503 * Program the PAGESIZE register, initialize the device context array, create
504 * device contexts (?), set up a command ring segment (or two?), create event
505 * ring (one for now).
506 */
507 static int xhci_init(struct usb_hcd *hcd)
508 {
509 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
510 int retval = 0;
511
512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
513 spin_lock_init(&xhci->lock);
514 if (xhci->hci_version == 0x95 && link_quirk) {
515 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
516 "QUIRK: Not clearing Link TRB chain bits.");
517 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
518 } else {
519 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
520 "xHCI doesn't need link TRB QUIRK");
521 }
522 retval = xhci_mem_init(xhci, GFP_KERNEL);
523 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
524
525 /* Initializing Compliance Mode Recovery Data If Needed */
526 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
527 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
528 compliance_mode_recovery_timer_init(xhci);
529 }
530
531 return retval;
532 }
533
534 /*-------------------------------------------------------------------------*/
535
536
537 static int xhci_run_finished(struct xhci_hcd *xhci)
538 {
539 if (xhci_start(xhci)) {
540 xhci_halt(xhci);
541 return -ENODEV;
542 }
543 xhci->shared_hcd->state = HC_STATE_RUNNING;
544 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
545
546 if (xhci->quirks & XHCI_NEC_HOST)
547 xhci_ring_cmd_db(xhci);
548
549 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550 "Finished xhci_run for USB3 roothub");
551 return 0;
552 }
553
554 /*
555 * Start the HC after it was halted.
556 *
557 * This function is called by the USB core when the HC driver is added.
558 * Its opposite is xhci_stop().
559 *
560 * xhci_init() must be called once before this function can be called.
561 * Reset the HC, enable device slot contexts, program DCBAAP, and
562 * set command ring pointer and event ring pointer.
563 *
564 * Setup MSI-X vectors and enable interrupts.
565 */
566 int xhci_run(struct usb_hcd *hcd)
567 {
568 u32 temp;
569 u64 temp_64;
570 int ret;
571 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
572
573 /* Start the xHCI host controller running only after the USB 2.0 roothub
574 * is setup.
575 */
576
577 hcd->uses_new_polling = 1;
578 if (!usb_hcd_is_primary_hcd(hcd))
579 return xhci_run_finished(xhci);
580
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
582
583 ret = xhci_try_enable_msi(hcd);
584 if (ret)
585 return ret;
586
587 xhci_dbg_cmd_ptrs(xhci);
588
589 xhci_dbg(xhci, "ERST memory map follows:\n");
590 xhci_dbg_erst(xhci, &xhci->erst);
591 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
592 temp_64 &= ~ERST_PTR_MASK;
593 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
595
596 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 "// Set the interrupt modulation register");
598 temp = readl(&xhci->ir_set->irq_control);
599 temp &= ~ER_IRQ_INTERVAL_MASK;
600 /*
601 * the increment interval is 8 times as much as that defined
602 * in xHCI spec on MTK's controller
603 */
604 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
605 writel(temp, &xhci->ir_set->irq_control);
606
607 /* Set the HCD state before we enable the irqs */
608 temp = readl(&xhci->op_regs->command);
609 temp |= (CMD_EIE);
610 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
611 "// Enable interrupts, cmd = 0x%x.", temp);
612 writel(temp, &xhci->op_regs->command);
613
614 temp = readl(&xhci->ir_set->irq_pending);
615 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
617 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
618 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
619 xhci_print_ir_set(xhci, 0);
620
621 if (xhci->quirks & XHCI_NEC_HOST) {
622 struct xhci_command *command;
623
624 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
625 if (!command)
626 return -ENOMEM;
627
628 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
629 TRB_TYPE(TRB_NEC_GET_FW));
630 if (ret)
631 xhci_free_command(xhci, command);
632 }
633 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 "Finished xhci_run for USB2 roothub");
635 return 0;
636 }
637 EXPORT_SYMBOL_GPL(xhci_run);
638
639 /*
640 * Stop xHCI driver.
641 *
642 * This function is called by the USB core when the HC driver is removed.
643 * Its opposite is xhci_run().
644 *
645 * Disable device contexts, disable IRQs, and quiesce the HC.
646 * Reset the HC, finish any completed transactions, and cleanup memory.
647 */
648 static void xhci_stop(struct usb_hcd *hcd)
649 {
650 u32 temp;
651 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652
653 mutex_lock(&xhci->mutex);
654
655 /* Only halt host and free memory after both hcds are removed */
656 if (!usb_hcd_is_primary_hcd(hcd)) {
657 /* usb core will free this hcd shortly, unset pointer */
658 xhci->shared_hcd = NULL;
659 mutex_unlock(&xhci->mutex);
660 return;
661 }
662
663 spin_lock_irq(&xhci->lock);
664 xhci->xhc_state |= XHCI_STATE_HALTED;
665 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
666 xhci_halt(xhci);
667 xhci_reset(xhci);
668 spin_unlock_irq(&xhci->lock);
669
670 xhci_cleanup_msix(xhci);
671
672 /* Deleting Compliance Mode Recovery Timer */
673 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
674 (!(xhci_all_ports_seen_u0(xhci)))) {
675 del_timer_sync(&xhci->comp_mode_recovery_timer);
676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
677 "%s: compliance mode recovery timer deleted",
678 __func__);
679 }
680
681 if (xhci->quirks & XHCI_AMD_PLL_FIX)
682 usb_amd_dev_put();
683
684 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
685 "// Disabling event ring interrupts");
686 temp = readl(&xhci->op_regs->status);
687 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
688 temp = readl(&xhci->ir_set->irq_pending);
689 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
690 xhci_print_ir_set(xhci, 0);
691
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
693 xhci_mem_cleanup(xhci);
694 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 "xhci_stop completed - status = %x",
696 readl(&xhci->op_regs->status));
697 mutex_unlock(&xhci->mutex);
698 }
699
700 /*
701 * Shutdown HC (not bus-specific)
702 *
703 * This is called when the machine is rebooting or halting. We assume that the
704 * machine will be powered off, and the HC's internal state will be reset.
705 * Don't bother to free memory.
706 *
707 * This will only ever be called with the main usb_hcd (the USB3 roothub).
708 */
709 static void xhci_shutdown(struct usb_hcd *hcd)
710 {
711 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712
713 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
714 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
715
716 spin_lock_irq(&xhci->lock);
717 xhci_halt(xhci);
718 /* Workaround for spurious wakeups at shutdown with HSW */
719 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
720 xhci_reset(xhci);
721 spin_unlock_irq(&xhci->lock);
722
723 xhci_cleanup_msix(xhci);
724
725 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726 "xhci_shutdown completed - status = %x",
727 readl(&xhci->op_regs->status));
728
729 /* Yet another workaround for spurious wakeups at shutdown with HSW */
730 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
731 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
732 }
733
734 #ifdef CONFIG_PM
735 static void xhci_save_registers(struct xhci_hcd *xhci)
736 {
737 xhci->s3.command = readl(&xhci->op_regs->command);
738 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
739 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
740 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
741 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
742 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
743 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
744 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
745 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
746 }
747
748 static void xhci_restore_registers(struct xhci_hcd *xhci)
749 {
750 writel(xhci->s3.command, &xhci->op_regs->command);
751 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
752 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
753 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
754 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
755 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
756 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
757 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
758 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
759 }
760
761 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
762 {
763 u64 val_64;
764
765 /* step 2: initialize command ring buffer */
766 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
767 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
768 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
769 xhci->cmd_ring->dequeue) &
770 (u64) ~CMD_RING_RSVD_BITS) |
771 xhci->cmd_ring->cycle_state;
772 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
773 "// Setting command ring address to 0x%llx",
774 (long unsigned long) val_64);
775 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
776 }
777
778 /*
779 * The whole command ring must be cleared to zero when we suspend the host.
780 *
781 * The host doesn't save the command ring pointer in the suspend well, so we
782 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
783 * aligned, because of the reserved bits in the command ring dequeue pointer
784 * register. Therefore, we can't just set the dequeue pointer back in the
785 * middle of the ring (TRBs are 16-byte aligned).
786 */
787 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
788 {
789 struct xhci_ring *ring;
790 struct xhci_segment *seg;
791
792 ring = xhci->cmd_ring;
793 seg = ring->deq_seg;
794 do {
795 memset(seg->trbs, 0,
796 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
797 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
798 cpu_to_le32(~TRB_CYCLE);
799 seg = seg->next;
800 } while (seg != ring->deq_seg);
801
802 /* Reset the software enqueue and dequeue pointers */
803 ring->deq_seg = ring->first_seg;
804 ring->dequeue = ring->first_seg->trbs;
805 ring->enq_seg = ring->deq_seg;
806 ring->enqueue = ring->dequeue;
807
808 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
809 /*
810 * Ring is now zeroed, so the HW should look for change of ownership
811 * when the cycle bit is set to 1.
812 */
813 ring->cycle_state = 1;
814
815 /*
816 * Reset the hardware dequeue pointer.
817 * Yes, this will need to be re-written after resume, but we're paranoid
818 * and want to make sure the hardware doesn't access bogus memory
819 * because, say, the BIOS or an SMI started the host without changing
820 * the command ring pointers.
821 */
822 xhci_set_cmd_ring_deq(xhci);
823 }
824
825 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
826 {
827 int port_index;
828 __le32 __iomem **port_array;
829 unsigned long flags;
830 u32 t1, t2;
831
832 spin_lock_irqsave(&xhci->lock, flags);
833
834 /* disable usb3 ports Wake bits */
835 port_index = xhci->num_usb3_ports;
836 port_array = xhci->usb3_ports;
837 while (port_index--) {
838 t1 = readl(port_array[port_index]);
839 t1 = xhci_port_state_to_neutral(t1);
840 t2 = t1 & ~PORT_WAKE_BITS;
841 if (t1 != t2)
842 writel(t2, port_array[port_index]);
843 }
844
845 /* disable usb2 ports Wake bits */
846 port_index = xhci->num_usb2_ports;
847 port_array = xhci->usb2_ports;
848 while (port_index--) {
849 t1 = readl(port_array[port_index]);
850 t1 = xhci_port_state_to_neutral(t1);
851 t2 = t1 & ~PORT_WAKE_BITS;
852 if (t1 != t2)
853 writel(t2, port_array[port_index]);
854 }
855
856 spin_unlock_irqrestore(&xhci->lock, flags);
857 }
858
859 /*
860 * Stop HC (not bus-specific)
861 *
862 * This is called when the machine transition into S3/S4 mode.
863 *
864 */
865 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
866 {
867 int rc = 0;
868 unsigned int delay = XHCI_MAX_HALT_USEC;
869 struct usb_hcd *hcd = xhci_to_hcd(xhci);
870 u32 command;
871
872 if (!hcd->state)
873 return 0;
874
875 if (hcd->state != HC_STATE_SUSPENDED ||
876 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
877 return -EINVAL;
878
879 /* Clear root port wake on bits if wakeup not allowed. */
880 if (!do_wakeup)
881 xhci_disable_port_wake_on_bits(xhci);
882
883 /* Don't poll the roothubs on bus suspend. */
884 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
885 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
886 del_timer_sync(&hcd->rh_timer);
887 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
888 del_timer_sync(&xhci->shared_hcd->rh_timer);
889
890 spin_lock_irq(&xhci->lock);
891 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
892 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
893 /* step 1: stop endpoint */
894 /* skipped assuming that port suspend has done */
895
896 /* step 2: clear Run/Stop bit */
897 command = readl(&xhci->op_regs->command);
898 command &= ~CMD_RUN;
899 writel(command, &xhci->op_regs->command);
900
901 /* Some chips from Fresco Logic need an extraordinary delay */
902 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
903
904 if (xhci_handshake(&xhci->op_regs->status,
905 STS_HALT, STS_HALT, delay)) {
906 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
907 spin_unlock_irq(&xhci->lock);
908 return -ETIMEDOUT;
909 }
910 xhci_clear_command_ring(xhci);
911
912 /* step 3: save registers */
913 xhci_save_registers(xhci);
914
915 /* step 4: set CSS flag */
916 command = readl(&xhci->op_regs->command);
917 command |= CMD_CSS;
918 writel(command, &xhci->op_regs->command);
919 if (xhci_handshake(&xhci->op_regs->status,
920 STS_SAVE, 0, 10 * 1000)) {
921 xhci_warn(xhci, "WARN: xHC save state timeout\n");
922 spin_unlock_irq(&xhci->lock);
923 return -ETIMEDOUT;
924 }
925 spin_unlock_irq(&xhci->lock);
926
927 /*
928 * Deleting Compliance Mode Recovery Timer because the xHCI Host
929 * is about to be suspended.
930 */
931 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
932 (!(xhci_all_ports_seen_u0(xhci)))) {
933 del_timer_sync(&xhci->comp_mode_recovery_timer);
934 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
935 "%s: compliance mode recovery timer deleted",
936 __func__);
937 }
938
939 /* step 5: remove core well power */
940 /* synchronize irq when using MSI-X */
941 xhci_msix_sync_irqs(xhci);
942
943 return rc;
944 }
945 EXPORT_SYMBOL_GPL(xhci_suspend);
946
947 /*
948 * start xHC (not bus-specific)
949 *
950 * This is called when the machine transition from S3/S4 mode.
951 *
952 */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955 u32 command, temp = 0, status;
956 struct usb_hcd *hcd = xhci_to_hcd(xhci);
957 struct usb_hcd *secondary_hcd;
958 int retval = 0;
959 bool comp_timer_running = false;
960
961 if (!hcd->state)
962 return 0;
963
964 /* Wait a bit if either of the roothubs need to settle from the
965 * transition into bus suspend.
966 */
967 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
968 time_before(jiffies,
969 xhci->bus_state[1].next_statechange))
970 msleep(100);
971
972 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
973 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
974
975 spin_lock_irq(&xhci->lock);
976 if (xhci->quirks & XHCI_RESET_ON_RESUME)
977 hibernated = true;
978
979 if (!hibernated) {
980 /* step 1: restore register */
981 xhci_restore_registers(xhci);
982 /* step 2: initialize command ring buffer */
983 xhci_set_cmd_ring_deq(xhci);
984 /* step 3: restore state and start state*/
985 /* step 3: set CRS flag */
986 command = readl(&xhci->op_regs->command);
987 command |= CMD_CRS;
988 writel(command, &xhci->op_regs->command);
989 if (xhci_handshake(&xhci->op_regs->status,
990 STS_RESTORE, 0, 10 * 1000)) {
991 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
992 spin_unlock_irq(&xhci->lock);
993 return -ETIMEDOUT;
994 }
995 temp = readl(&xhci->op_regs->status);
996 }
997
998 /* If restore operation fails, re-initialize the HC during resume */
999 if ((temp & STS_SRE) || hibernated) {
1000
1001 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1002 !(xhci_all_ports_seen_u0(xhci))) {
1003 del_timer_sync(&xhci->comp_mode_recovery_timer);
1004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1005 "Compliance Mode Recovery Timer deleted!");
1006 }
1007
1008 /* Let the USB core know _both_ roothubs lost power. */
1009 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1010 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1011
1012 xhci_dbg(xhci, "Stop HCD\n");
1013 xhci_halt(xhci);
1014 xhci_reset(xhci);
1015 spin_unlock_irq(&xhci->lock);
1016 xhci_cleanup_msix(xhci);
1017
1018 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1019 temp = readl(&xhci->op_regs->status);
1020 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1021 temp = readl(&xhci->ir_set->irq_pending);
1022 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1023 xhci_print_ir_set(xhci, 0);
1024
1025 xhci_dbg(xhci, "cleaning up memory\n");
1026 xhci_mem_cleanup(xhci);
1027 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1028 readl(&xhci->op_regs->status));
1029
1030 /* USB core calls the PCI reinit and start functions twice:
1031 * first with the primary HCD, and then with the secondary HCD.
1032 * If we don't do the same, the host will never be started.
1033 */
1034 if (!usb_hcd_is_primary_hcd(hcd))
1035 secondary_hcd = hcd;
1036 else
1037 secondary_hcd = xhci->shared_hcd;
1038
1039 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1040 retval = xhci_init(hcd->primary_hcd);
1041 if (retval)
1042 return retval;
1043 comp_timer_running = true;
1044
1045 xhci_dbg(xhci, "Start the primary HCD\n");
1046 retval = xhci_run(hcd->primary_hcd);
1047 if (!retval) {
1048 xhci_dbg(xhci, "Start the secondary HCD\n");
1049 retval = xhci_run(secondary_hcd);
1050 }
1051 hcd->state = HC_STATE_SUSPENDED;
1052 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1053 goto done;
1054 }
1055
1056 /* step 4: set Run/Stop bit */
1057 command = readl(&xhci->op_regs->command);
1058 command |= CMD_RUN;
1059 writel(command, &xhci->op_regs->command);
1060 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1061 0, 250 * 1000);
1062
1063 /* step 5: walk topology and initialize portsc,
1064 * portpmsc and portli
1065 */
1066 /* this is done in bus_resume */
1067
1068 /* step 6: restart each of the previously
1069 * Running endpoints by ringing their doorbells
1070 */
1071
1072 spin_unlock_irq(&xhci->lock);
1073
1074 done:
1075 if (retval == 0) {
1076 /* Resume root hubs only when have pending events. */
1077 status = readl(&xhci->op_regs->status);
1078 if (status & STS_EINT) {
1079 usb_hcd_resume_root_hub(xhci->shared_hcd);
1080 usb_hcd_resume_root_hub(hcd);
1081 }
1082 }
1083
1084 /*
1085 * If system is subject to the Quirk, Compliance Mode Timer needs to
1086 * be re-initialized Always after a system resume. Ports are subject
1087 * to suffer the Compliance Mode issue again. It doesn't matter if
1088 * ports have entered previously to U0 before system's suspension.
1089 */
1090 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1091 compliance_mode_recovery_timer_init(xhci);
1092
1093 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1094 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1095
1096 /* Re-enable port polling. */
1097 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1098 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1099 usb_hcd_poll_rh_status(xhci->shared_hcd);
1100 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1101 usb_hcd_poll_rh_status(hcd);
1102
1103 return retval;
1104 }
1105 EXPORT_SYMBOL_GPL(xhci_resume);
1106 #endif /* CONFIG_PM */
1107
1108 /*-------------------------------------------------------------------------*/
1109
1110 /**
1111 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1112 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1113 * value to right shift 1 for the bitmask.
1114 *
1115 * Index = (epnum * 2) + direction - 1,
1116 * where direction = 0 for OUT, 1 for IN.
1117 * For control endpoints, the IN index is used (OUT index is unused), so
1118 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1119 */
1120 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1121 {
1122 unsigned int index;
1123 if (usb_endpoint_xfer_control(desc))
1124 index = (unsigned int) (usb_endpoint_num(desc)*2);
1125 else
1126 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1127 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1128 return index;
1129 }
1130
1131 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1132 * address from the XHCI endpoint index.
1133 */
1134 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1135 {
1136 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1137 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1138 return direction | number;
1139 }
1140
1141 /* Find the flag for this endpoint (for use in the control context). Use the
1142 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1143 * bit 1, etc.
1144 */
1145 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1146 {
1147 return 1 << (xhci_get_endpoint_index(desc) + 1);
1148 }
1149
1150 /* Find the flag for this endpoint (for use in the control context). Use the
1151 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1152 * bit 1, etc.
1153 */
1154 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1155 {
1156 return 1 << (ep_index + 1);
1157 }
1158
1159 /* Compute the last valid endpoint context index. Basically, this is the
1160 * endpoint index plus one. For slot contexts with more than valid endpoint,
1161 * we find the most significant bit set in the added contexts flags.
1162 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1163 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1164 */
1165 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1166 {
1167 return fls(added_ctxs) - 1;
1168 }
1169
1170 /* Returns 1 if the arguments are OK;
1171 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1172 */
1173 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1174 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1175 const char *func) {
1176 struct xhci_hcd *xhci;
1177 struct xhci_virt_device *virt_dev;
1178
1179 if (!hcd || (check_ep && !ep) || !udev) {
1180 pr_debug("xHCI %s called with invalid args\n", func);
1181 return -EINVAL;
1182 }
1183 if (!udev->parent) {
1184 pr_debug("xHCI %s called for root hub\n", func);
1185 return 0;
1186 }
1187
1188 xhci = hcd_to_xhci(hcd);
1189 if (check_virt_dev) {
1190 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1191 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1192 func);
1193 return -EINVAL;
1194 }
1195
1196 virt_dev = xhci->devs[udev->slot_id];
1197 if (virt_dev->udev != udev) {
1198 xhci_dbg(xhci, "xHCI %s called with udev and "
1199 "virt_dev does not match\n", func);
1200 return -EINVAL;
1201 }
1202 }
1203
1204 if (xhci->xhc_state & XHCI_STATE_HALTED)
1205 return -ENODEV;
1206
1207 return 1;
1208 }
1209
1210 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1211 struct usb_device *udev, struct xhci_command *command,
1212 bool ctx_change, bool must_succeed);
1213
1214 /*
1215 * Full speed devices may have a max packet size greater than 8 bytes, but the
1216 * USB core doesn't know that until it reads the first 8 bytes of the
1217 * descriptor. If the usb_device's max packet size changes after that point,
1218 * we need to issue an evaluate context command and wait on it.
1219 */
1220 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1221 unsigned int ep_index, struct urb *urb)
1222 {
1223 struct xhci_container_ctx *out_ctx;
1224 struct xhci_input_control_ctx *ctrl_ctx;
1225 struct xhci_ep_ctx *ep_ctx;
1226 struct xhci_command *command;
1227 int max_packet_size;
1228 int hw_max_packet_size;
1229 int ret = 0;
1230
1231 out_ctx = xhci->devs[slot_id]->out_ctx;
1232 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1233 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1234 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1235 if (hw_max_packet_size != max_packet_size) {
1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1237 "Max Packet Size for ep 0 changed.");
1238 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1239 "Max packet size in usb_device = %d",
1240 max_packet_size);
1241 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1242 "Max packet size in xHCI HW = %d",
1243 hw_max_packet_size);
1244 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1245 "Issuing evaluate context command.");
1246
1247 /* Set up the input context flags for the command */
1248 /* FIXME: This won't work if a non-default control endpoint
1249 * changes max packet sizes.
1250 */
1251
1252 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1253 if (!command)
1254 return -ENOMEM;
1255
1256 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1257 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1258 if (!ctrl_ctx) {
1259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1260 __func__);
1261 ret = -ENOMEM;
1262 goto command_cleanup;
1263 }
1264 /* Set up the modified control endpoint 0 */
1265 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1266 xhci->devs[slot_id]->out_ctx, ep_index);
1267
1268 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1269 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1270 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1271
1272 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1273 ctrl_ctx->drop_flags = 0;
1274
1275 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1276 true, false);
1277
1278 /* Clean up the input context for later use by bandwidth
1279 * functions.
1280 */
1281 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1282 command_cleanup:
1283 kfree(command->completion);
1284 kfree(command);
1285 }
1286 return ret;
1287 }
1288
1289 /*
1290 * non-error returns are a promise to giveback() the urb later
1291 * we drop ownership so next owner (or urb unlink) can get it
1292 */
1293 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1294 {
1295 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1296 unsigned long flags;
1297 int ret = 0;
1298 unsigned int slot_id, ep_index, ep_state;
1299 struct urb_priv *urb_priv;
1300 int num_tds;
1301
1302 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1303 true, true, __func__) <= 0)
1304 return -EINVAL;
1305
1306 slot_id = urb->dev->slot_id;
1307 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1308
1309 if (!HCD_HW_ACCESSIBLE(hcd)) {
1310 if (!in_interrupt())
1311 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1312 return -ESHUTDOWN;
1313 }
1314
1315 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1316 num_tds = urb->number_of_packets;
1317 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1318 urb->transfer_buffer_length > 0 &&
1319 urb->transfer_flags & URB_ZERO_PACKET &&
1320 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1321 num_tds = 2;
1322 else
1323 num_tds = 1;
1324
1325 urb_priv = kzalloc(sizeof(struct urb_priv) +
1326 num_tds * sizeof(struct xhci_td), mem_flags);
1327 if (!urb_priv)
1328 return -ENOMEM;
1329
1330 urb_priv->num_tds = num_tds;
1331 urb_priv->num_tds_done = 0;
1332 urb->hcpriv = urb_priv;
1333
1334 trace_xhci_urb_enqueue(urb);
1335
1336 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1337 /* Check to see if the max packet size for the default control
1338 * endpoint changed during FS device enumeration
1339 */
1340 if (urb->dev->speed == USB_SPEED_FULL) {
1341 ret = xhci_check_maxpacket(xhci, slot_id,
1342 ep_index, urb);
1343 if (ret < 0) {
1344 xhci_urb_free_priv(urb_priv);
1345 urb->hcpriv = NULL;
1346 return ret;
1347 }
1348 }
1349 }
1350
1351 spin_lock_irqsave(&xhci->lock, flags);
1352
1353 if (xhci->xhc_state & XHCI_STATE_DYING) {
1354 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1355 urb->ep->desc.bEndpointAddress, urb);
1356 ret = -ESHUTDOWN;
1357 goto free_priv;
1358 }
1359
1360 switch (usb_endpoint_type(&urb->ep->desc)) {
1361
1362 case USB_ENDPOINT_XFER_CONTROL:
1363 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1364 slot_id, ep_index);
1365 break;
1366 case USB_ENDPOINT_XFER_BULK:
1367 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1368 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1369 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1370 ep_state);
1371 ret = -EINVAL;
1372 break;
1373 }
1374 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1375 slot_id, ep_index);
1376 break;
1377
1378
1379 case USB_ENDPOINT_XFER_INT:
1380 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1381 slot_id, ep_index);
1382 break;
1383
1384 case USB_ENDPOINT_XFER_ISOC:
1385 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1386 slot_id, ep_index);
1387 }
1388
1389 if (ret) {
1390 free_priv:
1391 xhci_urb_free_priv(urb_priv);
1392 urb->hcpriv = NULL;
1393 }
1394 spin_unlock_irqrestore(&xhci->lock, flags);
1395 return ret;
1396 }
1397
1398 /*
1399 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1400 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1401 * should pick up where it left off in the TD, unless a Set Transfer Ring
1402 * Dequeue Pointer is issued.
1403 *
1404 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1405 * the ring. Since the ring is a contiguous structure, they can't be physically
1406 * removed. Instead, there are two options:
1407 *
1408 * 1) If the HC is in the middle of processing the URB to be canceled, we
1409 * simply move the ring's dequeue pointer past those TRBs using the Set
1410 * Transfer Ring Dequeue Pointer command. This will be the common case,
1411 * when drivers timeout on the last submitted URB and attempt to cancel.
1412 *
1413 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1414 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1415 * HC will need to invalidate the any TRBs it has cached after the stop
1416 * endpoint command, as noted in the xHCI 0.95 errata.
1417 *
1418 * 3) The TD may have completed by the time the Stop Endpoint Command
1419 * completes, so software needs to handle that case too.
1420 *
1421 * This function should protect against the TD enqueueing code ringing the
1422 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1423 * It also needs to account for multiple cancellations on happening at the same
1424 * time for the same endpoint.
1425 *
1426 * Note that this function can be called in any context, or so says
1427 * usb_hcd_unlink_urb()
1428 */
1429 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1430 {
1431 unsigned long flags;
1432 int ret, i;
1433 u32 temp;
1434 struct xhci_hcd *xhci;
1435 struct urb_priv *urb_priv;
1436 struct xhci_td *td;
1437 unsigned int ep_index;
1438 struct xhci_ring *ep_ring;
1439 struct xhci_virt_ep *ep;
1440 struct xhci_command *command;
1441 struct xhci_virt_device *vdev;
1442
1443 xhci = hcd_to_xhci(hcd);
1444 spin_lock_irqsave(&xhci->lock, flags);
1445
1446 trace_xhci_urb_dequeue(urb);
1447
1448 /* Make sure the URB hasn't completed or been unlinked already */
1449 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450 if (ret)
1451 goto done;
1452
1453 /* give back URB now if we can't queue it for cancel */
1454 vdev = xhci->devs[urb->dev->slot_id];
1455 urb_priv = urb->hcpriv;
1456 if (!vdev || !urb_priv)
1457 goto err_giveback;
1458
1459 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1460 ep = &vdev->eps[ep_index];
1461 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1462 if (!ep || !ep_ring)
1463 goto err_giveback;
1464
1465 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1466 temp = readl(&xhci->op_regs->status);
1467 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1468 xhci_hc_died(xhci);
1469 goto done;
1470 }
1471
1472 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1473 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1474 "HC halted, freeing TD manually.");
1475 for (i = urb_priv->num_tds_done;
1476 i < urb_priv->num_tds;
1477 i++) {
1478 td = &urb_priv->td[i];
1479 if (!list_empty(&td->td_list))
1480 list_del_init(&td->td_list);
1481 if (!list_empty(&td->cancelled_td_list))
1482 list_del_init(&td->cancelled_td_list);
1483 }
1484 goto err_giveback;
1485 }
1486
1487 i = urb_priv->num_tds_done;
1488 if (i < urb_priv->num_tds)
1489 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1490 "Cancel URB %p, dev %s, ep 0x%x, "
1491 "starting at offset 0x%llx",
1492 urb, urb->dev->devpath,
1493 urb->ep->desc.bEndpointAddress,
1494 (unsigned long long) xhci_trb_virt_to_dma(
1495 urb_priv->td[i].start_seg,
1496 urb_priv->td[i].first_trb));
1497
1498 for (; i < urb_priv->num_tds; i++) {
1499 td = &urb_priv->td[i];
1500 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1501 }
1502
1503 /* Queue a stop endpoint command, but only if this is
1504 * the first cancellation to be handled.
1505 */
1506 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1507 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1508 if (!command) {
1509 ret = -ENOMEM;
1510 goto done;
1511 }
1512 ep->ep_state |= EP_STOP_CMD_PENDING;
1513 ep->stop_cmd_timer.expires = jiffies +
1514 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515 add_timer(&ep->stop_cmd_timer);
1516 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1517 ep_index, 0);
1518 xhci_ring_cmd_db(xhci);
1519 }
1520 done:
1521 spin_unlock_irqrestore(&xhci->lock, flags);
1522 return ret;
1523
1524 err_giveback:
1525 if (urb_priv)
1526 xhci_urb_free_priv(urb_priv);
1527 usb_hcd_unlink_urb_from_ep(hcd, urb);
1528 spin_unlock_irqrestore(&xhci->lock, flags);
1529 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1530 return ret;
1531 }
1532
1533 /* Drop an endpoint from a new bandwidth configuration for this device.
1534 * Only one call to this function is allowed per endpoint before
1535 * check_bandwidth() or reset_bandwidth() must be called.
1536 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1537 * add the endpoint to the schedule with possibly new parameters denoted by a
1538 * different endpoint descriptor in usb_host_endpoint.
1539 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1540 * not allowed.
1541 *
1542 * The USB core will not allow URBs to be queued to an endpoint that is being
1543 * disabled, so there's no need for mutual exclusion to protect
1544 * the xhci->devs[slot_id] structure.
1545 */
1546 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1547 struct usb_host_endpoint *ep)
1548 {
1549 struct xhci_hcd *xhci;
1550 struct xhci_container_ctx *in_ctx, *out_ctx;
1551 struct xhci_input_control_ctx *ctrl_ctx;
1552 unsigned int ep_index;
1553 struct xhci_ep_ctx *ep_ctx;
1554 u32 drop_flag;
1555 u32 new_add_flags, new_drop_flags;
1556 int ret;
1557
1558 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1559 if (ret <= 0)
1560 return ret;
1561 xhci = hcd_to_xhci(hcd);
1562 if (xhci->xhc_state & XHCI_STATE_DYING)
1563 return -ENODEV;
1564
1565 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1566 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1567 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1568 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1569 __func__, drop_flag);
1570 return 0;
1571 }
1572
1573 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1574 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1575 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1576 if (!ctrl_ctx) {
1577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1578 __func__);
1579 return 0;
1580 }
1581
1582 ep_index = xhci_get_endpoint_index(&ep->desc);
1583 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584 /* If the HC already knows the endpoint is disabled,
1585 * or the HCD has noted it is disabled, ignore this request
1586 */
1587 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1588 le32_to_cpu(ctrl_ctx->drop_flags) &
1589 xhci_get_endpoint_flag(&ep->desc)) {
1590 /* Do not warn when called after a usb_device_reset */
1591 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1592 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1593 __func__, ep);
1594 return 0;
1595 }
1596
1597 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1598 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1599
1600 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1601 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1602
1603 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604
1605 if (xhci->quirks & XHCI_MTK_HOST)
1606 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607
1608 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609 (unsigned int) ep->desc.bEndpointAddress,
1610 udev->slot_id,
1611 (unsigned int) new_drop_flags,
1612 (unsigned int) new_add_flags);
1613 return 0;
1614 }
1615
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617 * Only one call to this function is allowed per endpoint before
1618 * check_bandwidth() or reset_bandwidth() must be called.
1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620 * add the endpoint to the schedule with possibly new parameters denoted by a
1621 * different endpoint descriptor in usb_host_endpoint.
1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623 * not allowed.
1624 *
1625 * The USB core will not allow URBs to be queued to an endpoint until the
1626 * configuration or alt setting is installed in the device, so there's no need
1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628 */
1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630 struct usb_host_endpoint *ep)
1631 {
1632 struct xhci_hcd *xhci;
1633 struct xhci_container_ctx *in_ctx;
1634 unsigned int ep_index;
1635 struct xhci_input_control_ctx *ctrl_ctx;
1636 u32 added_ctxs;
1637 u32 new_add_flags, new_drop_flags;
1638 struct xhci_virt_device *virt_dev;
1639 int ret = 0;
1640
1641 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642 if (ret <= 0) {
1643 /* So we won't queue a reset ep command for a root hub */
1644 ep->hcpriv = NULL;
1645 return ret;
1646 }
1647 xhci = hcd_to_xhci(hcd);
1648 if (xhci->xhc_state & XHCI_STATE_DYING)
1649 return -ENODEV;
1650
1651 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653 /* FIXME when we have to issue an evaluate endpoint command to
1654 * deal with ep0 max packet size changing once we get the
1655 * descriptors
1656 */
1657 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658 __func__, added_ctxs);
1659 return 0;
1660 }
1661
1662 virt_dev = xhci->devs[udev->slot_id];
1663 in_ctx = virt_dev->in_ctx;
1664 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665 if (!ctrl_ctx) {
1666 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667 __func__);
1668 return 0;
1669 }
1670
1671 ep_index = xhci_get_endpoint_index(&ep->desc);
1672 /* If this endpoint is already in use, and the upper layers are trying
1673 * to add it again without dropping it, reject the addition.
1674 */
1675 if (virt_dev->eps[ep_index].ring &&
1676 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678 "without dropping it.\n",
1679 (unsigned int) ep->desc.bEndpointAddress);
1680 return -EINVAL;
1681 }
1682
1683 /* If the HCD has already noted the endpoint is enabled,
1684 * ignore this request.
1685 */
1686 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688 __func__, ep);
1689 return 0;
1690 }
1691
1692 /*
1693 * Configuration and alternate setting changes must be done in
1694 * process context, not interrupt context (or so documenation
1695 * for usb_set_interface() and usb_set_configuration() claim).
1696 */
1697 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699 __func__, ep->desc.bEndpointAddress);
1700 return -ENOMEM;
1701 }
1702
1703 if (xhci->quirks & XHCI_MTK_HOST) {
1704 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705 if (ret < 0) {
1706 xhci_free_endpoint_ring(xhci, virt_dev, ep_index);
1707 return ret;
1708 }
1709 }
1710
1711 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1712 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1713
1714 /* If xhci_endpoint_disable() was called for this endpoint, but the
1715 * xHC hasn't been notified yet through the check_bandwidth() call,
1716 * this re-adds a new state for the endpoint from the new endpoint
1717 * descriptors. We must drop and re-add this endpoint, so we leave the
1718 * drop flags alone.
1719 */
1720 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1721
1722 /* Store the usb_device pointer for later use */
1723 ep->hcpriv = udev;
1724
1725 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1726 (unsigned int) ep->desc.bEndpointAddress,
1727 udev->slot_id,
1728 (unsigned int) new_drop_flags,
1729 (unsigned int) new_add_flags);
1730 return 0;
1731 }
1732
1733 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1734 {
1735 struct xhci_input_control_ctx *ctrl_ctx;
1736 struct xhci_ep_ctx *ep_ctx;
1737 struct xhci_slot_ctx *slot_ctx;
1738 int i;
1739
1740 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1741 if (!ctrl_ctx) {
1742 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1743 __func__);
1744 return;
1745 }
1746
1747 /* When a device's add flag and drop flag are zero, any subsequent
1748 * configure endpoint command will leave that endpoint's state
1749 * untouched. Make sure we don't leave any old state in the input
1750 * endpoint contexts.
1751 */
1752 ctrl_ctx->drop_flags = 0;
1753 ctrl_ctx->add_flags = 0;
1754 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1755 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1756 /* Endpoint 0 is always valid */
1757 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1758 for (i = 1; i < 31; i++) {
1759 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1760 ep_ctx->ep_info = 0;
1761 ep_ctx->ep_info2 = 0;
1762 ep_ctx->deq = 0;
1763 ep_ctx->tx_info = 0;
1764 }
1765 }
1766
1767 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1768 struct usb_device *udev, u32 *cmd_status)
1769 {
1770 int ret;
1771
1772 switch (*cmd_status) {
1773 case COMP_COMMAND_ABORTED:
1774 case COMP_COMMAND_RING_STOPPED:
1775 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1776 ret = -ETIME;
1777 break;
1778 case COMP_RESOURCE_ERROR:
1779 dev_warn(&udev->dev,
1780 "Not enough host controller resources for new device state.\n");
1781 ret = -ENOMEM;
1782 /* FIXME: can we allocate more resources for the HC? */
1783 break;
1784 case COMP_BANDWIDTH_ERROR:
1785 case COMP_SECONDARY_BANDWIDTH_ERROR:
1786 dev_warn(&udev->dev,
1787 "Not enough bandwidth for new device state.\n");
1788 ret = -ENOSPC;
1789 /* FIXME: can we go back to the old state? */
1790 break;
1791 case COMP_TRB_ERROR:
1792 /* the HCD set up something wrong */
1793 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1794 "add flag = 1, "
1795 "and endpoint is not disabled.\n");
1796 ret = -EINVAL;
1797 break;
1798 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1799 dev_warn(&udev->dev,
1800 "ERROR: Incompatible device for endpoint configure command.\n");
1801 ret = -ENODEV;
1802 break;
1803 case COMP_SUCCESS:
1804 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1805 "Successful Endpoint Configure command");
1806 ret = 0;
1807 break;
1808 default:
1809 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1810 *cmd_status);
1811 ret = -EINVAL;
1812 break;
1813 }
1814 return ret;
1815 }
1816
1817 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1818 struct usb_device *udev, u32 *cmd_status)
1819 {
1820 int ret;
1821
1822 switch (*cmd_status) {
1823 case COMP_COMMAND_ABORTED:
1824 case COMP_COMMAND_RING_STOPPED:
1825 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1826 ret = -ETIME;
1827 break;
1828 case COMP_PARAMETER_ERROR:
1829 dev_warn(&udev->dev,
1830 "WARN: xHCI driver setup invalid evaluate context command.\n");
1831 ret = -EINVAL;
1832 break;
1833 case COMP_SLOT_NOT_ENABLED_ERROR:
1834 dev_warn(&udev->dev,
1835 "WARN: slot not enabled for evaluate context command.\n");
1836 ret = -EINVAL;
1837 break;
1838 case COMP_CONTEXT_STATE_ERROR:
1839 dev_warn(&udev->dev,
1840 "WARN: invalid context state for evaluate context command.\n");
1841 ret = -EINVAL;
1842 break;
1843 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1844 dev_warn(&udev->dev,
1845 "ERROR: Incompatible device for evaluate context command.\n");
1846 ret = -ENODEV;
1847 break;
1848 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1849 /* Max Exit Latency too large error */
1850 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1851 ret = -EINVAL;
1852 break;
1853 case COMP_SUCCESS:
1854 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1855 "Successful evaluate context command");
1856 ret = 0;
1857 break;
1858 default:
1859 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1860 *cmd_status);
1861 ret = -EINVAL;
1862 break;
1863 }
1864 return ret;
1865 }
1866
1867 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1868 struct xhci_input_control_ctx *ctrl_ctx)
1869 {
1870 u32 valid_add_flags;
1871 u32 valid_drop_flags;
1872
1873 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1874 * (bit 1). The default control endpoint is added during the Address
1875 * Device command and is never removed until the slot is disabled.
1876 */
1877 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1878 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1879
1880 /* Use hweight32 to count the number of ones in the add flags, or
1881 * number of endpoints added. Don't count endpoints that are changed
1882 * (both added and dropped).
1883 */
1884 return hweight32(valid_add_flags) -
1885 hweight32(valid_add_flags & valid_drop_flags);
1886 }
1887
1888 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1889 struct xhci_input_control_ctx *ctrl_ctx)
1890 {
1891 u32 valid_add_flags;
1892 u32 valid_drop_flags;
1893
1894 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1895 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1896
1897 return hweight32(valid_drop_flags) -
1898 hweight32(valid_add_flags & valid_drop_flags);
1899 }
1900
1901 /*
1902 * We need to reserve the new number of endpoints before the configure endpoint
1903 * command completes. We can't subtract the dropped endpoints from the number
1904 * of active endpoints until the command completes because we can oversubscribe
1905 * the host in this case:
1906 *
1907 * - the first configure endpoint command drops more endpoints than it adds
1908 * - a second configure endpoint command that adds more endpoints is queued
1909 * - the first configure endpoint command fails, so the config is unchanged
1910 * - the second command may succeed, even though there isn't enough resources
1911 *
1912 * Must be called with xhci->lock held.
1913 */
1914 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1915 struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917 u32 added_eps;
1918
1919 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1920 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1921 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1922 "Not enough ep ctxs: "
1923 "%u active, need to add %u, limit is %u.",
1924 xhci->num_active_eps, added_eps,
1925 xhci->limit_active_eps);
1926 return -ENOMEM;
1927 }
1928 xhci->num_active_eps += added_eps;
1929 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1930 "Adding %u ep ctxs, %u now active.", added_eps,
1931 xhci->num_active_eps);
1932 return 0;
1933 }
1934
1935 /*
1936 * The configure endpoint was failed by the xHC for some other reason, so we
1937 * need to revert the resources that failed configuration would have used.
1938 *
1939 * Must be called with xhci->lock held.
1940 */
1941 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1942 struct xhci_input_control_ctx *ctrl_ctx)
1943 {
1944 u32 num_failed_eps;
1945
1946 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1947 xhci->num_active_eps -= num_failed_eps;
1948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1949 "Removing %u failed ep ctxs, %u now active.",
1950 num_failed_eps,
1951 xhci->num_active_eps);
1952 }
1953
1954 /*
1955 * Now that the command has completed, clean up the active endpoint count by
1956 * subtracting out the endpoints that were dropped (but not changed).
1957 *
1958 * Must be called with xhci->lock held.
1959 */
1960 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1961 struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963 u32 num_dropped_eps;
1964
1965 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1966 xhci->num_active_eps -= num_dropped_eps;
1967 if (num_dropped_eps)
1968 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1969 "Removing %u dropped ep ctxs, %u now active.",
1970 num_dropped_eps,
1971 xhci->num_active_eps);
1972 }
1973
1974 static unsigned int xhci_get_block_size(struct usb_device *udev)
1975 {
1976 switch (udev->speed) {
1977 case USB_SPEED_LOW:
1978 case USB_SPEED_FULL:
1979 return FS_BLOCK;
1980 case USB_SPEED_HIGH:
1981 return HS_BLOCK;
1982 case USB_SPEED_SUPER:
1983 case USB_SPEED_SUPER_PLUS:
1984 return SS_BLOCK;
1985 case USB_SPEED_UNKNOWN:
1986 case USB_SPEED_WIRELESS:
1987 default:
1988 /* Should never happen */
1989 return 1;
1990 }
1991 }
1992
1993 static unsigned int
1994 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1995 {
1996 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1997 return LS_OVERHEAD;
1998 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1999 return FS_OVERHEAD;
2000 return HS_OVERHEAD;
2001 }
2002
2003 /* If we are changing a LS/FS device under a HS hub,
2004 * make sure (if we are activating a new TT) that the HS bus has enough
2005 * bandwidth for this new TT.
2006 */
2007 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2008 struct xhci_virt_device *virt_dev,
2009 int old_active_eps)
2010 {
2011 struct xhci_interval_bw_table *bw_table;
2012 struct xhci_tt_bw_info *tt_info;
2013
2014 /* Find the bandwidth table for the root port this TT is attached to. */
2015 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2016 tt_info = virt_dev->tt_info;
2017 /* If this TT already had active endpoints, the bandwidth for this TT
2018 * has already been added. Removing all periodic endpoints (and thus
2019 * making the TT enactive) will only decrease the bandwidth used.
2020 */
2021 if (old_active_eps)
2022 return 0;
2023 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2024 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2025 return -ENOMEM;
2026 return 0;
2027 }
2028 /* Not sure why we would have no new active endpoints...
2029 *
2030 * Maybe because of an Evaluate Context change for a hub update or a
2031 * control endpoint 0 max packet size change?
2032 * FIXME: skip the bandwidth calculation in that case.
2033 */
2034 return 0;
2035 }
2036
2037 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2038 struct xhci_virt_device *virt_dev)
2039 {
2040 unsigned int bw_reserved;
2041
2042 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2043 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2044 return -ENOMEM;
2045
2046 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2047 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2048 return -ENOMEM;
2049
2050 return 0;
2051 }
2052
2053 /*
2054 * This algorithm is a very conservative estimate of the worst-case scheduling
2055 * scenario for any one interval. The hardware dynamically schedules the
2056 * packets, so we can't tell which microframe could be the limiting factor in
2057 * the bandwidth scheduling. This only takes into account periodic endpoints.
2058 *
2059 * Obviously, we can't solve an NP complete problem to find the minimum worst
2060 * case scenario. Instead, we come up with an estimate that is no less than
2061 * the worst case bandwidth used for any one microframe, but may be an
2062 * over-estimate.
2063 *
2064 * We walk the requirements for each endpoint by interval, starting with the
2065 * smallest interval, and place packets in the schedule where there is only one
2066 * possible way to schedule packets for that interval. In order to simplify
2067 * this algorithm, we record the largest max packet size for each interval, and
2068 * assume all packets will be that size.
2069 *
2070 * For interval 0, we obviously must schedule all packets for each interval.
2071 * The bandwidth for interval 0 is just the amount of data to be transmitted
2072 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2073 * the number of packets).
2074 *
2075 * For interval 1, we have two possible microframes to schedule those packets
2076 * in. For this algorithm, if we can schedule the same number of packets for
2077 * each possible scheduling opportunity (each microframe), we will do so. The
2078 * remaining number of packets will be saved to be transmitted in the gaps in
2079 * the next interval's scheduling sequence.
2080 *
2081 * As we move those remaining packets to be scheduled with interval 2 packets,
2082 * we have to double the number of remaining packets to transmit. This is
2083 * because the intervals are actually powers of 2, and we would be transmitting
2084 * the previous interval's packets twice in this interval. We also have to be
2085 * sure that when we look at the largest max packet size for this interval, we
2086 * also look at the largest max packet size for the remaining packets and take
2087 * the greater of the two.
2088 *
2089 * The algorithm continues to evenly distribute packets in each scheduling
2090 * opportunity, and push the remaining packets out, until we get to the last
2091 * interval. Then those packets and their associated overhead are just added
2092 * to the bandwidth used.
2093 */
2094 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2095 struct xhci_virt_device *virt_dev,
2096 int old_active_eps)
2097 {
2098 unsigned int bw_reserved;
2099 unsigned int max_bandwidth;
2100 unsigned int bw_used;
2101 unsigned int block_size;
2102 struct xhci_interval_bw_table *bw_table;
2103 unsigned int packet_size = 0;
2104 unsigned int overhead = 0;
2105 unsigned int packets_transmitted = 0;
2106 unsigned int packets_remaining = 0;
2107 unsigned int i;
2108
2109 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2110 return xhci_check_ss_bw(xhci, virt_dev);
2111
2112 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2113 max_bandwidth = HS_BW_LIMIT;
2114 /* Convert percent of bus BW reserved to blocks reserved */
2115 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2116 } else {
2117 max_bandwidth = FS_BW_LIMIT;
2118 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2119 }
2120
2121 bw_table = virt_dev->bw_table;
2122 /* We need to translate the max packet size and max ESIT payloads into
2123 * the units the hardware uses.
2124 */
2125 block_size = xhci_get_block_size(virt_dev->udev);
2126
2127 /* If we are manipulating a LS/FS device under a HS hub, double check
2128 * that the HS bus has enough bandwidth if we are activing a new TT.
2129 */
2130 if (virt_dev->tt_info) {
2131 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132 "Recalculating BW for rootport %u",
2133 virt_dev->real_port);
2134 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2135 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2136 "newly activated TT.\n");
2137 return -ENOMEM;
2138 }
2139 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2140 "Recalculating BW for TT slot %u port %u",
2141 virt_dev->tt_info->slot_id,
2142 virt_dev->tt_info->ttport);
2143 } else {
2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 "Recalculating BW for rootport %u",
2146 virt_dev->real_port);
2147 }
2148
2149 /* Add in how much bandwidth will be used for interval zero, or the
2150 * rounded max ESIT payload + number of packets * largest overhead.
2151 */
2152 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2153 bw_table->interval_bw[0].num_packets *
2154 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2155
2156 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2157 unsigned int bw_added;
2158 unsigned int largest_mps;
2159 unsigned int interval_overhead;
2160
2161 /*
2162 * How many packets could we transmit in this interval?
2163 * If packets didn't fit in the previous interval, we will need
2164 * to transmit that many packets twice within this interval.
2165 */
2166 packets_remaining = 2 * packets_remaining +
2167 bw_table->interval_bw[i].num_packets;
2168
2169 /* Find the largest max packet size of this or the previous
2170 * interval.
2171 */
2172 if (list_empty(&bw_table->interval_bw[i].endpoints))
2173 largest_mps = 0;
2174 else {
2175 struct xhci_virt_ep *virt_ep;
2176 struct list_head *ep_entry;
2177
2178 ep_entry = bw_table->interval_bw[i].endpoints.next;
2179 virt_ep = list_entry(ep_entry,
2180 struct xhci_virt_ep, bw_endpoint_list);
2181 /* Convert to blocks, rounding up */
2182 largest_mps = DIV_ROUND_UP(
2183 virt_ep->bw_info.max_packet_size,
2184 block_size);
2185 }
2186 if (largest_mps > packet_size)
2187 packet_size = largest_mps;
2188
2189 /* Use the larger overhead of this or the previous interval. */
2190 interval_overhead = xhci_get_largest_overhead(
2191 &bw_table->interval_bw[i]);
2192 if (interval_overhead > overhead)
2193 overhead = interval_overhead;
2194
2195 /* How many packets can we evenly distribute across
2196 * (1 << (i + 1)) possible scheduling opportunities?
2197 */
2198 packets_transmitted = packets_remaining >> (i + 1);
2199
2200 /* Add in the bandwidth used for those scheduled packets */
2201 bw_added = packets_transmitted * (overhead + packet_size);
2202
2203 /* How many packets do we have remaining to transmit? */
2204 packets_remaining = packets_remaining % (1 << (i + 1));
2205
2206 /* What largest max packet size should those packets have? */
2207 /* If we've transmitted all packets, don't carry over the
2208 * largest packet size.
2209 */
2210 if (packets_remaining == 0) {
2211 packet_size = 0;
2212 overhead = 0;
2213 } else if (packets_transmitted > 0) {
2214 /* Otherwise if we do have remaining packets, and we've
2215 * scheduled some packets in this interval, take the
2216 * largest max packet size from endpoints with this
2217 * interval.
2218 */
2219 packet_size = largest_mps;
2220 overhead = interval_overhead;
2221 }
2222 /* Otherwise carry over packet_size and overhead from the last
2223 * time we had a remainder.
2224 */
2225 bw_used += bw_added;
2226 if (bw_used > max_bandwidth) {
2227 xhci_warn(xhci, "Not enough bandwidth. "
2228 "Proposed: %u, Max: %u\n",
2229 bw_used, max_bandwidth);
2230 return -ENOMEM;
2231 }
2232 }
2233 /*
2234 * Ok, we know we have some packets left over after even-handedly
2235 * scheduling interval 15. We don't know which microframes they will
2236 * fit into, so we over-schedule and say they will be scheduled every
2237 * microframe.
2238 */
2239 if (packets_remaining > 0)
2240 bw_used += overhead + packet_size;
2241
2242 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2243 unsigned int port_index = virt_dev->real_port - 1;
2244
2245 /* OK, we're manipulating a HS device attached to a
2246 * root port bandwidth domain. Include the number of active TTs
2247 * in the bandwidth used.
2248 */
2249 bw_used += TT_HS_OVERHEAD *
2250 xhci->rh_bw[port_index].num_active_tts;
2251 }
2252
2253 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2255 "Available: %u " "percent",
2256 bw_used, max_bandwidth, bw_reserved,
2257 (max_bandwidth - bw_used - bw_reserved) * 100 /
2258 max_bandwidth);
2259
2260 bw_used += bw_reserved;
2261 if (bw_used > max_bandwidth) {
2262 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2263 bw_used, max_bandwidth);
2264 return -ENOMEM;
2265 }
2266
2267 bw_table->bw_used = bw_used;
2268 return 0;
2269 }
2270
2271 static bool xhci_is_async_ep(unsigned int ep_type)
2272 {
2273 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2274 ep_type != ISOC_IN_EP &&
2275 ep_type != INT_IN_EP);
2276 }
2277
2278 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2279 {
2280 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2281 }
2282
2283 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2284 {
2285 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2286
2287 if (ep_bw->ep_interval == 0)
2288 return SS_OVERHEAD_BURST +
2289 (ep_bw->mult * ep_bw->num_packets *
2290 (SS_OVERHEAD + mps));
2291 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2292 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2293 1 << ep_bw->ep_interval);
2294
2295 }
2296
2297 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2298 struct xhci_bw_info *ep_bw,
2299 struct xhci_interval_bw_table *bw_table,
2300 struct usb_device *udev,
2301 struct xhci_virt_ep *virt_ep,
2302 struct xhci_tt_bw_info *tt_info)
2303 {
2304 struct xhci_interval_bw *interval_bw;
2305 int normalized_interval;
2306
2307 if (xhci_is_async_ep(ep_bw->type))
2308 return;
2309
2310 if (udev->speed >= USB_SPEED_SUPER) {
2311 if (xhci_is_sync_in_ep(ep_bw->type))
2312 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2313 xhci_get_ss_bw_consumed(ep_bw);
2314 else
2315 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2316 xhci_get_ss_bw_consumed(ep_bw);
2317 return;
2318 }
2319
2320 /* SuperSpeed endpoints never get added to intervals in the table, so
2321 * this check is only valid for HS/FS/LS devices.
2322 */
2323 if (list_empty(&virt_ep->bw_endpoint_list))
2324 return;
2325 /* For LS/FS devices, we need to translate the interval expressed in
2326 * microframes to frames.
2327 */
2328 if (udev->speed == USB_SPEED_HIGH)
2329 normalized_interval = ep_bw->ep_interval;
2330 else
2331 normalized_interval = ep_bw->ep_interval - 3;
2332
2333 if (normalized_interval == 0)
2334 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2335 interval_bw = &bw_table->interval_bw[normalized_interval];
2336 interval_bw->num_packets -= ep_bw->num_packets;
2337 switch (udev->speed) {
2338 case USB_SPEED_LOW:
2339 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2340 break;
2341 case USB_SPEED_FULL:
2342 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2343 break;
2344 case USB_SPEED_HIGH:
2345 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2346 break;
2347 case USB_SPEED_SUPER:
2348 case USB_SPEED_SUPER_PLUS:
2349 case USB_SPEED_UNKNOWN:
2350 case USB_SPEED_WIRELESS:
2351 /* Should never happen because only LS/FS/HS endpoints will get
2352 * added to the endpoint list.
2353 */
2354 return;
2355 }
2356 if (tt_info)
2357 tt_info->active_eps -= 1;
2358 list_del_init(&virt_ep->bw_endpoint_list);
2359 }
2360
2361 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2362 struct xhci_bw_info *ep_bw,
2363 struct xhci_interval_bw_table *bw_table,
2364 struct usb_device *udev,
2365 struct xhci_virt_ep *virt_ep,
2366 struct xhci_tt_bw_info *tt_info)
2367 {
2368 struct xhci_interval_bw *interval_bw;
2369 struct xhci_virt_ep *smaller_ep;
2370 int normalized_interval;
2371
2372 if (xhci_is_async_ep(ep_bw->type))
2373 return;
2374
2375 if (udev->speed == USB_SPEED_SUPER) {
2376 if (xhci_is_sync_in_ep(ep_bw->type))
2377 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2378 xhci_get_ss_bw_consumed(ep_bw);
2379 else
2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2381 xhci_get_ss_bw_consumed(ep_bw);
2382 return;
2383 }
2384
2385 /* For LS/FS devices, we need to translate the interval expressed in
2386 * microframes to frames.
2387 */
2388 if (udev->speed == USB_SPEED_HIGH)
2389 normalized_interval = ep_bw->ep_interval;
2390 else
2391 normalized_interval = ep_bw->ep_interval - 3;
2392
2393 if (normalized_interval == 0)
2394 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2395 interval_bw = &bw_table->interval_bw[normalized_interval];
2396 interval_bw->num_packets += ep_bw->num_packets;
2397 switch (udev->speed) {
2398 case USB_SPEED_LOW:
2399 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2400 break;
2401 case USB_SPEED_FULL:
2402 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2403 break;
2404 case USB_SPEED_HIGH:
2405 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2406 break;
2407 case USB_SPEED_SUPER:
2408 case USB_SPEED_SUPER_PLUS:
2409 case USB_SPEED_UNKNOWN:
2410 case USB_SPEED_WIRELESS:
2411 /* Should never happen because only LS/FS/HS endpoints will get
2412 * added to the endpoint list.
2413 */
2414 return;
2415 }
2416
2417 if (tt_info)
2418 tt_info->active_eps += 1;
2419 /* Insert the endpoint into the list, largest max packet size first. */
2420 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2421 bw_endpoint_list) {
2422 if (ep_bw->max_packet_size >=
2423 smaller_ep->bw_info.max_packet_size) {
2424 /* Add the new ep before the smaller endpoint */
2425 list_add_tail(&virt_ep->bw_endpoint_list,
2426 &smaller_ep->bw_endpoint_list);
2427 return;
2428 }
2429 }
2430 /* Add the new endpoint at the end of the list. */
2431 list_add_tail(&virt_ep->bw_endpoint_list,
2432 &interval_bw->endpoints);
2433 }
2434
2435 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2436 struct xhci_virt_device *virt_dev,
2437 int old_active_eps)
2438 {
2439 struct xhci_root_port_bw_info *rh_bw_info;
2440 if (!virt_dev->tt_info)
2441 return;
2442
2443 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2444 if (old_active_eps == 0 &&
2445 virt_dev->tt_info->active_eps != 0) {
2446 rh_bw_info->num_active_tts += 1;
2447 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2448 } else if (old_active_eps != 0 &&
2449 virt_dev->tt_info->active_eps == 0) {
2450 rh_bw_info->num_active_tts -= 1;
2451 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2452 }
2453 }
2454
2455 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2456 struct xhci_virt_device *virt_dev,
2457 struct xhci_container_ctx *in_ctx)
2458 {
2459 struct xhci_bw_info ep_bw_info[31];
2460 int i;
2461 struct xhci_input_control_ctx *ctrl_ctx;
2462 int old_active_eps = 0;
2463
2464 if (virt_dev->tt_info)
2465 old_active_eps = virt_dev->tt_info->active_eps;
2466
2467 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2468 if (!ctrl_ctx) {
2469 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2470 __func__);
2471 return -ENOMEM;
2472 }
2473
2474 for (i = 0; i < 31; i++) {
2475 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2476 continue;
2477
2478 /* Make a copy of the BW info in case we need to revert this */
2479 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2480 sizeof(ep_bw_info[i]));
2481 /* Drop the endpoint from the interval table if the endpoint is
2482 * being dropped or changed.
2483 */
2484 if (EP_IS_DROPPED(ctrl_ctx, i))
2485 xhci_drop_ep_from_interval_table(xhci,
2486 &virt_dev->eps[i].bw_info,
2487 virt_dev->bw_table,
2488 virt_dev->udev,
2489 &virt_dev->eps[i],
2490 virt_dev->tt_info);
2491 }
2492 /* Overwrite the information stored in the endpoints' bw_info */
2493 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2494 for (i = 0; i < 31; i++) {
2495 /* Add any changed or added endpoints to the interval table */
2496 if (EP_IS_ADDED(ctrl_ctx, i))
2497 xhci_add_ep_to_interval_table(xhci,
2498 &virt_dev->eps[i].bw_info,
2499 virt_dev->bw_table,
2500 virt_dev->udev,
2501 &virt_dev->eps[i],
2502 virt_dev->tt_info);
2503 }
2504
2505 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2506 /* Ok, this fits in the bandwidth we have.
2507 * Update the number of active TTs.
2508 */
2509 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2510 return 0;
2511 }
2512
2513 /* We don't have enough bandwidth for this, revert the stored info. */
2514 for (i = 0; i < 31; i++) {
2515 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2516 continue;
2517
2518 /* Drop the new copies of any added or changed endpoints from
2519 * the interval table.
2520 */
2521 if (EP_IS_ADDED(ctrl_ctx, i)) {
2522 xhci_drop_ep_from_interval_table(xhci,
2523 &virt_dev->eps[i].bw_info,
2524 virt_dev->bw_table,
2525 virt_dev->udev,
2526 &virt_dev->eps[i],
2527 virt_dev->tt_info);
2528 }
2529 /* Revert the endpoint back to its old information */
2530 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2531 sizeof(ep_bw_info[i]));
2532 /* Add any changed or dropped endpoints back into the table */
2533 if (EP_IS_DROPPED(ctrl_ctx, i))
2534 xhci_add_ep_to_interval_table(xhci,
2535 &virt_dev->eps[i].bw_info,
2536 virt_dev->bw_table,
2537 virt_dev->udev,
2538 &virt_dev->eps[i],
2539 virt_dev->tt_info);
2540 }
2541 return -ENOMEM;
2542 }
2543
2544
2545 /* Issue a configure endpoint command or evaluate context command
2546 * and wait for it to finish.
2547 */
2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2549 struct usb_device *udev,
2550 struct xhci_command *command,
2551 bool ctx_change, bool must_succeed)
2552 {
2553 int ret;
2554 unsigned long flags;
2555 struct xhci_input_control_ctx *ctrl_ctx;
2556 struct xhci_virt_device *virt_dev;
2557
2558 if (!command)
2559 return -EINVAL;
2560
2561 spin_lock_irqsave(&xhci->lock, flags);
2562
2563 if (xhci->xhc_state & XHCI_STATE_DYING) {
2564 spin_unlock_irqrestore(&xhci->lock, flags);
2565 return -ESHUTDOWN;
2566 }
2567
2568 virt_dev = xhci->devs[udev->slot_id];
2569
2570 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2571 if (!ctrl_ctx) {
2572 spin_unlock_irqrestore(&xhci->lock, flags);
2573 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2574 __func__);
2575 return -ENOMEM;
2576 }
2577
2578 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2579 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2580 spin_unlock_irqrestore(&xhci->lock, flags);
2581 xhci_warn(xhci, "Not enough host resources, "
2582 "active endpoint contexts = %u\n",
2583 xhci->num_active_eps);
2584 return -ENOMEM;
2585 }
2586 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2587 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2588 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2589 xhci_free_host_resources(xhci, ctrl_ctx);
2590 spin_unlock_irqrestore(&xhci->lock, flags);
2591 xhci_warn(xhci, "Not enough bandwidth\n");
2592 return -ENOMEM;
2593 }
2594
2595 if (!ctx_change)
2596 ret = xhci_queue_configure_endpoint(xhci, command,
2597 command->in_ctx->dma,
2598 udev->slot_id, must_succeed);
2599 else
2600 ret = xhci_queue_evaluate_context(xhci, command,
2601 command->in_ctx->dma,
2602 udev->slot_id, must_succeed);
2603 if (ret < 0) {
2604 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2605 xhci_free_host_resources(xhci, ctrl_ctx);
2606 spin_unlock_irqrestore(&xhci->lock, flags);
2607 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2608 "FIXME allocate a new ring segment");
2609 return -ENOMEM;
2610 }
2611 xhci_ring_cmd_db(xhci);
2612 spin_unlock_irqrestore(&xhci->lock, flags);
2613
2614 /* Wait for the configure endpoint command to complete */
2615 wait_for_completion(command->completion);
2616
2617 if (!ctx_change)
2618 ret = xhci_configure_endpoint_result(xhci, udev,
2619 &command->status);
2620 else
2621 ret = xhci_evaluate_context_result(xhci, udev,
2622 &command->status);
2623
2624 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2625 spin_lock_irqsave(&xhci->lock, flags);
2626 /* If the command failed, remove the reserved resources.
2627 * Otherwise, clean up the estimate to include dropped eps.
2628 */
2629 if (ret)
2630 xhci_free_host_resources(xhci, ctrl_ctx);
2631 else
2632 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2633 spin_unlock_irqrestore(&xhci->lock, flags);
2634 }
2635 return ret;
2636 }
2637
2638 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2639 struct xhci_virt_device *vdev, int i)
2640 {
2641 struct xhci_virt_ep *ep = &vdev->eps[i];
2642
2643 if (ep->ep_state & EP_HAS_STREAMS) {
2644 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2645 xhci_get_endpoint_address(i));
2646 xhci_free_stream_info(xhci, ep->stream_info);
2647 ep->stream_info = NULL;
2648 ep->ep_state &= ~EP_HAS_STREAMS;
2649 }
2650 }
2651
2652 /* Called after one or more calls to xhci_add_endpoint() or
2653 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2654 * to call xhci_reset_bandwidth().
2655 *
2656 * Since we are in the middle of changing either configuration or
2657 * installing a new alt setting, the USB core won't allow URBs to be
2658 * enqueued for any endpoint on the old config or interface. Nothing
2659 * else should be touching the xhci->devs[slot_id] structure, so we
2660 * don't need to take the xhci->lock for manipulating that.
2661 */
2662 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2663 {
2664 int i;
2665 int ret = 0;
2666 struct xhci_hcd *xhci;
2667 struct xhci_virt_device *virt_dev;
2668 struct xhci_input_control_ctx *ctrl_ctx;
2669 struct xhci_slot_ctx *slot_ctx;
2670 struct xhci_command *command;
2671
2672 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2673 if (ret <= 0)
2674 return ret;
2675 xhci = hcd_to_xhci(hcd);
2676 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2677 (xhci->xhc_state & XHCI_STATE_REMOVING))
2678 return -ENODEV;
2679
2680 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2681 virt_dev = xhci->devs[udev->slot_id];
2682
2683 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2684 if (!command)
2685 return -ENOMEM;
2686
2687 command->in_ctx = virt_dev->in_ctx;
2688
2689 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2690 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2691 if (!ctrl_ctx) {
2692 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2693 __func__);
2694 ret = -ENOMEM;
2695 goto command_cleanup;
2696 }
2697 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2698 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2699 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2700
2701 /* Don't issue the command if there's no endpoints to update. */
2702 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2703 ctrl_ctx->drop_flags == 0) {
2704 ret = 0;
2705 goto command_cleanup;
2706 }
2707 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2708 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2709 for (i = 31; i >= 1; i--) {
2710 __le32 le32 = cpu_to_le32(BIT(i));
2711
2712 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2713 || (ctrl_ctx->add_flags & le32) || i == 1) {
2714 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2715 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2716 break;
2717 }
2718 }
2719
2720 ret = xhci_configure_endpoint(xhci, udev, command,
2721 false, false);
2722 if (ret)
2723 /* Callee should call reset_bandwidth() */
2724 goto command_cleanup;
2725
2726 /* Free any rings that were dropped, but not changed. */
2727 for (i = 1; i < 31; i++) {
2728 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2729 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2730 xhci_free_endpoint_ring(xhci, virt_dev, i);
2731 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2732 }
2733 }
2734 xhci_zero_in_ctx(xhci, virt_dev);
2735 /*
2736 * Install any rings for completely new endpoints or changed endpoints,
2737 * and free any old rings from changed endpoints.
2738 */
2739 for (i = 1; i < 31; i++) {
2740 if (!virt_dev->eps[i].new_ring)
2741 continue;
2742 /* Only free the old ring if it exists.
2743 * It may not if this is the first add of an endpoint.
2744 */
2745 if (virt_dev->eps[i].ring) {
2746 xhci_free_endpoint_ring(xhci, virt_dev, i);
2747 }
2748 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2749 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2750 virt_dev->eps[i].new_ring = NULL;
2751 }
2752 command_cleanup:
2753 kfree(command->completion);
2754 kfree(command);
2755
2756 return ret;
2757 }
2758
2759 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2760 {
2761 struct xhci_hcd *xhci;
2762 struct xhci_virt_device *virt_dev;
2763 int i, ret;
2764
2765 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2766 if (ret <= 0)
2767 return;
2768 xhci = hcd_to_xhci(hcd);
2769
2770 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2771 virt_dev = xhci->devs[udev->slot_id];
2772 /* Free any rings allocated for added endpoints */
2773 for (i = 0; i < 31; i++) {
2774 if (virt_dev->eps[i].new_ring) {
2775 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2776 virt_dev->eps[i].new_ring = NULL;
2777 }
2778 }
2779 xhci_zero_in_ctx(xhci, virt_dev);
2780 }
2781
2782 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2783 struct xhci_container_ctx *in_ctx,
2784 struct xhci_container_ctx *out_ctx,
2785 struct xhci_input_control_ctx *ctrl_ctx,
2786 u32 add_flags, u32 drop_flags)
2787 {
2788 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2789 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2790 xhci_slot_copy(xhci, in_ctx, out_ctx);
2791 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2792 }
2793
2794 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2795 unsigned int slot_id, unsigned int ep_index,
2796 struct xhci_dequeue_state *deq_state)
2797 {
2798 struct xhci_input_control_ctx *ctrl_ctx;
2799 struct xhci_container_ctx *in_ctx;
2800 struct xhci_ep_ctx *ep_ctx;
2801 u32 added_ctxs;
2802 dma_addr_t addr;
2803
2804 in_ctx = xhci->devs[slot_id]->in_ctx;
2805 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2806 if (!ctrl_ctx) {
2807 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2808 __func__);
2809 return;
2810 }
2811
2812 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2813 xhci->devs[slot_id]->out_ctx, ep_index);
2814 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2815 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2816 deq_state->new_deq_ptr);
2817 if (addr == 0) {
2818 xhci_warn(xhci, "WARN Cannot submit config ep after "
2819 "reset ep command\n");
2820 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2821 deq_state->new_deq_seg,
2822 deq_state->new_deq_ptr);
2823 return;
2824 }
2825 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2826
2827 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2828 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2829 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2830 added_ctxs, added_ctxs);
2831 }
2832
2833 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2834 unsigned int stream_id, struct xhci_td *td)
2835 {
2836 struct xhci_dequeue_state deq_state;
2837 struct xhci_virt_ep *ep;
2838 struct usb_device *udev = td->urb->dev;
2839
2840 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2841 "Cleaning up stalled endpoint ring");
2842 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2843 /* We need to move the HW's dequeue pointer past this TD,
2844 * or it will attempt to resend it on the next doorbell ring.
2845 */
2846 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2847 ep_index, stream_id, td, &deq_state);
2848
2849 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2850 return;
2851
2852 /* HW with the reset endpoint quirk will use the saved dequeue state to
2853 * issue a configure endpoint command later.
2854 */
2855 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2856 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2857 "Queueing new dequeue state");
2858 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2859 ep_index, &deq_state);
2860 } else {
2861 /* Better hope no one uses the input context between now and the
2862 * reset endpoint completion!
2863 * XXX: No idea how this hardware will react when stream rings
2864 * are enabled.
2865 */
2866 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2867 "Setting up input context for "
2868 "configure endpoint command");
2869 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2870 ep_index, &deq_state);
2871 }
2872 }
2873
2874 /* Called when clearing halted device. The core should have sent the control
2875 * message to clear the device halt condition. The host side of the halt should
2876 * already be cleared with a reset endpoint command issued when the STALL tx
2877 * event was received.
2878 *
2879 * Context: in_interrupt
2880 */
2881
2882 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2883 struct usb_host_endpoint *ep)
2884 {
2885 struct xhci_hcd *xhci;
2886
2887 xhci = hcd_to_xhci(hcd);
2888
2889 /*
2890 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2891 * The Reset Endpoint Command may only be issued to endpoints in the
2892 * Halted state. If software wishes reset the Data Toggle or Sequence
2893 * Number of an endpoint that isn't in the Halted state, then software
2894 * may issue a Configure Endpoint Command with the Drop and Add bits set
2895 * for the target endpoint. that is in the Stopped state.
2896 */
2897
2898 /* For now just print debug to follow the situation */
2899 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2900 ep->desc.bEndpointAddress);
2901 }
2902
2903 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2904 struct usb_device *udev, struct usb_host_endpoint *ep,
2905 unsigned int slot_id)
2906 {
2907 int ret;
2908 unsigned int ep_index;
2909 unsigned int ep_state;
2910
2911 if (!ep)
2912 return -EINVAL;
2913 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2914 if (ret <= 0)
2915 return -EINVAL;
2916 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2917 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2918 " descriptor for ep 0x%x does not support streams\n",
2919 ep->desc.bEndpointAddress);
2920 return -EINVAL;
2921 }
2922
2923 ep_index = xhci_get_endpoint_index(&ep->desc);
2924 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2925 if (ep_state & EP_HAS_STREAMS ||
2926 ep_state & EP_GETTING_STREAMS) {
2927 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2928 "already has streams set up.\n",
2929 ep->desc.bEndpointAddress);
2930 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2931 "dynamic stream context array reallocation.\n");
2932 return -EINVAL;
2933 }
2934 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2935 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2936 "endpoint 0x%x; URBs are pending.\n",
2937 ep->desc.bEndpointAddress);
2938 return -EINVAL;
2939 }
2940 return 0;
2941 }
2942
2943 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2944 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2945 {
2946 unsigned int max_streams;
2947
2948 /* The stream context array size must be a power of two */
2949 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2950 /*
2951 * Find out how many primary stream array entries the host controller
2952 * supports. Later we may use secondary stream arrays (similar to 2nd
2953 * level page entries), but that's an optional feature for xHCI host
2954 * controllers. xHCs must support at least 4 stream IDs.
2955 */
2956 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2957 if (*num_stream_ctxs > max_streams) {
2958 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2959 max_streams);
2960 *num_stream_ctxs = max_streams;
2961 *num_streams = max_streams;
2962 }
2963 }
2964
2965 /* Returns an error code if one of the endpoint already has streams.
2966 * This does not change any data structures, it only checks and gathers
2967 * information.
2968 */
2969 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2970 struct usb_device *udev,
2971 struct usb_host_endpoint **eps, unsigned int num_eps,
2972 unsigned int *num_streams, u32 *changed_ep_bitmask)
2973 {
2974 unsigned int max_streams;
2975 unsigned int endpoint_flag;
2976 int i;
2977 int ret;
2978
2979 for (i = 0; i < num_eps; i++) {
2980 ret = xhci_check_streams_endpoint(xhci, udev,
2981 eps[i], udev->slot_id);
2982 if (ret < 0)
2983 return ret;
2984
2985 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2986 if (max_streams < (*num_streams - 1)) {
2987 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2988 eps[i]->desc.bEndpointAddress,
2989 max_streams);
2990 *num_streams = max_streams+1;
2991 }
2992
2993 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2994 if (*changed_ep_bitmask & endpoint_flag)
2995 return -EINVAL;
2996 *changed_ep_bitmask |= endpoint_flag;
2997 }
2998 return 0;
2999 }
3000
3001 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3002 struct usb_device *udev,
3003 struct usb_host_endpoint **eps, unsigned int num_eps)
3004 {
3005 u32 changed_ep_bitmask = 0;
3006 unsigned int slot_id;
3007 unsigned int ep_index;
3008 unsigned int ep_state;
3009 int i;
3010
3011 slot_id = udev->slot_id;
3012 if (!xhci->devs[slot_id])
3013 return 0;
3014
3015 for (i = 0; i < num_eps; i++) {
3016 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3017 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3018 /* Are streams already being freed for the endpoint? */
3019 if (ep_state & EP_GETTING_NO_STREAMS) {
3020 xhci_warn(xhci, "WARN Can't disable streams for "
3021 "endpoint 0x%x, "
3022 "streams are being disabled already\n",
3023 eps[i]->desc.bEndpointAddress);
3024 return 0;
3025 }
3026 /* Are there actually any streams to free? */
3027 if (!(ep_state & EP_HAS_STREAMS) &&
3028 !(ep_state & EP_GETTING_STREAMS)) {
3029 xhci_warn(xhci, "WARN Can't disable streams for "
3030 "endpoint 0x%x, "
3031 "streams are already disabled!\n",
3032 eps[i]->desc.bEndpointAddress);
3033 xhci_warn(xhci, "WARN xhci_free_streams() called "
3034 "with non-streams endpoint\n");
3035 return 0;
3036 }
3037 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3038 }
3039 return changed_ep_bitmask;
3040 }
3041
3042 /*
3043 * The USB device drivers use this function (through the HCD interface in USB
3044 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3045 * coordinate mass storage command queueing across multiple endpoints (basically
3046 * a stream ID == a task ID).
3047 *
3048 * Setting up streams involves allocating the same size stream context array
3049 * for each endpoint and issuing a configure endpoint command for all endpoints.
3050 *
3051 * Don't allow the call to succeed if one endpoint only supports one stream
3052 * (which means it doesn't support streams at all).
3053 *
3054 * Drivers may get less stream IDs than they asked for, if the host controller
3055 * hardware or endpoints claim they can't support the number of requested
3056 * stream IDs.
3057 */
3058 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3059 struct usb_host_endpoint **eps, unsigned int num_eps,
3060 unsigned int num_streams, gfp_t mem_flags)
3061 {
3062 int i, ret;
3063 struct xhci_hcd *xhci;
3064 struct xhci_virt_device *vdev;
3065 struct xhci_command *config_cmd;
3066 struct xhci_input_control_ctx *ctrl_ctx;
3067 unsigned int ep_index;
3068 unsigned int num_stream_ctxs;
3069 unsigned int max_packet;
3070 unsigned long flags;
3071 u32 changed_ep_bitmask = 0;
3072
3073 if (!eps)
3074 return -EINVAL;
3075
3076 /* Add one to the number of streams requested to account for
3077 * stream 0 that is reserved for xHCI usage.
3078 */
3079 num_streams += 1;
3080 xhci = hcd_to_xhci(hcd);
3081 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082 num_streams);
3083
3084 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3085 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3086 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3087 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3088 return -ENOSYS;
3089 }
3090
3091 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3092 if (!config_cmd)
3093 return -ENOMEM;
3094
3095 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3096 if (!ctrl_ctx) {
3097 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3098 __func__);
3099 xhci_free_command(xhci, config_cmd);
3100 return -ENOMEM;
3101 }
3102
3103 /* Check to make sure all endpoints are not already configured for
3104 * streams. While we're at it, find the maximum number of streams that
3105 * all the endpoints will support and check for duplicate endpoints.
3106 */
3107 spin_lock_irqsave(&xhci->lock, flags);
3108 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3109 num_eps, &num_streams, &changed_ep_bitmask);
3110 if (ret < 0) {
3111 xhci_free_command(xhci, config_cmd);
3112 spin_unlock_irqrestore(&xhci->lock, flags);
3113 return ret;
3114 }
3115 if (num_streams <= 1) {
3116 xhci_warn(xhci, "WARN: endpoints can't handle "
3117 "more than one stream.\n");
3118 xhci_free_command(xhci, config_cmd);
3119 spin_unlock_irqrestore(&xhci->lock, flags);
3120 return -EINVAL;
3121 }
3122 vdev = xhci->devs[udev->slot_id];
3123 /* Mark each endpoint as being in transition, so
3124 * xhci_urb_enqueue() will reject all URBs.
3125 */
3126 for (i = 0; i < num_eps; i++) {
3127 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3129 }
3130 spin_unlock_irqrestore(&xhci->lock, flags);
3131
3132 /* Setup internal data structures and allocate HW data structures for
3133 * streams (but don't install the HW structures in the input context
3134 * until we're sure all memory allocation succeeded).
3135 */
3136 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3137 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3138 num_stream_ctxs, num_streams);
3139
3140 for (i = 0; i < num_eps; i++) {
3141 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3142 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3143 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3144 num_stream_ctxs,
3145 num_streams,
3146 max_packet, mem_flags);
3147 if (!vdev->eps[ep_index].stream_info)
3148 goto cleanup;
3149 /* Set maxPstreams in endpoint context and update deq ptr to
3150 * point to stream context array. FIXME
3151 */
3152 }
3153
3154 /* Set up the input context for a configure endpoint command. */
3155 for (i = 0; i < num_eps; i++) {
3156 struct xhci_ep_ctx *ep_ctx;
3157
3158 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3159 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3160
3161 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3162 vdev->out_ctx, ep_index);
3163 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3164 vdev->eps[ep_index].stream_info);
3165 }
3166 /* Tell the HW to drop its old copy of the endpoint context info
3167 * and add the updated copy from the input context.
3168 */
3169 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3170 vdev->out_ctx, ctrl_ctx,
3171 changed_ep_bitmask, changed_ep_bitmask);
3172
3173 /* Issue and wait for the configure endpoint command */
3174 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3175 false, false);
3176
3177 /* xHC rejected the configure endpoint command for some reason, so we
3178 * leave the old ring intact and free our internal streams data
3179 * structure.
3180 */
3181 if (ret < 0)
3182 goto cleanup;
3183
3184 spin_lock_irqsave(&xhci->lock, flags);
3185 for (i = 0; i < num_eps; i++) {
3186 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3188 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3189 udev->slot_id, ep_index);
3190 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3191 }
3192 xhci_free_command(xhci, config_cmd);
3193 spin_unlock_irqrestore(&xhci->lock, flags);
3194
3195 /* Subtract 1 for stream 0, which drivers can't use */
3196 return num_streams - 1;
3197
3198 cleanup:
3199 /* If it didn't work, free the streams! */
3200 for (i = 0; i < num_eps; i++) {
3201 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3203 vdev->eps[ep_index].stream_info = NULL;
3204 /* FIXME Unset maxPstreams in endpoint context and
3205 * update deq ptr to point to normal string ring.
3206 */
3207 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3208 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3209 xhci_endpoint_zero(xhci, vdev, eps[i]);
3210 }
3211 xhci_free_command(xhci, config_cmd);
3212 return -ENOMEM;
3213 }
3214
3215 /* Transition the endpoint from using streams to being a "normal" endpoint
3216 * without streams.
3217 *
3218 * Modify the endpoint context state, submit a configure endpoint command,
3219 * and free all endpoint rings for streams if that completes successfully.
3220 */
3221 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3222 struct usb_host_endpoint **eps, unsigned int num_eps,
3223 gfp_t mem_flags)
3224 {
3225 int i, ret;
3226 struct xhci_hcd *xhci;
3227 struct xhci_virt_device *vdev;
3228 struct xhci_command *command;
3229 struct xhci_input_control_ctx *ctrl_ctx;
3230 unsigned int ep_index;
3231 unsigned long flags;
3232 u32 changed_ep_bitmask;
3233
3234 xhci = hcd_to_xhci(hcd);
3235 vdev = xhci->devs[udev->slot_id];
3236
3237 /* Set up a configure endpoint command to remove the streams rings */
3238 spin_lock_irqsave(&xhci->lock, flags);
3239 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3240 udev, eps, num_eps);
3241 if (changed_ep_bitmask == 0) {
3242 spin_unlock_irqrestore(&xhci->lock, flags);
3243 return -EINVAL;
3244 }
3245
3246 /* Use the xhci_command structure from the first endpoint. We may have
3247 * allocated too many, but the driver may call xhci_free_streams() for
3248 * each endpoint it grouped into one call to xhci_alloc_streams().
3249 */
3250 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3251 command = vdev->eps[ep_index].stream_info->free_streams_command;
3252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3253 if (!ctrl_ctx) {
3254 spin_unlock_irqrestore(&xhci->lock, flags);
3255 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3256 __func__);
3257 return -EINVAL;
3258 }
3259
3260 for (i = 0; i < num_eps; i++) {
3261 struct xhci_ep_ctx *ep_ctx;
3262
3263 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3264 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3265 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3266 EP_GETTING_NO_STREAMS;
3267
3268 xhci_endpoint_copy(xhci, command->in_ctx,
3269 vdev->out_ctx, ep_index);
3270 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3271 &vdev->eps[ep_index]);
3272 }
3273 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3274 vdev->out_ctx, ctrl_ctx,
3275 changed_ep_bitmask, changed_ep_bitmask);
3276 spin_unlock_irqrestore(&xhci->lock, flags);
3277
3278 /* Issue and wait for the configure endpoint command,
3279 * which must succeed.
3280 */
3281 ret = xhci_configure_endpoint(xhci, udev, command,
3282 false, true);
3283
3284 /* xHC rejected the configure endpoint command for some reason, so we
3285 * leave the streams rings intact.
3286 */
3287 if (ret < 0)
3288 return ret;
3289
3290 spin_lock_irqsave(&xhci->lock, flags);
3291 for (i = 0; i < num_eps; i++) {
3292 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3293 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3294 vdev->eps[ep_index].stream_info = NULL;
3295 /* FIXME Unset maxPstreams in endpoint context and
3296 * update deq ptr to point to normal string ring.
3297 */
3298 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3299 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3300 }
3301 spin_unlock_irqrestore(&xhci->lock, flags);
3302
3303 return 0;
3304 }
3305
3306 /*
3307 * Deletes endpoint resources for endpoints that were active before a Reset
3308 * Device command, or a Disable Slot command. The Reset Device command leaves
3309 * the control endpoint intact, whereas the Disable Slot command deletes it.
3310 *
3311 * Must be called with xhci->lock held.
3312 */
3313 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3314 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3315 {
3316 int i;
3317 unsigned int num_dropped_eps = 0;
3318 unsigned int drop_flags = 0;
3319
3320 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3321 if (virt_dev->eps[i].ring) {
3322 drop_flags |= 1 << i;
3323 num_dropped_eps++;
3324 }
3325 }
3326 xhci->num_active_eps -= num_dropped_eps;
3327 if (num_dropped_eps)
3328 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3329 "Dropped %u ep ctxs, flags = 0x%x, "
3330 "%u now active.",
3331 num_dropped_eps, drop_flags,
3332 xhci->num_active_eps);
3333 }
3334
3335 /*
3336 * This submits a Reset Device Command, which will set the device state to 0,
3337 * set the device address to 0, and disable all the endpoints except the default
3338 * control endpoint. The USB core should come back and call
3339 * xhci_address_device(), and then re-set up the configuration. If this is
3340 * called because of a usb_reset_and_verify_device(), then the old alternate
3341 * settings will be re-installed through the normal bandwidth allocation
3342 * functions.
3343 *
3344 * Wait for the Reset Device command to finish. Remove all structures
3345 * associated with the endpoints that were disabled. Clear the input device
3346 * structure? Reset the control endpoint 0 max packet size?
3347 *
3348 * If the virt_dev to be reset does not exist or does not match the udev,
3349 * it means the device is lost, possibly due to the xHC restore error and
3350 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3351 * re-allocate the device.
3352 */
3353 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3354 struct usb_device *udev)
3355 {
3356 int ret, i;
3357 unsigned long flags;
3358 struct xhci_hcd *xhci;
3359 unsigned int slot_id;
3360 struct xhci_virt_device *virt_dev;
3361 struct xhci_command *reset_device_cmd;
3362 int last_freed_endpoint;
3363 struct xhci_slot_ctx *slot_ctx;
3364 int old_active_eps = 0;
3365
3366 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3367 if (ret <= 0)
3368 return ret;
3369 xhci = hcd_to_xhci(hcd);
3370 slot_id = udev->slot_id;
3371 virt_dev = xhci->devs[slot_id];
3372 if (!virt_dev) {
3373 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3374 "not exist. Re-allocate the device\n", slot_id);
3375 ret = xhci_alloc_dev(hcd, udev);
3376 if (ret == 1)
3377 return 0;
3378 else
3379 return -EINVAL;
3380 }
3381
3382 if (virt_dev->tt_info)
3383 old_active_eps = virt_dev->tt_info->active_eps;
3384
3385 if (virt_dev->udev != udev) {
3386 /* If the virt_dev and the udev does not match, this virt_dev
3387 * may belong to another udev.
3388 * Re-allocate the device.
3389 */
3390 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3391 "not match the udev. Re-allocate the device\n",
3392 slot_id);
3393 ret = xhci_alloc_dev(hcd, udev);
3394 if (ret == 1)
3395 return 0;
3396 else
3397 return -EINVAL;
3398 }
3399
3400 /* If device is not setup, there is no point in resetting it */
3401 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3402 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3403 SLOT_STATE_DISABLED)
3404 return 0;
3405
3406 trace_xhci_discover_or_reset_device(slot_ctx);
3407
3408 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3409 /* Allocate the command structure that holds the struct completion.
3410 * Assume we're in process context, since the normal device reset
3411 * process has to wait for the device anyway. Storage devices are
3412 * reset as part of error handling, so use GFP_NOIO instead of
3413 * GFP_KERNEL.
3414 */
3415 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3416 if (!reset_device_cmd) {
3417 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3418 return -ENOMEM;
3419 }
3420
3421 /* Attempt to submit the Reset Device command to the command ring */
3422 spin_lock_irqsave(&xhci->lock, flags);
3423
3424 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3425 if (ret) {
3426 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3427 spin_unlock_irqrestore(&xhci->lock, flags);
3428 goto command_cleanup;
3429 }
3430 xhci_ring_cmd_db(xhci);
3431 spin_unlock_irqrestore(&xhci->lock, flags);
3432
3433 /* Wait for the Reset Device command to finish */
3434 wait_for_completion(reset_device_cmd->completion);
3435
3436 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3437 * unless we tried to reset a slot ID that wasn't enabled,
3438 * or the device wasn't in the addressed or configured state.
3439 */
3440 ret = reset_device_cmd->status;
3441 switch (ret) {
3442 case COMP_COMMAND_ABORTED:
3443 case COMP_COMMAND_RING_STOPPED:
3444 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3445 ret = -ETIME;
3446 goto command_cleanup;
3447 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3448 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3449 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3450 slot_id,
3451 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3452 xhci_dbg(xhci, "Not freeing device rings.\n");
3453 /* Don't treat this as an error. May change my mind later. */
3454 ret = 0;
3455 goto command_cleanup;
3456 case COMP_SUCCESS:
3457 xhci_dbg(xhci, "Successful reset device command.\n");
3458 break;
3459 default:
3460 if (xhci_is_vendor_info_code(xhci, ret))
3461 break;
3462 xhci_warn(xhci, "Unknown completion code %u for "
3463 "reset device command.\n", ret);
3464 ret = -EINVAL;
3465 goto command_cleanup;
3466 }
3467
3468 /* Free up host controller endpoint resources */
3469 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3470 spin_lock_irqsave(&xhci->lock, flags);
3471 /* Don't delete the default control endpoint resources */
3472 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3473 spin_unlock_irqrestore(&xhci->lock, flags);
3474 }
3475
3476 /* Everything but endpoint 0 is disabled, so free the rings. */
3477 last_freed_endpoint = 1;
3478 for (i = 1; i < 31; i++) {
3479 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3480
3481 if (ep->ep_state & EP_HAS_STREAMS) {
3482 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3483 xhci_get_endpoint_address(i));
3484 xhci_free_stream_info(xhci, ep->stream_info);
3485 ep->stream_info = NULL;
3486 ep->ep_state &= ~EP_HAS_STREAMS;
3487 }
3488
3489 if (ep->ring) {
3490 xhci_free_endpoint_ring(xhci, virt_dev, i);
3491 last_freed_endpoint = i;
3492 }
3493 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3494 xhci_drop_ep_from_interval_table(xhci,
3495 &virt_dev->eps[i].bw_info,
3496 virt_dev->bw_table,
3497 udev,
3498 &virt_dev->eps[i],
3499 virt_dev->tt_info);
3500 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3501 }
3502 /* If necessary, update the number of active TTs on this root port */
3503 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3504 ret = 0;
3505
3506 command_cleanup:
3507 xhci_free_command(xhci, reset_device_cmd);
3508 return ret;
3509 }
3510
3511 /*
3512 * At this point, the struct usb_device is about to go away, the device has
3513 * disconnected, and all traffic has been stopped and the endpoints have been
3514 * disabled. Free any HC data structures associated with that device.
3515 */
3516 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3517 {
3518 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3519 struct xhci_virt_device *virt_dev;
3520 struct xhci_slot_ctx *slot_ctx;
3521 int i, ret;
3522 struct xhci_command *command;
3523
3524 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3525 if (!command)
3526 return;
3527
3528 #ifndef CONFIG_USB_DEFAULT_PERSIST
3529 /*
3530 * We called pm_runtime_get_noresume when the device was attached.
3531 * Decrement the counter here to allow controller to runtime suspend
3532 * if no devices remain.
3533 */
3534 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3535 pm_runtime_put_noidle(hcd->self.controller);
3536 #endif
3537
3538 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3539 /* If the host is halted due to driver unload, we still need to free the
3540 * device.
3541 */
3542 if (ret <= 0 && ret != -ENODEV) {
3543 kfree(command);
3544 return;
3545 }
3546
3547 virt_dev = xhci->devs[udev->slot_id];
3548 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3549 trace_xhci_free_dev(slot_ctx);
3550
3551 /* Stop any wayward timer functions (which may grab the lock) */
3552 for (i = 0; i < 31; i++) {
3553 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3554 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3555 }
3556
3557 xhci_disable_slot(xhci, command, udev->slot_id);
3558 /*
3559 * Event command completion handler will free any data structures
3560 * associated with the slot. XXX Can free sleep?
3561 */
3562 }
3563
3564 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3565 u32 slot_id)
3566 {
3567 unsigned long flags;
3568 u32 state;
3569 int ret = 0;
3570 struct xhci_virt_device *virt_dev;
3571
3572 virt_dev = xhci->devs[slot_id];
3573 if (!virt_dev)
3574 return -EINVAL;
3575 if (!command)
3576 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3577 if (!command)
3578 return -ENOMEM;
3579
3580 spin_lock_irqsave(&xhci->lock, flags);
3581 /* Don't disable the slot if the host controller is dead. */
3582 state = readl(&xhci->op_regs->status);
3583 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3584 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3585 xhci_free_virt_device(xhci, slot_id);
3586 spin_unlock_irqrestore(&xhci->lock, flags);
3587 kfree(command);
3588 return ret;
3589 }
3590
3591 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3592 slot_id);
3593 if (ret) {
3594 spin_unlock_irqrestore(&xhci->lock, flags);
3595 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3596 return ret;
3597 }
3598 xhci_ring_cmd_db(xhci);
3599 spin_unlock_irqrestore(&xhci->lock, flags);
3600 return ret;
3601 }
3602
3603 /*
3604 * Checks if we have enough host controller resources for the default control
3605 * endpoint.
3606 *
3607 * Must be called with xhci->lock held.
3608 */
3609 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3610 {
3611 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3612 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3613 "Not enough ep ctxs: "
3614 "%u active, need to add 1, limit is %u.",
3615 xhci->num_active_eps, xhci->limit_active_eps);
3616 return -ENOMEM;
3617 }
3618 xhci->num_active_eps += 1;
3619 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3620 "Adding 1 ep ctx, %u now active.",
3621 xhci->num_active_eps);
3622 return 0;
3623 }
3624
3625
3626 /*
3627 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3628 * timed out, or allocating memory failed. Returns 1 on success.
3629 */
3630 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3631 {
3632 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633 struct xhci_virt_device *vdev;
3634 struct xhci_slot_ctx *slot_ctx;
3635 unsigned long flags;
3636 int ret, slot_id;
3637 struct xhci_command *command;
3638
3639 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3640 if (!command)
3641 return 0;
3642
3643 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3644 mutex_lock(&xhci->mutex);
3645 spin_lock_irqsave(&xhci->lock, flags);
3646 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3647 if (ret) {
3648 spin_unlock_irqrestore(&xhci->lock, flags);
3649 mutex_unlock(&xhci->mutex);
3650 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3651 xhci_free_command(xhci, command);
3652 return 0;
3653 }
3654 xhci_ring_cmd_db(xhci);
3655 spin_unlock_irqrestore(&xhci->lock, flags);
3656
3657 wait_for_completion(command->completion);
3658 slot_id = command->slot_id;
3659 mutex_unlock(&xhci->mutex);
3660
3661 if (!slot_id || command->status != COMP_SUCCESS) {
3662 xhci_err(xhci, "Error while assigning device slot ID\n");
3663 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3664 HCS_MAX_SLOTS(
3665 readl(&xhci->cap_regs->hcs_params1)));
3666 xhci_free_command(xhci, command);
3667 return 0;
3668 }
3669
3670 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3671 spin_lock_irqsave(&xhci->lock, flags);
3672 ret = xhci_reserve_host_control_ep_resources(xhci);
3673 if (ret) {
3674 spin_unlock_irqrestore(&xhci->lock, flags);
3675 xhci_warn(xhci, "Not enough host resources, "
3676 "active endpoint contexts = %u\n",
3677 xhci->num_active_eps);
3678 goto disable_slot;
3679 }
3680 spin_unlock_irqrestore(&xhci->lock, flags);
3681 }
3682 /* Use GFP_NOIO, since this function can be called from
3683 * xhci_discover_or_reset_device(), which may be called as part of
3684 * mass storage driver error handling.
3685 */
3686 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3687 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3688 goto disable_slot;
3689 }
3690 vdev = xhci->devs[slot_id];
3691 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3692 trace_xhci_alloc_dev(slot_ctx);
3693
3694 udev->slot_id = slot_id;
3695
3696 #ifndef CONFIG_USB_DEFAULT_PERSIST
3697 /*
3698 * If resetting upon resume, we can't put the controller into runtime
3699 * suspend if there is a device attached.
3700 */
3701 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3702 pm_runtime_get_noresume(hcd->self.controller);
3703 #endif
3704
3705
3706 xhci_free_command(xhci, command);
3707 /* Is this a LS or FS device under a HS hub? */
3708 /* Hub or peripherial? */
3709 return 1;
3710
3711 disable_slot:
3712 /* Disable slot, if we can do it without mem alloc */
3713 kfree(command->completion);
3714 command->completion = NULL;
3715 command->status = 0;
3716 return xhci_disable_slot(xhci, command, udev->slot_id);
3717 }
3718
3719 /*
3720 * Issue an Address Device command and optionally send a corresponding
3721 * SetAddress request to the device.
3722 */
3723 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3724 enum xhci_setup_dev setup)
3725 {
3726 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3727 unsigned long flags;
3728 struct xhci_virt_device *virt_dev;
3729 int ret = 0;
3730 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3731 struct xhci_slot_ctx *slot_ctx;
3732 struct xhci_input_control_ctx *ctrl_ctx;
3733 u64 temp_64;
3734 struct xhci_command *command = NULL;
3735
3736 mutex_lock(&xhci->mutex);
3737
3738 if (xhci->xhc_state) { /* dying, removing or halted */
3739 ret = -ESHUTDOWN;
3740 goto out;
3741 }
3742
3743 if (!udev->slot_id) {
3744 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3745 "Bad Slot ID %d", udev->slot_id);
3746 ret = -EINVAL;
3747 goto out;
3748 }
3749
3750 virt_dev = xhci->devs[udev->slot_id];
3751
3752 if (WARN_ON(!virt_dev)) {
3753 /*
3754 * In plug/unplug torture test with an NEC controller,
3755 * a zero-dereference was observed once due to virt_dev = 0.
3756 * Print useful debug rather than crash if it is observed again!
3757 */
3758 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3759 udev->slot_id);
3760 ret = -EINVAL;
3761 goto out;
3762 }
3763 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3764 trace_xhci_setup_device_slot(slot_ctx);
3765
3766 if (setup == SETUP_CONTEXT_ONLY) {
3767 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3768 SLOT_STATE_DEFAULT) {
3769 xhci_dbg(xhci, "Slot already in default state\n");
3770 goto out;
3771 }
3772 }
3773
3774 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3775 if (!command) {
3776 ret = -ENOMEM;
3777 goto out;
3778 }
3779
3780 command->in_ctx = virt_dev->in_ctx;
3781
3782 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3783 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3784 if (!ctrl_ctx) {
3785 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3786 __func__);
3787 ret = -EINVAL;
3788 goto out;
3789 }
3790 /*
3791 * If this is the first Set Address since device plug-in or
3792 * virt_device realloaction after a resume with an xHCI power loss,
3793 * then set up the slot context.
3794 */
3795 if (!slot_ctx->dev_info)
3796 xhci_setup_addressable_virt_dev(xhci, udev);
3797 /* Otherwise, update the control endpoint ring enqueue pointer. */
3798 else
3799 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3800 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3801 ctrl_ctx->drop_flags = 0;
3802
3803 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3804 le32_to_cpu(slot_ctx->dev_info) >> 27);
3805
3806 spin_lock_irqsave(&xhci->lock, flags);
3807 trace_xhci_setup_device(virt_dev);
3808 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3809 udev->slot_id, setup);
3810 if (ret) {
3811 spin_unlock_irqrestore(&xhci->lock, flags);
3812 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3813 "FIXME: allocate a command ring segment");
3814 goto out;
3815 }
3816 xhci_ring_cmd_db(xhci);
3817 spin_unlock_irqrestore(&xhci->lock, flags);
3818
3819 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3820 wait_for_completion(command->completion);
3821
3822 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3823 * the SetAddress() "recovery interval" required by USB and aborting the
3824 * command on a timeout.
3825 */
3826 switch (command->status) {
3827 case COMP_COMMAND_ABORTED:
3828 case COMP_COMMAND_RING_STOPPED:
3829 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3830 ret = -ETIME;
3831 break;
3832 case COMP_CONTEXT_STATE_ERROR:
3833 case COMP_SLOT_NOT_ENABLED_ERROR:
3834 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3835 act, udev->slot_id);
3836 ret = -EINVAL;
3837 break;
3838 case COMP_USB_TRANSACTION_ERROR:
3839 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3840 ret = -EPROTO;
3841 break;
3842 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3843 dev_warn(&udev->dev,
3844 "ERROR: Incompatible device for setup %s command\n", act);
3845 ret = -ENODEV;
3846 break;
3847 case COMP_SUCCESS:
3848 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3849 "Successful setup %s command", act);
3850 break;
3851 default:
3852 xhci_err(xhci,
3853 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3854 act, command->status);
3855 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3856 ret = -EINVAL;
3857 break;
3858 }
3859 if (ret)
3860 goto out;
3861 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3862 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3863 "Op regs DCBAA ptr = %#016llx", temp_64);
3864 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3865 "Slot ID %d dcbaa entry @%p = %#016llx",
3866 udev->slot_id,
3867 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3868 (unsigned long long)
3869 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3870 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3871 "Output Context DMA address = %#08llx",
3872 (unsigned long long)virt_dev->out_ctx->dma);
3873 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3874 le32_to_cpu(slot_ctx->dev_info) >> 27);
3875 /*
3876 * USB core uses address 1 for the roothubs, so we add one to the
3877 * address given back to us by the HC.
3878 */
3879 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3880 le32_to_cpu(slot_ctx->dev_info) >> 27);
3881 /* Zero the input context control for later use */
3882 ctrl_ctx->add_flags = 0;
3883 ctrl_ctx->drop_flags = 0;
3884
3885 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3886 "Internal device address = %d",
3887 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3888 out:
3889 mutex_unlock(&xhci->mutex);
3890 if (command) {
3891 kfree(command->completion);
3892 kfree(command);
3893 }
3894 return ret;
3895 }
3896
3897 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3898 {
3899 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3900 }
3901
3902 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3903 {
3904 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3905 }
3906
3907 /*
3908 * Transfer the port index into real index in the HW port status
3909 * registers. Caculate offset between the port's PORTSC register
3910 * and port status base. Divide the number of per port register
3911 * to get the real index. The raw port number bases 1.
3912 */
3913 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3914 {
3915 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3916 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3917 __le32 __iomem *addr;
3918 int raw_port;
3919
3920 if (hcd->speed < HCD_USB3)
3921 addr = xhci->usb2_ports[port1 - 1];
3922 else
3923 addr = xhci->usb3_ports[port1 - 1];
3924
3925 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3926 return raw_port;
3927 }
3928
3929 /*
3930 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3931 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3932 */
3933 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3934 struct usb_device *udev, u16 max_exit_latency)
3935 {
3936 struct xhci_virt_device *virt_dev;
3937 struct xhci_command *command;
3938 struct xhci_input_control_ctx *ctrl_ctx;
3939 struct xhci_slot_ctx *slot_ctx;
3940 unsigned long flags;
3941 int ret;
3942
3943 spin_lock_irqsave(&xhci->lock, flags);
3944
3945 virt_dev = xhci->devs[udev->slot_id];
3946
3947 /*
3948 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3949 * xHC was re-initialized. Exit latency will be set later after
3950 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3951 */
3952
3953 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3954 spin_unlock_irqrestore(&xhci->lock, flags);
3955 return 0;
3956 }
3957
3958 /* Attempt to issue an Evaluate Context command to change the MEL. */
3959 command = xhci->lpm_command;
3960 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3961 if (!ctrl_ctx) {
3962 spin_unlock_irqrestore(&xhci->lock, flags);
3963 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3964 __func__);
3965 return -ENOMEM;
3966 }
3967
3968 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3969 spin_unlock_irqrestore(&xhci->lock, flags);
3970
3971 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3972 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3973 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3974 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3975 slot_ctx->dev_state = 0;
3976
3977 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3978 "Set up evaluate context for LPM MEL change.");
3979
3980 /* Issue and wait for the evaluate context command. */
3981 ret = xhci_configure_endpoint(xhci, udev, command,
3982 true, true);
3983
3984 if (!ret) {
3985 spin_lock_irqsave(&xhci->lock, flags);
3986 virt_dev->current_mel = max_exit_latency;
3987 spin_unlock_irqrestore(&xhci->lock, flags);
3988 }
3989 return ret;
3990 }
3991
3992 #ifdef CONFIG_PM
3993
3994 /* BESL to HIRD Encoding array for USB2 LPM */
3995 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3996 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3997
3998 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3999 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4000 struct usb_device *udev)
4001 {
4002 int u2del, besl, besl_host;
4003 int besl_device = 0;
4004 u32 field;
4005
4006 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4007 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4008
4009 if (field & USB_BESL_SUPPORT) {
4010 for (besl_host = 0; besl_host < 16; besl_host++) {
4011 if (xhci_besl_encoding[besl_host] >= u2del)
4012 break;
4013 }
4014 /* Use baseline BESL value as default */
4015 if (field & USB_BESL_BASELINE_VALID)
4016 besl_device = USB_GET_BESL_BASELINE(field);
4017 else if (field & USB_BESL_DEEP_VALID)
4018 besl_device = USB_GET_BESL_DEEP(field);
4019 } else {
4020 if (u2del <= 50)
4021 besl_host = 0;
4022 else
4023 besl_host = (u2del - 51) / 75 + 1;
4024 }
4025
4026 besl = besl_host + besl_device;
4027 if (besl > 15)
4028 besl = 15;
4029
4030 return besl;
4031 }
4032
4033 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4034 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4035 {
4036 u32 field;
4037 int l1;
4038 int besld = 0;
4039 int hirdm = 0;
4040
4041 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4042
4043 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4044 l1 = udev->l1_params.timeout / 256;
4045
4046 /* device has preferred BESLD */
4047 if (field & USB_BESL_DEEP_VALID) {
4048 besld = USB_GET_BESL_DEEP(field);
4049 hirdm = 1;
4050 }
4051
4052 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4053 }
4054
4055 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4056 struct usb_device *udev, int enable)
4057 {
4058 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4059 __le32 __iomem **port_array;
4060 __le32 __iomem *pm_addr, *hlpm_addr;
4061 u32 pm_val, hlpm_val, field;
4062 unsigned int port_num;
4063 unsigned long flags;
4064 int hird, exit_latency;
4065 int ret;
4066
4067 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4068 !udev->lpm_capable)
4069 return -EPERM;
4070
4071 if (!udev->parent || udev->parent->parent ||
4072 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4073 return -EPERM;
4074
4075 if (udev->usb2_hw_lpm_capable != 1)
4076 return -EPERM;
4077
4078 spin_lock_irqsave(&xhci->lock, flags);
4079
4080 port_array = xhci->usb2_ports;
4081 port_num = udev->portnum - 1;
4082 pm_addr = port_array[port_num] + PORTPMSC;
4083 pm_val = readl(pm_addr);
4084 hlpm_addr = port_array[port_num] + PORTHLPMC;
4085 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4086
4087 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4088 enable ? "enable" : "disable", port_num + 1);
4089
4090 if (enable) {
4091 /* Host supports BESL timeout instead of HIRD */
4092 if (udev->usb2_hw_lpm_besl_capable) {
4093 /* if device doesn't have a preferred BESL value use a
4094 * default one which works with mixed HIRD and BESL
4095 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4096 */
4097 if ((field & USB_BESL_SUPPORT) &&
4098 (field & USB_BESL_BASELINE_VALID))
4099 hird = USB_GET_BESL_BASELINE(field);
4100 else
4101 hird = udev->l1_params.besl;
4102
4103 exit_latency = xhci_besl_encoding[hird];
4104 spin_unlock_irqrestore(&xhci->lock, flags);
4105
4106 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4107 * input context for link powermanagement evaluate
4108 * context commands. It is protected by hcd->bandwidth
4109 * mutex and is shared by all devices. We need to set
4110 * the max ext latency in USB 2 BESL LPM as well, so
4111 * use the same mutex and xhci_change_max_exit_latency()
4112 */
4113 mutex_lock(hcd->bandwidth_mutex);
4114 ret = xhci_change_max_exit_latency(xhci, udev,
4115 exit_latency);
4116 mutex_unlock(hcd->bandwidth_mutex);
4117
4118 if (ret < 0)
4119 return ret;
4120 spin_lock_irqsave(&xhci->lock, flags);
4121
4122 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4123 writel(hlpm_val, hlpm_addr);
4124 /* flush write */
4125 readl(hlpm_addr);
4126 } else {
4127 hird = xhci_calculate_hird_besl(xhci, udev);
4128 }
4129
4130 pm_val &= ~PORT_HIRD_MASK;
4131 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4132 writel(pm_val, pm_addr);
4133 pm_val = readl(pm_addr);
4134 pm_val |= PORT_HLE;
4135 writel(pm_val, pm_addr);
4136 /* flush write */
4137 readl(pm_addr);
4138 } else {
4139 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4140 writel(pm_val, pm_addr);
4141 /* flush write */
4142 readl(pm_addr);
4143 if (udev->usb2_hw_lpm_besl_capable) {
4144 spin_unlock_irqrestore(&xhci->lock, flags);
4145 mutex_lock(hcd->bandwidth_mutex);
4146 xhci_change_max_exit_latency(xhci, udev, 0);
4147 mutex_unlock(hcd->bandwidth_mutex);
4148 return 0;
4149 }
4150 }
4151
4152 spin_unlock_irqrestore(&xhci->lock, flags);
4153 return 0;
4154 }
4155
4156 /* check if a usb2 port supports a given extened capability protocol
4157 * only USB2 ports extended protocol capability values are cached.
4158 * Return 1 if capability is supported
4159 */
4160 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4161 unsigned capability)
4162 {
4163 u32 port_offset, port_count;
4164 int i;
4165
4166 for (i = 0; i < xhci->num_ext_caps; i++) {
4167 if (xhci->ext_caps[i] & capability) {
4168 /* port offsets starts at 1 */
4169 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4170 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4171 if (port >= port_offset &&
4172 port < port_offset + port_count)
4173 return 1;
4174 }
4175 }
4176 return 0;
4177 }
4178
4179 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4180 {
4181 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4182 int portnum = udev->portnum - 1;
4183
4184 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4185 !udev->lpm_capable)
4186 return 0;
4187
4188 /* we only support lpm for non-hub device connected to root hub yet */
4189 if (!udev->parent || udev->parent->parent ||
4190 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4191 return 0;
4192
4193 if (xhci->hw_lpm_support == 1 &&
4194 xhci_check_usb2_port_capability(
4195 xhci, portnum, XHCI_HLC)) {
4196 udev->usb2_hw_lpm_capable = 1;
4197 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4198 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4199 if (xhci_check_usb2_port_capability(xhci, portnum,
4200 XHCI_BLC))
4201 udev->usb2_hw_lpm_besl_capable = 1;
4202 }
4203
4204 return 0;
4205 }
4206
4207 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4208
4209 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4210 static unsigned long long xhci_service_interval_to_ns(
4211 struct usb_endpoint_descriptor *desc)
4212 {
4213 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4214 }
4215
4216 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4217 enum usb3_link_state state)
4218 {
4219 unsigned long long sel;
4220 unsigned long long pel;
4221 unsigned int max_sel_pel;
4222 char *state_name;
4223
4224 switch (state) {
4225 case USB3_LPM_U1:
4226 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4227 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4228 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4229 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4230 state_name = "U1";
4231 break;
4232 case USB3_LPM_U2:
4233 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4234 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4235 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4236 state_name = "U2";
4237 break;
4238 default:
4239 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4240 __func__);
4241 return USB3_LPM_DISABLED;
4242 }
4243
4244 if (sel <= max_sel_pel && pel <= max_sel_pel)
4245 return USB3_LPM_DEVICE_INITIATED;
4246
4247 if (sel > max_sel_pel)
4248 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4249 "due to long SEL %llu ms\n",
4250 state_name, sel);
4251 else
4252 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4253 "due to long PEL %llu ms\n",
4254 state_name, pel);
4255 return USB3_LPM_DISABLED;
4256 }
4257
4258 /* The U1 timeout should be the maximum of the following values:
4259 * - For control endpoints, U1 system exit latency (SEL) * 3
4260 * - For bulk endpoints, U1 SEL * 5
4261 * - For interrupt endpoints:
4262 * - Notification EPs, U1 SEL * 3
4263 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4264 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4265 */
4266 static unsigned long long xhci_calculate_intel_u1_timeout(
4267 struct usb_device *udev,
4268 struct usb_endpoint_descriptor *desc)
4269 {
4270 unsigned long long timeout_ns;
4271 int ep_type;
4272 int intr_type;
4273
4274 ep_type = usb_endpoint_type(desc);
4275 switch (ep_type) {
4276 case USB_ENDPOINT_XFER_CONTROL:
4277 timeout_ns = udev->u1_params.sel * 3;
4278 break;
4279 case USB_ENDPOINT_XFER_BULK:
4280 timeout_ns = udev->u1_params.sel * 5;
4281 break;
4282 case USB_ENDPOINT_XFER_INT:
4283 intr_type = usb_endpoint_interrupt_type(desc);
4284 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4285 timeout_ns = udev->u1_params.sel * 3;
4286 break;
4287 }
4288 /* Otherwise the calculation is the same as isoc eps */
4289 case USB_ENDPOINT_XFER_ISOC:
4290 timeout_ns = xhci_service_interval_to_ns(desc);
4291 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4292 if (timeout_ns < udev->u1_params.sel * 2)
4293 timeout_ns = udev->u1_params.sel * 2;
4294 break;
4295 default:
4296 return 0;
4297 }
4298
4299 return timeout_ns;
4300 }
4301
4302 /* Returns the hub-encoded U1 timeout value. */
4303 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4304 struct usb_device *udev,
4305 struct usb_endpoint_descriptor *desc)
4306 {
4307 unsigned long long timeout_ns;
4308
4309 if (xhci->quirks & XHCI_INTEL_HOST)
4310 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4311 else
4312 timeout_ns = udev->u1_params.sel;
4313
4314 /* The U1 timeout is encoded in 1us intervals.
4315 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4316 */
4317 if (timeout_ns == USB3_LPM_DISABLED)
4318 timeout_ns = 1;
4319 else
4320 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4321
4322 /* If the necessary timeout value is bigger than what we can set in the
4323 * USB 3.0 hub, we have to disable hub-initiated U1.
4324 */
4325 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4326 return timeout_ns;
4327 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4328 "due to long timeout %llu ms\n", timeout_ns);
4329 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4330 }
4331
4332 /* The U2 timeout should be the maximum of:
4333 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4334 * - largest bInterval of any active periodic endpoint (to avoid going
4335 * into lower power link states between intervals).
4336 * - the U2 Exit Latency of the device
4337 */
4338 static unsigned long long xhci_calculate_intel_u2_timeout(
4339 struct usb_device *udev,
4340 struct usb_endpoint_descriptor *desc)
4341 {
4342 unsigned long long timeout_ns;
4343 unsigned long long u2_del_ns;
4344
4345 timeout_ns = 10 * 1000 * 1000;
4346
4347 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4348 (xhci_service_interval_to_ns(desc) > timeout_ns))
4349 timeout_ns = xhci_service_interval_to_ns(desc);
4350
4351 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4352 if (u2_del_ns > timeout_ns)
4353 timeout_ns = u2_del_ns;
4354
4355 return timeout_ns;
4356 }
4357
4358 /* Returns the hub-encoded U2 timeout value. */
4359 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4360 struct usb_device *udev,
4361 struct usb_endpoint_descriptor *desc)
4362 {
4363 unsigned long long timeout_ns;
4364
4365 if (xhci->quirks & XHCI_INTEL_HOST)
4366 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4367 else
4368 timeout_ns = udev->u2_params.sel;
4369
4370 /* The U2 timeout is encoded in 256us intervals */
4371 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4372 /* If the necessary timeout value is bigger than what we can set in the
4373 * USB 3.0 hub, we have to disable hub-initiated U2.
4374 */
4375 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4376 return timeout_ns;
4377 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4378 "due to long timeout %llu ms\n", timeout_ns);
4379 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4380 }
4381
4382 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4383 struct usb_device *udev,
4384 struct usb_endpoint_descriptor *desc,
4385 enum usb3_link_state state,
4386 u16 *timeout)
4387 {
4388 if (state == USB3_LPM_U1)
4389 return xhci_calculate_u1_timeout(xhci, udev, desc);
4390 else if (state == USB3_LPM_U2)
4391 return xhci_calculate_u2_timeout(xhci, udev, desc);
4392
4393 return USB3_LPM_DISABLED;
4394 }
4395
4396 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4397 struct usb_device *udev,
4398 struct usb_endpoint_descriptor *desc,
4399 enum usb3_link_state state,
4400 u16 *timeout)
4401 {
4402 u16 alt_timeout;
4403
4404 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4405 desc, state, timeout);
4406
4407 /* If we found we can't enable hub-initiated LPM, or
4408 * the U1 or U2 exit latency was too high to allow
4409 * device-initiated LPM as well, just stop searching.
4410 */
4411 if (alt_timeout == USB3_LPM_DISABLED ||
4412 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4413 *timeout = alt_timeout;
4414 return -E2BIG;
4415 }
4416 if (alt_timeout > *timeout)
4417 *timeout = alt_timeout;
4418 return 0;
4419 }
4420
4421 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4422 struct usb_device *udev,
4423 struct usb_host_interface *alt,
4424 enum usb3_link_state state,
4425 u16 *timeout)
4426 {
4427 int j;
4428
4429 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4430 if (xhci_update_timeout_for_endpoint(xhci, udev,
4431 &alt->endpoint[j].desc, state, timeout))
4432 return -E2BIG;
4433 continue;
4434 }
4435 return 0;
4436 }
4437
4438 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4439 enum usb3_link_state state)
4440 {
4441 struct usb_device *parent;
4442 unsigned int num_hubs;
4443
4444 if (state == USB3_LPM_U2)
4445 return 0;
4446
4447 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4448 for (parent = udev->parent, num_hubs = 0; parent->parent;
4449 parent = parent->parent)
4450 num_hubs++;
4451
4452 if (num_hubs < 2)
4453 return 0;
4454
4455 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4456 " below second-tier hub.\n");
4457 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4458 "to decrease power consumption.\n");
4459 return -E2BIG;
4460 }
4461
4462 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4463 struct usb_device *udev,
4464 enum usb3_link_state state)
4465 {
4466 if (xhci->quirks & XHCI_INTEL_HOST)
4467 return xhci_check_intel_tier_policy(udev, state);
4468 else
4469 return 0;
4470 }
4471
4472 /* Returns the U1 or U2 timeout that should be enabled.
4473 * If the tier check or timeout setting functions return with a non-zero exit
4474 * code, that means the timeout value has been finalized and we shouldn't look
4475 * at any more endpoints.
4476 */
4477 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4478 struct usb_device *udev, enum usb3_link_state state)
4479 {
4480 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4481 struct usb_host_config *config;
4482 char *state_name;
4483 int i;
4484 u16 timeout = USB3_LPM_DISABLED;
4485
4486 if (state == USB3_LPM_U1)
4487 state_name = "U1";
4488 else if (state == USB3_LPM_U2)
4489 state_name = "U2";
4490 else {
4491 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4492 state);
4493 return timeout;
4494 }
4495
4496 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4497 return timeout;
4498
4499 /* Gather some information about the currently installed configuration
4500 * and alternate interface settings.
4501 */
4502 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4503 state, &timeout))
4504 return timeout;
4505
4506 config = udev->actconfig;
4507 if (!config)
4508 return timeout;
4509
4510 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4511 struct usb_driver *driver;
4512 struct usb_interface *intf = config->interface[i];
4513
4514 if (!intf)
4515 continue;
4516
4517 /* Check if any currently bound drivers want hub-initiated LPM
4518 * disabled.
4519 */
4520 if (intf->dev.driver) {
4521 driver = to_usb_driver(intf->dev.driver);
4522 if (driver && driver->disable_hub_initiated_lpm) {
4523 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4524 "at request of driver %s\n",
4525 state_name, driver->name);
4526 return xhci_get_timeout_no_hub_lpm(udev, state);
4527 }
4528 }
4529
4530 /* Not sure how this could happen... */
4531 if (!intf->cur_altsetting)
4532 continue;
4533
4534 if (xhci_update_timeout_for_interface(xhci, udev,
4535 intf->cur_altsetting,
4536 state, &timeout))
4537 return timeout;
4538 }
4539 return timeout;
4540 }
4541
4542 static int calculate_max_exit_latency(struct usb_device *udev,
4543 enum usb3_link_state state_changed,
4544 u16 hub_encoded_timeout)
4545 {
4546 unsigned long long u1_mel_us = 0;
4547 unsigned long long u2_mel_us = 0;
4548 unsigned long long mel_us = 0;
4549 bool disabling_u1;
4550 bool disabling_u2;
4551 bool enabling_u1;
4552 bool enabling_u2;
4553
4554 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4555 hub_encoded_timeout == USB3_LPM_DISABLED);
4556 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4557 hub_encoded_timeout == USB3_LPM_DISABLED);
4558
4559 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4560 hub_encoded_timeout != USB3_LPM_DISABLED);
4561 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4562 hub_encoded_timeout != USB3_LPM_DISABLED);
4563
4564 /* If U1 was already enabled and we're not disabling it,
4565 * or we're going to enable U1, account for the U1 max exit latency.
4566 */
4567 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4568 enabling_u1)
4569 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4570 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4571 enabling_u2)
4572 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4573
4574 if (u1_mel_us > u2_mel_us)
4575 mel_us = u1_mel_us;
4576 else
4577 mel_us = u2_mel_us;
4578 /* xHCI host controller max exit latency field is only 16 bits wide. */
4579 if (mel_us > MAX_EXIT) {
4580 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4581 "is too big.\n", mel_us);
4582 return -E2BIG;
4583 }
4584 return mel_us;
4585 }
4586
4587 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4588 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4589 struct usb_device *udev, enum usb3_link_state state)
4590 {
4591 struct xhci_hcd *xhci;
4592 u16 hub_encoded_timeout;
4593 int mel;
4594 int ret;
4595
4596 xhci = hcd_to_xhci(hcd);
4597 /* The LPM timeout values are pretty host-controller specific, so don't
4598 * enable hub-initiated timeouts unless the vendor has provided
4599 * information about their timeout algorithm.
4600 */
4601 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4602 !xhci->devs[udev->slot_id])
4603 return USB3_LPM_DISABLED;
4604
4605 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4606 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4607 if (mel < 0) {
4608 /* Max Exit Latency is too big, disable LPM. */
4609 hub_encoded_timeout = USB3_LPM_DISABLED;
4610 mel = 0;
4611 }
4612
4613 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4614 if (ret)
4615 return ret;
4616 return hub_encoded_timeout;
4617 }
4618
4619 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4620 struct usb_device *udev, enum usb3_link_state state)
4621 {
4622 struct xhci_hcd *xhci;
4623 u16 mel;
4624
4625 xhci = hcd_to_xhci(hcd);
4626 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4627 !xhci->devs[udev->slot_id])
4628 return 0;
4629
4630 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4631 return xhci_change_max_exit_latency(xhci, udev, mel);
4632 }
4633 #else /* CONFIG_PM */
4634
4635 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4636 struct usb_device *udev, int enable)
4637 {
4638 return 0;
4639 }
4640
4641 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4642 {
4643 return 0;
4644 }
4645
4646 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4647 struct usb_device *udev, enum usb3_link_state state)
4648 {
4649 return USB3_LPM_DISABLED;
4650 }
4651
4652 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4653 struct usb_device *udev, enum usb3_link_state state)
4654 {
4655 return 0;
4656 }
4657 #endif /* CONFIG_PM */
4658
4659 /*-------------------------------------------------------------------------*/
4660
4661 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4662 * internal data structures for the device.
4663 */
4664 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4665 struct usb_tt *tt, gfp_t mem_flags)
4666 {
4667 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4668 struct xhci_virt_device *vdev;
4669 struct xhci_command *config_cmd;
4670 struct xhci_input_control_ctx *ctrl_ctx;
4671 struct xhci_slot_ctx *slot_ctx;
4672 unsigned long flags;
4673 unsigned think_time;
4674 int ret;
4675
4676 /* Ignore root hubs */
4677 if (!hdev->parent)
4678 return 0;
4679
4680 vdev = xhci->devs[hdev->slot_id];
4681 if (!vdev) {
4682 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4683 return -EINVAL;
4684 }
4685
4686 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4687 if (!config_cmd)
4688 return -ENOMEM;
4689
4690 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4691 if (!ctrl_ctx) {
4692 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4693 __func__);
4694 xhci_free_command(xhci, config_cmd);
4695 return -ENOMEM;
4696 }
4697
4698 spin_lock_irqsave(&xhci->lock, flags);
4699 if (hdev->speed == USB_SPEED_HIGH &&
4700 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4701 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4702 xhci_free_command(xhci, config_cmd);
4703 spin_unlock_irqrestore(&xhci->lock, flags);
4704 return -ENOMEM;
4705 }
4706
4707 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4708 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4709 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4710 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4711 /*
4712 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4713 * but it may be already set to 1 when setup an xHCI virtual
4714 * device, so clear it anyway.
4715 */
4716 if (tt->multi)
4717 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4718 else if (hdev->speed == USB_SPEED_FULL)
4719 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4720
4721 if (xhci->hci_version > 0x95) {
4722 xhci_dbg(xhci, "xHCI version %x needs hub "
4723 "TT think time and number of ports\n",
4724 (unsigned int) xhci->hci_version);
4725 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4726 /* Set TT think time - convert from ns to FS bit times.
4727 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4728 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4729 *
4730 * xHCI 1.0: this field shall be 0 if the device is not a
4731 * High-spped hub.
4732 */
4733 think_time = tt->think_time;
4734 if (think_time != 0)
4735 think_time = (think_time / 666) - 1;
4736 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4737 slot_ctx->tt_info |=
4738 cpu_to_le32(TT_THINK_TIME(think_time));
4739 } else {
4740 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4741 "TT think time or number of ports\n",
4742 (unsigned int) xhci->hci_version);
4743 }
4744 slot_ctx->dev_state = 0;
4745 spin_unlock_irqrestore(&xhci->lock, flags);
4746
4747 xhci_dbg(xhci, "Set up %s for hub device.\n",
4748 (xhci->hci_version > 0x95) ?
4749 "configure endpoint" : "evaluate context");
4750
4751 /* Issue and wait for the configure endpoint or
4752 * evaluate context command.
4753 */
4754 if (xhci->hci_version > 0x95)
4755 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4756 false, false);
4757 else
4758 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4759 true, false);
4760
4761 xhci_free_command(xhci, config_cmd);
4762 return ret;
4763 }
4764
4765 static int xhci_get_frame(struct usb_hcd *hcd)
4766 {
4767 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4768 /* EHCI mods by the periodic size. Why? */
4769 return readl(&xhci->run_regs->microframe_index) >> 3;
4770 }
4771
4772 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4773 {
4774 struct xhci_hcd *xhci;
4775 /*
4776 * TODO: Check with DWC3 clients for sysdev according to
4777 * quirks
4778 */
4779 struct device *dev = hcd->self.sysdev;
4780 int retval;
4781
4782 /* Accept arbitrarily long scatter-gather lists */
4783 hcd->self.sg_tablesize = ~0;
4784
4785 /* support to build packet from discontinuous buffers */
4786 hcd->self.no_sg_constraint = 1;
4787
4788 /* XHCI controllers don't stop the ep queue on short packets :| */
4789 hcd->self.no_stop_on_short = 1;
4790
4791 xhci = hcd_to_xhci(hcd);
4792
4793 if (usb_hcd_is_primary_hcd(hcd)) {
4794 xhci->main_hcd = hcd;
4795 /* Mark the first roothub as being USB 2.0.
4796 * The xHCI driver will register the USB 3.0 roothub.
4797 */
4798 hcd->speed = HCD_USB2;
4799 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4800 /*
4801 * USB 2.0 roothub under xHCI has an integrated TT,
4802 * (rate matching hub) as opposed to having an OHCI/UHCI
4803 * companion controller.
4804 */
4805 hcd->has_tt = 1;
4806 } else {
4807 if (xhci->sbrn == 0x31) {
4808 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4809 hcd->speed = HCD_USB31;
4810 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4811 }
4812 /* xHCI private pointer was set in xhci_pci_probe for the second
4813 * registered roothub.
4814 */
4815 return 0;
4816 }
4817
4818 mutex_init(&xhci->mutex);
4819 xhci->cap_regs = hcd->regs;
4820 xhci->op_regs = hcd->regs +
4821 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4822 xhci->run_regs = hcd->regs +
4823 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4824 /* Cache read-only capability registers */
4825 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4826 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4827 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4828 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4829 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4830 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4831 if (xhci->hci_version > 0x100)
4832 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4833 xhci_print_registers(xhci);
4834
4835 xhci->quirks |= quirks;
4836
4837 get_quirks(dev, xhci);
4838
4839 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4840 * success event after a short transfer. This quirk will ignore such
4841 * spurious event.
4842 */
4843 if (xhci->hci_version > 0x96)
4844 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4845
4846 /* Make sure the HC is halted. */
4847 retval = xhci_halt(xhci);
4848 if (retval)
4849 return retval;
4850
4851 xhci_dbg(xhci, "Resetting HCD\n");
4852 /* Reset the internal HC memory state and registers. */
4853 retval = xhci_reset(xhci);
4854 if (retval)
4855 return retval;
4856 xhci_dbg(xhci, "Reset complete\n");
4857
4858 /*
4859 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4860 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4861 * address memory pointers actually. So, this driver clears the AC64
4862 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4863 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4864 */
4865 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4866 xhci->hcc_params &= ~BIT(0);
4867
4868 /* Set dma_mask and coherent_dma_mask to 64-bits,
4869 * if xHC supports 64-bit addressing */
4870 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4871 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4872 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4873 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4874 } else {
4875 /*
4876 * This is to avoid error in cases where a 32-bit USB
4877 * controller is used on a 64-bit capable system.
4878 */
4879 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4880 if (retval)
4881 return retval;
4882 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4883 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4884 }
4885
4886 xhci_dbg(xhci, "Calling HCD init\n");
4887 /* Initialize HCD and host controller data structures. */
4888 retval = xhci_init(hcd);
4889 if (retval)
4890 return retval;
4891 xhci_dbg(xhci, "Called HCD init\n");
4892
4893 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4894 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4895
4896 return 0;
4897 }
4898 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4899
4900 static const struct hc_driver xhci_hc_driver = {
4901 .description = "xhci-hcd",
4902 .product_desc = "xHCI Host Controller",
4903 .hcd_priv_size = sizeof(struct xhci_hcd),
4904
4905 /*
4906 * generic hardware linkage
4907 */
4908 .irq = xhci_irq,
4909 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4910
4911 /*
4912 * basic lifecycle operations
4913 */
4914 .reset = NULL, /* set in xhci_init_driver() */
4915 .start = xhci_run,
4916 .stop = xhci_stop,
4917 .shutdown = xhci_shutdown,
4918
4919 /*
4920 * managing i/o requests and associated device resources
4921 */
4922 .urb_enqueue = xhci_urb_enqueue,
4923 .urb_dequeue = xhci_urb_dequeue,
4924 .alloc_dev = xhci_alloc_dev,
4925 .free_dev = xhci_free_dev,
4926 .alloc_streams = xhci_alloc_streams,
4927 .free_streams = xhci_free_streams,
4928 .add_endpoint = xhci_add_endpoint,
4929 .drop_endpoint = xhci_drop_endpoint,
4930 .endpoint_reset = xhci_endpoint_reset,
4931 .check_bandwidth = xhci_check_bandwidth,
4932 .reset_bandwidth = xhci_reset_bandwidth,
4933 .address_device = xhci_address_device,
4934 .enable_device = xhci_enable_device,
4935 .update_hub_device = xhci_update_hub_device,
4936 .reset_device = xhci_discover_or_reset_device,
4937
4938 /*
4939 * scheduling support
4940 */
4941 .get_frame_number = xhci_get_frame,
4942
4943 /*
4944 * root hub support
4945 */
4946 .hub_control = xhci_hub_control,
4947 .hub_status_data = xhci_hub_status_data,
4948 .bus_suspend = xhci_bus_suspend,
4949 .bus_resume = xhci_bus_resume,
4950
4951 /*
4952 * call back when device connected and addressed
4953 */
4954 .update_device = xhci_update_device,
4955 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4956 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4957 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4958 .find_raw_port_number = xhci_find_raw_port_number,
4959 };
4960
4961 void xhci_init_driver(struct hc_driver *drv,
4962 const struct xhci_driver_overrides *over)
4963 {
4964 BUG_ON(!over);
4965
4966 /* Copy the generic table to drv then apply the overrides */
4967 *drv = xhci_hc_driver;
4968
4969 if (over) {
4970 drv->hcd_priv_size += over->extra_priv_size;
4971 if (over->reset)
4972 drv->reset = over->reset;
4973 if (over->start)
4974 drv->start = over->start;
4975 }
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_init_driver);
4978
4979 MODULE_DESCRIPTION(DRIVER_DESC);
4980 MODULE_AUTHOR(DRIVER_AUTHOR);
4981 MODULE_LICENSE("GPL");
4982
4983 static int __init xhci_hcd_init(void)
4984 {
4985 /*
4986 * Check the compiler generated sizes of structures that must be laid
4987 * out in specific ways for hardware access.
4988 */
4989 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4990 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4991 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4992 /* xhci_device_control has eight fields, and also
4993 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4994 */
4995 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4996 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4997 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4998 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4999 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5000 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5001 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5002
5003 if (usb_disabled())
5004 return -ENODEV;
5005
5006 return 0;
5007 }
5008
5009 /*
5010 * If an init function is provided, an exit function must also be provided
5011 * to allow module unload.
5012 */
5013 static void __exit xhci_hcd_fini(void) { }
5014
5015 module_init(xhci_hcd_init);
5016 module_exit(xhci_hcd_fini);